source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.cosh(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.cosh(x)
|
cosh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.cosh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.cosh(x)\n",
"role": "user"
},
{
"content": "cosh",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.degrees(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.degrees(x)
|
degrees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.degrees(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.degrees(x)\n",
"role": "user"
},
{
"content": "degrees",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.exp(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.exp(x)
|
exp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.exp(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.exp(x)\n",
"role": "user"
},
{
"content": "exp",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.expm1(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.expm1(x)
|
expm1
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.expm1(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.expm1(x)\n",
"role": "user"
},
{
"content": "expm1",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.fabs(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.fabs(x)
|
fabs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.fabs(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.fabs(x)\n",
"role": "user"
},
{
"content": "fabs",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.floor(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.floor(x)
|
floor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.floor(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.floor(x)\n",
"role": "user"
},
{
"content": "floor",
"role": "assistant"
}
] |
def x(x, y):
if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction):
ufx = to_uncertain_func(x)
ufy = to_uncertain_func(y)
mcpts = np.hypot(ufx._mcpts, ufy._mcpts)
return UncertainFunction(mcpts)
else:
return np.hypot(x, y)
|
hypot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y):\n if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction):\n ufx = to_uncertain_func(x)\n ufy = to_uncertain_func(y)\n mcpts = np.hypot(ufx._mcpts, ufy._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.hypot(x, y)\n",
"role": "user"
},
{
"content": "hypot",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.log(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.log(x)
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log(x)\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.log10(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.log10(x)
|
log10
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log10(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log10(x)\n",
"role": "user"
},
{
"content": "log10",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.log1p(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.log1p(x)
|
log1p
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log1p(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log1p(x)\n",
"role": "user"
},
{
"content": "log1p",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.radians(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.radians(x)
|
radians
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.radians(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.radians(x)\n",
"role": "user"
},
{
"content": "radians",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.sin(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.sin(x)
|
sin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sin(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sin(x)\n",
"role": "user"
},
{
"content": "sin",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.sinh(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.sinh(x)
|
sinh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sinh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sinh(x)\n",
"role": "user"
},
{
"content": "sinh",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.sqrt(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.sqrt(x)
|
sqrt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sqrt(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sqrt(x)\n",
"role": "user"
},
{
"content": "sqrt",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.tan(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.tan(x)
|
tan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.tan(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.tan(x)\n",
"role": "user"
},
{
"content": "tan",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.tanh(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.tanh(x)
|
tanh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.tanh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.tanh(x)\n",
"role": "user"
},
{
"content": "tanh",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
mcpts = np.trunc(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.trunc(x)
|
trunc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.trunc(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.trunc(x)\n",
"role": "user"
},
{
"content": "trunc",
"role": "assistant"
}
] |
def x(dist=None, size=None, dims=1, form='randomized', iterations=100,
showcorrelations=False):
assert dims > 0, 'kwarg "dims" must be at least 1'
if not size or not dist:
return None
def x(x, samples=20):
segmentSize = 1.0 / samples
numVars = x.shape[1]
out = np.zeros((samples, numVars))
pointValue = np.zeros(samples)
for n in range(numVars):
for i in range(samples):
segmentMin = i * segmentSize
point = segmentMin + np.random.random() * segmentSize
pointValue[i] = point * (x[1, n] - x[0, n]) + x[0, n]
out[:, n] = pointValue
return _mix(out)
def x(data, dim='cols'):
data = np.atleast_2d(data)
n = data.shape[0]
if dim == 'rows':
data = data.T
data_rank = list(range(n))
for i in range(data.shape[1]):
new_data_rank = np.random.permutation(data_rank)
vals, order = np.unique(np.hstack((data_rank, new_data_rank)),
return_inverse=True)
old_order = order[:n]
new_order = order[-n:]
tmp = data[np.argsort(old_order), i][new_order]
data[:, i] = tmp[:]
if dim == 'rows':
data = data.T
return data
if form is 'randomized':
if hasattr(dist, '__getitem__'):
nvars = len(dist)
x = np.vstack((np.zeros(nvars), np.ones(nvars)))
unif_data = _lhs(x, samples=size)
dist_data = np.empty_like(unif_data)
for i, d in enumerate(dist):
dist_data[:, i] = d.ppf(unif_data[:, i])
else:
nvars = dims
x = np.vstack((np.zeros(nvars), np.ones(nvars)))
unif_data = _lhs(x, samples=size)
dist_data = np.empty_like(unif_data)
for i in range(nvars):
dist_data[:, i] = dist.ppf(unif_data[:, i])
elif form is 'spacefilling':
def x(arr):
n = arr.shape[0]
ans = 0.0
for i in range(n - 1):
for j in range(i + 1, n):
d = np.sqrt(np.sum([((arr[i, k] - arr[j, k]) ** 2) for
k in range(arr.shape[1])]))
ans += 1.0 / d ** 2
return ans
def x(data):
best = 100000000.0
for it in range(iterations):
d = euclid_distance(data)
if d < best:
d_opt = d
data_opt = data.copy()
data = _mix(data)
print('Optimized Distance:', d_opt)
return data_opt
if hasattr(dist, '__getitem__'):
nvars = len(dist)
x = np.vstack((np.zeros(nvars), np.ones(nvars)))
unif_data = fill_space(_lhs(x, samples=size))
dist_data = np.empty_like(unif_data)
for i, d in enumerate(dist):
dist_data[:, i] = d.ppf(unif_data[:, i])
else:
nvars = dims
x = np.vstack((np.zeros(nvars), np.ones(nvars)))
unif_data = fill_space(_lhs(x, samples=size))
dist_data = np.empty_like(unif_data)
for i in range(nvars):
dist_data[:, i] = dist.ppf(unif_data[:, i])
elif form is 'orthogonal':
raise NotImplementedError(
"Sorry. The orthogonal space-filling algorithm hasn't been implemented yet."
)
else:
raise ValueError('Invalid "form" value: %s' % form)
if dist_data.shape[1] > 1:
cor_matrix = np.zeros((nvars, nvars))
for i in range(nvars):
for j in range(nvars):
x_data = dist_data[:, i].copy()
y_data = dist_data[:, j].copy()
x_mean = x_data.mean()
y_mean = y_data.mean()
num = np.sum((x_data - x_mean) * (y_data - y_mean))
den = np.sqrt(np.sum((x_data - x_mean) ** 2) * np.sum((
y_data - y_mean) ** 2))
cor_matrix[i, j] = num / den
cor_matrix[j, i] = num / den
inv_cor_matrix = np.linalg.pinv(cor_matrix)
VIF = np.max(np.diag(inv_cor_matrix))
if showcorrelations:
print('Correlation Matrix:\n', cor_matrix)
print('Inverted Correlation Matrix:\n', inv_cor_matrix)
print('Variance Inflation Factor (VIF):', VIF)
return dist_data
|
lhd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dist=None, size=None, dims=1, form='randomized', iterations=100,\n showcorrelations=False):\n assert dims > 0, 'kwarg \"dims\" must be at least 1'\n if not size or not dist:\n return None\n\n def x(x, samples=20):\n segmentSize = 1.0 / samples\n numVars = x.shape[1]\n out = np.zeros((samples, numVars))\n pointValue = np.zeros(samples)\n for n in range(numVars):\n for i in range(samples):\n segmentMin = i * segmentSize\n point = segmentMin + np.random.random() * segmentSize\n pointValue[i] = point * (x[1, n] - x[0, n]) + x[0, n]\n out[:, n] = pointValue\n return _mix(out)\n\n def x(data, dim='cols'):\n data = np.atleast_2d(data)\n n = data.shape[0]\n if dim == 'rows':\n data = data.T\n data_rank = list(range(n))\n for i in range(data.shape[1]):\n new_data_rank = np.random.permutation(data_rank)\n vals, order = np.unique(np.hstack((data_rank, new_data_rank)),\n return_inverse=True)\n old_order = order[:n]\n new_order = order[-n:]\n tmp = data[np.argsort(old_order), i][new_order]\n data[:, i] = tmp[:]\n if dim == 'rows':\n data = data.T\n return data\n if form is 'randomized':\n if hasattr(dist, '__getitem__'):\n nvars = len(dist)\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = _lhs(x, samples=size)\n dist_data = np.empty_like(unif_data)\n for i, d in enumerate(dist):\n dist_data[:, i] = d.ppf(unif_data[:, i])\n else:\n nvars = dims\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = _lhs(x, samples=size)\n dist_data = np.empty_like(unif_data)\n for i in range(nvars):\n dist_data[:, i] = dist.ppf(unif_data[:, i])\n elif form is 'spacefilling':\n\n def x(arr):\n n = arr.shape[0]\n ans = 0.0\n for i in range(n - 1):\n for j in range(i + 1, n):\n d = np.sqrt(np.sum([((arr[i, k] - arr[j, k]) ** 2) for\n k in range(arr.shape[1])]))\n ans += 1.0 / d ** 2\n return ans\n\n def x(data):\n best = 100000000.0\n for it in range(iterations):\n d = euclid_distance(data)\n if d < best:\n d_opt = d\n data_opt = data.copy()\n data = _mix(data)\n print('Optimized Distance:', d_opt)\n return data_opt\n if hasattr(dist, '__getitem__'):\n nvars = len(dist)\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = fill_space(_lhs(x, samples=size))\n dist_data = np.empty_like(unif_data)\n for i, d in enumerate(dist):\n dist_data[:, i] = d.ppf(unif_data[:, i])\n else:\n nvars = dims\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = fill_space(_lhs(x, samples=size))\n dist_data = np.empty_like(unif_data)\n for i in range(nvars):\n dist_data[:, i] = dist.ppf(unif_data[:, i])\n elif form is 'orthogonal':\n raise NotImplementedError(\n \"Sorry. The orthogonal space-filling algorithm hasn't been implemented yet.\"\n )\n else:\n raise ValueError('Invalid \"form\" value: %s' % form)\n if dist_data.shape[1] > 1:\n cor_matrix = np.zeros((nvars, nvars))\n for i in range(nvars):\n for j in range(nvars):\n x_data = dist_data[:, i].copy()\n y_data = dist_data[:, j].copy()\n x_mean = x_data.mean()\n y_mean = y_data.mean()\n num = np.sum((x_data - x_mean) * (y_data - y_mean))\n den = np.sqrt(np.sum((x_data - x_mean) ** 2) * np.sum((\n y_data - y_mean) ** 2))\n cor_matrix[i, j] = num / den\n cor_matrix[j, i] = num / den\n inv_cor_matrix = np.linalg.pinv(cor_matrix)\n VIF = np.max(np.diag(inv_cor_matrix))\n if showcorrelations:\n print('Correlation Matrix:\\n', cor_matrix)\n print('Inverted Correlation Matrix:\\n', inv_cor_matrix)\n print('Variance Inflation Factor (VIF):', VIF)\n return dist_data\n",
"role": "user"
},
{
"content": "lhd",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, UncertainFunction):
return x
elif isinstance(x, CONSTANT_TYPES):
return UncertainFunction([x] * npts)
raise NotUpcast('%s cannot be converted to a number with uncertainty' %
type(x))
|
to_uncertain_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, UncertainFunction):\n return x\n elif isinstance(x, CONSTANT_TYPES):\n return UncertainFunction([x] * npts)\n raise NotUpcast('%s cannot be converted to a number with uncertainty' %\n type(x))\n",
"role": "user"
},
{
"content": "to_uncertain_func",
"role": "assistant"
}
] |
def x(alpha, beta, low=0, high=1, tag=None):
assert alpha > 0 and beta > 0, 'Beta "alpha" and "beta" parameters must be greater than zero'
assert low < high, 'Beta "low" must be less than "high"'
return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)
|
Beta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alpha, beta, low=0, high=1, tag=None):\n assert alpha > 0 and beta > 0, 'Beta \"alpha\" and \"beta\" parameters must be greater than zero'\n assert low < high, 'Beta \"low\" must be less than \"high\"'\n return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)\n",
"role": "user"
},
{
"content": "Beta",
"role": "assistant"
}
] |
def x(alpha, beta, tag=None):
assert alpha > 0 and beta > 0, 'BetaPrime "alpha" and "beta" parameters must be greater than zero'
x = Beta(alpha, beta, tag)
return x / (1 - x)
|
BetaPrime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alpha, beta, tag=None):\n assert alpha > 0 and beta > 0, 'BetaPrime \"alpha\" and \"beta\" parameters must be greater than zero'\n x = Beta(alpha, beta, tag)\n return x / (1 - x)\n",
"role": "user"
},
{
"content": "BetaPrime",
"role": "assistant"
}
] |
def x(q, low=0, high=1, tag=None):
assert q > 0, 'Bradford "q" parameter must be greater than zero'
assert low < high, 'Bradford "low" parameter must be less than "high"'
return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)
|
Bradford
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, low=0, high=1, tag=None):\n assert q > 0, 'Bradford \"q\" parameter must be greater than zero'\n assert low < high, 'Bradford \"low\" parameter must be less than \"high\"'\n return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)\n",
"role": "user"
},
{
"content": "Bradford",
"role": "assistant"
}
] |
def x(c, k, tag=None):
assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero'
return uv(ss.burr(c, k), tag=tag)
|
Burr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, k, tag=None):\n assert c > 0 and k > 0, 'Burr \"c\" and \"k\" parameters must be greater than zero'\n return uv(ss.burr(c, k), tag=tag)\n",
"role": "user"
},
{
"content": "Burr",
"role": "assistant"
}
] |
def x(k, tag=None):
assert int(k
) == k and k >= 1, 'Chi-Squared "k" must be an integer greater than 0'
return uv(ss.chi2(k), tag=tag)
|
ChiSquared
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k, tag=None):\n assert int(k\n ) == k and k >= 1, 'Chi-Squared \"k\" must be an integer greater than 0'\n return uv(ss.chi2(k), tag=tag)\n",
"role": "user"
},
{
"content": "ChiSquared",
"role": "assistant"
}
] |
def x(k, lamda, tag=None):
assert int(k) == k and k > 0, 'Erlang "k" must be a positive integer'
assert lamda > 0, 'Erlang "lamda" must be greater than zero'
return Gamma(k, lamda, tag)
|
Erlang
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k, lamda, tag=None):\n assert int(k) == k and k > 0, 'Erlang \"k\" must be a positive integer'\n assert lamda > 0, 'Erlang \"lamda\" must be greater than zero'\n return Gamma(k, lamda, tag)\n",
"role": "user"
},
{
"content": "Erlang",
"role": "assistant"
}
] |
def x(lamda, tag=None):
assert lamda > 0, 'Exponential "lamda" must be greater than zero'
return uv(ss.expon(scale=1.0 / lamda), tag=tag)
|
Exponential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lamda, tag=None):\n assert lamda > 0, 'Exponential \"lamda\" must be greater than zero'\n return uv(ss.expon(scale=1.0 / lamda), tag=tag)\n",
"role": "user"
},
{
"content": "Exponential",
"role": "assistant"
}
] |
def x(mu, sigma, tag=None):
assert sigma > 0, 'ExtremeValueMax "sigma" must be greater than zero'
p = U(0, 1)._mcpts[:]
return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)
|
ExtValueMax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'ExtremeValueMax \"sigma\" must be greater than zero'\n p = U(0, 1)._mcpts[:]\n return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)\n",
"role": "user"
},
{
"content": "ExtValueMax",
"role": "assistant"
}
] |
def x(d1, d2, tag=None):
assert int(d1
) == d1 and d1 >= 1, 'Fisher (F) "d1" must be an integer greater than 0'
assert int(d2
) == d2 and d2 >= 1, 'Fisher (F) "d2" must be an integer greater than 0'
return uv(ss.f(d1, d2), tag=tag)
|
Fisher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d1, d2, tag=None):\n assert int(d1\n ) == d1 and d1 >= 1, 'Fisher (F) \"d1\" must be an integer greater than 0'\n assert int(d2\n ) == d2 and d2 >= 1, 'Fisher (F) \"d2\" must be an integer greater than 0'\n return uv(ss.f(d1, d2), tag=tag)\n",
"role": "user"
},
{
"content": "Fisher",
"role": "assistant"
}
] |
def x(k, theta, tag=None):
assert k > 0 and theta > 0, 'Gamma "k" and "theta" parameters must be greater than zero'
return uv(ss.gamma(k, scale=theta), tag=tag)
|
Gamma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(k, theta, tag=None):\n assert k > 0 and theta > 0, 'Gamma \"k\" and \"theta\" parameters must be greater than zero'\n return uv(ss.gamma(k, scale=theta), tag=tag)\n",
"role": "user"
},
{
"content": "Gamma",
"role": "assistant"
}
] |
def x(mu, sigma, tag=None):
assert sigma > 0, 'Log-Normal "sigma" must be positive'
return uv(ss.lognorm(sigma, loc=mu), tag=tag)
|
LogNormal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'Log-Normal \"sigma\" must be positive'\n return uv(ss.lognorm(sigma, loc=mu), tag=tag)\n",
"role": "user"
},
{
"content": "LogNormal",
"role": "assistant"
}
] |
def x(mu, sigma, tag=None):
assert sigma > 0, 'Normal "sigma" must be greater than zero'
return uv(ss.norm(loc=mu, scale=sigma), tag=tag)
|
Normal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'Normal \"sigma\" must be greater than zero'\n return uv(ss.norm(loc=mu, scale=sigma), tag=tag)\n",
"role": "user"
},
{
"content": "Normal",
"role": "assistant"
}
] |
def x(q, a, tag=None):
assert q > 0 and a > 0, 'Pareto "q" and "a" must be positive scalars'
p = Uniform(0, 1, tag)
return a * (1 - p) ** (-1.0 / q)
|
Pareto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, a, tag=None):\n assert q > 0 and a > 0, 'Pareto \"q\" and \"a\" must be positive scalars'\n p = Uniform(0, 1, tag)\n return a * (1 - p) ** (-1.0 / q)\n",
"role": "user"
},
{
"content": "Pareto",
"role": "assistant"
}
] |
def x(q, b, tag=None):
assert q > 0 and b > 0, 'Pareto2 "q" and "b" must be positive scalars'
return Pareto(q, b, tag) - b
|
Pareto2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q, b, tag=None):\n assert q > 0 and b > 0, 'Pareto2 \"q\" and \"b\" must be positive scalars'\n return Pareto(q, b, tag) - b\n",
"role": "user"
},
{
"content": "Pareto2",
"role": "assistant"
}
] |
def x(low, peak, high, g=4.0, tag=None):
a, b, c = [float(x) for x in [low, peak, high]]
assert a <= b <= c, 'PERT "peak" must be greater than "low" and less than "high"'
assert g >= 0, 'PERT "g" must be non-negative'
mu = (a + g * b + c) / (g + 2)
if mu == b:
a1 = a2 = 3.0
else:
a1 = (mu - a) * (2 * b - a - c) / ((b - mu) * (c - a))
a2 = a1 * (c - mu) / (mu - a)
return Beta(a1, a2, a, c, tag)
|
PERT
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(low, peak, high, g=4.0, tag=None):\n a, b, c = [float(x) for x in [low, peak, high]]\n assert a <= b <= c, 'PERT \"peak\" must be greater than \"low\" and less than \"high\"'\n assert g >= 0, 'PERT \"g\" must be non-negative'\n mu = (a + g * b + c) / (g + 2)\n if mu == b:\n a1 = a2 = 3.0\n else:\n a1 = (mu - a) * (2 * b - a - c) / ((b - mu) * (c - a))\n a2 = a1 * (c - mu) / (mu - a)\n return Beta(a1, a2, a, c, tag)\n",
"role": "user"
},
{
"content": "PERT",
"role": "assistant"
}
] |
def x(v, tag=None):
assert int(v
) == v and v >= 1, 'Student-T "v" must be an integer greater than 0'
return uv(ss.t(v), tag=tag)
|
StudentT
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v, tag=None):\n assert int(v\n ) == v and v >= 1, 'Student-T \"v\" must be an integer greater than 0'\n return uv(ss.t(v), tag=tag)\n",
"role": "user"
},
{
"content": "StudentT",
"role": "assistant"
}
] |
def x(low, peak, high, tag=None):
assert low <= peak <= high, 'Triangular "peak" must lie between "low" and "high"'
low, peak, high = [float(x) for x in [low, peak, high]]
return uv(ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=
high - low), tag=tag)
|
Triangular
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(low, peak, high, tag=None):\n assert low <= peak <= high, 'Triangular \"peak\" must lie between \"low\" and \"high\"'\n low, peak, high = [float(x) for x in [low, peak, high]]\n return uv(ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=\n high - low), tag=tag)\n",
"role": "user"
},
{
"content": "Triangular",
"role": "assistant"
}
] |
def x(low, high, tag=None):
assert low < high, 'Uniform "low" must be less than "high"'
return uv(ss.uniform(loc=low, scale=high - low), tag=tag)
|
Uniform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(low, high, tag=None):\n assert low < high, 'Uniform \"low\" must be less than \"high\"'\n return uv(ss.uniform(loc=low, scale=high - low), tag=tag)\n",
"role": "user"
},
{
"content": "Uniform",
"role": "assistant"
}
] |
def x(lamda, k, tag=None):
assert lamda > 0 and k > 0, 'Weibull "lamda" and "k" parameters must be greater than zero'
return uv(ss.exponweib(lamda, k), tag=tag)
|
Weibull
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lamda, k, tag=None):\n assert lamda > 0 and k > 0, 'Weibull \"lamda\" and \"k\" parameters must be greater than zero'\n return uv(ss.exponweib(lamda, k), tag=tag)\n",
"role": "user"
},
{
"content": "Weibull",
"role": "assistant"
}
] |
def x(p, tag=None):
assert 0 < p < 1, 'Bernoulli probability "p" must be between zero and one, non-inclusive'
return uv(ss.bernoulli(p), tag=tag)
|
Bernoulli
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, tag=None):\n assert 0 < p < 1, 'Bernoulli probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.bernoulli(p), tag=tag)\n",
"role": "user"
},
{
"content": "Bernoulli",
"role": "assistant"
}
] |
def x(n, p, tag=None):
assert int(n
) == n and n > 0, 'Binomial number of trials "n" must be an integer greater than zero'
assert 0 < p < 1, 'Binomial probability "p" must be between zero and one, non-inclusive'
return uv(ss.binom(n, p), tag=tag)
|
Binomial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, p, tag=None):\n assert int(n\n ) == n and n > 0, 'Binomial number of trials \"n\" must be an integer greater than zero'\n assert 0 < p < 1, 'Binomial probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.binom(n, p), tag=tag)\n",
"role": "user"
},
{
"content": "Binomial",
"role": "assistant"
}
] |
def x(p, tag=None):
assert 0 < p < 1, 'Geometric probability "p" must be between zero and one, non-inclusive'
return uv(ss.geom(p), tag=tag)
|
Geometric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, tag=None):\n assert 0 < p < 1, 'Geometric probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.geom(p), tag=tag)\n",
"role": "user"
},
{
"content": "Geometric",
"role": "assistant"
}
] |
def x(N, n, K, tag=None):
assert int(N
) == N and N > 0, 'Hypergeometric total population size "N" must be an integer greater than zero.'
assert int(n
) == n and 0 < n <= N, 'Hypergeometric interest population size "n" must be an integer greater than zero and no more than the total population size.'
assert int(K
) == K and 0 < K <= N, 'Hypergeometric chosen population size "K" must be an integer greater than zero and no more than the total population size.'
return uv(ss.hypergeom(N, n, K), tag=tag)
|
Hypergeometric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N, n, K, tag=None):\n assert int(N\n ) == N and N > 0, 'Hypergeometric total population size \"N\" must be an integer greater than zero.'\n assert int(n\n ) == n and 0 < n <= N, 'Hypergeometric interest population size \"n\" must be an integer greater than zero and no more than the total population size.'\n assert int(K\n ) == K and 0 < K <= N, 'Hypergeometric chosen population size \"K\" must be an integer greater than zero and no more than the total population size.'\n return uv(ss.hypergeom(N, n, K), tag=tag)\n",
"role": "user"
},
{
"content": "Hypergeometric",
"role": "assistant"
}
] |
def x(lamda, tag=None):
assert lamda > 0, 'Poisson "lamda" must be greater than zero.'
return uv(ss.poisson(lamda), tag=tag)
|
Poisson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lamda, tag=None):\n assert lamda > 0, 'Poisson \"lamda\" must be greater than zero.'\n return uv(ss.poisson(lamda), tag=tag)\n",
"role": "user"
},
{
"content": "Poisson",
"role": "assistant"
}
] |
def x(nums_with_uncert):
ufuncs = list(map(to_uncertain_func, nums_with_uncert))
cov_matrix = []
for i1, expr1 in enumerate(ufuncs):
coefs_expr1 = []
mean1 = expr1.mean
for i2, expr2 in enumerate(ufuncs[:i1 + 1]):
mean2 = expr2.mean
coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2))
coefs_expr1.append(coef)
cov_matrix.append(coefs_expr1)
for i, covariance_coefs in enumerate(cov_matrix):
covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(
cov_matrix)))
return cov_matrix
|
covariance_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nums_with_uncert):\n ufuncs = list(map(to_uncertain_func, nums_with_uncert))\n cov_matrix = []\n for i1, expr1 in enumerate(ufuncs):\n coefs_expr1 = []\n mean1 = expr1.mean\n for i2, expr2 in enumerate(ufuncs[:i1 + 1]):\n mean2 = expr2.mean\n coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2))\n coefs_expr1.append(coef)\n cov_matrix.append(coefs_expr1)\n for i, covariance_coefs in enumerate(cov_matrix):\n covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(\n cov_matrix)))\n return cov_matrix\n",
"role": "user"
},
{
"content": "covariance_matrix",
"role": "assistant"
}
] |
def x(nums_with_uncert):
ufuncs = list(map(to_uncertain_func, nums_with_uncert))
data = np.vstack([ufunc._mcpts for ufunc in ufuncs])
return np.corrcoef(data.T, rowvar=0)
|
correlation_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nums_with_uncert):\n ufuncs = list(map(to_uncertain_func, nums_with_uncert))\n data = np.vstack([ufunc._mcpts for ufunc in ufuncs])\n return np.corrcoef(data.T, rowvar=0)\n",
"role": "user"
},
{
"content": "correlation_matrix",
"role": "assistant"
}
] |
def x(self):
mn = self.mean
vr = np.mean((self._mcpts - mn) ** 2)
return vr
|
var
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mn = self.mean\n vr = np.mean((self._mcpts - mn) ** 2)\n return vr\n",
"role": "user"
},
{
"content": "var",
"role": "assistant"
}
] |
def x(self):
mn = self.mean
sd = self.std
sk = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 3
) / sd ** 3
return sk
|
skew
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mn = self.mean\n sd = self.std\n sk = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 3\n ) / sd ** 3\n return sk\n",
"role": "user"
},
{
"content": "skew",
"role": "assistant"
}
] |
def x(self):
mn = self.mean
sd = self.std
kt = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 4
) / sd ** 4
return kt
|
kurt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mn = self.mean\n sd = self.std\n kt = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 4\n ) / sd ** 4\n return kt\n",
"role": "user"
},
{
"content": "kurt",
"role": "assistant"
}
] |
def x(self):
mn = self.mean
vr = self.var
sk = self.skew
kt = self.kurt
return [mn, vr, sk, kt]
|
stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mn = self.mean\n vr = self.var\n sk = self.skew\n kt = self.kurt\n return [mn, vr, sk, kt]\n",
"role": "user"
},
{
"content": "stats",
"role": "assistant"
}
] |
def x(self, val):
try:
out = [self.percentile(vi) for vi in val]
except (ValueError, TypeError):
if val <= 0:
out = float(min(self._mcpts))
elif val >= 1:
out = float(max(self._mcpts))
else:
tmp = np.sort(self._mcpts)
n = val * (len(tmp) + 1)
k, d = int(n), n - int(n)
out = float(tmp[k] + d * (tmp[k + 1] - tmp[k]))
if isinstance(val, np.ndarray):
out = np.array(out)
return out
|
percentile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val):\n try:\n out = [self.percentile(vi) for vi in val]\n except (ValueError, TypeError):\n if val <= 0:\n out = float(min(self._mcpts))\n elif val >= 1:\n out = float(max(self._mcpts))\n else:\n tmp = np.sort(self._mcpts)\n n = val * (len(tmp) + 1)\n k, d = int(n), n - int(n)\n out = float(tmp[k] + d * (tmp[k + 1] - tmp[k]))\n if isinstance(val, np.ndarray):\n out = np.array(out)\n return out\n",
"role": "user"
},
{
"content": "percentile",
"role": "assistant"
}
] |
def x(self, name=None):
mn, vr, sk, kt = self.stats
if name is not None:
s = 'MCERP Uncertain Value (' + name + '):\n'
elif self.tag is not None:
s = 'MCERP Uncertain Value (' + self.tag + '):\n'
else:
s = 'MCERP Uncertain Value:\n'
s += ' > Mean................... {: }\n'.format(mn)
s += ' > Variance............... {: }\n'.format(vr)
s += ' > Skewness Coefficient... {: }\n'.format(sk)
s += ' > Kurtosis Coefficient... {: }\n'.format(kt)
print(s)
|
describe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name=None):\n mn, vr, sk, kt = self.stats\n if name is not None:\n s = 'MCERP Uncertain Value (' + name + '):\\n'\n elif self.tag is not None:\n s = 'MCERP Uncertain Value (' + self.tag + '):\\n'\n else:\n s = 'MCERP Uncertain Value:\\n'\n s += ' > Mean................... {: }\\n'.format(mn)\n s += ' > Variance............... {: }\\n'.format(vr)\n s += ' > Skewness Coefficient... {: }\\n'.format(sk)\n s += ' > Kurtosis Coefficient... {: }\\n'.format(kt)\n print(s)\n",
"role": "user"
},
{
"content": "describe",
"role": "assistant"
}
] |
def x(self, hist=False, show=False, **kwargs):
import matplotlib.pyplot as plt
vals = self._mcpts
low = min(vals)
high = max(vals)
p = ss.kde.gaussian_kde(vals)
xp = np.linspace(low, high, 100)
if hist:
h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=
'stepfilled', normed=True, **kwargs)
plt.ylim(0, 1.1 * h[0].max())
else:
plt.plot(xp, p.evaluate(xp), **kwargs)
plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)
if show:
self.show()
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hist=False, show=False, **kwargs):\n import matplotlib.pyplot as plt\n vals = self._mcpts\n low = min(vals)\n high = max(vals)\n p = ss.kde.gaussian_kde(vals)\n xp = np.linspace(low, high, 100)\n if hist:\n h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=\n 'stepfilled', normed=True, **kwargs)\n plt.ylim(0, 1.1 * h[0].max())\n else:\n plt.plot(xp, p.evaluate(xp), **kwargs)\n plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)\n if show:\n self.show()\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, hist=False, show=False, **kwargs):
import matplotlib.pyplot as plt
if hist:
vals = self._mcpts
low = vals.min()
high = vals.max()
h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=
'stepfilled', normed=True, **kwargs)
plt.ylim(0, 1.1 * h[0].max())
else:
bound = 0.0001
low = self.rv.ppf(bound)
high = self.rv.ppf(1 - bound)
if hasattr(self.rv.dist, 'pmf'):
low = int(low)
high = int(high)
vals = list(range(low, high + 1))
plt.plot(vals, self.rv.pmf(vals), 'o', **kwargs)
else:
vals = np.linspace(low, high, 500)
plt.plot(vals, self.rv.pdf(vals), **kwargs)
plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)
if show:
self.show()
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hist=False, show=False, **kwargs):\n import matplotlib.pyplot as plt\n if hist:\n vals = self._mcpts\n low = vals.min()\n high = vals.max()\n h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=\n 'stepfilled', normed=True, **kwargs)\n plt.ylim(0, 1.1 * h[0].max())\n else:\n bound = 0.0001\n low = self.rv.ppf(bound)\n high = self.rv.ppf(1 - bound)\n if hasattr(self.rv.dist, 'pmf'):\n low = int(low)\n high = int(high)\n vals = list(range(low, high + 1))\n plt.plot(vals, self.rv.pmf(vals), 'o', **kwargs)\n else:\n vals = np.linspace(low, high, 500)\n plt.plot(vals, self.rv.pdf(vals), **kwargs)\n plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)\n if show:\n self.show()\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, path):
hat = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if hat is None:
raise ValueError('No hat image found at `{}`'.format(path))
b, g, r, a = cv2.split(hat)
return cv2.merge((r, g, b, a))
|
load_hat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path):\n hat = cv2.imread(path, cv2.IMREAD_UNCHANGED)\n if hat is None:\n raise ValueError('No hat image found at `{}`'.format(path))\n b, g, r, a = cv2.split(hat)\n return cv2.merge((r, g, b, a))\n",
"role": "user"
},
{
"content": "load_hat",
"role": "assistant"
}
] |
def x(self, image, draw_box=False):
frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
faces = self.cascade.detectMultiScale(frame_gray, scaleFactor=1.3,
minNeighbors=5, minSize=(50, 50), flags=0)
if draw_box:
for x, y, w, h in faces:
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
return faces
|
find_faces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, draw_box=False):\n frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)\n faces = self.cascade.detectMultiScale(frame_gray, scaleFactor=1.3,\n minNeighbors=5, minSize=(50, 50), flags=0)\n if draw_box:\n for x, y, w, h in faces:\n cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)\n return faces\n",
"role": "user"
},
{
"content": "find_faces",
"role": "assistant"
}
] |
def x(self, rsrc_type, sort=None, yield_pages=False, **kwargs):
return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)
|
find_resources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rsrc_type, sort=None, yield_pages=False, **kwargs):\n return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)\n",
"role": "user"
},
{
"content": "find_resources",
"role": "assistant"
}
] |
def x(self, message=None, *args):
if message is not None:
self.logger.debug('%s: %s', self._repr(), message % args)
self.logger.debug('%s: changed', self._repr())
if self.parent is not None:
self.parent.changed()
elif isinstance(self, Mutable):
super(TrackedObject, self).changed()
|
changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message=None, *args):\n if message is not None:\n self.logger.debug('%s: %s', self._repr(), message % args)\n self.logger.debug('%s: changed', self._repr())\n if self.parent is not None:\n self.parent.changed()\n elif isinstance(self, Mutable):\n super(TrackedObject, self).changed()\n",
"role": "user"
},
{
"content": "changed",
"role": "assistant"
}
] |
def x(cls, origin_type):
def x(tracked_type):
cls._type_mapping[origin_type] = tracked_type
return tracked_type
return decorator
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, origin_type):\n\n def x(tracked_type):\n cls._type_mapping[origin_type] = tracked_type\n return tracked_type\n return decorator\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(cls, obj, parent):
replacement_type = cls._type_mapping.get(type(obj))
if replacement_type is not None:
new = replacement_type(obj)
new.parent = parent
return new
return obj
|
convert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, obj, parent):\n replacement_type = cls._type_mapping.get(type(obj))\n if replacement_type is not None:\n new = replacement_type(obj)\n new.parent = parent\n return new\n return obj\n",
"role": "user"
},
{
"content": "convert",
"role": "assistant"
}
] |
def x(self, items):
return ((key, self.convert(value, self)) for key, value in items)
|
convert_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, items):\n return ((key, self.convert(value, self)) for key, value in items)\n",
"role": "user"
},
{
"content": "convert_items",
"role": "assistant"
}
] |
def x(self, mapping):
if isinstance(mapping, dict):
return self.convert_items(iteritems(mapping))
return self.convert_items(mapping)
|
convert_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mapping):\n if isinstance(mapping, dict):\n return self.convert_items(iteritems(mapping))\n return self.convert_items(mapping)\n",
"role": "user"
},
{
"content": "convert_mapping",
"role": "assistant"
}
] |
def x(self, request, extra_context=None):
model = self.model
if model.objects.all().count() > 1:
return super(PreferencesAdmin, self).changelist_view(request)
else:
obj = model.singleton.get()
return redirect(reverse('admin:%s_%s_change' % (model._meta.
app_label, model._meta.model_name), args=(obj.id,)))
|
changelist_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, extra_context=None):\n model = self.model\n if model.objects.all().count() > 1:\n return super(PreferencesAdmin, self).changelist_view(request)\n else:\n obj = model.singleton.get()\n return redirect(reverse('admin:%s_%s_change' % (model._meta.\n app_label, model._meta.model_name), args=(obj.id,)))\n",
"role": "user"
},
{
"content": "changelist_view",
"role": "assistant"
}
] |
def x(md_lines):
lvl2header_char = {(1): '=', (2): '-', (3): '~'}
for md_line in md_lines:
if md_line.startswith('#'):
header_indent, header_text = md_line.split(' ', 1)
yield header_text
header_char = lvl2header_char[len(header_indent)]
yield header_char * len(header_text)
else:
yield md_line
|
md2rst
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(md_lines):\n lvl2header_char = {(1): '=', (2): '-', (3): '~'}\n for md_line in md_lines:\n if md_line.startswith('#'):\n header_indent, header_text = md_line.split(' ', 1)\n yield header_text\n header_char = lvl2header_char[len(header_indent)]\n yield header_char * len(header_text)\n else:\n yield md_line\n",
"role": "user"
},
{
"content": "md2rst",
"role": "assistant"
}
] |
def x(generator):
def x(*args, **kwargs):
return list(generator(*args, **kwargs))
return wrapper
|
aslist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(generator):\n\n def x(*args, **kwargs):\n return list(generator(*args, **kwargs))\n return wrapper\n",
"role": "user"
},
{
"content": "aslist",
"role": "assistant"
}
] |
def x(pkg_name, version, pypi_json_api_url, allowed_classifiers):
matching_releases = get_package_releases_matching_version(pkg_name,
version, pypi_json_api_url)
src_releases = [release for release in matching_releases if release[
'python_version'] == 'source']
if src_releases:
return select_src_release(src_releases, pkg_name,
target_classifiers=('py2.py3-none-any',),
select_arbitrary_version_if_none_match=True)
if allowed_classifiers:
return select_src_release(matching_releases, pkg_name,
target_classifiers=allowed_classifiers)
raise PypiQueryError('No source supported found for package {} version {}'
.format(pkg_name, version))
|
get_package_release_from_pypi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pkg_name, version, pypi_json_api_url, allowed_classifiers):\n matching_releases = get_package_releases_matching_version(pkg_name,\n version, pypi_json_api_url)\n src_releases = [release for release in matching_releases if release[\n 'python_version'] == 'source']\n if src_releases:\n return select_src_release(src_releases, pkg_name,\n target_classifiers=('py2.py3-none-any',),\n select_arbitrary_version_if_none_match=True)\n if allowed_classifiers:\n return select_src_release(matching_releases, pkg_name,\n target_classifiers=allowed_classifiers)\n raise PypiQueryError('No source supported found for package {} version {}'\n .format(pkg_name, version))\n",
"role": "user"
},
{
"content": "get_package_release_from_pypi",
"role": "assistant"
}
] |
def x(pkg_name, filename):
basename, _, extension = filename.rpartition('.')
if extension == 'gz' and filename.endswith('.tar.gz'):
extension = 'tar.gz'
basename = filename[:-7]
if basename == pkg_name or basename[len(pkg_name)] != '-':
return 'py2.py3-none-any', extension
basename = basename[len(pkg_name) + 1:]
classifier_parts = basename.split('-')
if len(classifier_parts) < 3:
return 'py2.py3-none-any', extension
if len(classifier_parts) == 3:
_, _, classifier_parts[0] = classifier_parts[0].rpartition('.')
return '-'.join(classifier_parts[-3:]), extension
|
extract_classifier_and_extension
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pkg_name, filename):\n basename, _, extension = filename.rpartition('.')\n if extension == 'gz' and filename.endswith('.tar.gz'):\n extension = 'tar.gz'\n basename = filename[:-7]\n if basename == pkg_name or basename[len(pkg_name)] != '-':\n return 'py2.py3-none-any', extension\n basename = basename[len(pkg_name) + 1:]\n classifier_parts = basename.split('-')\n if len(classifier_parts) < 3:\n return 'py2.py3-none-any', extension\n if len(classifier_parts) == 3:\n _, _, classifier_parts[0] = classifier_parts[0].rpartition('.')\n return '-'.join(classifier_parts[-3:]), extension\n",
"role": "user"
},
{
"content": "extract_classifier_and_extension",
"role": "assistant"
}
] |
def x(cls, key, value):
if value is None:
return value
if isinstance(value, cls):
return value
if isinstance(value, dict):
return NestedMutableDict.coerce(key, value)
if isinstance(value, list):
return NestedMutableList.coerce(key, value)
return super(cls).coerce(key, value)
|
coerce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, key, value):\n if value is None:\n return value\n if isinstance(value, cls):\n return value\n if isinstance(value, dict):\n return NestedMutableDict.coerce(key, value)\n if isinstance(value, list):\n return NestedMutableList.coerce(key, value)\n return super(cls).coerce(key, value)\n",
"role": "user"
},
{
"content": "coerce",
"role": "assistant"
}
] |
def x(mod, fun):
return inspect.isfunction(fun) and inspect.getmodule(fun) == mod
|
is_mod_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mod, fun):\n return inspect.isfunction(fun) and inspect.getmodule(fun) == mod\n",
"role": "user"
},
{
"content": "is_mod_function",
"role": "assistant"
}
] |
def x(mod, cls):
return inspect.isclass(cls) and inspect.getmodule(cls) == mod
|
is_mod_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mod, cls):\n return inspect.isclass(cls) and inspect.getmodule(cls) == mod\n",
"role": "user"
},
{
"content": "is_mod_class",
"role": "assistant"
}
] |
def x(mod_name):
mod = sys.modules[mod_name]
return [func.__name__ for func in mod.__dict__.values() if
is_mod_function(mod, func)]
|
list_functions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mod_name):\n mod = sys.modules[mod_name]\n return [func.__name__ for func in mod.__dict__.values() if\n is_mod_function(mod, func)]\n",
"role": "user"
},
{
"content": "list_functions",
"role": "assistant"
}
] |
def x(mod_name):
mod = sys.modules[mod_name]
return [cls.__name__ for cls in mod.__dict__.values() if is_mod_class(
mod, cls)]
|
list_classes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mod_name):\n mod = sys.modules[mod_name]\n return [cls.__name__ for cls in mod.__dict__.values() if is_mod_class(\n mod, cls)]\n",
"role": "user"
},
{
"content": "list_classes",
"role": "assistant"
}
] |
def x(functions, module, searchstr='def {}(image):\n'):
lines = inspect.getsourcelines(module)[0]
line_numbers = {}
for function in functions:
try:
line_numbers[function] = lines.index(searchstr.format(function)
) + 1
except ValueError:
print('Can not find `{}`'.format(searchstr.format(function)))
line_numbers[function] = 0
return line_numbers
|
get_linenumbers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(functions, module, searchstr='def {}(image):\\n'):\n lines = inspect.getsourcelines(module)[0]\n line_numbers = {}\n for function in functions:\n try:\n line_numbers[function] = lines.index(searchstr.format(function)\n ) + 1\n except ValueError:\n print('Can not find `{}`'.format(searchstr.format(function)))\n line_numbers[function] = 0\n return line_numbers\n",
"role": "user"
},
{
"content": "get_linenumbers",
"role": "assistant"
}
] |
def x(fun):
SEPARATOR = '============================='
func = cvloop.functions.__dict__[fun]
doc_lines = ['{}'.format(l).strip() for l in func.__doc__.split('\n')]
if hasattr(func, '__init__'):
doc_lines.append(SEPARATOR)
doc_lines += ['{}'.format(l).strip() for l in func.__init__.__doc__
.split('\n')]
mod_lines = []
argblock = False
returnblock = False
for line in doc_lines:
if line == SEPARATOR:
mod_lines.append('\n#### `{}.__init__(...)`:\n\n'.format(fun))
elif 'Args:' in line:
argblock = True
if GENERATE_ARGS:
mod_lines.append('**{}**\n'.format(line))
elif 'Returns:' in line:
returnblock = True
mod_lines.append('\n**{}**'.format(line))
elif not argblock and not returnblock:
mod_lines.append('{}\n'.format(line))
elif argblock and not returnblock and ':' in line:
if GENERATE_ARGS:
mod_lines.append('- *{}:* {}\n'.format(*line.split(':')))
elif returnblock:
mod_lines.append(line)
else:
mod_lines.append('{}\n'.format(line))
return mod_lines
|
format_doc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fun):\n SEPARATOR = '============================='\n func = cvloop.functions.__dict__[fun]\n doc_lines = ['{}'.format(l).strip() for l in func.__doc__.split('\\n')]\n if hasattr(func, '__init__'):\n doc_lines.append(SEPARATOR)\n doc_lines += ['{}'.format(l).strip() for l in func.__init__.__doc__\n .split('\\n')]\n mod_lines = []\n argblock = False\n returnblock = False\n for line in doc_lines:\n if line == SEPARATOR:\n mod_lines.append('\\n#### `{}.__init__(...)`:\\n\\n'.format(fun))\n elif 'Args:' in line:\n argblock = True\n if GENERATE_ARGS:\n mod_lines.append('**{}**\\n'.format(line))\n elif 'Returns:' in line:\n returnblock = True\n mod_lines.append('\\n**{}**'.format(line))\n elif not argblock and not returnblock:\n mod_lines.append('{}\\n'.format(line))\n elif argblock and not returnblock and ':' in line:\n if GENERATE_ARGS:\n mod_lines.append('- *{}:* {}\\n'.format(*line.split(':')))\n elif returnblock:\n mod_lines.append(line)\n else:\n mod_lines.append('{}\\n'.format(line))\n return mod_lines\n",
"role": "user"
},
{
"content": "format_doc",
"role": "assistant"
}
] |
def x():
notebook = {'cells': [{'cell_type': 'markdown', 'metadata': {},
'source': ["""# cvloop functions
""",
'This notebook shows an overview over all cvloop ',
'functions provided in the [`cvloop.functions` module](',
'https://github.com/shoeffner/cvloop/blob/',
'develop/cvloop/functions.py).']}], 'nbformat': 4, 'nbformat_minor':
1, 'metadata': {'language_info': {'codemirror_mode': {'name':
'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype':
'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python',
'pygments_lexer': 'ipython3', 'version': '3.5.1+'}}}
classes = list_classes('cvloop.functions')
functions = list_functions('cvloop.functions')
line_numbers_cls = get_linenumbers(classes, cvloop.functions, 'class {}:\n'
)
line_numbers = get_linenumbers(functions, cvloop.functions)
for cls in classes:
line_number = line_numbers_cls[cls]
notebook['cells'].append(create_description_cell(cls, line_number))
notebook['cells'].append(create_code_cell(cls, isclass=True))
for func in functions:
line_number = line_numbers[func]
notebook['cells'].append(create_description_cell(func, line_number))
notebook['cells'].append(create_code_cell(func))
with open(sys.argv[1], 'w') as nfile:
json.dump(notebook, nfile, indent=4)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n notebook = {'cells': [{'cell_type': 'markdown', 'metadata': {},\n 'source': [\"\"\"# cvloop functions\n\n\"\"\",\n 'This notebook shows an overview over all cvloop ',\n 'functions provided in the [`cvloop.functions` module](',\n 'https://github.com/shoeffner/cvloop/blob/',\n 'develop/cvloop/functions.py).']}], 'nbformat': 4, 'nbformat_minor':\n 1, 'metadata': {'language_info': {'codemirror_mode': {'name':\n 'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype':\n 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python',\n 'pygments_lexer': 'ipython3', 'version': '3.5.1+'}}}\n classes = list_classes('cvloop.functions')\n functions = list_functions('cvloop.functions')\n line_numbers_cls = get_linenumbers(classes, cvloop.functions, 'class {}:\\n'\n )\n line_numbers = get_linenumbers(functions, cvloop.functions)\n for cls in classes:\n line_number = line_numbers_cls[cls]\n notebook['cells'].append(create_description_cell(cls, line_number))\n notebook['cells'].append(create_code_cell(cls, isclass=True))\n for func in functions:\n line_number = line_numbers[func]\n notebook['cells'].append(create_description_cell(func, line_number))\n notebook['cells'].append(create_code_cell(func))\n with open(sys.argv[1], 'w') as nfile:\n json.dump(notebook, nfile, indent=4)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(axes, title, size, cmap=None):
if axes is None:
return None
axes.set_xlim([0, size[1]])
axes.set_ylim([size[0], 0])
axes.set_aspect('equal')
axes.axis('off')
if isinstance(cmap, str):
title = '{} (cmap: {})'.format(title, cmap)
axes.set_title(title)
axes_image = image.AxesImage(axes, cmap=cmap, extent=(0, size[1], size[
0], 0))
axes_image.set_data(np.random.random((size[0], size[1], 3)))
axes.add_image(axes_image)
return axes_image
|
prepare_axes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(axes, title, size, cmap=None):\n if axes is None:\n return None\n axes.set_xlim([0, size[1]])\n axes.set_ylim([size[0], 0])\n axes.set_aspect('equal')\n axes.axis('off')\n if isinstance(cmap, str):\n title = '{} (cmap: {})'.format(title, cmap)\n axes.set_title(title)\n axes_image = image.AxesImage(axes, cmap=cmap, extent=(0, size[1], size[\n 0], 0))\n axes_image.set_data(np.random.random((size[0], size[1], 3)))\n axes.add_image(axes_image)\n return axes_image\n",
"role": "user"
},
{
"content": "prepare_axes",
"role": "assistant"
}
] |
def x(self):
self.figure.canvas.mpl_connect('close_event', self.evt_release)
self.figure.canvas.mpl_connect('pause_event', self.evt_toggle_pause)
|
connect_event_handlers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.figure.canvas.mpl_connect('close_event', self.evt_release)\n self.figure.canvas.mpl_connect('pause_event', self.evt_toggle_pause)\n",
"role": "user"
},
{
"content": "connect_event_handlers",
"role": "assistant"
}
] |
def x(self, *args):
if self.event_source._timer is None:
self.event_source.start()
else:
self.event_source.stop()
|
evt_toggle_pause
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args):\n if self.event_source._timer is None:\n self.event_source.start()\n else:\n self.event_source.stop()\n",
"role": "user"
},
{
"content": "evt_toggle_pause",
"role": "assistant"
}
] |
def x(self, capture):
self.frame_offset += 1
ret, frame = capture.read()
if ret:
print('Capture Information')
print('\tDimensions (HxW): {}x{}'.format(*frame.shape[0:2]))
print('\tColor channels: {}'.format(frame.shape[2] if len(frame.
shape) > 2 else 1))
print('\tColor range: {}-{}'.format(np.min(frame), np.max(frame)))
print('\tdtype: {}'.format(frame.dtype))
else:
print('No source found.')
|
print_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, capture):\n self.frame_offset += 1\n ret, frame = capture.read()\n if ret:\n print('Capture Information')\n print('\\tDimensions (HxW): {}x{}'.format(*frame.shape[0:2]))\n print('\\tColor channels: {}'.format(frame.shape[2] if len(frame.\n shape) > 2 else 1))\n print('\\tColor range: {}-{}'.format(np.min(frame), np.max(frame)))\n print('\\tdtype: {}'.format(frame.dtype))\n else:\n print('No source found.')\n",
"role": "user"
},
{
"content": "print_info",
"role": "assistant"
}
] |
def x(self, capture):
width = 640
height = 480
if capture and hasattr(capture, 'get'):
width = capture.get(cv2.CAP_PROP_FRAME_WIDTH)
height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
else:
self.frame_offset += 1
ret, frame = capture.read()
if ret:
width = frame.shape[1]
height = frame.shape[0]
return int(height), int(width)
|
determine_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, capture):\n width = 640\n height = 480\n if capture and hasattr(capture, 'get'):\n width = capture.get(cv2.CAP_PROP_FRAME_WIDTH)\n height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)\n else:\n self.frame_offset += 1\n ret, frame = capture.read()\n if ret:\n width = frame.shape[1]\n height = frame.shape[0]\n return int(height), int(width)\n",
"role": "user"
},
{
"content": "determine_size",
"role": "assistant"
}
] |
def x(self):
if self.original is not None:
self.original.set_data(np.random.random((10, 10, 3)))
self.processed.set_data(np.random.random((10, 10, 3)))
|
init_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.original is not None:\n self.original.set_data(np.random.random((10, 10, 3)))\n self.processed.set_data(np.random.random((10, 10, 3)))\n",
"role": "user"
},
{
"content": "init_draw",
"role": "assistant"
}
] |
def x(self):
ret, frame = self.capture.read()
if not ret:
self.event_source.stop()
try:
self.capture.release()
except AttributeError:
pass
return None
if self.convert_color != -1 and is_color_image(frame):
return cv2.cvtColor(frame, self.convert_color)
return frame
|
read_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ret, frame = self.capture.read()\n if not ret:\n self.event_source.stop()\n try:\n self.capture.release()\n except AttributeError:\n pass\n return None\n if self.convert_color != -1 and is_color_image(frame):\n return cv2.cvtColor(frame, self.convert_color)\n return frame\n",
"role": "user"
},
{
"content": "read_frame",
"role": "assistant"
}
] |
def x(self, framedata):
for artist in self.annotation_artists:
artist.remove()
self.annotation_artists = []
for annotation in self.annotations:
if annotation[2] > framedata:
return
if annotation[2] == framedata:
pos = annotation[0:2]
shape = self.annotations_default['shape']
color = self.annotations_default['color']
size = self.annotations_default['size']
line = self.annotations_default['line']
if len(annotation) > 3:
shape = annotation[3].get('shape', shape)
color = annotation[3].get('color', color)
size = annotation[3].get('size', size)
line = annotation[3].get('line', line)
if shape == 'CIRC' and hasattr(size, '__len__'):
size = 30
if not hasattr(color, '__len__'):
color = (color,) * 3
if shape == 'RECT':
patch = patches.Rectangle((pos[0] - size[0] // 2, pos[1] -
size[1] // 2), size[0], size[1], fill=False, lw=line,
fc='none', ec=color)
elif shape == 'CIRC':
patch = patches.CirclePolygon(pos, radius=size, fc='none',
ec=color, lw=line)
self.annotation_artists.append(patch)
self.axes_processed.add_artist(self.annotation_artists[-1])
|
annotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, framedata):\n for artist in self.annotation_artists:\n artist.remove()\n self.annotation_artists = []\n for annotation in self.annotations:\n if annotation[2] > framedata:\n return\n if annotation[2] == framedata:\n pos = annotation[0:2]\n shape = self.annotations_default['shape']\n color = self.annotations_default['color']\n size = self.annotations_default['size']\n line = self.annotations_default['line']\n if len(annotation) > 3:\n shape = annotation[3].get('shape', shape)\n color = annotation[3].get('color', color)\n size = annotation[3].get('size', size)\n line = annotation[3].get('line', line)\n if shape == 'CIRC' and hasattr(size, '__len__'):\n size = 30\n if not hasattr(color, '__len__'):\n color = (color,) * 3\n if shape == 'RECT':\n patch = patches.Rectangle((pos[0] - size[0] // 2, pos[1] - \n size[1] // 2), size[0], size[1], fill=False, lw=line,\n fc='none', ec=color)\n elif shape == 'CIRC':\n patch = patches.CirclePolygon(pos, radius=size, fc='none',\n ec=color, lw=line)\n self.annotation_artists.append(patch)\n self.axes_processed.add_artist(self.annotation_artists[-1])\n",
"role": "user"
},
{
"content": "annotate",
"role": "assistant"
}
] |
def x(self, framedata):
original = self.read_frame()
if original is None:
self.update_info(self.info_string(message='Finished.', frame=framedata)
)
return
if self.original is not None:
processed = self.process_frame(original.copy())
if self.cmap_original is not None:
original = to_gray(original)
elif not is_color_image(original):
self.original.set_cmap('gray')
self.original.set_data(original)
else:
processed = self.process_frame(original)
if self.cmap_processed is not None:
processed = to_gray(processed)
elif not is_color_image(processed):
self.processed.set_cmap('gray')
if self.annotations:
self.annotate(framedata)
self.processed.set_data(processed)
self.update_info(self.info_string(frame=framedata))
|
draw_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, framedata):\n original = self.read_frame()\n if original is None:\n self.update_info(self.info_string(message='Finished.', frame=framedata)\n )\n return\n if self.original is not None:\n processed = self.process_frame(original.copy())\n if self.cmap_original is not None:\n original = to_gray(original)\n elif not is_color_image(original):\n self.original.set_cmap('gray')\n self.original.set_data(original)\n else:\n processed = self.process_frame(original)\n if self.cmap_processed is not None:\n processed = to_gray(processed)\n elif not is_color_image(processed):\n self.processed.set_cmap('gray')\n if self.annotations:\n self.annotate(framedata)\n self.processed.set_data(processed)\n self.update_info(self.info_string(frame=framedata))\n",
"role": "user"
},
{
"content": "draw_frame",
"role": "assistant"
}
] |
def x(self, custom=None):
self.figure.suptitle(self.info_string() if custom is None else custom)
|
update_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, custom=None):\n self.figure.suptitle(self.info_string() if custom is None else custom)\n",
"role": "user"
},
{
"content": "update_info",
"role": "assistant"
}
] |
def x(self, size=None, message='', frame=-1):
info = []
if size is not None:
info.append('Size: {1}x{0}'.format(*size))
elif self.size is not None:
info.append('Size: {1}x{0}'.format(*self.size))
if frame >= 0:
info.append('Frame: {}'.format(frame))
if message != '':
info.append('{}'.format(message))
return ' '.join(info)
|
info_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None, message='', frame=-1):\n info = []\n if size is not None:\n info.append('Size: {1}x{0}'.format(*size))\n elif self.size is not None:\n info.append('Size: {1}x{0}'.format(*self.size))\n if frame >= 0:\n info.append('Frame: {}'.format(frame))\n if message != '':\n info.append('{}'.format(message))\n return ' '.join(info)\n",
"role": "user"
},
{
"content": "info_string",
"role": "assistant"
}
] |
def x():
with open(sys.argv[1], 'r') as nbfile:
notebook = json.load(nbfile)
try:
del notebook['metadata']['kernelspec']
except KeyError:
pass
for cell in notebook['cells']:
try:
if cell['cell_type'] == 'code':
cell['outputs'] = []
cell['execution_count'] = None
cell['metadata'] = {}
except KeyError:
pass
with open(sys.argv[1], 'w') as nbfile:
json.dump(notebook, nbfile, indent=1)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n with open(sys.argv[1], 'r') as nbfile:\n notebook = json.load(nbfile)\n try:\n del notebook['metadata']['kernelspec']\n except KeyError:\n pass\n for cell in notebook['cells']:\n try:\n if cell['cell_type'] == 'code':\n cell['outputs'] = []\n cell['execution_count'] = None\n cell['metadata'] = {}\n except KeyError:\n pass\n with open(sys.argv[1], 'w') as nbfile:\n json.dump(notebook, nbfile, indent=1)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, comment, mentions=()):
data = {'app': self.app_id, 'record': self.record_id, 'comment': {
'text': comment}}
if len(mentions) > 0:
_mentions = []
for m in mentions:
if isinstance(m, (list, tuple)):
if len(m) == 2:
_mentions.append({'code': m[0], 'type': m[1]})
else:
raise Exception(
"mention have to have code and target type. ex.[('user_1', 'USER')]"
)
elif isinstance(m, Mention):
_mentions.append(m.serialize())
data['comment']['mentions'] = _mentions
resp = self._request('POST', self._url, data)
r = cr.CreateCommentResult(resp)
return r
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, comment, mentions=()):\n data = {'app': self.app_id, 'record': self.record_id, 'comment': {\n 'text': comment}}\n if len(mentions) > 0:\n _mentions = []\n for m in mentions:\n if isinstance(m, (list, tuple)):\n if len(m) == 2:\n _mentions.append({'code': m[0], 'type': m[1]})\n else:\n raise Exception(\n \"mention have to have code and target type. ex.[('user_1', 'USER')]\"\n )\n elif isinstance(m, Mention):\n _mentions.append(m.serialize())\n data['comment']['mentions'] = _mentions\n resp = self._request('POST', self._url, data)\n r = cr.CreateCommentResult(resp)\n return r\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(iterator, n=None):
if n is None:
collections.deque(iterator, maxlen=0)
else:
next(itertools.islice(iterator, n, n), None)
|
consume
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(iterator, n=None):\n if n is None:\n collections.deque(iterator, maxlen=0)\n else:\n next(itertools.islice(iterator, n, n), None)\n",
"role": "user"
},
{
"content": "consume",
"role": "assistant"
}
] |
def x(slice_obj):
if slice_obj.step and slice_obj.step != 1:
return None
if slice_obj.start is None and slice_obj.stop is None:
return None
if slice_obj.start and slice_obj.start < 0:
return None
if slice_obj.stop and slice_obj.stop < 0:
return None
if slice_obj.stop:
if slice_obj.start and slice_obj.start > slice_obj.stop:
return 0
return slice_obj.stop
return slice_obj.start + 1
|
slice_required_len
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(slice_obj):\n if slice_obj.step and slice_obj.step != 1:\n return None\n if slice_obj.start is None and slice_obj.stop is None:\n return None\n if slice_obj.start and slice_obj.start < 0:\n return None\n if slice_obj.stop and slice_obj.stop < 0:\n return None\n if slice_obj.stop:\n if slice_obj.start and slice_obj.start > slice_obj.stop:\n return 0\n return slice_obj.stop\n return slice_obj.start + 1\n",
"role": "user"
},
{
"content": "slice_required_len",
"role": "assistant"
}
] |
def x(text, styles, reset=True):
terminator = attr('reset') if reset else ''
return '{}{}{}'.format(''.join(styles), text, terminator)
|
stylize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, styles, reset=True):\n terminator = attr('reset') if reset else ''\n return '{}{}{}'.format(''.join(styles), text, terminator)\n",
"role": "user"
},
{
"content": "stylize",
"role": "assistant"
}
] |
def x(text, styles, reset=True):
terminator = _c0wrap(attr('reset')) if reset else ''
return '{}{}{}'.format(_c0wrap(styles), text, terminator)
|
stylize_interactive
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, styles, reset=True):\n terminator = _c0wrap(attr('reset')) if reset else ''\n return '{}{}{}'.format(_c0wrap(styles), text, terminator)\n",
"role": "user"
},
{
"content": "stylize_interactive",
"role": "assistant"
}
] |
def x(self):
paint = {'bold': self.ESC + '1' + self.END, (1): self.ESC + '1' + self.
END, 'dim': self.ESC + '2' + self.END, (2): self.ESC + '2' + self.
END, 'underlined': self.ESC + '4' + self.END, (4): self.ESC + '4' +
self.END, 'blink': self.ESC + '5' + self.END, (5): self.ESC + '5' +
self.END, 'reverse': self.ESC + '7' + self.END, (7): self.ESC + '7' +
self.END, 'hidden': self.ESC + '8' + self.END, (8): self.ESC + '8' +
self.END, 'reset': self.ESC + '0' + self.END, (0): self.ESC + '0' +
self.END, 'res_bold': self.ESC + '21' + self.END, (21): self.ESC +
'21' + self.END, 'res_dim': self.ESC + '22' + self.END, (22): self.
ESC + '22' + self.END, 'res_underlined': self.ESC + '24' + self.END,
(24): self.ESC + '24' + self.END, 'res_blink': self.ESC + '25' +
self.END, (25): self.ESC + '25' + self.END, 'res_reverse': self.ESC +
'27' + self.END, (27): self.ESC + '27' + self.END, 'res_hidden':
self.ESC + '28' + self.END, (28): self.ESC + '28' + self.END}
return paint[self.color]
|
attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n paint = {'bold': self.ESC + '1' + self.END, (1): self.ESC + '1' + self.\n END, 'dim': self.ESC + '2' + self.END, (2): self.ESC + '2' + self.\n END, 'underlined': self.ESC + '4' + self.END, (4): self.ESC + '4' +\n self.END, 'blink': self.ESC + '5' + self.END, (5): self.ESC + '5' +\n self.END, 'reverse': self.ESC + '7' + self.END, (7): self.ESC + '7' +\n self.END, 'hidden': self.ESC + '8' + self.END, (8): self.ESC + '8' +\n self.END, 'reset': self.ESC + '0' + self.END, (0): self.ESC + '0' +\n self.END, 'res_bold': self.ESC + '21' + self.END, (21): self.ESC +\n '21' + self.END, 'res_dim': self.ESC + '22' + self.END, (22): self.\n ESC + '22' + self.END, 'res_underlined': self.ESC + '24' + self.END,\n (24): self.ESC + '24' + self.END, 'res_blink': self.ESC + '25' +\n self.END, (25): self.ESC + '25' + self.END, 'res_reverse': self.ESC +\n '27' + self.END, (27): self.ESC + '27' + self.END, 'res_hidden': \n self.ESC + '28' + self.END, (28): self.ESC + '28' + self.END}\n return paint[self.color]\n",
"role": "user"
},
{
"content": "attribute",
"role": "assistant"
}
] |
def x(self):
code = self.ESC + '38;5;'
if str(self.color).isdigit():
self.reverse_dict()
color = self.reserve_paint[str(self.color)]
return code + self.paint[color] + self.END
elif self.color.startswith('#'):
return code + str(self.HEX) + self.END
else:
return code + self.paint[self.color] + self.END
|
foreground
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n code = self.ESC + '38;5;'\n if str(self.color).isdigit():\n self.reverse_dict()\n color = self.reserve_paint[str(self.color)]\n return code + self.paint[color] + self.END\n elif self.color.startswith('#'):\n return code + str(self.HEX) + self.END\n else:\n return code + self.paint[self.color] + self.END\n",
"role": "user"
},
{
"content": "foreground",
"role": "assistant"
}
] |
def x(self):
self.reserve_paint = dict(zip(self.paint.values(), self.paint.keys()))
|
reverse_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.reserve_paint = dict(zip(self.paint.values(), self.paint.keys()))\n",
"role": "user"
},
{
"content": "reverse_dict",
"role": "assistant"
}
] |
def x(self, required=False):
reset = self._ow.reset()
if required and reset:
raise OneWireError('No presence pulse found. Check devices and wiring.'
)
return not reset
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, required=False):\n reset = self._ow.reset()\n if required and reset:\n raise OneWireError('No presence pulse found. Check devices and wiring.'\n )\n return not reset\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(self, buf, *, start=0, end=None):
if end is None:
end = len(buf)
for i in range(start, end):
buf[i] = self._readbyte()
|
readinto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, buf, *, start=0, end=None):\n if end is None:\n end = len(buf)\n for i in range(start, end):\n buf[i] = self._readbyte()\n",
"role": "user"
},
{
"content": "readinto",
"role": "assistant"
}
] |
def x(self, buf, *, start=0, end=None):
if end is None:
end = len(buf)
for i in range(start, end):
self._writebyte(buf[i])
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, buf, *, start=0, end=None):\n if end is None:\n end = len(buf)\n for i in range(start, end):\n self._writebyte(buf[i])\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self):
devices = []
diff = 65
rom = False
count = 0
for _ in range(255):
rom, diff = self._search_rom(rom, diff)
if rom:
count += 1
if count > self.maximum_devices:
raise RuntimeError('Maximum device count of {} exceeded.'.
format(self.maximum_devices))
devices.append(OneWireAddress(rom))
if diff == 0:
break
return devices
|
scan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n devices = []\n diff = 65\n rom = False\n count = 0\n for _ in range(255):\n rom, diff = self._search_rom(rom, diff)\n if rom:\n count += 1\n if count > self.maximum_devices:\n raise RuntimeError('Maximum device count of {} exceeded.'.\n format(self.maximum_devices))\n devices.append(OneWireAddress(rom))\n if diff == 0:\n break\n return devices\n",
"role": "user"
},
{
"content": "scan",
"role": "assistant"
}
] |
def x(data):
crc = 0
for byte in data:
crc ^= byte
for _ in range(8):
if crc & 1:
crc = crc >> 1 ^ 140
else:
crc >>= 1
crc &= 255
return crc
|
crc8
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n crc = 0\n for byte in data:\n crc ^= byte\n for _ in range(8):\n if crc & 1:\n crc = crc >> 1 ^ 140\n else:\n crc >>= 1\n crc &= 255\n return crc\n",
"role": "user"
},
{
"content": "crc8",
"role": "assistant"
}
] |
def x(cls, json_body, get_value_and_type):
instance = cls()
is_set = False
properties = cls._get_property_names(instance)
def x(name):
p = [p for p in instance._property_details if p.name == name or p.
field_name == name]
return None if len(p) == 0 else p[0]
for k in json_body:
field = json_body[k]
pd = get_property_detail(k)
pn = k if not pd else pd.to_property_name(k)
if pn in properties:
v, t = get_value_and_type(field)
initial_value = getattr(instance, pn)
value = instance._field_to_property(v, t, pd, initial_value)
setattr(instance, pn, value)
is_set = True
return instance if is_set else None
|
deserialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, json_body, get_value_and_type):\n instance = cls()\n is_set = False\n properties = cls._get_property_names(instance)\n\n def x(name):\n p = [p for p in instance._property_details if p.name == name or p.\n field_name == name]\n return None if len(p) == 0 else p[0]\n for k in json_body:\n field = json_body[k]\n pd = get_property_detail(k)\n pn = k if not pd else pd.to_property_name(k)\n if pn in properties:\n v, t = get_value_and_type(field)\n initial_value = getattr(instance, pn)\n value = instance._field_to_property(v, t, pd, initial_value)\n setattr(instance, pn, value)\n is_set = True\n return instance if is_set else None\n",
"role": "user"
},
{
"content": "deserialize",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.