source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if not ('https_proxy' in environ or 'HTTPS_PROXY' in environ or 'http_proxy' in environ or 'HTTP_PROXY' in environ): return {} https_proxy = environ.get('https_proxy') if https_proxy is None: https_proxy = environ.get('HTTPS_PROXY') http_proxy = environ.get('http_proxy') if http_proxy is None: http_proxy = environ.get('HTTP_PROXY') no_proxy = environ.get('no_proxy') if no_proxy is None: no_proxy = environ.get('NO_PROXY', '') no_proxy = no_proxy + ',solr,db' out = [ """PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games\" """ ] if https_proxy is not None: out.append('https_proxy=' + posix_quote(https_proxy) + '\n') out.append('HTTPS_PROXY=' + posix_quote(https_proxy) + '\n') if http_proxy is not None: out.append('http_proxy=' + posix_quote(http_proxy) + '\n') out.append('HTTP_PROXY=' + posix_quote(http_proxy) + '\n') if no_proxy is not None: out.append('no_proxy=' + posix_quote(no_proxy) + '\n') out.append('NO_PROXY=' + posix_quote(no_proxy) + '\n') with open(self.sitedir + '/run/proxy-environment', 'w') as f: f.write(''.join(out)) return {(self.sitedir + '/run/proxy-environment'): '/etc/environment'}
proxy_settings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not ('https_proxy' in environ or 'HTTPS_PROXY' in environ or \n 'http_proxy' in environ or 'HTTP_PROXY' in environ):\n return {}\n https_proxy = environ.get('https_proxy')\n if https_proxy is None:\n https_proxy = environ.get('HTTPS_PROXY')\n http_proxy = environ.get('http_proxy')\n if http_proxy is None:\n http_proxy = environ.get('HTTP_PROXY')\n no_proxy = environ.get('no_proxy')\n if no_proxy is None:\n no_proxy = environ.get('NO_PROXY', '')\n no_proxy = no_proxy + ',solr,db'\n out = [\n \"\"\"PATH=\"/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games\\\"\n\"\"\"\n ]\n if https_proxy is not None:\n out.append('https_proxy=' + posix_quote(https_proxy) + '\\n')\n out.append('HTTPS_PROXY=' + posix_quote(https_proxy) + '\\n')\n if http_proxy is not None:\n out.append('http_proxy=' + posix_quote(http_proxy) + '\\n')\n out.append('HTTP_PROXY=' + posix_quote(http_proxy) + '\\n')\n if no_proxy is not None:\n out.append('no_proxy=' + posix_quote(no_proxy) + '\\n')\n out.append('NO_PROXY=' + posix_quote(no_proxy) + '\\n')\n with open(self.sitedir + '/run/proxy-environment', 'w') as f:\n f.write(''.join(out))\n return {(self.sitedir + '/run/proxy-environment'): '/etc/environment'}\n", "role": "user" }, { "content": "proxy_settings", "role": "assistant" } ]
def x(self, container_type): if container_type in ['venv']: return 'datacats_{}_{}'.format(container_type, self.name) else: return 'datacats_{}_{}_{}'.format(container_type, self.name, self. site_name)
get_container_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, container_type):\n if container_type in ['venv']:\n return 'datacats_{}_{}'.format(container_type, self.name)\n else:\n return 'datacats_{}_{}_{}'.format(container_type, self.name, self.\n site_name)\n", "role": "user" }, { "content": "get_container_name", "role": "assistant" } ]
def x(source_files, target_filename): if not isinstance(target_filename, six.string_types) and not callable( target_filename): raise TypeError( 'target_filename must either be a string or be callable (it is a {})' .format(type(target_filename))) for src in source_files: if not isinstance(src, AbstractSourceFile): raise TypeError( 'source_files should contain`AbstractSourceFile` instances, not {}' .format(type(src))) def x(convert_function): def x(**kwargs): target_fn = path_string(target_filename) target_path = config.get_data_path(target_fn) if not os.path.exists(target_path): source_paths = [] for src in source_files: p = src.acquire(**kwargs) if p is not None: if p in source_paths: raise ValueError('Duplicate source file {}'. format(p)) source_paths.append(p) else: print('Failed to acquire {}'.format(src)) return None converted_path = convert_function(source_paths, target_path) if converted_path is not None: for src in source_files: src.clean_up() return converted_path else: return target_path fetch.__name__ = convert_function.__name__ return fetch return decorate_fetcher
fetch_and_convert_dataset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source_files, target_filename):\n if not isinstance(target_filename, six.string_types) and not callable(\n target_filename):\n raise TypeError(\n 'target_filename must either be a string or be callable (it is a {})'\n .format(type(target_filename)))\n for src in source_files:\n if not isinstance(src, AbstractSourceFile):\n raise TypeError(\n 'source_files should contain`AbstractSourceFile` instances, not {}'\n .format(type(src)))\n\n def x(convert_function):\n\n def x(**kwargs):\n target_fn = path_string(target_filename)\n target_path = config.get_data_path(target_fn)\n if not os.path.exists(target_path):\n source_paths = []\n for src in source_files:\n p = src.acquire(**kwargs)\n if p is not None:\n if p in source_paths:\n raise ValueError('Duplicate source file {}'.\n format(p))\n source_paths.append(p)\n else:\n print('Failed to acquire {}'.format(src))\n return None\n converted_path = convert_function(source_paths, target_path)\n if converted_path is not None:\n for src in source_files:\n src.clean_up()\n return converted_path\n else:\n return target_path\n fetch.__name__ = convert_function.__name__\n return fetch\n return decorate_fetcher\n", "role": "user" }, { "content": "fetch_and_convert_dataset", "role": "assistant" } ]
def x(*filenames): for filename in filenames: filename = path_string(filename) path = config.get_data_path(filename) if os.path.exists(path): os.remove(path)
delete_dataset_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*filenames):\n for filename in filenames:\n filename = path_string(filename)\n path = config.get_data_path(filename)\n if os.path.exists(path):\n os.remove(path)\n", "role": "user" }, { "content": "delete_dataset_cache", "role": "assistant" } ]
def x(self, **kwargs): return config.download_data(self.temp_filename, self.url, self.sha256)
acquire
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n return config.download_data(self.temp_filename, self.url, self.sha256)\n", "role": "user" }, { "content": "acquire", "role": "assistant" } ]
def x(self, **kwargs): if self.source_path is None: source_path = kwargs[self.arg_name] else: source_path = self.source_path return config.copy_data(self.temp_filename, source_path, self.sha256)
acquire
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if self.source_path is None:\n source_path = kwargs[self.arg_name]\n else:\n source_path = self.source_path\n return config.copy_data(self.temp_filename, source_path, self.sha256)\n", "role": "user" }, { "content": "acquire", "role": "assistant" } ]
def x(self, **kwargs): path = path_string(self.path) if os.path.exists(path): if config.verify_file(path, self.sha256): return path return None
acquire
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n path = path_string(self.path)\n if os.path.exists(path):\n if config.verify_file(path, self.sha256):\n return path\n return None\n", "role": "user" }, { "content": "acquire", "role": "assistant" } ]
def x(func, param, num, retry_notif, error_msg): for retry_num in range(num): if retry_num: retry_notif(param, retry_num) try: func(param) return except DatacatsError: pass raise DatacatsError(error_msg)
retry_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, param, num, retry_notif, error_msg):\n for retry_num in range(num):\n if retry_num:\n retry_notif(param, retry_num)\n try:\n func(param)\n return\n except DatacatsError:\n pass\n raise DatacatsError(error_msg)\n", "role": "user" }, { "content": "retry_func", "role": "assistant" } ]
def x(self): if len(self.__result_buffer) > 0: res = self.__result_buffer.popleft() value = res.get() else: return None self.__populate_buffer() return value
retrieve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.__result_buffer) > 0:\n res = self.__result_buffer.popleft()\n value = res.get()\n else:\n return None\n self.__populate_buffer()\n return value\n", "role": "user" }, { "content": "retrieve", "role": "assistant" } ]
def x(environment, opts): environment.require_data() install_all(environment, opts['--clean'], verbose=not opts['--quiet'], packages=opts['PACKAGE']) for site in environment.sites: environment = Environment.load(environment.name, site) if 'web' in environment.containers_running(): manage.reload_(environment, {'--address': opts['--address'], '--background': False, '--no-watch': False, '--production': False, 'PORT': None, '--syslog': False, '--site-url': None, '--interactive': False})
install
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(environment, opts):\n environment.require_data()\n install_all(environment, opts['--clean'], verbose=not opts['--quiet'],\n packages=opts['PACKAGE'])\n for site in environment.sites:\n environment = Environment.load(environment.name, site)\n if 'web' in environment.containers_running():\n manage.reload_(environment, {'--address': opts['--address'],\n '--background': False, '--no-watch': False, '--production':\n False, 'PORT': None, '--syslog': False, '--site-url': None,\n '--interactive': False})\n", "role": "user" }, { "content": "install", "role": "assistant" } ]
def x(batch, length): if isinstance(batch, tuple): return tuple([_trim_batch(b, length) for b in batch]) else: return batch[:length]
trim_batch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(batch, length):\n if isinstance(batch, tuple):\n return tuple([_trim_batch(b, length) for b in batch])\n else:\n return batch[:length]\n", "role": "user" }, { "content": "trim_batch", "role": "assistant" } ]
def x(func, batch_iter, progress_iter_func=None, n_batches=None, prepend_args=None): results = [] if progress_iter_func is not None: batch_iter = progress_iter_func(batch_iter, total=n_batches, leave= False) n_processed = 0 for batch in batch_iter: if prepend_args is not None: batch_results = func(*(prepend_args + tuple(batch))) else: batch_results = func(*batch) if batch_results is None: pass elif isinstance(batch_results, np.ndarray): batch_results = batch_results, elif isinstance(batch_results, tuple): pass else: raise TypeError( 'Batch function should return a tuple of results, a single result as a NumPy array, or None, not {}' .format(type(batch_results))) if batch_results is not None: results.append(batch_results) n_processed += 1 if n_batches is not None and n_processed >= n_batches: break if len(results) > 0: results = zip(*results) results = tuple([np.concatenate(list(r), axis=0) for r in results]) return results else: return None
batch_map_concat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, batch_iter, progress_iter_func=None, n_batches=None,\n prepend_args=None):\n results = []\n if progress_iter_func is not None:\n batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=\n False)\n n_processed = 0\n for batch in batch_iter:\n if prepend_args is not None:\n batch_results = func(*(prepend_args + tuple(batch)))\n else:\n batch_results = func(*batch)\n if batch_results is None:\n pass\n elif isinstance(batch_results, np.ndarray):\n batch_results = batch_results,\n elif isinstance(batch_results, tuple):\n pass\n else:\n raise TypeError(\n 'Batch function should return a tuple of results, a single result as a NumPy array, or None, not {}'\n .format(type(batch_results)))\n if batch_results is not None:\n results.append(batch_results)\n n_processed += 1\n if n_batches is not None and n_processed >= n_batches:\n break\n if len(results) > 0:\n results = zip(*results)\n results = tuple([np.concatenate(list(r), axis=0) for r in results])\n return results\n else:\n return None\n", "role": "user" }, { "content": "batch_map_concat", "role": "assistant" } ]
def x(func, batch_iter, progress_iter_func=None, sum_axis=None, n_batches= None, prepend_args=None): results_accum = None n_samples_accum = 0 if progress_iter_func is not None: batch_iter = progress_iter_func(batch_iter, total=n_batches, leave= False) n_processed = 0 for batch in batch_iter: batch_n = _length_of_batch(batch) if prepend_args is not None: batch_results = func(*(prepend_args + tuple(batch))) else: batch_results = func(*batch) if batch_results is None: pass elif isinstance(batch_results, (np.ndarray, float)): batch_results = batch_results, elif isinstance(batch_results, tuple): pass else: raise TypeError( 'Batch function should return a tuple of results, a single result as a NumPy array or float, or None, not {}' .format(type(batch_results))) if results_accum is None: if batch_results is None: pass elif sum_axis is None: results_accum = list(batch_results) else: results_accum = [br.sum(axis=sum_axis) for br in batch_results] elif batch_results is not None: for i in range(len(results_accum)): br = batch_results[i] if sum_axis is not None: br = br.sum(axis=sum_axis) results_accum[i] += br n_samples_accum += batch_n n_processed += 1 if n_batches is not None and n_processed >= n_batches: break if results_accum is not None: results_accum = tuple([(np.array(r).astype(float) / n_samples_accum ) for r in results_accum]) return results_accum
batch_map_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, batch_iter, progress_iter_func=None, sum_axis=None, n_batches=\n None, prepend_args=None):\n results_accum = None\n n_samples_accum = 0\n if progress_iter_func is not None:\n batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=\n False)\n n_processed = 0\n for batch in batch_iter:\n batch_n = _length_of_batch(batch)\n if prepend_args is not None:\n batch_results = func(*(prepend_args + tuple(batch)))\n else:\n batch_results = func(*batch)\n if batch_results is None:\n pass\n elif isinstance(batch_results, (np.ndarray, float)):\n batch_results = batch_results,\n elif isinstance(batch_results, tuple):\n pass\n else:\n raise TypeError(\n 'Batch function should return a tuple of results, a single result as a NumPy array or float, or None, not {}'\n .format(type(batch_results)))\n if results_accum is None:\n if batch_results is None:\n pass\n elif sum_axis is None:\n results_accum = list(batch_results)\n else:\n results_accum = [br.sum(axis=sum_axis) for br in batch_results]\n elif batch_results is not None:\n for i in range(len(results_accum)):\n br = batch_results[i]\n if sum_axis is not None:\n br = br.sum(axis=sum_axis)\n results_accum[i] += br\n n_samples_accum += batch_n\n n_processed += 1\n if n_batches is not None and n_processed >= n_batches:\n break\n if results_accum is not None:\n results_accum = tuple([(np.array(r).astype(float) / n_samples_accum\n ) for r in results_accum])\n return results_accum\n", "role": "user" }, { "content": "batch_map_mean", "role": "assistant" } ]
def x(x): if isinstance(x, AbstractDataSource): return x elif isinstance(x, (list, tuple)): items = [] for item in x: if _is_array_like(item): items.append(item) else: raise TypeError( 'Cannot convert x to a data source; x is a sequence and one of the elements is not an array-like object, rather a {}' .format(type(item))) if len(items) == 0: raise ValueError( 'Cannot convert x to a data source; x is an empty sequence') return ArrayDataSource(items) elif isinstance(x, collections.Iterator): return IteratorDataSource(x) elif callable(x): return CallableDataSource(x) else: raise TypeError( 'Cannot convert x to a data source; can only handle iterators, callables, non-empty sequences of array-like objects; cannot handle {}' .format(type(x)))
coerce_data_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if isinstance(x, AbstractDataSource):\n return x\n elif isinstance(x, (list, tuple)):\n items = []\n for item in x:\n if _is_array_like(item):\n items.append(item)\n else:\n raise TypeError(\n 'Cannot convert x to a data source; x is a sequence and one of the elements is not an array-like object, rather a {}'\n .format(type(item)))\n if len(items) == 0:\n raise ValueError(\n 'Cannot convert x to a data source; x is an empty sequence')\n return ArrayDataSource(items)\n elif isinstance(x, collections.Iterator):\n return IteratorDataSource(x)\n elif callable(x):\n return CallableDataSource(x)\n else:\n raise TypeError(\n 'Cannot convert x to a data source; can only handle iterators, callables, non-empty sequences of array-like objects; cannot handle {}'\n .format(type(x)))\n", "role": "user" }, { "content": "coerce_data_source", "role": "assistant" } ]
def x(self, func, batch_size, progress_iter_func=None, n_batches=None, prepend_args=None, **kwargs): if n_batches is None: n = self.num_samples(**kwargs) if n == np.inf: raise ValueError( 'Data set has infinite size or sampler will generate infinite samples but no n_batches limit specified' ) elif n is not None: n_batches = sampling.num_batches(n, batch_size) batch_iter = self.batch_iterator(batch_size, **kwargs) return batch_map_concat(func, batch_iter, progress_iter_func, n_batches, prepend_args)
batch_map_concat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, batch_size, progress_iter_func=None, n_batches=None,\n prepend_args=None, **kwargs):\n if n_batches is None:\n n = self.num_samples(**kwargs)\n if n == np.inf:\n raise ValueError(\n 'Data set has infinite size or sampler will generate infinite samples but no n_batches limit specified'\n )\n elif n is not None:\n n_batches = sampling.num_batches(n, batch_size)\n batch_iter = self.batch_iterator(batch_size, **kwargs)\n return batch_map_concat(func, batch_iter, progress_iter_func, n_batches,\n prepend_args)\n", "role": "user" }, { "content": "batch_map_concat", "role": "assistant" } ]
def x(self, indices): indices = self.sampler.map_indices(indices) return self.samples_by_indices_nomapping(indices)
samples_by_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n indices = self.sampler.map_indices(indices)\n return self.samples_by_indices_nomapping(indices)\n", "role": "user" }, { "content": "samples_by_indices", "role": "assistant" } ]
def x(self, batch_size, shuffle=None, **kwargs): shuffle_rng = self._get_shuffle_rng(shuffle) if shuffle_rng is not None: return self.sampler.shuffled_indices_batch_iterator(batch_size, shuffle_rng) else: return self.sampler.in_order_indices_batch_iterator(batch_size)
batch_indices_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, batch_size, shuffle=None, **kwargs):\n shuffle_rng = self._get_shuffle_rng(shuffle)\n if shuffle_rng is not None:\n return self.sampler.shuffled_indices_batch_iterator(batch_size,\n shuffle_rng)\n else:\n return self.sampler.in_order_indices_batch_iterator(batch_size)\n", "role": "user" }, { "content": "batch_indices_iterator", "role": "assistant" } ]
def x(self, batch_size, shuffle=None, **kwargs): for batch_ndx in self.batch_indices_iterator(batch_size, shuffle= shuffle, **kwargs): yield self.samples_by_indices_nomapping(batch_ndx)
batch_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, batch_size, shuffle=None, **kwargs):\n for batch_ndx in self.batch_indices_iterator(batch_size, shuffle=\n shuffle, **kwargs):\n yield self.samples_by_indices_nomapping(batch_ndx)\n", "role": "user" }, { "content": "batch_iterator", "role": "assistant" } ]
def x(self, indices): batch = tuple([d[indices] for d in self.data]) if self.include_indices: if isinstance(indices, slice): indices = np.arange(indices.start, indices.stop, indices.step) return (indices,) + batch else: return batch
samples_by_indices_nomapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n batch = tuple([d[indices] for d in self.data])\n if self.include_indices:\n if isinstance(indices, slice):\n indices = np.arange(indices.start, indices.stop, indices.step)\n return (indices,) + batch\n else:\n return batch\n", "role": "user" }, { "content": "samples_by_indices_nomapping", "role": "assistant" } ]
def x(self, **kwargs): if self.num_samples_fn is None: return None elif callable(self.num_samples_fn): return self.num_samples_fn(**kwargs) else: return self.num_samples_fn
num_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n if self.num_samples_fn is None:\n return None\n elif callable(self.num_samples_fn):\n return self.num_samples_fn(**kwargs)\n else:\n return self.num_samples_fn\n", "role": "user" }, { "content": "num_samples", "role": "assistant" } ]
def x(self, indices): if not self._random_access: raise TypeError( 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access' ) if len(indices) != len(self.datasets): raise ValueError( 'length mis-match: indices has {} items, self has {} data sources, should be equal' .format(len(indices), len(self.datasets))) batch = tuple([ds.samples_by_indices_nomapping(ndx) for ds, ndx in zip( self.datasets, indices)]) return self._prepare_batch(batch)
samples_by_indices_nomapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n if len(indices) != len(self.datasets):\n raise ValueError(\n 'length mis-match: indices has {} items, self has {} data sources, should be equal'\n .format(len(indices), len(self.datasets)))\n batch = tuple([ds.samples_by_indices_nomapping(ndx) for ds, ndx in zip(\n self.datasets, indices)])\n return self._prepare_batch(batch)\n", "role": "user" }, { "content": "samples_by_indices_nomapping", "role": "assistant" } ]
def x(self, batch_size, **kwargs): if not self._random_access: raise TypeError( 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access' ) iterators = [d.batch_indices_iterator(batch_size, **kwargs) for d in self.datasets] for batch in six.moves.zip(*iterators): yield self._prepare_index_batch(batch)
batch_indices_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, batch_size, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n iterators = [d.batch_indices_iterator(batch_size, **kwargs) for d in\n self.datasets]\n for batch in six.moves.zip(*iterators):\n yield self._prepare_index_batch(batch)\n", "role": "user" }, { "content": "batch_indices_iterator", "role": "assistant" } ]
def x(self, indices): if not self._random_access: raise TypeError( 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access' ) if not isinstance(indices, tuple): raise TypeError('indices should be a tuple, not a {}'.format(type( indices))) dataset_index, sample_indices = indices ds = self.datasets[dataset_index] return ds.samples_by_indices_nomapping(sample_indices)
samples_by_indices_nomapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n if not isinstance(indices, tuple):\n raise TypeError('indices should be a tuple, not a {}'.format(type(\n indices)))\n dataset_index, sample_indices = indices\n ds = self.datasets[dataset_index]\n return ds.samples_by_indices_nomapping(sample_indices)\n", "role": "user" }, { "content": "samples_by_indices_nomapping", "role": "assistant" } ]
def x(self, batch_size, shuffle=None, **kwargs): if not self._random_access: raise TypeError( 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access' ) shuffle_rng = self._get_shuffle_rng(shuffle) iterators = [d.batch_indices_iterator(batch_size, shuffle=shuffle_rng, **kwargs) for d in self.datasets] return self._ds_iterator(batch_size, iterators, shuffle_rng, **kwargs)
batch_indices_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, batch_size, shuffle=None, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n shuffle_rng = self._get_shuffle_rng(shuffle)\n iterators = [d.batch_indices_iterator(batch_size, shuffle=shuffle_rng,\n **kwargs) for d in self.datasets]\n return self._ds_iterator(batch_size, iterators, shuffle_rng, **kwargs)\n", "role": "user" }, { "content": "batch_indices_iterator", "role": "assistant" } ]
def x(self, indices): if not self._random_access: raise TypeError( 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access' ) batch = self.source.samples_by_indices_nomapping(indices) return self.fn(*batch)
samples_by_indices_nomapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n batch = self.source.samples_by_indices_nomapping(indices)\n return self.fn(*batch)\n", "role": "user" }, { "content": "samples_by_indices_nomapping", "role": "assistant" } ]
def x(self, indices): if not self._random_access: raise TypeError( 'samples_by_indices method not supported as one or more of the underlying data sources does not support random access' ) batch = self.source.samples_by_indices(indices) return self.fn(*batch)
samples_by_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices method not supported as one or more of the underlying data sources does not support random access'\n )\n batch = self.source.samples_by_indices(indices)\n return self.fn(*batch)\n", "role": "user" }, { "content": "samples_by_indices", "role": "assistant" } ]
def x(self, batch_size, **kwargs): if not self._random_access: raise TypeError( 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access' ) return self.source.batch_indices_iterator(batch_size, **kwargs)
batch_indices_iterator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, batch_size, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n return self.source.batch_indices_iterator(batch_size, **kwargs)\n", "role": "user" }, { "content": "batch_indices_iterator", "role": "assistant" } ]
def x(opts): old = False try: environment = Environment.load(opts['ENVIRONMENT'], opts['--site']) except DatacatsError: environment = Environment.load(opts['ENVIRONMENT'], opts['--site'], data_only=True) if get_format_version(environment.datadir) == 1: old = True environment = Environment.load(opts['ENVIRONMENT'], opts[ '--site'], allow_old=True) if not opts['--delete-environment'] and not old: environment.require_valid_site() sites = [opts['--site']] if not opts['--delete-environment' ] else environment.sites if not opts['--yes']: y_or_n_prompt('datacats purge will delete all stored data') environment.stop_ckan() environment.stop_supporting_containers() environment.purge_data(sites) if opts['--delete-environment']: if environment.target: rmtree(environment.target) else: DatacatsError( """Unable to find the environment source directory so that it can be deleted. Chances are it's because it already does not exist""" )
purge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(opts):\n old = False\n try:\n environment = Environment.load(opts['ENVIRONMENT'], opts['--site'])\n except DatacatsError:\n environment = Environment.load(opts['ENVIRONMENT'], opts['--site'],\n data_only=True)\n if get_format_version(environment.datadir) == 1:\n old = True\n environment = Environment.load(opts['ENVIRONMENT'], opts[\n '--site'], allow_old=True)\n if not opts['--delete-environment'] and not old:\n environment.require_valid_site()\n sites = [opts['--site']] if not opts['--delete-environment'\n ] else environment.sites\n if not opts['--yes']:\n y_or_n_prompt('datacats purge will delete all stored data')\n environment.stop_ckan()\n environment.stop_supporting_containers()\n environment.purge_data(sites)\n if opts['--delete-environment']:\n if environment.target:\n rmtree(environment.target)\n else:\n DatacatsError(\n \"\"\"Unable to find the environment source directory so that it can be deleted.\nChances are it's because it already does not exist\"\"\"\n )\n", "role": "user" }, { "content": "purge", "role": "assistant" } ]
def x(): chars = uppercase + lowercase + digits return ''.join(SystemRandom().choice(chars) for x in xrange(16))
generate_password
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n chars = uppercase + lowercase + digits\n return ''.join(SystemRandom().choice(chars) for x in xrange(16))\n", "role": "user" }, { "content": "generate_password", "role": "assistant" } ]
def x(): with open(devnull, 'w') as devnull_f: try: status = subprocess.check_output(['docker-machine', 'status', 'dev'], stderr=devnull_f).strip() if status == 'Stopped': raise DatacatsError( 'Please start your docker-machine VM with "docker-machine start dev"' ) if 'tls' in _docker_kwargs: _docker_kwargs['tls'].assert_hostname = False except subprocess.CalledProcessError: raise DatacatsError( 'Please create a docker-machine with "docker-machine start dev"' )
machine_check_connectivity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n with open(devnull, 'w') as devnull_f:\n try:\n status = subprocess.check_output(['docker-machine', 'status',\n 'dev'], stderr=devnull_f).strip()\n if status == 'Stopped':\n raise DatacatsError(\n 'Please start your docker-machine VM with \"docker-machine start dev\"'\n )\n if 'tls' in _docker_kwargs:\n _docker_kwargs['tls'].assert_hostname = False\n except subprocess.CalledProcessError:\n raise DatacatsError(\n 'Please create a docker-machine with \"docker-machine start dev\"'\n )\n", "role": "user" }, { "content": "machine_check_connectivity", "role": "assistant" } ]
def x(ro, rw): out = {} if ro: for localdir, binddir in ro.iteritems(): out[localdir] = {'bind': binddir, 'ro': True} if rw: for localdir, binddir in rw.iteritems(): out[localdir] = {'bind': binddir, 'ro': False} return out
ro_rw_to_binds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ro, rw):\n out = {}\n if ro:\n for localdir, binddir in ro.iteritems():\n out[localdir] = {'bind': binddir, 'ro': True}\n if rw:\n for localdir, binddir in rw.iteritems():\n out[localdir] = {'bind': binddir, 'ro': False}\n return out\n", "role": "user" }, { "content": "ro_rw_to_binds", "role": "assistant" } ]
def x(command, ro=None, rw=None, links=None, image='datacats/web', volumes_from=None, commit=False, clean_up=False, stream_output=None, entrypoint=None): binds = ro_rw_to_binds(ro, rw) c = _get_docker().create_container(image=image, command=command, volumes=binds_to_volumes(binds), detach=False, host_config= _get_docker().create_host_config(binds=binds, volumes_from= volumes_from, links=links), entrypoint=entrypoint) _get_docker().start(container=c['Id']) if stream_output: for output in _get_docker().attach(c['Id'], stdout=True, stderr= True, stream=True): stream_output.write(output) if _get_docker().wait(c['Id']): logs = _get_docker().logs(c['Id']) if clean_up: remove_container(c['Id']) raise WebCommandError(command, c['Id'][:12], logs) if commit: rval = _get_docker().commit(c['Id']) if not remove_container(c['Id']): if not environ.get('CIRCLECI', False): warn('failed to remove container: {0}'.format(c['Id'])) if commit: return rval['Id']
web_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, ro=None, rw=None, links=None, image='datacats/web',\n volumes_from=None, commit=False, clean_up=False, stream_output=None,\n entrypoint=None):\n binds = ro_rw_to_binds(ro, rw)\n c = _get_docker().create_container(image=image, command=command,\n volumes=binds_to_volumes(binds), detach=False, host_config=\n _get_docker().create_host_config(binds=binds, volumes_from=\n volumes_from, links=links), entrypoint=entrypoint)\n _get_docker().start(container=c['Id'])\n if stream_output:\n for output in _get_docker().attach(c['Id'], stdout=True, stderr=\n True, stream=True):\n stream_output.write(output)\n if _get_docker().wait(c['Id']):\n logs = _get_docker().logs(c['Id'])\n if clean_up:\n remove_container(c['Id'])\n raise WebCommandError(command, c['Id'][:12], logs)\n if commit:\n rval = _get_docker().commit(c['Id'])\n if not remove_container(c['Id']):\n if not environ.get('CIRCLECI', False):\n warn('failed to remove container: {0}'.format(c['Id']))\n if commit:\n return rval['Id']\n", "role": "user" }, { "content": "web_command", "role": "assistant" } ]
def x(command, environment, user_profile, **kwargs): if environment.remote_server_key: temp = tempfile.NamedTemporaryFile(mode='wb') temp.write(environment.remote_server_key) temp.seek(0) known_hosts = temp.name else: known_hosts = get_script_path('known_hosts') binds = {(user_profile.profiledir + '/id_rsa'): '/root/.ssh/id_rsa', known_hosts: '/root/.ssh/known_hosts', get_script_path('ssh_config' ): '/etc/ssh/ssh_config'} if kwargs.get('include_project_dir', None): binds[environment.target] = '/project' del kwargs['include_project_dir'] kwargs['ro'] = binds try: web_command(command, **kwargs) except WebCommandError as e: e.user_description = 'Sending a command to remote server failed' raise e
remote_server_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, environment, user_profile, **kwargs):\n if environment.remote_server_key:\n temp = tempfile.NamedTemporaryFile(mode='wb')\n temp.write(environment.remote_server_key)\n temp.seek(0)\n known_hosts = temp.name\n else:\n known_hosts = get_script_path('known_hosts')\n binds = {(user_profile.profiledir + '/id_rsa'): '/root/.ssh/id_rsa',\n known_hosts: '/root/.ssh/known_hosts', get_script_path('ssh_config'\n ): '/etc/ssh/ssh_config'}\n if kwargs.get('include_project_dir', None):\n binds[environment.target] = '/project'\n del kwargs['include_project_dir']\n kwargs['ro'] = binds\n try:\n web_command(command, **kwargs)\n except WebCommandError as e:\n e.user_description = 'Sending a command to remote server failed'\n raise e\n", "role": "user" }, { "content": "remote_server_command", "role": "assistant" } ]
def x(name, image, command=None, environment=None, ro=None, rw=None, links= None, detach=True, volumes_from=None, port_bindings=None, log_syslog=False ): binds = ro_rw_to_binds(ro, rw) log_config = LogConfig(type=LogConfig.types.JSON) if log_syslog: log_config = LogConfig(type=LogConfig.types.SYSLOG, config={ 'syslog-tag': name}) host_config = _get_docker().create_host_config(binds=binds, log_config= log_config, links=links, volumes_from=volumes_from, port_bindings= port_bindings) c = _get_docker().create_container(name=name, image=image, command= command, environment=environment, volumes=binds_to_volumes(binds), detach=detach, stdin_open=False, tty=False, ports=list( port_bindings) if port_bindings else None, host_config=host_config) try: _get_docker().start(container=c['Id']) except APIError as e: if 'address already in use' in e.explanation: try: _get_docker().remove_container(name, force=True) except APIError: pass raise PortAllocatedError() raise return c
run_container
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, image, command=None, environment=None, ro=None, rw=None, links=\n None, detach=True, volumes_from=None, port_bindings=None, log_syslog=False\n ):\n binds = ro_rw_to_binds(ro, rw)\n log_config = LogConfig(type=LogConfig.types.JSON)\n if log_syslog:\n log_config = LogConfig(type=LogConfig.types.SYSLOG, config={\n 'syslog-tag': name})\n host_config = _get_docker().create_host_config(binds=binds, log_config=\n log_config, links=links, volumes_from=volumes_from, port_bindings=\n port_bindings)\n c = _get_docker().create_container(name=name, image=image, command=\n command, environment=environment, volumes=binds_to_volumes(binds),\n detach=detach, stdin_open=False, tty=False, ports=list(\n port_bindings) if port_bindings else None, host_config=host_config)\n try:\n _get_docker().start(container=c['Id'])\n except APIError as e:\n if 'address already in use' in e.explanation:\n try:\n _get_docker().remove_container(name, force=True)\n except APIError:\n pass\n raise PortAllocatedError()\n raise\n return c\n", "role": "user" }, { "content": "run_container", "role": "assistant" } ]
def x(name, force=False): try: if not force: _get_docker().stop(name) except APIError: pass try: _get_docker().remove_container(name, force=True) return True except APIError: return False
remove_container
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, force=False):\n try:\n if not force:\n _get_docker().stop(name)\n except APIError:\n pass\n try:\n _get_docker().remove_container(name, force=True)\n return True\n except APIError:\n return False\n", "role": "user" }, { "content": "remove_container", "role": "assistant" } ]
def x(name, tail, follow, timestamps): if follow: return _get_docker().attach(name, stdout=True, stderr=True, stream=True ) return _docker.logs(name, stdout=True, stderr=True, tail=tail, timestamps=timestamps)
container_logs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, tail, follow, timestamps):\n if follow:\n return _get_docker().attach(name, stdout=True, stderr=True, stream=True\n )\n return _docker.logs(name, stdout=True, stderr=True, tail=tail,\n timestamps=timestamps)\n", "role": "user" }, { "content": "container_logs", "role": "assistant" } ]
def x(name): logs = container_logs(name, 'all', True, None) string = '' for s in logs: string += s return string
collect_logs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n logs = container_logs(name, 'all', True, None)\n string = ''\n for s in logs:\n string += s\n return string\n", "role": "user" }, { "content": "collect_logs", "role": "assistant" } ]
def x(image): return (json.loads(s) for s in _get_docker().pull(image, stream=True))
pull_stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image):\n return (json.loads(s) for s in _get_docker().pull(image, stream=True))\n", "role": "user" }, { "content": "pull_stream", "role": "assistant" } ]
def x(name, volumes): info = inspect_container(name) if info: return c = _get_docker().create_container(name=name, image='datacats/postgres', command='true', volumes=volumes, detach=True) return c
data_only_container
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, volumes):\n info = inspect_container(name)\n if info:\n return\n c = _get_docker().create_container(name=name, image='datacats/postgres',\n command='true', volumes=volumes, detach=True)\n return c\n", "role": "user" }, { "content": "data_only_container", "role": "assistant" } ]
def x(): try: command_fn, opts = _parse_arguments(sys.argv[1:]) if command_fn == purge.purge or 'ENVIRONMENT' not in opts: return command_fn(opts) environment = Environment.load(opts['ENVIRONMENT'] or '.', opts[ '--site'] if '--site' in opts else 'primary') if command_fn not in COMMANDS_THAT_USE_SSH: return command_fn(environment, opts) user_profile = UserProfile() user_profile.test_ssh_key(environment) return command_fn(environment, opts, user_profile) except DatacatsError as e: _error_exit(e) except SystemExit: raise except: exc_info = '\n'.join([line.rstrip() for line in traceback. format_exception(*sys.exc_info())]) user_message = ( """Something that should not have happened happened when attempting to run this command: datacats {args} It is seems to be a bug. Please report this issue to us by creating an issue ticket at https://github.com/datacats/datacats/issues so that we would be able to look into that and fix the issue.""" .format(args=' '.join(sys.argv[1:]))) _error_exit(DatacatsError(user_message, parent_exception= UndocumentedError(exc_info)))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n command_fn, opts = _parse_arguments(sys.argv[1:])\n if command_fn == purge.purge or 'ENVIRONMENT' not in opts:\n return command_fn(opts)\n environment = Environment.load(opts['ENVIRONMENT'] or '.', opts[\n '--site'] if '--site' in opts else 'primary')\n if command_fn not in COMMANDS_THAT_USE_SSH:\n return command_fn(environment, opts)\n user_profile = UserProfile()\n user_profile.test_ssh_key(environment)\n return command_fn(environment, opts, user_profile)\n except DatacatsError as e:\n _error_exit(e)\n except SystemExit:\n raise\n except:\n exc_info = '\\n'.join([line.rstrip() for line in traceback.\n format_exception(*sys.exc_info())])\n user_message = (\n \"\"\"Something that should not have happened happened when attempting to run this command:\n datacats {args}\n\nIt is seems to be a bug.\nPlease report this issue to us by creating an issue ticket at\n\n https://github.com/datacats/datacats/issues\n\nso that we would be able to look into that and fix the issue.\"\"\"\n .format(args=' '.join(sys.argv[1:])))\n _error_exit(DatacatsError(user_message, parent_exception=\n UndocumentedError(exc_info)))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(args): skip_site = False for i, a in enumerate(args): if skip_site: skip_site = False continue if a.startswith('-'): if a == '-s' or a == '--site': skip_site = True continue if a == 'help': return _subcommand_arguments(args[:i] + ['--help'] + args[i + 1:]) if a not in COMMANDS: raise DatacatsError( """'{0}' command is not recognized. See 'datacats help' for the list of available commands""" .format(a)) command = a break else: return None, args if command != 'shell' and command != 'paster': return command, args remaining_positional = 2 if command == 'shell' else 1 while i < len(args): a = args[i] if a.startswith('-'): if a == '-s' or a == '--site': i += 2 continue i += 1 continue if remaining_positional: remaining_positional -= 1 i += 1 continue return command, args[:i] + ['--'] + args[i:] return command, args
subcommand_arguments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n skip_site = False\n for i, a in enumerate(args):\n if skip_site:\n skip_site = False\n continue\n if a.startswith('-'):\n if a == '-s' or a == '--site':\n skip_site = True\n continue\n if a == 'help':\n return _subcommand_arguments(args[:i] + ['--help'] + args[i + 1:])\n if a not in COMMANDS:\n raise DatacatsError(\n \"\"\"'{0}' command is not recognized. \nSee 'datacats help' for the list of available commands\"\"\"\n .format(a))\n command = a\n break\n else:\n return None, args\n if command != 'shell' and command != 'paster':\n return command, args\n remaining_positional = 2 if command == 'shell' else 1\n while i < len(args):\n a = args[i]\n if a.startswith('-'):\n if a == '-s' or a == '--site':\n i += 2\n continue\n i += 1\n continue\n if remaining_positional:\n remaining_positional -= 1\n i += 1\n continue\n return command, args[:i] + ['--'] + args[i:]\n return command, args\n", "role": "user" }, { "content": "subcommand_arguments", "role": "assistant" } ]
def x(environment, opts): if opts['--interactive']: opts['--background'] = True if opts['--address'] and is_boot2docker(): raise DatacatsError('Cannot specify address on boot2docker.') environment.require_data() environment.stop_ckan() if opts['PORT'] or opts['--address'] or opts['--site-url']: if opts['PORT']: environment.port = int(opts['PORT']) if opts['--address']: environment.address = opts['--address'] if opts['--site-url']: site_url = opts['--site-url'] try: site_url = site_url.format(address=environment.address, port=environment.port) environment.site_url = site_url environment.save_site(False) except (KeyError, IndexError, ValueError) as e: raise DatacatsError('Could not parse site_url: {}'.format(e)) environment.save() for container in environment.extra_containers: require_extra_image(EXTRA_IMAGE_MAPPING[container]) environment.stop_supporting_containers() environment.start_supporting_containers() environment.start_ckan(production=opts['--production'], paster_reload= not opts['--no-watch'], log_syslog=opts['--syslog'], interactive= opts['--interactive']) write('Starting web server at {0} ...'.format(environment.web_address())) if opts['--background']: write('\n') return try: environment.wait_for_web_available() finally: write('\n')
reload_
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(environment, opts):\n if opts['--interactive']:\n opts['--background'] = True\n if opts['--address'] and is_boot2docker():\n raise DatacatsError('Cannot specify address on boot2docker.')\n environment.require_data()\n environment.stop_ckan()\n if opts['PORT'] or opts['--address'] or opts['--site-url']:\n if opts['PORT']:\n environment.port = int(opts['PORT'])\n if opts['--address']:\n environment.address = opts['--address']\n if opts['--site-url']:\n site_url = opts['--site-url']\n try:\n site_url = site_url.format(address=environment.address,\n port=environment.port)\n environment.site_url = site_url\n environment.save_site(False)\n except (KeyError, IndexError, ValueError) as e:\n raise DatacatsError('Could not parse site_url: {}'.format(e))\n environment.save()\n for container in environment.extra_containers:\n require_extra_image(EXTRA_IMAGE_MAPPING[container])\n environment.stop_supporting_containers()\n environment.start_supporting_containers()\n environment.start_ckan(production=opts['--production'], paster_reload=\n not opts['--no-watch'], log_syslog=opts['--syslog'], interactive=\n opts['--interactive'])\n write('Starting web server at {0} ...'.format(environment.web_address()))\n if opts['--background']:\n write('\\n')\n return\n try:\n environment.wait_for_web_available()\n finally:\n write('\\n')\n", "role": "user" }, { "content": "reload_", "role": "assistant" } ]
def x(path): path = path[:-1] if path[-1] == '/' else path split = path_split(path) return split
split_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path):\n path = path[:-1] if path[-1] == '/' else path\n split = path_split(path)\n return split\n", "role": "user" }, { "content": "split_path", "role": "assistant" } ]
def x(datadir, version, always_yes): require_images() inp = None old_version = _get_current_format(datadir) migration_func = migrations[old_version, version] if version > CURRENT_FORMAT_VERSION: raise DatacatsError( 'Cannot migrate to a version higher than the current one.') if version < 1: raise DatacatsError('Datadir versioning starts at 1.') if not always_yes: while inp != 'y' and inp != 'n': inp = raw_input(migration_func.__doc__.format(version)) if inp == 'n': sys.exit(1) lockfile = LockFile(path_join(datadir, '.migration_lock')) lockfile.acquire() try: migration_func(datadir) finally: lockfile.release()
convert_environment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datadir, version, always_yes):\n require_images()\n inp = None\n old_version = _get_current_format(datadir)\n migration_func = migrations[old_version, version]\n if version > CURRENT_FORMAT_VERSION:\n raise DatacatsError(\n 'Cannot migrate to a version higher than the current one.')\n if version < 1:\n raise DatacatsError('Datadir versioning starts at 1.')\n if not always_yes:\n while inp != 'y' and inp != 'n':\n inp = raw_input(migration_func.__doc__.format(version))\n if inp == 'n':\n sys.exit(1)\n lockfile = LockFile(path_join(datadir, '.migration_lock'))\n lockfile.acquire()\n try:\n migration_func(datadir)\n finally:\n lockfile.release()\n", "role": "user" }, { "content": "convert_environment", "role": "assistant" } ]
def x(self, flight_number, page=1, limit=100): url = FLT_BASE.format(flight_number, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_data(url)
get_history_by_flight_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, flight_number, page=1, limit=100):\n url = FLT_BASE.format(flight_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_data(url)\n", "role": "user" }, { "content": "get_history_by_flight_number", "role": "assistant" } ]
def x(self, tail_number, page=1, limit=100): url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_data(url, True)
get_history_by_tail_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_data(url, True)\n", "role": "user" }, { "content": "get_history_by_tail_number", "role": "assistant" } ]
def x(self, country): url = AIRPORT_BASE.format(country.replace(' ', '-')) return self._fr24.get_airports_data(url)
get_airports
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, country):\n url = AIRPORT_BASE.format(country.replace(' ', '-'))\n return self._fr24.get_airports_data(url)\n", "role": "user" }, { "content": "get_airports", "role": "assistant" } ]
def x(self, tail_number, page=1, limit=100): url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_aircraft_data(url)
get_info_by_tail_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_aircraft_data(url)\n", "role": "user" }, { "content": "get_info_by_tail_number", "role": "assistant" } ]
def x(self, airline_key): url = AIRLINE_FLEET_BASE.format(airline_key) return self._fr24.get_airline_fleet_data(url, self.AUTH_TOKEN != '')
get_fleet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, airline_key):\n url = AIRLINE_FLEET_BASE.format(airline_key)\n return self._fr24.get_airline_fleet_data(url, self.AUTH_TOKEN != '')\n", "role": "user" }, { "content": "get_fleet", "role": "assistant" } ]
def x(self, search_key): url = AIRLINE_FLT_BASE.format(search_key, 100) return self._fr24.get_airline_flight_data(url)
get_flights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, search_key):\n url = AIRLINE_FLT_BASE.format(search_key, 100)\n return self._fr24.get_airline_flight_data(url)\n", "role": "user" }, { "content": "get_flights", "role": "assistant" } ]
def x(self, origin, destination): url = AIRLINE_FLT_BASE_POINTS.format(origin, destination) return self._fr24.get_airline_flight_data(url, by_airports=True)
get_flights_from_to
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, origin, destination):\n url = AIRLINE_FLT_BASE_POINTS.format(origin, destination)\n return self._fr24.get_airline_flight_data(url, by_airports=True)\n", "role": "user" }, { "content": "get_flights_from_to", "role": "assistant" } ]
def x(self, iata, page=1, limit=100): url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit) weather = self._fr24.get_airport_weather(url) mi = weather['sky']['visibility']['mi'] if mi is not None and mi != 'None': mi = float(mi) km = mi * 1.6094 weather['sky']['visibility']['km'] = km return weather
get_airport_weather
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n weather = self._fr24.get_airport_weather(url)\n mi = weather['sky']['visibility']['mi']\n if mi is not None and mi != 'None':\n mi = float(mi)\n km = mi * 1.6094\n weather['sky']['visibility']['km'] = km\n return weather\n", "role": "user" }, { "content": "get_airport_weather", "role": "assistant" } ]
def x(self, iata, page=1, limit=100): url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit) w = self._fr24.get_airport_weather(url) return w['metar']
get_airport_metars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n w = self._fr24.get_airport_weather(url)\n return w['metar']\n", "role": "user" }, { "content": "get_airport_metars", "role": "assistant" } ]
def x(self, iata): url = AIRPORT_BASE.format(iata) + '/weather' return self._fr24.get_airport_metars_hist(url)
get_airport_metars_hist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iata):\n url = AIRPORT_BASE.format(iata) + '/weather'\n return self._fr24.get_airport_metars_hist(url)\n", "role": "user" }, { "content": "get_airport_metars_hist", "role": "assistant" } ]
def x(self, iata, page=1, limit=100): url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_airport_stats(url)
get_airport_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_airport_stats(url)\n", "role": "user" }, { "content": "get_airport_stats", "role": "assistant" } ]
def x(self, iata, page=1, limit=100): url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit) details = self._fr24.get_airport_details(url) weather = self._fr24.get_airport_weather(url) details['position']['elevation'] = weather['elevation'] return details
get_airport_details
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n details = self._fr24.get_airport_details(url)\n weather = self._fr24.get_airport_weather(url)\n details['position']['elevation'] = weather['elevation']\n return details\n", "role": "user" }, { "content": "get_airport_details", "role": "assistant" } ]
def x(self, tail_number, page=1, limit=100): url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit) return self._fr24.get_aircraft_image_data(url)
get_images_by_tail_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_aircraft_image_data(url)\n", "role": "user" }, { "content": "get_images_by_tail_number", "role": "assistant" } ]
def x(self, email, password): response = FlightData.session.post(url=LOGIN_URL, data={'email': email, 'password': password, 'remember': 'true', 'type': 'web'}, headers={ 'Origin': 'https://www.flightradar24.com', 'Referer': 'https://www.flightradar24.com', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0' }) response = self._fr24.json_loads_byteified(response.content ) if response.status_code == 200 else None if response: token = response['userData']['subscriptionKey'] self.AUTH_TOKEN = token
login
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, email, password):\n response = FlightData.session.post(url=LOGIN_URL, data={'email': email,\n 'password': password, 'remember': 'true', 'type': 'web'}, headers={\n 'Origin': 'https://www.flightradar24.com', 'Referer':\n 'https://www.flightradar24.com', 'User-Agent':\n 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0'\n })\n response = self._fr24.json_loads_byteified(response.content\n ) if response.status_code == 200 else None\n if response:\n token = response['userData']['subscriptionKey']\n self.AUTH_TOKEN = token\n", "role": "user" }, { "content": "login", "role": "assistant" } ]
def x(self, metar): try: from metar import Metar except: return ( 'Unable to parse metars. Please install parser from https://github.com/tomp/python-metar.' ) m = Metar.Metar(metar) return m.string()
decode_metar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, metar):\n try:\n from metar import Metar\n except:\n return (\n 'Unable to parse metars. Please install parser from https://github.com/tomp/python-metar.'\n )\n m = Metar.Metar(metar)\n return m.string()\n", "role": "user" }, { "content": "decode_metar", "role": "assistant" } ]
def x(self, username, password, client): pkt = client.CreateAuthPacket(code=AccessRequest, User_Name=username) pkt['User-Password'] = pkt.PwCrypt(password) pkt['NAS-Identifier'] = 'django-radius' for key, val in list(getattr(settings, 'RADIUS_ATTRIBUTES', {}).items()): pkt[key] = val return pkt
get_auth_packet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username, password, client):\n pkt = client.CreateAuthPacket(code=AccessRequest, User_Name=username)\n pkt['User-Password'] = pkt.PwCrypt(password)\n pkt['NAS-Identifier'] = 'django-radius'\n for key, val in list(getattr(settings, 'RADIUS_ATTRIBUTES', {}).items()):\n pkt[key] = val\n return pkt\n", "role": "user" }, { "content": "get_auth_packet", "role": "assistant" } ]
def x(self, server): return Client(server=server[0], authport=server[1], secret=server[2], dict=self._get_dictionary())
get_client
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, server):\n return Client(server=server[0], authport=server[1], secret=server[2],\n dict=self._get_dictionary())\n", "role": "user" }, { "content": "get_client", "role": "assistant" } ]
def x(self, client, packet): try: reply = client.SendPacket(packet) except Timeout as e: logging.error('RADIUS timeout occurred contacting %s:%s' % (client. server, client.authport)) return False except Exception as e: logging.error('RADIUS error: %s' % e) return False if reply.code == AccessReject: logging.warning("RADIUS access rejected for user '%s'" % packet[ 'User-Name']) return False elif reply.code != AccessAccept: logging.error("RADIUS access error for user '%s' (code %s)" % ( packet['User-Name'], reply.code)) return False logging.info("RADIUS access granted for user '%s'" % packet['User-Name']) return True
perform_radius_auth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, client, packet):\n try:\n reply = client.SendPacket(packet)\n except Timeout as e:\n logging.error('RADIUS timeout occurred contacting %s:%s' % (client.\n server, client.authport))\n return False\n except Exception as e:\n logging.error('RADIUS error: %s' % e)\n return False\n if reply.code == AccessReject:\n logging.warning(\"RADIUS access rejected for user '%s'\" % packet[\n 'User-Name'])\n return False\n elif reply.code != AccessAccept:\n logging.error(\"RADIUS access error for user '%s' (code %s)\" % (\n packet['User-Name'], reply.code))\n return False\n logging.info(\"RADIUS access granted for user '%s'\" % packet['User-Name'])\n return True\n", "role": "user" }, { "content": "perform_radius_auth", "role": "assistant" } ]
def x(self, server, username, password): client = self._get_client(server) packet = self._get_auth_packet(username, password, client) return self._perform_radius_auth(client, packet)
radius_auth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, server, username, password):\n client = self._get_client(server)\n packet = self._get_auth_packet(username, password, client)\n return self._perform_radius_auth(client, packet)\n", "role": "user" }, { "content": "radius_auth", "role": "assistant" } ]
def x(self, username, password=None): try: user = User.objects.get(username=username) except User.DoesNotExist: user = User(username=username) if password is not None: user.set_password(password) user.save() return user
get_django_user
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username, password=None):\n try:\n user = User.objects.get(username=username)\n except User.DoesNotExist:\n user = User(username=username)\n if password is not None:\n user.set_password(password)\n user.save()\n return user\n", "role": "user" }, { "content": "get_django_user", "role": "assistant" } ]
def x(self, request, username=None, password=None): if isinstance(username, basestring): username = username.encode('utf-8') if isinstance(password, basestring): password = password.encode('utf-8') server = self._get_server_from_settings() result = self._radius_auth(server, username, password) if result: return self.get_django_user(username, password) return None
authenticate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, username=None, password=None):\n if isinstance(username, basestring):\n username = username.encode('utf-8')\n if isinstance(password, basestring):\n password = password.encode('utf-8')\n server = self._get_server_from_settings()\n result = self._radius_auth(server, username, password)\n if result:\n return self.get_django_user(username, password)\n return None\n", "role": "user" }, { "content": "authenticate", "role": "assistant" } ]
def x(self, request, username=None, password=None, realm=None): if isinstance(username, basestring): username = username.encode('utf-8') if isinstance(password, basestring): password = password.encode('utf-8') server = self.get_server(realm) if not server: return None result = self._radius_auth(server, username, password) if result: full_username = self.construct_full_username(username, realm) return self.get_django_user(full_username, password) return None
authenticate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, username=None, password=None, realm=None):\n if isinstance(username, basestring):\n username = username.encode('utf-8')\n if isinstance(password, basestring):\n password = password.encode('utf-8')\n server = self.get_server(realm)\n if not server:\n return None\n result = self._radius_auth(server, username, password)\n if result:\n full_username = self.construct_full_username(username, realm)\n return self.get_django_user(full_username, password)\n return None\n", "role": "user" }, { "content": "authenticate", "role": "assistant" } ]
def x(self, dst): self.close() shutil.move(self.path, dst)
move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dst):\n self.close()\n shutil.move(self.path, dst)\n", "role": "user" }, { "content": "move", "role": "assistant" } ]
def x(date, mag, err, threshold=3, iteration=1): if len(date) != len(mag) or len(date) != len(err) or len(mag) != len(err): raise RuntimeError('The length of date, mag, and err must be same.') for i in range(int(iteration)): mean = np.median(mag) std = np.std(mag) index = (mag >= mean - threshold * std) & (mag <= mean + threshold * std) date = date[index] mag = mag[index] err = err[index] return date, mag, err
sigma_clipping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date, mag, err, threshold=3, iteration=1):\n if len(date) != len(mag) or len(date) != len(err) or len(mag) != len(err):\n raise RuntimeError('The length of date, mag, and err must be same.')\n for i in range(int(iteration)):\n mean = np.median(mag)\n std = np.std(mag)\n index = (mag >= mean - threshold * std) & (mag <= mean + threshold *\n std)\n date = date[index]\n mag = mag[index]\n err = err[index]\n return date, mag, err\n", "role": "user" }, { "content": "sigma_clipping", "role": "assistant" } ]
def x(spec): if spec == '': return any_schema if framework.is_str(spec): if spec not in SCALAR_TYPES: raise exceptions.SchemaError('Not a valid schema type: %r' % spec) return ScalarSchema(spec) if framework.is_list(spec): return ListSchema(spec[0] if len(spec) else any_schema) if framework.is_tuple(spec): return TupleSchema(spec.get('fields', {}), spec.get('required', [])) raise exceptions.SchemaError('Not valid schema spec; %r' % spec)
from_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spec):\n if spec == '':\n return any_schema\n if framework.is_str(spec):\n if spec not in SCALAR_TYPES:\n raise exceptions.SchemaError('Not a valid schema type: %r' % spec)\n return ScalarSchema(spec)\n if framework.is_list(spec):\n return ListSchema(spec[0] if len(spec) else any_schema)\n if framework.is_tuple(spec):\n return TupleSchema(spec.get('fields', {}), spec.get('required', []))\n raise exceptions.SchemaError('Not valid schema spec; %r' % spec)\n", "role": "user" }, { "content": "from_spec", "role": "assistant" } ]
def x(obj, schema): if not framework.EvaluationContext.current().validate: return obj if hasattr(obj, 'tuple_schema'): obj.tuple_schema.validate(obj) if schema: schema.validate(obj) return obj
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, schema):\n if not framework.EvaluationContext.current().validate:\n return obj\n if hasattr(obj, 'tuple_schema'):\n obj.tuple_schema.validate(obj)\n if schema:\n schema.validate(obj)\n return obj\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(obj, schema): if framework.is_list(obj) and isinstance(schema, ListSchema): for x in obj: attach(x, schema.element_schema) return getattr(obj, 'attach_schema', nop)(schema)
attach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, schema):\n if framework.is_list(obj) and isinstance(schema, ListSchema):\n for x in obj:\n attach(x, schema.element_schema)\n return\n getattr(obj, 'attach_schema', nop)(schema)\n", "role": "user" }, { "content": "attach", "role": "assistant" } ]
def x(): features = get_feature_set() features.append('cusum') features.append('eta') features.append('n_points') features.append('period_SNR') features.append('period_log10FAP') features.append('period_uncertainty') features.append('weighted_mean') features.append('weighted_std') features.sort() return features
get_feature_set_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n features = get_feature_set()\n features.append('cusum')\n features.append('eta')\n features.append('n_points')\n features.append('period_SNR')\n features.append('period_log10FAP')\n features.append('period_uncertainty')\n features.append('weighted_mean')\n features.append('weighted_std')\n features.sort()\n return features\n", "role": "user" }, { "content": "get_feature_set_all", "role": "assistant" } ]
def x(self): parameters = [] for hl in self.hidden_layers: parameters.extend(hl.parameters) parameters.extend(self.top_layer.parameters) return parameters
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n parameters = []\n for hl in self.hidden_layers:\n parameters.extend(hl.parameters)\n parameters.extend(self.top_layer.parameters)\n return parameters\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self, value): if len(value) != self.n_parameters: raise ValueError( 'Incorrect length of parameter vector. Model has %d parameters, but got %d' % (self.n_parameters, len(value))) i = 0 for hl in self.hidden_layers: hl.parameters = value[i:i + hl.n_parameters] i += hl.n_parameters self.top_layer.parameters = value[-self.top_layer.n_parameters:]
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if len(value) != self.n_parameters:\n raise ValueError(\n 'Incorrect length of parameter vector. Model has %d parameters, but got %d'\n % (self.n_parameters, len(value)))\n i = 0\n for hl in self.hidden_layers:\n hl.parameters = value[i:i + hl.n_parameters]\n i += hl.n_parameters\n self.top_layer.parameters = value[-self.top_layer.n_parameters:]\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self): m = md5() for hl in self.hidden_layers: m.update(str(hl.architecture)) m.update(str(self.top_layer.architecture)) return m.hexdigest()
checksum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n m = md5()\n for hl in self.hidden_layers:\n m.update(str(hl.architecture))\n m.update(str(self.top_layer.architecture))\n return m.hexdigest()\n", "role": "user" }, { "content": "checksum", "role": "assistant" } ]
def x(self, input_data, targets, return_cache=False, prediction=True): activations, hidden_cache = self.feed_forward(input_data, return_cache= True, prediction=prediction) loss = self.top_layer.train_error(None, targets, average=False, cache= activations, prediction=prediction) for hl in self.hidden_layers: if hl.l1_penalty_weight: loss += hl.l1_penalty if hl.l2_penalty_weight: loss += hl.l2_penalty if self.top_layer.l1_penalty_weight: loss += self.top_layer.l1_penalty if self.top_layer.l2_penalty_weight: loss += self.top_layer.l2_penalty if not return_cache: return loss else: return loss, hidden_cache, activations
evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, return_cache=False, prediction=True):\n activations, hidden_cache = self.feed_forward(input_data, return_cache=\n True, prediction=prediction)\n loss = self.top_layer.train_error(None, targets, average=False, cache=\n activations, prediction=prediction)\n for hl in self.hidden_layers:\n if hl.l1_penalty_weight:\n loss += hl.l1_penalty\n if hl.l2_penalty_weight:\n loss += hl.l2_penalty\n if self.top_layer.l1_penalty_weight:\n loss += self.top_layer.l1_penalty\n if self.top_layer.l2_penalty_weight:\n loss += self.top_layer.l2_penalty\n if not return_cache:\n return loss\n else:\n return loss, hidden_cache, activations\n", "role": "user" }, { "content": "evaluate", "role": "assistant" } ]
def x(self, input_data, targets): loss, hidden_cache, logistic_cache = self.evaluate(input_data, targets, return_cache=True, prediction=False) if not np.isfinite(loss): raise ValueError('Infinite activations!') if self.hidden_layers: hidden_activations = hidden_cache[-1][0] else: hidden_activations = input_data df_top_layer = self.top_layer.backprop(hidden_activations, targets, cache=logistic_cache) gradients = list(df_top_layer[0][::-1]) df_hidden = df_top_layer[1] if self.hidden_layers: hidden_inputs = [input_data] + [c[0] for c in hidden_cache[:-1]] for hl, hc, hi in zip(self.hidden_layers[::-1], hidden_cache[::-1], hidden_inputs[::-1]): g, df_hidden = hl.backprop(hi, df_hidden, cache=hc) gradients.extend(g[::-1]) gradients.reverse() return loss, gradients
training_pass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets):\n loss, hidden_cache, logistic_cache = self.evaluate(input_data, targets,\n return_cache=True, prediction=False)\n if not np.isfinite(loss):\n raise ValueError('Infinite activations!')\n if self.hidden_layers:\n hidden_activations = hidden_cache[-1][0]\n else:\n hidden_activations = input_data\n df_top_layer = self.top_layer.backprop(hidden_activations, targets,\n cache=logistic_cache)\n gradients = list(df_top_layer[0][::-1])\n df_hidden = df_top_layer[1]\n if self.hidden_layers:\n hidden_inputs = [input_data] + [c[0] for c in hidden_cache[:-1]]\n for hl, hc, hi in zip(self.hidden_layers[::-1], hidden_cache[::-1],\n hidden_inputs[::-1]):\n g, df_hidden = hl.backprop(hi, df_hidden, cache=hc)\n gradients.extend(g[::-1])\n gradients.reverse()\n return loss, gradients\n", "role": "user" }, { "content": "training_pass", "role": "assistant" } ]
def x(self, input_data, return_cache=False, prediction=True): hidden_cache = None if self.hidden_layers: hidden_cache = [] for i in range(len(self.hidden_layers)): hidden_activations = hidden_cache[i - 1][0] if i else input_data hidden_cache.append(self.hidden_layers[i].feed_forward( hidden_activations, prediction=prediction)) hidden_activations = hidden_cache[-1][0] else: hidden_activations = input_data activations = self.top_layer.feed_forward(hidden_activations, prediction=False) if return_cache: return activations, hidden_cache return activations
feed_forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, return_cache=False, prediction=True):\n hidden_cache = None\n if self.hidden_layers:\n hidden_cache = []\n for i in range(len(self.hidden_layers)):\n hidden_activations = hidden_cache[i - 1][0] if i else input_data\n hidden_cache.append(self.hidden_layers[i].feed_forward(\n hidden_activations, prediction=prediction))\n hidden_activations = hidden_cache[-1][0]\n else:\n hidden_activations = input_data\n activations = self.top_layer.feed_forward(hidden_activations,\n prediction=False)\n if return_cache:\n return activations, hidden_cache\n return activations\n", "role": "user" }, { "content": "feed_forward", "role": "assistant" } ]
def x(self): self.n_points = len(self.date) if not self.err.any(): self.err = np.ones(len(self.mag)) * np.std(self.mag) elif not self.err.all(): np.putmask(self.err, self.err == 0, np.median(self.err)) self.weight = 1.0 / self.err self.weighted_sum = np.sum(self.weight) self.mean = np.mean(self.mag) self.median = np.median(self.mag) self.std = np.std(self.mag) self.weighted_mean = np.sum(self.mag * self.weight) / self.weighted_sum self.weighted_std = np.sqrt(np.sum((self.mag - self.weighted_mean) ** 2 * self.weight) / self.weighted_sum) self.skewness = ss.skew(self.mag) self.kurtosis = ss.kurtosis(self.mag) shapiro = ss.shapiro(self.mag) self.shapiro_w = shapiro[0] self.quartile31 = np.percentile(self.mag, 75) - np.percentile(self.mag, 25) self.stetson_k = self.get_stetson_k(self.mag, self.median, self.err) self.hl_amp_ratio = self.half_mag_amplitude_ratio(self.mag, self.median, self.weight) self.cusum = self.get_cusum(self.mag) self.eta = self.get_eta(self.mag, self.weighted_std)
shallow_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.n_points = len(self.date)\n if not self.err.any():\n self.err = np.ones(len(self.mag)) * np.std(self.mag)\n elif not self.err.all():\n np.putmask(self.err, self.err == 0, np.median(self.err))\n self.weight = 1.0 / self.err\n self.weighted_sum = np.sum(self.weight)\n self.mean = np.mean(self.mag)\n self.median = np.median(self.mag)\n self.std = np.std(self.mag)\n self.weighted_mean = np.sum(self.mag * self.weight) / self.weighted_sum\n self.weighted_std = np.sqrt(np.sum((self.mag - self.weighted_mean) ** 2 *\n self.weight) / self.weighted_sum)\n self.skewness = ss.skew(self.mag)\n self.kurtosis = ss.kurtosis(self.mag)\n shapiro = ss.shapiro(self.mag)\n self.shapiro_w = shapiro[0]\n self.quartile31 = np.percentile(self.mag, 75) - np.percentile(self.mag, 25)\n self.stetson_k = self.get_stetson_k(self.mag, self.median, self.err)\n self.hl_amp_ratio = self.half_mag_amplitude_ratio(self.mag, self.median,\n self.weight)\n self.cusum = self.get_cusum(self.mag)\n self.eta = self.get_eta(self.mag, self.weighted_std)\n", "role": "user" }, { "content": "shallow_run", "role": "assistant" } ]
def x(self): self.get_period_LS(self.date, self.mag, self.n_threads, self.min_period) phase_folded_date = self.date % (self.period * 2.0) sorted_index = np.argsort(phase_folded_date) folded_date = phase_folded_date[sorted_index] folded_mag = self.mag[sorted_index] self.phase_eta = self.get_eta(folded_mag, self.weighted_std) self.slope_per10, self.slope_per90 = self.slope_percentile(folded_date, folded_mag) self.phase_cusum = self.get_cusum(folded_mag)
deep_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.get_period_LS(self.date, self.mag, self.n_threads, self.min_period)\n phase_folded_date = self.date % (self.period * 2.0)\n sorted_index = np.argsort(phase_folded_date)\n folded_date = phase_folded_date[sorted_index]\n folded_mag = self.mag[sorted_index]\n self.phase_eta = self.get_eta(folded_mag, self.weighted_std)\n self.slope_per10, self.slope_per90 = self.slope_percentile(folded_date,\n folded_mag)\n self.phase_cusum = self.get_cusum(folded_mag)\n", "role": "user" }, { "content": "deep_run", "role": "assistant" } ]
def x(self, date, mag, n_threads, min_period): oversampling = 3.0 hifac = int((max(date) - min(date)) / len(date) / min_period * 2.0) if hifac < 100: hifac = 100 fx, fy, nout, jmax, prob = pLS.fasper(date, mag, oversampling, hifac, n_threads) self.f = fx[jmax] self.period = 1.0 / self.f self.period_uncertainty = self.get_period_uncertainty(fx, fy, jmax) self.period_log10FAP = np.log10(pLS.getSignificance(fx, fy, nout, oversampling)[jmax]) self.period_SNR = (fy[jmax] - np.median(fy)) / np.std(fy) order = 3 p0 = np.ones(order * 2 + 1) date_period = date % self.period / self.period p1, success = leastsq(self.residuals, p0, args=(date_period, mag, order)) self.amplitude = np.sqrt(p1[1] ** 2 + p1[2] ** 2) self.r21 = np.sqrt(p1[3] ** 2 + p1[4] ** 2) / self.amplitude self.r31 = np.sqrt(p1[5] ** 2 + p1[6] ** 2) / self.amplitude self.f_phase = np.arctan(-p1[1] / p1[2]) self.phi21 = np.arctan(-p1[3] / p1[4]) - 2.0 * self.f_phase self.phi31 = np.arctan(-p1[5] / p1[6]) - 3.0 * self.f_phase """ # Derive a second period. # Whitening a light curve. residual_mag = mag - fitted_y # Lomb-Scargle again to find the second period. omega_top, power_top = search_frequencies(date, residual_mag, err, #LS_kwargs={'generalized':True, 'subtract_mean':True}, n_eval=5000, n_retry=3, n_save=50) self.period2 = 2*np.pi/omega_top[np.where(power_top==np.max(power_top))][0] self.f2 = 1. / self.period2 self.f2_SNR = power_top[np.where(power_top==np.max(power_top))][0] * (len(self.date) - 1) / 2. # Fit Fourier Series again. p0 = [1.] * order * 2 date_period = (date % self.period) / self.period p2, success = leastsq(self.residuals, p0, args=(date_period, residual_mag, order)) fitted_y = self.FourierSeries(p2, date_period, order) #plt.plot(date%self.period2, residual_mag, 'b+') #plt.show() # Derive Fourier features for the first second. self.f2_amp = 2. * np.sqrt(p2[1]**2 + p2[2]**2) self.f2_R21 = np.sqrt(p2[3]**2 + p2[4]**2) / self.f2_amp self.f2_R31 = np.sqrt(p2[5]**2 + p2[6]**2) / self.f2_amp self.f2_R41 = np.sqrt(p2[7]**2 + p2[8]**2) / self.f2_amp self.f2_R51 = np.sqrt(p2[9]**2 + p2[10]**2) / self.f2_amp self.f2_phase = np.arctan(-p2[1] / p2[2]) self.f2_phi21 = np.arctan(-p2[3] / p2[4]) - 2. * self.f2_phase self.f2_phi31 = np.arctan(-p2[5] / p2[6]) - 3. * self.f2_phase self.f2_phi41 = np.arctan(-p2[7] / p2[8]) - 4. * self.f2_phase self.f2_phi51 = np.arctan(-p2[9] / p2[10]) - 5. * self.f2_phase # Calculate features using the first and second periods. self.f12_ratio = self.f2 / self.f1 self.f12_remain = self.f1 % self.f2 if self.f1 > self.f2 else self.f2 % self.f1 self.f12_amp = self.f2_amp / self.f1_amp self.f12_phase = self.f2_phase - self.f1_phase """
get_period_LS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, date, mag, n_threads, min_period):\n oversampling = 3.0\n hifac = int((max(date) - min(date)) / len(date) / min_period * 2.0)\n if hifac < 100:\n hifac = 100\n fx, fy, nout, jmax, prob = pLS.fasper(date, mag, oversampling, hifac,\n n_threads)\n self.f = fx[jmax]\n self.period = 1.0 / self.f\n self.period_uncertainty = self.get_period_uncertainty(fx, fy, jmax)\n self.period_log10FAP = np.log10(pLS.getSignificance(fx, fy, nout,\n oversampling)[jmax])\n self.period_SNR = (fy[jmax] - np.median(fy)) / np.std(fy)\n order = 3\n p0 = np.ones(order * 2 + 1)\n date_period = date % self.period / self.period\n p1, success = leastsq(self.residuals, p0, args=(date_period, mag, order))\n self.amplitude = np.sqrt(p1[1] ** 2 + p1[2] ** 2)\n self.r21 = np.sqrt(p1[3] ** 2 + p1[4] ** 2) / self.amplitude\n self.r31 = np.sqrt(p1[5] ** 2 + p1[6] ** 2) / self.amplitude\n self.f_phase = np.arctan(-p1[1] / p1[2])\n self.phi21 = np.arctan(-p1[3] / p1[4]) - 2.0 * self.f_phase\n self.phi31 = np.arctan(-p1[5] / p1[6]) - 3.0 * self.f_phase\n \"\"\"\n # Derive a second period.\n # Whitening a light curve.\n residual_mag = mag - fitted_y\n\n # Lomb-Scargle again to find the second period.\n omega_top, power_top = search_frequencies(date, residual_mag, err,\n #LS_kwargs={'generalized':True, 'subtract_mean':True},\n n_eval=5000, n_retry=3, n_save=50)\n\n self.period2 = 2*np.pi/omega_top[np.where(power_top==np.max(power_top))][0]\n self.f2 = 1. / self.period2\n self.f2_SNR = power_top[np.where(power_top==np.max(power_top))][0] * (len(self.date) - 1) / 2.\n\n # Fit Fourier Series again.\n p0 = [1.] * order * 2\n date_period = (date % self.period) / self.period\n p2, success = leastsq(self.residuals, p0,\n args=(date_period, residual_mag, order))\n fitted_y = self.FourierSeries(p2, date_period, order)\n\n #plt.plot(date%self.period2, residual_mag, 'b+')\n #plt.show()\n\n # Derive Fourier features for the first second.\n self.f2_amp = 2. * np.sqrt(p2[1]**2 + p2[2]**2)\n self.f2_R21 = np.sqrt(p2[3]**2 + p2[4]**2) / self.f2_amp\n self.f2_R31 = np.sqrt(p2[5]**2 + p2[6]**2) / self.f2_amp\n self.f2_R41 = np.sqrt(p2[7]**2 + p2[8]**2) / self.f2_amp\n self.f2_R51 = np.sqrt(p2[9]**2 + p2[10]**2) / self.f2_amp\n self.f2_phase = np.arctan(-p2[1] / p2[2])\n self.f2_phi21 = np.arctan(-p2[3] / p2[4]) - 2. * self.f2_phase\n self.f2_phi31 = np.arctan(-p2[5] / p2[6]) - 3. * self.f2_phase\n self.f2_phi41 = np.arctan(-p2[7] / p2[8]) - 4. * self.f2_phase\n self.f2_phi51 = np.arctan(-p2[9] / p2[10]) - 5. * self.f2_phase\n\n # Calculate features using the first and second periods.\n self.f12_ratio = self.f2 / self.f1\n self.f12_remain = self.f1 % self.f2 if self.f1 > self.f2 else self.f2 % self.f1\n self.f12_amp = self.f2_amp / self.f1_amp\n self.f12_phase = self.f2_phase - self.f1_phase\n \"\"\"\n", "role": "user" }, { "content": "get_period_LS", "role": "assistant" } ]
def x(self, fx, fy, jmax, fx_width=100): start_index = jmax - fx_width end_index = jmax + fx_width if start_index < 0: start_index = 0 if end_index > len(fx) - 1: end_index = len(fx) - 1 fx_subset = fx[start_index:end_index] fy_subset = fy[start_index:end_index] fy_mean = np.median(fy_subset) fy_std = np.std(fy_subset) max_index = np.argmax(fy_subset) index = np.where(fy_subset <= fy_mean + fy_std)[0] left_index = index[index < max_index] if len(left_index) == 0: left_index = 0 else: left_index = left_index[-1] right_index = index[index > max_index] if len(right_index) == 0: right_index = len(fy_subset) - 1 else: right_index = right_index[0] half_width = (1.0 / fx_subset[left_index] - 1.0 / fx_subset[right_index] ) / 2.0 period_uncertainty = half_width return period_uncertainty
get_period_uncertainty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fx, fy, jmax, fx_width=100):\n start_index = jmax - fx_width\n end_index = jmax + fx_width\n if start_index < 0:\n start_index = 0\n if end_index > len(fx) - 1:\n end_index = len(fx) - 1\n fx_subset = fx[start_index:end_index]\n fy_subset = fy[start_index:end_index]\n fy_mean = np.median(fy_subset)\n fy_std = np.std(fy_subset)\n max_index = np.argmax(fy_subset)\n index = np.where(fy_subset <= fy_mean + fy_std)[0]\n left_index = index[index < max_index]\n if len(left_index) == 0:\n left_index = 0\n else:\n left_index = left_index[-1]\n right_index = index[index > max_index]\n if len(right_index) == 0:\n right_index = len(fy_subset) - 1\n else:\n right_index = right_index[0]\n half_width = (1.0 / fx_subset[left_index] - 1.0 / fx_subset[right_index]\n ) / 2.0\n period_uncertainty = half_width\n return period_uncertainty\n", "role": "user" }, { "content": "get_period_uncertainty", "role": "assistant" } ]
def x(self, pars, x, y, order): return y - self.fourier_series(pars, x, order)
residuals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pars, x, y, order):\n return y - self.fourier_series(pars, x, order)\n", "role": "user" }, { "content": "residuals", "role": "assistant" } ]
def x(self, pars, x, order): sum = pars[0] for i in range(order): sum += pars[i * 2 + 1] * np.sin(2 * np.pi * (i + 1) * x) + pars[i * 2 + 2] * np.cos(2 * np.pi * (i + 1) * x) return sum
fourier_series
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pars, x, order):\n sum = pars[0]\n for i in range(order):\n sum += pars[i * 2 + 1] * np.sin(2 * np.pi * (i + 1) * x) + pars[i *\n 2 + 2] * np.cos(2 * np.pi * (i + 1) * x)\n return sum\n", "role": "user" }, { "content": "fourier_series", "role": "assistant" } ]
def x(self, mag, avg, err): residual = (mag - avg) / err stetson_k = np.sum(np.fabs(residual)) / np.sqrt(np.sum(residual * residual) ) / np.sqrt(len(mag)) return stetson_k
get_stetson_k
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mag, avg, err):\n residual = (mag - avg) / err\n stetson_k = np.sum(np.fabs(residual)) / np.sqrt(np.sum(residual * residual)\n ) / np.sqrt(len(mag))\n return stetson_k\n", "role": "user" }, { "content": "get_stetson_k", "role": "assistant" } ]
def x(self, mag, avg, weight): index = np.where(mag > avg) lower_weight = weight[index] lower_weight_sum = np.sum(lower_weight) lower_mag = mag[index] lower_weighted_std = np.sum((lower_mag - avg) ** 2 * lower_weight ) / lower_weight_sum index = np.where(mag <= avg) higher_weight = weight[index] higher_weight_sum = np.sum(higher_weight) higher_mag = mag[index] higher_weighted_std = np.sum((higher_mag - avg) ** 2 * higher_weight ) / higher_weight_sum return np.sqrt(lower_weighted_std / higher_weighted_std)
half_mag_amplitude_ratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mag, avg, weight):\n index = np.where(mag > avg)\n lower_weight = weight[index]\n lower_weight_sum = np.sum(lower_weight)\n lower_mag = mag[index]\n lower_weighted_std = np.sum((lower_mag - avg) ** 2 * lower_weight\n ) / lower_weight_sum\n index = np.where(mag <= avg)\n higher_weight = weight[index]\n higher_weight_sum = np.sum(higher_weight)\n higher_mag = mag[index]\n higher_weighted_std = np.sum((higher_mag - avg) ** 2 * higher_weight\n ) / higher_weight_sum\n return np.sqrt(lower_weighted_std / higher_weighted_std)\n", "role": "user" }, { "content": "half_mag_amplitude_ratio", "role": "assistant" } ]
def x(self, mag, avg): index = np.where(mag > avg) fainter_mag = mag[index] lower_sum = np.sum((fainter_mag - avg) ** 2) / len(fainter_mag) index = np.where(mag <= avg) brighter_mag = mag[index] higher_sum = np.sum((avg - brighter_mag) ** 2) / len(brighter_mag) return np.sqrt(lower_sum / higher_sum)
half_mag_amplitude_ratio2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mag, avg):\n index = np.where(mag > avg)\n fainter_mag = mag[index]\n lower_sum = np.sum((fainter_mag - avg) ** 2) / len(fainter_mag)\n index = np.where(mag <= avg)\n brighter_mag = mag[index]\n higher_sum = np.sum((avg - brighter_mag) ** 2) / len(brighter_mag)\n return np.sqrt(lower_sum / higher_sum)\n", "role": "user" }, { "content": "half_mag_amplitude_ratio2", "role": "assistant" } ]
def x(self, mag, std): diff = mag[1:] - mag[:len(mag) - 1] eta = np.sum(diff * diff) / (len(mag) - 1.0) / std / std return eta
get_eta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mag, std):\n diff = mag[1:] - mag[:len(mag) - 1]\n eta = np.sum(diff * diff) / (len(mag) - 1.0) / std / std\n return eta\n", "role": "user" }, { "content": "get_eta", "role": "assistant" } ]
def x(self, date, mag): date_diff = date[1:] - date[:len(date) - 1] mag_diff = mag[1:] - mag[:len(mag) - 1] index = np.where(mag_diff != 0.0) date_diff = date_diff[index] mag_diff = mag_diff[index] slope = date_diff / mag_diff percentile_10 = np.percentile(slope, 10.0) percentile_90 = np.percentile(slope, 90.0) return percentile_10, percentile_90
slope_percentile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, date, mag):\n date_diff = date[1:] - date[:len(date) - 1]\n mag_diff = mag[1:] - mag[:len(mag) - 1]\n index = np.where(mag_diff != 0.0)\n date_diff = date_diff[index]\n mag_diff = mag_diff[index]\n slope = date_diff / mag_diff\n percentile_10 = np.percentile(slope, 10.0)\n percentile_90 = np.percentile(slope, 90.0)\n return percentile_10, percentile_90\n", "role": "user" }, { "content": "slope_percentile", "role": "assistant" } ]
def x(self, mag): c = np.cumsum(mag - self.weighted_mean) / len(mag) / self.weighted_std return np.max(c) - np.min(c)
get_cusum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mag):\n c = np.cumsum(mag - self.weighted_mean) / len(mag) / self.weighted_std\n return np.max(c) - np.min(c)\n", "role": "user" }, { "content": "get_cusum", "role": "assistant" } ]
def x(self): feature_names = [] feature_values = [] all_vars = vars(self) for name in all_vars.keys(): if not (name == 'date' or name == 'mag' or name == 'err' or name == 'n_threads' or name == 'min_period'): if not (name == 'f' or name == 'f_phase' or name == 'period_log10FAP' or name == 'weight' or name == 'weighted_sum' or name == 'median' or name == 'mean' or name == 'std'): feature_names.append(name) feature_names.sort() for name in feature_names: feature_values.append(all_vars[name]) return feature_names, feature_values
get_features2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n feature_names = []\n feature_values = []\n all_vars = vars(self)\n for name in all_vars.keys():\n if not (name == 'date' or name == 'mag' or name == 'err' or name ==\n 'n_threads' or name == 'min_period'):\n if not (name == 'f' or name == 'f_phase' or name ==\n 'period_log10FAP' or name == 'weight' or name ==\n 'weighted_sum' or name == 'median' or name == 'mean' or \n name == 'std'):\n feature_names.append(name)\n feature_names.sort()\n for name in feature_names:\n feature_values.append(all_vars[name])\n return feature_names, feature_values\n", "role": "user" }, { "content": "get_features2", "role": "assistant" } ]
def x(self): features = {} all_vars = vars(self) for name in all_vars.keys(): if name in feature_names_list_all: features[name] = all_vars[name] features = OrderedDict(sorted(features.items(), key=lambda t: t[0])) return features
get_features_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n features = {}\n all_vars = vars(self)\n for name in all_vars.keys():\n if name in feature_names_list_all:\n features[name] = all_vars[name]\n features = OrderedDict(sorted(features.items(), key=lambda t: t[0]))\n return features\n", "role": "user" }, { "content": "get_features_all", "role": "assistant" } ]
def x(device_id=None, random_seed=None): if device_id is None: random_seed = _os.environ.get('CUDA_DEVICE') if random_seed is None: random_seed = _os.environ.get('RANDOM_SEED') global is_initialized if not is_initialized: is_initialized = True global context context.init_context(device_id) from pycuda import gpuarray, driver, curandom global memory_pool memory_pool.init() global sampler sampler.set_seed(random_seed) from hebel import pycuda_ops pycuda_ops.init()
init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(device_id=None, random_seed=None):\n if device_id is None:\n random_seed = _os.environ.get('CUDA_DEVICE')\n if random_seed is None:\n random_seed = _os.environ.get('RANDOM_SEED')\n global is_initialized\n if not is_initialized:\n is_initialized = True\n global context\n context.init_context(device_id)\n from pycuda import gpuarray, driver, curandom\n global memory_pool\n memory_pool.init()\n global sampler\n sampler.set_seed(random_seed)\n from hebel import pycuda_ops\n pycuda_ops.init()\n", "role": "user" }, { "content": "init", "role": "assistant" } ]
def x(ast_rootpath, root_env): with util.LogTime('inflate_context_tuple'): inflated = ast_rootpath[0].eval(root_env) current = inflated env = root_env try: for node in ast_rootpath[1:]: if is_tuple_member_node(node): assert framework.is_tuple(current) with util.LogTime('into tuple'): thunk, env = inflated.get_thunk_env(node.name) current = framework.eval(thunk, env) elif framework.is_list(current): with util.LogTime('eval thing'): current = framework.eval(node, env) if framework.is_tuple(current): inflated = current except (gcl.EvaluationError, ast.UnparseableAccess): pass return inflated
inflate_context_tuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ast_rootpath, root_env):\n with util.LogTime('inflate_context_tuple'):\n inflated = ast_rootpath[0].eval(root_env)\n current = inflated\n env = root_env\n try:\n for node in ast_rootpath[1:]:\n if is_tuple_member_node(node):\n assert framework.is_tuple(current)\n with util.LogTime('into tuple'):\n thunk, env = inflated.get_thunk_env(node.name)\n current = framework.eval(thunk, env)\n elif framework.is_list(current):\n with util.LogTime('eval thing'):\n current = framework.eval(node, env)\n if framework.is_tuple(current):\n inflated = current\n except (gcl.EvaluationError, ast.UnparseableAccess):\n pass\n return inflated\n", "role": "user" }, { "content": "inflate_context_tuple", "role": "assistant" } ]
def x(ast_rootpath, root_env=None, include_default_builtins=False): with util.LogTime('enumerate_scope'): scope = {} for node in reversed(ast_rootpath): if is_tuple_node(node): for member in node.members: if member.name not in scope: scope[member.name] = Completion(member.name, False, member.comment.as_string(), member.location) if include_default_builtins: root_env = gcl.default_env if root_env: for k in root_env.keys(): if k not in scope and not hide_from_autocomplete(root_env[k]): v = root_env[k] scope[k] = Completion(k, True, dedent(v.__doc__ or ''), None) return scope
enumerate_scope
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ast_rootpath, root_env=None, include_default_builtins=False):\n with util.LogTime('enumerate_scope'):\n scope = {}\n for node in reversed(ast_rootpath):\n if is_tuple_node(node):\n for member in node.members:\n if member.name not in scope:\n scope[member.name] = Completion(member.name, False,\n member.comment.as_string(), member.location)\n if include_default_builtins:\n root_env = gcl.default_env\n if root_env:\n for k in root_env.keys():\n if k not in scope and not hide_from_autocomplete(root_env[k]):\n v = root_env[k]\n scope[k] = Completion(k, True, dedent(v.__doc__ or ''),\n None)\n return scope\n", "role": "user" }, { "content": "enumerate_scope", "role": "assistant" } ]
def x(ast_rootpath, root_env=gcl.default_env): with util.LogTime('find_deref_completions'): tup = inflate_context_tuple(ast_rootpath, root_env) path = path_until(ast_rootpath, is_deref_node) if not path: return {} deref = path[-1] haystack = deref.haystack(tup.env(tup)) if not hasattr(haystack, 'keys'): return {} return {n: get_completion(haystack, n) for n in haystack.keys()}
find_deref_completions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ast_rootpath, root_env=gcl.default_env):\n with util.LogTime('find_deref_completions'):\n tup = inflate_context_tuple(ast_rootpath, root_env)\n path = path_until(ast_rootpath, is_deref_node)\n if not path:\n return {}\n deref = path[-1]\n haystack = deref.haystack(tup.env(tup))\n if not hasattr(haystack, 'keys'):\n return {}\n return {n: get_completion(haystack, n) for n in haystack.keys()}\n", "role": "user" }, { "content": "find_deref_completions", "role": "assistant" } ]
def x(rootpath): if len(rootpath) >= 2 and is_tuple_member_node(rootpath[-2] ) and is_identifier(rootpath[-1]): return True if len(rootpath) >= 1 and is_tuple_node(rootpath[-1]): return True return False
is_identifier_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rootpath):\n if len(rootpath) >= 2 and is_tuple_member_node(rootpath[-2]\n ) and is_identifier(rootpath[-1]):\n return True\n if len(rootpath) >= 1 and is_tuple_node(rootpath[-1]):\n return True\n return False\n", "role": "user" }, { "content": "is_identifier_position", "role": "assistant" } ]
def x(ast_tree, filename, line, col, root_env=gcl.default_env): q = gcl.SourceQuery(filename, line, col - 1) rootpath = ast_tree.find_tokens(q) if is_identifier_position(rootpath): return find_inherited_key_completions(rootpath, root_env) try: ret = find_deref_completions(rootpath, root_env) or enumerate_scope( rootpath, root_env=root_env) assert isinstance(ret, dict) return ret except gcl.EvaluationError: return {}
find_completions_at_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ast_tree, filename, line, col, root_env=gcl.default_env):\n q = gcl.SourceQuery(filename, line, col - 1)\n rootpath = ast_tree.find_tokens(q)\n if is_identifier_position(rootpath):\n return find_inherited_key_completions(rootpath, root_env)\n try:\n ret = find_deref_completions(rootpath, root_env) or enumerate_scope(\n rootpath, root_env=root_env)\n assert isinstance(ret, dict)\n return ret\n except gcl.EvaluationError:\n return {}\n", "role": "user" }, { "content": "find_completions_at_cursor", "role": "assistant" } ]
def x(rootpath, root_env): tup = inflate_context_tuple(rootpath, root_env) if isinstance(tup, runtime.CompositeTuple): keys = set(k for t in tup.tuples[:-1] for k in t.keys()) return {n: get_completion(tup, n) for n in keys} return {}
find_inherited_key_completions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rootpath, root_env):\n tup = inflate_context_tuple(rootpath, root_env)\n if isinstance(tup, runtime.CompositeTuple):\n keys = set(k for t in tup.tuples[:-1] for k in t.keys())\n return {n: get_completion(tup, n) for n in keys}\n return {}\n", "role": "user" }, { "content": "find_inherited_key_completions", "role": "assistant" } ]
def x(ast_tree, filename, line, col, root_env=gcl.default_env): q = gcl.SourceQuery(filename, line, col) rootpath = ast_tree.find_tokens(q) rootpath = path_until(rootpath, is_thunk) if len(rootpath) <= 1: return None tup = inflate_context_tuple(rootpath, root_env) try: if isinstance(rootpath[-1], ast.Inherit): return tup[rootpath[-1].name] return rootpath[-1].eval(tup.env(tup)) except gcl.EvaluationError as e: return e
find_value_at_cursor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ast_tree, filename, line, col, root_env=gcl.default_env):\n q = gcl.SourceQuery(filename, line, col)\n rootpath = ast_tree.find_tokens(q)\n rootpath = path_until(rootpath, is_thunk)\n if len(rootpath) <= 1:\n return None\n tup = inflate_context_tuple(rootpath, root_env)\n try:\n if isinstance(rootpath[-1], ast.Inherit):\n return tup[rootpath[-1].name]\n return rootpath[-1].eval(tup.env(tup))\n except gcl.EvaluationError as e:\n return e\n", "role": "user" }, { "content": "find_value_at_cursor", "role": "assistant" } ]