source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, convert_to_key_and_value, ignore_missing=False):
serialized = {}
properties = self._get_property_names(self)
def x(name):
p = [p for p in self._property_details if p.name == name]
return None if len(p) == 0 else p[0]
for p in properties:
pd = get_property_detail(p)
value = self._property_to_field(p, pd)
field_name = p if not pd else pd.to_field_name()
if value is None or ignore_missing and not value or pd and pd.unsent:
continue
else:
key, value = convert_to_key_and_value(field_name, value, pd)
if key:
serialized[key] = value
return serialized
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, convert_to_key_and_value, ignore_missing=False):\n serialized = {}\n properties = self._get_property_names(self)\n\n def x(name):\n p = [p for p in self._property_details if p.name == name]\n return None if len(p) == 0 else p[0]\n for p in properties:\n pd = get_property_detail(p)\n value = self._property_to_field(p, pd)\n field_name = p if not pd else pd.to_field_name()\n if value is None or ignore_missing and not value or pd and pd.unsent:\n continue\n else:\n key, value = convert_to_key_and_value(field_name, value, pd)\n if key:\n serialized[key] = value\n return serialized\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(self, buf, *, start=0, end=None):
self._bus.readinto(buf, start=start, end=end)
if start == 0 and end is None and len(buf) >= 8:
if self._bus.crc8(buf):
raise RuntimeError('CRC error.')
|
readinto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, buf, *, start=0, end=None):\n self._bus.readinto(buf, start=start, end=end)\n if start == 0 and end is None and len(buf) >= 8:\n if self._bus.crc8(buf):\n raise RuntimeError('CRC error.')\n",
"role": "user"
},
{
"content": "readinto",
"role": "assistant"
}
] |
def x(self, buf, *, start=0, end=None):
return self._bus.write(buf, start=start, end=end)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, buf, *, start=0, end=None):\n return self._bus.write(buf, start=start, end=end)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(sender, *args, **kwargs):
cls = sender
if issubclass(cls, Preferences):
cls.add_to_class('singleton', SingletonManager())
setattr(preferences.Preferences, cls._meta.object_name, property(lambda
x: cls.singleton.get()))
|
preferences_class_prepared
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender, *args, **kwargs):\n cls = sender\n if issubclass(cls, Preferences):\n cls.add_to_class('singleton', SingletonManager())\n setattr(preferences.Preferences, cls._meta.object_name, property(lambda\n x: cls.singleton.get()))\n",
"role": "user"
},
{
"content": "preferences_class_prepared",
"role": "assistant"
}
] |
def x(sender, action, instance, **kwargs):
if action == 'post_add':
if isinstance(instance, Preferences) and hasattr(instance.__class__,
'objects'):
site_conflicts = instance.__class__.objects.filter(sites__in=
instance.sites.all()).only('id').distinct()
for conflict in site_conflicts:
if conflict.id != instance.id:
for site in instance.sites.all():
conflict.sites.remove(site)
|
site_cleanup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender, action, instance, **kwargs):\n if action == 'post_add':\n if isinstance(instance, Preferences) and hasattr(instance.__class__,\n 'objects'):\n site_conflicts = instance.__class__.objects.filter(sites__in=\n instance.sites.all()).only('id').distinct()\n for conflict in site_conflicts:\n if conflict.id != instance.id:\n for site in instance.sites.all():\n conflict.sites.remove(site)\n",
"role": "user"
},
{
"content": "site_cleanup",
"role": "assistant"
}
] |
def x(self):
queryset = super(SingletonManager, self).get_queryset()
current_site = None
if getattr(settings, 'SITE_ID', None) is not None:
current_site = Site.objects.get_current()
if current_site is not None:
queryset = queryset.filter(sites=settings.SITE_ID)
if not queryset.exists():
obj = self.model.objects.create()
if current_site is not None:
obj.sites.add(current_site)
return queryset
|
get_queryset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n queryset = super(SingletonManager, self).get_queryset()\n current_site = None\n if getattr(settings, 'SITE_ID', None) is not None:\n current_site = Site.objects.get_current()\n if current_site is not None:\n queryset = queryset.filter(sites=settings.SITE_ID)\n if not queryset.exists():\n obj = self.model.objects.create()\n if current_site is not None:\n obj.sites.add(current_site)\n return queryset\n",
"role": "user"
},
{
"content": "get_queryset",
"role": "assistant"
}
] |
def x(self, iterable, session=None):
data = []
load = self.loads
for v in iterable:
data.append(load(v))
return data
|
load_iterable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iterable, session=None):\n data = []\n load = self.loads\n for v in iterable:\n data.append(load(v))\n return data\n",
"role": "user"
},
{
"content": "load_iterable",
"role": "assistant"
}
] |
def x(self, q, text, lookup=None):
words = self.words_from_text(text, for_search=True)
if not words:
return q
qs = self._search(words, include=(q.model,), lookup=lookup)
qs = tuple(q.get_field('object_id') for q in qs)
return odm.intersect((q,) + qs)
|
search_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q, text, lookup=None):\n words = self.words_from_text(text, for_search=True)\n if not words:\n return q\n qs = self._search(words, include=(q.model,), lookup=lookup)\n qs = tuple(q.get_field('object_id') for q in qs)\n return odm.intersect((q,) + qs)\n",
"role": "user"
},
{
"content": "search_model",
"role": "assistant"
}
] |
def x(self, words, include=None, exclude=None, lookup=None):
lookup = lookup or 'contains'
query = self.router.worditem.query()
if include:
query = query.filter(model_type__in=include)
if exclude:
query = query.exclude(model_type__in=include)
if not words:
return [query]
qs = []
if lookup == 'in':
qs.append(query.filter(word__in=words))
elif lookup == 'contains':
for word in words:
qs.append(query.filter(word=word))
else:
raise ValueError('Unknown lookup "{0}"'.format(lookup))
return qs
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, words, include=None, exclude=None, lookup=None):\n lookup = lookup or 'contains'\n query = self.router.worditem.query()\n if include:\n query = query.filter(model_type__in=include)\n if exclude:\n query = query.exclude(model_type__in=include)\n if not words:\n return [query]\n qs = []\n if lookup == 'in':\n qs.append(query.filter(word__in=words))\n elif lookup == 'contains':\n for word in words:\n qs.append(query.filter(word=word))\n else:\n raise ValueError('Unknown lookup \"{0}\"'.format(lookup))\n return qs\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(s, encoding=None, errors='strict'):
encoding = encoding or 'utf-8'
if isinstance(s, bytes):
if encoding != 'utf-8':
return s.decode('utf-8', errors).encode(encoding, errors)
else:
return s
if not is_string(s):
s = string_type(s)
return s.encode(encoding, errors)
|
to_bytes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, encoding=None, errors='strict'):\n encoding = encoding or 'utf-8'\n if isinstance(s, bytes):\n if encoding != 'utf-8':\n return s.decode('utf-8', errors).encode(encoding, errors)\n else:\n return s\n if not is_string(s):\n s = string_type(s)\n return s.encode(encoding, errors)\n",
"role": "user"
},
{
"content": "to_bytes",
"role": "assistant"
}
] |
def x(s, encoding=None, errors='strict'):
encoding = encoding or 'utf-8'
if isinstance(s, bytes):
return s.decode(encoding, errors)
if not is_string(s):
s = string_type(s)
return s
|
to_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, encoding=None, errors='strict'):\n encoding = encoding or 'utf-8'\n if isinstance(s, bytes):\n return s.decode(encoding, errors)\n if not is_string(s):\n s = string_type(s)\n return s\n",
"role": "user"
},
{
"content": "to_string",
"role": "assistant"
}
] |
def x(dct):
if '__datetime__' in dct:
return todatetime(dct['__datetime__'])
elif '__date__' in dct:
return todatetime(dct['__date__']).date()
elif '__decimal__' in dct:
return Decimal(dct['__decimal__'])
else:
return dct
|
date_decimal_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dct):\n if '__datetime__' in dct:\n return todatetime(dct['__datetime__'])\n elif '__date__' in dct:\n return todatetime(dct['__date__']).date()\n elif '__decimal__' in dct:\n return Decimal(dct['__decimal__'])\n else:\n return dct\n",
"role": "user"
},
{
"content": "date_decimal_hook",
"role": "assistant"
}
] |
def x(data, instance=None, attname=None, separator=None, loads=None):
separator = separator or JSPLITTER
val = {}
flat_vals = {}
for key, value in iteritems(data):
if value is None:
continue
keys = key.split(separator)
if attname:
if keys.pop(0) != attname:
continue
if loads:
value = loads(value)
if not keys:
if value is None:
val = flat_vals = {}
break
else:
continue
else:
flat_vals[key] = value
d = val
lk = keys[-1]
for k in keys[:-1]:
if k not in d:
nd = {}
d[k] = nd
else:
nd = d[k]
if not isinstance(nd, dict):
nd = {'': nd}
d[k] = nd
d = nd
if lk not in d:
d[lk] = value
else:
d[lk][''] = value
if instance and flat_vals:
for attr, value in iteritems(flat_vals):
setattr(instance, attr, value)
return val
|
flat_to_nested
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, instance=None, attname=None, separator=None, loads=None):\n separator = separator or JSPLITTER\n val = {}\n flat_vals = {}\n for key, value in iteritems(data):\n if value is None:\n continue\n keys = key.split(separator)\n if attname:\n if keys.pop(0) != attname:\n continue\n if loads:\n value = loads(value)\n if not keys:\n if value is None:\n val = flat_vals = {}\n break\n else:\n continue\n else:\n flat_vals[key] = value\n d = val\n lk = keys[-1]\n for k in keys[:-1]:\n if k not in d:\n nd = {}\n d[k] = nd\n else:\n nd = d[k]\n if not isinstance(nd, dict):\n nd = {'': nd}\n d[k] = nd\n d = nd\n if lk not in d:\n d[lk] = value\n else:\n d[lk][''] = value\n if instance and flat_vals:\n for attr, value in iteritems(flat_vals):\n setattr(instance, attr, value)\n return val\n",
"role": "user"
},
{
"content": "flat_to_nested",
"role": "assistant"
}
] |
def x(value, attname=None, splitter=JSPLITTER, dumps=None, prefix=None,
error=ValueError, recursive=True):
if not isinstance(value, dict) or not recursive:
if not prefix:
raise error('Cannot assign a non dictionary to a JSON field')
else:
name = '%s%s%s' % (attname, splitter, prefix
) if attname else prefix
yield name, dumps(value) if dumps else value
else:
for field in value:
val = value[field]
key = prefix
if field:
key = '%s%s%s' % (prefix, splitter, field) if prefix else field
for k, v2 in dict_flat_generator(val, attname, splitter, dumps,
key, error, field):
yield k, v2
|
dict_flat_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, attname=None, splitter=JSPLITTER, dumps=None, prefix=None,\n error=ValueError, recursive=True):\n if not isinstance(value, dict) or not recursive:\n if not prefix:\n raise error('Cannot assign a non dictionary to a JSON field')\n else:\n name = '%s%s%s' % (attname, splitter, prefix\n ) if attname else prefix\n yield name, dumps(value) if dumps else value\n else:\n for field in value:\n val = value[field]\n key = prefix\n if field:\n key = '%s%s%s' % (prefix, splitter, field) if prefix else field\n for k, v2 in dict_flat_generator(val, attname, splitter, dumps,\n key, error, field):\n yield k, v2\n",
"role": "user"
},
{
"content": "dict_flat_generator",
"role": "assistant"
}
] |
def x(series):
if not series:
return
vtype = value_type(s[1] for s in series)
if vtype == 1:
return sum(weight * float(d) for weight, d in series)
elif vtype == 3:
keys = set(series[0][1])
for serie in series[1:]:
keys.intersection_update(serie[1])
results = {}
for key in keys:
key_series = tuple((weight, d[key]) for weight, d in series)
result = addmul_number_dicts(key_series)
if result is not None:
results[key] = result
return results
|
addmul_number_dicts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(series):\n if not series:\n return\n vtype = value_type(s[1] for s in series)\n if vtype == 1:\n return sum(weight * float(d) for weight, d in series)\n elif vtype == 3:\n keys = set(series[0][1])\n for serie in series[1:]:\n keys.intersection_update(serie[1])\n results = {}\n for key in keys:\n key_series = tuple((weight, d[key]) for weight, d in series)\n result = addmul_number_dicts(key_series)\n if result is not None:\n results[key] = result\n return results\n",
"role": "user"
},
{
"content": "addmul_number_dicts",
"role": "assistant"
}
] |
def x(campaign=0, queue='build', email=None, walltime=8, **kwargs):
if type(campaign) is int:
subcampaign = -1
elif type(campaign) is float:
x, y = divmod(campaign, 1)
campaign = int(x)
subcampaign = round(y * 10)
pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'download.pbs')
str_w = 'walltime=%d:00:00' % walltime
str_v = 'EVEREST_DAT=%s,CAMPAIGN=%d,SUBCAMPAIGN=%d' % (EVEREST_DAT,
campaign, subcampaign)
if subcampaign == -1:
str_name = 'download_c%02d' % campaign
else:
str_name = 'download_c%02d.%d' % (campaign, subcampaign)
str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')
qsub_args = ['qsub', pbsfile, '-q', queue, '-v', str_v, '-o', str_out,
'-j', 'oe', '-N', str_name, '-l', str_w]
if email is not None:
qsub_args.append(['-M', email, '-m', 'ae'])
print('Submitting the job...')
subprocess.call(qsub_args)
|
Download
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign=0, queue='build', email=None, walltime=8, **kwargs):\n if type(campaign) is int:\n subcampaign = -1\n elif type(campaign) is float:\n x, y = divmod(campaign, 1)\n campaign = int(x)\n subcampaign = round(y * 10)\n pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'download.pbs')\n str_w = 'walltime=%d:00:00' % walltime\n str_v = 'EVEREST_DAT=%s,CAMPAIGN=%d,SUBCAMPAIGN=%d' % (EVEREST_DAT,\n campaign, subcampaign)\n if subcampaign == -1:\n str_name = 'download_c%02d' % campaign\n else:\n str_name = 'download_c%02d.%d' % (campaign, subcampaign)\n str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')\n qsub_args = ['qsub', pbsfile, '-q', queue, '-v', str_v, '-o', str_out,\n '-j', 'oe', '-N', str_name, '-l', str_w]\n if email is not None:\n qsub_args.append(['-M', email, '-m', 'ae'])\n print('Submitting the job...')\n subprocess.call(qsub_args)\n",
"role": "user"
},
{
"content": "Download",
"role": "assistant"
}
] |
def x(campaign, subcampaign):
if subcampaign != -1:
campaign = campaign + 0.1 * subcampaign
stars = [s[0] for s in GetK2Campaign(campaign)]
nstars = len(stars)
for i, EPIC in enumerate(stars):
print('Downloading data for EPIC %d (%d/%d)...' % (EPIC, i + 1, nstars)
)
if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int
(campaign), ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:],
'data.npz')):
try:
GetData(EPIC, season=campaign, download_only=True)
except KeyboardInterrupt:
sys.exit()
except:
print('ERROR downloading EPIC %d.' % EPIC)
exctype, value, tb = sys.exc_info()
for line in traceback.format_exception_only(exctype, value):
ln = line.replace('\n', '')
print(ln)
continue
|
Download
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign, subcampaign):\n if subcampaign != -1:\n campaign = campaign + 0.1 * subcampaign\n stars = [s[0] for s in GetK2Campaign(campaign)]\n nstars = len(stars)\n for i, EPIC in enumerate(stars):\n print('Downloading data for EPIC %d (%d/%d)...' % (EPIC, i + 1, nstars)\n )\n if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int\n (campaign), ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:],\n 'data.npz')):\n try:\n GetData(EPIC, season=campaign, download_only=True)\n except KeyboardInterrupt:\n sys.exit()\n except:\n print('ERROR downloading EPIC %d.' % EPIC)\n exctype, value, tb = sys.exc_info()\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n print(ln)\n continue\n",
"role": "user"
},
{
"content": "Download",
"role": "assistant"
}
] |
def x(campaign=0, EPIC=None, nodes=5, ppn=12, walltime=100, mpn=None, email
=None, queue=None, **kwargs):
if type(campaign) is int:
subcampaign = -1
elif type(campaign) is float:
x, y = divmod(campaign, 1)
campaign = int(x)
subcampaign = round(y * 10)
if EVEREST_DEV and queue == 'bf':
walltime = min(10, walltime)
try:
strkwargs = pickle.dumps(kwargs, 0).decode('utf-8').replace('\n', '%%%'
)
except UnicodeDecodeError:
raise ValueError(
'Unable to pickle `kwargs`. Currently the `kwargs` ' +
'values may only be `int`s, `float`s, `string`s, ' +
'`bool`s, or lists of these.')
pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'run.pbs')
if mpn is not None:
str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % (nodes, ppn,
ppn, mpn * nodes)
else:
str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn)
str_w = 'walltime=%d:00:00' % walltime
str_v = 'EVEREST_DAT=%s,NODES=%d,' % (EVEREST_DAT, nodes) + 'EPIC=%d,' % (
0 if EPIC is None else EPIC
) + "CAMPAIGN=%d,SUBCAMPAIGN=%d,STRKWARGS='%s'" % (campaign,
subcampaign, strkwargs)
if EPIC is None:
if subcampaign == -1:
str_name = 'c%02d' % campaign
else:
str_name = 'c%02d.%d' % (campaign, subcampaign)
else:
str_name = 'EPIC%d' % EPIC
str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')
qsub_args = ['qsub', pbsfile, '-v', str_v, '-o', str_out, '-j', 'oe',
'-N', str_name, '-l', str_n, '-l', str_w]
if email is not None:
qsub_args.append(['-M', email, '-m', 'ae'])
if queue is not None:
qsub_args += ['-q', queue]
print('Submitting the job...')
subprocess.call(qsub_args)
|
Run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign=0, EPIC=None, nodes=5, ppn=12, walltime=100, mpn=None, email\n =None, queue=None, **kwargs):\n if type(campaign) is int:\n subcampaign = -1\n elif type(campaign) is float:\n x, y = divmod(campaign, 1)\n campaign = int(x)\n subcampaign = round(y * 10)\n if EVEREST_DEV and queue == 'bf':\n walltime = min(10, walltime)\n try:\n strkwargs = pickle.dumps(kwargs, 0).decode('utf-8').replace('\\n', '%%%'\n )\n except UnicodeDecodeError:\n raise ValueError(\n 'Unable to pickle `kwargs`. Currently the `kwargs` ' +\n 'values may only be `int`s, `float`s, `string`s, ' +\n '`bool`s, or lists of these.')\n pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'run.pbs')\n if mpn is not None:\n str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % (nodes, ppn,\n ppn, mpn * nodes)\n else:\n str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn)\n str_w = 'walltime=%d:00:00' % walltime\n str_v = 'EVEREST_DAT=%s,NODES=%d,' % (EVEREST_DAT, nodes) + 'EPIC=%d,' % (\n 0 if EPIC is None else EPIC\n ) + \"CAMPAIGN=%d,SUBCAMPAIGN=%d,STRKWARGS='%s'\" % (campaign,\n subcampaign, strkwargs)\n if EPIC is None:\n if subcampaign == -1:\n str_name = 'c%02d' % campaign\n else:\n str_name = 'c%02d.%d' % (campaign, subcampaign)\n else:\n str_name = 'EPIC%d' % EPIC\n str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')\n qsub_args = ['qsub', pbsfile, '-v', str_v, '-o', str_out, '-j', 'oe',\n '-N', str_name, '-l', str_n, '-l', str_w]\n if email is not None:\n qsub_args.append(['-M', email, '-m', 'ae'])\n if queue is not None:\n qsub_args += ['-q', queue]\n print('Submitting the job...')\n subprocess.call(qsub_args)\n",
"role": "user"
},
{
"content": "Run",
"role": "assistant"
}
] |
def x(campaign, subcampaign, strkwargs):
kwargs = pickle.loads(strkwargs.replace('%%%', '\n').encode('utf-8'))
cadence = kwargs.get('cadence', 'lc')
m = FunctionWrapper(EverestModel, season=campaign, publish=True, **kwargs)
sys.excepthook = ExceptionHook
with Pool() as pool:
if subcampaign != -1:
campaign = campaign + 0.1 * subcampaign
stars = GetK2Campaign(campaign, epics_only=True, cadence=cadence)
pool.map(m, stars)
|
Publish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign, subcampaign, strkwargs):\n kwargs = pickle.loads(strkwargs.replace('%%%', '\\n').encode('utf-8'))\n cadence = kwargs.get('cadence', 'lc')\n m = FunctionWrapper(EverestModel, season=campaign, publish=True, **kwargs)\n sys.excepthook = ExceptionHook\n with Pool() as pool:\n if subcampaign != -1:\n campaign = campaign + 0.1 * subcampaign\n stars = GetK2Campaign(campaign, epics_only=True, cadence=cadence)\n pool.map(m, stars)\n",
"role": "user"
},
{
"content": "Publish",
"role": "assistant"
}
] |
def x(season=range(18), model='nPLD', purge=False, injection=False, cadence
='lc', **kwargs):
campaign = season
if injection:
return InjectionStatus(campaign=campaign, model=model, purge=purge,
**kwargs)
if cadence == 'sc':
model = '%s.sc' % model
if not hasattr(campaign, '__len__'):
if type(campaign) is int:
all_stars = [s for s in GetK2Campaign(campaign, split=True,
epics_only=True, cadence=cadence)]
campaign = [(campaign + 0.1 * n) for n in range(10)]
else:
all_stars = [[s for s in GetK2Campaign(campaign, epics_only=
True, cadence=cadence)]]
campaign = [campaign]
else:
all_stars = [[s for s in GetK2Campaign(c, epics_only=True, cadence=
cadence)] for c in campaign]
print('CAMP TOTAL DOWNLOADED PROCESSED FITS ERRORS')
print('---- ----- ---------- --------- ---- ------')
for c, stars in zip(campaign, all_stars):
if len(stars) == 0:
continue
down = 0
proc = 0
err = 0
fits = 0
bad = []
remain = []
total = len(stars)
if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):
path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)
for folder in [f for f in os.listdir(path) if f.endswith('00000')]:
for subfolder in os.listdir(os.path.join(path, folder)):
ID = int(folder[:4] + subfolder)
if ID in stars:
if os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder, subfolder, 'data.npz')):
down += 1
if os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder, subfolder, FITSFile(ID, c,
cadence=cadence))):
fits += 1
if os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder, subfolder, model + '.npz')):
proc += 1
elif os.path.exists(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder, subfolder, model + '.err')):
err += 1
bad.append(folder[:4] + subfolder)
if purge:
os.remove(os.path.join(EVEREST_DAT, 'k2',
'c%02d' % c, folder, subfolder, model +
'.err'))
else:
remain.append(folder[:4] + subfolder)
if proc == total:
cc = ct = cp = ce = GREEN
cd = BLACK if down < total else GREEN
else:
cc = BLACK
ct = BLACK
cd = BLACK if down < total else BLUE
cp = BLACK if proc < down or proc == 0 else BLUE
ce = RED if err > 0 else BLACK
cf = BLACK if fits < total else GREEN
if type(c) is int:
print(
'%s{:>4d} \x1b[0m%s{:>8d}\x1b[0m%s{:>16d}\x1b[0m%s{:>13d}\x1b[0m%s{:>10d}\x1b[0m%s{:>10d}\x1b[0m'
.format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,
cf, ce))
else:
print(
'%s{:>4.1f} \x1b[0m%s{:>8d}\x1b[0m%s{:>16d}\x1b[0m%s{:>13d}\x1b[0m%s{:>10d}\x1b[0m%s{:>10d}\x1b[0m'
.format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,
cf, ce))
if len(remain) <= 25 and len(remain) > 0 and len(campaign) == 1:
remain.extend([' '] * (4 - len(remain) % 4))
print()
for A, B, C, D in zip(remain[::4], remain[1::4], remain[2::4],
remain[3::4]):
if A == remain[0]:
print('REMAIN: %s %s %s %s' % (A, B, C, D))
print()
else:
print(' %s %s %s %s' % (A, B, C, D))
print()
if len(bad) and len(campaign) == 1:
bad.extend([' '] * (4 - len(bad) % 4))
print()
for A, B, C, D in zip(bad[::4], bad[1::4], bad[2::4], bad[3::4]):
if A == bad[0]:
print('ERRORS: %s %s %s %s' % (A, B, C, D))
print()
else:
print(' %s %s %s %s' % (A, B, C, D))
print()
|
Status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(season=range(18), model='nPLD', purge=False, injection=False, cadence\n ='lc', **kwargs):\n campaign = season\n if injection:\n return InjectionStatus(campaign=campaign, model=model, purge=purge,\n **kwargs)\n if cadence == 'sc':\n model = '%s.sc' % model\n if not hasattr(campaign, '__len__'):\n if type(campaign) is int:\n all_stars = [s for s in GetK2Campaign(campaign, split=True,\n epics_only=True, cadence=cadence)]\n campaign = [(campaign + 0.1 * n) for n in range(10)]\n else:\n all_stars = [[s for s in GetK2Campaign(campaign, epics_only=\n True, cadence=cadence)]]\n campaign = [campaign]\n else:\n all_stars = [[s for s in GetK2Campaign(c, epics_only=True, cadence=\n cadence)] for c in campaign]\n print('CAMP TOTAL DOWNLOADED PROCESSED FITS ERRORS')\n print('---- ----- ---------- --------- ---- ------')\n for c, stars in zip(campaign, all_stars):\n if len(stars) == 0:\n continue\n down = 0\n proc = 0\n err = 0\n fits = 0\n bad = []\n remain = []\n total = len(stars)\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):\n path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)\n for folder in [f for f in os.listdir(path) if f.endswith('00000')]:\n for subfolder in os.listdir(os.path.join(path, folder)):\n ID = int(folder[:4] + subfolder)\n if ID in stars:\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, 'data.npz')):\n down += 1\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, FITSFile(ID, c,\n cadence=cadence))):\n fits += 1\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, model + '.npz')):\n proc += 1\n elif os.path.exists(os.path.join(EVEREST_DAT, 'k2',\n 'c%02d' % c, folder, subfolder, model + '.err')):\n err += 1\n bad.append(folder[:4] + subfolder)\n if purge:\n os.remove(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, model +\n '.err'))\n else:\n remain.append(folder[:4] + subfolder)\n if proc == total:\n cc = ct = cp = ce = GREEN\n cd = BLACK if down < total else GREEN\n else:\n cc = BLACK\n ct = BLACK\n cd = BLACK if down < total else BLUE\n cp = BLACK if proc < down or proc == 0 else BLUE\n ce = RED if err > 0 else BLACK\n cf = BLACK if fits < total else GREEN\n if type(c) is int:\n print(\n '%s{:>4d} \\x1b[0m%s{:>8d}\\x1b[0m%s{:>16d}\\x1b[0m%s{:>13d}\\x1b[0m%s{:>10d}\\x1b[0m%s{:>10d}\\x1b[0m'\n .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,\n cf, ce))\n else:\n print(\n '%s{:>4.1f} \\x1b[0m%s{:>8d}\\x1b[0m%s{:>16d}\\x1b[0m%s{:>13d}\\x1b[0m%s{:>10d}\\x1b[0m%s{:>10d}\\x1b[0m'\n .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,\n cf, ce))\n if len(remain) <= 25 and len(remain) > 0 and len(campaign) == 1:\n remain.extend([' '] * (4 - len(remain) % 4))\n print()\n for A, B, C, D in zip(remain[::4], remain[1::4], remain[2::4],\n remain[3::4]):\n if A == remain[0]:\n print('REMAIN: %s %s %s %s' % (A, B, C, D))\n print()\n else:\n print(' %s %s %s %s' % (A, B, C, D))\n print()\n if len(bad) and len(campaign) == 1:\n bad.extend([' '] * (4 - len(bad) % 4))\n print()\n for A, B, C, D in zip(bad[::4], bad[1::4], bad[2::4], bad[3::4]):\n if A == bad[0]:\n print('ERRORS: %s %s %s %s' % (A, B, C, D))\n print()\n else:\n print(' %s %s %s %s' % (A, B, C, D))\n print()\n",
"role": "user"
},
{
"content": "Status",
"role": "assistant"
}
] |
def x(campaign=range(18), model='nPLD', purge=False, depths=[0.01, 0.001,
0.0001], **kwargs):
if not hasattr(campaign, '__len__'):
if type(campaign) is int:
all_stars = [s for s in GetK2Campaign(campaign, split=True,
epics_only=True)]
campaign = [(campaign + 0.1 * n) for n in range(10)]
else:
all_stars = [[s for s in GetK2Campaign(campaign, epics_only=True)]]
campaign = [campaign]
else:
all_stars = [[s for s in GetK2Campaign(c, epics_only=True)] for c in
campaign]
print('CAMP MASK DEPTH TOTAL DONE ERRORS')
print('---- ---- ----- ----- ---- ------')
for c, stars in zip(campaign, all_stars):
if len(stars) == 0:
continue
done = [[(0) for d in depths], [(0) for d in depths]]
err = [[(0) for d in depths], [(0) for d in depths]]
total = len(stars)
if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):
path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)
for folder in os.listdir(path):
for subfolder in os.listdir(os.path.join(path, folder)):
ID = int(folder[:4] + subfolder)
for m, mask in enumerate(['U', 'M']):
for d, depth in enumerate(depths):
if os.path.exists(os.path.join(EVEREST_DAT,
'k2', 'c%02d' % c, folder, subfolder,
'%s_Inject_%s%g.npz' % (model, mask, depth))):
done[m][d] += 1
elif os.path.exists(os.path.join(EVEREST_DAT,
'k2', 'c%02d' % c, folder, subfolder,
'%s_Inject_%s%g.err' % (model, mask, depth))):
err[m][d] += 1
for d, depth in enumerate(depths):
for m, mask in enumerate(['F', 'T']):
if done[m][d] == total:
color = GREEN
else:
color = BLACK
if err[m][d] > 0:
errcolor = RED
else:
errcolor = ''
if type(c) is int:
print(
'%s{:>4d}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\x1b[0m'
.format(c, mask, depth, total, done[m][d], err[m][d
]) % (color, errcolor))
else:
print(
'%s{:>4.1f}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\x1b[0m'
.format(c, mask, depth, total, done[m][d], err[m][d
]) % (color, errcolor))
|
InjectionStatus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign=range(18), model='nPLD', purge=False, depths=[0.01, 0.001, \n 0.0001], **kwargs):\n if not hasattr(campaign, '__len__'):\n if type(campaign) is int:\n all_stars = [s for s in GetK2Campaign(campaign, split=True,\n epics_only=True)]\n campaign = [(campaign + 0.1 * n) for n in range(10)]\n else:\n all_stars = [[s for s in GetK2Campaign(campaign, epics_only=True)]]\n campaign = [campaign]\n else:\n all_stars = [[s for s in GetK2Campaign(c, epics_only=True)] for c in\n campaign]\n print('CAMP MASK DEPTH TOTAL DONE ERRORS')\n print('---- ---- ----- ----- ---- ------')\n for c, stars in zip(campaign, all_stars):\n if len(stars) == 0:\n continue\n done = [[(0) for d in depths], [(0) for d in depths]]\n err = [[(0) for d in depths], [(0) for d in depths]]\n total = len(stars)\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):\n path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)\n for folder in os.listdir(path):\n for subfolder in os.listdir(os.path.join(path, folder)):\n ID = int(folder[:4] + subfolder)\n for m, mask in enumerate(['U', 'M']):\n for d, depth in enumerate(depths):\n if os.path.exists(os.path.join(EVEREST_DAT,\n 'k2', 'c%02d' % c, folder, subfolder, \n '%s_Inject_%s%g.npz' % (model, mask, depth))):\n done[m][d] += 1\n elif os.path.exists(os.path.join(EVEREST_DAT,\n 'k2', 'c%02d' % c, folder, subfolder, \n '%s_Inject_%s%g.err' % (model, mask, depth))):\n err[m][d] += 1\n for d, depth in enumerate(depths):\n for m, mask in enumerate(['F', 'T']):\n if done[m][d] == total:\n color = GREEN\n else:\n color = BLACK\n if err[m][d] > 0:\n errcolor = RED\n else:\n errcolor = ''\n if type(c) is int:\n print(\n '%s{:>4d}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\\x1b[0m'\n .format(c, mask, depth, total, done[m][d], err[m][d\n ]) % (color, errcolor))\n else:\n print(\n '%s{:>4.1f}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\\x1b[0m'\n .format(c, mask, depth, total, done[m][d], err[m][d\n ]) % (color, errcolor))\n",
"role": "user"
},
{
"content": "InjectionStatus",
"role": "assistant"
}
] |
def x(ID, model='nPLD', publish=False, csv=False, **kwargs):
if model != 'Inject':
from ... import detrender
if kwargs.get('cadence', 'lc') == 'sc':
EPIC, t0, period, duration = np.loadtxt(os.path.join(
EVEREST_SRC, 'missions', 'k2', 'tables', 'scmasks.tsv'),
unpack=True)
if ID in EPIC and kwargs.get('planets', None) is None:
ii = np.where(EPIC == ID)[0]
planets = []
for i in ii:
planets.append([t0[i], period[i], 1.25 * duration[i]])
kwargs.update({'planets': planets})
m = getattr(detrender, model)(ID, **kwargs)
if publish:
if csv:
m.publish_csv()
else:
m.publish()
else:
from ...inject import Inject
Inject(ID, **kwargs)
return True
|
EverestModel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, model='nPLD', publish=False, csv=False, **kwargs):\n if model != 'Inject':\n from ... import detrender\n if kwargs.get('cadence', 'lc') == 'sc':\n EPIC, t0, period, duration = np.loadtxt(os.path.join(\n EVEREST_SRC, 'missions', 'k2', 'tables', 'scmasks.tsv'),\n unpack=True)\n if ID in EPIC and kwargs.get('planets', None) is None:\n ii = np.where(EPIC == ID)[0]\n planets = []\n for i in ii:\n planets.append([t0[i], period[i], 1.25 * duration[i]])\n kwargs.update({'planets': planets})\n m = getattr(detrender, model)(ID, **kwargs)\n if publish:\n if csv:\n m.publish_csv()\n else:\n m.publish()\n else:\n from ...inject import Inject\n Inject(ID, **kwargs)\n return True\n",
"role": "user"
},
{
"content": "EverestModel",
"role": "assistant"
}
] |
def x(model):
cards = model._mission.HDUCards(model.meta, hdu=0)
if 'KEPMAG' not in [c[0] for c in cards]:
cards.append(('KEPMAG', model.mag, 'Kepler magnitude'))
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
header = pyfits.Header(cards=cards)
hdu = pyfits.PrimaryHDU(header=header)
return hdu
|
PrimaryHDU
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=0)\n if 'KEPMAG' not in [c[0] for c in cards]:\n cards.append(('KEPMAG', model.mag, 'Kepler magnitude'))\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n hdu = pyfits.PrimaryHDU(header=header)\n return hdu\n",
"role": "user"
},
{
"content": "PrimaryHDU",
"role": "assistant"
}
] |
def x(model):
cards = model._mission.HDUCards(model.meta, hdu=2)
cards = []
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
header = pyfits.Header(cards=cards)
arrays = [pyfits.Column(name='FPIX', format='%dD' % model.fpix.shape[1],
array=model.fpix)]
X1N = model.X1N
if X1N is not None:
arrays.append(pyfits.Column(name='X1N', format='%dD' % X1N.shape[1],
array=X1N))
cols = pyfits.ColDefs(arrays)
hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='PIXELS')
return hdu
|
PixelsHDU
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=2)\n cards = []\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n arrays = [pyfits.Column(name='FPIX', format='%dD' % model.fpix.shape[1],\n array=model.fpix)]\n X1N = model.X1N\n if X1N is not None:\n arrays.append(pyfits.Column(name='X1N', format='%dD' % X1N.shape[1],\n array=X1N))\n cols = pyfits.ColDefs(arrays)\n hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='PIXELS')\n return hdu\n",
"role": "user"
},
{
"content": "PixelsHDU",
"role": "assistant"
}
] |
def x(model):
cards = model._mission.HDUCards(model.meta, hdu=3)
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
header = pyfits.Header(cards=cards)
hdu = pyfits.ImageHDU(data=model.aperture, header=header, name=
'APERTURE MASK')
return hdu
|
ApertureHDU
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=3)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n hdu = pyfits.ImageHDU(data=model.aperture, header=header, name=\n 'APERTURE MASK')\n return hdu\n",
"role": "user"
},
{
"content": "ApertureHDU",
"role": "assistant"
}
] |
def x(model):
cards = model._mission.HDUCards(model.meta, hdu=4)
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
format = '%dD' % model.pixel_images[0].shape[1]
arrays = [pyfits.Column(name='STAMP1', format=format, array=model.
pixel_images[0]), pyfits.Column(name='STAMP2', format=format, array
=model.pixel_images[1]), pyfits.Column(name='STAMP3', format=format,
array=model.pixel_images[2])]
header = pyfits.Header(cards=cards)
cols = pyfits.ColDefs(arrays)
hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name=
'POSTAGE STAMPS')
return hdu
|
ImagesHDU
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=4)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n format = '%dD' % model.pixel_images[0].shape[1]\n arrays = [pyfits.Column(name='STAMP1', format=format, array=model.\n pixel_images[0]), pyfits.Column(name='STAMP2', format=format, array\n =model.pixel_images[1]), pyfits.Column(name='STAMP3', format=format,\n array=model.pixel_images[2])]\n header = pyfits.Header(cards=cards)\n cols = pyfits.ColDefs(arrays)\n hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name=\n 'POSTAGE STAMPS')\n return hdu\n",
"role": "user"
},
{
"content": "ImagesHDU",
"role": "assistant"
}
] |
def x(model):
cards = model._mission.HDUCards(model.meta, hdu=5)
cards.append(('COMMENT', '************************'))
cards.append(('COMMENT', '* EVEREST INFO *'))
cards.append(('COMMENT', '************************'))
cards.append(('MISSION', model.mission, 'Mission name'))
cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))
cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))
cards.append(('DATE', strftime('%Y-%m-%d'),
'EVEREST file creation date (YYYY-MM-DD)'))
header = pyfits.Header(cards=cards)
if model.hires is not None:
hdu = pyfits.ImageHDU(data=model.hires, header=header, name=
'HI RES IMAGE')
else:
hdu = pyfits.ImageHDU(data=np.empty((0, 0), dtype=float), header=
header, name='HI RES IMAGE')
return hdu
|
HiResHDU
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=5)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n if model.hires is not None:\n hdu = pyfits.ImageHDU(data=model.hires, header=header, name=\n 'HI RES IMAGE')\n else:\n hdu = pyfits.ImageHDU(data=np.empty((0, 0), dtype=float), header=\n header, name='HI RES IMAGE')\n return hdu\n",
"role": "user"
},
{
"content": "HiResHDU",
"role": "assistant"
}
] |
def x(model, fitsfile=None):
if fitsfile is None:
outfile = os.path.join(model.dir, model._mission.FITSFile(model.ID,
model.season, model.cadence))
else:
outfile = os.path.join(model.dir, fitsfile)
if os.path.exists(outfile) and not model.clobber:
return
elif os.path.exists(outfile):
os.remove(outfile)
log.info('Generating FITS file...')
primary = PrimaryHDU(model)
lightcurve = LightcurveHDU(model)
pixels = PixelsHDU(model)
aperture = ApertureHDU(model)
images = ImagesHDU(model)
hires = HiResHDU(model)
hdulist = pyfits.HDUList([primary, lightcurve, pixels, aperture, images,
hires])
hdulist.writeto(outfile)
return
|
MakeFITS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model, fitsfile=None):\n if fitsfile is None:\n outfile = os.path.join(model.dir, model._mission.FITSFile(model.ID,\n model.season, model.cadence))\n else:\n outfile = os.path.join(model.dir, fitsfile)\n if os.path.exists(outfile) and not model.clobber:\n return\n elif os.path.exists(outfile):\n os.remove(outfile)\n log.info('Generating FITS file...')\n primary = PrimaryHDU(model)\n lightcurve = LightcurveHDU(model)\n pixels = PixelsHDU(model)\n aperture = ApertureHDU(model)\n images = ImagesHDU(model)\n hires = HiResHDU(model)\n hdulist = pyfits.HDUList([primary, lightcurve, pixels, aperture, images,\n hires])\n hdulist.writeto(outfile)\n return\n",
"role": "user"
},
{
"content": "MakeFITS",
"role": "assistant"
}
] |
def x(name, **options):
if name in _serializers:
serializer = _serializers[name]
return serializer(**options)
else:
raise ValueError('Unknown serializer {0}.'.format(name))
|
get_serializer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, **options):\n if name in _serializers:\n serializer = _serializers[name]\n return serializer(**options)\n else:\n raise ValueError('Unknown serializer {0}.'.format(name))\n",
"role": "user"
},
{
"content": "get_serializer",
"role": "assistant"
}
] |
def x(name, serializer):
if not isclass(serializer):
serializer = serializer.__class__
_serializers[name] = serializer
|
register_serializer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, serializer):\n if not isclass(serializer):\n serializer = serializer.__class__\n _serializers[name] = serializer\n",
"role": "user"
},
{
"content": "register_serializer",
"role": "assistant"
}
] |
def x(A, b, w=5, progress=True, niter=None):
if cholupdate is None:
log.info('Running the slow version of `MaskSolve`.')
log.info('Install the `choldate` package for better performance.')
log.info('https://github.com/rodluger/choldate')
return MaskSolveSlow(A, b, w=w, progress=progress, niter=niter)
N = b.shape[0]
if niter is None:
niter = N - w + 1
X = np.empty((niter, N - w))
for n in range(2):
mask = np.arange(n, w + n)
A_ = np.delete(np.delete(A, mask, axis=0), mask, axis=1)
b_ = np.delete(b, mask)
U = cholesky(A_)
X[n] = cho_solve((U, False), b_)
for n in prange(1, niter - 1):
b_[n] = b[n]
S33 = U[n + 1:, n + 1:]
S23 = U[n, n + 1:]
cholupdate(S33, S23)
A12 = A[:n, n]
A22 = A[n, n]
A23 = A[n, n + w + 1:]
S11 = U[:n, :n]
S12 = solve_triangular(S11.T, A12, lower=True, check_finite=False,
trans=0, overwrite_b=True)
S22 = np.sqrt(A22 - np.dot(S12.T, S12))
S13 = U[:n, n + 1:]
S23 = (A23 - np.dot(S12.T, S13)) / S22
choldowndate(S33, np.array(S23))
U[:n, n] = S12
U[n, n] = S22
U[n, n + 1:] = S23
U[n + 1:, n + 1:] = S33
X[n + 1] = cho_solve((U, False), b_)
return X
|
MaskSolve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(A, b, w=5, progress=True, niter=None):\n if cholupdate is None:\n log.info('Running the slow version of `MaskSolve`.')\n log.info('Install the `choldate` package for better performance.')\n log.info('https://github.com/rodluger/choldate')\n return MaskSolveSlow(A, b, w=w, progress=progress, niter=niter)\n N = b.shape[0]\n if niter is None:\n niter = N - w + 1\n X = np.empty((niter, N - w))\n for n in range(2):\n mask = np.arange(n, w + n)\n A_ = np.delete(np.delete(A, mask, axis=0), mask, axis=1)\n b_ = np.delete(b, mask)\n U = cholesky(A_)\n X[n] = cho_solve((U, False), b_)\n for n in prange(1, niter - 1):\n b_[n] = b[n]\n S33 = U[n + 1:, n + 1:]\n S23 = U[n, n + 1:]\n cholupdate(S33, S23)\n A12 = A[:n, n]\n A22 = A[n, n]\n A23 = A[n, n + w + 1:]\n S11 = U[:n, :n]\n S12 = solve_triangular(S11.T, A12, lower=True, check_finite=False,\n trans=0, overwrite_b=True)\n S22 = np.sqrt(A22 - np.dot(S12.T, S12))\n S13 = U[:n, n + 1:]\n S23 = (A23 - np.dot(S12.T, S13)) / S22\n choldowndate(S33, np.array(S23))\n U[:n, n] = S12\n U[n, n] = S22\n U[n, n + 1:] = S23\n U[n + 1:, n + 1:] = S33\n X[n + 1] = cho_solve((U, False), b_)\n return X\n",
"role": "user"
},
{
"content": "MaskSolve",
"role": "assistant"
}
] |
def x(A, b, w=5, progress=True, niter=None):
N = b.shape[0]
if niter is None:
niter = N - w + 1
X = np.empty((niter, N - w))
for n in prange(niter):
mask = np.arange(n, n + w)
An = np.delete(np.delete(A, mask, axis=0), mask, axis=1)
Un = cholesky(An)
bn = np.delete(b, mask)
X[n] = cho_solve((Un, False), bn)
return X
|
MaskSolveSlow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(A, b, w=5, progress=True, niter=None):\n N = b.shape[0]\n if niter is None:\n niter = N - w + 1\n X = np.empty((niter, N - w))\n for n in prange(niter):\n mask = np.arange(n, n + w)\n An = np.delete(np.delete(A, mask, axis=0), mask, axis=1)\n Un = cholesky(An)\n bn = np.delete(b, mask)\n X[n] = cho_solve((Un, False), bn)\n return X\n",
"role": "user"
},
{
"content": "MaskSolveSlow",
"role": "assistant"
}
] |
def x(self, depth=0.01):
return 1 - (np.hstack(self._O2) + np.hstack(self._O3) / depth) / np.hstack(
self._O1)
|
unmasked
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, depth=0.01):\n return 1 - (np.hstack(self._O2) + np.hstack(self._O3) / depth) / np.hstack(\n self._O1)\n",
"role": "user"
},
{
"content": "unmasked",
"role": "assistant"
}
] |
def x(self):
try:
if platform.system().lower().startswith('darwin'):
subprocess.call(['open', self.pdf])
elif os.name == 'nt':
os.startfile(self.pdf)
elif os.name == 'posix':
subprocess.call(['xdg-open', self.pdf])
else:
raise IOError('')
except IOError:
log.info('Unable to open the pdf. Try opening it manually:')
log.info(self.pdf)
|
show
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n if platform.system().lower().startswith('darwin'):\n subprocess.call(['open', self.pdf])\n elif os.name == 'nt':\n os.startfile(self.pdf)\n elif os.name == 'posix':\n subprocess.call(['xdg-open', self.pdf])\n else:\n raise IOError('')\n except IOError:\n log.info('Unable to open the pdf. Try opening it manually:')\n log.info(self.pdf)\n",
"role": "user"
},
{
"content": "show",
"role": "assistant"
}
] |
def x(self):
try:
self._season
except AttributeError:
self._season = self._mission.Season(self.ID)
if hasattr(self._season, '__len__'):
raise AttributeError(
'Please choose a campaign/season for this target: %s.' %
self._season)
return self._season
|
season
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n self._season\n except AttributeError:\n self._season = self._mission.Season(self.ID)\n if hasattr(self._season, '__len__'):\n raise AttributeError(\n 'Please choose a campaign/season for this target: %s.' %\n self._season)\n return self._season\n",
"role": "user"
},
{
"content": "season",
"role": "assistant"
}
] |
def x(self):
if self.XCBV is None:
return None
else:
return self.flux - self._mission.FitCBVs(self)
|
fcor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.XCBV is None:\n return None\n else:\n return self.flux - self._mission.FitCBVs(self)\n",
"role": "user"
},
{
"content": "fcor",
"role": "assistant"
}
] |
def x(self):
return np.array(list(set(np.concatenate([self.outmask, self.badmask,
self.transitmask, self.nanmask]))), dtype=int)
|
mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return np.array(list(set(np.concatenate([self.outmask, self.badmask,\n self.transitmask, self.nanmask]))), dtype=int)\n",
"role": "user"
},
{
"content": "mask",
"role": "assistant"
}
] |
def x(self, i, j=slice(None, None, None)):
X1 = self.fpix[j] / self.norm[j].reshape(-1, 1)
X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T
if self.X1N is not None:
return np.hstack([X, self.X1N[j] ** (i + 1)])
else:
return X
|
X
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i, j=slice(None, None, None)):\n X1 = self.fpix[j] / self.norm[j].reshape(-1, 1)\n X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T\n if self.X1N is not None:\n return np.hstack([X, self.X1N[j] ** (i + 1)])\n else:\n return X\n",
"role": "user"
},
{
"content": "X",
"role": "assistant"
}
] |
def x(self, dvs):
axl, axc, axr = dvs.title()
axc.annotate('%s %d' % (self._mission.IDSTRING, self.ID), xy=(0.5, 0.5),
xycoords='axes fraction', ha='center', va='center', fontsize=18)
axc.annotate('%.2f ppm $\\rightarrow$ %.2f ppm' % (self.cdppr, self.
cdpp), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va=
'center', fontsize=8, color='k', fontstyle='italic')
axl.annotate('%s %s%02d: %s' % (self.mission.upper(), self._mission.
SEASONCHAR, self.season, self.name), xy=(0.5, 0.5), xycoords=
'axes fraction', ha='center', va='center', fontsize=12, color='k')
axl.annotate(self.aperture_name if len(self.neighbors) == 0 else
'%s, %d neighbors' % (self.aperture_name, len(self.neighbors)), xy=
(0.5, 0.2), xycoords='axes fraction', ha='center', va='center',
fontsize=8, color='k', fontstyle='italic')
axr.annotate('%s %.3f' % (self._mission.MAGSTRING, self.mag), xy=(0.5,
0.5), xycoords='axes fraction', ha='center', va='center', fontsize=
12, color='k')
if not np.isnan(self.cdppg) and self.cdppg > 0:
axr.annotate('GP %.3f ppm' % self.cdppg, xy=(0.5, 0.2), xycoords=
'axes fraction', ha='center', va='center', fontsize=8, color=
'k', fontstyle='italic')
|
plot_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dvs):\n axl, axc, axr = dvs.title()\n axc.annotate('%s %d' % (self._mission.IDSTRING, self.ID), xy=(0.5, 0.5),\n xycoords='axes fraction', ha='center', va='center', fontsize=18)\n axc.annotate('%.2f ppm $\\\\rightarrow$ %.2f ppm' % (self.cdppr, self.\n cdpp), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va=\n 'center', fontsize=8, color='k', fontstyle='italic')\n axl.annotate('%s %s%02d: %s' % (self.mission.upper(), self._mission.\n SEASONCHAR, self.season, self.name), xy=(0.5, 0.5), xycoords=\n 'axes fraction', ha='center', va='center', fontsize=12, color='k')\n axl.annotate(self.aperture_name if len(self.neighbors) == 0 else \n '%s, %d neighbors' % (self.aperture_name, len(self.neighbors)), xy=\n (0.5, 0.2), xycoords='axes fraction', ha='center', va='center',\n fontsize=8, color='k', fontstyle='italic')\n axr.annotate('%s %.3f' % (self._mission.MAGSTRING, self.mag), xy=(0.5, \n 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=\n 12, color='k')\n if not np.isnan(self.cdppg) and self.cdppg > 0:\n axr.annotate('GP %.3f ppm' % self.cdppg, xy=(0.5, 0.2), xycoords=\n 'axes fraction', ha='center', va='center', fontsize=8, color=\n 'k', fontstyle='italic')\n",
"role": "user"
},
{
"content": "plot_info",
"role": "assistant"
}
] |
def x(self):
if self.transit_model is not None:
return self.compute_joint()
log.info('Computing the model...')
model = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
m = self.get_masked_chunk(b)
c = self.get_chunk(b)
mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],
self.fraw_err[m])
med = np.nanmedian(self.fraw[m])
f = self.fraw[m] - med
A = np.zeros((len(m), len(m)))
B = np.zeros((len(c), len(m)))
for n in range(self.pld_order):
if self.lam_idx >= n and self.lam[b][n] is not None:
XM = self.X(n, m)
XC = self.X(n, c)
A += self.lam[b][n] * np.dot(XM, XM.T)
B += self.lam[b][n] * np.dot(XC, XM.T)
del XM, XC
W = np.linalg.solve(mK + A, f)
model[b] = np.dot(B, W)
del A, B, W
if len(model) > 1:
self.model = model[0][:-self.bpad]
for m in model[1:-1]:
i = 1
while len(self.model) - i in self.mask:
i += 1
offset = self.model[-i] - m[self.bpad - i]
self.model = np.concatenate([self.model, m[self.bpad:-self.bpad
] + offset])
i = 1
while len(self.model) - i in self.mask:
i += 1
offset = self.model[-i] - model[-1][self.bpad - i]
self.model = np.concatenate([self.model, model[-1][self.bpad:] +
offset])
else:
self.model = model[0]
self.model -= np.nanmedian(self.model)
self.cdpp_arr = self.get_cdpp_arr()
self.cdpp = self.get_cdpp()
self._weights = None
|
compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.transit_model is not None:\n return self.compute_joint()\n log.info('Computing the model...')\n model = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b)\n c = self.get_chunk(b)\n mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n med = np.nanmedian(self.fraw[m])\n f = self.fraw[m] - med\n A = np.zeros((len(m), len(m)))\n B = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n if self.lam_idx >= n and self.lam[b][n] is not None:\n XM = self.X(n, m)\n XC = self.X(n, c)\n A += self.lam[b][n] * np.dot(XM, XM.T)\n B += self.lam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + A, f)\n model[b] = np.dot(B, W)\n del A, B, W\n if len(model) > 1:\n self.model = model[0][:-self.bpad]\n for m in model[1:-1]:\n i = 1\n while len(self.model) - i in self.mask:\n i += 1\n offset = self.model[-i] - m[self.bpad - i]\n self.model = np.concatenate([self.model, m[self.bpad:-self.bpad\n ] + offset])\n i = 1\n while len(self.model) - i in self.mask:\n i += 1\n offset = self.model[-i] - model[-1][self.bpad - i]\n self.model = np.concatenate([self.model, model[-1][self.bpad:] +\n offset])\n else:\n self.model = model[0]\n self.model -= np.nanmedian(self.model)\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self._weights = None\n",
"role": "user"
},
{
"content": "compute",
"role": "assistant"
}
] |
def x(self):
log.info('Computing the joint model...')
A = [None for b in self.breakpoints]
B = [None for b in self.breakpoints]
if self.transit_model is not None:
outmask = np.array(self.outmask)
transitmask = np.array(self.transitmask)
transit_inds = np.where(np.sum([tm(self.time) for tm in self.
transit_model], axis=0) < 0)[0]
self.outmask = np.array([i for i in self.outmask if i not in
transit_inds])
self.transitmask = np.array([i for i in self.transitmask if i not in
transit_inds])
for b, brkpt in enumerate(self.breakpoints):
m = self.get_masked_chunk(b, pad=False)
c = self.get_chunk(b, pad=False)
A[b] = np.zeros((len(m), len(m)))
B[b] = np.zeros((len(c), len(m)))
for n in range(self.pld_order):
if self.lam_idx >= n and self.lam[b][n] is not None:
XM = self.X(n, m)
XC = self.X(n, c)
A[b] += self.lam[b][n] * np.dot(XM, XM.T)
B[b] += self.lam[b][n] * np.dot(XC, XM.T)
del XM, XC
BIGA = block_diag(*A)
del A
BIGB = block_diag(*B)
del B
mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask(
self.time), self.apply_mask(self.fraw_err))
f = self.apply_mask(self.fraw)
med = np.nanmedian(f)
f -= med
if self.transit_model is not None:
m = self.apply_mask()
mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m])) for
tm in self.transit_model], axis=0)
f -= mean_transit_model
for tm in self.transit_model:
XM = tm(self.time[m]).reshape(-1, 1)
XC = tm(self.time).reshape(-1, 1)
BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T)
BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T)
del XM, XC
W = np.linalg.solve(mK + BIGA, f)
self.model = np.dot(BIGB, W)
w_trn = med ** 2 * np.concatenate([(tm.var_depth * np.dot(tm(self.
time[m]).reshape(1, -1), W)) for tm in self.transit_model])
self.transit_depth = np.array([(med * tm.depth + w_trn[i]) for i,
tm in enumerate(self.transit_model)]) / med
self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1) for tm in
self.transit_model]), w_trn)
else:
W = np.linalg.solve(mK + BIGA, f)
self.model = np.dot(BIGB, W)
self.model -= np.nanmedian(self.model)
if self.transit_model is not None:
self.outmask = outmask
self.transitmask = transitmask
self.cdpp_arr = self.get_cdpp_arr()
self.cdpp = self.get_cdpp()
self._weights = None
|
compute_joint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log.info('Computing the joint model...')\n A = [None for b in self.breakpoints]\n B = [None for b in self.breakpoints]\n if self.transit_model is not None:\n outmask = np.array(self.outmask)\n transitmask = np.array(self.transitmask)\n transit_inds = np.where(np.sum([tm(self.time) for tm in self.\n transit_model], axis=0) < 0)[0]\n self.outmask = np.array([i for i in self.outmask if i not in\n transit_inds])\n self.transitmask = np.array([i for i in self.transitmask if i not in\n transit_inds])\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b, pad=False)\n c = self.get_chunk(b, pad=False)\n A[b] = np.zeros((len(m), len(m)))\n B[b] = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n if self.lam_idx >= n and self.lam[b][n] is not None:\n XM = self.X(n, m)\n XC = self.X(n, c)\n A[b] += self.lam[b][n] * np.dot(XM, XM.T)\n B[b] += self.lam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n BIGA = block_diag(*A)\n del A\n BIGB = block_diag(*B)\n del B\n mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask(\n self.time), self.apply_mask(self.fraw_err))\n f = self.apply_mask(self.fraw)\n med = np.nanmedian(f)\n f -= med\n if self.transit_model is not None:\n m = self.apply_mask()\n mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m])) for\n tm in self.transit_model], axis=0)\n f -= mean_transit_model\n for tm in self.transit_model:\n XM = tm(self.time[m]).reshape(-1, 1)\n XC = tm(self.time).reshape(-1, 1)\n BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T)\n BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + BIGA, f)\n self.model = np.dot(BIGB, W)\n w_trn = med ** 2 * np.concatenate([(tm.var_depth * np.dot(tm(self.\n time[m]).reshape(1, -1), W)) for tm in self.transit_model])\n self.transit_depth = np.array([(med * tm.depth + w_trn[i]) for i,\n tm in enumerate(self.transit_model)]) / med\n self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1) for tm in\n self.transit_model]), w_trn)\n else:\n W = np.linalg.solve(mK + BIGA, f)\n self.model = np.dot(BIGB, W)\n self.model -= np.nanmedian(self.model)\n if self.transit_model is not None:\n self.outmask = outmask\n self.transitmask = transitmask\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self._weights = None\n",
"role": "user"
},
{
"content": "compute_joint",
"role": "assistant"
}
] |
def x(self, x=None):
if x is None:
return np.delete(np.arange(len(self.time)), self.mask)
else:
return np.delete(x, self.mask, axis=0)
|
apply_mask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x=None):\n if x is None:\n return np.delete(np.arange(len(self.time)), self.mask)\n else:\n return np.delete(x, self.mask, axis=0)\n",
"role": "user"
},
{
"content": "apply_mask",
"role": "assistant"
}
] |
def x(self, b, x=None, pad=True):
M = np.arange(len(self.time))
if b > 0:
res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <=
self.breakpoints[b] + int(pad) * self.bpad)]
else:
res = M[M <= self.breakpoints[b] + int(pad) * self.bpad]
if x is None:
return res
else:
return x[res]
|
get_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, b, x=None, pad=True):\n M = np.arange(len(self.time))\n if b > 0:\n res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <=\n self.breakpoints[b] + int(pad) * self.bpad)]\n else:\n res = M[M <= self.breakpoints[b] + int(pad) * self.bpad]\n if x is None:\n return res\n else:\n return x[res]\n",
"role": "user"
},
{
"content": "get_chunk",
"role": "assistant"
}
] |
def x(self):
log.info('Computing PLD weights...')
weights = [None for i in range(len(self.breakpoints))]
for b, brkpt in enumerate(self.breakpoints):
m = self.get_masked_chunk(b)
c = self.get_chunk(b)
_mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],
self.fraw_err[m])
f = self.fraw[m] - np.nanmedian(self.fraw)
_A = [None for i in range(self.pld_order)]
for n in range(self.pld_order):
if self.lam_idx >= n:
X = self.X(n, m)
_A[n] = np.dot(X, X.T)
del X
A = np.sum([(l * a) for l, a in zip(self.lam[b], _A) if l is not
None], axis=0)
W = np.linalg.solve(_mK + A, f)
weights[b] = [(l * np.dot(self.X(n, m).T, W)) for n, l in enumerate
(self.lam[b]) if l is not None]
self._weights = weights
|
get_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log.info('Computing PLD weights...')\n weights = [None for i in range(len(self.breakpoints))]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b)\n c = self.get_chunk(b)\n _mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n f = self.fraw[m] - np.nanmedian(self.fraw)\n _A = [None for i in range(self.pld_order)]\n for n in range(self.pld_order):\n if self.lam_idx >= n:\n X = self.X(n, m)\n _A[n] = np.dot(X, X.T)\n del X\n A = np.sum([(l * a) for l, a in zip(self.lam[b], _A) if l is not\n None], axis=0)\n W = np.linalg.solve(_mK + A, f)\n weights[b] = [(l * np.dot(self.X(n, m).T, W)) for n, l in enumerate\n (self.lam[b]) if l is not None]\n self._weights = weights\n",
"role": "user"
},
{
"content": "get_weights",
"role": "assistant"
}
] |
def x(self, flux=None):
if flux is None:
flux = self.flux
return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)],
cadence=self.cadence) for b, _ in enumerate(self.breakpoints)])
|
get_cdpp_arr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, flux=None):\n if flux is None:\n flux = self.flux\n return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)],\n cadence=self.cadence) for b, _ in enumerate(self.breakpoints)])\n",
"role": "user"
},
{
"content": "get_cdpp_arr",
"role": "assistant"
}
] |
def x(self, flux=None):
if flux is None:
flux = self.flux
return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence)
|
get_cdpp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, flux=None):\n if flux is None:\n flux = self.flux\n return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence)\n",
"role": "user"
},
{
"content": "get_cdpp",
"role": "assistant"
}
] |
def x(self, axes, labelsize=8):
log.info('Plotting the aperture...')
plasma = pl.get_cmap('plasma')
plasma.set_bad(alpha=0)
def x(vector, pad_width, iaxis, kwargs):
vector[:pad_width[0]] = 0
vector[-pad_width[1]:] = 0
return vector
ny, nx = self.pixel_images[0].shape
contour = np.zeros((ny, nx))
contour[np.where(self.aperture)] = 1
contour = np.lib.pad(contour, 1, PadWithZeros)
highres = zoom(contour, 100, order=0, mode='nearest')
extent = np.array([-1, nx, -1, ny])
title = ['start', 'mid', 'end']
for i, image in enumerate(self.pixel_images):
ax = axes[i]
ax.imshow(image, aspect='auto', interpolation='nearest', cmap=plasma)
ax.contour(highres, levels=[0.5], extent=extent, origin='lower',
colors='r', linewidths=1)
for x in range(self.aperture.shape[0]):
for y in range(self.aperture.shape[1]):
if self.aperture[x][y] == AP_SATURATED_PIXEL:
ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5], [x - 0.5,
x - 0.5, x + 0.5, x + 0.5], fill=False, hatch=
'xxxxx', color='r', lw=0)
ax.axis('off')
ax.set_xlim(-0.7, nx - 0.3)
ax.set_ylim(-0.7, ny - 0.3)
ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction', ha
='center', va='top', size=labelsize, color='w')
if i == 1:
for source in self.nearby:
ax.annotate('%.1f' % source['mag'], xy=(source['x'] -
source['x0'], source['y'] - source['y0']), ha='center',
va='center', size=labelsize - 2, color='w', fontweight=
'bold')
if self.hires is not None:
ax = axes[-1]
ax.imshow(self.hires, aspect='auto', extent=(-0.5, nx - 0.5, -0.5,
ny - 0.5), interpolation='bicubic', cmap=plasma)
ax.contour(highres, levels=[0.5], extent=extent, origin='lower',
colors='r', linewidths=1)
ax.axis('off')
ax.set_xlim(-0.7, nx - 0.3)
ax.set_ylim(-0.7, ny - 0.3)
ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction', ha=
'center', va='top', size=labelsize, color='w')
else:
ax = axes[-1]
ax.axis('off')
|
plot_aperture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, axes, labelsize=8):\n log.info('Plotting the aperture...')\n plasma = pl.get_cmap('plasma')\n plasma.set_bad(alpha=0)\n\n def x(vector, pad_width, iaxis, kwargs):\n vector[:pad_width[0]] = 0\n vector[-pad_width[1]:] = 0\n return vector\n ny, nx = self.pixel_images[0].shape\n contour = np.zeros((ny, nx))\n contour[np.where(self.aperture)] = 1\n contour = np.lib.pad(contour, 1, PadWithZeros)\n highres = zoom(contour, 100, order=0, mode='nearest')\n extent = np.array([-1, nx, -1, ny])\n title = ['start', 'mid', 'end']\n for i, image in enumerate(self.pixel_images):\n ax = axes[i]\n ax.imshow(image, aspect='auto', interpolation='nearest', cmap=plasma)\n ax.contour(highres, levels=[0.5], extent=extent, origin='lower',\n colors='r', linewidths=1)\n for x in range(self.aperture.shape[0]):\n for y in range(self.aperture.shape[1]):\n if self.aperture[x][y] == AP_SATURATED_PIXEL:\n ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5], [x - 0.5,\n x - 0.5, x + 0.5, x + 0.5], fill=False, hatch=\n 'xxxxx', color='r', lw=0)\n ax.axis('off')\n ax.set_xlim(-0.7, nx - 0.3)\n ax.set_ylim(-0.7, ny - 0.3)\n ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction', ha\n ='center', va='top', size=labelsize, color='w')\n if i == 1:\n for source in self.nearby:\n ax.annotate('%.1f' % source['mag'], xy=(source['x'] -\n source['x0'], source['y'] - source['y0']), ha='center',\n va='center', size=labelsize - 2, color='w', fontweight=\n 'bold')\n if self.hires is not None:\n ax = axes[-1]\n ax.imshow(self.hires, aspect='auto', extent=(-0.5, nx - 0.5, -0.5, \n ny - 0.5), interpolation='bicubic', cmap=plasma)\n ax.contour(highres, levels=[0.5], extent=extent, origin='lower',\n colors='r', linewidths=1)\n ax.axis('off')\n ax.set_xlim(-0.7, nx - 0.3)\n ax.set_ylim(-0.7, ny - 0.3)\n ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction', ha=\n 'center', va='top', size=labelsize, color='w')\n else:\n ax = axes[-1]\n ax.axis('off')\n",
"role": "user"
},
{
"content": "plot_aperture",
"role": "assistant"
}
] |
def x(self, model, refactor=False, pos_tol=2.5, neg_tol=50.0, full_output=False
):
lnl = 0
try:
self._ll_info
except AttributeError:
refactor = True
if refactor:
t = np.delete(self.time, np.concatenate([self.nanmask, self.badmask]))
f = np.delete(self.flux, np.concatenate([self.nanmask, self.badmask]))
f = SavGol(f)
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
pos_inds = np.where(f > med + pos_tol * MAD)[0]
pos_inds = np.array([np.argmax(self.time == t[i]) for i in pos_inds])
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
neg_inds = np.where(f < med - neg_tol * MAD)[0]
neg_inds = np.array([np.argmax(self.time == t[i]) for i in neg_inds])
outmask = np.array(self.outmask)
transitmask = np.array(self.transitmask)
self.outmask = np.concatenate([neg_inds, pos_inds])
self.transitmask = np.array([], dtype=int)
self._ll_info = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
m = self.get_masked_chunk(b, pad=False)
K = GetCovariance(self.kernel, self.kernel_params, self.time[m],
self.fraw_err[m])
A = np.zeros((len(m), len(m)))
for n in range(self.pld_order):
XM = self.X(n, m)
A += self.lam[b][n] * np.dot(XM, XM.T)
K += A
self._ll_info[b] = [cho_factor(K), m]
self.outmask = outmask
self.transitmask = transitmask
amp = [None for b in self.breakpoints]
var = [None for b in self.breakpoints]
for b, brkpt in enumerate(self.breakpoints):
CDK = self._ll_info[b][0]
m = self._ll_info[b][1]
var[b] = 1.0 / np.dot(model[m], cho_solve(CDK, model[m]))
amp[b] = var[b] * np.dot(model[m], cho_solve(CDK, self.fraw[m]))
r = self.fraw[m] - amp[b] * model[m]
lnl += -0.5 * np.dot(r, cho_solve(CDK, r))
if full_output:
vari = var[0]
ampi = amp[0]
for v, a in zip(var[1:], amp[1:]):
ampi = (ampi * v + a * vari) / (vari + v)
vari = vari * v / (vari + v)
med = np.nanmedian(self.fraw)
return lnl, ampi / med, vari / med ** 2
else:
return lnl
|
lnlike
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, refactor=False, pos_tol=2.5, neg_tol=50.0, full_output=False\n ):\n lnl = 0\n try:\n self._ll_info\n except AttributeError:\n refactor = True\n if refactor:\n t = np.delete(self.time, np.concatenate([self.nanmask, self.badmask]))\n f = np.delete(self.flux, np.concatenate([self.nanmask, self.badmask]))\n f = SavGol(f)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n pos_inds = np.where(f > med + pos_tol * MAD)[0]\n pos_inds = np.array([np.argmax(self.time == t[i]) for i in pos_inds])\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n neg_inds = np.where(f < med - neg_tol * MAD)[0]\n neg_inds = np.array([np.argmax(self.time == t[i]) for i in neg_inds])\n outmask = np.array(self.outmask)\n transitmask = np.array(self.transitmask)\n self.outmask = np.concatenate([neg_inds, pos_inds])\n self.transitmask = np.array([], dtype=int)\n self._ll_info = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b, pad=False)\n K = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n A = np.zeros((len(m), len(m)))\n for n in range(self.pld_order):\n XM = self.X(n, m)\n A += self.lam[b][n] * np.dot(XM, XM.T)\n K += A\n self._ll_info[b] = [cho_factor(K), m]\n self.outmask = outmask\n self.transitmask = transitmask\n amp = [None for b in self.breakpoints]\n var = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n CDK = self._ll_info[b][0]\n m = self._ll_info[b][1]\n var[b] = 1.0 / np.dot(model[m], cho_solve(CDK, model[m]))\n amp[b] = var[b] * np.dot(model[m], cho_solve(CDK, self.fraw[m]))\n r = self.fraw[m] - amp[b] * model[m]\n lnl += -0.5 * np.dot(r, cho_solve(CDK, r))\n if full_output:\n vari = var[0]\n ampi = amp[0]\n for v, a in zip(var[1:], amp[1:]):\n ampi = (ampi * v + a * vari) / (vari + v)\n vari = vari * v / (vari + v)\n med = np.nanmedian(self.fraw)\n return lnl, ampi / med, vari / med ** 2\n else:\n return lnl\n",
"role": "user"
},
{
"content": "lnlike",
"role": "assistant"
}
] |
def x(self, session):
if not hasattr(self, '_object'):
pkname = self.model_type._meta.pkname()
query = session.query(self.model_type).filter(**{pkname: self.
object_id})
return query.items(callback=self.__set_object)
else:
return self._object
|
object
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session):\n if not hasattr(self, '_object'):\n pkname = self.model_type._meta.pkname()\n query = session.query(self.model_type).filter(**{pkname: self.\n object_id})\n return query.items(callback=self.__set_object)\n else:\n return self._object\n",
"role": "user"
},
{
"content": "object",
"role": "assistant"
}
] |
def x(ID, season=None, cadence='lc', clobber=False, delete_raw=False,
aperture_name=None, saturated_aperture_name=None, max_pixels=None,
download_only=False, saturation_tolerance=None, bad_bits=None, **kwargs):
raise NotImplementedError('This mission is not yet supported.')
|
GetData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, season=None, cadence='lc', clobber=False, delete_raw=False,\n aperture_name=None, saturated_aperture_name=None, max_pixels=None,\n download_only=False, saturation_tolerance=None, bad_bits=None, **kwargs):\n raise NotImplementedError('This mission is not yet supported.')\n",
"role": "user"
},
{
"content": "GetData",
"role": "assistant"
}
] |
def x(ID, model=None, neighbors=None, mag_range=None, cdpp_range=None,
aperture_name=None, cadence='lc', **kwargs):
raise NotImplementedError('This mission is not yet supported.')
|
GetNeighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, model=None, neighbors=None, mag_range=None, cdpp_range=None,\n aperture_name=None, cadence='lc', **kwargs):\n raise NotImplementedError('This mission is not yet supported.')\n",
"role": "user"
},
{
"content": "GetNeighbors",
"role": "assistant"
}
] |
def x(ID, pipeline='everest2', campaign=None):
log.info('Downloading %s light curve for %d...' % (pipeline, ID))
if EVEREST_DEV:
if pipeline.lower() == 'everest2' or pipeline.lower() == 'k2sff':
from . import Season, TargetDirectory, FITSFile
if campaign is None:
campaign = Season(ID)
fits = os.path.join(TargetDirectory(ID, campaign), FITSFile(ID,
campaign))
newdir = os.path.join(KPLR_ROOT, 'data', 'everest', str(ID))
if not os.path.exists(newdir):
os.makedirs(newdir)
if os.path.exists(fits):
shutil.copy(fits, newdir)
if pipeline.lower() == 'everest2':
s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)
time = s.time
flux = s.flux
elif pipeline.lower() == 'everest1':
s = k2plr.EVEREST(ID, version=1, sci_campaign=campaign)
time = s.time
flux = s.flux
elif pipeline.lower() == 'k2sff':
s = k2plr.K2SFF(ID, sci_campaign=campaign)
time = s.time
flux = s.fcor
s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)
flux *= np.nanmedian(s.flux)
elif pipeline.lower() == 'k2sc':
s = k2plr.K2SC(ID, sci_campaign=campaign)
time = s.time
flux = s.pdcflux
elif pipeline.lower() == 'raw':
s = k2plr.EVEREST(ID, version=2, raw=True, sci_campaign=campaign)
time = s.time
flux = s.flux
else:
raise ValueError('Invalid pipeline: `%s`.' % pipeline)
return time, flux
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, pipeline='everest2', campaign=None):\n log.info('Downloading %s light curve for %d...' % (pipeline, ID))\n if EVEREST_DEV:\n if pipeline.lower() == 'everest2' or pipeline.lower() == 'k2sff':\n from . import Season, TargetDirectory, FITSFile\n if campaign is None:\n campaign = Season(ID)\n fits = os.path.join(TargetDirectory(ID, campaign), FITSFile(ID,\n campaign))\n newdir = os.path.join(KPLR_ROOT, 'data', 'everest', str(ID))\n if not os.path.exists(newdir):\n os.makedirs(newdir)\n if os.path.exists(fits):\n shutil.copy(fits, newdir)\n if pipeline.lower() == 'everest2':\n s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n elif pipeline.lower() == 'everest1':\n s = k2plr.EVEREST(ID, version=1, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n elif pipeline.lower() == 'k2sff':\n s = k2plr.K2SFF(ID, sci_campaign=campaign)\n time = s.time\n flux = s.fcor\n s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)\n flux *= np.nanmedian(s.flux)\n elif pipeline.lower() == 'k2sc':\n s = k2plr.K2SC(ID, sci_campaign=campaign)\n time = s.time\n flux = s.pdcflux\n elif pipeline.lower() == 'raw':\n s = k2plr.EVEREST(ID, version=2, raw=True, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n else:\n raise ValueError('Invalid pipeline: `%s`.' % pipeline)\n return time, flux\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(ID, pipeline='everest2', show=True, campaign=None):
time, flux = get(ID, pipeline=pipeline, campaign=campaign)
mask = np.where(np.isnan(flux))[0]
time = np.delete(time, mask)
flux = np.delete(flux, mask)
fig, ax = pl.subplots(1, figsize=(10, 4))
fig.subplots_adjust(bottom=0.15)
ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
pad = (hi - lo) * 0.1
ylim = lo - pad, hi + pad
ax.set_ylim(ylim)
from .k2 import CDPP
ax.annotate('%.2f ppm' % CDPP(flux), xy=(0.98, 0.975), xycoords=
'axes fraction', ha='right', va='top', fontsize=12, color='r',
zorder=99)
ax.margins(0, None)
ax.set_xlabel('Time (BJD - 2454833)', fontsize=16)
ax.set_ylabel('%s Flux' % pipeline.upper(), fontsize=16)
fig.canvas.set_window_title('%s: EPIC %d' % (pipeline.upper(), ID))
if show:
pl.show()
pl.close()
else:
return fig, ax
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ID, pipeline='everest2', show=True, campaign=None):\n time, flux = get(ID, pipeline=pipeline, campaign=campaign)\n mask = np.where(np.isnan(flux))[0]\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n fig, ax = pl.subplots(1, figsize=(10, 4))\n fig.subplots_adjust(bottom=0.15)\n ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n from .k2 import CDPP\n ax.annotate('%.2f ppm' % CDPP(flux), xy=(0.98, 0.975), xycoords=\n 'axes fraction', ha='right', va='top', fontsize=12, color='r',\n zorder=99)\n ax.margins(0, None)\n ax.set_xlabel('Time (BJD - 2454833)', fontsize=16)\n ax.set_ylabel('%s Flux' % pipeline.upper(), fontsize=16)\n fig.canvas.set_window_title('%s: EPIC %d' % (pipeline.upper(), ID))\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(campaign, pipeline='everest2'):
from .k2 import CDPP
from .utils import GetK2Campaign
assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline
file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables',
'c%02d_%s.cdpp' % (int(campaign), pipeline))
if not os.path.exists(file):
open(file, 'a').close()
stars = GetK2Campaign(campaign, epics_only=True)
nstars = len(stars)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
done = np.loadtxt(file, dtype=float)
if len(done):
done = [int(s) for s in done[:, 0]]
stars = list(set(stars) - set(done))
n = len(done) + 1
with open(file, 'a', 1) as outfile:
for EPIC in stars:
sys.stdout.write('\rRunning target %d/%d...' % (n, nstars))
sys.stdout.flush()
n += 1
try:
_, flux = get(EPIC, pipeline=pipeline, campaign=campaign)
mask = np.where(np.isnan(flux))[0]
flux = np.delete(flux, mask)
cdpp = CDPP(flux)
except (urllib.error.HTTPError, urllib.error.URLError,
TypeError, ValueError, IndexError):
print('{:>09d} {:>15.3f}'.format(EPIC, 0), file=outfile)
continue
print('{:>09d} {:>15.3f}'.format(EPIC, cdpp), file=outfile)
|
get_cdpp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign, pipeline='everest2'):\n from .k2 import CDPP\n from .utils import GetK2Campaign\n assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline\n file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(campaign), pipeline))\n if not os.path.exists(file):\n open(file, 'a').close()\n stars = GetK2Campaign(campaign, epics_only=True)\n nstars = len(stars)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n done = np.loadtxt(file, dtype=float)\n if len(done):\n done = [int(s) for s in done[:, 0]]\n stars = list(set(stars) - set(done))\n n = len(done) + 1\n with open(file, 'a', 1) as outfile:\n for EPIC in stars:\n sys.stdout.write('\\rRunning target %d/%d...' % (n, nstars))\n sys.stdout.flush()\n n += 1\n try:\n _, flux = get(EPIC, pipeline=pipeline, campaign=campaign)\n mask = np.where(np.isnan(flux))[0]\n flux = np.delete(flux, mask)\n cdpp = CDPP(flux)\n except (urllib.error.HTTPError, urllib.error.URLError,\n TypeError, ValueError, IndexError):\n print('{:>09d} {:>15.3f}'.format(EPIC, 0), file=outfile)\n continue\n print('{:>09d} {:>15.3f}'.format(EPIC, cdpp), file=outfile)\n",
"role": "user"
},
{
"content": "get_cdpp",
"role": "assistant"
}
] |
def x(campaign, pipeline='everest2', sigma=5):
from .utils import GetK2Campaign
client = k2plr.API()
assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline
file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables',
'c%02d_%s.out' % (int(campaign), pipeline))
if not os.path.exists(file):
open(file, 'a').close()
stars = GetK2Campaign(campaign, epics_only=True)
nstars = len(stars)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
done = np.loadtxt(file, dtype=float)
if len(done):
done = [int(s) for s in done[:, 0]]
stars = list(set(stars) - set(done))
n = len(done) + 1
with open(file, 'a', 1) as outfile:
for EPIC in stars:
sys.stdout.write('\rRunning target %d/%d...' % (n, nstars))
sys.stdout.flush()
n += 1
try:
time, flux = get(EPIC, pipeline=pipeline, campaign=campaign)
tpf = os.path.join(KPLR_ROOT, 'data', 'k2',
'target_pixel_files', '%09d' % EPIC,
'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign))
if not os.path.exists(tpf):
client.k2_star(EPIC).get_target_pixel_files(fetch=True)
with pyfits.open(tpf) as f:
k2_qual = np.array(f[1].data.field('QUALITY'), dtype=int)
k2_time = np.array(f[1].data.field('TIME'), dtype='float64'
)
mask = []
for b in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17
]:
mask += list(np.where(k2_qual & 2 ** (b - 1))[0])
mask = np.array(sorted(list(set(mask))))
tol = 0.005
if not (len(time) == len(k2_time) and np.abs(time[0] -
k2_time[0]) < tol and np.abs(time[-1] - k2_time[-1]) < tol
):
ftmp = np.zeros_like(k2_time) * np.nan
j = 0
for i, t in enumerate(k2_time):
if np.abs(time[j] - t) < tol:
ftmp[i] = flux[j]
j += 1
if j == len(time) - 1:
break
flux = ftmp
flux = np.delete(flux, mask)
nanmask = np.where(np.isnan(flux))[0]
flux = np.delete(flux, nanmask)
inds = np.array([], dtype=int)
m = 1
while len(inds) < m:
m = len(inds)
f = SavGol(np.delete(flux, inds))
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
inds = np.append(inds, np.where((f > med + sigma * MAD) |
(f < med - sigma * MAD))[0])
nout = len(inds)
ntot = len(flux)
except (urllib.error.HTTPError, urllib.error.URLError,
TypeError, ValueError, IndexError):
print('{:>09d} {:>5d} {:>5d}'.format(EPIC, -1, -1), file=
outfile)
continue
print('{:>09d} {:>5d} {:>5d}'.format(EPIC, nout, ntot), file=
outfile)
|
get_outliers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(campaign, pipeline='everest2', sigma=5):\n from .utils import GetK2Campaign\n client = k2plr.API()\n assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline\n file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.out' % (int(campaign), pipeline))\n if not os.path.exists(file):\n open(file, 'a').close()\n stars = GetK2Campaign(campaign, epics_only=True)\n nstars = len(stars)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n done = np.loadtxt(file, dtype=float)\n if len(done):\n done = [int(s) for s in done[:, 0]]\n stars = list(set(stars) - set(done))\n n = len(done) + 1\n with open(file, 'a', 1) as outfile:\n for EPIC in stars:\n sys.stdout.write('\\rRunning target %d/%d...' % (n, nstars))\n sys.stdout.flush()\n n += 1\n try:\n time, flux = get(EPIC, pipeline=pipeline, campaign=campaign)\n tpf = os.path.join(KPLR_ROOT, 'data', 'k2',\n 'target_pixel_files', '%09d' % EPIC, \n 'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign))\n if not os.path.exists(tpf):\n client.k2_star(EPIC).get_target_pixel_files(fetch=True)\n with pyfits.open(tpf) as f:\n k2_qual = np.array(f[1].data.field('QUALITY'), dtype=int)\n k2_time = np.array(f[1].data.field('TIME'), dtype='float64'\n )\n mask = []\n for b in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17\n ]:\n mask += list(np.where(k2_qual & 2 ** (b - 1))[0])\n mask = np.array(sorted(list(set(mask))))\n tol = 0.005\n if not (len(time) == len(k2_time) and np.abs(time[0] -\n k2_time[0]) < tol and np.abs(time[-1] - k2_time[-1]) < tol\n ):\n ftmp = np.zeros_like(k2_time) * np.nan\n j = 0\n for i, t in enumerate(k2_time):\n if np.abs(time[j] - t) < tol:\n ftmp[i] = flux[j]\n j += 1\n if j == len(time) - 1:\n break\n flux = ftmp\n flux = np.delete(flux, mask)\n nanmask = np.where(np.isnan(flux))[0]\n flux = np.delete(flux, nanmask)\n inds = np.array([], dtype=int)\n m = 1\n while len(inds) < m:\n m = len(inds)\n f = SavGol(np.delete(flux, inds))\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n inds = np.append(inds, np.where((f > med + sigma * MAD) |\n (f < med - sigma * MAD))[0])\n nout = len(inds)\n ntot = len(flux)\n except (urllib.error.HTTPError, urllib.error.URLError,\n TypeError, ValueError, IndexError):\n print('{:>09d} {:>5d} {:>5d}'.format(EPIC, -1, -1), file=\n outfile)\n continue\n print('{:>09d} {:>5d} {:>5d}'.format(EPIC, nout, ntot), file=\n outfile)\n",
"role": "user"
},
{
"content": "get_outliers",
"role": "assistant"
}
] |
def x(self):
if self.cadence == 'lc':
return self.__class__.__name__
else:
return '%s.sc' % self.__class__.__name__
|
name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.cadence == 'lc':\n return self.__class__.__name__\n else:\n return '%s.sc' % self.__class__.__name__\n",
"role": "user"
},
{
"content": "name",
"role": "assistant"
}
] |
def x(self, mask, b):
m1 = self.get_masked_chunk(b)
flux = self.fraw[m1]
K = GetCovariance(self.kernel, self.kernel_params, self.time[m1], self.
fraw_err[m1])
med = np.nanmedian(flux)
M = lambda x, axis=0: np.delete(x, mask, axis=axis)
m2 = M(m1)
mK = M(M(K, axis=0), axis=1)
f = M(flux) - med
A = [None for i in range(self.pld_order)]
B = [None for i in range(self.pld_order)]
for n in range(self.pld_order):
if self.lam_idx >= n:
X2 = self.X(n, m2)
X1 = self.X(n, m1)
A[n] = np.dot(X2, X2.T)
B[n] = np.dot(X1, X2.T)
del X1, X2
if self.transit_model is None:
C = 0
else:
C = np.zeros((len(m2), len(m2)))
mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m2])) for
tm in self.transit_model], axis=0)
f -= mean_transit_model
for tm in self.transit_model:
X2 = tm(self.time[m2]).reshape(-1, 1)
C += tm.var_depth * np.dot(X2, X2.T)
del X2
return A, B, C, mK, f, m1, m2
|
cv_precompute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mask, b):\n m1 = self.get_masked_chunk(b)\n flux = self.fraw[m1]\n K = GetCovariance(self.kernel, self.kernel_params, self.time[m1], self.\n fraw_err[m1])\n med = np.nanmedian(flux)\n M = lambda x, axis=0: np.delete(x, mask, axis=axis)\n m2 = M(m1)\n mK = M(M(K, axis=0), axis=1)\n f = M(flux) - med\n A = [None for i in range(self.pld_order)]\n B = [None for i in range(self.pld_order)]\n for n in range(self.pld_order):\n if self.lam_idx >= n:\n X2 = self.X(n, m2)\n X1 = self.X(n, m1)\n A[n] = np.dot(X2, X2.T)\n B[n] = np.dot(X1, X2.T)\n del X1, X2\n if self.transit_model is None:\n C = 0\n else:\n C = np.zeros((len(m2), len(m2)))\n mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m2])) for\n tm in self.transit_model], axis=0)\n f -= mean_transit_model\n for tm in self.transit_model:\n X2 = tm(self.time[m2]).reshape(-1, 1)\n C += tm.var_depth * np.dot(X2, X2.T)\n del X2\n return A, B, C, mK, f, m1, m2\n",
"role": "user"
},
{
"content": "cv_precompute",
"role": "assistant"
}
] |
def x(self, b, A, B, C, mK, f, m1, m2):
A = np.sum([(l * a) for l, a in zip(self.lam[b], A) if l is not None],
axis=0)
B = np.sum([(l * b) for l, b in zip(self.lam[b], B) if l is not None],
axis=0)
W = np.linalg.solve(mK + A + C, f)
if self.transit_model is None:
model = np.dot(B, W)
else:
w_pld = np.concatenate([(l * np.dot(self.X(n, m2).T, W)) for n, l in
enumerate(self.lam[b]) if l is not None])
model = np.dot(np.hstack([self.X(n, m1) for n, l in enumerate(self.
lam[b]) if l is not None]), w_pld)
model -= np.nanmedian(model)
return model
|
cv_compute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, b, A, B, C, mK, f, m1, m2):\n A = np.sum([(l * a) for l, a in zip(self.lam[b], A) if l is not None],\n axis=0)\n B = np.sum([(l * b) for l, b in zip(self.lam[b], B) if l is not None],\n axis=0)\n W = np.linalg.solve(mK + A + C, f)\n if self.transit_model is None:\n model = np.dot(B, W)\n else:\n w_pld = np.concatenate([(l * np.dot(self.X(n, m2).T, W)) for n, l in\n enumerate(self.lam[b]) if l is not None])\n model = np.dot(np.hstack([self.X(n, m1) for n, l in enumerate(self.\n lam[b]) if l is not None]), w_pld)\n model -= np.nanmedian(model)\n return model\n",
"role": "user"
},
{
"content": "cv_compute",
"role": "assistant"
}
] |
def x(self):
log.info('Clipping outliers...')
log.info('Iter %d/%d: %d outliers' % (0, self.oiter, len(self.outmask)))
def x(x):
return np.delete(x, np.concatenate([self.nanmask, self.badmask,
self.transitmask]), axis=0)
t = M(self.time)
outmask = [np.array([-1]), np.array(self.outmask)]
while not np.array_equal(outmask[-2], outmask[-1]):
if len(outmask) - 1 > self.oiter:
log.error('Maximum number of iterations in ' +
'``get_outliers()`` exceeded. Skipping...')
break
if np.any([np.array_equal(outmask[-1], i) for i in outmask[:-1]]):
log.error('Function ``get_outliers()`` ' +
'is going in circles. Skipping...')
break
self.compute()
f = SavGol(M(self.flux))
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
inds = np.where((f > med + self.osigma * MAD) | (f < med - self.
osigma * MAD))[0]
inds = np.array([np.argmax(self.time == t[i]) for i in inds])
self.outmask = np.array(inds, dtype=int)
outmask.append(np.array(inds))
log.info('Iter %d/%d: %d outliers' % (len(outmask) - 2, self.oiter,
len(self.outmask)))
|
get_outliers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log.info('Clipping outliers...')\n log.info('Iter %d/%d: %d outliers' % (0, self.oiter, len(self.outmask)))\n\n def x(x):\n return np.delete(x, np.concatenate([self.nanmask, self.badmask,\n self.transitmask]), axis=0)\n t = M(self.time)\n outmask = [np.array([-1]), np.array(self.outmask)]\n while not np.array_equal(outmask[-2], outmask[-1]):\n if len(outmask) - 1 > self.oiter:\n log.error('Maximum number of iterations in ' +\n '``get_outliers()`` exceeded. Skipping...')\n break\n if np.any([np.array_equal(outmask[-1], i) for i in outmask[:-1]]):\n log.error('Function ``get_outliers()`` ' +\n 'is going in circles. Skipping...')\n break\n self.compute()\n f = SavGol(M(self.flux))\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n inds = np.where((f > med + self.osigma * MAD) | (f < med - self.\n osigma * MAD))[0]\n inds = np.array([np.argmax(self.time == t[i]) for i in inds])\n self.outmask = np.array(inds, dtype=int)\n outmask.append(np.array(inds))\n log.info('Iter %d/%d: %d outliers' % (len(outmask) - 2, self.oiter,\n len(self.outmask)))\n",
"role": "user"
},
{
"content": "get_outliers",
"role": "assistant"
}
] |
def x(self, validation):
maxm = 0
minr = len(validation)
for n in range(validation.shape[1]):
m = np.nanargmin(validation[:, n])
if m > maxm:
maxm = m
r = np.where((validation[:, n] - validation[m, n]) / validation[m,
n] <= self.leps)[0][-1]
if r < minr:
minr = r
return min(maxm, minr)
|
optimize_lambda
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, validation):\n maxm = 0\n minr = len(validation)\n for n in range(validation.shape[1]):\n m = np.nanargmin(validation[:, n])\n if m > maxm:\n maxm = m\n r = np.where((validation[:, n] - validation[m, n]) / validation[m,\n n] <= self.leps)[0][-1]\n if r < minr:\n minr = r\n return min(maxm, minr)\n",
"role": "user"
},
{
"content": "optimize_lambda",
"role": "assistant"
}
] |
def x(self):
bn = np.array(list(set(np.concatenate([self.badmask, self.nanmask]))),
dtype=int)
fraw = np.delete(self.fraw, bn)
lo, hi = fraw[np.argsort(fraw)][[3, -3]]
flux = np.delete(self.flux, bn)
fsort = flux[np.argsort(flux)]
if fsort[int(0.01 * len(fsort))] < lo:
lo = fsort[int(0.01 * len(fsort))]
if fsort[int(0.99 * len(fsort))] > hi:
hi = fsort[int(0.99 * len(fsort))]
pad = (hi - lo) * 0.05
ylim = lo - pad, hi + pad
return ylim
|
get_ylim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n bn = np.array(list(set(np.concatenate([self.badmask, self.nanmask]))),\n dtype=int)\n fraw = np.delete(self.fraw, bn)\n lo, hi = fraw[np.argsort(fraw)][[3, -3]]\n flux = np.delete(self.flux, bn)\n fsort = flux[np.argsort(flux)]\n if fsort[int(0.01 * len(fsort))] < lo:\n lo = fsort[int(0.01 * len(fsort))]\n if fsort[int(0.99 * len(fsort))] > hi:\n hi = fsort[int(0.99 * len(fsort))]\n pad = (hi - lo) * 0.05\n ylim = lo - pad, hi + pad\n return ylim\n",
"role": "user"
},
{
"content": "get_ylim",
"role": "assistant"
}
] |
def x(self, ax, info_left='', info_right='', color='b'):
if self.cadence == 'lc' or len(self.time) < 4000:
ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=
'none', marker='.', color=color, markersize=2, alpha=0.5)
ax.plot(self.time[self.transitmask], self.flux[self.transitmask],
ls='none', marker='.', color=color, markersize=2, alpha=0.5)
else:
ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=
'none', marker='.', color=color, markersize=2, alpha=0.03,
zorder=-1)
ax.plot(self.time[self.transitmask], self.flux[self.transitmask],
ls='none', marker='.', color=color, markersize=2, alpha=0.03,
zorder=-1)
ax.set_rasterization_zorder(0)
ylim = self.get_ylim()
badmask = [i for i in self.badmask if i not in self.nanmask]
def x(x):
return x[self.outmask]
def x(x):
return x[badmask]
if self.cadence == 'lc':
ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',
marker='.', markersize=2, alpha=0.5)
ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=0.25)
else:
ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',
marker='.', markersize=2, alpha=0.25, zorder=-1)
ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=
0.125, zorder=-1)
for i in np.where(self.flux < ylim[0])[0]:
if i in badmask:
color = '#ffcccc'
elif i in self.outmask:
color = '#cccccc'
elif i in self.nanmask:
continue
else:
color = '#ccccff'
ax.annotate('', xy=(self.time[i], ylim[0]), xycoords='data', xytext
=(0, 15), textcoords='offset points', arrowprops=dict(
arrowstyle='-|>', color=color))
for i in np.where(self.flux > ylim[1])[0]:
if i in badmask:
color = '#ffcccc'
elif i in self.outmask:
color = '#cccccc'
elif i in self.nanmask:
continue
else:
color = '#ccccff'
ax.annotate('', xy=(self.time[i], ylim[1]), xycoords='data', xytext
=(0, -15), textcoords='offset points', arrowprops=dict(
arrowstyle='-|>', color=color))
for brkpt in self.breakpoints[:-1]:
if len(self.breakpoints) <= 5:
ax.axvline(self.time[brkpt], color='r', ls='--', alpha=0.5)
else:
ax.axvline(self.time[brkpt], color='r', ls='-', alpha=0.025)
if len(self.cdpp_arr) == 2:
ax.annotate('%.2f ppm' % self.cdpp_arr[0], xy=(0.02, 0.975),
xycoords='axes fraction', ha='left', va='top', fontsize=10)
ax.annotate('%.2f ppm' % self.cdpp_arr[1], xy=(0.98, 0.975),
xycoords='axes fraction', ha='right', va='top', fontsize=10)
elif len(self.cdpp_arr) < 6:
for n in range(len(self.cdpp_arr)):
if n > 0:
x = (self.time[self.breakpoints[n - 1]] - self.time[0]) / (self
.time[-1] - self.time[0]) + 0.02
else:
x = 0.02
ax.annotate('%.2f ppm' % self.cdpp_arr[n], xy=(x, 0.975),
xycoords='axes fraction', ha='left', va='top', fontsize=8)
else:
ax.annotate('%.2f ppm' % self.cdpp, xy=(0.02, 0.975), xycoords=
'axes fraction', ha='left', va='top', fontsize=10)
ax.annotate(info_right, xy=(0.98, 0.025), xycoords='axes fraction', ha=
'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')
ax.annotate(info_left, xy=(0.02, 0.025), xycoords='axes fraction', ha=
'left', va='bottom', fontsize=8)
ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=5)
ax.margins(0.01, 0.1)
ax.set_ylim(*ylim)
ax.get_yaxis().set_major_formatter(Formatter.Flux)
|
plot_lc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, info_left='', info_right='', color='b'):\n if self.cadence == 'lc' or len(self.time) < 4000:\n ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=\n 'none', marker='.', color=color, markersize=2, alpha=0.5)\n ax.plot(self.time[self.transitmask], self.flux[self.transitmask],\n ls='none', marker='.', color=color, markersize=2, alpha=0.5)\n else:\n ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=\n 'none', marker='.', color=color, markersize=2, alpha=0.03,\n zorder=-1)\n ax.plot(self.time[self.transitmask], self.flux[self.transitmask],\n ls='none', marker='.', color=color, markersize=2, alpha=0.03,\n zorder=-1)\n ax.set_rasterization_zorder(0)\n ylim = self.get_ylim()\n badmask = [i for i in self.badmask if i not in self.nanmask]\n\n def x(x):\n return x[self.outmask]\n\n def x(x):\n return x[badmask]\n if self.cadence == 'lc':\n ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',\n marker='.', markersize=2, alpha=0.5)\n ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=0.25)\n else:\n ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',\n marker='.', markersize=2, alpha=0.25, zorder=-1)\n ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=\n 0.125, zorder=-1)\n for i in np.where(self.flux < ylim[0])[0]:\n if i in badmask:\n color = '#ffcccc'\n elif i in self.outmask:\n color = '#cccccc'\n elif i in self.nanmask:\n continue\n else:\n color = '#ccccff'\n ax.annotate('', xy=(self.time[i], ylim[0]), xycoords='data', xytext\n =(0, 15), textcoords='offset points', arrowprops=dict(\n arrowstyle='-|>', color=color))\n for i in np.where(self.flux > ylim[1])[0]:\n if i in badmask:\n color = '#ffcccc'\n elif i in self.outmask:\n color = '#cccccc'\n elif i in self.nanmask:\n continue\n else:\n color = '#ccccff'\n ax.annotate('', xy=(self.time[i], ylim[1]), xycoords='data', xytext\n =(0, -15), textcoords='offset points', arrowprops=dict(\n arrowstyle='-|>', color=color))\n for brkpt in self.breakpoints[:-1]:\n if len(self.breakpoints) <= 5:\n ax.axvline(self.time[brkpt], color='r', ls='--', alpha=0.5)\n else:\n ax.axvline(self.time[brkpt], color='r', ls='-', alpha=0.025)\n if len(self.cdpp_arr) == 2:\n ax.annotate('%.2f ppm' % self.cdpp_arr[0], xy=(0.02, 0.975),\n xycoords='axes fraction', ha='left', va='top', fontsize=10)\n ax.annotate('%.2f ppm' % self.cdpp_arr[1], xy=(0.98, 0.975),\n xycoords='axes fraction', ha='right', va='top', fontsize=10)\n elif len(self.cdpp_arr) < 6:\n for n in range(len(self.cdpp_arr)):\n if n > 0:\n x = (self.time[self.breakpoints[n - 1]] - self.time[0]) / (self\n .time[-1] - self.time[0]) + 0.02\n else:\n x = 0.02\n ax.annotate('%.2f ppm' % self.cdpp_arr[n], xy=(x, 0.975),\n xycoords='axes fraction', ha='left', va='top', fontsize=8)\n else:\n ax.annotate('%.2f ppm' % self.cdpp, xy=(0.02, 0.975), xycoords=\n 'axes fraction', ha='left', va='top', fontsize=10)\n ax.annotate(info_right, xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.annotate(info_left, xy=(0.02, 0.025), xycoords='axes fraction', ha=\n 'left', va='bottom', fontsize=8)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=5)\n ax.margins(0.01, 0.1)\n ax.set_ylim(*ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n",
"role": "user"
},
{
"content": "plot_lc",
"role": "assistant"
}
] |
def x(self, ax):
bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])
)), dtype=int)
def x(x):
return np.delete(x, bnmask)
if self.cadence == 'lc' or len(self.time) < 4000:
ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=
'k', markersize=2, alpha=0.3)
else:
ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=
'k', markersize=2, alpha=0.03, zorder=-1)
ax.set_rasterization_zorder(0)
ax.plot(self.time[0], np.nanmedian(M(self.flux)), marker='.', alpha=0)
ax.plot(self.time[-1], np.nanmedian(M(self.flux)), marker='.', alpha=0)
if self.cadence == 'lc':
gp = GP(self.kernel, self.kernel_params, white=False)
gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))
med = np.nanmedian(self.apply_mask(self.flux))
y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)
y += med
ax.plot(M(self.time), M(y), 'r-', lw=0.5, alpha=0.5)
self.cdppg = self._mission.CDPP(self.apply_mask(self.flux - y + med
), cadence=self.cadence)
else:
self.cdppg = 0.0
ax.annotate('Final', xy=(0.98, 0.025), xycoords='axes fraction', ha=
'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')
ax.margins(0.01, 0.1)
flux = np.delete(self.flux, bnmask)
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
fsort = flux[np.argsort(flux)]
pad = (hi - lo) * 0.1
ylim = lo - pad, hi + pad
ax.set_ylim(ylim)
ax.get_yaxis().set_major_formatter(Formatter.Flux)
|
plot_final
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax):\n bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])\n )), dtype=int)\n\n def x(x):\n return np.delete(x, bnmask)\n if self.cadence == 'lc' or len(self.time) < 4000:\n ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=\n 'k', markersize=2, alpha=0.3)\n else:\n ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=\n 'k', markersize=2, alpha=0.03, zorder=-1)\n ax.set_rasterization_zorder(0)\n ax.plot(self.time[0], np.nanmedian(M(self.flux)), marker='.', alpha=0)\n ax.plot(self.time[-1], np.nanmedian(M(self.flux)), marker='.', alpha=0)\n if self.cadence == 'lc':\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))\n med = np.nanmedian(self.apply_mask(self.flux))\n y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)\n y += med\n ax.plot(M(self.time), M(y), 'r-', lw=0.5, alpha=0.5)\n self.cdppg = self._mission.CDPP(self.apply_mask(self.flux - y + med\n ), cadence=self.cadence)\n else:\n self.cdppg = 0.0\n ax.annotate('Final', xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.margins(0.01, 0.1)\n flux = np.delete(self.flux, bnmask)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n fsort = flux[np.argsort(flux)]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n",
"role": "user"
},
{
"content": "plot_final",
"role": "assistant"
}
] |
def x(self, ax, flux, info, show_cbv=False):
bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])
)), dtype=int)
def x(x):
return np.delete(x, bnmask)
if self.cadence == 'lc':
ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',
markersize=2, alpha=0.45)
else:
ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',
markersize=2, alpha=0.03, zorder=-1)
ax.set_rasterization_zorder(0)
ax.plot(self.time[0], np.nanmedian(M(flux)), marker='.', alpha=0)
ax.plot(self.time[-1], np.nanmedian(M(flux)), marker='.', alpha=0)
if show_cbv:
ax.plot(self.time, self._mission.FitCBVs(self) + np.nanmedian(flux),
'r-', alpha=0.2)
ax.annotate(info, xy=(0.98, 0.025), xycoords='axes fraction', ha=
'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')
ax.margins(0.01, 0.1)
flux = np.delete(flux, bnmask)
N = int(0.995 * len(flux))
hi, lo = flux[np.argsort(flux)][[N, -N]]
fsort = flux[np.argsort(flux)]
pad = (hi - lo) * 0.2
ylim = lo - pad, hi + pad
ax.set_ylim(ylim)
ax.get_yaxis().set_major_formatter(Formatter.Flux)
ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=9)
for tick in (ax.get_xticklabels() + ax.get_yticklabels()):
tick.set_fontsize(7)
|
plot_cbv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax, flux, info, show_cbv=False):\n bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])\n )), dtype=int)\n\n def x(x):\n return np.delete(x, bnmask)\n if self.cadence == 'lc':\n ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',\n markersize=2, alpha=0.45)\n else:\n ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',\n markersize=2, alpha=0.03, zorder=-1)\n ax.set_rasterization_zorder(0)\n ax.plot(self.time[0], np.nanmedian(M(flux)), marker='.', alpha=0)\n ax.plot(self.time[-1], np.nanmedian(M(flux)), marker='.', alpha=0)\n if show_cbv:\n ax.plot(self.time, self._mission.FitCBVs(self) + np.nanmedian(flux),\n 'r-', alpha=0.2)\n ax.annotate(info, xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.margins(0.01, 0.1)\n flux = np.delete(flux, bnmask)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n fsort = flux[np.argsort(flux)]\n pad = (hi - lo) * 0.2\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=9)\n for tick in (ax.get_xticklabels() + ax.get_yticklabels()):\n tick.set_fontsize(7)\n",
"role": "user"
},
{
"content": "plot_cbv",
"role": "assistant"
}
] |
def x(self):
if not self.loaded:
if self._data is not None:
data = self._data
else:
data = self._mission.GetData(self.ID, season=self.season,
cadence=self.cadence, clobber=self.clobber_tpf,
aperture_name=self.aperture_name, saturated_aperture_name=
self.saturated_aperture_name, max_pixels=self.max_pixels,
saturation_tolerance=self.saturation_tolerance, get_hires=
self.get_hires, get_nearby=self.get_nearby)
if data is None:
raise Exception('Unable to retrieve target data.')
self.cadn = data.cadn
self.time = data.time
self.model = np.zeros_like(self.time)
self.fpix = data.fpix
self.fraw = np.sum(self.fpix, axis=1)
self.fpix_err = data.fpix_err
self.fraw_err = np.sqrt(np.sum(self.fpix_err ** 2, axis=1))
self.nanmask = data.nanmask
self.badmask = data.badmask
self.transitmask = np.array([], dtype=int)
self.outmask = np.array([], dtype=int)
self.aperture = data.aperture
self.aperture_name = data.aperture_name
self.apertures = data.apertures
self.quality = data.quality
self.Xpos = data.Xpos
self.Ypos = data.Ypos
self.mag = data.mag
self.pixel_images = data.pixel_images
self.nearby = data.nearby
self.hires = data.hires
self.saturated = data.saturated
self.meta = data.meta
self.bkg = data.bkg
self.breakpoints[-1] = len(self.time) - 1
self.get_norm()
self.loaded = True
|
load_tpf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.loaded:\n if self._data is not None:\n data = self._data\n else:\n data = self._mission.GetData(self.ID, season=self.season,\n cadence=self.cadence, clobber=self.clobber_tpf,\n aperture_name=self.aperture_name, saturated_aperture_name=\n self.saturated_aperture_name, max_pixels=self.max_pixels,\n saturation_tolerance=self.saturation_tolerance, get_hires=\n self.get_hires, get_nearby=self.get_nearby)\n if data is None:\n raise Exception('Unable to retrieve target data.')\n self.cadn = data.cadn\n self.time = data.time\n self.model = np.zeros_like(self.time)\n self.fpix = data.fpix\n self.fraw = np.sum(self.fpix, axis=1)\n self.fpix_err = data.fpix_err\n self.fraw_err = np.sqrt(np.sum(self.fpix_err ** 2, axis=1))\n self.nanmask = data.nanmask\n self.badmask = data.badmask\n self.transitmask = np.array([], dtype=int)\n self.outmask = np.array([], dtype=int)\n self.aperture = data.aperture\n self.aperture_name = data.aperture_name\n self.apertures = data.apertures\n self.quality = data.quality\n self.Xpos = data.Xpos\n self.Ypos = data.Ypos\n self.mag = data.mag\n self.pixel_images = data.pixel_images\n self.nearby = data.nearby\n self.hires = data.hires\n self.saturated = data.saturated\n self.meta = data.meta\n self.bkg = data.bkg\n self.breakpoints[-1] = len(self.time) - 1\n self.get_norm()\n self.loaded = True\n",
"role": "user"
},
{
"content": "load_tpf",
"role": "assistant"
}
] |
def x(self, name=None):
if self.clobber:
return False
if name is None:
name = self.name
file = os.path.join(self.dir, '%s.npz' % name)
if os.path.exists(file):
if not self.is_parent:
log.info("Loading '%s.npz'..." % name)
try:
data = np.load(file)
for key in data.keys():
try:
setattr(self, key, data[key][()])
except NotImplementedError:
pass
if hasattr(self, 'cdpp6'):
self.cdpp = self.cdpp6
del self.cdpp6
if hasattr(self, 'cdpp6_arr'):
self.cdpp_arr = np.array(self.cdpp6_arr)
del self.cdpp6_arr
if hasattr(self, 'gppp'):
self.cdppg = self.gppp
del self.gppp
pl.close()
return True
except:
log.warn("Error loading '%s.npz'." % name)
exctype, value, tb = sys.exc_info()
for line in traceback.format_exception_only(exctype, value):
ln = line.replace('\n', '')
log.warn(ln)
os.rename(file, file + '.bad')
if self.is_parent:
raise Exception('Unable to load `%s` model for target %d.' % (self.
name, self.ID))
return False
|
load_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name=None):\n if self.clobber:\n return False\n if name is None:\n name = self.name\n file = os.path.join(self.dir, '%s.npz' % name)\n if os.path.exists(file):\n if not self.is_parent:\n log.info(\"Loading '%s.npz'...\" % name)\n try:\n data = np.load(file)\n for key in data.keys():\n try:\n setattr(self, key, data[key][()])\n except NotImplementedError:\n pass\n if hasattr(self, 'cdpp6'):\n self.cdpp = self.cdpp6\n del self.cdpp6\n if hasattr(self, 'cdpp6_arr'):\n self.cdpp_arr = np.array(self.cdpp6_arr)\n del self.cdpp6_arr\n if hasattr(self, 'gppp'):\n self.cdppg = self.gppp\n del self.gppp\n pl.close()\n return True\n except:\n log.warn(\"Error loading '%s.npz'.\" % name)\n exctype, value, tb = sys.exc_info()\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n log.warn(ln)\n os.rename(file, file + '.bad')\n if self.is_parent:\n raise Exception('Unable to load `%s` model for target %d.' % (self.\n name, self.ID))\n return False\n",
"role": "user"
},
{
"content": "load_model",
"role": "assistant"
}
] |
def x(self):
log.info("Saving data to '%s.npz'..." % self.name)
d = dict(self.__dict__)
d.pop('_weights', None)
d.pop('_A', None)
d.pop('_B', None)
d.pop('_f', None)
d.pop('_mK', None)
d.pop('K', None)
d.pop('dvs', None)
d.pop('clobber', None)
d.pop('clobber_tpf', None)
d.pop('_mission', None)
d.pop('debug', None)
d.pop('transit_model', None)
d.pop('_transit_model', None)
np.savez(os.path.join(self.dir, self.name + '.npz'), **d)
pdf = PdfPages(os.path.join(self.dir, self.name + '.pdf'))
pdf.savefig(self.dvs.fig)
pl.close(self.dvs.fig)
d = pdf.infodict()
d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.
_mission.IDSTRING, self.ID)
d['Author'] = 'Rodrigo Luger'
pdf.close()
|
save_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n log.info(\"Saving data to '%s.npz'...\" % self.name)\n d = dict(self.__dict__)\n d.pop('_weights', None)\n d.pop('_A', None)\n d.pop('_B', None)\n d.pop('_f', None)\n d.pop('_mK', None)\n d.pop('K', None)\n d.pop('dvs', None)\n d.pop('clobber', None)\n d.pop('clobber_tpf', None)\n d.pop('_mission', None)\n d.pop('debug', None)\n d.pop('transit_model', None)\n d.pop('_transit_model', None)\n np.savez(os.path.join(self.dir, self.name + '.npz'), **d)\n pdf = PdfPages(os.path.join(self.dir, self.name + '.pdf'))\n pdf.savefig(self.dvs.fig)\n pl.close(self.dvs.fig)\n d = pdf.infodict()\n d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.\n _mission.IDSTRING, self.ID)\n d['Author'] = 'Rodrigo Luger'\n pdf.close()\n",
"role": "user"
},
{
"content": "save_model",
"role": "assistant"
}
] |
def x(self, pdb):
exctype, value, tb = sys.exc_info()
errfile = os.path.join(self.dir, self.name + '.err')
with open(errfile, 'w') as f:
for line in traceback.format_exception_only(exctype, value):
ln = line.replace('\n', '')
log.error(ln)
print(ln, file=f)
for line in traceback.format_tb(tb):
ln = line.replace('\n', '')
log.error(ln)
print(ln, file=f)
if pdb:
raise
|
exception_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pdb):\n exctype, value, tb = sys.exc_info()\n errfile = os.path.join(self.dir, self.name + '.err')\n with open(errfile, 'w') as f:\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n log.error(ln)\n print(ln, file=f)\n for line in traceback.format_tb(tb):\n ln = line.replace('\\n', '')\n log.error(ln)\n print(ln, file=f)\n if pdb:\n raise\n",
"role": "user"
},
{
"content": "exception_handler",
"role": "assistant"
}
] |
def x(self):
self.kernel_params = GetKernelParams(self.time, self.flux, self.
fraw_err, mask=self.mask, guess=self.kernel_params, kernel=self.
kernel, giter=self.giter, gmaxf=self.gmaxf)
|
update_gp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.kernel_params = GetKernelParams(self.time, self.flux, self.\n fraw_err, mask=self.mask, guess=self.kernel_params, kernel=self.\n kernel, giter=self.giter, gmaxf=self.gmaxf)\n",
"role": "user"
},
{
"content": "update_gp",
"role": "assistant"
}
] |
def x(self):
if self.kernel_params is None:
X = self.apply_mask(self.fpix / self.flux.reshape(-1, 1))
y = self.apply_mask(self.flux) - np.dot(X, np.linalg.solve(np.dot(X
.T, X), np.dot(X.T, self.apply_mask(self.flux))))
white = np.nanmedian([np.nanstd(c) for c in Chunks(y, 13)])
amp = self.gp_factor * np.nanstd(y)
tau = 30.0
if self.kernel == 'Basic':
self.kernel_params = [white, amp, tau]
elif self.kernel == 'QuasiPeriodic':
self.kernel_params = [white, amp, 1.0, 20.0]
|
init_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.kernel_params is None:\n X = self.apply_mask(self.fpix / self.flux.reshape(-1, 1))\n y = self.apply_mask(self.flux) - np.dot(X, np.linalg.solve(np.dot(X\n .T, X), np.dot(X.T, self.apply_mask(self.flux))))\n white = np.nanmedian([np.nanstd(c) for c in Chunks(y, 13)])\n amp = self.gp_factor * np.nanstd(y)\n tau = 30.0\n if self.kernel == 'Basic':\n self.kernel_params = [white, amp, tau]\n elif self.kernel == 'QuasiPeriodic':\n self.kernel_params = [white, amp, 1.0, 20.0]\n",
"role": "user"
},
{
"content": "init_kernel",
"role": "assistant"
}
] |
def x(self):
try:
log.info('Loading target data...')
self.load_tpf()
self.mask_planets()
self.plot_aperture([self.dvs.top_right() for i in range(4)])
self.init_kernel()
M = self.apply_mask(np.arange(len(self.time)))
self.cdppr_arr = self.get_cdpp_arr()
self.cdpp_arr = np.array(self.cdppr_arr)
self.cdppv_arr = np.array(self.cdppr_arr)
self.cdppr = self.get_cdpp()
self.cdpp = self.cdppr
self.cdppv = self.cdppr
log.info('%s (Raw): CDPP = %s' % (self.name, self.cdpps))
self.plot_lc(self.dvs.left(), info_right='Raw', color='k')
for n in range(self.pld_order):
self.lam_idx += 1
self.get_outliers()
if n > 0 and self.optimize_gp:
self.update_gp()
self.cross_validate(self.dvs.right(), info='CV%d' % n)
self.cdpp_arr = self.get_cdpp_arr()
self.cdppv_arr *= self.cdpp_arr
self.cdpp = self.get_cdpp()
self.cdppv = np.nanmean(self.cdppv_arr)
log.info('%s (%d/%d): CDPP = %s' % (self.name, n + 1, self.
pld_order, self.cdpps))
self.plot_lc(self.dvs.left(), info_right='LC%d' % (n + 1),
info_left='%d outliers' % len(self.outmask))
self.finalize()
self.plot_final(self.dvs.top_left())
self.plot_info(self.dvs)
self.save_model()
except:
self.exception_handler(self.debug)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n log.info('Loading target data...')\n self.load_tpf()\n self.mask_planets()\n self.plot_aperture([self.dvs.top_right() for i in range(4)])\n self.init_kernel()\n M = self.apply_mask(np.arange(len(self.time)))\n self.cdppr_arr = self.get_cdpp_arr()\n self.cdpp_arr = np.array(self.cdppr_arr)\n self.cdppv_arr = np.array(self.cdppr_arr)\n self.cdppr = self.get_cdpp()\n self.cdpp = self.cdppr\n self.cdppv = self.cdppr\n log.info('%s (Raw): CDPP = %s' % (self.name, self.cdpps))\n self.plot_lc(self.dvs.left(), info_right='Raw', color='k')\n for n in range(self.pld_order):\n self.lam_idx += 1\n self.get_outliers()\n if n > 0 and self.optimize_gp:\n self.update_gp()\n self.cross_validate(self.dvs.right(), info='CV%d' % n)\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdppv_arr *= self.cdpp_arr\n self.cdpp = self.get_cdpp()\n self.cdppv = np.nanmean(self.cdppv_arr)\n log.info('%s (%d/%d): CDPP = %s' % (self.name, n + 1, self.\n pld_order, self.cdpps))\n self.plot_lc(self.dvs.left(), info_right='LC%d' % (n + 1),\n info_left='%d outliers' % len(self.outmask))\n self.finalize()\n self.plot_final(self.dvs.top_left())\n self.plot_info(self.dvs)\n self.save_model()\n except:\n self.exception_handler(self.debug)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, **kwargs):
try:
self.cbv_win = 999
self.cbv_order = 3
self.cbv_num = 1
self._mission.GetTargetCBVs(self)
cbv = CBV()
self.plot_info(cbv)
self.plot_cbv(cbv.body(), self.fcor, 'Corrected')
self.plot_cbv(cbv.body(), self.flux, 'De-trended', show_cbv=True)
self.plot_cbv(cbv.body(), self.fraw, 'Raw')
pdf = PdfPages(os.path.join(self.dir, 'cbv.pdf'))
pdf.savefig(cbv.fig)
pl.close(cbv.fig)
d = pdf.infodict()
d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.
_mission.IDSTRING, self.ID)
d['Author'] = 'Rodrigo Luger'
pdf.close()
assert os.path.exists(os.path.join(self.dir, self.name + '.pdf')
), 'Unable to locate %s.pdf.' % self.name
output = PdfFileWriter()
pdfOne = PdfFileReader(os.path.join(self.dir, 'cbv.pdf'))
pdfTwo = PdfFileReader(os.path.join(self.dir, self.name + '.pdf'))
output.addPage(pdfOne.getPage(0))
output.addPage(pdfTwo.getPage(pdfTwo.numPages - 1))
outputStream = open(os.path.join(self.dir, self._mission.DVSFile(
self.ID, self.season, self.cadence)), 'wb')
output.write(outputStream)
outputStream.close()
os.remove(os.path.join(self.dir, 'cbv.pdf'))
MakeFITS(self)
except:
self.exception_handler(self.debug)
|
publish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n try:\n self.cbv_win = 999\n self.cbv_order = 3\n self.cbv_num = 1\n self._mission.GetTargetCBVs(self)\n cbv = CBV()\n self.plot_info(cbv)\n self.plot_cbv(cbv.body(), self.fcor, 'Corrected')\n self.plot_cbv(cbv.body(), self.flux, 'De-trended', show_cbv=True)\n self.plot_cbv(cbv.body(), self.fraw, 'Raw')\n pdf = PdfPages(os.path.join(self.dir, 'cbv.pdf'))\n pdf.savefig(cbv.fig)\n pl.close(cbv.fig)\n d = pdf.infodict()\n d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.\n _mission.IDSTRING, self.ID)\n d['Author'] = 'Rodrigo Luger'\n pdf.close()\n assert os.path.exists(os.path.join(self.dir, self.name + '.pdf')\n ), 'Unable to locate %s.pdf.' % self.name\n output = PdfFileWriter()\n pdfOne = PdfFileReader(os.path.join(self.dir, 'cbv.pdf'))\n pdfTwo = PdfFileReader(os.path.join(self.dir, self.name + '.pdf'))\n output.addPage(pdfOne.getPage(0))\n output.addPage(pdfTwo.getPage(pdfTwo.numPages - 1))\n outputStream = open(os.path.join(self.dir, self._mission.DVSFile(\n self.ID, self.season, self.cadence)), 'wb')\n output.write(outputStream)\n outputStream.close()\n os.remove(os.path.join(self.dir, 'cbv.pdf'))\n MakeFITS(self)\n except:\n self.exception_handler(self.debug)\n",
"role": "user"
},
{
"content": "publish",
"role": "assistant"
}
] |
def x(self, **kwargs):
self.parent_model = kwargs.get('parent_model', None)
neighbors = kwargs.get('neighbors', 10)
neighbors_data = kwargs.get('neighbors_data', None)
if hasattr(neighbors, '__len__'):
self.neighbors = neighbors
else:
num_neighbors = neighbors
self.neighbors = self._mission.GetNeighbors(self.ID, season=self.
season, cadence=self.cadence, model=self.parent_model,
neighbors=num_neighbors, mag_range=kwargs.get('mag_range', (
11.0, 13.0)), cdpp_range=kwargs.get('cdpp_range', None),
aperture_name=self.aperture_name)
if len(self.neighbors):
if len(self.neighbors) < num_neighbors:
log.warn('%d neighbors requested, but only %d found.' % (
num_neighbors, len(self.neighbors)))
elif num_neighbors > 0:
log.warn('No neighbors found! Running standard PLD...')
for n, neighbor in enumerate(self.neighbors):
log.info('Loading data for neighboring target %d...' % neighbor)
if neighbors_data is not None:
data = neighbors_data[n]
data.mask = np.array(list(set(np.concatenate([data.badmask,
data.nanmask]))), dtype=int)
data.fraw = np.sum(data.fpix, axis=1)
elif self.parent_model is not None and self.cadence == 'lc':
data = eval(self.parent_model)(neighbor, mission=self.mission,
is_parent=True)
else:
data = self._mission.GetData(neighbor, season=self.season,
clobber=self.clobber_tpf, cadence=self.cadence,
aperture_name=self.aperture_name, saturated_aperture_name=
self.saturated_aperture_name, max_pixels=self.max_pixels,
saturation_tolerance=self.saturation_tolerance, get_hires=
False, get_nearby=False)
if data is None:
raise Exception(
'Unable to retrieve data for neighboring target.')
data.mask = np.array(list(set(np.concatenate([data.badmask,
data.nanmask]))), dtype=int)
data.fraw = np.sum(data.fpix, axis=1)
X1 = data.fpix / data.fraw.reshape(-1, 1)
X1 = Interpolate(data.time, data.mask, X1)
if self.X1N is None:
self.X1N = np.array(X1)
else:
self.X1N = np.hstack([self.X1N, X1])
del X1
del data
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n self.parent_model = kwargs.get('parent_model', None)\n neighbors = kwargs.get('neighbors', 10)\n neighbors_data = kwargs.get('neighbors_data', None)\n if hasattr(neighbors, '__len__'):\n self.neighbors = neighbors\n else:\n num_neighbors = neighbors\n self.neighbors = self._mission.GetNeighbors(self.ID, season=self.\n season, cadence=self.cadence, model=self.parent_model,\n neighbors=num_neighbors, mag_range=kwargs.get('mag_range', (\n 11.0, 13.0)), cdpp_range=kwargs.get('cdpp_range', None),\n aperture_name=self.aperture_name)\n if len(self.neighbors):\n if len(self.neighbors) < num_neighbors:\n log.warn('%d neighbors requested, but only %d found.' % (\n num_neighbors, len(self.neighbors)))\n elif num_neighbors > 0:\n log.warn('No neighbors found! Running standard PLD...')\n for n, neighbor in enumerate(self.neighbors):\n log.info('Loading data for neighboring target %d...' % neighbor)\n if neighbors_data is not None:\n data = neighbors_data[n]\n data.mask = np.array(list(set(np.concatenate([data.badmask,\n data.nanmask]))), dtype=int)\n data.fraw = np.sum(data.fpix, axis=1)\n elif self.parent_model is not None and self.cadence == 'lc':\n data = eval(self.parent_model)(neighbor, mission=self.mission,\n is_parent=True)\n else:\n data = self._mission.GetData(neighbor, season=self.season,\n clobber=self.clobber_tpf, cadence=self.cadence,\n aperture_name=self.aperture_name, saturated_aperture_name=\n self.saturated_aperture_name, max_pixels=self.max_pixels,\n saturation_tolerance=self.saturation_tolerance, get_hires=\n False, get_nearby=False)\n if data is None:\n raise Exception(\n 'Unable to retrieve data for neighboring target.')\n data.mask = np.array(list(set(np.concatenate([data.badmask,\n data.nanmask]))), dtype=int)\n data.fraw = np.sum(data.fpix, axis=1)\n X1 = data.fpix / data.fraw.reshape(-1, 1)\n X1 = Interpolate(data.time, data.mask, X1)\n if self.X1N is None:\n self.X1N = np.array(X1)\n else:\n self.X1N = np.hstack([self.X1N, X1])\n del X1\n del data\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self, **kwargs):
self.parent_model = kwargs.get('parent_model', 'nPLD')
if not self.load_model(self.parent_model):
raise Exception('Unable to load parent model.')
self._norm = np.array(self.flux)
self.recmask = np.array(self.mask)
self.reclam = np.array(self.lam)
self.optimize_gp = False
nseg = len(self.breakpoints)
self.lam_idx = -1
self.lam = [([100000.0] + [None for i in range(self.pld_order - 1)]) for
b in range(nseg)]
self.cdpp_arr = np.array([np.nan for b in range(nseg)])
self.cdppr_arr = np.array([np.nan for b in range(nseg)])
self.cdppv_arr = np.array([np.nan for b in range(nseg)])
self.cdpp = np.nan
self.cdppr = np.nan
self.cdppv = np.nan
self.cdppg = np.nan
self.model = np.zeros_like(self.time)
self.loaded = True
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n self.parent_model = kwargs.get('parent_model', 'nPLD')\n if not self.load_model(self.parent_model):\n raise Exception('Unable to load parent model.')\n self._norm = np.array(self.flux)\n self.recmask = np.array(self.mask)\n self.reclam = np.array(self.lam)\n self.optimize_gp = False\n nseg = len(self.breakpoints)\n self.lam_idx = -1\n self.lam = [([100000.0] + [None for i in range(self.pld_order - 1)]) for\n b in range(nseg)]\n self.cdpp_arr = np.array([np.nan for b in range(nseg)])\n self.cdppr_arr = np.array([np.nan for b in range(nseg)])\n self.cdppv_arr = np.array([np.nan for b in range(nseg)])\n self.cdpp = np.nan\n self.cdppr = np.nan\n self.cdppv = np.nan\n self.cdppg = np.nan\n self.model = np.zeros_like(self.time)\n self.loaded = True\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self, **kwargs):
clobber = self.clobber
self.clobber = False
if not self.load_model('nPLD'):
raise Exception("Can't find `nPLD` model for target.")
self.clobber = clobber
self.piter = kwargs.get('piter', 3)
self.pmaxf = kwargs.get('pmaxf', 300)
self.ppert = kwargs.get('ppert', 0.1)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n clobber = self.clobber\n self.clobber = False\n if not self.load_model('nPLD'):\n raise Exception(\"Can't find `nPLD` model for target.\")\n self.clobber = clobber\n self.piter = kwargs.get('piter', 3)\n self.pmaxf = kwargs.get('pmaxf', 300)\n self.ppert = kwargs.get('ppert', 0.1)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(self):
try:
self.plot_aperture([self.dvs.top_right() for i in range(4)])
self.plot_lc(self.dvs.left(), info_right='nPLD', color='k')
self.cross_validate(self.dvs.right())
self.compute()
self.cdpp_arr = self.get_cdpp_arr()
self.cdpp = self.get_cdpp()
self.plot_lc(self.dvs.left(), info_right='Powell', color='k')
self.plot_final(self.dvs.top_left())
self.plot_info(self.dvs)
self.save_model()
except:
self.exception_handler(self.debug)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n self.plot_aperture([self.dvs.top_right() for i in range(4)])\n self.plot_lc(self.dvs.left(), info_right='nPLD', color='k')\n self.cross_validate(self.dvs.right())\n self.compute()\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self.plot_lc(self.dvs.left(), info_right='Powell', color='k')\n self.plot_final(self.dvs.top_left())\n self.plot_info(self.dvs)\n self.save_model()\n except:\n self.exception_handler(self.debug)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, ax):
cdpp_opt = self.get_cdpp_arr()
for b, brkpt in enumerate(self.breakpoints):
log.info('Cross-validating chunk %d/%d...' % (b + 1, len(self.
breakpoints)))
m = self.get_masked_chunk(b)
time = self.time[m]
flux = self.fraw[m]
ferr = self.fraw_err[m]
med = np.nanmedian(self.fraw)
gp = GP(self.kernel, self.kernel_params, white=False)
gp.compute(time, ferr)
masks = list(Chunks(np.arange(0, len(time)), len(time) // self.cdivs))
pre_v = [self.cv_precompute(mask, b) for mask in masks]
log_lam_opt = np.log10(self.lam[b])
scatter_opt = self.validation_scatter(log_lam_opt, b, masks, pre_v,
gp, flux, time, med)
log.info('Iter 0/%d: ' % self.piter + 'logL = (%s), s = %.3f' % (
', '.join([('%.3f' % l) for l in log_lam_opt]), scatter_opt))
for p in range(self.piter):
log_lam = np.array(np.log10(self.lam[b])) * (1 + self.ppert *
np.random.randn(len(self.lam[b])))
scatter = self.validation_scatter(log_lam, b, masks, pre_v, gp,
flux, time, med)
log.info('Initializing at: ' + 'logL = (%s), s = %.3f' % (', '.
join([('%.3f' % l) for l in log_lam]), scatter))
log_lam, scatter, _, _, _, _ = fmin_powell(self.
validation_scatter, log_lam, args=(b, masks, pre_v, gp,
flux, time, med), maxfun=self.pmaxf, disp=False,
full_output=True)
tmp = np.array(self.lam[b])
self.lam[b] = 10 ** log_lam
self.compute()
cdpp = self.get_cdpp_arr()[b]
self.lam[b] = tmp
if cdpp < cdpp_opt[b]:
cdpp_opt[b] = cdpp
log_lam_opt = log_lam
log.info('Iter %d/%d: ' % (p + 1, self.piter) +
'logL = (%s), s = %.3f' % (', '.join([('%.3f' % l) for l in
log_lam]), scatter))
log.info('Found minimum: logL = (%s), s = %.3f' % (', '.join([(
'%.3f' % l) for l in log_lam_opt]), scatter_opt))
self.lam[b] = 10 ** log_lam_opt
bs = np.arange(len(self.breakpoints))
color = ['k', 'b', 'r', 'g', 'y']
for n in range(self.pld_order):
ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '.',
color=color[n])
ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '-',
color=color[n], alpha=0.25)
ax[0].set_ylabel('$\\log\\Lambda$', fontsize=5)
ax[0].margins(0.1, 0.1)
ax[0].set_xticks(np.arange(1, len(self.breakpoints) + 1))
ax[0].set_xticklabels([])
cdpp_arr = self.get_cdpp_arr()
ax[1].plot(bs + 1, cdpp_arr, 'b.')
ax[1].plot(bs + 1, cdpp_arr, 'b-', alpha=0.25)
ax[1].margins(0.1, 0.1)
ax[1].set_ylabel('Scatter (ppm)', fontsize=5)
ax[1].set_xlabel('Chunk', fontsize=5)
ax[1].set_xticks(np.arange(1, len(self.breakpoints) + 1))
|
cross_validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ax):\n cdpp_opt = self.get_cdpp_arr()\n for b, brkpt in enumerate(self.breakpoints):\n log.info('Cross-validating chunk %d/%d...' % (b + 1, len(self.\n breakpoints)))\n m = self.get_masked_chunk(b)\n time = self.time[m]\n flux = self.fraw[m]\n ferr = self.fraw_err[m]\n med = np.nanmedian(self.fraw)\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(time, ferr)\n masks = list(Chunks(np.arange(0, len(time)), len(time) // self.cdivs))\n pre_v = [self.cv_precompute(mask, b) for mask in masks]\n log_lam_opt = np.log10(self.lam[b])\n scatter_opt = self.validation_scatter(log_lam_opt, b, masks, pre_v,\n gp, flux, time, med)\n log.info('Iter 0/%d: ' % self.piter + 'logL = (%s), s = %.3f' % (\n ', '.join([('%.3f' % l) for l in log_lam_opt]), scatter_opt))\n for p in range(self.piter):\n log_lam = np.array(np.log10(self.lam[b])) * (1 + self.ppert *\n np.random.randn(len(self.lam[b])))\n scatter = self.validation_scatter(log_lam, b, masks, pre_v, gp,\n flux, time, med)\n log.info('Initializing at: ' + 'logL = (%s), s = %.3f' % (', '.\n join([('%.3f' % l) for l in log_lam]), scatter))\n log_lam, scatter, _, _, _, _ = fmin_powell(self.\n validation_scatter, log_lam, args=(b, masks, pre_v, gp,\n flux, time, med), maxfun=self.pmaxf, disp=False,\n full_output=True)\n tmp = np.array(self.lam[b])\n self.lam[b] = 10 ** log_lam\n self.compute()\n cdpp = self.get_cdpp_arr()[b]\n self.lam[b] = tmp\n if cdpp < cdpp_opt[b]:\n cdpp_opt[b] = cdpp\n log_lam_opt = log_lam\n log.info('Iter %d/%d: ' % (p + 1, self.piter) + \n 'logL = (%s), s = %.3f' % (', '.join([('%.3f' % l) for l in\n log_lam]), scatter))\n log.info('Found minimum: logL = (%s), s = %.3f' % (', '.join([(\n '%.3f' % l) for l in log_lam_opt]), scatter_opt))\n self.lam[b] = 10 ** log_lam_opt\n bs = np.arange(len(self.breakpoints))\n color = ['k', 'b', 'r', 'g', 'y']\n for n in range(self.pld_order):\n ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '.',\n color=color[n])\n ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '-',\n color=color[n], alpha=0.25)\n ax[0].set_ylabel('$\\\\log\\\\Lambda$', fontsize=5)\n ax[0].margins(0.1, 0.1)\n ax[0].set_xticks(np.arange(1, len(self.breakpoints) + 1))\n ax[0].set_xticklabels([])\n cdpp_arr = self.get_cdpp_arr()\n ax[1].plot(bs + 1, cdpp_arr, 'b.')\n ax[1].plot(bs + 1, cdpp_arr, 'b-', alpha=0.25)\n ax[1].margins(0.1, 0.1)\n ax[1].set_ylabel('Scatter (ppm)', fontsize=5)\n ax[1].set_xlabel('Chunk', fontsize=5)\n ax[1].set_xticks(np.arange(1, len(self.breakpoints) + 1))\n",
"role": "user"
},
{
"content": "cross_validate",
"role": "assistant"
}
] |
def x(self, log_lam, b, masks, pre_v, gp, flux, time, med):
self.lam[b] = 10 ** log_lam
scatter = [None for i in range(len(masks))]
for i in range(len(masks)):
model = self.cv_compute(b, *pre_v[i])
try:
gpm, _ = gp.predict(flux - model - med, time[masks[i]])
except ValueError:
return 1e+30
fdet = (flux - model)[masks[i]] - gpm
scatter[i] = 1000000.0 * (1.4826 * np.nanmedian(np.abs(fdet / med -
np.nanmedian(fdet / med))) / np.sqrt(len(masks[i])))
return np.max(scatter)
|
validation_scatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, log_lam, b, masks, pre_v, gp, flux, time, med):\n self.lam[b] = 10 ** log_lam\n scatter = [None for i in range(len(masks))]\n for i in range(len(masks)):\n model = self.cv_compute(b, *pre_v[i])\n try:\n gpm, _ = gp.predict(flux - model - med, time[masks[i]])\n except ValueError:\n return 1e+30\n fdet = (flux - model)[masks[i]] - gpm\n scatter[i] = 1000000.0 * (1.4826 * np.nanmedian(np.abs(fdet / med -\n np.nanmedian(fdet / med))) / np.sqrt(len(masks[i])))\n return np.max(scatter)\n",
"role": "user"
},
{
"content": "validation_scatter",
"role": "assistant"
}
] |
def x(datatype='string', size=10, start=None, end=None, converter=None,
choice_from=None, **kwargs):
data = []
converter = converter or def_converter
if datatype == 'date':
date_end = end or date.today()
date_start = start or date(1990, 1, 1)
delta = date_end - date_start
for s in range(size):
data.append(converter(random_date(date_start, delta.days)))
elif datatype == 'integer':
start = start or 0
end = end or 1000000
for s in range(size):
data.append(converter(randint(start, end)))
elif datatype == 'float':
start = start or 0
end = end or 10
for s in range(size):
data.append(converter(uniform(start, end)))
elif datatype == 'choice' and choice_from:
for s in range(size):
data.append(choice(list(choice_from)))
else:
for s in range(size):
data.append(converter(random_string(**kwargs)))
return data
|
populate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datatype='string', size=10, start=None, end=None, converter=None,\n choice_from=None, **kwargs):\n data = []\n converter = converter or def_converter\n if datatype == 'date':\n date_end = end or date.today()\n date_start = start or date(1990, 1, 1)\n delta = date_end - date_start\n for s in range(size):\n data.append(converter(random_date(date_start, delta.days)))\n elif datatype == 'integer':\n start = start or 0\n end = end or 1000000\n for s in range(size):\n data.append(converter(randint(start, end)))\n elif datatype == 'float':\n start = start or 0\n end = end or 10\n for s in range(size):\n data.append(converter(uniform(start, end)))\n elif datatype == 'choice' and choice_from:\n for s in range(size):\n data.append(choice(list(choice_from)))\n else:\n for s in range(size):\n data.append(converter(random_string(**kwargs)))\n return data\n",
"role": "user"
},
{
"content": "populate",
"role": "assistant"
}
] |
def x(star, pos_tol=2.5, neg_tol=50.0, **ps_kwargs):
t = np.delete(star.time, np.concatenate([star.nanmask, star.badmask]))
f = np.delete(star.flux, np.concatenate([star.nanmask, star.badmask]))
f = SavGol(f)
med = np.nanmedian(f)
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
pos_inds = np.where(f > med + pos_tol * MAD)[0]
pos_inds = np.array([np.argmax(star.time == t[i]) for i in pos_inds])
MAD = 1.4826 * np.nanmedian(np.abs(f - med))
neg_inds = np.where(f < med - neg_tol * MAD)[0]
neg_inds = np.array([np.argmax(star.time == t[i]) for i in neg_inds])
star.outmask = np.concatenate([neg_inds, pos_inds])
star.transitmask = np.array([], dtype=int)
TIME = np.array([])
DEPTH = np.array([])
VARDEPTH = np.array([])
DELCHISQ = np.array([])
for b, brkpt in enumerate(star.breakpoints):
log.info('Running chunk %d/%d...' % (b + 1, len(star.breakpoints)))
m = star.get_masked_chunk(b, pad=False)
K = GetCovariance(star.kernel, star.kernel_params, star.time[m],
star.fraw_err[m])
A = np.zeros((len(m), len(m)))
for n in range(star.pld_order):
XM = star.X(n, m)
A += star.lam[b][n] * np.dot(XM, XM.T)
K += A
CDK = cho_factor(K)
med = np.nanmedian(star.fraw[m])
lnL0 = -0.5 * np.dot(star.fraw[m], cho_solve(CDK, star.fraw[m]))
dt = np.median(np.diff(star.time[m]))
tol = np.nanmedian(np.diff(star.time[m])) / 5.0
tunif = np.arange(star.time[m][0], star.time[m][-1] + tol, dt)
tnogaps = np.array(tunif)
gaps = []
j = 0
for i, t in enumerate(tunif):
if np.abs(star.time[m][j] - t) < tol:
tnogaps[i] = star.time[m][j]
j += 1
if j == len(star.time[m]):
break
else:
gaps.append(i)
gaps = np.array(gaps, dtype=int)
transit_model = TransitShape(**ps_kwargs)
dchisq = np.zeros(len(tnogaps))
d = np.zeros(len(tnogaps))
vard = np.zeros(len(tnogaps))
for i in prange(len(tnogaps)):
trn = transit_model(tnogaps, tnogaps[i])
trn = np.delete(trn, gaps)
trn *= med
vard[i] = 1.0 / np.dot(trn, cho_solve(CDK, trn))
if not np.isfinite(vard[i]):
vard[i] = np.nan
d[i] = np.nan
dchisq[i] = np.nan
continue
d[i] = vard[i] * np.dot(trn, cho_solve(CDK, star.fraw[m]))
r = star.fraw[m] - trn * d[i]
lnL = -0.5 * np.dot(r, cho_solve(CDK, r))
dchisq[i] = -2 * (lnL0 - lnL)
TIME = np.append(TIME, tnogaps)
DEPTH = np.append(DEPTH, d)
VARDEPTH = np.append(VARDEPTH, vard)
DELCHISQ = np.append(DELCHISQ, dchisq)
return TIME, DEPTH, VARDEPTH, DELCHISQ
|
Search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(star, pos_tol=2.5, neg_tol=50.0, **ps_kwargs):\n t = np.delete(star.time, np.concatenate([star.nanmask, star.badmask]))\n f = np.delete(star.flux, np.concatenate([star.nanmask, star.badmask]))\n f = SavGol(f)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n pos_inds = np.where(f > med + pos_tol * MAD)[0]\n pos_inds = np.array([np.argmax(star.time == t[i]) for i in pos_inds])\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n neg_inds = np.where(f < med - neg_tol * MAD)[0]\n neg_inds = np.array([np.argmax(star.time == t[i]) for i in neg_inds])\n star.outmask = np.concatenate([neg_inds, pos_inds])\n star.transitmask = np.array([], dtype=int)\n TIME = np.array([])\n DEPTH = np.array([])\n VARDEPTH = np.array([])\n DELCHISQ = np.array([])\n for b, brkpt in enumerate(star.breakpoints):\n log.info('Running chunk %d/%d...' % (b + 1, len(star.breakpoints)))\n m = star.get_masked_chunk(b, pad=False)\n K = GetCovariance(star.kernel, star.kernel_params, star.time[m],\n star.fraw_err[m])\n A = np.zeros((len(m), len(m)))\n for n in range(star.pld_order):\n XM = star.X(n, m)\n A += star.lam[b][n] * np.dot(XM, XM.T)\n K += A\n CDK = cho_factor(K)\n med = np.nanmedian(star.fraw[m])\n lnL0 = -0.5 * np.dot(star.fraw[m], cho_solve(CDK, star.fraw[m]))\n dt = np.median(np.diff(star.time[m]))\n tol = np.nanmedian(np.diff(star.time[m])) / 5.0\n tunif = np.arange(star.time[m][0], star.time[m][-1] + tol, dt)\n tnogaps = np.array(tunif)\n gaps = []\n j = 0\n for i, t in enumerate(tunif):\n if np.abs(star.time[m][j] - t) < tol:\n tnogaps[i] = star.time[m][j]\n j += 1\n if j == len(star.time[m]):\n break\n else:\n gaps.append(i)\n gaps = np.array(gaps, dtype=int)\n transit_model = TransitShape(**ps_kwargs)\n dchisq = np.zeros(len(tnogaps))\n d = np.zeros(len(tnogaps))\n vard = np.zeros(len(tnogaps))\n for i in prange(len(tnogaps)):\n trn = transit_model(tnogaps, tnogaps[i])\n trn = np.delete(trn, gaps)\n trn *= med\n vard[i] = 1.0 / np.dot(trn, cho_solve(CDK, trn))\n if not np.isfinite(vard[i]):\n vard[i] = np.nan\n d[i] = np.nan\n dchisq[i] = np.nan\n continue\n d[i] = vard[i] * np.dot(trn, cho_solve(CDK, star.fraw[m]))\n r = star.fraw[m] - trn * d[i]\n lnL = -0.5 * np.dot(r, cho_solve(CDK, r))\n dchisq[i] = -2 * (lnL0 - lnL)\n TIME = np.append(TIME, tnogaps)\n DEPTH = np.append(DEPTH, d)\n VARDEPTH = np.append(VARDEPTH, vard)\n DELCHISQ = np.append(DELCHISQ, dchisq)\n return TIME, DEPTH, VARDEPTH, DELCHISQ\n",
"role": "user"
},
{
"content": "Search",
"role": "assistant"
}
] |
def x(self):
return iter(chain(itervalues(self._new), itervalues(self._modified)))
|
iterdirty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return iter(chain(itervalues(self._new), itervalues(self._modified)))\n",
"role": "user"
},
{
"content": "iterdirty",
"role": "assistant"
}
] |
def x(self, instance, modified=True, persistent=None, force_update=False):
if instance._meta.type == 'structure':
return self._add_structure(instance)
state = instance.get_state()
if state.deleted:
raise ValueError('State is deleted. Cannot add.')
self.pop(state.iid)
pers = persistent if persistent is not None else state.persistent
pkname = instance._meta.pkname()
if not pers:
instance._dbdata.pop(pkname, None)
state = instance.get_state(iid=None)
elif persistent:
instance._dbdata[pkname] = instance.pkvalue()
state = instance.get_state(iid=instance.pkvalue())
else:
action = 'update' if force_update else None
state = instance.get_state(action=action, iid=state.iid)
iid = state.iid
if state.persistent:
if modified:
self._modified[iid] = instance
else:
self._new[iid] = instance
return instance
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, modified=True, persistent=None, force_update=False):\n if instance._meta.type == 'structure':\n return self._add_structure(instance)\n state = instance.get_state()\n if state.deleted:\n raise ValueError('State is deleted. Cannot add.')\n self.pop(state.iid)\n pers = persistent if persistent is not None else state.persistent\n pkname = instance._meta.pkname()\n if not pers:\n instance._dbdata.pop(pkname, None)\n state = instance.get_state(iid=None)\n elif persistent:\n instance._dbdata[pkname] = instance.pkvalue()\n state = instance.get_state(iid=instance.pkvalue())\n else:\n action = 'update' if force_update else None\n state = instance.get_state(action=action, iid=state.iid)\n iid = state.iid\n if state.persistent:\n if modified:\n self._modified[iid] = instance\n else:\n self._new[iid] = instance\n return instance\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, instance, session):
if instance._meta.type == 'structure':
return self._delete_structure(instance)
inst = self.pop(instance)
instance = inst if inst is not None else instance
if instance is not None:
state = instance.get_state()
if state.persistent:
state.deleted = True
self._deleted[state.iid] = instance
instance.session = session
else:
instance.session = None
return instance
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, session):\n if instance._meta.type == 'structure':\n return self._delete_structure(instance)\n inst = self.pop(instance)\n instance = inst if inst is not None else instance\n if instance is not None:\n state = instance.get_state()\n if state.persistent:\n state.deleted = True\n self._deleted[state.iid] = instance\n instance.session = session\n else:\n instance.session = None\n return instance\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, instance):
if isinstance(instance, self.model):
iid = instance.get_state().iid
else:
iid = instance
instance = None
for d in (self._new, self._modified, self._deleted):
if iid in d:
inst = d.pop(iid)
if instance is None:
instance = inst
elif inst is not instance:
raise ValueError('Critical error: %s is duplicated' % iid)
return instance
|
pop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance):\n if isinstance(instance, self.model):\n iid = instance.get_state().iid\n else:\n iid = instance\n instance = None\n for d in (self._new, self._modified, self._deleted):\n if iid in d:\n inst = d.pop(iid)\n if instance is None:\n instance = inst\n elif inst is not instance:\n raise ValueError('Critical error: %s is duplicated' % iid)\n return instance\n",
"role": "user"
},
{
"content": "pop",
"role": "assistant"
}
] |
def x(self, instance):
instance = self.pop(instance)
instance.session = None
return instance
|
expunge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance):\n instance = self.pop(instance)\n instance.session = None\n return instance\n",
"role": "user"
},
{
"content": "expunge",
"role": "assistant"
}
] |
def x(self, results):
tpy = self._meta.pk_to_python
instances = []
deleted = []
errors = []
for result in results:
if isinstance(result, Exception):
errors.append(result.__class__(
'Exception while committing %s. %s' % (self._meta, result)))
continue
instance = self.pop(result.iid)
id = tpy(result.id, self.backend)
if result.deleted:
deleted.append(id)
else:
if instance is None:
raise InvalidTransaction(
'{0} session received id "{1}" which is not in the session.'
.format(self, result.iid))
setattr(instance, instance._meta.pkname(), id)
instance = self.add(instance, modified=False, persistent=result
.persistent)
instance.get_state().score = result.score
if instance.get_state().persistent:
instances.append(instance)
return instances, deleted, errors
|
post_commit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, results):\n tpy = self._meta.pk_to_python\n instances = []\n deleted = []\n errors = []\n for result in results:\n if isinstance(result, Exception):\n errors.append(result.__class__(\n 'Exception while committing %s. %s' % (self._meta, result)))\n continue\n instance = self.pop(result.iid)\n id = tpy(result.id, self.backend)\n if result.deleted:\n deleted.append(id)\n else:\n if instance is None:\n raise InvalidTransaction(\n '{0} session received id \"{1}\" which is not in the session.'\n .format(self, result.iid))\n setattr(instance, instance._meta.pkname(), id)\n instance = self.add(instance, modified=False, persistent=result\n .persistent)\n instance.get_state().score = result.score\n if instance.get_state().persistent:\n instances.append(instance)\n return instances, deleted, errors\n",
"role": "user"
},
{
"content": "post_commit",
"role": "assistant"
}
] |
def x(self, callback=None):
if self.executed:
raise InvalidTransaction(
'Invalid operation. Transaction already executed.')
session = self.session
self.session = None
self.on_result = self._commit(session, callback)
return self.on_result
|
commit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, callback=None):\n if self.executed:\n raise InvalidTransaction(\n 'Invalid operation. Transaction already executed.')\n session = self.session\n self.session = None\n self.on_result = self._commit(session, callback)\n return self.on_result\n",
"role": "user"
},
{
"content": "commit",
"role": "assistant"
}
] |
def x(self):
return frozenset(chain(*tuple(sm.dirty for sm in itervalues(self._models)))
)
|
dirty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return frozenset(chain(*tuple(sm.dirty for sm in itervalues(self._models)))\n )\n",
"role": "user"
},
{
"content": "dirty",
"role": "assistant"
}
] |
def x(self, **options):
if self.transaction is not None:
raise InvalidTransaction('A transaction is already begun.')
else:
self.transaction = Transaction(self, **options)
return self.transaction
|
begin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **options):\n if self.transaction is not None:\n raise InvalidTransaction('A transaction is already begun.')\n else:\n self.transaction = Transaction(self, **options)\n return self.transaction\n",
"role": "user"
},
{
"content": "begin",
"role": "assistant"
}
] |
def x(self, model, **kwargs):
sm = self.model(model)
query_class = sm.manager.query_class or Query
return query_class(sm._meta, self, **kwargs)
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, **kwargs):\n sm = self.model(model)\n query_class = sm.manager.query_class or Query\n return query_class(sm._meta, self, **kwargs)\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(self, model, **kwargs):
backend = self.model(model).backend
return backend.execute(self._update_or_create(model, **kwargs))
|
update_or_create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, **kwargs):\n backend = self.model(model).backend\n return backend.execute(self._update_or_create(model, **kwargs))\n",
"role": "user"
},
{
"content": "update_or_create",
"role": "assistant"
}
] |
def x(self, instance, modified=True, **params):
sm = self.model(instance)
instance.session = self
o = sm.add(instance, modified=modified, **params)
if modified and not self.transaction:
transaction = self.begin()
return transaction.commit(lambda : o)
else:
return o
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, modified=True, **params):\n sm = self.model(instance)\n instance.session = self\n o = sm.add(instance, modified=modified, **params)\n if modified and not self.transaction:\n transaction = self.begin()\n return transaction.commit(lambda : o)\n else:\n return o\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, instance_or_query):
sm = self.model(instance_or_query)
if is_query(instance_or_query):
if instance_or_query.session is not self:
raise ValueError('Adding a query generated by another session')
sm._delete_query.append(instance_or_query)
else:
instance_or_query = sm.delete(instance_or_query, self)
if not self.transaction:
transaction = self.begin()
return transaction.commit(lambda : transaction.deleted.get(sm._meta))
else:
return instance_or_query
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance_or_query):\n sm = self.model(instance_or_query)\n if is_query(instance_or_query):\n if instance_or_query.session is not self:\n raise ValueError('Adding a query generated by another session')\n sm._delete_query.append(instance_or_query)\n else:\n instance_or_query = sm.delete(instance_or_query, self)\n if not self.transaction:\n transaction = self.begin()\n return transaction.commit(lambda : transaction.deleted.get(sm._meta))\n else:\n return instance_or_query\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, model, create=True):
manager = self.manager(model)
sm = self._models.get(manager)
if sm is None and create:
sm = SessionModel(manager)
self._models[manager] = sm
return sm
|
model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, create=True):\n manager = self.manager(model)\n sm = self._models.get(manager)\n if sm is None and create:\n sm = SessionModel(manager)\n self._models[manager] = sm\n return sm\n",
"role": "user"
},
{
"content": "model",
"role": "assistant"
}
] |
def x(self, instance=None):
if instance is not None:
sm = self._models.get(instance._meta)
if sm:
return sm.expunge(instance)
else:
self._models.clear()
|
expunge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance=None):\n if instance is not None:\n sm = self._models.get(instance._meta)\n if sm:\n return sm.expunge(instance)\n else:\n self._models.clear()\n",
"role": "user"
},
{
"content": "expunge",
"role": "assistant"
}
] |
def x(self, model):
try:
return self.router[model]
except KeyError:
meta = getattr(model, '_meta', model)
if meta.type == 'structure':
if hasattr(model, 'model'):
structure_model = model.model
if structure_model:
return self.manager(structure_model)
else:
manager = self.router.structure(model)
if manager:
return manager
raise InvalidTransaction('"%s" not valid in this session' % meta)
|
manager
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model):\n try:\n return self.router[model]\n except KeyError:\n meta = getattr(model, '_meta', model)\n if meta.type == 'structure':\n if hasattr(model, 'model'):\n structure_model = model.model\n if structure_model:\n return self.manager(structure_model)\n else:\n manager = self.router.structure(model)\n if manager:\n return manager\n raise InvalidTransaction('\"%s\" not valid in this session' % meta)\n",
"role": "user"
},
{
"content": "manager",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
return self.session().add(self.model(*args, **kwargs))
|
new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n return self.session().add(self.model(*args, **kwargs))\n",
"role": "user"
},
{
"content": "new",
"role": "assistant"
}
] |
def x(self, session=None):
if session is None or session.router is not self.router:
session = self.session()
return session.query(self.model)
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session=None):\n if session is None or session.router is not self.router:\n session = self.session()\n return session.query(self.model)\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(self, text, lookup=None):
return self.query().search(text, lookup=lookup)
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, lookup=None):\n return self.query().search(text, lookup=lookup)\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(response, encoding):
it = iter(response)
return dict((k.decode(encoding), v) for k, v in zip(it, it))
|
pairs_to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(response, encoding):\n it = iter(response)\n return dict((k.decode(encoding), v) for k, v in zip(it, it))\n",
"role": "user"
},
{
"content": "pairs_to_dict",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.