source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, convert_to_key_and_value, ignore_missing=False): serialized = {} properties = self._get_property_names(self) def x(name): p = [p for p in self._property_details if p.name == name] return None if len(p) == 0 else p[0] for p in properties: pd = get_property_detail(p) value = self._property_to_field(p, pd) field_name = p if not pd else pd.to_field_name() if value is None or ignore_missing and not value or pd and pd.unsent: continue else: key, value = convert_to_key_and_value(field_name, value, pd) if key: serialized[key] = value return serialized
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, convert_to_key_and_value, ignore_missing=False):\n serialized = {}\n properties = self._get_property_names(self)\n\n def x(name):\n p = [p for p in self._property_details if p.name == name]\n return None if len(p) == 0 else p[0]\n for p in properties:\n pd = get_property_detail(p)\n value = self._property_to_field(p, pd)\n field_name = p if not pd else pd.to_field_name()\n if value is None or ignore_missing and not value or pd and pd.unsent:\n continue\n else:\n key, value = convert_to_key_and_value(field_name, value, pd)\n if key:\n serialized[key] = value\n return serialized\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(self, buf, *, start=0, end=None): self._bus.readinto(buf, start=start, end=end) if start == 0 and end is None and len(buf) >= 8: if self._bus.crc8(buf): raise RuntimeError('CRC error.')
readinto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, buf, *, start=0, end=None):\n self._bus.readinto(buf, start=start, end=end)\n if start == 0 and end is None and len(buf) >= 8:\n if self._bus.crc8(buf):\n raise RuntimeError('CRC error.')\n", "role": "user" }, { "content": "readinto", "role": "assistant" } ]
def x(self, buf, *, start=0, end=None): return self._bus.write(buf, start=start, end=end)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, buf, *, start=0, end=None):\n return self._bus.write(buf, start=start, end=end)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(sender, *args, **kwargs): cls = sender if issubclass(cls, Preferences): cls.add_to_class('singleton', SingletonManager()) setattr(preferences.Preferences, cls._meta.object_name, property(lambda x: cls.singleton.get()))
preferences_class_prepared
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, *args, **kwargs):\n cls = sender\n if issubclass(cls, Preferences):\n cls.add_to_class('singleton', SingletonManager())\n setattr(preferences.Preferences, cls._meta.object_name, property(lambda\n x: cls.singleton.get()))\n", "role": "user" }, { "content": "preferences_class_prepared", "role": "assistant" } ]
def x(sender, action, instance, **kwargs): if action == 'post_add': if isinstance(instance, Preferences) and hasattr(instance.__class__, 'objects'): site_conflicts = instance.__class__.objects.filter(sites__in= instance.sites.all()).only('id').distinct() for conflict in site_conflicts: if conflict.id != instance.id: for site in instance.sites.all(): conflict.sites.remove(site)
site_cleanup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, action, instance, **kwargs):\n if action == 'post_add':\n if isinstance(instance, Preferences) and hasattr(instance.__class__,\n 'objects'):\n site_conflicts = instance.__class__.objects.filter(sites__in=\n instance.sites.all()).only('id').distinct()\n for conflict in site_conflicts:\n if conflict.id != instance.id:\n for site in instance.sites.all():\n conflict.sites.remove(site)\n", "role": "user" }, { "content": "site_cleanup", "role": "assistant" } ]
def x(self): queryset = super(SingletonManager, self).get_queryset() current_site = None if getattr(settings, 'SITE_ID', None) is not None: current_site = Site.objects.get_current() if current_site is not None: queryset = queryset.filter(sites=settings.SITE_ID) if not queryset.exists(): obj = self.model.objects.create() if current_site is not None: obj.sites.add(current_site) return queryset
get_queryset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n queryset = super(SingletonManager, self).get_queryset()\n current_site = None\n if getattr(settings, 'SITE_ID', None) is not None:\n current_site = Site.objects.get_current()\n if current_site is not None:\n queryset = queryset.filter(sites=settings.SITE_ID)\n if not queryset.exists():\n obj = self.model.objects.create()\n if current_site is not None:\n obj.sites.add(current_site)\n return queryset\n", "role": "user" }, { "content": "get_queryset", "role": "assistant" } ]
def x(self, iterable, session=None): data = [] load = self.loads for v in iterable: data.append(load(v)) return data
load_iterable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iterable, session=None):\n data = []\n load = self.loads\n for v in iterable:\n data.append(load(v))\n return data\n", "role": "user" }, { "content": "load_iterable", "role": "assistant" } ]
def x(self, q, text, lookup=None): words = self.words_from_text(text, for_search=True) if not words: return q qs = self._search(words, include=(q.model,), lookup=lookup) qs = tuple(q.get_field('object_id') for q in qs) return odm.intersect((q,) + qs)
search_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q, text, lookup=None):\n words = self.words_from_text(text, for_search=True)\n if not words:\n return q\n qs = self._search(words, include=(q.model,), lookup=lookup)\n qs = tuple(q.get_field('object_id') for q in qs)\n return odm.intersect((q,) + qs)\n", "role": "user" }, { "content": "search_model", "role": "assistant" } ]
def x(self, words, include=None, exclude=None, lookup=None): lookup = lookup or 'contains' query = self.router.worditem.query() if include: query = query.filter(model_type__in=include) if exclude: query = query.exclude(model_type__in=include) if not words: return [query] qs = [] if lookup == 'in': qs.append(query.filter(word__in=words)) elif lookup == 'contains': for word in words: qs.append(query.filter(word=word)) else: raise ValueError('Unknown lookup "{0}"'.format(lookup)) return qs
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, words, include=None, exclude=None, lookup=None):\n lookup = lookup or 'contains'\n query = self.router.worditem.query()\n if include:\n query = query.filter(model_type__in=include)\n if exclude:\n query = query.exclude(model_type__in=include)\n if not words:\n return [query]\n qs = []\n if lookup == 'in':\n qs.append(query.filter(word__in=words))\n elif lookup == 'contains':\n for word in words:\n qs.append(query.filter(word=word))\n else:\n raise ValueError('Unknown lookup \"{0}\"'.format(lookup))\n return qs\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(s, encoding=None, errors='strict'): encoding = encoding or 'utf-8' if isinstance(s, bytes): if encoding != 'utf-8': return s.decode('utf-8', errors).encode(encoding, errors) else: return s if not is_string(s): s = string_type(s) return s.encode(encoding, errors)
to_bytes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, encoding=None, errors='strict'):\n encoding = encoding or 'utf-8'\n if isinstance(s, bytes):\n if encoding != 'utf-8':\n return s.decode('utf-8', errors).encode(encoding, errors)\n else:\n return s\n if not is_string(s):\n s = string_type(s)\n return s.encode(encoding, errors)\n", "role": "user" }, { "content": "to_bytes", "role": "assistant" } ]
def x(s, encoding=None, errors='strict'): encoding = encoding or 'utf-8' if isinstance(s, bytes): return s.decode(encoding, errors) if not is_string(s): s = string_type(s) return s
to_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, encoding=None, errors='strict'):\n encoding = encoding or 'utf-8'\n if isinstance(s, bytes):\n return s.decode(encoding, errors)\n if not is_string(s):\n s = string_type(s)\n return s\n", "role": "user" }, { "content": "to_string", "role": "assistant" } ]
def x(dct): if '__datetime__' in dct: return todatetime(dct['__datetime__']) elif '__date__' in dct: return todatetime(dct['__date__']).date() elif '__decimal__' in dct: return Decimal(dct['__decimal__']) else: return dct
date_decimal_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dct):\n if '__datetime__' in dct:\n return todatetime(dct['__datetime__'])\n elif '__date__' in dct:\n return todatetime(dct['__date__']).date()\n elif '__decimal__' in dct:\n return Decimal(dct['__decimal__'])\n else:\n return dct\n", "role": "user" }, { "content": "date_decimal_hook", "role": "assistant" } ]
def x(data, instance=None, attname=None, separator=None, loads=None): separator = separator or JSPLITTER val = {} flat_vals = {} for key, value in iteritems(data): if value is None: continue keys = key.split(separator) if attname: if keys.pop(0) != attname: continue if loads: value = loads(value) if not keys: if value is None: val = flat_vals = {} break else: continue else: flat_vals[key] = value d = val lk = keys[-1] for k in keys[:-1]: if k not in d: nd = {} d[k] = nd else: nd = d[k] if not isinstance(nd, dict): nd = {'': nd} d[k] = nd d = nd if lk not in d: d[lk] = value else: d[lk][''] = value if instance and flat_vals: for attr, value in iteritems(flat_vals): setattr(instance, attr, value) return val
flat_to_nested
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, instance=None, attname=None, separator=None, loads=None):\n separator = separator or JSPLITTER\n val = {}\n flat_vals = {}\n for key, value in iteritems(data):\n if value is None:\n continue\n keys = key.split(separator)\n if attname:\n if keys.pop(0) != attname:\n continue\n if loads:\n value = loads(value)\n if not keys:\n if value is None:\n val = flat_vals = {}\n break\n else:\n continue\n else:\n flat_vals[key] = value\n d = val\n lk = keys[-1]\n for k in keys[:-1]:\n if k not in d:\n nd = {}\n d[k] = nd\n else:\n nd = d[k]\n if not isinstance(nd, dict):\n nd = {'': nd}\n d[k] = nd\n d = nd\n if lk not in d:\n d[lk] = value\n else:\n d[lk][''] = value\n if instance and flat_vals:\n for attr, value in iteritems(flat_vals):\n setattr(instance, attr, value)\n return val\n", "role": "user" }, { "content": "flat_to_nested", "role": "assistant" } ]
def x(value, attname=None, splitter=JSPLITTER, dumps=None, prefix=None, error=ValueError, recursive=True): if not isinstance(value, dict) or not recursive: if not prefix: raise error('Cannot assign a non dictionary to a JSON field') else: name = '%s%s%s' % (attname, splitter, prefix ) if attname else prefix yield name, dumps(value) if dumps else value else: for field in value: val = value[field] key = prefix if field: key = '%s%s%s' % (prefix, splitter, field) if prefix else field for k, v2 in dict_flat_generator(val, attname, splitter, dumps, key, error, field): yield k, v2
dict_flat_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, attname=None, splitter=JSPLITTER, dumps=None, prefix=None,\n error=ValueError, recursive=True):\n if not isinstance(value, dict) or not recursive:\n if not prefix:\n raise error('Cannot assign a non dictionary to a JSON field')\n else:\n name = '%s%s%s' % (attname, splitter, prefix\n ) if attname else prefix\n yield name, dumps(value) if dumps else value\n else:\n for field in value:\n val = value[field]\n key = prefix\n if field:\n key = '%s%s%s' % (prefix, splitter, field) if prefix else field\n for k, v2 in dict_flat_generator(val, attname, splitter, dumps,\n key, error, field):\n yield k, v2\n", "role": "user" }, { "content": "dict_flat_generator", "role": "assistant" } ]
def x(series): if not series: return vtype = value_type(s[1] for s in series) if vtype == 1: return sum(weight * float(d) for weight, d in series) elif vtype == 3: keys = set(series[0][1]) for serie in series[1:]: keys.intersection_update(serie[1]) results = {} for key in keys: key_series = tuple((weight, d[key]) for weight, d in series) result = addmul_number_dicts(key_series) if result is not None: results[key] = result return results
addmul_number_dicts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(series):\n if not series:\n return\n vtype = value_type(s[1] for s in series)\n if vtype == 1:\n return sum(weight * float(d) for weight, d in series)\n elif vtype == 3:\n keys = set(series[0][1])\n for serie in series[1:]:\n keys.intersection_update(serie[1])\n results = {}\n for key in keys:\n key_series = tuple((weight, d[key]) for weight, d in series)\n result = addmul_number_dicts(key_series)\n if result is not None:\n results[key] = result\n return results\n", "role": "user" }, { "content": "addmul_number_dicts", "role": "assistant" } ]
def x(campaign=0, queue='build', email=None, walltime=8, **kwargs): if type(campaign) is int: subcampaign = -1 elif type(campaign) is float: x, y = divmod(campaign, 1) campaign = int(x) subcampaign = round(y * 10) pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'download.pbs') str_w = 'walltime=%d:00:00' % walltime str_v = 'EVEREST_DAT=%s,CAMPAIGN=%d,SUBCAMPAIGN=%d' % (EVEREST_DAT, campaign, subcampaign) if subcampaign == -1: str_name = 'download_c%02d' % campaign else: str_name = 'download_c%02d.%d' % (campaign, subcampaign) str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log') qsub_args = ['qsub', pbsfile, '-q', queue, '-v', str_v, '-o', str_out, '-j', 'oe', '-N', str_name, '-l', str_w] if email is not None: qsub_args.append(['-M', email, '-m', 'ae']) print('Submitting the job...') subprocess.call(qsub_args)
Download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign=0, queue='build', email=None, walltime=8, **kwargs):\n if type(campaign) is int:\n subcampaign = -1\n elif type(campaign) is float:\n x, y = divmod(campaign, 1)\n campaign = int(x)\n subcampaign = round(y * 10)\n pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'download.pbs')\n str_w = 'walltime=%d:00:00' % walltime\n str_v = 'EVEREST_DAT=%s,CAMPAIGN=%d,SUBCAMPAIGN=%d' % (EVEREST_DAT,\n campaign, subcampaign)\n if subcampaign == -1:\n str_name = 'download_c%02d' % campaign\n else:\n str_name = 'download_c%02d.%d' % (campaign, subcampaign)\n str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')\n qsub_args = ['qsub', pbsfile, '-q', queue, '-v', str_v, '-o', str_out,\n '-j', 'oe', '-N', str_name, '-l', str_w]\n if email is not None:\n qsub_args.append(['-M', email, '-m', 'ae'])\n print('Submitting the job...')\n subprocess.call(qsub_args)\n", "role": "user" }, { "content": "Download", "role": "assistant" } ]
def x(campaign, subcampaign): if subcampaign != -1: campaign = campaign + 0.1 * subcampaign stars = [s[0] for s in GetK2Campaign(campaign)] nstars = len(stars) for i, EPIC in enumerate(stars): print('Downloading data for EPIC %d (%d/%d)...' % (EPIC, i + 1, nstars) ) if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int (campaign), ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:], 'data.npz')): try: GetData(EPIC, season=campaign, download_only=True) except KeyboardInterrupt: sys.exit() except: print('ERROR downloading EPIC %d.' % EPIC) exctype, value, tb = sys.exc_info() for line in traceback.format_exception_only(exctype, value): ln = line.replace('\n', '') print(ln) continue
Download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign, subcampaign):\n if subcampaign != -1:\n campaign = campaign + 0.1 * subcampaign\n stars = [s[0] for s in GetK2Campaign(campaign)]\n nstars = len(stars)\n for i, EPIC in enumerate(stars):\n print('Downloading data for EPIC %d (%d/%d)...' % (EPIC, i + 1, nstars)\n )\n if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % int\n (campaign), ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:],\n 'data.npz')):\n try:\n GetData(EPIC, season=campaign, download_only=True)\n except KeyboardInterrupt:\n sys.exit()\n except:\n print('ERROR downloading EPIC %d.' % EPIC)\n exctype, value, tb = sys.exc_info()\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n print(ln)\n continue\n", "role": "user" }, { "content": "Download", "role": "assistant" } ]
def x(campaign=0, EPIC=None, nodes=5, ppn=12, walltime=100, mpn=None, email =None, queue=None, **kwargs): if type(campaign) is int: subcampaign = -1 elif type(campaign) is float: x, y = divmod(campaign, 1) campaign = int(x) subcampaign = round(y * 10) if EVEREST_DEV and queue == 'bf': walltime = min(10, walltime) try: strkwargs = pickle.dumps(kwargs, 0).decode('utf-8').replace('\n', '%%%' ) except UnicodeDecodeError: raise ValueError( 'Unable to pickle `kwargs`. Currently the `kwargs` ' + 'values may only be `int`s, `float`s, `string`s, ' + '`bool`s, or lists of these.') pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'run.pbs') if mpn is not None: str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % (nodes, ppn, ppn, mpn * nodes) else: str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn) str_w = 'walltime=%d:00:00' % walltime str_v = 'EVEREST_DAT=%s,NODES=%d,' % (EVEREST_DAT, nodes) + 'EPIC=%d,' % ( 0 if EPIC is None else EPIC ) + "CAMPAIGN=%d,SUBCAMPAIGN=%d,STRKWARGS='%s'" % (campaign, subcampaign, strkwargs) if EPIC is None: if subcampaign == -1: str_name = 'c%02d' % campaign else: str_name = 'c%02d.%d' % (campaign, subcampaign) else: str_name = 'EPIC%d' % EPIC str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log') qsub_args = ['qsub', pbsfile, '-v', str_v, '-o', str_out, '-j', 'oe', '-N', str_name, '-l', str_n, '-l', str_w] if email is not None: qsub_args.append(['-M', email, '-m', 'ae']) if queue is not None: qsub_args += ['-q', queue] print('Submitting the job...') subprocess.call(qsub_args)
Run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign=0, EPIC=None, nodes=5, ppn=12, walltime=100, mpn=None, email\n =None, queue=None, **kwargs):\n if type(campaign) is int:\n subcampaign = -1\n elif type(campaign) is float:\n x, y = divmod(campaign, 1)\n campaign = int(x)\n subcampaign = round(y * 10)\n if EVEREST_DEV and queue == 'bf':\n walltime = min(10, walltime)\n try:\n strkwargs = pickle.dumps(kwargs, 0).decode('utf-8').replace('\\n', '%%%'\n )\n except UnicodeDecodeError:\n raise ValueError(\n 'Unable to pickle `kwargs`. Currently the `kwargs` ' +\n 'values may only be `int`s, `float`s, `string`s, ' +\n '`bool`s, or lists of these.')\n pbsfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'run.pbs')\n if mpn is not None:\n str_n = 'nodes=%d:ppn=%d,feature=%dcore,mem=%dgb' % (nodes, ppn,\n ppn, mpn * nodes)\n else:\n str_n = 'nodes=%d:ppn=%d,feature=%dcore' % (nodes, ppn, ppn)\n str_w = 'walltime=%d:00:00' % walltime\n str_v = 'EVEREST_DAT=%s,NODES=%d,' % (EVEREST_DAT, nodes) + 'EPIC=%d,' % (\n 0 if EPIC is None else EPIC\n ) + \"CAMPAIGN=%d,SUBCAMPAIGN=%d,STRKWARGS='%s'\" % (campaign,\n subcampaign, strkwargs)\n if EPIC is None:\n if subcampaign == -1:\n str_name = 'c%02d' % campaign\n else:\n str_name = 'c%02d.%d' % (campaign, subcampaign)\n else:\n str_name = 'EPIC%d' % EPIC\n str_out = os.path.join(EVEREST_DAT, 'k2', str_name + '.log')\n qsub_args = ['qsub', pbsfile, '-v', str_v, '-o', str_out, '-j', 'oe',\n '-N', str_name, '-l', str_n, '-l', str_w]\n if email is not None:\n qsub_args.append(['-M', email, '-m', 'ae'])\n if queue is not None:\n qsub_args += ['-q', queue]\n print('Submitting the job...')\n subprocess.call(qsub_args)\n", "role": "user" }, { "content": "Run", "role": "assistant" } ]
def x(campaign, subcampaign, strkwargs): kwargs = pickle.loads(strkwargs.replace('%%%', '\n').encode('utf-8')) cadence = kwargs.get('cadence', 'lc') m = FunctionWrapper(EverestModel, season=campaign, publish=True, **kwargs) sys.excepthook = ExceptionHook with Pool() as pool: if subcampaign != -1: campaign = campaign + 0.1 * subcampaign stars = GetK2Campaign(campaign, epics_only=True, cadence=cadence) pool.map(m, stars)
Publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign, subcampaign, strkwargs):\n kwargs = pickle.loads(strkwargs.replace('%%%', '\\n').encode('utf-8'))\n cadence = kwargs.get('cadence', 'lc')\n m = FunctionWrapper(EverestModel, season=campaign, publish=True, **kwargs)\n sys.excepthook = ExceptionHook\n with Pool() as pool:\n if subcampaign != -1:\n campaign = campaign + 0.1 * subcampaign\n stars = GetK2Campaign(campaign, epics_only=True, cadence=cadence)\n pool.map(m, stars)\n", "role": "user" }, { "content": "Publish", "role": "assistant" } ]
def x(season=range(18), model='nPLD', purge=False, injection=False, cadence ='lc', **kwargs): campaign = season if injection: return InjectionStatus(campaign=campaign, model=model, purge=purge, **kwargs) if cadence == 'sc': model = '%s.sc' % model if not hasattr(campaign, '__len__'): if type(campaign) is int: all_stars = [s for s in GetK2Campaign(campaign, split=True, epics_only=True, cadence=cadence)] campaign = [(campaign + 0.1 * n) for n in range(10)] else: all_stars = [[s for s in GetK2Campaign(campaign, epics_only= True, cadence=cadence)]] campaign = [campaign] else: all_stars = [[s for s in GetK2Campaign(c, epics_only=True, cadence= cadence)] for c in campaign] print('CAMP TOTAL DOWNLOADED PROCESSED FITS ERRORS') print('---- ----- ---------- --------- ---- ------') for c, stars in zip(campaign, all_stars): if len(stars) == 0: continue down = 0 proc = 0 err = 0 fits = 0 bad = [] remain = [] total = len(stars) if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)): path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c) for folder in [f for f in os.listdir(path) if f.endswith('00000')]: for subfolder in os.listdir(os.path.join(path, folder)): ID = int(folder[:4] + subfolder) if ID in stars: if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, 'data.npz')): down += 1 if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, FITSFile(ID, c, cadence=cadence))): fits += 1 if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, model + '.npz')): proc += 1 elif os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, model + '.err')): err += 1 bad.append(folder[:4] + subfolder) if purge: os.remove(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, model + '.err')) else: remain.append(folder[:4] + subfolder) if proc == total: cc = ct = cp = ce = GREEN cd = BLACK if down < total else GREEN else: cc = BLACK ct = BLACK cd = BLACK if down < total else BLUE cp = BLACK if proc < down or proc == 0 else BLUE ce = RED if err > 0 else BLACK cf = BLACK if fits < total else GREEN if type(c) is int: print( '%s{:>4d} \x1b[0m%s{:>8d}\x1b[0m%s{:>16d}\x1b[0m%s{:>13d}\x1b[0m%s{:>10d}\x1b[0m%s{:>10d}\x1b[0m' .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp, cf, ce)) else: print( '%s{:>4.1f} \x1b[0m%s{:>8d}\x1b[0m%s{:>16d}\x1b[0m%s{:>13d}\x1b[0m%s{:>10d}\x1b[0m%s{:>10d}\x1b[0m' .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp, cf, ce)) if len(remain) <= 25 and len(remain) > 0 and len(campaign) == 1: remain.extend([' '] * (4 - len(remain) % 4)) print() for A, B, C, D in zip(remain[::4], remain[1::4], remain[2::4], remain[3::4]): if A == remain[0]: print('REMAIN: %s %s %s %s' % (A, B, C, D)) print() else: print(' %s %s %s %s' % (A, B, C, D)) print() if len(bad) and len(campaign) == 1: bad.extend([' '] * (4 - len(bad) % 4)) print() for A, B, C, D in zip(bad[::4], bad[1::4], bad[2::4], bad[3::4]): if A == bad[0]: print('ERRORS: %s %s %s %s' % (A, B, C, D)) print() else: print(' %s %s %s %s' % (A, B, C, D)) print()
Status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(season=range(18), model='nPLD', purge=False, injection=False, cadence\n ='lc', **kwargs):\n campaign = season\n if injection:\n return InjectionStatus(campaign=campaign, model=model, purge=purge,\n **kwargs)\n if cadence == 'sc':\n model = '%s.sc' % model\n if not hasattr(campaign, '__len__'):\n if type(campaign) is int:\n all_stars = [s for s in GetK2Campaign(campaign, split=True,\n epics_only=True, cadence=cadence)]\n campaign = [(campaign + 0.1 * n) for n in range(10)]\n else:\n all_stars = [[s for s in GetK2Campaign(campaign, epics_only=\n True, cadence=cadence)]]\n campaign = [campaign]\n else:\n all_stars = [[s for s in GetK2Campaign(c, epics_only=True, cadence=\n cadence)] for c in campaign]\n print('CAMP TOTAL DOWNLOADED PROCESSED FITS ERRORS')\n print('---- ----- ---------- --------- ---- ------')\n for c, stars in zip(campaign, all_stars):\n if len(stars) == 0:\n continue\n down = 0\n proc = 0\n err = 0\n fits = 0\n bad = []\n remain = []\n total = len(stars)\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):\n path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)\n for folder in [f for f in os.listdir(path) if f.endswith('00000')]:\n for subfolder in os.listdir(os.path.join(path, folder)):\n ID = int(folder[:4] + subfolder)\n if ID in stars:\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, 'data.npz')):\n down += 1\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, FITSFile(ID, c,\n cadence=cadence))):\n fits += 1\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, model + '.npz')):\n proc += 1\n elif os.path.exists(os.path.join(EVEREST_DAT, 'k2',\n 'c%02d' % c, folder, subfolder, model + '.err')):\n err += 1\n bad.append(folder[:4] + subfolder)\n if purge:\n os.remove(os.path.join(EVEREST_DAT, 'k2', \n 'c%02d' % c, folder, subfolder, model +\n '.err'))\n else:\n remain.append(folder[:4] + subfolder)\n if proc == total:\n cc = ct = cp = ce = GREEN\n cd = BLACK if down < total else GREEN\n else:\n cc = BLACK\n ct = BLACK\n cd = BLACK if down < total else BLUE\n cp = BLACK if proc < down or proc == 0 else BLUE\n ce = RED if err > 0 else BLACK\n cf = BLACK if fits < total else GREEN\n if type(c) is int:\n print(\n '%s{:>4d} \\x1b[0m%s{:>8d}\\x1b[0m%s{:>16d}\\x1b[0m%s{:>13d}\\x1b[0m%s{:>10d}\\x1b[0m%s{:>10d}\\x1b[0m'\n .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,\n cf, ce))\n else:\n print(\n '%s{:>4.1f} \\x1b[0m%s{:>8d}\\x1b[0m%s{:>16d}\\x1b[0m%s{:>13d}\\x1b[0m%s{:>10d}\\x1b[0m%s{:>10d}\\x1b[0m'\n .format(c, total, down, proc, fits, err) % (cc, ct, cd, cp,\n cf, ce))\n if len(remain) <= 25 and len(remain) > 0 and len(campaign) == 1:\n remain.extend([' '] * (4 - len(remain) % 4))\n print()\n for A, B, C, D in zip(remain[::4], remain[1::4], remain[2::4],\n remain[3::4]):\n if A == remain[0]:\n print('REMAIN: %s %s %s %s' % (A, B, C, D))\n print()\n else:\n print(' %s %s %s %s' % (A, B, C, D))\n print()\n if len(bad) and len(campaign) == 1:\n bad.extend([' '] * (4 - len(bad) % 4))\n print()\n for A, B, C, D in zip(bad[::4], bad[1::4], bad[2::4], bad[3::4]):\n if A == bad[0]:\n print('ERRORS: %s %s %s %s' % (A, B, C, D))\n print()\n else:\n print(' %s %s %s %s' % (A, B, C, D))\n print()\n", "role": "user" }, { "content": "Status", "role": "assistant" } ]
def x(campaign=range(18), model='nPLD', purge=False, depths=[0.01, 0.001, 0.0001], **kwargs): if not hasattr(campaign, '__len__'): if type(campaign) is int: all_stars = [s for s in GetK2Campaign(campaign, split=True, epics_only=True)] campaign = [(campaign + 0.1 * n) for n in range(10)] else: all_stars = [[s for s in GetK2Campaign(campaign, epics_only=True)]] campaign = [campaign] else: all_stars = [[s for s in GetK2Campaign(c, epics_only=True)] for c in campaign] print('CAMP MASK DEPTH TOTAL DONE ERRORS') print('---- ---- ----- ----- ---- ------') for c, stars in zip(campaign, all_stars): if len(stars) == 0: continue done = [[(0) for d in depths], [(0) for d in depths]] err = [[(0) for d in depths], [(0) for d in depths]] total = len(stars) if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)): path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c) for folder in os.listdir(path): for subfolder in os.listdir(os.path.join(path, folder)): ID = int(folder[:4] + subfolder) for m, mask in enumerate(['U', 'M']): for d, depth in enumerate(depths): if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, '%s_Inject_%s%g.npz' % (model, mask, depth))): done[m][d] += 1 elif os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c, folder, subfolder, '%s_Inject_%s%g.err' % (model, mask, depth))): err[m][d] += 1 for d, depth in enumerate(depths): for m, mask in enumerate(['F', 'T']): if done[m][d] == total: color = GREEN else: color = BLACK if err[m][d] > 0: errcolor = RED else: errcolor = '' if type(c) is int: print( '%s{:>4d}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\x1b[0m' .format(c, mask, depth, total, done[m][d], err[m][d ]) % (color, errcolor)) else: print( '%s{:>4.1f}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\x1b[0m' .format(c, mask, depth, total, done[m][d], err[m][d ]) % (color, errcolor))
InjectionStatus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign=range(18), model='nPLD', purge=False, depths=[0.01, 0.001, \n 0.0001], **kwargs):\n if not hasattr(campaign, '__len__'):\n if type(campaign) is int:\n all_stars = [s for s in GetK2Campaign(campaign, split=True,\n epics_only=True)]\n campaign = [(campaign + 0.1 * n) for n in range(10)]\n else:\n all_stars = [[s for s in GetK2Campaign(campaign, epics_only=True)]]\n campaign = [campaign]\n else:\n all_stars = [[s for s in GetK2Campaign(c, epics_only=True)] for c in\n campaign]\n print('CAMP MASK DEPTH TOTAL DONE ERRORS')\n print('---- ---- ----- ----- ---- ------')\n for c, stars in zip(campaign, all_stars):\n if len(stars) == 0:\n continue\n done = [[(0) for d in depths], [(0) for d in depths]]\n err = [[(0) for d in depths], [(0) for d in depths]]\n total = len(stars)\n if os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)):\n path = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % c)\n for folder in os.listdir(path):\n for subfolder in os.listdir(os.path.join(path, folder)):\n ID = int(folder[:4] + subfolder)\n for m, mask in enumerate(['U', 'M']):\n for d, depth in enumerate(depths):\n if os.path.exists(os.path.join(EVEREST_DAT,\n 'k2', 'c%02d' % c, folder, subfolder, \n '%s_Inject_%s%g.npz' % (model, mask, depth))):\n done[m][d] += 1\n elif os.path.exists(os.path.join(EVEREST_DAT,\n 'k2', 'c%02d' % c, folder, subfolder, \n '%s_Inject_%s%g.err' % (model, mask, depth))):\n err[m][d] += 1\n for d, depth in enumerate(depths):\n for m, mask in enumerate(['F', 'T']):\n if done[m][d] == total:\n color = GREEN\n else:\n color = BLACK\n if err[m][d] > 0:\n errcolor = RED\n else:\n errcolor = ''\n if type(c) is int:\n print(\n '%s{:>4d}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\\x1b[0m'\n .format(c, mask, depth, total, done[m][d], err[m][d\n ]) % (color, errcolor))\n else:\n print(\n '%s{:>4.1f}{:>8s}{:>14g}{:>10d}{:>10d}%s{:>9d}\\x1b[0m'\n .format(c, mask, depth, total, done[m][d], err[m][d\n ]) % (color, errcolor))\n", "role": "user" }, { "content": "InjectionStatus", "role": "assistant" } ]
def x(ID, model='nPLD', publish=False, csv=False, **kwargs): if model != 'Inject': from ... import detrender if kwargs.get('cadence', 'lc') == 'sc': EPIC, t0, period, duration = np.loadtxt(os.path.join( EVEREST_SRC, 'missions', 'k2', 'tables', 'scmasks.tsv'), unpack=True) if ID in EPIC and kwargs.get('planets', None) is None: ii = np.where(EPIC == ID)[0] planets = [] for i in ii: planets.append([t0[i], period[i], 1.25 * duration[i]]) kwargs.update({'planets': planets}) m = getattr(detrender, model)(ID, **kwargs) if publish: if csv: m.publish_csv() else: m.publish() else: from ...inject import Inject Inject(ID, **kwargs) return True
EverestModel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, model='nPLD', publish=False, csv=False, **kwargs):\n if model != 'Inject':\n from ... import detrender\n if kwargs.get('cadence', 'lc') == 'sc':\n EPIC, t0, period, duration = np.loadtxt(os.path.join(\n EVEREST_SRC, 'missions', 'k2', 'tables', 'scmasks.tsv'),\n unpack=True)\n if ID in EPIC and kwargs.get('planets', None) is None:\n ii = np.where(EPIC == ID)[0]\n planets = []\n for i in ii:\n planets.append([t0[i], period[i], 1.25 * duration[i]])\n kwargs.update({'planets': planets})\n m = getattr(detrender, model)(ID, **kwargs)\n if publish:\n if csv:\n m.publish_csv()\n else:\n m.publish()\n else:\n from ...inject import Inject\n Inject(ID, **kwargs)\n return True\n", "role": "user" }, { "content": "EverestModel", "role": "assistant" } ]
def x(model): cards = model._mission.HDUCards(model.meta, hdu=0) if 'KEPMAG' not in [c[0] for c in cards]: cards.append(('KEPMAG', model.mag, 'Kepler magnitude')) cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* EVEREST INFO *')) cards.append(('COMMENT', '************************')) cards.append(('MISSION', model.mission, 'Mission name')) cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version')) cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion')) cards.append(('DATE', strftime('%Y-%m-%d'), 'EVEREST file creation date (YYYY-MM-DD)')) header = pyfits.Header(cards=cards) hdu = pyfits.PrimaryHDU(header=header) return hdu
PrimaryHDU
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=0)\n if 'KEPMAG' not in [c[0] for c in cards]:\n cards.append(('KEPMAG', model.mag, 'Kepler magnitude'))\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n hdu = pyfits.PrimaryHDU(header=header)\n return hdu\n", "role": "user" }, { "content": "PrimaryHDU", "role": "assistant" } ]
def x(model): cards = model._mission.HDUCards(model.meta, hdu=2) cards = [] cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* EVEREST INFO *')) cards.append(('COMMENT', '************************')) cards.append(('MISSION', model.mission, 'Mission name')) cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version')) cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion')) cards.append(('DATE', strftime('%Y-%m-%d'), 'EVEREST file creation date (YYYY-MM-DD)')) header = pyfits.Header(cards=cards) arrays = [pyfits.Column(name='FPIX', format='%dD' % model.fpix.shape[1], array=model.fpix)] X1N = model.X1N if X1N is not None: arrays.append(pyfits.Column(name='X1N', format='%dD' % X1N.shape[1], array=X1N)) cols = pyfits.ColDefs(arrays) hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='PIXELS') return hdu
PixelsHDU
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=2)\n cards = []\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n arrays = [pyfits.Column(name='FPIX', format='%dD' % model.fpix.shape[1],\n array=model.fpix)]\n X1N = model.X1N\n if X1N is not None:\n arrays.append(pyfits.Column(name='X1N', format='%dD' % X1N.shape[1],\n array=X1N))\n cols = pyfits.ColDefs(arrays)\n hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name='PIXELS')\n return hdu\n", "role": "user" }, { "content": "PixelsHDU", "role": "assistant" } ]
def x(model): cards = model._mission.HDUCards(model.meta, hdu=3) cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* EVEREST INFO *')) cards.append(('COMMENT', '************************')) cards.append(('MISSION', model.mission, 'Mission name')) cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version')) cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion')) cards.append(('DATE', strftime('%Y-%m-%d'), 'EVEREST file creation date (YYYY-MM-DD)')) header = pyfits.Header(cards=cards) hdu = pyfits.ImageHDU(data=model.aperture, header=header, name= 'APERTURE MASK') return hdu
ApertureHDU
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=3)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n hdu = pyfits.ImageHDU(data=model.aperture, header=header, name=\n 'APERTURE MASK')\n return hdu\n", "role": "user" }, { "content": "ApertureHDU", "role": "assistant" } ]
def x(model): cards = model._mission.HDUCards(model.meta, hdu=4) cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* EVEREST INFO *')) cards.append(('COMMENT', '************************')) cards.append(('MISSION', model.mission, 'Mission name')) cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version')) cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion')) cards.append(('DATE', strftime('%Y-%m-%d'), 'EVEREST file creation date (YYYY-MM-DD)')) format = '%dD' % model.pixel_images[0].shape[1] arrays = [pyfits.Column(name='STAMP1', format=format, array=model. pixel_images[0]), pyfits.Column(name='STAMP2', format=format, array =model.pixel_images[1]), pyfits.Column(name='STAMP3', format=format, array=model.pixel_images[2])] header = pyfits.Header(cards=cards) cols = pyfits.ColDefs(arrays) hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name= 'POSTAGE STAMPS') return hdu
ImagesHDU
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=4)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n format = '%dD' % model.pixel_images[0].shape[1]\n arrays = [pyfits.Column(name='STAMP1', format=format, array=model.\n pixel_images[0]), pyfits.Column(name='STAMP2', format=format, array\n =model.pixel_images[1]), pyfits.Column(name='STAMP3', format=format,\n array=model.pixel_images[2])]\n header = pyfits.Header(cards=cards)\n cols = pyfits.ColDefs(arrays)\n hdu = pyfits.BinTableHDU.from_columns(cols, header=header, name=\n 'POSTAGE STAMPS')\n return hdu\n", "role": "user" }, { "content": "ImagesHDU", "role": "assistant" } ]
def x(model): cards = model._mission.HDUCards(model.meta, hdu=5) cards.append(('COMMENT', '************************')) cards.append(('COMMENT', '* EVEREST INFO *')) cards.append(('COMMENT', '************************')) cards.append(('MISSION', model.mission, 'Mission name')) cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version')) cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion')) cards.append(('DATE', strftime('%Y-%m-%d'), 'EVEREST file creation date (YYYY-MM-DD)')) header = pyfits.Header(cards=cards) if model.hires is not None: hdu = pyfits.ImageHDU(data=model.hires, header=header, name= 'HI RES IMAGE') else: hdu = pyfits.ImageHDU(data=np.empty((0, 0), dtype=float), header= header, name='HI RES IMAGE') return hdu
HiResHDU
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n cards = model._mission.HDUCards(model.meta, hdu=5)\n cards.append(('COMMENT', '************************'))\n cards.append(('COMMENT', '* EVEREST INFO *'))\n cards.append(('COMMENT', '************************'))\n cards.append(('MISSION', model.mission, 'Mission name'))\n cards.append(('VERSION', EVEREST_MAJOR_MINOR, 'EVEREST pipeline version'))\n cards.append(('SUBVER', EVEREST_VERSION, 'EVEREST pipeline subversion'))\n cards.append(('DATE', strftime('%Y-%m-%d'),\n 'EVEREST file creation date (YYYY-MM-DD)'))\n header = pyfits.Header(cards=cards)\n if model.hires is not None:\n hdu = pyfits.ImageHDU(data=model.hires, header=header, name=\n 'HI RES IMAGE')\n else:\n hdu = pyfits.ImageHDU(data=np.empty((0, 0), dtype=float), header=\n header, name='HI RES IMAGE')\n return hdu\n", "role": "user" }, { "content": "HiResHDU", "role": "assistant" } ]
def x(model, fitsfile=None): if fitsfile is None: outfile = os.path.join(model.dir, model._mission.FITSFile(model.ID, model.season, model.cadence)) else: outfile = os.path.join(model.dir, fitsfile) if os.path.exists(outfile) and not model.clobber: return elif os.path.exists(outfile): os.remove(outfile) log.info('Generating FITS file...') primary = PrimaryHDU(model) lightcurve = LightcurveHDU(model) pixels = PixelsHDU(model) aperture = ApertureHDU(model) images = ImagesHDU(model) hires = HiResHDU(model) hdulist = pyfits.HDUList([primary, lightcurve, pixels, aperture, images, hires]) hdulist.writeto(outfile) return
MakeFITS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model, fitsfile=None):\n if fitsfile is None:\n outfile = os.path.join(model.dir, model._mission.FITSFile(model.ID,\n model.season, model.cadence))\n else:\n outfile = os.path.join(model.dir, fitsfile)\n if os.path.exists(outfile) and not model.clobber:\n return\n elif os.path.exists(outfile):\n os.remove(outfile)\n log.info('Generating FITS file...')\n primary = PrimaryHDU(model)\n lightcurve = LightcurveHDU(model)\n pixels = PixelsHDU(model)\n aperture = ApertureHDU(model)\n images = ImagesHDU(model)\n hires = HiResHDU(model)\n hdulist = pyfits.HDUList([primary, lightcurve, pixels, aperture, images,\n hires])\n hdulist.writeto(outfile)\n return\n", "role": "user" }, { "content": "MakeFITS", "role": "assistant" } ]
def x(name, **options): if name in _serializers: serializer = _serializers[name] return serializer(**options) else: raise ValueError('Unknown serializer {0}.'.format(name))
get_serializer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, **options):\n if name in _serializers:\n serializer = _serializers[name]\n return serializer(**options)\n else:\n raise ValueError('Unknown serializer {0}.'.format(name))\n", "role": "user" }, { "content": "get_serializer", "role": "assistant" } ]
def x(name, serializer): if not isclass(serializer): serializer = serializer.__class__ _serializers[name] = serializer
register_serializer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, serializer):\n if not isclass(serializer):\n serializer = serializer.__class__\n _serializers[name] = serializer\n", "role": "user" }, { "content": "register_serializer", "role": "assistant" } ]
def x(A, b, w=5, progress=True, niter=None): if cholupdate is None: log.info('Running the slow version of `MaskSolve`.') log.info('Install the `choldate` package for better performance.') log.info('https://github.com/rodluger/choldate') return MaskSolveSlow(A, b, w=w, progress=progress, niter=niter) N = b.shape[0] if niter is None: niter = N - w + 1 X = np.empty((niter, N - w)) for n in range(2): mask = np.arange(n, w + n) A_ = np.delete(np.delete(A, mask, axis=0), mask, axis=1) b_ = np.delete(b, mask) U = cholesky(A_) X[n] = cho_solve((U, False), b_) for n in prange(1, niter - 1): b_[n] = b[n] S33 = U[n + 1:, n + 1:] S23 = U[n, n + 1:] cholupdate(S33, S23) A12 = A[:n, n] A22 = A[n, n] A23 = A[n, n + w + 1:] S11 = U[:n, :n] S12 = solve_triangular(S11.T, A12, lower=True, check_finite=False, trans=0, overwrite_b=True) S22 = np.sqrt(A22 - np.dot(S12.T, S12)) S13 = U[:n, n + 1:] S23 = (A23 - np.dot(S12.T, S13)) / S22 choldowndate(S33, np.array(S23)) U[:n, n] = S12 U[n, n] = S22 U[n, n + 1:] = S23 U[n + 1:, n + 1:] = S33 X[n + 1] = cho_solve((U, False), b_) return X
MaskSolve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, b, w=5, progress=True, niter=None):\n if cholupdate is None:\n log.info('Running the slow version of `MaskSolve`.')\n log.info('Install the `choldate` package for better performance.')\n log.info('https://github.com/rodluger/choldate')\n return MaskSolveSlow(A, b, w=w, progress=progress, niter=niter)\n N = b.shape[0]\n if niter is None:\n niter = N - w + 1\n X = np.empty((niter, N - w))\n for n in range(2):\n mask = np.arange(n, w + n)\n A_ = np.delete(np.delete(A, mask, axis=0), mask, axis=1)\n b_ = np.delete(b, mask)\n U = cholesky(A_)\n X[n] = cho_solve((U, False), b_)\n for n in prange(1, niter - 1):\n b_[n] = b[n]\n S33 = U[n + 1:, n + 1:]\n S23 = U[n, n + 1:]\n cholupdate(S33, S23)\n A12 = A[:n, n]\n A22 = A[n, n]\n A23 = A[n, n + w + 1:]\n S11 = U[:n, :n]\n S12 = solve_triangular(S11.T, A12, lower=True, check_finite=False,\n trans=0, overwrite_b=True)\n S22 = np.sqrt(A22 - np.dot(S12.T, S12))\n S13 = U[:n, n + 1:]\n S23 = (A23 - np.dot(S12.T, S13)) / S22\n choldowndate(S33, np.array(S23))\n U[:n, n] = S12\n U[n, n] = S22\n U[n, n + 1:] = S23\n U[n + 1:, n + 1:] = S33\n X[n + 1] = cho_solve((U, False), b_)\n return X\n", "role": "user" }, { "content": "MaskSolve", "role": "assistant" } ]
def x(A, b, w=5, progress=True, niter=None): N = b.shape[0] if niter is None: niter = N - w + 1 X = np.empty((niter, N - w)) for n in prange(niter): mask = np.arange(n, n + w) An = np.delete(np.delete(A, mask, axis=0), mask, axis=1) Un = cholesky(An) bn = np.delete(b, mask) X[n] = cho_solve((Un, False), bn) return X
MaskSolveSlow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, b, w=5, progress=True, niter=None):\n N = b.shape[0]\n if niter is None:\n niter = N - w + 1\n X = np.empty((niter, N - w))\n for n in prange(niter):\n mask = np.arange(n, n + w)\n An = np.delete(np.delete(A, mask, axis=0), mask, axis=1)\n Un = cholesky(An)\n bn = np.delete(b, mask)\n X[n] = cho_solve((Un, False), bn)\n return X\n", "role": "user" }, { "content": "MaskSolveSlow", "role": "assistant" } ]
def x(self, depth=0.01): return 1 - (np.hstack(self._O2) + np.hstack(self._O3) / depth) / np.hstack( self._O1)
unmasked
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, depth=0.01):\n return 1 - (np.hstack(self._O2) + np.hstack(self._O3) / depth) / np.hstack(\n self._O1)\n", "role": "user" }, { "content": "unmasked", "role": "assistant" } ]
def x(self): try: if platform.system().lower().startswith('darwin'): subprocess.call(['open', self.pdf]) elif os.name == 'nt': os.startfile(self.pdf) elif os.name == 'posix': subprocess.call(['xdg-open', self.pdf]) else: raise IOError('') except IOError: log.info('Unable to open the pdf. Try opening it manually:') log.info(self.pdf)
show
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n if platform.system().lower().startswith('darwin'):\n subprocess.call(['open', self.pdf])\n elif os.name == 'nt':\n os.startfile(self.pdf)\n elif os.name == 'posix':\n subprocess.call(['xdg-open', self.pdf])\n else:\n raise IOError('')\n except IOError:\n log.info('Unable to open the pdf. Try opening it manually:')\n log.info(self.pdf)\n", "role": "user" }, { "content": "show", "role": "assistant" } ]
def x(self): try: self._season except AttributeError: self._season = self._mission.Season(self.ID) if hasattr(self._season, '__len__'): raise AttributeError( 'Please choose a campaign/season for this target: %s.' % self._season) return self._season
season
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n self._season\n except AttributeError:\n self._season = self._mission.Season(self.ID)\n if hasattr(self._season, '__len__'):\n raise AttributeError(\n 'Please choose a campaign/season for this target: %s.' %\n self._season)\n return self._season\n", "role": "user" }, { "content": "season", "role": "assistant" } ]
def x(self): if self.XCBV is None: return None else: return self.flux - self._mission.FitCBVs(self)
fcor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.XCBV is None:\n return None\n else:\n return self.flux - self._mission.FitCBVs(self)\n", "role": "user" }, { "content": "fcor", "role": "assistant" } ]
def x(self): return np.array(list(set(np.concatenate([self.outmask, self.badmask, self.transitmask, self.nanmask]))), dtype=int)
mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return np.array(list(set(np.concatenate([self.outmask, self.badmask,\n self.transitmask, self.nanmask]))), dtype=int)\n", "role": "user" }, { "content": "mask", "role": "assistant" } ]
def x(self, i, j=slice(None, None, None)): X1 = self.fpix[j] / self.norm[j].reshape(-1, 1) X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T if self.X1N is not None: return np.hstack([X, self.X1N[j] ** (i + 1)]) else: return X
X
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, j=slice(None, None, None)):\n X1 = self.fpix[j] / self.norm[j].reshape(-1, 1)\n X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T\n if self.X1N is not None:\n return np.hstack([X, self.X1N[j] ** (i + 1)])\n else:\n return X\n", "role": "user" }, { "content": "X", "role": "assistant" } ]
def x(self, dvs): axl, axc, axr = dvs.title() axc.annotate('%s %d' % (self._mission.IDSTRING, self.ID), xy=(0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=18) axc.annotate('%.2f ppm $\\rightarrow$ %.2f ppm' % (self.cdppr, self. cdpp), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va= 'center', fontsize=8, color='k', fontstyle='italic') axl.annotate('%s %s%02d: %s' % (self.mission.upper(), self._mission. SEASONCHAR, self.season, self.name), xy=(0.5, 0.5), xycoords= 'axes fraction', ha='center', va='center', fontsize=12, color='k') axl.annotate(self.aperture_name if len(self.neighbors) == 0 else '%s, %d neighbors' % (self.aperture_name, len(self.neighbors)), xy= (0.5, 0.2), xycoords='axes fraction', ha='center', va='center', fontsize=8, color='k', fontstyle='italic') axr.annotate('%s %.3f' % (self._mission.MAGSTRING, self.mag), xy=(0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize= 12, color='k') if not np.isnan(self.cdppg) and self.cdppg > 0: axr.annotate('GP %.3f ppm' % self.cdppg, xy=(0.5, 0.2), xycoords= 'axes fraction', ha='center', va='center', fontsize=8, color= 'k', fontstyle='italic')
plot_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dvs):\n axl, axc, axr = dvs.title()\n axc.annotate('%s %d' % (self._mission.IDSTRING, self.ID), xy=(0.5, 0.5),\n xycoords='axes fraction', ha='center', va='center', fontsize=18)\n axc.annotate('%.2f ppm $\\\\rightarrow$ %.2f ppm' % (self.cdppr, self.\n cdpp), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va=\n 'center', fontsize=8, color='k', fontstyle='italic')\n axl.annotate('%s %s%02d: %s' % (self.mission.upper(), self._mission.\n SEASONCHAR, self.season, self.name), xy=(0.5, 0.5), xycoords=\n 'axes fraction', ha='center', va='center', fontsize=12, color='k')\n axl.annotate(self.aperture_name if len(self.neighbors) == 0 else \n '%s, %d neighbors' % (self.aperture_name, len(self.neighbors)), xy=\n (0.5, 0.2), xycoords='axes fraction', ha='center', va='center',\n fontsize=8, color='k', fontstyle='italic')\n axr.annotate('%s %.3f' % (self._mission.MAGSTRING, self.mag), xy=(0.5, \n 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=\n 12, color='k')\n if not np.isnan(self.cdppg) and self.cdppg > 0:\n axr.annotate('GP %.3f ppm' % self.cdppg, xy=(0.5, 0.2), xycoords=\n 'axes fraction', ha='center', va='center', fontsize=8, color=\n 'k', fontstyle='italic')\n", "role": "user" }, { "content": "plot_info", "role": "assistant" } ]
def x(self): if self.transit_model is not None: return self.compute_joint() log.info('Computing the model...') model = [None for b in self.breakpoints] for b, brkpt in enumerate(self.breakpoints): m = self.get_masked_chunk(b) c = self.get_chunk(b) mK = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) med = np.nanmedian(self.fraw[m]) f = self.fraw[m] - med A = np.zeros((len(m), len(m))) B = np.zeros((len(c), len(m))) for n in range(self.pld_order): if self.lam_idx >= n and self.lam[b][n] is not None: XM = self.X(n, m) XC = self.X(n, c) A += self.lam[b][n] * np.dot(XM, XM.T) B += self.lam[b][n] * np.dot(XC, XM.T) del XM, XC W = np.linalg.solve(mK + A, f) model[b] = np.dot(B, W) del A, B, W if len(model) > 1: self.model = model[0][:-self.bpad] for m in model[1:-1]: i = 1 while len(self.model) - i in self.mask: i += 1 offset = self.model[-i] - m[self.bpad - i] self.model = np.concatenate([self.model, m[self.bpad:-self.bpad ] + offset]) i = 1 while len(self.model) - i in self.mask: i += 1 offset = self.model[-i] - model[-1][self.bpad - i] self.model = np.concatenate([self.model, model[-1][self.bpad:] + offset]) else: self.model = model[0] self.model -= np.nanmedian(self.model) self.cdpp_arr = self.get_cdpp_arr() self.cdpp = self.get_cdpp() self._weights = None
compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.transit_model is not None:\n return self.compute_joint()\n log.info('Computing the model...')\n model = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b)\n c = self.get_chunk(b)\n mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n med = np.nanmedian(self.fraw[m])\n f = self.fraw[m] - med\n A = np.zeros((len(m), len(m)))\n B = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n if self.lam_idx >= n and self.lam[b][n] is not None:\n XM = self.X(n, m)\n XC = self.X(n, c)\n A += self.lam[b][n] * np.dot(XM, XM.T)\n B += self.lam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + A, f)\n model[b] = np.dot(B, W)\n del A, B, W\n if len(model) > 1:\n self.model = model[0][:-self.bpad]\n for m in model[1:-1]:\n i = 1\n while len(self.model) - i in self.mask:\n i += 1\n offset = self.model[-i] - m[self.bpad - i]\n self.model = np.concatenate([self.model, m[self.bpad:-self.bpad\n ] + offset])\n i = 1\n while len(self.model) - i in self.mask:\n i += 1\n offset = self.model[-i] - model[-1][self.bpad - i]\n self.model = np.concatenate([self.model, model[-1][self.bpad:] +\n offset])\n else:\n self.model = model[0]\n self.model -= np.nanmedian(self.model)\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self._weights = None\n", "role": "user" }, { "content": "compute", "role": "assistant" } ]
def x(self): log.info('Computing the joint model...') A = [None for b in self.breakpoints] B = [None for b in self.breakpoints] if self.transit_model is not None: outmask = np.array(self.outmask) transitmask = np.array(self.transitmask) transit_inds = np.where(np.sum([tm(self.time) for tm in self. transit_model], axis=0) < 0)[0] self.outmask = np.array([i for i in self.outmask if i not in transit_inds]) self.transitmask = np.array([i for i in self.transitmask if i not in transit_inds]) for b, brkpt in enumerate(self.breakpoints): m = self.get_masked_chunk(b, pad=False) c = self.get_chunk(b, pad=False) A[b] = np.zeros((len(m), len(m))) B[b] = np.zeros((len(c), len(m))) for n in range(self.pld_order): if self.lam_idx >= n and self.lam[b][n] is not None: XM = self.X(n, m) XC = self.X(n, c) A[b] += self.lam[b][n] * np.dot(XM, XM.T) B[b] += self.lam[b][n] * np.dot(XC, XM.T) del XM, XC BIGA = block_diag(*A) del A BIGB = block_diag(*B) del B mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask( self.time), self.apply_mask(self.fraw_err)) f = self.apply_mask(self.fraw) med = np.nanmedian(f) f -= med if self.transit_model is not None: m = self.apply_mask() mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m])) for tm in self.transit_model], axis=0) f -= mean_transit_model for tm in self.transit_model: XM = tm(self.time[m]).reshape(-1, 1) XC = tm(self.time).reshape(-1, 1) BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T) BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T) del XM, XC W = np.linalg.solve(mK + BIGA, f) self.model = np.dot(BIGB, W) w_trn = med ** 2 * np.concatenate([(tm.var_depth * np.dot(tm(self. time[m]).reshape(1, -1), W)) for tm in self.transit_model]) self.transit_depth = np.array([(med * tm.depth + w_trn[i]) for i, tm in enumerate(self.transit_model)]) / med self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1) for tm in self.transit_model]), w_trn) else: W = np.linalg.solve(mK + BIGA, f) self.model = np.dot(BIGB, W) self.model -= np.nanmedian(self.model) if self.transit_model is not None: self.outmask = outmask self.transitmask = transitmask self.cdpp_arr = self.get_cdpp_arr() self.cdpp = self.get_cdpp() self._weights = None
compute_joint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log.info('Computing the joint model...')\n A = [None for b in self.breakpoints]\n B = [None for b in self.breakpoints]\n if self.transit_model is not None:\n outmask = np.array(self.outmask)\n transitmask = np.array(self.transitmask)\n transit_inds = np.where(np.sum([tm(self.time) for tm in self.\n transit_model], axis=0) < 0)[0]\n self.outmask = np.array([i for i in self.outmask if i not in\n transit_inds])\n self.transitmask = np.array([i for i in self.transitmask if i not in\n transit_inds])\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b, pad=False)\n c = self.get_chunk(b, pad=False)\n A[b] = np.zeros((len(m), len(m)))\n B[b] = np.zeros((len(c), len(m)))\n for n in range(self.pld_order):\n if self.lam_idx >= n and self.lam[b][n] is not None:\n XM = self.X(n, m)\n XC = self.X(n, c)\n A[b] += self.lam[b][n] * np.dot(XM, XM.T)\n B[b] += self.lam[b][n] * np.dot(XC, XM.T)\n del XM, XC\n BIGA = block_diag(*A)\n del A\n BIGB = block_diag(*B)\n del B\n mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask(\n self.time), self.apply_mask(self.fraw_err))\n f = self.apply_mask(self.fraw)\n med = np.nanmedian(f)\n f -= med\n if self.transit_model is not None:\n m = self.apply_mask()\n mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m])) for\n tm in self.transit_model], axis=0)\n f -= mean_transit_model\n for tm in self.transit_model:\n XM = tm(self.time[m]).reshape(-1, 1)\n XC = tm(self.time).reshape(-1, 1)\n BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T)\n BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T)\n del XM, XC\n W = np.linalg.solve(mK + BIGA, f)\n self.model = np.dot(BIGB, W)\n w_trn = med ** 2 * np.concatenate([(tm.var_depth * np.dot(tm(self.\n time[m]).reshape(1, -1), W)) for tm in self.transit_model])\n self.transit_depth = np.array([(med * tm.depth + w_trn[i]) for i,\n tm in enumerate(self.transit_model)]) / med\n self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1) for tm in\n self.transit_model]), w_trn)\n else:\n W = np.linalg.solve(mK + BIGA, f)\n self.model = np.dot(BIGB, W)\n self.model -= np.nanmedian(self.model)\n if self.transit_model is not None:\n self.outmask = outmask\n self.transitmask = transitmask\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self._weights = None\n", "role": "user" }, { "content": "compute_joint", "role": "assistant" } ]
def x(self, x=None): if x is None: return np.delete(np.arange(len(self.time)), self.mask) else: return np.delete(x, self.mask, axis=0)
apply_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x=None):\n if x is None:\n return np.delete(np.arange(len(self.time)), self.mask)\n else:\n return np.delete(x, self.mask, axis=0)\n", "role": "user" }, { "content": "apply_mask", "role": "assistant" } ]
def x(self, b, x=None, pad=True): M = np.arange(len(self.time)) if b > 0: res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <= self.breakpoints[b] + int(pad) * self.bpad)] else: res = M[M <= self.breakpoints[b] + int(pad) * self.bpad] if x is None: return res else: return x[res]
get_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, b, x=None, pad=True):\n M = np.arange(len(self.time))\n if b > 0:\n res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <=\n self.breakpoints[b] + int(pad) * self.bpad)]\n else:\n res = M[M <= self.breakpoints[b] + int(pad) * self.bpad]\n if x is None:\n return res\n else:\n return x[res]\n", "role": "user" }, { "content": "get_chunk", "role": "assistant" } ]
def x(self): log.info('Computing PLD weights...') weights = [None for i in range(len(self.breakpoints))] for b, brkpt in enumerate(self.breakpoints): m = self.get_masked_chunk(b) c = self.get_chunk(b) _mK = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) f = self.fraw[m] - np.nanmedian(self.fraw) _A = [None for i in range(self.pld_order)] for n in range(self.pld_order): if self.lam_idx >= n: X = self.X(n, m) _A[n] = np.dot(X, X.T) del X A = np.sum([(l * a) for l, a in zip(self.lam[b], _A) if l is not None], axis=0) W = np.linalg.solve(_mK + A, f) weights[b] = [(l * np.dot(self.X(n, m).T, W)) for n, l in enumerate (self.lam[b]) if l is not None] self._weights = weights
get_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log.info('Computing PLD weights...')\n weights = [None for i in range(len(self.breakpoints))]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b)\n c = self.get_chunk(b)\n _mK = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n f = self.fraw[m] - np.nanmedian(self.fraw)\n _A = [None for i in range(self.pld_order)]\n for n in range(self.pld_order):\n if self.lam_idx >= n:\n X = self.X(n, m)\n _A[n] = np.dot(X, X.T)\n del X\n A = np.sum([(l * a) for l, a in zip(self.lam[b], _A) if l is not\n None], axis=0)\n W = np.linalg.solve(_mK + A, f)\n weights[b] = [(l * np.dot(self.X(n, m).T, W)) for n, l in enumerate\n (self.lam[b]) if l is not None]\n self._weights = weights\n", "role": "user" }, { "content": "get_weights", "role": "assistant" } ]
def x(self, flux=None): if flux is None: flux = self.flux return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)], cadence=self.cadence) for b, _ in enumerate(self.breakpoints)])
get_cdpp_arr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, flux=None):\n if flux is None:\n flux = self.flux\n return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)],\n cadence=self.cadence) for b, _ in enumerate(self.breakpoints)])\n", "role": "user" }, { "content": "get_cdpp_arr", "role": "assistant" } ]
def x(self, flux=None): if flux is None: flux = self.flux return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence)
get_cdpp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, flux=None):\n if flux is None:\n flux = self.flux\n return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence)\n", "role": "user" }, { "content": "get_cdpp", "role": "assistant" } ]
def x(self, axes, labelsize=8): log.info('Plotting the aperture...') plasma = pl.get_cmap('plasma') plasma.set_bad(alpha=0) def x(vector, pad_width, iaxis, kwargs): vector[:pad_width[0]] = 0 vector[-pad_width[1]:] = 0 return vector ny, nx = self.pixel_images[0].shape contour = np.zeros((ny, nx)) contour[np.where(self.aperture)] = 1 contour = np.lib.pad(contour, 1, PadWithZeros) highres = zoom(contour, 100, order=0, mode='nearest') extent = np.array([-1, nx, -1, ny]) title = ['start', 'mid', 'end'] for i, image in enumerate(self.pixel_images): ax = axes[i] ax.imshow(image, aspect='auto', interpolation='nearest', cmap=plasma) ax.contour(highres, levels=[0.5], extent=extent, origin='lower', colors='r', linewidths=1) for x in range(self.aperture.shape[0]): for y in range(self.aperture.shape[1]): if self.aperture[x][y] == AP_SATURATED_PIXEL: ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5], [x - 0.5, x - 0.5, x + 0.5, x + 0.5], fill=False, hatch= 'xxxxx', color='r', lw=0) ax.axis('off') ax.set_xlim(-0.7, nx - 0.3) ax.set_ylim(-0.7, ny - 0.3) ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction', ha ='center', va='top', size=labelsize, color='w') if i == 1: for source in self.nearby: ax.annotate('%.1f' % source['mag'], xy=(source['x'] - source['x0'], source['y'] - source['y0']), ha='center', va='center', size=labelsize - 2, color='w', fontweight= 'bold') if self.hires is not None: ax = axes[-1] ax.imshow(self.hires, aspect='auto', extent=(-0.5, nx - 0.5, -0.5, ny - 0.5), interpolation='bicubic', cmap=plasma) ax.contour(highres, levels=[0.5], extent=extent, origin='lower', colors='r', linewidths=1) ax.axis('off') ax.set_xlim(-0.7, nx - 0.3) ax.set_ylim(-0.7, ny - 0.3) ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction', ha= 'center', va='top', size=labelsize, color='w') else: ax = axes[-1] ax.axis('off')
plot_aperture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, axes, labelsize=8):\n log.info('Plotting the aperture...')\n plasma = pl.get_cmap('plasma')\n plasma.set_bad(alpha=0)\n\n def x(vector, pad_width, iaxis, kwargs):\n vector[:pad_width[0]] = 0\n vector[-pad_width[1]:] = 0\n return vector\n ny, nx = self.pixel_images[0].shape\n contour = np.zeros((ny, nx))\n contour[np.where(self.aperture)] = 1\n contour = np.lib.pad(contour, 1, PadWithZeros)\n highres = zoom(contour, 100, order=0, mode='nearest')\n extent = np.array([-1, nx, -1, ny])\n title = ['start', 'mid', 'end']\n for i, image in enumerate(self.pixel_images):\n ax = axes[i]\n ax.imshow(image, aspect='auto', interpolation='nearest', cmap=plasma)\n ax.contour(highres, levels=[0.5], extent=extent, origin='lower',\n colors='r', linewidths=1)\n for x in range(self.aperture.shape[0]):\n for y in range(self.aperture.shape[1]):\n if self.aperture[x][y] == AP_SATURATED_PIXEL:\n ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5], [x - 0.5,\n x - 0.5, x + 0.5, x + 0.5], fill=False, hatch=\n 'xxxxx', color='r', lw=0)\n ax.axis('off')\n ax.set_xlim(-0.7, nx - 0.3)\n ax.set_ylim(-0.7, ny - 0.3)\n ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction', ha\n ='center', va='top', size=labelsize, color='w')\n if i == 1:\n for source in self.nearby:\n ax.annotate('%.1f' % source['mag'], xy=(source['x'] -\n source['x0'], source['y'] - source['y0']), ha='center',\n va='center', size=labelsize - 2, color='w', fontweight=\n 'bold')\n if self.hires is not None:\n ax = axes[-1]\n ax.imshow(self.hires, aspect='auto', extent=(-0.5, nx - 0.5, -0.5, \n ny - 0.5), interpolation='bicubic', cmap=plasma)\n ax.contour(highres, levels=[0.5], extent=extent, origin='lower',\n colors='r', linewidths=1)\n ax.axis('off')\n ax.set_xlim(-0.7, nx - 0.3)\n ax.set_ylim(-0.7, ny - 0.3)\n ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction', ha=\n 'center', va='top', size=labelsize, color='w')\n else:\n ax = axes[-1]\n ax.axis('off')\n", "role": "user" }, { "content": "plot_aperture", "role": "assistant" } ]
def x(self, model, refactor=False, pos_tol=2.5, neg_tol=50.0, full_output=False ): lnl = 0 try: self._ll_info except AttributeError: refactor = True if refactor: t = np.delete(self.time, np.concatenate([self.nanmask, self.badmask])) f = np.delete(self.flux, np.concatenate([self.nanmask, self.badmask])) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) pos_inds = np.where(f > med + pos_tol * MAD)[0] pos_inds = np.array([np.argmax(self.time == t[i]) for i in pos_inds]) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) neg_inds = np.where(f < med - neg_tol * MAD)[0] neg_inds = np.array([np.argmax(self.time == t[i]) for i in neg_inds]) outmask = np.array(self.outmask) transitmask = np.array(self.transitmask) self.outmask = np.concatenate([neg_inds, pos_inds]) self.transitmask = np.array([], dtype=int) self._ll_info = [None for b in self.breakpoints] for b, brkpt in enumerate(self.breakpoints): m = self.get_masked_chunk(b, pad=False) K = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) A = np.zeros((len(m), len(m))) for n in range(self.pld_order): XM = self.X(n, m) A += self.lam[b][n] * np.dot(XM, XM.T) K += A self._ll_info[b] = [cho_factor(K), m] self.outmask = outmask self.transitmask = transitmask amp = [None for b in self.breakpoints] var = [None for b in self.breakpoints] for b, brkpt in enumerate(self.breakpoints): CDK = self._ll_info[b][0] m = self._ll_info[b][1] var[b] = 1.0 / np.dot(model[m], cho_solve(CDK, model[m])) amp[b] = var[b] * np.dot(model[m], cho_solve(CDK, self.fraw[m])) r = self.fraw[m] - amp[b] * model[m] lnl += -0.5 * np.dot(r, cho_solve(CDK, r)) if full_output: vari = var[0] ampi = amp[0] for v, a in zip(var[1:], amp[1:]): ampi = (ampi * v + a * vari) / (vari + v) vari = vari * v / (vari + v) med = np.nanmedian(self.fraw) return lnl, ampi / med, vari / med ** 2 else: return lnl
lnlike
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, refactor=False, pos_tol=2.5, neg_tol=50.0, full_output=False\n ):\n lnl = 0\n try:\n self._ll_info\n except AttributeError:\n refactor = True\n if refactor:\n t = np.delete(self.time, np.concatenate([self.nanmask, self.badmask]))\n f = np.delete(self.flux, np.concatenate([self.nanmask, self.badmask]))\n f = SavGol(f)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n pos_inds = np.where(f > med + pos_tol * MAD)[0]\n pos_inds = np.array([np.argmax(self.time == t[i]) for i in pos_inds])\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n neg_inds = np.where(f < med - neg_tol * MAD)[0]\n neg_inds = np.array([np.argmax(self.time == t[i]) for i in neg_inds])\n outmask = np.array(self.outmask)\n transitmask = np.array(self.transitmask)\n self.outmask = np.concatenate([neg_inds, pos_inds])\n self.transitmask = np.array([], dtype=int)\n self._ll_info = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n m = self.get_masked_chunk(b, pad=False)\n K = GetCovariance(self.kernel, self.kernel_params, self.time[m],\n self.fraw_err[m])\n A = np.zeros((len(m), len(m)))\n for n in range(self.pld_order):\n XM = self.X(n, m)\n A += self.lam[b][n] * np.dot(XM, XM.T)\n K += A\n self._ll_info[b] = [cho_factor(K), m]\n self.outmask = outmask\n self.transitmask = transitmask\n amp = [None for b in self.breakpoints]\n var = [None for b in self.breakpoints]\n for b, brkpt in enumerate(self.breakpoints):\n CDK = self._ll_info[b][0]\n m = self._ll_info[b][1]\n var[b] = 1.0 / np.dot(model[m], cho_solve(CDK, model[m]))\n amp[b] = var[b] * np.dot(model[m], cho_solve(CDK, self.fraw[m]))\n r = self.fraw[m] - amp[b] * model[m]\n lnl += -0.5 * np.dot(r, cho_solve(CDK, r))\n if full_output:\n vari = var[0]\n ampi = amp[0]\n for v, a in zip(var[1:], amp[1:]):\n ampi = (ampi * v + a * vari) / (vari + v)\n vari = vari * v / (vari + v)\n med = np.nanmedian(self.fraw)\n return lnl, ampi / med, vari / med ** 2\n else:\n return lnl\n", "role": "user" }, { "content": "lnlike", "role": "assistant" } ]
def x(self, session): if not hasattr(self, '_object'): pkname = self.model_type._meta.pkname() query = session.query(self.model_type).filter(**{pkname: self. object_id}) return query.items(callback=self.__set_object) else: return self._object
object
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session):\n if not hasattr(self, '_object'):\n pkname = self.model_type._meta.pkname()\n query = session.query(self.model_type).filter(**{pkname: self.\n object_id})\n return query.items(callback=self.__set_object)\n else:\n return self._object\n", "role": "user" }, { "content": "object", "role": "assistant" } ]
def x(ID, season=None, cadence='lc', clobber=False, delete_raw=False, aperture_name=None, saturated_aperture_name=None, max_pixels=None, download_only=False, saturation_tolerance=None, bad_bits=None, **kwargs): raise NotImplementedError('This mission is not yet supported.')
GetData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, season=None, cadence='lc', clobber=False, delete_raw=False,\n aperture_name=None, saturated_aperture_name=None, max_pixels=None,\n download_only=False, saturation_tolerance=None, bad_bits=None, **kwargs):\n raise NotImplementedError('This mission is not yet supported.')\n", "role": "user" }, { "content": "GetData", "role": "assistant" } ]
def x(ID, model=None, neighbors=None, mag_range=None, cdpp_range=None, aperture_name=None, cadence='lc', **kwargs): raise NotImplementedError('This mission is not yet supported.')
GetNeighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, model=None, neighbors=None, mag_range=None, cdpp_range=None,\n aperture_name=None, cadence='lc', **kwargs):\n raise NotImplementedError('This mission is not yet supported.')\n", "role": "user" }, { "content": "GetNeighbors", "role": "assistant" } ]
def x(ID, pipeline='everest2', campaign=None): log.info('Downloading %s light curve for %d...' % (pipeline, ID)) if EVEREST_DEV: if pipeline.lower() == 'everest2' or pipeline.lower() == 'k2sff': from . import Season, TargetDirectory, FITSFile if campaign is None: campaign = Season(ID) fits = os.path.join(TargetDirectory(ID, campaign), FITSFile(ID, campaign)) newdir = os.path.join(KPLR_ROOT, 'data', 'everest', str(ID)) if not os.path.exists(newdir): os.makedirs(newdir) if os.path.exists(fits): shutil.copy(fits, newdir) if pipeline.lower() == 'everest2': s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign) time = s.time flux = s.flux elif pipeline.lower() == 'everest1': s = k2plr.EVEREST(ID, version=1, sci_campaign=campaign) time = s.time flux = s.flux elif pipeline.lower() == 'k2sff': s = k2plr.K2SFF(ID, sci_campaign=campaign) time = s.time flux = s.fcor s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign) flux *= np.nanmedian(s.flux) elif pipeline.lower() == 'k2sc': s = k2plr.K2SC(ID, sci_campaign=campaign) time = s.time flux = s.pdcflux elif pipeline.lower() == 'raw': s = k2plr.EVEREST(ID, version=2, raw=True, sci_campaign=campaign) time = s.time flux = s.flux else: raise ValueError('Invalid pipeline: `%s`.' % pipeline) return time, flux
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, pipeline='everest2', campaign=None):\n log.info('Downloading %s light curve for %d...' % (pipeline, ID))\n if EVEREST_DEV:\n if pipeline.lower() == 'everest2' or pipeline.lower() == 'k2sff':\n from . import Season, TargetDirectory, FITSFile\n if campaign is None:\n campaign = Season(ID)\n fits = os.path.join(TargetDirectory(ID, campaign), FITSFile(ID,\n campaign))\n newdir = os.path.join(KPLR_ROOT, 'data', 'everest', str(ID))\n if not os.path.exists(newdir):\n os.makedirs(newdir)\n if os.path.exists(fits):\n shutil.copy(fits, newdir)\n if pipeline.lower() == 'everest2':\n s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n elif pipeline.lower() == 'everest1':\n s = k2plr.EVEREST(ID, version=1, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n elif pipeline.lower() == 'k2sff':\n s = k2plr.K2SFF(ID, sci_campaign=campaign)\n time = s.time\n flux = s.fcor\n s = k2plr.EVEREST(ID, version=2, sci_campaign=campaign)\n flux *= np.nanmedian(s.flux)\n elif pipeline.lower() == 'k2sc':\n s = k2plr.K2SC(ID, sci_campaign=campaign)\n time = s.time\n flux = s.pdcflux\n elif pipeline.lower() == 'raw':\n s = k2plr.EVEREST(ID, version=2, raw=True, sci_campaign=campaign)\n time = s.time\n flux = s.flux\n else:\n raise ValueError('Invalid pipeline: `%s`.' % pipeline)\n return time, flux\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(ID, pipeline='everest2', show=True, campaign=None): time, flux = get(ID, pipeline=pipeline, campaign=campaign) mask = np.where(np.isnan(flux))[0] time = np.delete(time, mask) flux = np.delete(flux, mask) fig, ax = pl.subplots(1, figsize=(10, 4)) fig.subplots_adjust(bottom=0.15) ax.plot(time, flux, 'k.', markersize=3, alpha=0.5) N = int(0.995 * len(flux)) hi, lo = flux[np.argsort(flux)][[N, -N]] pad = (hi - lo) * 0.1 ylim = lo - pad, hi + pad ax.set_ylim(ylim) from .k2 import CDPP ax.annotate('%.2f ppm' % CDPP(flux), xy=(0.98, 0.975), xycoords= 'axes fraction', ha='right', va='top', fontsize=12, color='r', zorder=99) ax.margins(0, None) ax.set_xlabel('Time (BJD - 2454833)', fontsize=16) ax.set_ylabel('%s Flux' % pipeline.upper(), fontsize=16) fig.canvas.set_window_title('%s: EPIC %d' % (pipeline.upper(), ID)) if show: pl.show() pl.close() else: return fig, ax
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ID, pipeline='everest2', show=True, campaign=None):\n time, flux = get(ID, pipeline=pipeline, campaign=campaign)\n mask = np.where(np.isnan(flux))[0]\n time = np.delete(time, mask)\n flux = np.delete(flux, mask)\n fig, ax = pl.subplots(1, figsize=(10, 4))\n fig.subplots_adjust(bottom=0.15)\n ax.plot(time, flux, 'k.', markersize=3, alpha=0.5)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n from .k2 import CDPP\n ax.annotate('%.2f ppm' % CDPP(flux), xy=(0.98, 0.975), xycoords=\n 'axes fraction', ha='right', va='top', fontsize=12, color='r',\n zorder=99)\n ax.margins(0, None)\n ax.set_xlabel('Time (BJD - 2454833)', fontsize=16)\n ax.set_ylabel('%s Flux' % pipeline.upper(), fontsize=16)\n fig.canvas.set_window_title('%s: EPIC %d' % (pipeline.upper(), ID))\n if show:\n pl.show()\n pl.close()\n else:\n return fig, ax\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(campaign, pipeline='everest2'): from .k2 import CDPP from .utils import GetK2Campaign assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(campaign), pipeline)) if not os.path.exists(file): open(file, 'a').close() stars = GetK2Campaign(campaign, epics_only=True) nstars = len(stars) with warnings.catch_warnings(): warnings.simplefilter('ignore') done = np.loadtxt(file, dtype=float) if len(done): done = [int(s) for s in done[:, 0]] stars = list(set(stars) - set(done)) n = len(done) + 1 with open(file, 'a', 1) as outfile: for EPIC in stars: sys.stdout.write('\rRunning target %d/%d...' % (n, nstars)) sys.stdout.flush() n += 1 try: _, flux = get(EPIC, pipeline=pipeline, campaign=campaign) mask = np.where(np.isnan(flux))[0] flux = np.delete(flux, mask) cdpp = CDPP(flux) except (urllib.error.HTTPError, urllib.error.URLError, TypeError, ValueError, IndexError): print('{:>09d} {:>15.3f}'.format(EPIC, 0), file=outfile) continue print('{:>09d} {:>15.3f}'.format(EPIC, cdpp), file=outfile)
get_cdpp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign, pipeline='everest2'):\n from .k2 import CDPP\n from .utils import GetK2Campaign\n assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline\n file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.cdpp' % (int(campaign), pipeline))\n if not os.path.exists(file):\n open(file, 'a').close()\n stars = GetK2Campaign(campaign, epics_only=True)\n nstars = len(stars)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n done = np.loadtxt(file, dtype=float)\n if len(done):\n done = [int(s) for s in done[:, 0]]\n stars = list(set(stars) - set(done))\n n = len(done) + 1\n with open(file, 'a', 1) as outfile:\n for EPIC in stars:\n sys.stdout.write('\\rRunning target %d/%d...' % (n, nstars))\n sys.stdout.flush()\n n += 1\n try:\n _, flux = get(EPIC, pipeline=pipeline, campaign=campaign)\n mask = np.where(np.isnan(flux))[0]\n flux = np.delete(flux, mask)\n cdpp = CDPP(flux)\n except (urllib.error.HTTPError, urllib.error.URLError,\n TypeError, ValueError, IndexError):\n print('{:>09d} {:>15.3f}'.format(EPIC, 0), file=outfile)\n continue\n print('{:>09d} {:>15.3f}'.format(EPIC, cdpp), file=outfile)\n", "role": "user" }, { "content": "get_cdpp", "role": "assistant" } ]
def x(campaign, pipeline='everest2', sigma=5): from .utils import GetK2Campaign client = k2plr.API() assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.out' % (int(campaign), pipeline)) if not os.path.exists(file): open(file, 'a').close() stars = GetK2Campaign(campaign, epics_only=True) nstars = len(stars) with warnings.catch_warnings(): warnings.simplefilter('ignore') done = np.loadtxt(file, dtype=float) if len(done): done = [int(s) for s in done[:, 0]] stars = list(set(stars) - set(done)) n = len(done) + 1 with open(file, 'a', 1) as outfile: for EPIC in stars: sys.stdout.write('\rRunning target %d/%d...' % (n, nstars)) sys.stdout.flush() n += 1 try: time, flux = get(EPIC, pipeline=pipeline, campaign=campaign) tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files', '%09d' % EPIC, 'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign)) if not os.path.exists(tpf): client.k2_star(EPIC).get_target_pixel_files(fetch=True) with pyfits.open(tpf) as f: k2_qual = np.array(f[1].data.field('QUALITY'), dtype=int) k2_time = np.array(f[1].data.field('TIME'), dtype='float64' ) mask = [] for b in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17 ]: mask += list(np.where(k2_qual & 2 ** (b - 1))[0]) mask = np.array(sorted(list(set(mask)))) tol = 0.005 if not (len(time) == len(k2_time) and np.abs(time[0] - k2_time[0]) < tol and np.abs(time[-1] - k2_time[-1]) < tol ): ftmp = np.zeros_like(k2_time) * np.nan j = 0 for i, t in enumerate(k2_time): if np.abs(time[j] - t) < tol: ftmp[i] = flux[j] j += 1 if j == len(time) - 1: break flux = ftmp flux = np.delete(flux, mask) nanmask = np.where(np.isnan(flux))[0] flux = np.delete(flux, nanmask) inds = np.array([], dtype=int) m = 1 while len(inds) < m: m = len(inds) f = SavGol(np.delete(flux, inds)) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) inds = np.append(inds, np.where((f > med + sigma * MAD) | (f < med - sigma * MAD))[0]) nout = len(inds) ntot = len(flux) except (urllib.error.HTTPError, urllib.error.URLError, TypeError, ValueError, IndexError): print('{:>09d} {:>5d} {:>5d}'.format(EPIC, -1, -1), file= outfile) continue print('{:>09d} {:>5d} {:>5d}'.format(EPIC, nout, ntot), file= outfile)
get_outliers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(campaign, pipeline='everest2', sigma=5):\n from .utils import GetK2Campaign\n client = k2plr.API()\n assert pipeline.lower() in Pipelines, 'Invalid pipeline: `%s`.' % pipeline\n file = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', \n 'c%02d_%s.out' % (int(campaign), pipeline))\n if not os.path.exists(file):\n open(file, 'a').close()\n stars = GetK2Campaign(campaign, epics_only=True)\n nstars = len(stars)\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n done = np.loadtxt(file, dtype=float)\n if len(done):\n done = [int(s) for s in done[:, 0]]\n stars = list(set(stars) - set(done))\n n = len(done) + 1\n with open(file, 'a', 1) as outfile:\n for EPIC in stars:\n sys.stdout.write('\\rRunning target %d/%d...' % (n, nstars))\n sys.stdout.flush()\n n += 1\n try:\n time, flux = get(EPIC, pipeline=pipeline, campaign=campaign)\n tpf = os.path.join(KPLR_ROOT, 'data', 'k2',\n 'target_pixel_files', '%09d' % EPIC, \n 'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign))\n if not os.path.exists(tpf):\n client.k2_star(EPIC).get_target_pixel_files(fetch=True)\n with pyfits.open(tpf) as f:\n k2_qual = np.array(f[1].data.field('QUALITY'), dtype=int)\n k2_time = np.array(f[1].data.field('TIME'), dtype='float64'\n )\n mask = []\n for b in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17\n ]:\n mask += list(np.where(k2_qual & 2 ** (b - 1))[0])\n mask = np.array(sorted(list(set(mask))))\n tol = 0.005\n if not (len(time) == len(k2_time) and np.abs(time[0] -\n k2_time[0]) < tol and np.abs(time[-1] - k2_time[-1]) < tol\n ):\n ftmp = np.zeros_like(k2_time) * np.nan\n j = 0\n for i, t in enumerate(k2_time):\n if np.abs(time[j] - t) < tol:\n ftmp[i] = flux[j]\n j += 1\n if j == len(time) - 1:\n break\n flux = ftmp\n flux = np.delete(flux, mask)\n nanmask = np.where(np.isnan(flux))[0]\n flux = np.delete(flux, nanmask)\n inds = np.array([], dtype=int)\n m = 1\n while len(inds) < m:\n m = len(inds)\n f = SavGol(np.delete(flux, inds))\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n inds = np.append(inds, np.where((f > med + sigma * MAD) |\n (f < med - sigma * MAD))[0])\n nout = len(inds)\n ntot = len(flux)\n except (urllib.error.HTTPError, urllib.error.URLError,\n TypeError, ValueError, IndexError):\n print('{:>09d} {:>5d} {:>5d}'.format(EPIC, -1, -1), file=\n outfile)\n continue\n print('{:>09d} {:>5d} {:>5d}'.format(EPIC, nout, ntot), file=\n outfile)\n", "role": "user" }, { "content": "get_outliers", "role": "assistant" } ]
def x(self): if self.cadence == 'lc': return self.__class__.__name__ else: return '%s.sc' % self.__class__.__name__
name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.cadence == 'lc':\n return self.__class__.__name__\n else:\n return '%s.sc' % self.__class__.__name__\n", "role": "user" }, { "content": "name", "role": "assistant" } ]
def x(self, mask, b): m1 = self.get_masked_chunk(b) flux = self.fraw[m1] K = GetCovariance(self.kernel, self.kernel_params, self.time[m1], self. fraw_err[m1]) med = np.nanmedian(flux) M = lambda x, axis=0: np.delete(x, mask, axis=axis) m2 = M(m1) mK = M(M(K, axis=0), axis=1) f = M(flux) - med A = [None for i in range(self.pld_order)] B = [None for i in range(self.pld_order)] for n in range(self.pld_order): if self.lam_idx >= n: X2 = self.X(n, m2) X1 = self.X(n, m1) A[n] = np.dot(X2, X2.T) B[n] = np.dot(X1, X2.T) del X1, X2 if self.transit_model is None: C = 0 else: C = np.zeros((len(m2), len(m2))) mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m2])) for tm in self.transit_model], axis=0) f -= mean_transit_model for tm in self.transit_model: X2 = tm(self.time[m2]).reshape(-1, 1) C += tm.var_depth * np.dot(X2, X2.T) del X2 return A, B, C, mK, f, m1, m2
cv_precompute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mask, b):\n m1 = self.get_masked_chunk(b)\n flux = self.fraw[m1]\n K = GetCovariance(self.kernel, self.kernel_params, self.time[m1], self.\n fraw_err[m1])\n med = np.nanmedian(flux)\n M = lambda x, axis=0: np.delete(x, mask, axis=axis)\n m2 = M(m1)\n mK = M(M(K, axis=0), axis=1)\n f = M(flux) - med\n A = [None for i in range(self.pld_order)]\n B = [None for i in range(self.pld_order)]\n for n in range(self.pld_order):\n if self.lam_idx >= n:\n X2 = self.X(n, m2)\n X1 = self.X(n, m1)\n A[n] = np.dot(X2, X2.T)\n B[n] = np.dot(X1, X2.T)\n del X1, X2\n if self.transit_model is None:\n C = 0\n else:\n C = np.zeros((len(m2), len(m2)))\n mean_transit_model = med * np.sum([(tm.depth * tm(self.time[m2])) for\n tm in self.transit_model], axis=0)\n f -= mean_transit_model\n for tm in self.transit_model:\n X2 = tm(self.time[m2]).reshape(-1, 1)\n C += tm.var_depth * np.dot(X2, X2.T)\n del X2\n return A, B, C, mK, f, m1, m2\n", "role": "user" }, { "content": "cv_precompute", "role": "assistant" } ]
def x(self, b, A, B, C, mK, f, m1, m2): A = np.sum([(l * a) for l, a in zip(self.lam[b], A) if l is not None], axis=0) B = np.sum([(l * b) for l, b in zip(self.lam[b], B) if l is not None], axis=0) W = np.linalg.solve(mK + A + C, f) if self.transit_model is None: model = np.dot(B, W) else: w_pld = np.concatenate([(l * np.dot(self.X(n, m2).T, W)) for n, l in enumerate(self.lam[b]) if l is not None]) model = np.dot(np.hstack([self.X(n, m1) for n, l in enumerate(self. lam[b]) if l is not None]), w_pld) model -= np.nanmedian(model) return model
cv_compute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, b, A, B, C, mK, f, m1, m2):\n A = np.sum([(l * a) for l, a in zip(self.lam[b], A) if l is not None],\n axis=0)\n B = np.sum([(l * b) for l, b in zip(self.lam[b], B) if l is not None],\n axis=0)\n W = np.linalg.solve(mK + A + C, f)\n if self.transit_model is None:\n model = np.dot(B, W)\n else:\n w_pld = np.concatenate([(l * np.dot(self.X(n, m2).T, W)) for n, l in\n enumerate(self.lam[b]) if l is not None])\n model = np.dot(np.hstack([self.X(n, m1) for n, l in enumerate(self.\n lam[b]) if l is not None]), w_pld)\n model -= np.nanmedian(model)\n return model\n", "role": "user" }, { "content": "cv_compute", "role": "assistant" } ]
def x(self): log.info('Clipping outliers...') log.info('Iter %d/%d: %d outliers' % (0, self.oiter, len(self.outmask))) def x(x): return np.delete(x, np.concatenate([self.nanmask, self.badmask, self.transitmask]), axis=0) t = M(self.time) outmask = [np.array([-1]), np.array(self.outmask)] while not np.array_equal(outmask[-2], outmask[-1]): if len(outmask) - 1 > self.oiter: log.error('Maximum number of iterations in ' + '``get_outliers()`` exceeded. Skipping...') break if np.any([np.array_equal(outmask[-1], i) for i in outmask[:-1]]): log.error('Function ``get_outliers()`` ' + 'is going in circles. Skipping...') break self.compute() f = SavGol(M(self.flux)) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) inds = np.where((f > med + self.osigma * MAD) | (f < med - self. osigma * MAD))[0] inds = np.array([np.argmax(self.time == t[i]) for i in inds]) self.outmask = np.array(inds, dtype=int) outmask.append(np.array(inds)) log.info('Iter %d/%d: %d outliers' % (len(outmask) - 2, self.oiter, len(self.outmask)))
get_outliers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log.info('Clipping outliers...')\n log.info('Iter %d/%d: %d outliers' % (0, self.oiter, len(self.outmask)))\n\n def x(x):\n return np.delete(x, np.concatenate([self.nanmask, self.badmask,\n self.transitmask]), axis=0)\n t = M(self.time)\n outmask = [np.array([-1]), np.array(self.outmask)]\n while not np.array_equal(outmask[-2], outmask[-1]):\n if len(outmask) - 1 > self.oiter:\n log.error('Maximum number of iterations in ' +\n '``get_outliers()`` exceeded. Skipping...')\n break\n if np.any([np.array_equal(outmask[-1], i) for i in outmask[:-1]]):\n log.error('Function ``get_outliers()`` ' +\n 'is going in circles. Skipping...')\n break\n self.compute()\n f = SavGol(M(self.flux))\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n inds = np.where((f > med + self.osigma * MAD) | (f < med - self.\n osigma * MAD))[0]\n inds = np.array([np.argmax(self.time == t[i]) for i in inds])\n self.outmask = np.array(inds, dtype=int)\n outmask.append(np.array(inds))\n log.info('Iter %d/%d: %d outliers' % (len(outmask) - 2, self.oiter,\n len(self.outmask)))\n", "role": "user" }, { "content": "get_outliers", "role": "assistant" } ]
def x(self, validation): maxm = 0 minr = len(validation) for n in range(validation.shape[1]): m = np.nanargmin(validation[:, n]) if m > maxm: maxm = m r = np.where((validation[:, n] - validation[m, n]) / validation[m, n] <= self.leps)[0][-1] if r < minr: minr = r return min(maxm, minr)
optimize_lambda
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, validation):\n maxm = 0\n minr = len(validation)\n for n in range(validation.shape[1]):\n m = np.nanargmin(validation[:, n])\n if m > maxm:\n maxm = m\n r = np.where((validation[:, n] - validation[m, n]) / validation[m,\n n] <= self.leps)[0][-1]\n if r < minr:\n minr = r\n return min(maxm, minr)\n", "role": "user" }, { "content": "optimize_lambda", "role": "assistant" } ]
def x(self): bn = np.array(list(set(np.concatenate([self.badmask, self.nanmask]))), dtype=int) fraw = np.delete(self.fraw, bn) lo, hi = fraw[np.argsort(fraw)][[3, -3]] flux = np.delete(self.flux, bn) fsort = flux[np.argsort(flux)] if fsort[int(0.01 * len(fsort))] < lo: lo = fsort[int(0.01 * len(fsort))] if fsort[int(0.99 * len(fsort))] > hi: hi = fsort[int(0.99 * len(fsort))] pad = (hi - lo) * 0.05 ylim = lo - pad, hi + pad return ylim
get_ylim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n bn = np.array(list(set(np.concatenate([self.badmask, self.nanmask]))),\n dtype=int)\n fraw = np.delete(self.fraw, bn)\n lo, hi = fraw[np.argsort(fraw)][[3, -3]]\n flux = np.delete(self.flux, bn)\n fsort = flux[np.argsort(flux)]\n if fsort[int(0.01 * len(fsort))] < lo:\n lo = fsort[int(0.01 * len(fsort))]\n if fsort[int(0.99 * len(fsort))] > hi:\n hi = fsort[int(0.99 * len(fsort))]\n pad = (hi - lo) * 0.05\n ylim = lo - pad, hi + pad\n return ylim\n", "role": "user" }, { "content": "get_ylim", "role": "assistant" } ]
def x(self, ax, info_left='', info_right='', color='b'): if self.cadence == 'lc' or len(self.time) < 4000: ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls= 'none', marker='.', color=color, markersize=2, alpha=0.5) ax.plot(self.time[self.transitmask], self.flux[self.transitmask], ls='none', marker='.', color=color, markersize=2, alpha=0.5) else: ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls= 'none', marker='.', color=color, markersize=2, alpha=0.03, zorder=-1) ax.plot(self.time[self.transitmask], self.flux[self.transitmask], ls='none', marker='.', color=color, markersize=2, alpha=0.03, zorder=-1) ax.set_rasterization_zorder(0) ylim = self.get_ylim() badmask = [i for i in self.badmask if i not in self.nanmask] def x(x): return x[self.outmask] def x(x): return x[badmask] if self.cadence == 'lc': ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777', marker='.', markersize=2, alpha=0.5) ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=0.25) else: ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777', marker='.', markersize=2, alpha=0.25, zorder=-1) ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha= 0.125, zorder=-1) for i in np.where(self.flux < ylim[0])[0]: if i in badmask: color = '#ffcccc' elif i in self.outmask: color = '#cccccc' elif i in self.nanmask: continue else: color = '#ccccff' ax.annotate('', xy=(self.time[i], ylim[0]), xycoords='data', xytext =(0, 15), textcoords='offset points', arrowprops=dict( arrowstyle='-|>', color=color)) for i in np.where(self.flux > ylim[1])[0]: if i in badmask: color = '#ffcccc' elif i in self.outmask: color = '#cccccc' elif i in self.nanmask: continue else: color = '#ccccff' ax.annotate('', xy=(self.time[i], ylim[1]), xycoords='data', xytext =(0, -15), textcoords='offset points', arrowprops=dict( arrowstyle='-|>', color=color)) for brkpt in self.breakpoints[:-1]: if len(self.breakpoints) <= 5: ax.axvline(self.time[brkpt], color='r', ls='--', alpha=0.5) else: ax.axvline(self.time[brkpt], color='r', ls='-', alpha=0.025) if len(self.cdpp_arr) == 2: ax.annotate('%.2f ppm' % self.cdpp_arr[0], xy=(0.02, 0.975), xycoords='axes fraction', ha='left', va='top', fontsize=10) ax.annotate('%.2f ppm' % self.cdpp_arr[1], xy=(0.98, 0.975), xycoords='axes fraction', ha='right', va='top', fontsize=10) elif len(self.cdpp_arr) < 6: for n in range(len(self.cdpp_arr)): if n > 0: x = (self.time[self.breakpoints[n - 1]] - self.time[0]) / (self .time[-1] - self.time[0]) + 0.02 else: x = 0.02 ax.annotate('%.2f ppm' % self.cdpp_arr[n], xy=(x, 0.975), xycoords='axes fraction', ha='left', va='top', fontsize=8) else: ax.annotate('%.2f ppm' % self.cdpp, xy=(0.02, 0.975), xycoords= 'axes fraction', ha='left', va='top', fontsize=10) ax.annotate(info_right, xy=(0.98, 0.025), xycoords='axes fraction', ha= 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold') ax.annotate(info_left, xy=(0.02, 0.025), xycoords='axes fraction', ha= 'left', va='bottom', fontsize=8) ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=5) ax.margins(0.01, 0.1) ax.set_ylim(*ylim) ax.get_yaxis().set_major_formatter(Formatter.Flux)
plot_lc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, info_left='', info_right='', color='b'):\n if self.cadence == 'lc' or len(self.time) < 4000:\n ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=\n 'none', marker='.', color=color, markersize=2, alpha=0.5)\n ax.plot(self.time[self.transitmask], self.flux[self.transitmask],\n ls='none', marker='.', color=color, markersize=2, alpha=0.5)\n else:\n ax.plot(self.apply_mask(self.time), self.apply_mask(self.flux), ls=\n 'none', marker='.', color=color, markersize=2, alpha=0.03,\n zorder=-1)\n ax.plot(self.time[self.transitmask], self.flux[self.transitmask],\n ls='none', marker='.', color=color, markersize=2, alpha=0.03,\n zorder=-1)\n ax.set_rasterization_zorder(0)\n ylim = self.get_ylim()\n badmask = [i for i in self.badmask if i not in self.nanmask]\n\n def x(x):\n return x[self.outmask]\n\n def x(x):\n return x[badmask]\n if self.cadence == 'lc':\n ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',\n marker='.', markersize=2, alpha=0.5)\n ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=0.25)\n else:\n ax.plot(O1(self.time), O1(self.flux), ls='none', color='#777777',\n marker='.', markersize=2, alpha=0.25, zorder=-1)\n ax.plot(O2(self.time), O2(self.flux), 'r.', markersize=2, alpha=\n 0.125, zorder=-1)\n for i in np.where(self.flux < ylim[0])[0]:\n if i in badmask:\n color = '#ffcccc'\n elif i in self.outmask:\n color = '#cccccc'\n elif i in self.nanmask:\n continue\n else:\n color = '#ccccff'\n ax.annotate('', xy=(self.time[i], ylim[0]), xycoords='data', xytext\n =(0, 15), textcoords='offset points', arrowprops=dict(\n arrowstyle='-|>', color=color))\n for i in np.where(self.flux > ylim[1])[0]:\n if i in badmask:\n color = '#ffcccc'\n elif i in self.outmask:\n color = '#cccccc'\n elif i in self.nanmask:\n continue\n else:\n color = '#ccccff'\n ax.annotate('', xy=(self.time[i], ylim[1]), xycoords='data', xytext\n =(0, -15), textcoords='offset points', arrowprops=dict(\n arrowstyle='-|>', color=color))\n for brkpt in self.breakpoints[:-1]:\n if len(self.breakpoints) <= 5:\n ax.axvline(self.time[brkpt], color='r', ls='--', alpha=0.5)\n else:\n ax.axvline(self.time[brkpt], color='r', ls='-', alpha=0.025)\n if len(self.cdpp_arr) == 2:\n ax.annotate('%.2f ppm' % self.cdpp_arr[0], xy=(0.02, 0.975),\n xycoords='axes fraction', ha='left', va='top', fontsize=10)\n ax.annotate('%.2f ppm' % self.cdpp_arr[1], xy=(0.98, 0.975),\n xycoords='axes fraction', ha='right', va='top', fontsize=10)\n elif len(self.cdpp_arr) < 6:\n for n in range(len(self.cdpp_arr)):\n if n > 0:\n x = (self.time[self.breakpoints[n - 1]] - self.time[0]) / (self\n .time[-1] - self.time[0]) + 0.02\n else:\n x = 0.02\n ax.annotate('%.2f ppm' % self.cdpp_arr[n], xy=(x, 0.975),\n xycoords='axes fraction', ha='left', va='top', fontsize=8)\n else:\n ax.annotate('%.2f ppm' % self.cdpp, xy=(0.02, 0.975), xycoords=\n 'axes fraction', ha='left', va='top', fontsize=10)\n ax.annotate(info_right, xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.annotate(info_left, xy=(0.02, 0.025), xycoords='axes fraction', ha=\n 'left', va='bottom', fontsize=8)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=5)\n ax.margins(0.01, 0.1)\n ax.set_ylim(*ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n", "role": "user" }, { "content": "plot_lc", "role": "assistant" } ]
def x(self, ax): bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask]) )), dtype=int) def x(x): return np.delete(x, bnmask) if self.cadence == 'lc' or len(self.time) < 4000: ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color= 'k', markersize=2, alpha=0.3) else: ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color= 'k', markersize=2, alpha=0.03, zorder=-1) ax.set_rasterization_zorder(0) ax.plot(self.time[0], np.nanmedian(M(self.flux)), marker='.', alpha=0) ax.plot(self.time[-1], np.nanmedian(M(self.flux)), marker='.', alpha=0) if self.cadence == 'lc': gp = GP(self.kernel, self.kernel_params, white=False) gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err)) med = np.nanmedian(self.apply_mask(self.flux)) y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time) y += med ax.plot(M(self.time), M(y), 'r-', lw=0.5, alpha=0.5) self.cdppg = self._mission.CDPP(self.apply_mask(self.flux - y + med ), cadence=self.cadence) else: self.cdppg = 0.0 ax.annotate('Final', xy=(0.98, 0.025), xycoords='axes fraction', ha= 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold') ax.margins(0.01, 0.1) flux = np.delete(self.flux, bnmask) N = int(0.995 * len(flux)) hi, lo = flux[np.argsort(flux)][[N, -N]] fsort = flux[np.argsort(flux)] pad = (hi - lo) * 0.1 ylim = lo - pad, hi + pad ax.set_ylim(ylim) ax.get_yaxis().set_major_formatter(Formatter.Flux)
plot_final
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax):\n bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])\n )), dtype=int)\n\n def x(x):\n return np.delete(x, bnmask)\n if self.cadence == 'lc' or len(self.time) < 4000:\n ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=\n 'k', markersize=2, alpha=0.3)\n else:\n ax.plot(M(self.time), M(self.flux), ls='none', marker='.', color=\n 'k', markersize=2, alpha=0.03, zorder=-1)\n ax.set_rasterization_zorder(0)\n ax.plot(self.time[0], np.nanmedian(M(self.flux)), marker='.', alpha=0)\n ax.plot(self.time[-1], np.nanmedian(M(self.flux)), marker='.', alpha=0)\n if self.cadence == 'lc':\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(self.apply_mask(self.time), self.apply_mask(self.fraw_err))\n med = np.nanmedian(self.apply_mask(self.flux))\n y, _ = gp.predict(self.apply_mask(self.flux) - med, self.time)\n y += med\n ax.plot(M(self.time), M(y), 'r-', lw=0.5, alpha=0.5)\n self.cdppg = self._mission.CDPP(self.apply_mask(self.flux - y + med\n ), cadence=self.cadence)\n else:\n self.cdppg = 0.0\n ax.annotate('Final', xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.margins(0.01, 0.1)\n flux = np.delete(self.flux, bnmask)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n fsort = flux[np.argsort(flux)]\n pad = (hi - lo) * 0.1\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n", "role": "user" }, { "content": "plot_final", "role": "assistant" } ]
def x(self, ax, flux, info, show_cbv=False): bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask]) )), dtype=int) def x(x): return np.delete(x, bnmask) if self.cadence == 'lc': ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k', markersize=2, alpha=0.45) else: ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k', markersize=2, alpha=0.03, zorder=-1) ax.set_rasterization_zorder(0) ax.plot(self.time[0], np.nanmedian(M(flux)), marker='.', alpha=0) ax.plot(self.time[-1], np.nanmedian(M(flux)), marker='.', alpha=0) if show_cbv: ax.plot(self.time, self._mission.FitCBVs(self) + np.nanmedian(flux), 'r-', alpha=0.2) ax.annotate(info, xy=(0.98, 0.025), xycoords='axes fraction', ha= 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold') ax.margins(0.01, 0.1) flux = np.delete(flux, bnmask) N = int(0.995 * len(flux)) hi, lo = flux[np.argsort(flux)][[N, -N]] fsort = flux[np.argsort(flux)] pad = (hi - lo) * 0.2 ylim = lo - pad, hi + pad ax.set_ylim(ylim) ax.get_yaxis().set_major_formatter(Formatter.Flux) ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=9) for tick in (ax.get_xticklabels() + ax.get_yticklabels()): tick.set_fontsize(7)
plot_cbv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax, flux, info, show_cbv=False):\n bnmask = np.array(list(set(np.concatenate([self.badmask, self.nanmask])\n )), dtype=int)\n\n def x(x):\n return np.delete(x, bnmask)\n if self.cadence == 'lc':\n ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',\n markersize=2, alpha=0.45)\n else:\n ax.plot(M(self.time), M(flux), ls='none', marker='.', color='k',\n markersize=2, alpha=0.03, zorder=-1)\n ax.set_rasterization_zorder(0)\n ax.plot(self.time[0], np.nanmedian(M(flux)), marker='.', alpha=0)\n ax.plot(self.time[-1], np.nanmedian(M(flux)), marker='.', alpha=0)\n if show_cbv:\n ax.plot(self.time, self._mission.FitCBVs(self) + np.nanmedian(flux),\n 'r-', alpha=0.2)\n ax.annotate(info, xy=(0.98, 0.025), xycoords='axes fraction', ha=\n 'right', va='bottom', fontsize=10, alpha=0.5, fontweight='bold')\n ax.margins(0.01, 0.1)\n flux = np.delete(flux, bnmask)\n N = int(0.995 * len(flux))\n hi, lo = flux[np.argsort(flux)][[N, -N]]\n fsort = flux[np.argsort(flux)]\n pad = (hi - lo) * 0.2\n ylim = lo - pad, hi + pad\n ax.set_ylim(ylim)\n ax.get_yaxis().set_major_formatter(Formatter.Flux)\n ax.set_xlabel('Time (%s)' % self._mission.TIMEUNITS, fontsize=9)\n for tick in (ax.get_xticklabels() + ax.get_yticklabels()):\n tick.set_fontsize(7)\n", "role": "user" }, { "content": "plot_cbv", "role": "assistant" } ]
def x(self): if not self.loaded: if self._data is not None: data = self._data else: data = self._mission.GetData(self.ID, season=self.season, cadence=self.cadence, clobber=self.clobber_tpf, aperture_name=self.aperture_name, saturated_aperture_name= self.saturated_aperture_name, max_pixels=self.max_pixels, saturation_tolerance=self.saturation_tolerance, get_hires= self.get_hires, get_nearby=self.get_nearby) if data is None: raise Exception('Unable to retrieve target data.') self.cadn = data.cadn self.time = data.time self.model = np.zeros_like(self.time) self.fpix = data.fpix self.fraw = np.sum(self.fpix, axis=1) self.fpix_err = data.fpix_err self.fraw_err = np.sqrt(np.sum(self.fpix_err ** 2, axis=1)) self.nanmask = data.nanmask self.badmask = data.badmask self.transitmask = np.array([], dtype=int) self.outmask = np.array([], dtype=int) self.aperture = data.aperture self.aperture_name = data.aperture_name self.apertures = data.apertures self.quality = data.quality self.Xpos = data.Xpos self.Ypos = data.Ypos self.mag = data.mag self.pixel_images = data.pixel_images self.nearby = data.nearby self.hires = data.hires self.saturated = data.saturated self.meta = data.meta self.bkg = data.bkg self.breakpoints[-1] = len(self.time) - 1 self.get_norm() self.loaded = True
load_tpf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.loaded:\n if self._data is not None:\n data = self._data\n else:\n data = self._mission.GetData(self.ID, season=self.season,\n cadence=self.cadence, clobber=self.clobber_tpf,\n aperture_name=self.aperture_name, saturated_aperture_name=\n self.saturated_aperture_name, max_pixels=self.max_pixels,\n saturation_tolerance=self.saturation_tolerance, get_hires=\n self.get_hires, get_nearby=self.get_nearby)\n if data is None:\n raise Exception('Unable to retrieve target data.')\n self.cadn = data.cadn\n self.time = data.time\n self.model = np.zeros_like(self.time)\n self.fpix = data.fpix\n self.fraw = np.sum(self.fpix, axis=1)\n self.fpix_err = data.fpix_err\n self.fraw_err = np.sqrt(np.sum(self.fpix_err ** 2, axis=1))\n self.nanmask = data.nanmask\n self.badmask = data.badmask\n self.transitmask = np.array([], dtype=int)\n self.outmask = np.array([], dtype=int)\n self.aperture = data.aperture\n self.aperture_name = data.aperture_name\n self.apertures = data.apertures\n self.quality = data.quality\n self.Xpos = data.Xpos\n self.Ypos = data.Ypos\n self.mag = data.mag\n self.pixel_images = data.pixel_images\n self.nearby = data.nearby\n self.hires = data.hires\n self.saturated = data.saturated\n self.meta = data.meta\n self.bkg = data.bkg\n self.breakpoints[-1] = len(self.time) - 1\n self.get_norm()\n self.loaded = True\n", "role": "user" }, { "content": "load_tpf", "role": "assistant" } ]
def x(self, name=None): if self.clobber: return False if name is None: name = self.name file = os.path.join(self.dir, '%s.npz' % name) if os.path.exists(file): if not self.is_parent: log.info("Loading '%s.npz'..." % name) try: data = np.load(file) for key in data.keys(): try: setattr(self, key, data[key][()]) except NotImplementedError: pass if hasattr(self, 'cdpp6'): self.cdpp = self.cdpp6 del self.cdpp6 if hasattr(self, 'cdpp6_arr'): self.cdpp_arr = np.array(self.cdpp6_arr) del self.cdpp6_arr if hasattr(self, 'gppp'): self.cdppg = self.gppp del self.gppp pl.close() return True except: log.warn("Error loading '%s.npz'." % name) exctype, value, tb = sys.exc_info() for line in traceback.format_exception_only(exctype, value): ln = line.replace('\n', '') log.warn(ln) os.rename(file, file + '.bad') if self.is_parent: raise Exception('Unable to load `%s` model for target %d.' % (self. name, self.ID)) return False
load_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name=None):\n if self.clobber:\n return False\n if name is None:\n name = self.name\n file = os.path.join(self.dir, '%s.npz' % name)\n if os.path.exists(file):\n if not self.is_parent:\n log.info(\"Loading '%s.npz'...\" % name)\n try:\n data = np.load(file)\n for key in data.keys():\n try:\n setattr(self, key, data[key][()])\n except NotImplementedError:\n pass\n if hasattr(self, 'cdpp6'):\n self.cdpp = self.cdpp6\n del self.cdpp6\n if hasattr(self, 'cdpp6_arr'):\n self.cdpp_arr = np.array(self.cdpp6_arr)\n del self.cdpp6_arr\n if hasattr(self, 'gppp'):\n self.cdppg = self.gppp\n del self.gppp\n pl.close()\n return True\n except:\n log.warn(\"Error loading '%s.npz'.\" % name)\n exctype, value, tb = sys.exc_info()\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n log.warn(ln)\n os.rename(file, file + '.bad')\n if self.is_parent:\n raise Exception('Unable to load `%s` model for target %d.' % (self.\n name, self.ID))\n return False\n", "role": "user" }, { "content": "load_model", "role": "assistant" } ]
def x(self): log.info("Saving data to '%s.npz'..." % self.name) d = dict(self.__dict__) d.pop('_weights', None) d.pop('_A', None) d.pop('_B', None) d.pop('_f', None) d.pop('_mK', None) d.pop('K', None) d.pop('dvs', None) d.pop('clobber', None) d.pop('clobber_tpf', None) d.pop('_mission', None) d.pop('debug', None) d.pop('transit_model', None) d.pop('_transit_model', None) np.savez(os.path.join(self.dir, self.name + '.npz'), **d) pdf = PdfPages(os.path.join(self.dir, self.name + '.pdf')) pdf.savefig(self.dvs.fig) pl.close(self.dvs.fig) d = pdf.infodict() d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self. _mission.IDSTRING, self.ID) d['Author'] = 'Rodrigo Luger' pdf.close()
save_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n log.info(\"Saving data to '%s.npz'...\" % self.name)\n d = dict(self.__dict__)\n d.pop('_weights', None)\n d.pop('_A', None)\n d.pop('_B', None)\n d.pop('_f', None)\n d.pop('_mK', None)\n d.pop('K', None)\n d.pop('dvs', None)\n d.pop('clobber', None)\n d.pop('clobber_tpf', None)\n d.pop('_mission', None)\n d.pop('debug', None)\n d.pop('transit_model', None)\n d.pop('_transit_model', None)\n np.savez(os.path.join(self.dir, self.name + '.npz'), **d)\n pdf = PdfPages(os.path.join(self.dir, self.name + '.pdf'))\n pdf.savefig(self.dvs.fig)\n pl.close(self.dvs.fig)\n d = pdf.infodict()\n d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.\n _mission.IDSTRING, self.ID)\n d['Author'] = 'Rodrigo Luger'\n pdf.close()\n", "role": "user" }, { "content": "save_model", "role": "assistant" } ]
def x(self, pdb): exctype, value, tb = sys.exc_info() errfile = os.path.join(self.dir, self.name + '.err') with open(errfile, 'w') as f: for line in traceback.format_exception_only(exctype, value): ln = line.replace('\n', '') log.error(ln) print(ln, file=f) for line in traceback.format_tb(tb): ln = line.replace('\n', '') log.error(ln) print(ln, file=f) if pdb: raise
exception_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pdb):\n exctype, value, tb = sys.exc_info()\n errfile = os.path.join(self.dir, self.name + '.err')\n with open(errfile, 'w') as f:\n for line in traceback.format_exception_only(exctype, value):\n ln = line.replace('\\n', '')\n log.error(ln)\n print(ln, file=f)\n for line in traceback.format_tb(tb):\n ln = line.replace('\\n', '')\n log.error(ln)\n print(ln, file=f)\n if pdb:\n raise\n", "role": "user" }, { "content": "exception_handler", "role": "assistant" } ]
def x(self): self.kernel_params = GetKernelParams(self.time, self.flux, self. fraw_err, mask=self.mask, guess=self.kernel_params, kernel=self. kernel, giter=self.giter, gmaxf=self.gmaxf)
update_gp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.kernel_params = GetKernelParams(self.time, self.flux, self.\n fraw_err, mask=self.mask, guess=self.kernel_params, kernel=self.\n kernel, giter=self.giter, gmaxf=self.gmaxf)\n", "role": "user" }, { "content": "update_gp", "role": "assistant" } ]
def x(self): if self.kernel_params is None: X = self.apply_mask(self.fpix / self.flux.reshape(-1, 1)) y = self.apply_mask(self.flux) - np.dot(X, np.linalg.solve(np.dot(X .T, X), np.dot(X.T, self.apply_mask(self.flux)))) white = np.nanmedian([np.nanstd(c) for c in Chunks(y, 13)]) amp = self.gp_factor * np.nanstd(y) tau = 30.0 if self.kernel == 'Basic': self.kernel_params = [white, amp, tau] elif self.kernel == 'QuasiPeriodic': self.kernel_params = [white, amp, 1.0, 20.0]
init_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.kernel_params is None:\n X = self.apply_mask(self.fpix / self.flux.reshape(-1, 1))\n y = self.apply_mask(self.flux) - np.dot(X, np.linalg.solve(np.dot(X\n .T, X), np.dot(X.T, self.apply_mask(self.flux))))\n white = np.nanmedian([np.nanstd(c) for c in Chunks(y, 13)])\n amp = self.gp_factor * np.nanstd(y)\n tau = 30.0\n if self.kernel == 'Basic':\n self.kernel_params = [white, amp, tau]\n elif self.kernel == 'QuasiPeriodic':\n self.kernel_params = [white, amp, 1.0, 20.0]\n", "role": "user" }, { "content": "init_kernel", "role": "assistant" } ]
def x(self): try: log.info('Loading target data...') self.load_tpf() self.mask_planets() self.plot_aperture([self.dvs.top_right() for i in range(4)]) self.init_kernel() M = self.apply_mask(np.arange(len(self.time))) self.cdppr_arr = self.get_cdpp_arr() self.cdpp_arr = np.array(self.cdppr_arr) self.cdppv_arr = np.array(self.cdppr_arr) self.cdppr = self.get_cdpp() self.cdpp = self.cdppr self.cdppv = self.cdppr log.info('%s (Raw): CDPP = %s' % (self.name, self.cdpps)) self.plot_lc(self.dvs.left(), info_right='Raw', color='k') for n in range(self.pld_order): self.lam_idx += 1 self.get_outliers() if n > 0 and self.optimize_gp: self.update_gp() self.cross_validate(self.dvs.right(), info='CV%d' % n) self.cdpp_arr = self.get_cdpp_arr() self.cdppv_arr *= self.cdpp_arr self.cdpp = self.get_cdpp() self.cdppv = np.nanmean(self.cdppv_arr) log.info('%s (%d/%d): CDPP = %s' % (self.name, n + 1, self. pld_order, self.cdpps)) self.plot_lc(self.dvs.left(), info_right='LC%d' % (n + 1), info_left='%d outliers' % len(self.outmask)) self.finalize() self.plot_final(self.dvs.top_left()) self.plot_info(self.dvs) self.save_model() except: self.exception_handler(self.debug)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n log.info('Loading target data...')\n self.load_tpf()\n self.mask_planets()\n self.plot_aperture([self.dvs.top_right() for i in range(4)])\n self.init_kernel()\n M = self.apply_mask(np.arange(len(self.time)))\n self.cdppr_arr = self.get_cdpp_arr()\n self.cdpp_arr = np.array(self.cdppr_arr)\n self.cdppv_arr = np.array(self.cdppr_arr)\n self.cdppr = self.get_cdpp()\n self.cdpp = self.cdppr\n self.cdppv = self.cdppr\n log.info('%s (Raw): CDPP = %s' % (self.name, self.cdpps))\n self.plot_lc(self.dvs.left(), info_right='Raw', color='k')\n for n in range(self.pld_order):\n self.lam_idx += 1\n self.get_outliers()\n if n > 0 and self.optimize_gp:\n self.update_gp()\n self.cross_validate(self.dvs.right(), info='CV%d' % n)\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdppv_arr *= self.cdpp_arr\n self.cdpp = self.get_cdpp()\n self.cdppv = np.nanmean(self.cdppv_arr)\n log.info('%s (%d/%d): CDPP = %s' % (self.name, n + 1, self.\n pld_order, self.cdpps))\n self.plot_lc(self.dvs.left(), info_right='LC%d' % (n + 1),\n info_left='%d outliers' % len(self.outmask))\n self.finalize()\n self.plot_final(self.dvs.top_left())\n self.plot_info(self.dvs)\n self.save_model()\n except:\n self.exception_handler(self.debug)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, **kwargs): try: self.cbv_win = 999 self.cbv_order = 3 self.cbv_num = 1 self._mission.GetTargetCBVs(self) cbv = CBV() self.plot_info(cbv) self.plot_cbv(cbv.body(), self.fcor, 'Corrected') self.plot_cbv(cbv.body(), self.flux, 'De-trended', show_cbv=True) self.plot_cbv(cbv.body(), self.fraw, 'Raw') pdf = PdfPages(os.path.join(self.dir, 'cbv.pdf')) pdf.savefig(cbv.fig) pl.close(cbv.fig) d = pdf.infodict() d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self. _mission.IDSTRING, self.ID) d['Author'] = 'Rodrigo Luger' pdf.close() assert os.path.exists(os.path.join(self.dir, self.name + '.pdf') ), 'Unable to locate %s.pdf.' % self.name output = PdfFileWriter() pdfOne = PdfFileReader(os.path.join(self.dir, 'cbv.pdf')) pdfTwo = PdfFileReader(os.path.join(self.dir, self.name + '.pdf')) output.addPage(pdfOne.getPage(0)) output.addPage(pdfTwo.getPage(pdfTwo.numPages - 1)) outputStream = open(os.path.join(self.dir, self._mission.DVSFile( self.ID, self.season, self.cadence)), 'wb') output.write(outputStream) outputStream.close() os.remove(os.path.join(self.dir, 'cbv.pdf')) MakeFITS(self) except: self.exception_handler(self.debug)
publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n try:\n self.cbv_win = 999\n self.cbv_order = 3\n self.cbv_num = 1\n self._mission.GetTargetCBVs(self)\n cbv = CBV()\n self.plot_info(cbv)\n self.plot_cbv(cbv.body(), self.fcor, 'Corrected')\n self.plot_cbv(cbv.body(), self.flux, 'De-trended', show_cbv=True)\n self.plot_cbv(cbv.body(), self.fraw, 'Raw')\n pdf = PdfPages(os.path.join(self.dir, 'cbv.pdf'))\n pdf.savefig(cbv.fig)\n pl.close(cbv.fig)\n d = pdf.infodict()\n d['Title'] = 'EVEREST: %s de-trending of %s %d' % (self.name, self.\n _mission.IDSTRING, self.ID)\n d['Author'] = 'Rodrigo Luger'\n pdf.close()\n assert os.path.exists(os.path.join(self.dir, self.name + '.pdf')\n ), 'Unable to locate %s.pdf.' % self.name\n output = PdfFileWriter()\n pdfOne = PdfFileReader(os.path.join(self.dir, 'cbv.pdf'))\n pdfTwo = PdfFileReader(os.path.join(self.dir, self.name + '.pdf'))\n output.addPage(pdfOne.getPage(0))\n output.addPage(pdfTwo.getPage(pdfTwo.numPages - 1))\n outputStream = open(os.path.join(self.dir, self._mission.DVSFile(\n self.ID, self.season, self.cadence)), 'wb')\n output.write(outputStream)\n outputStream.close()\n os.remove(os.path.join(self.dir, 'cbv.pdf'))\n MakeFITS(self)\n except:\n self.exception_handler(self.debug)\n", "role": "user" }, { "content": "publish", "role": "assistant" } ]
def x(self, **kwargs): self.parent_model = kwargs.get('parent_model', None) neighbors = kwargs.get('neighbors', 10) neighbors_data = kwargs.get('neighbors_data', None) if hasattr(neighbors, '__len__'): self.neighbors = neighbors else: num_neighbors = neighbors self.neighbors = self._mission.GetNeighbors(self.ID, season=self. season, cadence=self.cadence, model=self.parent_model, neighbors=num_neighbors, mag_range=kwargs.get('mag_range', ( 11.0, 13.0)), cdpp_range=kwargs.get('cdpp_range', None), aperture_name=self.aperture_name) if len(self.neighbors): if len(self.neighbors) < num_neighbors: log.warn('%d neighbors requested, but only %d found.' % ( num_neighbors, len(self.neighbors))) elif num_neighbors > 0: log.warn('No neighbors found! Running standard PLD...') for n, neighbor in enumerate(self.neighbors): log.info('Loading data for neighboring target %d...' % neighbor) if neighbors_data is not None: data = neighbors_data[n] data.mask = np.array(list(set(np.concatenate([data.badmask, data.nanmask]))), dtype=int) data.fraw = np.sum(data.fpix, axis=1) elif self.parent_model is not None and self.cadence == 'lc': data = eval(self.parent_model)(neighbor, mission=self.mission, is_parent=True) else: data = self._mission.GetData(neighbor, season=self.season, clobber=self.clobber_tpf, cadence=self.cadence, aperture_name=self.aperture_name, saturated_aperture_name= self.saturated_aperture_name, max_pixels=self.max_pixels, saturation_tolerance=self.saturation_tolerance, get_hires= False, get_nearby=False) if data is None: raise Exception( 'Unable to retrieve data for neighboring target.') data.mask = np.array(list(set(np.concatenate([data.badmask, data.nanmask]))), dtype=int) data.fraw = np.sum(data.fpix, axis=1) X1 = data.fpix / data.fraw.reshape(-1, 1) X1 = Interpolate(data.time, data.mask, X1) if self.X1N is None: self.X1N = np.array(X1) else: self.X1N = np.hstack([self.X1N, X1]) del X1 del data
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n self.parent_model = kwargs.get('parent_model', None)\n neighbors = kwargs.get('neighbors', 10)\n neighbors_data = kwargs.get('neighbors_data', None)\n if hasattr(neighbors, '__len__'):\n self.neighbors = neighbors\n else:\n num_neighbors = neighbors\n self.neighbors = self._mission.GetNeighbors(self.ID, season=self.\n season, cadence=self.cadence, model=self.parent_model,\n neighbors=num_neighbors, mag_range=kwargs.get('mag_range', (\n 11.0, 13.0)), cdpp_range=kwargs.get('cdpp_range', None),\n aperture_name=self.aperture_name)\n if len(self.neighbors):\n if len(self.neighbors) < num_neighbors:\n log.warn('%d neighbors requested, but only %d found.' % (\n num_neighbors, len(self.neighbors)))\n elif num_neighbors > 0:\n log.warn('No neighbors found! Running standard PLD...')\n for n, neighbor in enumerate(self.neighbors):\n log.info('Loading data for neighboring target %d...' % neighbor)\n if neighbors_data is not None:\n data = neighbors_data[n]\n data.mask = np.array(list(set(np.concatenate([data.badmask,\n data.nanmask]))), dtype=int)\n data.fraw = np.sum(data.fpix, axis=1)\n elif self.parent_model is not None and self.cadence == 'lc':\n data = eval(self.parent_model)(neighbor, mission=self.mission,\n is_parent=True)\n else:\n data = self._mission.GetData(neighbor, season=self.season,\n clobber=self.clobber_tpf, cadence=self.cadence,\n aperture_name=self.aperture_name, saturated_aperture_name=\n self.saturated_aperture_name, max_pixels=self.max_pixels,\n saturation_tolerance=self.saturation_tolerance, get_hires=\n False, get_nearby=False)\n if data is None:\n raise Exception(\n 'Unable to retrieve data for neighboring target.')\n data.mask = np.array(list(set(np.concatenate([data.badmask,\n data.nanmask]))), dtype=int)\n data.fraw = np.sum(data.fpix, axis=1)\n X1 = data.fpix / data.fraw.reshape(-1, 1)\n X1 = Interpolate(data.time, data.mask, X1)\n if self.X1N is None:\n self.X1N = np.array(X1)\n else:\n self.X1N = np.hstack([self.X1N, X1])\n del X1\n del data\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self, **kwargs): self.parent_model = kwargs.get('parent_model', 'nPLD') if not self.load_model(self.parent_model): raise Exception('Unable to load parent model.') self._norm = np.array(self.flux) self.recmask = np.array(self.mask) self.reclam = np.array(self.lam) self.optimize_gp = False nseg = len(self.breakpoints) self.lam_idx = -1 self.lam = [([100000.0] + [None for i in range(self.pld_order - 1)]) for b in range(nseg)] self.cdpp_arr = np.array([np.nan for b in range(nseg)]) self.cdppr_arr = np.array([np.nan for b in range(nseg)]) self.cdppv_arr = np.array([np.nan for b in range(nseg)]) self.cdpp = np.nan self.cdppr = np.nan self.cdppv = np.nan self.cdppg = np.nan self.model = np.zeros_like(self.time) self.loaded = True
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n self.parent_model = kwargs.get('parent_model', 'nPLD')\n if not self.load_model(self.parent_model):\n raise Exception('Unable to load parent model.')\n self._norm = np.array(self.flux)\n self.recmask = np.array(self.mask)\n self.reclam = np.array(self.lam)\n self.optimize_gp = False\n nseg = len(self.breakpoints)\n self.lam_idx = -1\n self.lam = [([100000.0] + [None for i in range(self.pld_order - 1)]) for\n b in range(nseg)]\n self.cdpp_arr = np.array([np.nan for b in range(nseg)])\n self.cdppr_arr = np.array([np.nan for b in range(nseg)])\n self.cdppv_arr = np.array([np.nan for b in range(nseg)])\n self.cdpp = np.nan\n self.cdppr = np.nan\n self.cdppv = np.nan\n self.cdppg = np.nan\n self.model = np.zeros_like(self.time)\n self.loaded = True\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self, **kwargs): clobber = self.clobber self.clobber = False if not self.load_model('nPLD'): raise Exception("Can't find `nPLD` model for target.") self.clobber = clobber self.piter = kwargs.get('piter', 3) self.pmaxf = kwargs.get('pmaxf', 300) self.ppert = kwargs.get('ppert', 0.1)
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n clobber = self.clobber\n self.clobber = False\n if not self.load_model('nPLD'):\n raise Exception(\"Can't find `nPLD` model for target.\")\n self.clobber = clobber\n self.piter = kwargs.get('piter', 3)\n self.pmaxf = kwargs.get('pmaxf', 300)\n self.ppert = kwargs.get('ppert', 0.1)\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(self): try: self.plot_aperture([self.dvs.top_right() for i in range(4)]) self.plot_lc(self.dvs.left(), info_right='nPLD', color='k') self.cross_validate(self.dvs.right()) self.compute() self.cdpp_arr = self.get_cdpp_arr() self.cdpp = self.get_cdpp() self.plot_lc(self.dvs.left(), info_right='Powell', color='k') self.plot_final(self.dvs.top_left()) self.plot_info(self.dvs) self.save_model() except: self.exception_handler(self.debug)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n self.plot_aperture([self.dvs.top_right() for i in range(4)])\n self.plot_lc(self.dvs.left(), info_right='nPLD', color='k')\n self.cross_validate(self.dvs.right())\n self.compute()\n self.cdpp_arr = self.get_cdpp_arr()\n self.cdpp = self.get_cdpp()\n self.plot_lc(self.dvs.left(), info_right='Powell', color='k')\n self.plot_final(self.dvs.top_left())\n self.plot_info(self.dvs)\n self.save_model()\n except:\n self.exception_handler(self.debug)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, ax): cdpp_opt = self.get_cdpp_arr() for b, brkpt in enumerate(self.breakpoints): log.info('Cross-validating chunk %d/%d...' % (b + 1, len(self. breakpoints))) m = self.get_masked_chunk(b) time = self.time[m] flux = self.fraw[m] ferr = self.fraw_err[m] med = np.nanmedian(self.fraw) gp = GP(self.kernel, self.kernel_params, white=False) gp.compute(time, ferr) masks = list(Chunks(np.arange(0, len(time)), len(time) // self.cdivs)) pre_v = [self.cv_precompute(mask, b) for mask in masks] log_lam_opt = np.log10(self.lam[b]) scatter_opt = self.validation_scatter(log_lam_opt, b, masks, pre_v, gp, flux, time, med) log.info('Iter 0/%d: ' % self.piter + 'logL = (%s), s = %.3f' % ( ', '.join([('%.3f' % l) for l in log_lam_opt]), scatter_opt)) for p in range(self.piter): log_lam = np.array(np.log10(self.lam[b])) * (1 + self.ppert * np.random.randn(len(self.lam[b]))) scatter = self.validation_scatter(log_lam, b, masks, pre_v, gp, flux, time, med) log.info('Initializing at: ' + 'logL = (%s), s = %.3f' % (', '. join([('%.3f' % l) for l in log_lam]), scatter)) log_lam, scatter, _, _, _, _ = fmin_powell(self. validation_scatter, log_lam, args=(b, masks, pre_v, gp, flux, time, med), maxfun=self.pmaxf, disp=False, full_output=True) tmp = np.array(self.lam[b]) self.lam[b] = 10 ** log_lam self.compute() cdpp = self.get_cdpp_arr()[b] self.lam[b] = tmp if cdpp < cdpp_opt[b]: cdpp_opt[b] = cdpp log_lam_opt = log_lam log.info('Iter %d/%d: ' % (p + 1, self.piter) + 'logL = (%s), s = %.3f' % (', '.join([('%.3f' % l) for l in log_lam]), scatter)) log.info('Found minimum: logL = (%s), s = %.3f' % (', '.join([( '%.3f' % l) for l in log_lam_opt]), scatter_opt)) self.lam[b] = 10 ** log_lam_opt bs = np.arange(len(self.breakpoints)) color = ['k', 'b', 'r', 'g', 'y'] for n in range(self.pld_order): ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '.', color=color[n]) ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '-', color=color[n], alpha=0.25) ax[0].set_ylabel('$\\log\\Lambda$', fontsize=5) ax[0].margins(0.1, 0.1) ax[0].set_xticks(np.arange(1, len(self.breakpoints) + 1)) ax[0].set_xticklabels([]) cdpp_arr = self.get_cdpp_arr() ax[1].plot(bs + 1, cdpp_arr, 'b.') ax[1].plot(bs + 1, cdpp_arr, 'b-', alpha=0.25) ax[1].margins(0.1, 0.1) ax[1].set_ylabel('Scatter (ppm)', fontsize=5) ax[1].set_xlabel('Chunk', fontsize=5) ax[1].set_xticks(np.arange(1, len(self.breakpoints) + 1))
cross_validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ax):\n cdpp_opt = self.get_cdpp_arr()\n for b, brkpt in enumerate(self.breakpoints):\n log.info('Cross-validating chunk %d/%d...' % (b + 1, len(self.\n breakpoints)))\n m = self.get_masked_chunk(b)\n time = self.time[m]\n flux = self.fraw[m]\n ferr = self.fraw_err[m]\n med = np.nanmedian(self.fraw)\n gp = GP(self.kernel, self.kernel_params, white=False)\n gp.compute(time, ferr)\n masks = list(Chunks(np.arange(0, len(time)), len(time) // self.cdivs))\n pre_v = [self.cv_precompute(mask, b) for mask in masks]\n log_lam_opt = np.log10(self.lam[b])\n scatter_opt = self.validation_scatter(log_lam_opt, b, masks, pre_v,\n gp, flux, time, med)\n log.info('Iter 0/%d: ' % self.piter + 'logL = (%s), s = %.3f' % (\n ', '.join([('%.3f' % l) for l in log_lam_opt]), scatter_opt))\n for p in range(self.piter):\n log_lam = np.array(np.log10(self.lam[b])) * (1 + self.ppert *\n np.random.randn(len(self.lam[b])))\n scatter = self.validation_scatter(log_lam, b, masks, pre_v, gp,\n flux, time, med)\n log.info('Initializing at: ' + 'logL = (%s), s = %.3f' % (', '.\n join([('%.3f' % l) for l in log_lam]), scatter))\n log_lam, scatter, _, _, _, _ = fmin_powell(self.\n validation_scatter, log_lam, args=(b, masks, pre_v, gp,\n flux, time, med), maxfun=self.pmaxf, disp=False,\n full_output=True)\n tmp = np.array(self.lam[b])\n self.lam[b] = 10 ** log_lam\n self.compute()\n cdpp = self.get_cdpp_arr()[b]\n self.lam[b] = tmp\n if cdpp < cdpp_opt[b]:\n cdpp_opt[b] = cdpp\n log_lam_opt = log_lam\n log.info('Iter %d/%d: ' % (p + 1, self.piter) + \n 'logL = (%s), s = %.3f' % (', '.join([('%.3f' % l) for l in\n log_lam]), scatter))\n log.info('Found minimum: logL = (%s), s = %.3f' % (', '.join([(\n '%.3f' % l) for l in log_lam_opt]), scatter_opt))\n self.lam[b] = 10 ** log_lam_opt\n bs = np.arange(len(self.breakpoints))\n color = ['k', 'b', 'r', 'g', 'y']\n for n in range(self.pld_order):\n ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '.',\n color=color[n])\n ax[0].plot(bs + 1, [np.log10(self.lam[b][n]) for b in bs], '-',\n color=color[n], alpha=0.25)\n ax[0].set_ylabel('$\\\\log\\\\Lambda$', fontsize=5)\n ax[0].margins(0.1, 0.1)\n ax[0].set_xticks(np.arange(1, len(self.breakpoints) + 1))\n ax[0].set_xticklabels([])\n cdpp_arr = self.get_cdpp_arr()\n ax[1].plot(bs + 1, cdpp_arr, 'b.')\n ax[1].plot(bs + 1, cdpp_arr, 'b-', alpha=0.25)\n ax[1].margins(0.1, 0.1)\n ax[1].set_ylabel('Scatter (ppm)', fontsize=5)\n ax[1].set_xlabel('Chunk', fontsize=5)\n ax[1].set_xticks(np.arange(1, len(self.breakpoints) + 1))\n", "role": "user" }, { "content": "cross_validate", "role": "assistant" } ]
def x(self, log_lam, b, masks, pre_v, gp, flux, time, med): self.lam[b] = 10 ** log_lam scatter = [None for i in range(len(masks))] for i in range(len(masks)): model = self.cv_compute(b, *pre_v[i]) try: gpm, _ = gp.predict(flux - model - med, time[masks[i]]) except ValueError: return 1e+30 fdet = (flux - model)[masks[i]] - gpm scatter[i] = 1000000.0 * (1.4826 * np.nanmedian(np.abs(fdet / med - np.nanmedian(fdet / med))) / np.sqrt(len(masks[i]))) return np.max(scatter)
validation_scatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, log_lam, b, masks, pre_v, gp, flux, time, med):\n self.lam[b] = 10 ** log_lam\n scatter = [None for i in range(len(masks))]\n for i in range(len(masks)):\n model = self.cv_compute(b, *pre_v[i])\n try:\n gpm, _ = gp.predict(flux - model - med, time[masks[i]])\n except ValueError:\n return 1e+30\n fdet = (flux - model)[masks[i]] - gpm\n scatter[i] = 1000000.0 * (1.4826 * np.nanmedian(np.abs(fdet / med -\n np.nanmedian(fdet / med))) / np.sqrt(len(masks[i])))\n return np.max(scatter)\n", "role": "user" }, { "content": "validation_scatter", "role": "assistant" } ]
def x(datatype='string', size=10, start=None, end=None, converter=None, choice_from=None, **kwargs): data = [] converter = converter or def_converter if datatype == 'date': date_end = end or date.today() date_start = start or date(1990, 1, 1) delta = date_end - date_start for s in range(size): data.append(converter(random_date(date_start, delta.days))) elif datatype == 'integer': start = start or 0 end = end or 1000000 for s in range(size): data.append(converter(randint(start, end))) elif datatype == 'float': start = start or 0 end = end or 10 for s in range(size): data.append(converter(uniform(start, end))) elif datatype == 'choice' and choice_from: for s in range(size): data.append(choice(list(choice_from))) else: for s in range(size): data.append(converter(random_string(**kwargs))) return data
populate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datatype='string', size=10, start=None, end=None, converter=None,\n choice_from=None, **kwargs):\n data = []\n converter = converter or def_converter\n if datatype == 'date':\n date_end = end or date.today()\n date_start = start or date(1990, 1, 1)\n delta = date_end - date_start\n for s in range(size):\n data.append(converter(random_date(date_start, delta.days)))\n elif datatype == 'integer':\n start = start or 0\n end = end or 1000000\n for s in range(size):\n data.append(converter(randint(start, end)))\n elif datatype == 'float':\n start = start or 0\n end = end or 10\n for s in range(size):\n data.append(converter(uniform(start, end)))\n elif datatype == 'choice' and choice_from:\n for s in range(size):\n data.append(choice(list(choice_from)))\n else:\n for s in range(size):\n data.append(converter(random_string(**kwargs)))\n return data\n", "role": "user" }, { "content": "populate", "role": "assistant" } ]
def x(star, pos_tol=2.5, neg_tol=50.0, **ps_kwargs): t = np.delete(star.time, np.concatenate([star.nanmask, star.badmask])) f = np.delete(star.flux, np.concatenate([star.nanmask, star.badmask])) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) pos_inds = np.where(f > med + pos_tol * MAD)[0] pos_inds = np.array([np.argmax(star.time == t[i]) for i in pos_inds]) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) neg_inds = np.where(f < med - neg_tol * MAD)[0] neg_inds = np.array([np.argmax(star.time == t[i]) for i in neg_inds]) star.outmask = np.concatenate([neg_inds, pos_inds]) star.transitmask = np.array([], dtype=int) TIME = np.array([]) DEPTH = np.array([]) VARDEPTH = np.array([]) DELCHISQ = np.array([]) for b, brkpt in enumerate(star.breakpoints): log.info('Running chunk %d/%d...' % (b + 1, len(star.breakpoints))) m = star.get_masked_chunk(b, pad=False) K = GetCovariance(star.kernel, star.kernel_params, star.time[m], star.fraw_err[m]) A = np.zeros((len(m), len(m))) for n in range(star.pld_order): XM = star.X(n, m) A += star.lam[b][n] * np.dot(XM, XM.T) K += A CDK = cho_factor(K) med = np.nanmedian(star.fraw[m]) lnL0 = -0.5 * np.dot(star.fraw[m], cho_solve(CDK, star.fraw[m])) dt = np.median(np.diff(star.time[m])) tol = np.nanmedian(np.diff(star.time[m])) / 5.0 tunif = np.arange(star.time[m][0], star.time[m][-1] + tol, dt) tnogaps = np.array(tunif) gaps = [] j = 0 for i, t in enumerate(tunif): if np.abs(star.time[m][j] - t) < tol: tnogaps[i] = star.time[m][j] j += 1 if j == len(star.time[m]): break else: gaps.append(i) gaps = np.array(gaps, dtype=int) transit_model = TransitShape(**ps_kwargs) dchisq = np.zeros(len(tnogaps)) d = np.zeros(len(tnogaps)) vard = np.zeros(len(tnogaps)) for i in prange(len(tnogaps)): trn = transit_model(tnogaps, tnogaps[i]) trn = np.delete(trn, gaps) trn *= med vard[i] = 1.0 / np.dot(trn, cho_solve(CDK, trn)) if not np.isfinite(vard[i]): vard[i] = np.nan d[i] = np.nan dchisq[i] = np.nan continue d[i] = vard[i] * np.dot(trn, cho_solve(CDK, star.fraw[m])) r = star.fraw[m] - trn * d[i] lnL = -0.5 * np.dot(r, cho_solve(CDK, r)) dchisq[i] = -2 * (lnL0 - lnL) TIME = np.append(TIME, tnogaps) DEPTH = np.append(DEPTH, d) VARDEPTH = np.append(VARDEPTH, vard) DELCHISQ = np.append(DELCHISQ, dchisq) return TIME, DEPTH, VARDEPTH, DELCHISQ
Search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(star, pos_tol=2.5, neg_tol=50.0, **ps_kwargs):\n t = np.delete(star.time, np.concatenate([star.nanmask, star.badmask]))\n f = np.delete(star.flux, np.concatenate([star.nanmask, star.badmask]))\n f = SavGol(f)\n med = np.nanmedian(f)\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n pos_inds = np.where(f > med + pos_tol * MAD)[0]\n pos_inds = np.array([np.argmax(star.time == t[i]) for i in pos_inds])\n MAD = 1.4826 * np.nanmedian(np.abs(f - med))\n neg_inds = np.where(f < med - neg_tol * MAD)[0]\n neg_inds = np.array([np.argmax(star.time == t[i]) for i in neg_inds])\n star.outmask = np.concatenate([neg_inds, pos_inds])\n star.transitmask = np.array([], dtype=int)\n TIME = np.array([])\n DEPTH = np.array([])\n VARDEPTH = np.array([])\n DELCHISQ = np.array([])\n for b, brkpt in enumerate(star.breakpoints):\n log.info('Running chunk %d/%d...' % (b + 1, len(star.breakpoints)))\n m = star.get_masked_chunk(b, pad=False)\n K = GetCovariance(star.kernel, star.kernel_params, star.time[m],\n star.fraw_err[m])\n A = np.zeros((len(m), len(m)))\n for n in range(star.pld_order):\n XM = star.X(n, m)\n A += star.lam[b][n] * np.dot(XM, XM.T)\n K += A\n CDK = cho_factor(K)\n med = np.nanmedian(star.fraw[m])\n lnL0 = -0.5 * np.dot(star.fraw[m], cho_solve(CDK, star.fraw[m]))\n dt = np.median(np.diff(star.time[m]))\n tol = np.nanmedian(np.diff(star.time[m])) / 5.0\n tunif = np.arange(star.time[m][0], star.time[m][-1] + tol, dt)\n tnogaps = np.array(tunif)\n gaps = []\n j = 0\n for i, t in enumerate(tunif):\n if np.abs(star.time[m][j] - t) < tol:\n tnogaps[i] = star.time[m][j]\n j += 1\n if j == len(star.time[m]):\n break\n else:\n gaps.append(i)\n gaps = np.array(gaps, dtype=int)\n transit_model = TransitShape(**ps_kwargs)\n dchisq = np.zeros(len(tnogaps))\n d = np.zeros(len(tnogaps))\n vard = np.zeros(len(tnogaps))\n for i in prange(len(tnogaps)):\n trn = transit_model(tnogaps, tnogaps[i])\n trn = np.delete(trn, gaps)\n trn *= med\n vard[i] = 1.0 / np.dot(trn, cho_solve(CDK, trn))\n if not np.isfinite(vard[i]):\n vard[i] = np.nan\n d[i] = np.nan\n dchisq[i] = np.nan\n continue\n d[i] = vard[i] * np.dot(trn, cho_solve(CDK, star.fraw[m]))\n r = star.fraw[m] - trn * d[i]\n lnL = -0.5 * np.dot(r, cho_solve(CDK, r))\n dchisq[i] = -2 * (lnL0 - lnL)\n TIME = np.append(TIME, tnogaps)\n DEPTH = np.append(DEPTH, d)\n VARDEPTH = np.append(VARDEPTH, vard)\n DELCHISQ = np.append(DELCHISQ, dchisq)\n return TIME, DEPTH, VARDEPTH, DELCHISQ\n", "role": "user" }, { "content": "Search", "role": "assistant" } ]
def x(self): return iter(chain(itervalues(self._new), itervalues(self._modified)))
iterdirty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return iter(chain(itervalues(self._new), itervalues(self._modified)))\n", "role": "user" }, { "content": "iterdirty", "role": "assistant" } ]
def x(self, instance, modified=True, persistent=None, force_update=False): if instance._meta.type == 'structure': return self._add_structure(instance) state = instance.get_state() if state.deleted: raise ValueError('State is deleted. Cannot add.') self.pop(state.iid) pers = persistent if persistent is not None else state.persistent pkname = instance._meta.pkname() if not pers: instance._dbdata.pop(pkname, None) state = instance.get_state(iid=None) elif persistent: instance._dbdata[pkname] = instance.pkvalue() state = instance.get_state(iid=instance.pkvalue()) else: action = 'update' if force_update else None state = instance.get_state(action=action, iid=state.iid) iid = state.iid if state.persistent: if modified: self._modified[iid] = instance else: self._new[iid] = instance return instance
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, modified=True, persistent=None, force_update=False):\n if instance._meta.type == 'structure':\n return self._add_structure(instance)\n state = instance.get_state()\n if state.deleted:\n raise ValueError('State is deleted. Cannot add.')\n self.pop(state.iid)\n pers = persistent if persistent is not None else state.persistent\n pkname = instance._meta.pkname()\n if not pers:\n instance._dbdata.pop(pkname, None)\n state = instance.get_state(iid=None)\n elif persistent:\n instance._dbdata[pkname] = instance.pkvalue()\n state = instance.get_state(iid=instance.pkvalue())\n else:\n action = 'update' if force_update else None\n state = instance.get_state(action=action, iid=state.iid)\n iid = state.iid\n if state.persistent:\n if modified:\n self._modified[iid] = instance\n else:\n self._new[iid] = instance\n return instance\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, instance, session): if instance._meta.type == 'structure': return self._delete_structure(instance) inst = self.pop(instance) instance = inst if inst is not None else instance if instance is not None: state = instance.get_state() if state.persistent: state.deleted = True self._deleted[state.iid] = instance instance.session = session else: instance.session = None return instance
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, session):\n if instance._meta.type == 'structure':\n return self._delete_structure(instance)\n inst = self.pop(instance)\n instance = inst if inst is not None else instance\n if instance is not None:\n state = instance.get_state()\n if state.persistent:\n state.deleted = True\n self._deleted[state.iid] = instance\n instance.session = session\n else:\n instance.session = None\n return instance\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, instance): if isinstance(instance, self.model): iid = instance.get_state().iid else: iid = instance instance = None for d in (self._new, self._modified, self._deleted): if iid in d: inst = d.pop(iid) if instance is None: instance = inst elif inst is not instance: raise ValueError('Critical error: %s is duplicated' % iid) return instance
pop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance):\n if isinstance(instance, self.model):\n iid = instance.get_state().iid\n else:\n iid = instance\n instance = None\n for d in (self._new, self._modified, self._deleted):\n if iid in d:\n inst = d.pop(iid)\n if instance is None:\n instance = inst\n elif inst is not instance:\n raise ValueError('Critical error: %s is duplicated' % iid)\n return instance\n", "role": "user" }, { "content": "pop", "role": "assistant" } ]
def x(self, instance): instance = self.pop(instance) instance.session = None return instance
expunge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance):\n instance = self.pop(instance)\n instance.session = None\n return instance\n", "role": "user" }, { "content": "expunge", "role": "assistant" } ]
def x(self, results): tpy = self._meta.pk_to_python instances = [] deleted = [] errors = [] for result in results: if isinstance(result, Exception): errors.append(result.__class__( 'Exception while committing %s. %s' % (self._meta, result))) continue instance = self.pop(result.iid) id = tpy(result.id, self.backend) if result.deleted: deleted.append(id) else: if instance is None: raise InvalidTransaction( '{0} session received id "{1}" which is not in the session.' .format(self, result.iid)) setattr(instance, instance._meta.pkname(), id) instance = self.add(instance, modified=False, persistent=result .persistent) instance.get_state().score = result.score if instance.get_state().persistent: instances.append(instance) return instances, deleted, errors
post_commit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, results):\n tpy = self._meta.pk_to_python\n instances = []\n deleted = []\n errors = []\n for result in results:\n if isinstance(result, Exception):\n errors.append(result.__class__(\n 'Exception while committing %s. %s' % (self._meta, result)))\n continue\n instance = self.pop(result.iid)\n id = tpy(result.id, self.backend)\n if result.deleted:\n deleted.append(id)\n else:\n if instance is None:\n raise InvalidTransaction(\n '{0} session received id \"{1}\" which is not in the session.'\n .format(self, result.iid))\n setattr(instance, instance._meta.pkname(), id)\n instance = self.add(instance, modified=False, persistent=result\n .persistent)\n instance.get_state().score = result.score\n if instance.get_state().persistent:\n instances.append(instance)\n return instances, deleted, errors\n", "role": "user" }, { "content": "post_commit", "role": "assistant" } ]
def x(self, callback=None): if self.executed: raise InvalidTransaction( 'Invalid operation. Transaction already executed.') session = self.session self.session = None self.on_result = self._commit(session, callback) return self.on_result
commit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, callback=None):\n if self.executed:\n raise InvalidTransaction(\n 'Invalid operation. Transaction already executed.')\n session = self.session\n self.session = None\n self.on_result = self._commit(session, callback)\n return self.on_result\n", "role": "user" }, { "content": "commit", "role": "assistant" } ]
def x(self): return frozenset(chain(*tuple(sm.dirty for sm in itervalues(self._models))) )
dirty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return frozenset(chain(*tuple(sm.dirty for sm in itervalues(self._models)))\n )\n", "role": "user" }, { "content": "dirty", "role": "assistant" } ]
def x(self, **options): if self.transaction is not None: raise InvalidTransaction('A transaction is already begun.') else: self.transaction = Transaction(self, **options) return self.transaction
begin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **options):\n if self.transaction is not None:\n raise InvalidTransaction('A transaction is already begun.')\n else:\n self.transaction = Transaction(self, **options)\n return self.transaction\n", "role": "user" }, { "content": "begin", "role": "assistant" } ]
def x(self, model, **kwargs): sm = self.model(model) query_class = sm.manager.query_class or Query return query_class(sm._meta, self, **kwargs)
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, **kwargs):\n sm = self.model(model)\n query_class = sm.manager.query_class or Query\n return query_class(sm._meta, self, **kwargs)\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(self, model, **kwargs): backend = self.model(model).backend return backend.execute(self._update_or_create(model, **kwargs))
update_or_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, **kwargs):\n backend = self.model(model).backend\n return backend.execute(self._update_or_create(model, **kwargs))\n", "role": "user" }, { "content": "update_or_create", "role": "assistant" } ]
def x(self, instance, modified=True, **params): sm = self.model(instance) instance.session = self o = sm.add(instance, modified=modified, **params) if modified and not self.transaction: transaction = self.begin() return transaction.commit(lambda : o) else: return o
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, modified=True, **params):\n sm = self.model(instance)\n instance.session = self\n o = sm.add(instance, modified=modified, **params)\n if modified and not self.transaction:\n transaction = self.begin()\n return transaction.commit(lambda : o)\n else:\n return o\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, instance_or_query): sm = self.model(instance_or_query) if is_query(instance_or_query): if instance_or_query.session is not self: raise ValueError('Adding a query generated by another session') sm._delete_query.append(instance_or_query) else: instance_or_query = sm.delete(instance_or_query, self) if not self.transaction: transaction = self.begin() return transaction.commit(lambda : transaction.deleted.get(sm._meta)) else: return instance_or_query
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance_or_query):\n sm = self.model(instance_or_query)\n if is_query(instance_or_query):\n if instance_or_query.session is not self:\n raise ValueError('Adding a query generated by another session')\n sm._delete_query.append(instance_or_query)\n else:\n instance_or_query = sm.delete(instance_or_query, self)\n if not self.transaction:\n transaction = self.begin()\n return transaction.commit(lambda : transaction.deleted.get(sm._meta))\n else:\n return instance_or_query\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, model, create=True): manager = self.manager(model) sm = self._models.get(manager) if sm is None and create: sm = SessionModel(manager) self._models[manager] = sm return sm
model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, create=True):\n manager = self.manager(model)\n sm = self._models.get(manager)\n if sm is None and create:\n sm = SessionModel(manager)\n self._models[manager] = sm\n return sm\n", "role": "user" }, { "content": "model", "role": "assistant" } ]
def x(self, instance=None): if instance is not None: sm = self._models.get(instance._meta) if sm: return sm.expunge(instance) else: self._models.clear()
expunge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance=None):\n if instance is not None:\n sm = self._models.get(instance._meta)\n if sm:\n return sm.expunge(instance)\n else:\n self._models.clear()\n", "role": "user" }, { "content": "expunge", "role": "assistant" } ]
def x(self, model): try: return self.router[model] except KeyError: meta = getattr(model, '_meta', model) if meta.type == 'structure': if hasattr(model, 'model'): structure_model = model.model if structure_model: return self.manager(structure_model) else: manager = self.router.structure(model) if manager: return manager raise InvalidTransaction('"%s" not valid in this session' % meta)
manager
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model):\n try:\n return self.router[model]\n except KeyError:\n meta = getattr(model, '_meta', model)\n if meta.type == 'structure':\n if hasattr(model, 'model'):\n structure_model = model.model\n if structure_model:\n return self.manager(structure_model)\n else:\n manager = self.router.structure(model)\n if manager:\n return manager\n raise InvalidTransaction('\"%s\" not valid in this session' % meta)\n", "role": "user" }, { "content": "manager", "role": "assistant" } ]
def x(self, *args, **kwargs): return self.session().add(self.model(*args, **kwargs))
new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n return self.session().add(self.model(*args, **kwargs))\n", "role": "user" }, { "content": "new", "role": "assistant" } ]
def x(self, session=None): if session is None or session.router is not self.router: session = self.session() return session.query(self.model)
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session=None):\n if session is None or session.router is not self.router:\n session = self.session()\n return session.query(self.model)\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(self, text, lookup=None): return self.query().search(text, lookup=lookup)
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, lookup=None):\n return self.query().search(text, lookup=lookup)\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(response, encoding): it = iter(response) return dict((k.decode(encoding), v) for k, v in zip(it, it))
pairs_to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(response, encoding):\n it = iter(response)\n return dict((k.decode(encoding), v) for k, v in zip(it, it))\n", "role": "user" }, { "content": "pairs_to_dict", "role": "assistant" } ]