source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(x): if isinstance(x, UncertainFunction): mcpts = np.cosh(x._mcpts) return UncertainFunction(mcpts) else: return np.cosh(x)
cosh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.cosh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.cosh(x)\n", "role": "user" }, { "content": "cosh", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.degrees(x._mcpts) return UncertainFunction(mcpts) else: return np.degrees(x)
degrees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.degrees(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.degrees(x)\n", "role": "user" }, { "content": "degrees", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.exp(x._mcpts) return UncertainFunction(mcpts) else: return np.exp(x)
exp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.exp(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.exp(x)\n", "role": "user" }, { "content": "exp", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.expm1(x._mcpts) return UncertainFunction(mcpts) else: return np.expm1(x)
expm1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.expm1(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.expm1(x)\n", "role": "user" }, { "content": "expm1", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.fabs(x._mcpts) return UncertainFunction(mcpts) else: return np.fabs(x)
fabs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.fabs(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.fabs(x)\n", "role": "user" }, { "content": "fabs", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.floor(x._mcpts) return UncertainFunction(mcpts) else: return np.floor(x)
floor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.floor(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.floor(x)\n", "role": "user" }, { "content": "floor", "role": "assistant" } ]
def x(x, y): if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction): ufx = to_uncertain_func(x) ufy = to_uncertain_func(y) mcpts = np.hypot(ufx._mcpts, ufy._mcpts) return UncertainFunction(mcpts) else: return np.hypot(x, y)
hypot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n if isinstance(x, UncertainFunction) or isinstance(x, UncertainFunction):\n ufx = to_uncertain_func(x)\n ufy = to_uncertain_func(y)\n mcpts = np.hypot(ufx._mcpts, ufy._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.hypot(x, y)\n", "role": "user" }, { "content": "hypot", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.log(x._mcpts) return UncertainFunction(mcpts) else: return np.log(x)
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log(x)\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.log10(x._mcpts) return UncertainFunction(mcpts) else: return np.log10(x)
log10
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log10(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log10(x)\n", "role": "user" }, { "content": "log10", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.log1p(x._mcpts) return UncertainFunction(mcpts) else: return np.log1p(x)
log1p
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.log1p(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.log1p(x)\n", "role": "user" }, { "content": "log1p", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.radians(x._mcpts) return UncertainFunction(mcpts) else: return np.radians(x)
radians
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.radians(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.radians(x)\n", "role": "user" }, { "content": "radians", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.sin(x._mcpts) return UncertainFunction(mcpts) else: return np.sin(x)
sin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sin(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sin(x)\n", "role": "user" }, { "content": "sin", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.sinh(x._mcpts) return UncertainFunction(mcpts) else: return np.sinh(x)
sinh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sinh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sinh(x)\n", "role": "user" }, { "content": "sinh", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.sqrt(x._mcpts) return UncertainFunction(mcpts) else: return np.sqrt(x)
sqrt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.sqrt(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.sqrt(x)\n", "role": "user" }, { "content": "sqrt", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.tan(x._mcpts) return UncertainFunction(mcpts) else: return np.tan(x)
tan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.tan(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.tan(x)\n", "role": "user" }, { "content": "tan", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.tanh(x._mcpts) return UncertainFunction(mcpts) else: return np.tanh(x)
tanh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.tanh(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.tanh(x)\n", "role": "user" }, { "content": "tanh", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): mcpts = np.trunc(x._mcpts) return UncertainFunction(mcpts) else: return np.trunc(x)
trunc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n mcpts = np.trunc(x._mcpts)\n return UncertainFunction(mcpts)\n else:\n return np.trunc(x)\n", "role": "user" }, { "content": "trunc", "role": "assistant" } ]
def x(dist=None, size=None, dims=1, form='randomized', iterations=100, showcorrelations=False): assert dims > 0, 'kwarg "dims" must be at least 1' if not size or not dist: return None def x(x, samples=20): segmentSize = 1.0 / samples numVars = x.shape[1] out = np.zeros((samples, numVars)) pointValue = np.zeros(samples) for n in range(numVars): for i in range(samples): segmentMin = i * segmentSize point = segmentMin + np.random.random() * segmentSize pointValue[i] = point * (x[1, n] - x[0, n]) + x[0, n] out[:, n] = pointValue return _mix(out) def x(data, dim='cols'): data = np.atleast_2d(data) n = data.shape[0] if dim == 'rows': data = data.T data_rank = list(range(n)) for i in range(data.shape[1]): new_data_rank = np.random.permutation(data_rank) vals, order = np.unique(np.hstack((data_rank, new_data_rank)), return_inverse=True) old_order = order[:n] new_order = order[-n:] tmp = data[np.argsort(old_order), i][new_order] data[:, i] = tmp[:] if dim == 'rows': data = data.T return data if form is 'randomized': if hasattr(dist, '__getitem__'): nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = _lhs(x, samples=size) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is 'spacefilling': def x(arr): n = arr.shape[0] ans = 0.0 for i in range(n - 1): for j in range(i + 1, n): d = np.sqrt(np.sum([((arr[i, k] - arr[j, k]) ** 2) for k in range(arr.shape[1])])) ans += 1.0 / d ** 2 return ans def x(data): best = 100000000.0 for it in range(iterations): d = euclid_distance(data) if d < best: d_opt = d data_opt = data.copy() data = _mix(data) print('Optimized Distance:', d_opt) return data_opt if hasattr(dist, '__getitem__'): nvars = len(dist) x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i, d in enumerate(dist): dist_data[:, i] = d.ppf(unif_data[:, i]) else: nvars = dims x = np.vstack((np.zeros(nvars), np.ones(nvars))) unif_data = fill_space(_lhs(x, samples=size)) dist_data = np.empty_like(unif_data) for i in range(nvars): dist_data[:, i] = dist.ppf(unif_data[:, i]) elif form is 'orthogonal': raise NotImplementedError( "Sorry. The orthogonal space-filling algorithm hasn't been implemented yet." ) else: raise ValueError('Invalid "form" value: %s' % form) if dist_data.shape[1] > 1: cor_matrix = np.zeros((nvars, nvars)) for i in range(nvars): for j in range(nvars): x_data = dist_data[:, i].copy() y_data = dist_data[:, j].copy() x_mean = x_data.mean() y_mean = y_data.mean() num = np.sum((x_data - x_mean) * (y_data - y_mean)) den = np.sqrt(np.sum((x_data - x_mean) ** 2) * np.sum(( y_data - y_mean) ** 2)) cor_matrix[i, j] = num / den cor_matrix[j, i] = num / den inv_cor_matrix = np.linalg.pinv(cor_matrix) VIF = np.max(np.diag(inv_cor_matrix)) if showcorrelations: print('Correlation Matrix:\n', cor_matrix) print('Inverted Correlation Matrix:\n', inv_cor_matrix) print('Variance Inflation Factor (VIF):', VIF) return dist_data
lhd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dist=None, size=None, dims=1, form='randomized', iterations=100,\n showcorrelations=False):\n assert dims > 0, 'kwarg \"dims\" must be at least 1'\n if not size or not dist:\n return None\n\n def x(x, samples=20):\n segmentSize = 1.0 / samples\n numVars = x.shape[1]\n out = np.zeros((samples, numVars))\n pointValue = np.zeros(samples)\n for n in range(numVars):\n for i in range(samples):\n segmentMin = i * segmentSize\n point = segmentMin + np.random.random() * segmentSize\n pointValue[i] = point * (x[1, n] - x[0, n]) + x[0, n]\n out[:, n] = pointValue\n return _mix(out)\n\n def x(data, dim='cols'):\n data = np.atleast_2d(data)\n n = data.shape[0]\n if dim == 'rows':\n data = data.T\n data_rank = list(range(n))\n for i in range(data.shape[1]):\n new_data_rank = np.random.permutation(data_rank)\n vals, order = np.unique(np.hstack((data_rank, new_data_rank)),\n return_inverse=True)\n old_order = order[:n]\n new_order = order[-n:]\n tmp = data[np.argsort(old_order), i][new_order]\n data[:, i] = tmp[:]\n if dim == 'rows':\n data = data.T\n return data\n if form is 'randomized':\n if hasattr(dist, '__getitem__'):\n nvars = len(dist)\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = _lhs(x, samples=size)\n dist_data = np.empty_like(unif_data)\n for i, d in enumerate(dist):\n dist_data[:, i] = d.ppf(unif_data[:, i])\n else:\n nvars = dims\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = _lhs(x, samples=size)\n dist_data = np.empty_like(unif_data)\n for i in range(nvars):\n dist_data[:, i] = dist.ppf(unif_data[:, i])\n elif form is 'spacefilling':\n\n def x(arr):\n n = arr.shape[0]\n ans = 0.0\n for i in range(n - 1):\n for j in range(i + 1, n):\n d = np.sqrt(np.sum([((arr[i, k] - arr[j, k]) ** 2) for\n k in range(arr.shape[1])]))\n ans += 1.0 / d ** 2\n return ans\n\n def x(data):\n best = 100000000.0\n for it in range(iterations):\n d = euclid_distance(data)\n if d < best:\n d_opt = d\n data_opt = data.copy()\n data = _mix(data)\n print('Optimized Distance:', d_opt)\n return data_opt\n if hasattr(dist, '__getitem__'):\n nvars = len(dist)\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = fill_space(_lhs(x, samples=size))\n dist_data = np.empty_like(unif_data)\n for i, d in enumerate(dist):\n dist_data[:, i] = d.ppf(unif_data[:, i])\n else:\n nvars = dims\n x = np.vstack((np.zeros(nvars), np.ones(nvars)))\n unif_data = fill_space(_lhs(x, samples=size))\n dist_data = np.empty_like(unif_data)\n for i in range(nvars):\n dist_data[:, i] = dist.ppf(unif_data[:, i])\n elif form is 'orthogonal':\n raise NotImplementedError(\n \"Sorry. The orthogonal space-filling algorithm hasn't been implemented yet.\"\n )\n else:\n raise ValueError('Invalid \"form\" value: %s' % form)\n if dist_data.shape[1] > 1:\n cor_matrix = np.zeros((nvars, nvars))\n for i in range(nvars):\n for j in range(nvars):\n x_data = dist_data[:, i].copy()\n y_data = dist_data[:, j].copy()\n x_mean = x_data.mean()\n y_mean = y_data.mean()\n num = np.sum((x_data - x_mean) * (y_data - y_mean))\n den = np.sqrt(np.sum((x_data - x_mean) ** 2) * np.sum((\n y_data - y_mean) ** 2))\n cor_matrix[i, j] = num / den\n cor_matrix[j, i] = num / den\n inv_cor_matrix = np.linalg.pinv(cor_matrix)\n VIF = np.max(np.diag(inv_cor_matrix))\n if showcorrelations:\n print('Correlation Matrix:\\n', cor_matrix)\n print('Inverted Correlation Matrix:\\n', inv_cor_matrix)\n print('Variance Inflation Factor (VIF):', VIF)\n return dist_data\n", "role": "user" }, { "content": "lhd", "role": "assistant" } ]
def x(x): if isinstance(x, UncertainFunction): return x elif isinstance(x, CONSTANT_TYPES): return UncertainFunction([x] * npts) raise NotUpcast('%s cannot be converted to a number with uncertainty' % type(x))
to_uncertain_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, UncertainFunction):\n return x\n elif isinstance(x, CONSTANT_TYPES):\n return UncertainFunction([x] * npts)\n raise NotUpcast('%s cannot be converted to a number with uncertainty' %\n type(x))\n", "role": "user" }, { "content": "to_uncertain_func", "role": "assistant" } ]
def x(alpha, beta, low=0, high=1, tag=None): assert alpha > 0 and beta > 0, 'Beta "alpha" and "beta" parameters must be greater than zero' assert low < high, 'Beta "low" must be less than "high"' return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)
Beta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, beta, low=0, high=1, tag=None):\n assert alpha > 0 and beta > 0, 'Beta \"alpha\" and \"beta\" parameters must be greater than zero'\n assert low < high, 'Beta \"low\" must be less than \"high\"'\n return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag)\n", "role": "user" }, { "content": "Beta", "role": "assistant" } ]
def x(alpha, beta, tag=None): assert alpha > 0 and beta > 0, 'BetaPrime "alpha" and "beta" parameters must be greater than zero' x = Beta(alpha, beta, tag) return x / (1 - x)
BetaPrime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha, beta, tag=None):\n assert alpha > 0 and beta > 0, 'BetaPrime \"alpha\" and \"beta\" parameters must be greater than zero'\n x = Beta(alpha, beta, tag)\n return x / (1 - x)\n", "role": "user" }, { "content": "BetaPrime", "role": "assistant" } ]
def x(q, low=0, high=1, tag=None): assert q > 0, 'Bradford "q" parameter must be greater than zero' assert low < high, 'Bradford "low" parameter must be less than "high"' return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)
Bradford
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, low=0, high=1, tag=None):\n assert q > 0, 'Bradford \"q\" parameter must be greater than zero'\n assert low < high, 'Bradford \"low\" parameter must be less than \"high\"'\n return uv(ss.bradford(q, loc=low, scale=high - low), tag=tag)\n", "role": "user" }, { "content": "Bradford", "role": "assistant" } ]
def x(c, k, tag=None): assert c > 0 and k > 0, 'Burr "c" and "k" parameters must be greater than zero' return uv(ss.burr(c, k), tag=tag)
Burr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, k, tag=None):\n assert c > 0 and k > 0, 'Burr \"c\" and \"k\" parameters must be greater than zero'\n return uv(ss.burr(c, k), tag=tag)\n", "role": "user" }, { "content": "Burr", "role": "assistant" } ]
def x(k, tag=None): assert int(k ) == k and k >= 1, 'Chi-Squared "k" must be an integer greater than 0' return uv(ss.chi2(k), tag=tag)
ChiSquared
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k, tag=None):\n assert int(k\n ) == k and k >= 1, 'Chi-Squared \"k\" must be an integer greater than 0'\n return uv(ss.chi2(k), tag=tag)\n", "role": "user" }, { "content": "ChiSquared", "role": "assistant" } ]
def x(k, lamda, tag=None): assert int(k) == k and k > 0, 'Erlang "k" must be a positive integer' assert lamda > 0, 'Erlang "lamda" must be greater than zero' return Gamma(k, lamda, tag)
Erlang
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k, lamda, tag=None):\n assert int(k) == k and k > 0, 'Erlang \"k\" must be a positive integer'\n assert lamda > 0, 'Erlang \"lamda\" must be greater than zero'\n return Gamma(k, lamda, tag)\n", "role": "user" }, { "content": "Erlang", "role": "assistant" } ]
def x(lamda, tag=None): assert lamda > 0, 'Exponential "lamda" must be greater than zero' return uv(ss.expon(scale=1.0 / lamda), tag=tag)
Exponential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lamda, tag=None):\n assert lamda > 0, 'Exponential \"lamda\" must be greater than zero'\n return uv(ss.expon(scale=1.0 / lamda), tag=tag)\n", "role": "user" }, { "content": "Exponential", "role": "assistant" } ]
def x(mu, sigma, tag=None): assert sigma > 0, 'ExtremeValueMax "sigma" must be greater than zero' p = U(0, 1)._mcpts[:] return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)
ExtValueMax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'ExtremeValueMax \"sigma\" must be greater than zero'\n p = U(0, 1)._mcpts[:]\n return UncertainFunction(mu - sigma * np.log(-np.log(p)), tag=tag)\n", "role": "user" }, { "content": "ExtValueMax", "role": "assistant" } ]
def x(d1, d2, tag=None): assert int(d1 ) == d1 and d1 >= 1, 'Fisher (F) "d1" must be an integer greater than 0' assert int(d2 ) == d2 and d2 >= 1, 'Fisher (F) "d2" must be an integer greater than 0' return uv(ss.f(d1, d2), tag=tag)
Fisher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d1, d2, tag=None):\n assert int(d1\n ) == d1 and d1 >= 1, 'Fisher (F) \"d1\" must be an integer greater than 0'\n assert int(d2\n ) == d2 and d2 >= 1, 'Fisher (F) \"d2\" must be an integer greater than 0'\n return uv(ss.f(d1, d2), tag=tag)\n", "role": "user" }, { "content": "Fisher", "role": "assistant" } ]
def x(k, theta, tag=None): assert k > 0 and theta > 0, 'Gamma "k" and "theta" parameters must be greater than zero' return uv(ss.gamma(k, scale=theta), tag=tag)
Gamma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(k, theta, tag=None):\n assert k > 0 and theta > 0, 'Gamma \"k\" and \"theta\" parameters must be greater than zero'\n return uv(ss.gamma(k, scale=theta), tag=tag)\n", "role": "user" }, { "content": "Gamma", "role": "assistant" } ]
def x(mu, sigma, tag=None): assert sigma > 0, 'Log-Normal "sigma" must be positive' return uv(ss.lognorm(sigma, loc=mu), tag=tag)
LogNormal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'Log-Normal \"sigma\" must be positive'\n return uv(ss.lognorm(sigma, loc=mu), tag=tag)\n", "role": "user" }, { "content": "LogNormal", "role": "assistant" } ]
def x(mu, sigma, tag=None): assert sigma > 0, 'Normal "sigma" must be greater than zero' return uv(ss.norm(loc=mu, scale=sigma), tag=tag)
Normal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mu, sigma, tag=None):\n assert sigma > 0, 'Normal \"sigma\" must be greater than zero'\n return uv(ss.norm(loc=mu, scale=sigma), tag=tag)\n", "role": "user" }, { "content": "Normal", "role": "assistant" } ]
def x(q, a, tag=None): assert q > 0 and a > 0, 'Pareto "q" and "a" must be positive scalars' p = Uniform(0, 1, tag) return a * (1 - p) ** (-1.0 / q)
Pareto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, a, tag=None):\n assert q > 0 and a > 0, 'Pareto \"q\" and \"a\" must be positive scalars'\n p = Uniform(0, 1, tag)\n return a * (1 - p) ** (-1.0 / q)\n", "role": "user" }, { "content": "Pareto", "role": "assistant" } ]
def x(q, b, tag=None): assert q > 0 and b > 0, 'Pareto2 "q" and "b" must be positive scalars' return Pareto(q, b, tag) - b
Pareto2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q, b, tag=None):\n assert q > 0 and b > 0, 'Pareto2 \"q\" and \"b\" must be positive scalars'\n return Pareto(q, b, tag) - b\n", "role": "user" }, { "content": "Pareto2", "role": "assistant" } ]
def x(low, peak, high, g=4.0, tag=None): a, b, c = [float(x) for x in [low, peak, high]] assert a <= b <= c, 'PERT "peak" must be greater than "low" and less than "high"' assert g >= 0, 'PERT "g" must be non-negative' mu = (a + g * b + c) / (g + 2) if mu == b: a1 = a2 = 3.0 else: a1 = (mu - a) * (2 * b - a - c) / ((b - mu) * (c - a)) a2 = a1 * (c - mu) / (mu - a) return Beta(a1, a2, a, c, tag)
PERT
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(low, peak, high, g=4.0, tag=None):\n a, b, c = [float(x) for x in [low, peak, high]]\n assert a <= b <= c, 'PERT \"peak\" must be greater than \"low\" and less than \"high\"'\n assert g >= 0, 'PERT \"g\" must be non-negative'\n mu = (a + g * b + c) / (g + 2)\n if mu == b:\n a1 = a2 = 3.0\n else:\n a1 = (mu - a) * (2 * b - a - c) / ((b - mu) * (c - a))\n a2 = a1 * (c - mu) / (mu - a)\n return Beta(a1, a2, a, c, tag)\n", "role": "user" }, { "content": "PERT", "role": "assistant" } ]
def x(v, tag=None): assert int(v ) == v and v >= 1, 'Student-T "v" must be an integer greater than 0' return uv(ss.t(v), tag=tag)
StudentT
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v, tag=None):\n assert int(v\n ) == v and v >= 1, 'Student-T \"v\" must be an integer greater than 0'\n return uv(ss.t(v), tag=tag)\n", "role": "user" }, { "content": "StudentT", "role": "assistant" } ]
def x(low, peak, high, tag=None): assert low <= peak <= high, 'Triangular "peak" must lie between "low" and "high"' low, peak, high = [float(x) for x in [low, peak, high]] return uv(ss.triang((1.0 * peak - low) / (high - low), loc=low, scale= high - low), tag=tag)
Triangular
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(low, peak, high, tag=None):\n assert low <= peak <= high, 'Triangular \"peak\" must lie between \"low\" and \"high\"'\n low, peak, high = [float(x) for x in [low, peak, high]]\n return uv(ss.triang((1.0 * peak - low) / (high - low), loc=low, scale=\n high - low), tag=tag)\n", "role": "user" }, { "content": "Triangular", "role": "assistant" } ]
def x(low, high, tag=None): assert low < high, 'Uniform "low" must be less than "high"' return uv(ss.uniform(loc=low, scale=high - low), tag=tag)
Uniform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(low, high, tag=None):\n assert low < high, 'Uniform \"low\" must be less than \"high\"'\n return uv(ss.uniform(loc=low, scale=high - low), tag=tag)\n", "role": "user" }, { "content": "Uniform", "role": "assistant" } ]
def x(lamda, k, tag=None): assert lamda > 0 and k > 0, 'Weibull "lamda" and "k" parameters must be greater than zero' return uv(ss.exponweib(lamda, k), tag=tag)
Weibull
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lamda, k, tag=None):\n assert lamda > 0 and k > 0, 'Weibull \"lamda\" and \"k\" parameters must be greater than zero'\n return uv(ss.exponweib(lamda, k), tag=tag)\n", "role": "user" }, { "content": "Weibull", "role": "assistant" } ]
def x(p, tag=None): assert 0 < p < 1, 'Bernoulli probability "p" must be between zero and one, non-inclusive' return uv(ss.bernoulli(p), tag=tag)
Bernoulli
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, tag=None):\n assert 0 < p < 1, 'Bernoulli probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.bernoulli(p), tag=tag)\n", "role": "user" }, { "content": "Bernoulli", "role": "assistant" } ]
def x(n, p, tag=None): assert int(n ) == n and n > 0, 'Binomial number of trials "n" must be an integer greater than zero' assert 0 < p < 1, 'Binomial probability "p" must be between zero and one, non-inclusive' return uv(ss.binom(n, p), tag=tag)
Binomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, p, tag=None):\n assert int(n\n ) == n and n > 0, 'Binomial number of trials \"n\" must be an integer greater than zero'\n assert 0 < p < 1, 'Binomial probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.binom(n, p), tag=tag)\n", "role": "user" }, { "content": "Binomial", "role": "assistant" } ]
def x(p, tag=None): assert 0 < p < 1, 'Geometric probability "p" must be between zero and one, non-inclusive' return uv(ss.geom(p), tag=tag)
Geometric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, tag=None):\n assert 0 < p < 1, 'Geometric probability \"p\" must be between zero and one, non-inclusive'\n return uv(ss.geom(p), tag=tag)\n", "role": "user" }, { "content": "Geometric", "role": "assistant" } ]
def x(N, n, K, tag=None): assert int(N ) == N and N > 0, 'Hypergeometric total population size "N" must be an integer greater than zero.' assert int(n ) == n and 0 < n <= N, 'Hypergeometric interest population size "n" must be an integer greater than zero and no more than the total population size.' assert int(K ) == K and 0 < K <= N, 'Hypergeometric chosen population size "K" must be an integer greater than zero and no more than the total population size.' return uv(ss.hypergeom(N, n, K), tag=tag)
Hypergeometric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N, n, K, tag=None):\n assert int(N\n ) == N and N > 0, 'Hypergeometric total population size \"N\" must be an integer greater than zero.'\n assert int(n\n ) == n and 0 < n <= N, 'Hypergeometric interest population size \"n\" must be an integer greater than zero and no more than the total population size.'\n assert int(K\n ) == K and 0 < K <= N, 'Hypergeometric chosen population size \"K\" must be an integer greater than zero and no more than the total population size.'\n return uv(ss.hypergeom(N, n, K), tag=tag)\n", "role": "user" }, { "content": "Hypergeometric", "role": "assistant" } ]
def x(lamda, tag=None): assert lamda > 0, 'Poisson "lamda" must be greater than zero.' return uv(ss.poisson(lamda), tag=tag)
Poisson
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lamda, tag=None):\n assert lamda > 0, 'Poisson \"lamda\" must be greater than zero.'\n return uv(ss.poisson(lamda), tag=tag)\n", "role": "user" }, { "content": "Poisson", "role": "assistant" } ]
def x(nums_with_uncert): ufuncs = list(map(to_uncertain_func, nums_with_uncert)) cov_matrix = [] for i1, expr1 in enumerate(ufuncs): coefs_expr1 = [] mean1 = expr1.mean for i2, expr2 in enumerate(ufuncs[:i1 + 1]): mean2 = expr2.mean coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2)) coefs_expr1.append(coef) cov_matrix.append(coefs_expr1) for i, covariance_coefs in enumerate(cov_matrix): covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len( cov_matrix))) return cov_matrix
covariance_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nums_with_uncert):\n ufuncs = list(map(to_uncertain_func, nums_with_uncert))\n cov_matrix = []\n for i1, expr1 in enumerate(ufuncs):\n coefs_expr1 = []\n mean1 = expr1.mean\n for i2, expr2 in enumerate(ufuncs[:i1 + 1]):\n mean2 = expr2.mean\n coef = np.mean((expr1._mcpts - mean1) * (expr2._mcpts - mean2))\n coefs_expr1.append(coef)\n cov_matrix.append(coefs_expr1)\n for i, covariance_coefs in enumerate(cov_matrix):\n covariance_coefs.extend(cov_matrix[j][i] for j in range(i + 1, len(\n cov_matrix)))\n return cov_matrix\n", "role": "user" }, { "content": "covariance_matrix", "role": "assistant" } ]
def x(nums_with_uncert): ufuncs = list(map(to_uncertain_func, nums_with_uncert)) data = np.vstack([ufunc._mcpts for ufunc in ufuncs]) return np.corrcoef(data.T, rowvar=0)
correlation_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nums_with_uncert):\n ufuncs = list(map(to_uncertain_func, nums_with_uncert))\n data = np.vstack([ufunc._mcpts for ufunc in ufuncs])\n return np.corrcoef(data.T, rowvar=0)\n", "role": "user" }, { "content": "correlation_matrix", "role": "assistant" } ]
def x(self): mn = self.mean vr = np.mean((self._mcpts - mn) ** 2) return vr
var
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mn = self.mean\n vr = np.mean((self._mcpts - mn) ** 2)\n return vr\n", "role": "user" }, { "content": "var", "role": "assistant" } ]
def x(self): mn = self.mean sd = self.std sk = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 3 ) / sd ** 3 return sk
skew
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mn = self.mean\n sd = self.std\n sk = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 3\n ) / sd ** 3\n return sk\n", "role": "user" }, { "content": "skew", "role": "assistant" } ]
def x(self): mn = self.mean sd = self.std kt = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 4 ) / sd ** 4 return kt
kurt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mn = self.mean\n sd = self.std\n kt = 0.0 if abs(sd) <= 1e-08 else np.mean((self._mcpts - mn) ** 4\n ) / sd ** 4\n return kt\n", "role": "user" }, { "content": "kurt", "role": "assistant" } ]
def x(self): mn = self.mean vr = self.var sk = self.skew kt = self.kurt return [mn, vr, sk, kt]
stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mn = self.mean\n vr = self.var\n sk = self.skew\n kt = self.kurt\n return [mn, vr, sk, kt]\n", "role": "user" }, { "content": "stats", "role": "assistant" } ]
def x(self, val): try: out = [self.percentile(vi) for vi in val] except (ValueError, TypeError): if val <= 0: out = float(min(self._mcpts)) elif val >= 1: out = float(max(self._mcpts)) else: tmp = np.sort(self._mcpts) n = val * (len(tmp) + 1) k, d = int(n), n - int(n) out = float(tmp[k] + d * (tmp[k + 1] - tmp[k])) if isinstance(val, np.ndarray): out = np.array(out) return out
percentile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val):\n try:\n out = [self.percentile(vi) for vi in val]\n except (ValueError, TypeError):\n if val <= 0:\n out = float(min(self._mcpts))\n elif val >= 1:\n out = float(max(self._mcpts))\n else:\n tmp = np.sort(self._mcpts)\n n = val * (len(tmp) + 1)\n k, d = int(n), n - int(n)\n out = float(tmp[k] + d * (tmp[k + 1] - tmp[k]))\n if isinstance(val, np.ndarray):\n out = np.array(out)\n return out\n", "role": "user" }, { "content": "percentile", "role": "assistant" } ]
def x(self, name=None): mn, vr, sk, kt = self.stats if name is not None: s = 'MCERP Uncertain Value (' + name + '):\n' elif self.tag is not None: s = 'MCERP Uncertain Value (' + self.tag + '):\n' else: s = 'MCERP Uncertain Value:\n' s += ' > Mean................... {: }\n'.format(mn) s += ' > Variance............... {: }\n'.format(vr) s += ' > Skewness Coefficient... {: }\n'.format(sk) s += ' > Kurtosis Coefficient... {: }\n'.format(kt) print(s)
describe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name=None):\n mn, vr, sk, kt = self.stats\n if name is not None:\n s = 'MCERP Uncertain Value (' + name + '):\\n'\n elif self.tag is not None:\n s = 'MCERP Uncertain Value (' + self.tag + '):\\n'\n else:\n s = 'MCERP Uncertain Value:\\n'\n s += ' > Mean................... {: }\\n'.format(mn)\n s += ' > Variance............... {: }\\n'.format(vr)\n s += ' > Skewness Coefficient... {: }\\n'.format(sk)\n s += ' > Kurtosis Coefficient... {: }\\n'.format(kt)\n print(s)\n", "role": "user" }, { "content": "describe", "role": "assistant" } ]
def x(self, hist=False, show=False, **kwargs): import matplotlib.pyplot as plt vals = self._mcpts low = min(vals) high = max(vals) p = ss.kde.gaussian_kde(vals) xp = np.linspace(low, high, 100) if hist: h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype= 'stepfilled', normed=True, **kwargs) plt.ylim(0, 1.1 * h[0].max()) else: plt.plot(xp, p.evaluate(xp), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hist=False, show=False, **kwargs):\n import matplotlib.pyplot as plt\n vals = self._mcpts\n low = min(vals)\n high = max(vals)\n p = ss.kde.gaussian_kde(vals)\n xp = np.linspace(low, high, 100)\n if hist:\n h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=\n 'stepfilled', normed=True, **kwargs)\n plt.ylim(0, 1.1 * h[0].max())\n else:\n plt.plot(xp, p.evaluate(xp), **kwargs)\n plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)\n if show:\n self.show()\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, hist=False, show=False, **kwargs): import matplotlib.pyplot as plt if hist: vals = self._mcpts low = vals.min() high = vals.max() h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype= 'stepfilled', normed=True, **kwargs) plt.ylim(0, 1.1 * h[0].max()) else: bound = 0.0001 low = self.rv.ppf(bound) high = self.rv.ppf(1 - bound) if hasattr(self.rv.dist, 'pmf'): low = int(low) high = int(high) vals = list(range(low, high + 1)) plt.plot(vals, self.rv.pmf(vals), 'o', **kwargs) else: vals = np.linspace(low, high, 500) plt.plot(vals, self.rv.pdf(vals), **kwargs) plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1) if show: self.show()
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hist=False, show=False, **kwargs):\n import matplotlib.pyplot as plt\n if hist:\n vals = self._mcpts\n low = vals.min()\n high = vals.max()\n h = plt.hist(vals, bins=int(np.sqrt(len(vals)) + 0.5), histtype=\n 'stepfilled', normed=True, **kwargs)\n plt.ylim(0, 1.1 * h[0].max())\n else:\n bound = 0.0001\n low = self.rv.ppf(bound)\n high = self.rv.ppf(1 - bound)\n if hasattr(self.rv.dist, 'pmf'):\n low = int(low)\n high = int(high)\n vals = list(range(low, high + 1))\n plt.plot(vals, self.rv.pmf(vals), 'o', **kwargs)\n else:\n vals = np.linspace(low, high, 500)\n plt.plot(vals, self.rv.pdf(vals), **kwargs)\n plt.xlim(low - (high - low) * 0.1, high + (high - low) * 0.1)\n if show:\n self.show()\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, path): hat = cv2.imread(path, cv2.IMREAD_UNCHANGED) if hat is None: raise ValueError('No hat image found at `{}`'.format(path)) b, g, r, a = cv2.split(hat) return cv2.merge((r, g, b, a))
load_hat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path):\n hat = cv2.imread(path, cv2.IMREAD_UNCHANGED)\n if hat is None:\n raise ValueError('No hat image found at `{}`'.format(path))\n b, g, r, a = cv2.split(hat)\n return cv2.merge((r, g, b, a))\n", "role": "user" }, { "content": "load_hat", "role": "assistant" } ]
def x(self, image, draw_box=False): frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) faces = self.cascade.detectMultiScale(frame_gray, scaleFactor=1.3, minNeighbors=5, minSize=(50, 50), flags=0) if draw_box: for x, y, w, h in faces: cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) return faces
find_faces
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, draw_box=False):\n frame_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)\n faces = self.cascade.detectMultiScale(frame_gray, scaleFactor=1.3,\n minNeighbors=5, minSize=(50, 50), flags=0)\n if draw_box:\n for x, y, w, h in faces:\n cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)\n return faces\n", "role": "user" }, { "content": "find_faces", "role": "assistant" } ]
def x(self, rsrc_type, sort=None, yield_pages=False, **kwargs): return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)
find_resources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rsrc_type, sort=None, yield_pages=False, **kwargs):\n return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs)\n", "role": "user" }, { "content": "find_resources", "role": "assistant" } ]
def x(self, message=None, *args): if message is not None: self.logger.debug('%s: %s', self._repr(), message % args) self.logger.debug('%s: changed', self._repr()) if self.parent is not None: self.parent.changed() elif isinstance(self, Mutable): super(TrackedObject, self).changed()
changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, message=None, *args):\n if message is not None:\n self.logger.debug('%s: %s', self._repr(), message % args)\n self.logger.debug('%s: changed', self._repr())\n if self.parent is not None:\n self.parent.changed()\n elif isinstance(self, Mutable):\n super(TrackedObject, self).changed()\n", "role": "user" }, { "content": "changed", "role": "assistant" } ]
def x(cls, origin_type): def x(tracked_type): cls._type_mapping[origin_type] = tracked_type return tracked_type return decorator
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, origin_type):\n\n def x(tracked_type):\n cls._type_mapping[origin_type] = tracked_type\n return tracked_type\n return decorator\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(cls, obj, parent): replacement_type = cls._type_mapping.get(type(obj)) if replacement_type is not None: new = replacement_type(obj) new.parent = parent return new return obj
convert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, obj, parent):\n replacement_type = cls._type_mapping.get(type(obj))\n if replacement_type is not None:\n new = replacement_type(obj)\n new.parent = parent\n return new\n return obj\n", "role": "user" }, { "content": "convert", "role": "assistant" } ]
def x(self, items): return ((key, self.convert(value, self)) for key, value in items)
convert_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, items):\n return ((key, self.convert(value, self)) for key, value in items)\n", "role": "user" }, { "content": "convert_items", "role": "assistant" } ]
def x(self, mapping): if isinstance(mapping, dict): return self.convert_items(iteritems(mapping)) return self.convert_items(mapping)
convert_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mapping):\n if isinstance(mapping, dict):\n return self.convert_items(iteritems(mapping))\n return self.convert_items(mapping)\n", "role": "user" }, { "content": "convert_mapping", "role": "assistant" } ]
def x(self, request, extra_context=None): model = self.model if model.objects.all().count() > 1: return super(PreferencesAdmin, self).changelist_view(request) else: obj = model.singleton.get() return redirect(reverse('admin:%s_%s_change' % (model._meta. app_label, model._meta.model_name), args=(obj.id,)))
changelist_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, extra_context=None):\n model = self.model\n if model.objects.all().count() > 1:\n return super(PreferencesAdmin, self).changelist_view(request)\n else:\n obj = model.singleton.get()\n return redirect(reverse('admin:%s_%s_change' % (model._meta.\n app_label, model._meta.model_name), args=(obj.id,)))\n", "role": "user" }, { "content": "changelist_view", "role": "assistant" } ]
def x(md_lines): lvl2header_char = {(1): '=', (2): '-', (3): '~'} for md_line in md_lines: if md_line.startswith('#'): header_indent, header_text = md_line.split(' ', 1) yield header_text header_char = lvl2header_char[len(header_indent)] yield header_char * len(header_text) else: yield md_line
md2rst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(md_lines):\n lvl2header_char = {(1): '=', (2): '-', (3): '~'}\n for md_line in md_lines:\n if md_line.startswith('#'):\n header_indent, header_text = md_line.split(' ', 1)\n yield header_text\n header_char = lvl2header_char[len(header_indent)]\n yield header_char * len(header_text)\n else:\n yield md_line\n", "role": "user" }, { "content": "md2rst", "role": "assistant" } ]
def x(generator): def x(*args, **kwargs): return list(generator(*args, **kwargs)) return wrapper
aslist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(generator):\n\n def x(*args, **kwargs):\n return list(generator(*args, **kwargs))\n return wrapper\n", "role": "user" }, { "content": "aslist", "role": "assistant" } ]
def x(pkg_name, version, pypi_json_api_url, allowed_classifiers): matching_releases = get_package_releases_matching_version(pkg_name, version, pypi_json_api_url) src_releases = [release for release in matching_releases if release[ 'python_version'] == 'source'] if src_releases: return select_src_release(src_releases, pkg_name, target_classifiers=('py2.py3-none-any',), select_arbitrary_version_if_none_match=True) if allowed_classifiers: return select_src_release(matching_releases, pkg_name, target_classifiers=allowed_classifiers) raise PypiQueryError('No source supported found for package {} version {}' .format(pkg_name, version))
get_package_release_from_pypi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pkg_name, version, pypi_json_api_url, allowed_classifiers):\n matching_releases = get_package_releases_matching_version(pkg_name,\n version, pypi_json_api_url)\n src_releases = [release for release in matching_releases if release[\n 'python_version'] == 'source']\n if src_releases:\n return select_src_release(src_releases, pkg_name,\n target_classifiers=('py2.py3-none-any',),\n select_arbitrary_version_if_none_match=True)\n if allowed_classifiers:\n return select_src_release(matching_releases, pkg_name,\n target_classifiers=allowed_classifiers)\n raise PypiQueryError('No source supported found for package {} version {}'\n .format(pkg_name, version))\n", "role": "user" }, { "content": "get_package_release_from_pypi", "role": "assistant" } ]
def x(pkg_name, filename): basename, _, extension = filename.rpartition('.') if extension == 'gz' and filename.endswith('.tar.gz'): extension = 'tar.gz' basename = filename[:-7] if basename == pkg_name or basename[len(pkg_name)] != '-': return 'py2.py3-none-any', extension basename = basename[len(pkg_name) + 1:] classifier_parts = basename.split('-') if len(classifier_parts) < 3: return 'py2.py3-none-any', extension if len(classifier_parts) == 3: _, _, classifier_parts[0] = classifier_parts[0].rpartition('.') return '-'.join(classifier_parts[-3:]), extension
extract_classifier_and_extension
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pkg_name, filename):\n basename, _, extension = filename.rpartition('.')\n if extension == 'gz' and filename.endswith('.tar.gz'):\n extension = 'tar.gz'\n basename = filename[:-7]\n if basename == pkg_name or basename[len(pkg_name)] != '-':\n return 'py2.py3-none-any', extension\n basename = basename[len(pkg_name) + 1:]\n classifier_parts = basename.split('-')\n if len(classifier_parts) < 3:\n return 'py2.py3-none-any', extension\n if len(classifier_parts) == 3:\n _, _, classifier_parts[0] = classifier_parts[0].rpartition('.')\n return '-'.join(classifier_parts[-3:]), extension\n", "role": "user" }, { "content": "extract_classifier_and_extension", "role": "assistant" } ]
def x(cls, key, value): if value is None: return value if isinstance(value, cls): return value if isinstance(value, dict): return NestedMutableDict.coerce(key, value) if isinstance(value, list): return NestedMutableList.coerce(key, value) return super(cls).coerce(key, value)
coerce
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, key, value):\n if value is None:\n return value\n if isinstance(value, cls):\n return value\n if isinstance(value, dict):\n return NestedMutableDict.coerce(key, value)\n if isinstance(value, list):\n return NestedMutableList.coerce(key, value)\n return super(cls).coerce(key, value)\n", "role": "user" }, { "content": "coerce", "role": "assistant" } ]
def x(mod, fun): return inspect.isfunction(fun) and inspect.getmodule(fun) == mod
is_mod_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mod, fun):\n return inspect.isfunction(fun) and inspect.getmodule(fun) == mod\n", "role": "user" }, { "content": "is_mod_function", "role": "assistant" } ]
def x(mod, cls): return inspect.isclass(cls) and inspect.getmodule(cls) == mod
is_mod_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mod, cls):\n return inspect.isclass(cls) and inspect.getmodule(cls) == mod\n", "role": "user" }, { "content": "is_mod_class", "role": "assistant" } ]
def x(mod_name): mod = sys.modules[mod_name] return [func.__name__ for func in mod.__dict__.values() if is_mod_function(mod, func)]
list_functions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mod_name):\n mod = sys.modules[mod_name]\n return [func.__name__ for func in mod.__dict__.values() if\n is_mod_function(mod, func)]\n", "role": "user" }, { "content": "list_functions", "role": "assistant" } ]
def x(mod_name): mod = sys.modules[mod_name] return [cls.__name__ for cls in mod.__dict__.values() if is_mod_class( mod, cls)]
list_classes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mod_name):\n mod = sys.modules[mod_name]\n return [cls.__name__ for cls in mod.__dict__.values() if is_mod_class(\n mod, cls)]\n", "role": "user" }, { "content": "list_classes", "role": "assistant" } ]
def x(functions, module, searchstr='def {}(image):\n'): lines = inspect.getsourcelines(module)[0] line_numbers = {} for function in functions: try: line_numbers[function] = lines.index(searchstr.format(function) ) + 1 except ValueError: print('Can not find `{}`'.format(searchstr.format(function))) line_numbers[function] = 0 return line_numbers
get_linenumbers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(functions, module, searchstr='def {}(image):\\n'):\n lines = inspect.getsourcelines(module)[0]\n line_numbers = {}\n for function in functions:\n try:\n line_numbers[function] = lines.index(searchstr.format(function)\n ) + 1\n except ValueError:\n print('Can not find `{}`'.format(searchstr.format(function)))\n line_numbers[function] = 0\n return line_numbers\n", "role": "user" }, { "content": "get_linenumbers", "role": "assistant" } ]
def x(fun): SEPARATOR = '=============================' func = cvloop.functions.__dict__[fun] doc_lines = ['{}'.format(l).strip() for l in func.__doc__.split('\n')] if hasattr(func, '__init__'): doc_lines.append(SEPARATOR) doc_lines += ['{}'.format(l).strip() for l in func.__init__.__doc__ .split('\n')] mod_lines = [] argblock = False returnblock = False for line in doc_lines: if line == SEPARATOR: mod_lines.append('\n#### `{}.__init__(...)`:\n\n'.format(fun)) elif 'Args:' in line: argblock = True if GENERATE_ARGS: mod_lines.append('**{}**\n'.format(line)) elif 'Returns:' in line: returnblock = True mod_lines.append('\n**{}**'.format(line)) elif not argblock and not returnblock: mod_lines.append('{}\n'.format(line)) elif argblock and not returnblock and ':' in line: if GENERATE_ARGS: mod_lines.append('- *{}:* {}\n'.format(*line.split(':'))) elif returnblock: mod_lines.append(line) else: mod_lines.append('{}\n'.format(line)) return mod_lines
format_doc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fun):\n SEPARATOR = '============================='\n func = cvloop.functions.__dict__[fun]\n doc_lines = ['{}'.format(l).strip() for l in func.__doc__.split('\\n')]\n if hasattr(func, '__init__'):\n doc_lines.append(SEPARATOR)\n doc_lines += ['{}'.format(l).strip() for l in func.__init__.__doc__\n .split('\\n')]\n mod_lines = []\n argblock = False\n returnblock = False\n for line in doc_lines:\n if line == SEPARATOR:\n mod_lines.append('\\n#### `{}.__init__(...)`:\\n\\n'.format(fun))\n elif 'Args:' in line:\n argblock = True\n if GENERATE_ARGS:\n mod_lines.append('**{}**\\n'.format(line))\n elif 'Returns:' in line:\n returnblock = True\n mod_lines.append('\\n**{}**'.format(line))\n elif not argblock and not returnblock:\n mod_lines.append('{}\\n'.format(line))\n elif argblock and not returnblock and ':' in line:\n if GENERATE_ARGS:\n mod_lines.append('- *{}:* {}\\n'.format(*line.split(':')))\n elif returnblock:\n mod_lines.append(line)\n else:\n mod_lines.append('{}\\n'.format(line))\n return mod_lines\n", "role": "user" }, { "content": "format_doc", "role": "assistant" } ]
def x(): notebook = {'cells': [{'cell_type': 'markdown', 'metadata': {}, 'source': ["""# cvloop functions """, 'This notebook shows an overview over all cvloop ', 'functions provided in the [`cvloop.functions` module](', 'https://github.com/shoeffner/cvloop/blob/', 'develop/cvloop/functions.py).']}], 'nbformat': 4, 'nbformat_minor': 1, 'metadata': {'language_info': {'codemirror_mode': {'name': 'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype': 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python', 'pygments_lexer': 'ipython3', 'version': '3.5.1+'}}} classes = list_classes('cvloop.functions') functions = list_functions('cvloop.functions') line_numbers_cls = get_linenumbers(classes, cvloop.functions, 'class {}:\n' ) line_numbers = get_linenumbers(functions, cvloop.functions) for cls in classes: line_number = line_numbers_cls[cls] notebook['cells'].append(create_description_cell(cls, line_number)) notebook['cells'].append(create_code_cell(cls, isclass=True)) for func in functions: line_number = line_numbers[func] notebook['cells'].append(create_description_cell(func, line_number)) notebook['cells'].append(create_code_cell(func)) with open(sys.argv[1], 'w') as nfile: json.dump(notebook, nfile, indent=4)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n notebook = {'cells': [{'cell_type': 'markdown', 'metadata': {},\n 'source': [\"\"\"# cvloop functions\n\n\"\"\",\n 'This notebook shows an overview over all cvloop ',\n 'functions provided in the [`cvloop.functions` module](',\n 'https://github.com/shoeffner/cvloop/blob/',\n 'develop/cvloop/functions.py).']}], 'nbformat': 4, 'nbformat_minor':\n 1, 'metadata': {'language_info': {'codemirror_mode': {'name':\n 'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype':\n 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python',\n 'pygments_lexer': 'ipython3', 'version': '3.5.1+'}}}\n classes = list_classes('cvloop.functions')\n functions = list_functions('cvloop.functions')\n line_numbers_cls = get_linenumbers(classes, cvloop.functions, 'class {}:\\n'\n )\n line_numbers = get_linenumbers(functions, cvloop.functions)\n for cls in classes:\n line_number = line_numbers_cls[cls]\n notebook['cells'].append(create_description_cell(cls, line_number))\n notebook['cells'].append(create_code_cell(cls, isclass=True))\n for func in functions:\n line_number = line_numbers[func]\n notebook['cells'].append(create_description_cell(func, line_number))\n notebook['cells'].append(create_code_cell(func))\n with open(sys.argv[1], 'w') as nfile:\n json.dump(notebook, nfile, indent=4)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(axes, title, size, cmap=None): if axes is None: return None axes.set_xlim([0, size[1]]) axes.set_ylim([size[0], 0]) axes.set_aspect('equal') axes.axis('off') if isinstance(cmap, str): title = '{} (cmap: {})'.format(title, cmap) axes.set_title(title) axes_image = image.AxesImage(axes, cmap=cmap, extent=(0, size[1], size[ 0], 0)) axes_image.set_data(np.random.random((size[0], size[1], 3))) axes.add_image(axes_image) return axes_image
prepare_axes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(axes, title, size, cmap=None):\n if axes is None:\n return None\n axes.set_xlim([0, size[1]])\n axes.set_ylim([size[0], 0])\n axes.set_aspect('equal')\n axes.axis('off')\n if isinstance(cmap, str):\n title = '{} (cmap: {})'.format(title, cmap)\n axes.set_title(title)\n axes_image = image.AxesImage(axes, cmap=cmap, extent=(0, size[1], size[\n 0], 0))\n axes_image.set_data(np.random.random((size[0], size[1], 3)))\n axes.add_image(axes_image)\n return axes_image\n", "role": "user" }, { "content": "prepare_axes", "role": "assistant" } ]
def x(self): self.figure.canvas.mpl_connect('close_event', self.evt_release) self.figure.canvas.mpl_connect('pause_event', self.evt_toggle_pause)
connect_event_handlers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.figure.canvas.mpl_connect('close_event', self.evt_release)\n self.figure.canvas.mpl_connect('pause_event', self.evt_toggle_pause)\n", "role": "user" }, { "content": "connect_event_handlers", "role": "assistant" } ]
def x(self, *args): if self.event_source._timer is None: self.event_source.start() else: self.event_source.stop()
evt_toggle_pause
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args):\n if self.event_source._timer is None:\n self.event_source.start()\n else:\n self.event_source.stop()\n", "role": "user" }, { "content": "evt_toggle_pause", "role": "assistant" } ]
def x(self, capture): self.frame_offset += 1 ret, frame = capture.read() if ret: print('Capture Information') print('\tDimensions (HxW): {}x{}'.format(*frame.shape[0:2])) print('\tColor channels: {}'.format(frame.shape[2] if len(frame. shape) > 2 else 1)) print('\tColor range: {}-{}'.format(np.min(frame), np.max(frame))) print('\tdtype: {}'.format(frame.dtype)) else: print('No source found.')
print_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, capture):\n self.frame_offset += 1\n ret, frame = capture.read()\n if ret:\n print('Capture Information')\n print('\\tDimensions (HxW): {}x{}'.format(*frame.shape[0:2]))\n print('\\tColor channels: {}'.format(frame.shape[2] if len(frame.\n shape) > 2 else 1))\n print('\\tColor range: {}-{}'.format(np.min(frame), np.max(frame)))\n print('\\tdtype: {}'.format(frame.dtype))\n else:\n print('No source found.')\n", "role": "user" }, { "content": "print_info", "role": "assistant" } ]
def x(self, capture): width = 640 height = 480 if capture and hasattr(capture, 'get'): width = capture.get(cv2.CAP_PROP_FRAME_WIDTH) height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT) else: self.frame_offset += 1 ret, frame = capture.read() if ret: width = frame.shape[1] height = frame.shape[0] return int(height), int(width)
determine_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, capture):\n width = 640\n height = 480\n if capture and hasattr(capture, 'get'):\n width = capture.get(cv2.CAP_PROP_FRAME_WIDTH)\n height = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)\n else:\n self.frame_offset += 1\n ret, frame = capture.read()\n if ret:\n width = frame.shape[1]\n height = frame.shape[0]\n return int(height), int(width)\n", "role": "user" }, { "content": "determine_size", "role": "assistant" } ]
def x(self): if self.original is not None: self.original.set_data(np.random.random((10, 10, 3))) self.processed.set_data(np.random.random((10, 10, 3)))
init_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.original is not None:\n self.original.set_data(np.random.random((10, 10, 3)))\n self.processed.set_data(np.random.random((10, 10, 3)))\n", "role": "user" }, { "content": "init_draw", "role": "assistant" } ]
def x(self): ret, frame = self.capture.read() if not ret: self.event_source.stop() try: self.capture.release() except AttributeError: pass return None if self.convert_color != -1 and is_color_image(frame): return cv2.cvtColor(frame, self.convert_color) return frame
read_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ret, frame = self.capture.read()\n if not ret:\n self.event_source.stop()\n try:\n self.capture.release()\n except AttributeError:\n pass\n return None\n if self.convert_color != -1 and is_color_image(frame):\n return cv2.cvtColor(frame, self.convert_color)\n return frame\n", "role": "user" }, { "content": "read_frame", "role": "assistant" } ]
def x(self, framedata): for artist in self.annotation_artists: artist.remove() self.annotation_artists = [] for annotation in self.annotations: if annotation[2] > framedata: return if annotation[2] == framedata: pos = annotation[0:2] shape = self.annotations_default['shape'] color = self.annotations_default['color'] size = self.annotations_default['size'] line = self.annotations_default['line'] if len(annotation) > 3: shape = annotation[3].get('shape', shape) color = annotation[3].get('color', color) size = annotation[3].get('size', size) line = annotation[3].get('line', line) if shape == 'CIRC' and hasattr(size, '__len__'): size = 30 if not hasattr(color, '__len__'): color = (color,) * 3 if shape == 'RECT': patch = patches.Rectangle((pos[0] - size[0] // 2, pos[1] - size[1] // 2), size[0], size[1], fill=False, lw=line, fc='none', ec=color) elif shape == 'CIRC': patch = patches.CirclePolygon(pos, radius=size, fc='none', ec=color, lw=line) self.annotation_artists.append(patch) self.axes_processed.add_artist(self.annotation_artists[-1])
annotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, framedata):\n for artist in self.annotation_artists:\n artist.remove()\n self.annotation_artists = []\n for annotation in self.annotations:\n if annotation[2] > framedata:\n return\n if annotation[2] == framedata:\n pos = annotation[0:2]\n shape = self.annotations_default['shape']\n color = self.annotations_default['color']\n size = self.annotations_default['size']\n line = self.annotations_default['line']\n if len(annotation) > 3:\n shape = annotation[3].get('shape', shape)\n color = annotation[3].get('color', color)\n size = annotation[3].get('size', size)\n line = annotation[3].get('line', line)\n if shape == 'CIRC' and hasattr(size, '__len__'):\n size = 30\n if not hasattr(color, '__len__'):\n color = (color,) * 3\n if shape == 'RECT':\n patch = patches.Rectangle((pos[0] - size[0] // 2, pos[1] - \n size[1] // 2), size[0], size[1], fill=False, lw=line,\n fc='none', ec=color)\n elif shape == 'CIRC':\n patch = patches.CirclePolygon(pos, radius=size, fc='none',\n ec=color, lw=line)\n self.annotation_artists.append(patch)\n self.axes_processed.add_artist(self.annotation_artists[-1])\n", "role": "user" }, { "content": "annotate", "role": "assistant" } ]
def x(self, framedata): original = self.read_frame() if original is None: self.update_info(self.info_string(message='Finished.', frame=framedata) ) return if self.original is not None: processed = self.process_frame(original.copy()) if self.cmap_original is not None: original = to_gray(original) elif not is_color_image(original): self.original.set_cmap('gray') self.original.set_data(original) else: processed = self.process_frame(original) if self.cmap_processed is not None: processed = to_gray(processed) elif not is_color_image(processed): self.processed.set_cmap('gray') if self.annotations: self.annotate(framedata) self.processed.set_data(processed) self.update_info(self.info_string(frame=framedata))
draw_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, framedata):\n original = self.read_frame()\n if original is None:\n self.update_info(self.info_string(message='Finished.', frame=framedata)\n )\n return\n if self.original is not None:\n processed = self.process_frame(original.copy())\n if self.cmap_original is not None:\n original = to_gray(original)\n elif not is_color_image(original):\n self.original.set_cmap('gray')\n self.original.set_data(original)\n else:\n processed = self.process_frame(original)\n if self.cmap_processed is not None:\n processed = to_gray(processed)\n elif not is_color_image(processed):\n self.processed.set_cmap('gray')\n if self.annotations:\n self.annotate(framedata)\n self.processed.set_data(processed)\n self.update_info(self.info_string(frame=framedata))\n", "role": "user" }, { "content": "draw_frame", "role": "assistant" } ]
def x(self, custom=None): self.figure.suptitle(self.info_string() if custom is None else custom)
update_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, custom=None):\n self.figure.suptitle(self.info_string() if custom is None else custom)\n", "role": "user" }, { "content": "update_info", "role": "assistant" } ]
def x(self, size=None, message='', frame=-1): info = [] if size is not None: info.append('Size: {1}x{0}'.format(*size)) elif self.size is not None: info.append('Size: {1}x{0}'.format(*self.size)) if frame >= 0: info.append('Frame: {}'.format(frame)) if message != '': info.append('{}'.format(message)) return ' '.join(info)
info_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None, message='', frame=-1):\n info = []\n if size is not None:\n info.append('Size: {1}x{0}'.format(*size))\n elif self.size is not None:\n info.append('Size: {1}x{0}'.format(*self.size))\n if frame >= 0:\n info.append('Frame: {}'.format(frame))\n if message != '':\n info.append('{}'.format(message))\n return ' '.join(info)\n", "role": "user" }, { "content": "info_string", "role": "assistant" } ]
def x(): with open(sys.argv[1], 'r') as nbfile: notebook = json.load(nbfile) try: del notebook['metadata']['kernelspec'] except KeyError: pass for cell in notebook['cells']: try: if cell['cell_type'] == 'code': cell['outputs'] = [] cell['execution_count'] = None cell['metadata'] = {} except KeyError: pass with open(sys.argv[1], 'w') as nbfile: json.dump(notebook, nbfile, indent=1)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n with open(sys.argv[1], 'r') as nbfile:\n notebook = json.load(nbfile)\n try:\n del notebook['metadata']['kernelspec']\n except KeyError:\n pass\n for cell in notebook['cells']:\n try:\n if cell['cell_type'] == 'code':\n cell['outputs'] = []\n cell['execution_count'] = None\n cell['metadata'] = {}\n except KeyError:\n pass\n with open(sys.argv[1], 'w') as nbfile:\n json.dump(notebook, nbfile, indent=1)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, comment, mentions=()): data = {'app': self.app_id, 'record': self.record_id, 'comment': { 'text': comment}} if len(mentions) > 0: _mentions = [] for m in mentions: if isinstance(m, (list, tuple)): if len(m) == 2: _mentions.append({'code': m[0], 'type': m[1]}) else: raise Exception( "mention have to have code and target type. ex.[('user_1', 'USER')]" ) elif isinstance(m, Mention): _mentions.append(m.serialize()) data['comment']['mentions'] = _mentions resp = self._request('POST', self._url, data) r = cr.CreateCommentResult(resp) return r
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, comment, mentions=()):\n data = {'app': self.app_id, 'record': self.record_id, 'comment': {\n 'text': comment}}\n if len(mentions) > 0:\n _mentions = []\n for m in mentions:\n if isinstance(m, (list, tuple)):\n if len(m) == 2:\n _mentions.append({'code': m[0], 'type': m[1]})\n else:\n raise Exception(\n \"mention have to have code and target type. ex.[('user_1', 'USER')]\"\n )\n elif isinstance(m, Mention):\n _mentions.append(m.serialize())\n data['comment']['mentions'] = _mentions\n resp = self._request('POST', self._url, data)\n r = cr.CreateCommentResult(resp)\n return r\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(iterator, n=None): if n is None: collections.deque(iterator, maxlen=0) else: next(itertools.islice(iterator, n, n), None)
consume
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(iterator, n=None):\n if n is None:\n collections.deque(iterator, maxlen=0)\n else:\n next(itertools.islice(iterator, n, n), None)\n", "role": "user" }, { "content": "consume", "role": "assistant" } ]
def x(slice_obj): if slice_obj.step and slice_obj.step != 1: return None if slice_obj.start is None and slice_obj.stop is None: return None if slice_obj.start and slice_obj.start < 0: return None if slice_obj.stop and slice_obj.stop < 0: return None if slice_obj.stop: if slice_obj.start and slice_obj.start > slice_obj.stop: return 0 return slice_obj.stop return slice_obj.start + 1
slice_required_len
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(slice_obj):\n if slice_obj.step and slice_obj.step != 1:\n return None\n if slice_obj.start is None and slice_obj.stop is None:\n return None\n if slice_obj.start and slice_obj.start < 0:\n return None\n if slice_obj.stop and slice_obj.stop < 0:\n return None\n if slice_obj.stop:\n if slice_obj.start and slice_obj.start > slice_obj.stop:\n return 0\n return slice_obj.stop\n return slice_obj.start + 1\n", "role": "user" }, { "content": "slice_required_len", "role": "assistant" } ]
def x(text, styles, reset=True): terminator = attr('reset') if reset else '' return '{}{}{}'.format(''.join(styles), text, terminator)
stylize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, styles, reset=True):\n terminator = attr('reset') if reset else ''\n return '{}{}{}'.format(''.join(styles), text, terminator)\n", "role": "user" }, { "content": "stylize", "role": "assistant" } ]
def x(text, styles, reset=True): terminator = _c0wrap(attr('reset')) if reset else '' return '{}{}{}'.format(_c0wrap(styles), text, terminator)
stylize_interactive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, styles, reset=True):\n terminator = _c0wrap(attr('reset')) if reset else ''\n return '{}{}{}'.format(_c0wrap(styles), text, terminator)\n", "role": "user" }, { "content": "stylize_interactive", "role": "assistant" } ]
def x(self): paint = {'bold': self.ESC + '1' + self.END, (1): self.ESC + '1' + self. END, 'dim': self.ESC + '2' + self.END, (2): self.ESC + '2' + self. END, 'underlined': self.ESC + '4' + self.END, (4): self.ESC + '4' + self.END, 'blink': self.ESC + '5' + self.END, (5): self.ESC + '5' + self.END, 'reverse': self.ESC + '7' + self.END, (7): self.ESC + '7' + self.END, 'hidden': self.ESC + '8' + self.END, (8): self.ESC + '8' + self.END, 'reset': self.ESC + '0' + self.END, (0): self.ESC + '0' + self.END, 'res_bold': self.ESC + '21' + self.END, (21): self.ESC + '21' + self.END, 'res_dim': self.ESC + '22' + self.END, (22): self. ESC + '22' + self.END, 'res_underlined': self.ESC + '24' + self.END, (24): self.ESC + '24' + self.END, 'res_blink': self.ESC + '25' + self.END, (25): self.ESC + '25' + self.END, 'res_reverse': self.ESC + '27' + self.END, (27): self.ESC + '27' + self.END, 'res_hidden': self.ESC + '28' + self.END, (28): self.ESC + '28' + self.END} return paint[self.color]
attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n paint = {'bold': self.ESC + '1' + self.END, (1): self.ESC + '1' + self.\n END, 'dim': self.ESC + '2' + self.END, (2): self.ESC + '2' + self.\n END, 'underlined': self.ESC + '4' + self.END, (4): self.ESC + '4' +\n self.END, 'blink': self.ESC + '5' + self.END, (5): self.ESC + '5' +\n self.END, 'reverse': self.ESC + '7' + self.END, (7): self.ESC + '7' +\n self.END, 'hidden': self.ESC + '8' + self.END, (8): self.ESC + '8' +\n self.END, 'reset': self.ESC + '0' + self.END, (0): self.ESC + '0' +\n self.END, 'res_bold': self.ESC + '21' + self.END, (21): self.ESC +\n '21' + self.END, 'res_dim': self.ESC + '22' + self.END, (22): self.\n ESC + '22' + self.END, 'res_underlined': self.ESC + '24' + self.END,\n (24): self.ESC + '24' + self.END, 'res_blink': self.ESC + '25' +\n self.END, (25): self.ESC + '25' + self.END, 'res_reverse': self.ESC +\n '27' + self.END, (27): self.ESC + '27' + self.END, 'res_hidden': \n self.ESC + '28' + self.END, (28): self.ESC + '28' + self.END}\n return paint[self.color]\n", "role": "user" }, { "content": "attribute", "role": "assistant" } ]
def x(self): code = self.ESC + '38;5;' if str(self.color).isdigit(): self.reverse_dict() color = self.reserve_paint[str(self.color)] return code + self.paint[color] + self.END elif self.color.startswith('#'): return code + str(self.HEX) + self.END else: return code + self.paint[self.color] + self.END
foreground
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n code = self.ESC + '38;5;'\n if str(self.color).isdigit():\n self.reverse_dict()\n color = self.reserve_paint[str(self.color)]\n return code + self.paint[color] + self.END\n elif self.color.startswith('#'):\n return code + str(self.HEX) + self.END\n else:\n return code + self.paint[self.color] + self.END\n", "role": "user" }, { "content": "foreground", "role": "assistant" } ]
def x(self): self.reserve_paint = dict(zip(self.paint.values(), self.paint.keys()))
reverse_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.reserve_paint = dict(zip(self.paint.values(), self.paint.keys()))\n", "role": "user" }, { "content": "reverse_dict", "role": "assistant" } ]
def x(self, required=False): reset = self._ow.reset() if required and reset: raise OneWireError('No presence pulse found. Check devices and wiring.' ) return not reset
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, required=False):\n reset = self._ow.reset()\n if required and reset:\n raise OneWireError('No presence pulse found. Check devices and wiring.'\n )\n return not reset\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(self, buf, *, start=0, end=None): if end is None: end = len(buf) for i in range(start, end): buf[i] = self._readbyte()
readinto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, buf, *, start=0, end=None):\n if end is None:\n end = len(buf)\n for i in range(start, end):\n buf[i] = self._readbyte()\n", "role": "user" }, { "content": "readinto", "role": "assistant" } ]
def x(self, buf, *, start=0, end=None): if end is None: end = len(buf) for i in range(start, end): self._writebyte(buf[i])
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, buf, *, start=0, end=None):\n if end is None:\n end = len(buf)\n for i in range(start, end):\n self._writebyte(buf[i])\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self): devices = [] diff = 65 rom = False count = 0 for _ in range(255): rom, diff = self._search_rom(rom, diff) if rom: count += 1 if count > self.maximum_devices: raise RuntimeError('Maximum device count of {} exceeded.'. format(self.maximum_devices)) devices.append(OneWireAddress(rom)) if diff == 0: break return devices
scan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n devices = []\n diff = 65\n rom = False\n count = 0\n for _ in range(255):\n rom, diff = self._search_rom(rom, diff)\n if rom:\n count += 1\n if count > self.maximum_devices:\n raise RuntimeError('Maximum device count of {} exceeded.'.\n format(self.maximum_devices))\n devices.append(OneWireAddress(rom))\n if diff == 0:\n break\n return devices\n", "role": "user" }, { "content": "scan", "role": "assistant" } ]
def x(data): crc = 0 for byte in data: crc ^= byte for _ in range(8): if crc & 1: crc = crc >> 1 ^ 140 else: crc >>= 1 crc &= 255 return crc
crc8
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n crc = 0\n for byte in data:\n crc ^= byte\n for _ in range(8):\n if crc & 1:\n crc = crc >> 1 ^ 140\n else:\n crc >>= 1\n crc &= 255\n return crc\n", "role": "user" }, { "content": "crc8", "role": "assistant" } ]
def x(cls, json_body, get_value_and_type): instance = cls() is_set = False properties = cls._get_property_names(instance) def x(name): p = [p for p in instance._property_details if p.name == name or p. field_name == name] return None if len(p) == 0 else p[0] for k in json_body: field = json_body[k] pd = get_property_detail(k) pn = k if not pd else pd.to_property_name(k) if pn in properties: v, t = get_value_and_type(field) initial_value = getattr(instance, pn) value = instance._field_to_property(v, t, pd, initial_value) setattr(instance, pn, value) is_set = True return instance if is_set else None
deserialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, json_body, get_value_and_type):\n instance = cls()\n is_set = False\n properties = cls._get_property_names(instance)\n\n def x(name):\n p = [p for p in instance._property_details if p.name == name or p.\n field_name == name]\n return None if len(p) == 0 else p[0]\n for k in json_body:\n field = json_body[k]\n pd = get_property_detail(k)\n pn = k if not pd else pd.to_property_name(k)\n if pn in properties:\n v, t = get_value_and_type(field)\n initial_value = getattr(instance, pn)\n value = instance._field_to_property(v, t, pd, initial_value)\n setattr(instance, pn, value)\n is_set = True\n return instance if is_set else None\n", "role": "user" }, { "content": "deserialize", "role": "assistant" } ]