source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
if not ('https_proxy' in environ or 'HTTPS_PROXY' in environ or
'http_proxy' in environ or 'HTTP_PROXY' in environ):
return {}
https_proxy = environ.get('https_proxy')
if https_proxy is None:
https_proxy = environ.get('HTTPS_PROXY')
http_proxy = environ.get('http_proxy')
if http_proxy is None:
http_proxy = environ.get('HTTP_PROXY')
no_proxy = environ.get('no_proxy')
if no_proxy is None:
no_proxy = environ.get('NO_PROXY', '')
no_proxy = no_proxy + ',solr,db'
out = [
"""PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games\"
"""
]
if https_proxy is not None:
out.append('https_proxy=' + posix_quote(https_proxy) + '\n')
out.append('HTTPS_PROXY=' + posix_quote(https_proxy) + '\n')
if http_proxy is not None:
out.append('http_proxy=' + posix_quote(http_proxy) + '\n')
out.append('HTTP_PROXY=' + posix_quote(http_proxy) + '\n')
if no_proxy is not None:
out.append('no_proxy=' + posix_quote(no_proxy) + '\n')
out.append('NO_PROXY=' + posix_quote(no_proxy) + '\n')
with open(self.sitedir + '/run/proxy-environment', 'w') as f:
f.write(''.join(out))
return {(self.sitedir + '/run/proxy-environment'): '/etc/environment'}
|
proxy_settings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not ('https_proxy' in environ or 'HTTPS_PROXY' in environ or \n 'http_proxy' in environ or 'HTTP_PROXY' in environ):\n return {}\n https_proxy = environ.get('https_proxy')\n if https_proxy is None:\n https_proxy = environ.get('HTTPS_PROXY')\n http_proxy = environ.get('http_proxy')\n if http_proxy is None:\n http_proxy = environ.get('HTTP_PROXY')\n no_proxy = environ.get('no_proxy')\n if no_proxy is None:\n no_proxy = environ.get('NO_PROXY', '')\n no_proxy = no_proxy + ',solr,db'\n out = [\n \"\"\"PATH=\"/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games\\\"\n\"\"\"\n ]\n if https_proxy is not None:\n out.append('https_proxy=' + posix_quote(https_proxy) + '\\n')\n out.append('HTTPS_PROXY=' + posix_quote(https_proxy) + '\\n')\n if http_proxy is not None:\n out.append('http_proxy=' + posix_quote(http_proxy) + '\\n')\n out.append('HTTP_PROXY=' + posix_quote(http_proxy) + '\\n')\n if no_proxy is not None:\n out.append('no_proxy=' + posix_quote(no_proxy) + '\\n')\n out.append('NO_PROXY=' + posix_quote(no_proxy) + '\\n')\n with open(self.sitedir + '/run/proxy-environment', 'w') as f:\n f.write(''.join(out))\n return {(self.sitedir + '/run/proxy-environment'): '/etc/environment'}\n",
"role": "user"
},
{
"content": "proxy_settings",
"role": "assistant"
}
] |
def x(self, container_type):
if container_type in ['venv']:
return 'datacats_{}_{}'.format(container_type, self.name)
else:
return 'datacats_{}_{}_{}'.format(container_type, self.name, self.
site_name)
|
get_container_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, container_type):\n if container_type in ['venv']:\n return 'datacats_{}_{}'.format(container_type, self.name)\n else:\n return 'datacats_{}_{}_{}'.format(container_type, self.name, self.\n site_name)\n",
"role": "user"
},
{
"content": "get_container_name",
"role": "assistant"
}
] |
def x(source_files, target_filename):
if not isinstance(target_filename, six.string_types) and not callable(
target_filename):
raise TypeError(
'target_filename must either be a string or be callable (it is a {})'
.format(type(target_filename)))
for src in source_files:
if not isinstance(src, AbstractSourceFile):
raise TypeError(
'source_files should contain`AbstractSourceFile` instances, not {}'
.format(type(src)))
def x(convert_function):
def x(**kwargs):
target_fn = path_string(target_filename)
target_path = config.get_data_path(target_fn)
if not os.path.exists(target_path):
source_paths = []
for src in source_files:
p = src.acquire(**kwargs)
if p is not None:
if p in source_paths:
raise ValueError('Duplicate source file {}'.
format(p))
source_paths.append(p)
else:
print('Failed to acquire {}'.format(src))
return None
converted_path = convert_function(source_paths, target_path)
if converted_path is not None:
for src in source_files:
src.clean_up()
return converted_path
else:
return target_path
fetch.__name__ = convert_function.__name__
return fetch
return decorate_fetcher
|
fetch_and_convert_dataset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source_files, target_filename):\n if not isinstance(target_filename, six.string_types) and not callable(\n target_filename):\n raise TypeError(\n 'target_filename must either be a string or be callable (it is a {})'\n .format(type(target_filename)))\n for src in source_files:\n if not isinstance(src, AbstractSourceFile):\n raise TypeError(\n 'source_files should contain`AbstractSourceFile` instances, not {}'\n .format(type(src)))\n\n def x(convert_function):\n\n def x(**kwargs):\n target_fn = path_string(target_filename)\n target_path = config.get_data_path(target_fn)\n if not os.path.exists(target_path):\n source_paths = []\n for src in source_files:\n p = src.acquire(**kwargs)\n if p is not None:\n if p in source_paths:\n raise ValueError('Duplicate source file {}'.\n format(p))\n source_paths.append(p)\n else:\n print('Failed to acquire {}'.format(src))\n return None\n converted_path = convert_function(source_paths, target_path)\n if converted_path is not None:\n for src in source_files:\n src.clean_up()\n return converted_path\n else:\n return target_path\n fetch.__name__ = convert_function.__name__\n return fetch\n return decorate_fetcher\n",
"role": "user"
},
{
"content": "fetch_and_convert_dataset",
"role": "assistant"
}
] |
def x(*filenames):
for filename in filenames:
filename = path_string(filename)
path = config.get_data_path(filename)
if os.path.exists(path):
os.remove(path)
|
delete_dataset_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*filenames):\n for filename in filenames:\n filename = path_string(filename)\n path = config.get_data_path(filename)\n if os.path.exists(path):\n os.remove(path)\n",
"role": "user"
},
{
"content": "delete_dataset_cache",
"role": "assistant"
}
] |
def x(self, **kwargs):
return config.download_data(self.temp_filename, self.url, self.sha256)
|
acquire
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n return config.download_data(self.temp_filename, self.url, self.sha256)\n",
"role": "user"
},
{
"content": "acquire",
"role": "assistant"
}
] |
def x(self, **kwargs):
if self.source_path is None:
source_path = kwargs[self.arg_name]
else:
source_path = self.source_path
return config.copy_data(self.temp_filename, source_path, self.sha256)
|
acquire
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if self.source_path is None:\n source_path = kwargs[self.arg_name]\n else:\n source_path = self.source_path\n return config.copy_data(self.temp_filename, source_path, self.sha256)\n",
"role": "user"
},
{
"content": "acquire",
"role": "assistant"
}
] |
def x(self, **kwargs):
path = path_string(self.path)
if os.path.exists(path):
if config.verify_file(path, self.sha256):
return path
return None
|
acquire
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n path = path_string(self.path)\n if os.path.exists(path):\n if config.verify_file(path, self.sha256):\n return path\n return None\n",
"role": "user"
},
{
"content": "acquire",
"role": "assistant"
}
] |
def x(func, param, num, retry_notif, error_msg):
for retry_num in range(num):
if retry_num:
retry_notif(param, retry_num)
try:
func(param)
return
except DatacatsError:
pass
raise DatacatsError(error_msg)
|
retry_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, param, num, retry_notif, error_msg):\n for retry_num in range(num):\n if retry_num:\n retry_notif(param, retry_num)\n try:\n func(param)\n return\n except DatacatsError:\n pass\n raise DatacatsError(error_msg)\n",
"role": "user"
},
{
"content": "retry_func",
"role": "assistant"
}
] |
def x(self):
if len(self.__result_buffer) > 0:
res = self.__result_buffer.popleft()
value = res.get()
else:
return None
self.__populate_buffer()
return value
|
retrieve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.__result_buffer) > 0:\n res = self.__result_buffer.popleft()\n value = res.get()\n else:\n return None\n self.__populate_buffer()\n return value\n",
"role": "user"
},
{
"content": "retrieve",
"role": "assistant"
}
] |
def x(environment, opts):
environment.require_data()
install_all(environment, opts['--clean'], verbose=not opts['--quiet'],
packages=opts['PACKAGE'])
for site in environment.sites:
environment = Environment.load(environment.name, site)
if 'web' in environment.containers_running():
manage.reload_(environment, {'--address': opts['--address'],
'--background': False, '--no-watch': False, '--production':
False, 'PORT': None, '--syslog': False, '--site-url': None,
'--interactive': False})
|
install
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(environment, opts):\n environment.require_data()\n install_all(environment, opts['--clean'], verbose=not opts['--quiet'],\n packages=opts['PACKAGE'])\n for site in environment.sites:\n environment = Environment.load(environment.name, site)\n if 'web' in environment.containers_running():\n manage.reload_(environment, {'--address': opts['--address'],\n '--background': False, '--no-watch': False, '--production':\n False, 'PORT': None, '--syslog': False, '--site-url': None,\n '--interactive': False})\n",
"role": "user"
},
{
"content": "install",
"role": "assistant"
}
] |
def x(batch, length):
if isinstance(batch, tuple):
return tuple([_trim_batch(b, length) for b in batch])
else:
return batch[:length]
|
trim_batch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(batch, length):\n if isinstance(batch, tuple):\n return tuple([_trim_batch(b, length) for b in batch])\n else:\n return batch[:length]\n",
"role": "user"
},
{
"content": "trim_batch",
"role": "assistant"
}
] |
def x(func, batch_iter, progress_iter_func=None, n_batches=None,
prepend_args=None):
results = []
if progress_iter_func is not None:
batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=
False)
n_processed = 0
for batch in batch_iter:
if prepend_args is not None:
batch_results = func(*(prepend_args + tuple(batch)))
else:
batch_results = func(*batch)
if batch_results is None:
pass
elif isinstance(batch_results, np.ndarray):
batch_results = batch_results,
elif isinstance(batch_results, tuple):
pass
else:
raise TypeError(
'Batch function should return a tuple of results, a single result as a NumPy array, or None, not {}'
.format(type(batch_results)))
if batch_results is not None:
results.append(batch_results)
n_processed += 1
if n_batches is not None and n_processed >= n_batches:
break
if len(results) > 0:
results = zip(*results)
results = tuple([np.concatenate(list(r), axis=0) for r in results])
return results
else:
return None
|
batch_map_concat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, batch_iter, progress_iter_func=None, n_batches=None,\n prepend_args=None):\n results = []\n if progress_iter_func is not None:\n batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=\n False)\n n_processed = 0\n for batch in batch_iter:\n if prepend_args is not None:\n batch_results = func(*(prepend_args + tuple(batch)))\n else:\n batch_results = func(*batch)\n if batch_results is None:\n pass\n elif isinstance(batch_results, np.ndarray):\n batch_results = batch_results,\n elif isinstance(batch_results, tuple):\n pass\n else:\n raise TypeError(\n 'Batch function should return a tuple of results, a single result as a NumPy array, or None, not {}'\n .format(type(batch_results)))\n if batch_results is not None:\n results.append(batch_results)\n n_processed += 1\n if n_batches is not None and n_processed >= n_batches:\n break\n if len(results) > 0:\n results = zip(*results)\n results = tuple([np.concatenate(list(r), axis=0) for r in results])\n return results\n else:\n return None\n",
"role": "user"
},
{
"content": "batch_map_concat",
"role": "assistant"
}
] |
def x(func, batch_iter, progress_iter_func=None, sum_axis=None, n_batches=
None, prepend_args=None):
results_accum = None
n_samples_accum = 0
if progress_iter_func is not None:
batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=
False)
n_processed = 0
for batch in batch_iter:
batch_n = _length_of_batch(batch)
if prepend_args is not None:
batch_results = func(*(prepend_args + tuple(batch)))
else:
batch_results = func(*batch)
if batch_results is None:
pass
elif isinstance(batch_results, (np.ndarray, float)):
batch_results = batch_results,
elif isinstance(batch_results, tuple):
pass
else:
raise TypeError(
'Batch function should return a tuple of results, a single result as a NumPy array or float, or None, not {}'
.format(type(batch_results)))
if results_accum is None:
if batch_results is None:
pass
elif sum_axis is None:
results_accum = list(batch_results)
else:
results_accum = [br.sum(axis=sum_axis) for br in batch_results]
elif batch_results is not None:
for i in range(len(results_accum)):
br = batch_results[i]
if sum_axis is not None:
br = br.sum(axis=sum_axis)
results_accum[i] += br
n_samples_accum += batch_n
n_processed += 1
if n_batches is not None and n_processed >= n_batches:
break
if results_accum is not None:
results_accum = tuple([(np.array(r).astype(float) / n_samples_accum
) for r in results_accum])
return results_accum
|
batch_map_mean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, batch_iter, progress_iter_func=None, sum_axis=None, n_batches=\n None, prepend_args=None):\n results_accum = None\n n_samples_accum = 0\n if progress_iter_func is not None:\n batch_iter = progress_iter_func(batch_iter, total=n_batches, leave=\n False)\n n_processed = 0\n for batch in batch_iter:\n batch_n = _length_of_batch(batch)\n if prepend_args is not None:\n batch_results = func(*(prepend_args + tuple(batch)))\n else:\n batch_results = func(*batch)\n if batch_results is None:\n pass\n elif isinstance(batch_results, (np.ndarray, float)):\n batch_results = batch_results,\n elif isinstance(batch_results, tuple):\n pass\n else:\n raise TypeError(\n 'Batch function should return a tuple of results, a single result as a NumPy array or float, or None, not {}'\n .format(type(batch_results)))\n if results_accum is None:\n if batch_results is None:\n pass\n elif sum_axis is None:\n results_accum = list(batch_results)\n else:\n results_accum = [br.sum(axis=sum_axis) for br in batch_results]\n elif batch_results is not None:\n for i in range(len(results_accum)):\n br = batch_results[i]\n if sum_axis is not None:\n br = br.sum(axis=sum_axis)\n results_accum[i] += br\n n_samples_accum += batch_n\n n_processed += 1\n if n_batches is not None and n_processed >= n_batches:\n break\n if results_accum is not None:\n results_accum = tuple([(np.array(r).astype(float) / n_samples_accum\n ) for r in results_accum])\n return results_accum\n",
"role": "user"
},
{
"content": "batch_map_mean",
"role": "assistant"
}
] |
def x(x):
if isinstance(x, AbstractDataSource):
return x
elif isinstance(x, (list, tuple)):
items = []
for item in x:
if _is_array_like(item):
items.append(item)
else:
raise TypeError(
'Cannot convert x to a data source; x is a sequence and one of the elements is not an array-like object, rather a {}'
.format(type(item)))
if len(items) == 0:
raise ValueError(
'Cannot convert x to a data source; x is an empty sequence')
return ArrayDataSource(items)
elif isinstance(x, collections.Iterator):
return IteratorDataSource(x)
elif callable(x):
return CallableDataSource(x)
else:
raise TypeError(
'Cannot convert x to a data source; can only handle iterators, callables, non-empty sequences of array-like objects; cannot handle {}'
.format(type(x)))
|
coerce_data_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if isinstance(x, AbstractDataSource):\n return x\n elif isinstance(x, (list, tuple)):\n items = []\n for item in x:\n if _is_array_like(item):\n items.append(item)\n else:\n raise TypeError(\n 'Cannot convert x to a data source; x is a sequence and one of the elements is not an array-like object, rather a {}'\n .format(type(item)))\n if len(items) == 0:\n raise ValueError(\n 'Cannot convert x to a data source; x is an empty sequence')\n return ArrayDataSource(items)\n elif isinstance(x, collections.Iterator):\n return IteratorDataSource(x)\n elif callable(x):\n return CallableDataSource(x)\n else:\n raise TypeError(\n 'Cannot convert x to a data source; can only handle iterators, callables, non-empty sequences of array-like objects; cannot handle {}'\n .format(type(x)))\n",
"role": "user"
},
{
"content": "coerce_data_source",
"role": "assistant"
}
] |
def x(self, func, batch_size, progress_iter_func=None, n_batches=None,
prepend_args=None, **kwargs):
if n_batches is None:
n = self.num_samples(**kwargs)
if n == np.inf:
raise ValueError(
'Data set has infinite size or sampler will generate infinite samples but no n_batches limit specified'
)
elif n is not None:
n_batches = sampling.num_batches(n, batch_size)
batch_iter = self.batch_iterator(batch_size, **kwargs)
return batch_map_concat(func, batch_iter, progress_iter_func, n_batches,
prepend_args)
|
batch_map_concat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, batch_size, progress_iter_func=None, n_batches=None,\n prepend_args=None, **kwargs):\n if n_batches is None:\n n = self.num_samples(**kwargs)\n if n == np.inf:\n raise ValueError(\n 'Data set has infinite size or sampler will generate infinite samples but no n_batches limit specified'\n )\n elif n is not None:\n n_batches = sampling.num_batches(n, batch_size)\n batch_iter = self.batch_iterator(batch_size, **kwargs)\n return batch_map_concat(func, batch_iter, progress_iter_func, n_batches,\n prepend_args)\n",
"role": "user"
},
{
"content": "batch_map_concat",
"role": "assistant"
}
] |
def x(self, indices):
indices = self.sampler.map_indices(indices)
return self.samples_by_indices_nomapping(indices)
|
samples_by_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n indices = self.sampler.map_indices(indices)\n return self.samples_by_indices_nomapping(indices)\n",
"role": "user"
},
{
"content": "samples_by_indices",
"role": "assistant"
}
] |
def x(self, batch_size, shuffle=None, **kwargs):
shuffle_rng = self._get_shuffle_rng(shuffle)
if shuffle_rng is not None:
return self.sampler.shuffled_indices_batch_iterator(batch_size,
shuffle_rng)
else:
return self.sampler.in_order_indices_batch_iterator(batch_size)
|
batch_indices_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, batch_size, shuffle=None, **kwargs):\n shuffle_rng = self._get_shuffle_rng(shuffle)\n if shuffle_rng is not None:\n return self.sampler.shuffled_indices_batch_iterator(batch_size,\n shuffle_rng)\n else:\n return self.sampler.in_order_indices_batch_iterator(batch_size)\n",
"role": "user"
},
{
"content": "batch_indices_iterator",
"role": "assistant"
}
] |
def x(self, batch_size, shuffle=None, **kwargs):
for batch_ndx in self.batch_indices_iterator(batch_size, shuffle=
shuffle, **kwargs):
yield self.samples_by_indices_nomapping(batch_ndx)
|
batch_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, batch_size, shuffle=None, **kwargs):\n for batch_ndx in self.batch_indices_iterator(batch_size, shuffle=\n shuffle, **kwargs):\n yield self.samples_by_indices_nomapping(batch_ndx)\n",
"role": "user"
},
{
"content": "batch_iterator",
"role": "assistant"
}
] |
def x(self, indices):
batch = tuple([d[indices] for d in self.data])
if self.include_indices:
if isinstance(indices, slice):
indices = np.arange(indices.start, indices.stop, indices.step)
return (indices,) + batch
else:
return batch
|
samples_by_indices_nomapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n batch = tuple([d[indices] for d in self.data])\n if self.include_indices:\n if isinstance(indices, slice):\n indices = np.arange(indices.start, indices.stop, indices.step)\n return (indices,) + batch\n else:\n return batch\n",
"role": "user"
},
{
"content": "samples_by_indices_nomapping",
"role": "assistant"
}
] |
def x(self, **kwargs):
if self.num_samples_fn is None:
return None
elif callable(self.num_samples_fn):
return self.num_samples_fn(**kwargs)
else:
return self.num_samples_fn
|
num_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n if self.num_samples_fn is None:\n return None\n elif callable(self.num_samples_fn):\n return self.num_samples_fn(**kwargs)\n else:\n return self.num_samples_fn\n",
"role": "user"
},
{
"content": "num_samples",
"role": "assistant"
}
] |
def x(self, indices):
if not self._random_access:
raise TypeError(
'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'
)
if len(indices) != len(self.datasets):
raise ValueError(
'length mis-match: indices has {} items, self has {} data sources, should be equal'
.format(len(indices), len(self.datasets)))
batch = tuple([ds.samples_by_indices_nomapping(ndx) for ds, ndx in zip(
self.datasets, indices)])
return self._prepare_batch(batch)
|
samples_by_indices_nomapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n if len(indices) != len(self.datasets):\n raise ValueError(\n 'length mis-match: indices has {} items, self has {} data sources, should be equal'\n .format(len(indices), len(self.datasets)))\n batch = tuple([ds.samples_by_indices_nomapping(ndx) for ds, ndx in zip(\n self.datasets, indices)])\n return self._prepare_batch(batch)\n",
"role": "user"
},
{
"content": "samples_by_indices_nomapping",
"role": "assistant"
}
] |
def x(self, batch_size, **kwargs):
if not self._random_access:
raise TypeError(
'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'
)
iterators = [d.batch_indices_iterator(batch_size, **kwargs) for d in
self.datasets]
for batch in six.moves.zip(*iterators):
yield self._prepare_index_batch(batch)
|
batch_indices_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, batch_size, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n iterators = [d.batch_indices_iterator(batch_size, **kwargs) for d in\n self.datasets]\n for batch in six.moves.zip(*iterators):\n yield self._prepare_index_batch(batch)\n",
"role": "user"
},
{
"content": "batch_indices_iterator",
"role": "assistant"
}
] |
def x(self, indices):
if not self._random_access:
raise TypeError(
'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'
)
if not isinstance(indices, tuple):
raise TypeError('indices should be a tuple, not a {}'.format(type(
indices)))
dataset_index, sample_indices = indices
ds = self.datasets[dataset_index]
return ds.samples_by_indices_nomapping(sample_indices)
|
samples_by_indices_nomapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n if not isinstance(indices, tuple):\n raise TypeError('indices should be a tuple, not a {}'.format(type(\n indices)))\n dataset_index, sample_indices = indices\n ds = self.datasets[dataset_index]\n return ds.samples_by_indices_nomapping(sample_indices)\n",
"role": "user"
},
{
"content": "samples_by_indices_nomapping",
"role": "assistant"
}
] |
def x(self, batch_size, shuffle=None, **kwargs):
if not self._random_access:
raise TypeError(
'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'
)
shuffle_rng = self._get_shuffle_rng(shuffle)
iterators = [d.batch_indices_iterator(batch_size, shuffle=shuffle_rng,
**kwargs) for d in self.datasets]
return self._ds_iterator(batch_size, iterators, shuffle_rng, **kwargs)
|
batch_indices_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, batch_size, shuffle=None, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n shuffle_rng = self._get_shuffle_rng(shuffle)\n iterators = [d.batch_indices_iterator(batch_size, shuffle=shuffle_rng,\n **kwargs) for d in self.datasets]\n return self._ds_iterator(batch_size, iterators, shuffle_rng, **kwargs)\n",
"role": "user"
},
{
"content": "batch_indices_iterator",
"role": "assistant"
}
] |
def x(self, indices):
if not self._random_access:
raise TypeError(
'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'
)
batch = self.source.samples_by_indices_nomapping(indices)
return self.fn(*batch)
|
samples_by_indices_nomapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices_nomapping method not supported as one or more of the underlying data sources does not support random access'\n )\n batch = self.source.samples_by_indices_nomapping(indices)\n return self.fn(*batch)\n",
"role": "user"
},
{
"content": "samples_by_indices_nomapping",
"role": "assistant"
}
] |
def x(self, indices):
if not self._random_access:
raise TypeError(
'samples_by_indices method not supported as one or more of the underlying data sources does not support random access'
)
batch = self.source.samples_by_indices(indices)
return self.fn(*batch)
|
samples_by_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, indices):\n if not self._random_access:\n raise TypeError(\n 'samples_by_indices method not supported as one or more of the underlying data sources does not support random access'\n )\n batch = self.source.samples_by_indices(indices)\n return self.fn(*batch)\n",
"role": "user"
},
{
"content": "samples_by_indices",
"role": "assistant"
}
] |
def x(self, batch_size, **kwargs):
if not self._random_access:
raise TypeError(
'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'
)
return self.source.batch_indices_iterator(batch_size, **kwargs)
|
batch_indices_iterator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, batch_size, **kwargs):\n if not self._random_access:\n raise TypeError(\n 'batch_indices_iterator method not supported as one or more of the underlying data sources does not support random access'\n )\n return self.source.batch_indices_iterator(batch_size, **kwargs)\n",
"role": "user"
},
{
"content": "batch_indices_iterator",
"role": "assistant"
}
] |
def x(opts):
old = False
try:
environment = Environment.load(opts['ENVIRONMENT'], opts['--site'])
except DatacatsError:
environment = Environment.load(opts['ENVIRONMENT'], opts['--site'],
data_only=True)
if get_format_version(environment.datadir) == 1:
old = True
environment = Environment.load(opts['ENVIRONMENT'], opts[
'--site'], allow_old=True)
if not opts['--delete-environment'] and not old:
environment.require_valid_site()
sites = [opts['--site']] if not opts['--delete-environment'
] else environment.sites
if not opts['--yes']:
y_or_n_prompt('datacats purge will delete all stored data')
environment.stop_ckan()
environment.stop_supporting_containers()
environment.purge_data(sites)
if opts['--delete-environment']:
if environment.target:
rmtree(environment.target)
else:
DatacatsError(
"""Unable to find the environment source directory so that it can be deleted.
Chances are it's because it already does not exist"""
)
|
purge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(opts):\n old = False\n try:\n environment = Environment.load(opts['ENVIRONMENT'], opts['--site'])\n except DatacatsError:\n environment = Environment.load(opts['ENVIRONMENT'], opts['--site'],\n data_only=True)\n if get_format_version(environment.datadir) == 1:\n old = True\n environment = Environment.load(opts['ENVIRONMENT'], opts[\n '--site'], allow_old=True)\n if not opts['--delete-environment'] and not old:\n environment.require_valid_site()\n sites = [opts['--site']] if not opts['--delete-environment'\n ] else environment.sites\n if not opts['--yes']:\n y_or_n_prompt('datacats purge will delete all stored data')\n environment.stop_ckan()\n environment.stop_supporting_containers()\n environment.purge_data(sites)\n if opts['--delete-environment']:\n if environment.target:\n rmtree(environment.target)\n else:\n DatacatsError(\n \"\"\"Unable to find the environment source directory so that it can be deleted.\nChances are it's because it already does not exist\"\"\"\n )\n",
"role": "user"
},
{
"content": "purge",
"role": "assistant"
}
] |
def x():
chars = uppercase + lowercase + digits
return ''.join(SystemRandom().choice(chars) for x in xrange(16))
|
generate_password
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n chars = uppercase + lowercase + digits\n return ''.join(SystemRandom().choice(chars) for x in xrange(16))\n",
"role": "user"
},
{
"content": "generate_password",
"role": "assistant"
}
] |
def x():
with open(devnull, 'w') as devnull_f:
try:
status = subprocess.check_output(['docker-machine', 'status',
'dev'], stderr=devnull_f).strip()
if status == 'Stopped':
raise DatacatsError(
'Please start your docker-machine VM with "docker-machine start dev"'
)
if 'tls' in _docker_kwargs:
_docker_kwargs['tls'].assert_hostname = False
except subprocess.CalledProcessError:
raise DatacatsError(
'Please create a docker-machine with "docker-machine start dev"'
)
|
machine_check_connectivity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n with open(devnull, 'w') as devnull_f:\n try:\n status = subprocess.check_output(['docker-machine', 'status',\n 'dev'], stderr=devnull_f).strip()\n if status == 'Stopped':\n raise DatacatsError(\n 'Please start your docker-machine VM with \"docker-machine start dev\"'\n )\n if 'tls' in _docker_kwargs:\n _docker_kwargs['tls'].assert_hostname = False\n except subprocess.CalledProcessError:\n raise DatacatsError(\n 'Please create a docker-machine with \"docker-machine start dev\"'\n )\n",
"role": "user"
},
{
"content": "machine_check_connectivity",
"role": "assistant"
}
] |
def x(ro, rw):
out = {}
if ro:
for localdir, binddir in ro.iteritems():
out[localdir] = {'bind': binddir, 'ro': True}
if rw:
for localdir, binddir in rw.iteritems():
out[localdir] = {'bind': binddir, 'ro': False}
return out
|
ro_rw_to_binds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ro, rw):\n out = {}\n if ro:\n for localdir, binddir in ro.iteritems():\n out[localdir] = {'bind': binddir, 'ro': True}\n if rw:\n for localdir, binddir in rw.iteritems():\n out[localdir] = {'bind': binddir, 'ro': False}\n return out\n",
"role": "user"
},
{
"content": "ro_rw_to_binds",
"role": "assistant"
}
] |
def x(command, ro=None, rw=None, links=None, image='datacats/web',
volumes_from=None, commit=False, clean_up=False, stream_output=None,
entrypoint=None):
binds = ro_rw_to_binds(ro, rw)
c = _get_docker().create_container(image=image, command=command,
volumes=binds_to_volumes(binds), detach=False, host_config=
_get_docker().create_host_config(binds=binds, volumes_from=
volumes_from, links=links), entrypoint=entrypoint)
_get_docker().start(container=c['Id'])
if stream_output:
for output in _get_docker().attach(c['Id'], stdout=True, stderr=
True, stream=True):
stream_output.write(output)
if _get_docker().wait(c['Id']):
logs = _get_docker().logs(c['Id'])
if clean_up:
remove_container(c['Id'])
raise WebCommandError(command, c['Id'][:12], logs)
if commit:
rval = _get_docker().commit(c['Id'])
if not remove_container(c['Id']):
if not environ.get('CIRCLECI', False):
warn('failed to remove container: {0}'.format(c['Id']))
if commit:
return rval['Id']
|
web_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, ro=None, rw=None, links=None, image='datacats/web',\n volumes_from=None, commit=False, clean_up=False, stream_output=None,\n entrypoint=None):\n binds = ro_rw_to_binds(ro, rw)\n c = _get_docker().create_container(image=image, command=command,\n volumes=binds_to_volumes(binds), detach=False, host_config=\n _get_docker().create_host_config(binds=binds, volumes_from=\n volumes_from, links=links), entrypoint=entrypoint)\n _get_docker().start(container=c['Id'])\n if stream_output:\n for output in _get_docker().attach(c['Id'], stdout=True, stderr=\n True, stream=True):\n stream_output.write(output)\n if _get_docker().wait(c['Id']):\n logs = _get_docker().logs(c['Id'])\n if clean_up:\n remove_container(c['Id'])\n raise WebCommandError(command, c['Id'][:12], logs)\n if commit:\n rval = _get_docker().commit(c['Id'])\n if not remove_container(c['Id']):\n if not environ.get('CIRCLECI', False):\n warn('failed to remove container: {0}'.format(c['Id']))\n if commit:\n return rval['Id']\n",
"role": "user"
},
{
"content": "web_command",
"role": "assistant"
}
] |
def x(command, environment, user_profile, **kwargs):
if environment.remote_server_key:
temp = tempfile.NamedTemporaryFile(mode='wb')
temp.write(environment.remote_server_key)
temp.seek(0)
known_hosts = temp.name
else:
known_hosts = get_script_path('known_hosts')
binds = {(user_profile.profiledir + '/id_rsa'): '/root/.ssh/id_rsa',
known_hosts: '/root/.ssh/known_hosts', get_script_path('ssh_config'
): '/etc/ssh/ssh_config'}
if kwargs.get('include_project_dir', None):
binds[environment.target] = '/project'
del kwargs['include_project_dir']
kwargs['ro'] = binds
try:
web_command(command, **kwargs)
except WebCommandError as e:
e.user_description = 'Sending a command to remote server failed'
raise e
|
remote_server_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, environment, user_profile, **kwargs):\n if environment.remote_server_key:\n temp = tempfile.NamedTemporaryFile(mode='wb')\n temp.write(environment.remote_server_key)\n temp.seek(0)\n known_hosts = temp.name\n else:\n known_hosts = get_script_path('known_hosts')\n binds = {(user_profile.profiledir + '/id_rsa'): '/root/.ssh/id_rsa',\n known_hosts: '/root/.ssh/known_hosts', get_script_path('ssh_config'\n ): '/etc/ssh/ssh_config'}\n if kwargs.get('include_project_dir', None):\n binds[environment.target] = '/project'\n del kwargs['include_project_dir']\n kwargs['ro'] = binds\n try:\n web_command(command, **kwargs)\n except WebCommandError as e:\n e.user_description = 'Sending a command to remote server failed'\n raise e\n",
"role": "user"
},
{
"content": "remote_server_command",
"role": "assistant"
}
] |
def x(name, image, command=None, environment=None, ro=None, rw=None, links=
None, detach=True, volumes_from=None, port_bindings=None, log_syslog=False
):
binds = ro_rw_to_binds(ro, rw)
log_config = LogConfig(type=LogConfig.types.JSON)
if log_syslog:
log_config = LogConfig(type=LogConfig.types.SYSLOG, config={
'syslog-tag': name})
host_config = _get_docker().create_host_config(binds=binds, log_config=
log_config, links=links, volumes_from=volumes_from, port_bindings=
port_bindings)
c = _get_docker().create_container(name=name, image=image, command=
command, environment=environment, volumes=binds_to_volumes(binds),
detach=detach, stdin_open=False, tty=False, ports=list(
port_bindings) if port_bindings else None, host_config=host_config)
try:
_get_docker().start(container=c['Id'])
except APIError as e:
if 'address already in use' in e.explanation:
try:
_get_docker().remove_container(name, force=True)
except APIError:
pass
raise PortAllocatedError()
raise
return c
|
run_container
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, image, command=None, environment=None, ro=None, rw=None, links=\n None, detach=True, volumes_from=None, port_bindings=None, log_syslog=False\n ):\n binds = ro_rw_to_binds(ro, rw)\n log_config = LogConfig(type=LogConfig.types.JSON)\n if log_syslog:\n log_config = LogConfig(type=LogConfig.types.SYSLOG, config={\n 'syslog-tag': name})\n host_config = _get_docker().create_host_config(binds=binds, log_config=\n log_config, links=links, volumes_from=volumes_from, port_bindings=\n port_bindings)\n c = _get_docker().create_container(name=name, image=image, command=\n command, environment=environment, volumes=binds_to_volumes(binds),\n detach=detach, stdin_open=False, tty=False, ports=list(\n port_bindings) if port_bindings else None, host_config=host_config)\n try:\n _get_docker().start(container=c['Id'])\n except APIError as e:\n if 'address already in use' in e.explanation:\n try:\n _get_docker().remove_container(name, force=True)\n except APIError:\n pass\n raise PortAllocatedError()\n raise\n return c\n",
"role": "user"
},
{
"content": "run_container",
"role": "assistant"
}
] |
def x(name, force=False):
try:
if not force:
_get_docker().stop(name)
except APIError:
pass
try:
_get_docker().remove_container(name, force=True)
return True
except APIError:
return False
|
remove_container
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, force=False):\n try:\n if not force:\n _get_docker().stop(name)\n except APIError:\n pass\n try:\n _get_docker().remove_container(name, force=True)\n return True\n except APIError:\n return False\n",
"role": "user"
},
{
"content": "remove_container",
"role": "assistant"
}
] |
def x(name, tail, follow, timestamps):
if follow:
return _get_docker().attach(name, stdout=True, stderr=True, stream=True
)
return _docker.logs(name, stdout=True, stderr=True, tail=tail,
timestamps=timestamps)
|
container_logs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, tail, follow, timestamps):\n if follow:\n return _get_docker().attach(name, stdout=True, stderr=True, stream=True\n )\n return _docker.logs(name, stdout=True, stderr=True, tail=tail,\n timestamps=timestamps)\n",
"role": "user"
},
{
"content": "container_logs",
"role": "assistant"
}
] |
def x(name):
logs = container_logs(name, 'all', True, None)
string = ''
for s in logs:
string += s
return string
|
collect_logs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n logs = container_logs(name, 'all', True, None)\n string = ''\n for s in logs:\n string += s\n return string\n",
"role": "user"
},
{
"content": "collect_logs",
"role": "assistant"
}
] |
def x(image):
return (json.loads(s) for s in _get_docker().pull(image, stream=True))
|
pull_stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n return (json.loads(s) for s in _get_docker().pull(image, stream=True))\n",
"role": "user"
},
{
"content": "pull_stream",
"role": "assistant"
}
] |
def x(name, volumes):
info = inspect_container(name)
if info:
return
c = _get_docker().create_container(name=name, image='datacats/postgres',
command='true', volumes=volumes, detach=True)
return c
|
data_only_container
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, volumes):\n info = inspect_container(name)\n if info:\n return\n c = _get_docker().create_container(name=name, image='datacats/postgres',\n command='true', volumes=volumes, detach=True)\n return c\n",
"role": "user"
},
{
"content": "data_only_container",
"role": "assistant"
}
] |
def x():
try:
command_fn, opts = _parse_arguments(sys.argv[1:])
if command_fn == purge.purge or 'ENVIRONMENT' not in opts:
return command_fn(opts)
environment = Environment.load(opts['ENVIRONMENT'] or '.', opts[
'--site'] if '--site' in opts else 'primary')
if command_fn not in COMMANDS_THAT_USE_SSH:
return command_fn(environment, opts)
user_profile = UserProfile()
user_profile.test_ssh_key(environment)
return command_fn(environment, opts, user_profile)
except DatacatsError as e:
_error_exit(e)
except SystemExit:
raise
except:
exc_info = '\n'.join([line.rstrip() for line in traceback.
format_exception(*sys.exc_info())])
user_message = (
"""Something that should not have happened happened when attempting to run this command:
datacats {args}
It is seems to be a bug.
Please report this issue to us by creating an issue ticket at
https://github.com/datacats/datacats/issues
so that we would be able to look into that and fix the issue."""
.format(args=' '.join(sys.argv[1:])))
_error_exit(DatacatsError(user_message, parent_exception=
UndocumentedError(exc_info)))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n command_fn, opts = _parse_arguments(sys.argv[1:])\n if command_fn == purge.purge or 'ENVIRONMENT' not in opts:\n return command_fn(opts)\n environment = Environment.load(opts['ENVIRONMENT'] or '.', opts[\n '--site'] if '--site' in opts else 'primary')\n if command_fn not in COMMANDS_THAT_USE_SSH:\n return command_fn(environment, opts)\n user_profile = UserProfile()\n user_profile.test_ssh_key(environment)\n return command_fn(environment, opts, user_profile)\n except DatacatsError as e:\n _error_exit(e)\n except SystemExit:\n raise\n except:\n exc_info = '\\n'.join([line.rstrip() for line in traceback.\n format_exception(*sys.exc_info())])\n user_message = (\n \"\"\"Something that should not have happened happened when attempting to run this command:\n datacats {args}\n\nIt is seems to be a bug.\nPlease report this issue to us by creating an issue ticket at\n\n https://github.com/datacats/datacats/issues\n\nso that we would be able to look into that and fix the issue.\"\"\"\n .format(args=' '.join(sys.argv[1:])))\n _error_exit(DatacatsError(user_message, parent_exception=\n UndocumentedError(exc_info)))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(args):
skip_site = False
for i, a in enumerate(args):
if skip_site:
skip_site = False
continue
if a.startswith('-'):
if a == '-s' or a == '--site':
skip_site = True
continue
if a == 'help':
return _subcommand_arguments(args[:i] + ['--help'] + args[i + 1:])
if a not in COMMANDS:
raise DatacatsError(
"""'{0}' command is not recognized.
See 'datacats help' for the list of available commands"""
.format(a))
command = a
break
else:
return None, args
if command != 'shell' and command != 'paster':
return command, args
remaining_positional = 2 if command == 'shell' else 1
while i < len(args):
a = args[i]
if a.startswith('-'):
if a == '-s' or a == '--site':
i += 2
continue
i += 1
continue
if remaining_positional:
remaining_positional -= 1
i += 1
continue
return command, args[:i] + ['--'] + args[i:]
return command, args
|
subcommand_arguments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n skip_site = False\n for i, a in enumerate(args):\n if skip_site:\n skip_site = False\n continue\n if a.startswith('-'):\n if a == '-s' or a == '--site':\n skip_site = True\n continue\n if a == 'help':\n return _subcommand_arguments(args[:i] + ['--help'] + args[i + 1:])\n if a not in COMMANDS:\n raise DatacatsError(\n \"\"\"'{0}' command is not recognized. \nSee 'datacats help' for the list of available commands\"\"\"\n .format(a))\n command = a\n break\n else:\n return None, args\n if command != 'shell' and command != 'paster':\n return command, args\n remaining_positional = 2 if command == 'shell' else 1\n while i < len(args):\n a = args[i]\n if a.startswith('-'):\n if a == '-s' or a == '--site':\n i += 2\n continue\n i += 1\n continue\n if remaining_positional:\n remaining_positional -= 1\n i += 1\n continue\n return command, args[:i] + ['--'] + args[i:]\n return command, args\n",
"role": "user"
},
{
"content": "subcommand_arguments",
"role": "assistant"
}
] |
def x(environment, opts):
if opts['--interactive']:
opts['--background'] = True
if opts['--address'] and is_boot2docker():
raise DatacatsError('Cannot specify address on boot2docker.')
environment.require_data()
environment.stop_ckan()
if opts['PORT'] or opts['--address'] or opts['--site-url']:
if opts['PORT']:
environment.port = int(opts['PORT'])
if opts['--address']:
environment.address = opts['--address']
if opts['--site-url']:
site_url = opts['--site-url']
try:
site_url = site_url.format(address=environment.address,
port=environment.port)
environment.site_url = site_url
environment.save_site(False)
except (KeyError, IndexError, ValueError) as e:
raise DatacatsError('Could not parse site_url: {}'.format(e))
environment.save()
for container in environment.extra_containers:
require_extra_image(EXTRA_IMAGE_MAPPING[container])
environment.stop_supporting_containers()
environment.start_supporting_containers()
environment.start_ckan(production=opts['--production'], paster_reload=
not opts['--no-watch'], log_syslog=opts['--syslog'], interactive=
opts['--interactive'])
write('Starting web server at {0} ...'.format(environment.web_address()))
if opts['--background']:
write('\n')
return
try:
environment.wait_for_web_available()
finally:
write('\n')
|
reload_
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(environment, opts):\n if opts['--interactive']:\n opts['--background'] = True\n if opts['--address'] and is_boot2docker():\n raise DatacatsError('Cannot specify address on boot2docker.')\n environment.require_data()\n environment.stop_ckan()\n if opts['PORT'] or opts['--address'] or opts['--site-url']:\n if opts['PORT']:\n environment.port = int(opts['PORT'])\n if opts['--address']:\n environment.address = opts['--address']\n if opts['--site-url']:\n site_url = opts['--site-url']\n try:\n site_url = site_url.format(address=environment.address,\n port=environment.port)\n environment.site_url = site_url\n environment.save_site(False)\n except (KeyError, IndexError, ValueError) as e:\n raise DatacatsError('Could not parse site_url: {}'.format(e))\n environment.save()\n for container in environment.extra_containers:\n require_extra_image(EXTRA_IMAGE_MAPPING[container])\n environment.stop_supporting_containers()\n environment.start_supporting_containers()\n environment.start_ckan(production=opts['--production'], paster_reload=\n not opts['--no-watch'], log_syslog=opts['--syslog'], interactive=\n opts['--interactive'])\n write('Starting web server at {0} ...'.format(environment.web_address()))\n if opts['--background']:\n write('\\n')\n return\n try:\n environment.wait_for_web_available()\n finally:\n write('\\n')\n",
"role": "user"
},
{
"content": "reload_",
"role": "assistant"
}
] |
def x(path):
path = path[:-1] if path[-1] == '/' else path
split = path_split(path)
return split
|
split_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path):\n path = path[:-1] if path[-1] == '/' else path\n split = path_split(path)\n return split\n",
"role": "user"
},
{
"content": "split_path",
"role": "assistant"
}
] |
def x(datadir, version, always_yes):
require_images()
inp = None
old_version = _get_current_format(datadir)
migration_func = migrations[old_version, version]
if version > CURRENT_FORMAT_VERSION:
raise DatacatsError(
'Cannot migrate to a version higher than the current one.')
if version < 1:
raise DatacatsError('Datadir versioning starts at 1.')
if not always_yes:
while inp != 'y' and inp != 'n':
inp = raw_input(migration_func.__doc__.format(version))
if inp == 'n':
sys.exit(1)
lockfile = LockFile(path_join(datadir, '.migration_lock'))
lockfile.acquire()
try:
migration_func(datadir)
finally:
lockfile.release()
|
convert_environment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datadir, version, always_yes):\n require_images()\n inp = None\n old_version = _get_current_format(datadir)\n migration_func = migrations[old_version, version]\n if version > CURRENT_FORMAT_VERSION:\n raise DatacatsError(\n 'Cannot migrate to a version higher than the current one.')\n if version < 1:\n raise DatacatsError('Datadir versioning starts at 1.')\n if not always_yes:\n while inp != 'y' and inp != 'n':\n inp = raw_input(migration_func.__doc__.format(version))\n if inp == 'n':\n sys.exit(1)\n lockfile = LockFile(path_join(datadir, '.migration_lock'))\n lockfile.acquire()\n try:\n migration_func(datadir)\n finally:\n lockfile.release()\n",
"role": "user"
},
{
"content": "convert_environment",
"role": "assistant"
}
] |
def x(self, flight_number, page=1, limit=100):
url = FLT_BASE.format(flight_number, str(self.AUTH_TOKEN), page, limit)
return self._fr24.get_data(url)
|
get_history_by_flight_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, flight_number, page=1, limit=100):\n url = FLT_BASE.format(flight_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_data(url)\n",
"role": "user"
},
{
"content": "get_history_by_flight_number",
"role": "assistant"
}
] |
def x(self, tail_number, page=1, limit=100):
url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)
return self._fr24.get_data(url, True)
|
get_history_by_tail_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_data(url, True)\n",
"role": "user"
},
{
"content": "get_history_by_tail_number",
"role": "assistant"
}
] |
def x(self, country):
url = AIRPORT_BASE.format(country.replace(' ', '-'))
return self._fr24.get_airports_data(url)
|
get_airports
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, country):\n url = AIRPORT_BASE.format(country.replace(' ', '-'))\n return self._fr24.get_airports_data(url)\n",
"role": "user"
},
{
"content": "get_airports",
"role": "assistant"
}
] |
def x(self, tail_number, page=1, limit=100):
url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)
return self._fr24.get_aircraft_data(url)
|
get_info_by_tail_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_aircraft_data(url)\n",
"role": "user"
},
{
"content": "get_info_by_tail_number",
"role": "assistant"
}
] |
def x(self, airline_key):
url = AIRLINE_FLEET_BASE.format(airline_key)
return self._fr24.get_airline_fleet_data(url, self.AUTH_TOKEN != '')
|
get_fleet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, airline_key):\n url = AIRLINE_FLEET_BASE.format(airline_key)\n return self._fr24.get_airline_fleet_data(url, self.AUTH_TOKEN != '')\n",
"role": "user"
},
{
"content": "get_fleet",
"role": "assistant"
}
] |
def x(self, search_key):
url = AIRLINE_FLT_BASE.format(search_key, 100)
return self._fr24.get_airline_flight_data(url)
|
get_flights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, search_key):\n url = AIRLINE_FLT_BASE.format(search_key, 100)\n return self._fr24.get_airline_flight_data(url)\n",
"role": "user"
},
{
"content": "get_flights",
"role": "assistant"
}
] |
def x(self, origin, destination):
url = AIRLINE_FLT_BASE_POINTS.format(origin, destination)
return self._fr24.get_airline_flight_data(url, by_airports=True)
|
get_flights_from_to
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, origin, destination):\n url = AIRLINE_FLT_BASE_POINTS.format(origin, destination)\n return self._fr24.get_airline_flight_data(url, by_airports=True)\n",
"role": "user"
},
{
"content": "get_flights_from_to",
"role": "assistant"
}
] |
def x(self, iata, page=1, limit=100):
url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)
weather = self._fr24.get_airport_weather(url)
mi = weather['sky']['visibility']['mi']
if mi is not None and mi != 'None':
mi = float(mi)
km = mi * 1.6094
weather['sky']['visibility']['km'] = km
return weather
|
get_airport_weather
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n weather = self._fr24.get_airport_weather(url)\n mi = weather['sky']['visibility']['mi']\n if mi is not None and mi != 'None':\n mi = float(mi)\n km = mi * 1.6094\n weather['sky']['visibility']['km'] = km\n return weather\n",
"role": "user"
},
{
"content": "get_airport_weather",
"role": "assistant"
}
] |
def x(self, iata, page=1, limit=100):
url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)
w = self._fr24.get_airport_weather(url)
return w['metar']
|
get_airport_metars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n w = self._fr24.get_airport_weather(url)\n return w['metar']\n",
"role": "user"
},
{
"content": "get_airport_metars",
"role": "assistant"
}
] |
def x(self, iata):
url = AIRPORT_BASE.format(iata) + '/weather'
return self._fr24.get_airport_metars_hist(url)
|
get_airport_metars_hist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iata):\n url = AIRPORT_BASE.format(iata) + '/weather'\n return self._fr24.get_airport_metars_hist(url)\n",
"role": "user"
},
{
"content": "get_airport_metars_hist",
"role": "assistant"
}
] |
def x(self, iata, page=1, limit=100):
url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)
return self._fr24.get_airport_stats(url)
|
get_airport_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_airport_stats(url)\n",
"role": "user"
},
{
"content": "get_airport_stats",
"role": "assistant"
}
] |
def x(self, iata, page=1, limit=100):
url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)
details = self._fr24.get_airport_details(url)
weather = self._fr24.get_airport_weather(url)
details['position']['elevation'] = weather['elevation']
return details
|
get_airport_details
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iata, page=1, limit=100):\n url = AIRPORT_DATA_BASE.format(iata, str(self.AUTH_TOKEN), page, limit)\n details = self._fr24.get_airport_details(url)\n weather = self._fr24.get_airport_weather(url)\n details['position']['elevation'] = weather['elevation']\n return details\n",
"role": "user"
},
{
"content": "get_airport_details",
"role": "assistant"
}
] |
def x(self, tail_number, page=1, limit=100):
url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)
return self._fr24.get_aircraft_image_data(url)
|
get_images_by_tail_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tail_number, page=1, limit=100):\n url = REG_BASE.format(tail_number, str(self.AUTH_TOKEN), page, limit)\n return self._fr24.get_aircraft_image_data(url)\n",
"role": "user"
},
{
"content": "get_images_by_tail_number",
"role": "assistant"
}
] |
def x(self, email, password):
response = FlightData.session.post(url=LOGIN_URL, data={'email': email,
'password': password, 'remember': 'true', 'type': 'web'}, headers={
'Origin': 'https://www.flightradar24.com', 'Referer':
'https://www.flightradar24.com', 'User-Agent':
'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0'
})
response = self._fr24.json_loads_byteified(response.content
) if response.status_code == 200 else None
if response:
token = response['userData']['subscriptionKey']
self.AUTH_TOKEN = token
|
login
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, email, password):\n response = FlightData.session.post(url=LOGIN_URL, data={'email': email,\n 'password': password, 'remember': 'true', 'type': 'web'}, headers={\n 'Origin': 'https://www.flightradar24.com', 'Referer':\n 'https://www.flightradar24.com', 'User-Agent':\n 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:28.0) Gecko/20100101 Firefox/28.0'\n })\n response = self._fr24.json_loads_byteified(response.content\n ) if response.status_code == 200 else None\n if response:\n token = response['userData']['subscriptionKey']\n self.AUTH_TOKEN = token\n",
"role": "user"
},
{
"content": "login",
"role": "assistant"
}
] |
def x(self, metar):
try:
from metar import Metar
except:
return (
'Unable to parse metars. Please install parser from https://github.com/tomp/python-metar.'
)
m = Metar.Metar(metar)
return m.string()
|
decode_metar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, metar):\n try:\n from metar import Metar\n except:\n return (\n 'Unable to parse metars. Please install parser from https://github.com/tomp/python-metar.'\n )\n m = Metar.Metar(metar)\n return m.string()\n",
"role": "user"
},
{
"content": "decode_metar",
"role": "assistant"
}
] |
def x(self, username, password, client):
pkt = client.CreateAuthPacket(code=AccessRequest, User_Name=username)
pkt['User-Password'] = pkt.PwCrypt(password)
pkt['NAS-Identifier'] = 'django-radius'
for key, val in list(getattr(settings, 'RADIUS_ATTRIBUTES', {}).items()):
pkt[key] = val
return pkt
|
get_auth_packet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username, password, client):\n pkt = client.CreateAuthPacket(code=AccessRequest, User_Name=username)\n pkt['User-Password'] = pkt.PwCrypt(password)\n pkt['NAS-Identifier'] = 'django-radius'\n for key, val in list(getattr(settings, 'RADIUS_ATTRIBUTES', {}).items()):\n pkt[key] = val\n return pkt\n",
"role": "user"
},
{
"content": "get_auth_packet",
"role": "assistant"
}
] |
def x(self, server):
return Client(server=server[0], authport=server[1], secret=server[2],
dict=self._get_dictionary())
|
get_client
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, server):\n return Client(server=server[0], authport=server[1], secret=server[2],\n dict=self._get_dictionary())\n",
"role": "user"
},
{
"content": "get_client",
"role": "assistant"
}
] |
def x(self, client, packet):
try:
reply = client.SendPacket(packet)
except Timeout as e:
logging.error('RADIUS timeout occurred contacting %s:%s' % (client.
server, client.authport))
return False
except Exception as e:
logging.error('RADIUS error: %s' % e)
return False
if reply.code == AccessReject:
logging.warning("RADIUS access rejected for user '%s'" % packet[
'User-Name'])
return False
elif reply.code != AccessAccept:
logging.error("RADIUS access error for user '%s' (code %s)" % (
packet['User-Name'], reply.code))
return False
logging.info("RADIUS access granted for user '%s'" % packet['User-Name'])
return True
|
perform_radius_auth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, client, packet):\n try:\n reply = client.SendPacket(packet)\n except Timeout as e:\n logging.error('RADIUS timeout occurred contacting %s:%s' % (client.\n server, client.authport))\n return False\n except Exception as e:\n logging.error('RADIUS error: %s' % e)\n return False\n if reply.code == AccessReject:\n logging.warning(\"RADIUS access rejected for user '%s'\" % packet[\n 'User-Name'])\n return False\n elif reply.code != AccessAccept:\n logging.error(\"RADIUS access error for user '%s' (code %s)\" % (\n packet['User-Name'], reply.code))\n return False\n logging.info(\"RADIUS access granted for user '%s'\" % packet['User-Name'])\n return True\n",
"role": "user"
},
{
"content": "perform_radius_auth",
"role": "assistant"
}
] |
def x(self, server, username, password):
client = self._get_client(server)
packet = self._get_auth_packet(username, password, client)
return self._perform_radius_auth(client, packet)
|
radius_auth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, server, username, password):\n client = self._get_client(server)\n packet = self._get_auth_packet(username, password, client)\n return self._perform_radius_auth(client, packet)\n",
"role": "user"
},
{
"content": "radius_auth",
"role": "assistant"
}
] |
def x(self, username, password=None):
try:
user = User.objects.get(username=username)
except User.DoesNotExist:
user = User(username=username)
if password is not None:
user.set_password(password)
user.save()
return user
|
get_django_user
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username, password=None):\n try:\n user = User.objects.get(username=username)\n except User.DoesNotExist:\n user = User(username=username)\n if password is not None:\n user.set_password(password)\n user.save()\n return user\n",
"role": "user"
},
{
"content": "get_django_user",
"role": "assistant"
}
] |
def x(self, request, username=None, password=None):
if isinstance(username, basestring):
username = username.encode('utf-8')
if isinstance(password, basestring):
password = password.encode('utf-8')
server = self._get_server_from_settings()
result = self._radius_auth(server, username, password)
if result:
return self.get_django_user(username, password)
return None
|
authenticate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, username=None, password=None):\n if isinstance(username, basestring):\n username = username.encode('utf-8')\n if isinstance(password, basestring):\n password = password.encode('utf-8')\n server = self._get_server_from_settings()\n result = self._radius_auth(server, username, password)\n if result:\n return self.get_django_user(username, password)\n return None\n",
"role": "user"
},
{
"content": "authenticate",
"role": "assistant"
}
] |
def x(self, request, username=None, password=None, realm=None):
if isinstance(username, basestring):
username = username.encode('utf-8')
if isinstance(password, basestring):
password = password.encode('utf-8')
server = self.get_server(realm)
if not server:
return None
result = self._radius_auth(server, username, password)
if result:
full_username = self.construct_full_username(username, realm)
return self.get_django_user(full_username, password)
return None
|
authenticate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, username=None, password=None, realm=None):\n if isinstance(username, basestring):\n username = username.encode('utf-8')\n if isinstance(password, basestring):\n password = password.encode('utf-8')\n server = self.get_server(realm)\n if not server:\n return None\n result = self._radius_auth(server, username, password)\n if result:\n full_username = self.construct_full_username(username, realm)\n return self.get_django_user(full_username, password)\n return None\n",
"role": "user"
},
{
"content": "authenticate",
"role": "assistant"
}
] |
def x(self, dst):
self.close()
shutil.move(self.path, dst)
|
move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dst):\n self.close()\n shutil.move(self.path, dst)\n",
"role": "user"
},
{
"content": "move",
"role": "assistant"
}
] |
def x(date, mag, err, threshold=3, iteration=1):
if len(date) != len(mag) or len(date) != len(err) or len(mag) != len(err):
raise RuntimeError('The length of date, mag, and err must be same.')
for i in range(int(iteration)):
mean = np.median(mag)
std = np.std(mag)
index = (mag >= mean - threshold * std) & (mag <= mean + threshold *
std)
date = date[index]
mag = mag[index]
err = err[index]
return date, mag, err
|
sigma_clipping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date, mag, err, threshold=3, iteration=1):\n if len(date) != len(mag) or len(date) != len(err) or len(mag) != len(err):\n raise RuntimeError('The length of date, mag, and err must be same.')\n for i in range(int(iteration)):\n mean = np.median(mag)\n std = np.std(mag)\n index = (mag >= mean - threshold * std) & (mag <= mean + threshold *\n std)\n date = date[index]\n mag = mag[index]\n err = err[index]\n return date, mag, err\n",
"role": "user"
},
{
"content": "sigma_clipping",
"role": "assistant"
}
] |
def x(spec):
if spec == '':
return any_schema
if framework.is_str(spec):
if spec not in SCALAR_TYPES:
raise exceptions.SchemaError('Not a valid schema type: %r' % spec)
return ScalarSchema(spec)
if framework.is_list(spec):
return ListSchema(spec[0] if len(spec) else any_schema)
if framework.is_tuple(spec):
return TupleSchema(spec.get('fields', {}), spec.get('required', []))
raise exceptions.SchemaError('Not valid schema spec; %r' % spec)
|
from_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spec):\n if spec == '':\n return any_schema\n if framework.is_str(spec):\n if spec not in SCALAR_TYPES:\n raise exceptions.SchemaError('Not a valid schema type: %r' % spec)\n return ScalarSchema(spec)\n if framework.is_list(spec):\n return ListSchema(spec[0] if len(spec) else any_schema)\n if framework.is_tuple(spec):\n return TupleSchema(spec.get('fields', {}), spec.get('required', []))\n raise exceptions.SchemaError('Not valid schema spec; %r' % spec)\n",
"role": "user"
},
{
"content": "from_spec",
"role": "assistant"
}
] |
def x(obj, schema):
if not framework.EvaluationContext.current().validate:
return obj
if hasattr(obj, 'tuple_schema'):
obj.tuple_schema.validate(obj)
if schema:
schema.validate(obj)
return obj
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, schema):\n if not framework.EvaluationContext.current().validate:\n return obj\n if hasattr(obj, 'tuple_schema'):\n obj.tuple_schema.validate(obj)\n if schema:\n schema.validate(obj)\n return obj\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(obj, schema):
if framework.is_list(obj) and isinstance(schema, ListSchema):
for x in obj:
attach(x, schema.element_schema)
return
getattr(obj, 'attach_schema', nop)(schema)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, schema):\n if framework.is_list(obj) and isinstance(schema, ListSchema):\n for x in obj:\n attach(x, schema.element_schema)\n return\n getattr(obj, 'attach_schema', nop)(schema)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x():
features = get_feature_set()
features.append('cusum')
features.append('eta')
features.append('n_points')
features.append('period_SNR')
features.append('period_log10FAP')
features.append('period_uncertainty')
features.append('weighted_mean')
features.append('weighted_std')
features.sort()
return features
|
get_feature_set_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n features = get_feature_set()\n features.append('cusum')\n features.append('eta')\n features.append('n_points')\n features.append('period_SNR')\n features.append('period_log10FAP')\n features.append('period_uncertainty')\n features.append('weighted_mean')\n features.append('weighted_std')\n features.sort()\n return features\n",
"role": "user"
},
{
"content": "get_feature_set_all",
"role": "assistant"
}
] |
def x(self):
parameters = []
for hl in self.hidden_layers:
parameters.extend(hl.parameters)
parameters.extend(self.top_layer.parameters)
return parameters
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n parameters = []\n for hl in self.hidden_layers:\n parameters.extend(hl.parameters)\n parameters.extend(self.top_layer.parameters)\n return parameters\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self, value):
if len(value) != self.n_parameters:
raise ValueError(
'Incorrect length of parameter vector. Model has %d parameters, but got %d'
% (self.n_parameters, len(value)))
i = 0
for hl in self.hidden_layers:
hl.parameters = value[i:i + hl.n_parameters]
i += hl.n_parameters
self.top_layer.parameters = value[-self.top_layer.n_parameters:]
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if len(value) != self.n_parameters:\n raise ValueError(\n 'Incorrect length of parameter vector. Model has %d parameters, but got %d'\n % (self.n_parameters, len(value)))\n i = 0\n for hl in self.hidden_layers:\n hl.parameters = value[i:i + hl.n_parameters]\n i += hl.n_parameters\n self.top_layer.parameters = value[-self.top_layer.n_parameters:]\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self):
m = md5()
for hl in self.hidden_layers:
m.update(str(hl.architecture))
m.update(str(self.top_layer.architecture))
return m.hexdigest()
|
checksum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n m = md5()\n for hl in self.hidden_layers:\n m.update(str(hl.architecture))\n m.update(str(self.top_layer.architecture))\n return m.hexdigest()\n",
"role": "user"
},
{
"content": "checksum",
"role": "assistant"
}
] |
def x(self, input_data, targets, return_cache=False, prediction=True):
activations, hidden_cache = self.feed_forward(input_data, return_cache=
True, prediction=prediction)
loss = self.top_layer.train_error(None, targets, average=False, cache=
activations, prediction=prediction)
for hl in self.hidden_layers:
if hl.l1_penalty_weight:
loss += hl.l1_penalty
if hl.l2_penalty_weight:
loss += hl.l2_penalty
if self.top_layer.l1_penalty_weight:
loss += self.top_layer.l1_penalty
if self.top_layer.l2_penalty_weight:
loss += self.top_layer.l2_penalty
if not return_cache:
return loss
else:
return loss, hidden_cache, activations
|
evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, return_cache=False, prediction=True):\n activations, hidden_cache = self.feed_forward(input_data, return_cache=\n True, prediction=prediction)\n loss = self.top_layer.train_error(None, targets, average=False, cache=\n activations, prediction=prediction)\n for hl in self.hidden_layers:\n if hl.l1_penalty_weight:\n loss += hl.l1_penalty\n if hl.l2_penalty_weight:\n loss += hl.l2_penalty\n if self.top_layer.l1_penalty_weight:\n loss += self.top_layer.l1_penalty\n if self.top_layer.l2_penalty_weight:\n loss += self.top_layer.l2_penalty\n if not return_cache:\n return loss\n else:\n return loss, hidden_cache, activations\n",
"role": "user"
},
{
"content": "evaluate",
"role": "assistant"
}
] |
def x(self, input_data, targets):
loss, hidden_cache, logistic_cache = self.evaluate(input_data, targets,
return_cache=True, prediction=False)
if not np.isfinite(loss):
raise ValueError('Infinite activations!')
if self.hidden_layers:
hidden_activations = hidden_cache[-1][0]
else:
hidden_activations = input_data
df_top_layer = self.top_layer.backprop(hidden_activations, targets,
cache=logistic_cache)
gradients = list(df_top_layer[0][::-1])
df_hidden = df_top_layer[1]
if self.hidden_layers:
hidden_inputs = [input_data] + [c[0] for c in hidden_cache[:-1]]
for hl, hc, hi in zip(self.hidden_layers[::-1], hidden_cache[::-1],
hidden_inputs[::-1]):
g, df_hidden = hl.backprop(hi, df_hidden, cache=hc)
gradients.extend(g[::-1])
gradients.reverse()
return loss, gradients
|
training_pass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets):\n loss, hidden_cache, logistic_cache = self.evaluate(input_data, targets,\n return_cache=True, prediction=False)\n if not np.isfinite(loss):\n raise ValueError('Infinite activations!')\n if self.hidden_layers:\n hidden_activations = hidden_cache[-1][0]\n else:\n hidden_activations = input_data\n df_top_layer = self.top_layer.backprop(hidden_activations, targets,\n cache=logistic_cache)\n gradients = list(df_top_layer[0][::-1])\n df_hidden = df_top_layer[1]\n if self.hidden_layers:\n hidden_inputs = [input_data] + [c[0] for c in hidden_cache[:-1]]\n for hl, hc, hi in zip(self.hidden_layers[::-1], hidden_cache[::-1],\n hidden_inputs[::-1]):\n g, df_hidden = hl.backprop(hi, df_hidden, cache=hc)\n gradients.extend(g[::-1])\n gradients.reverse()\n return loss, gradients\n",
"role": "user"
},
{
"content": "training_pass",
"role": "assistant"
}
] |
def x(self, input_data, return_cache=False, prediction=True):
hidden_cache = None
if self.hidden_layers:
hidden_cache = []
for i in range(len(self.hidden_layers)):
hidden_activations = hidden_cache[i - 1][0] if i else input_data
hidden_cache.append(self.hidden_layers[i].feed_forward(
hidden_activations, prediction=prediction))
hidden_activations = hidden_cache[-1][0]
else:
hidden_activations = input_data
activations = self.top_layer.feed_forward(hidden_activations,
prediction=False)
if return_cache:
return activations, hidden_cache
return activations
|
feed_forward
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, return_cache=False, prediction=True):\n hidden_cache = None\n if self.hidden_layers:\n hidden_cache = []\n for i in range(len(self.hidden_layers)):\n hidden_activations = hidden_cache[i - 1][0] if i else input_data\n hidden_cache.append(self.hidden_layers[i].feed_forward(\n hidden_activations, prediction=prediction))\n hidden_activations = hidden_cache[-1][0]\n else:\n hidden_activations = input_data\n activations = self.top_layer.feed_forward(hidden_activations,\n prediction=False)\n if return_cache:\n return activations, hidden_cache\n return activations\n",
"role": "user"
},
{
"content": "feed_forward",
"role": "assistant"
}
] |
def x(self):
self.n_points = len(self.date)
if not self.err.any():
self.err = np.ones(len(self.mag)) * np.std(self.mag)
elif not self.err.all():
np.putmask(self.err, self.err == 0, np.median(self.err))
self.weight = 1.0 / self.err
self.weighted_sum = np.sum(self.weight)
self.mean = np.mean(self.mag)
self.median = np.median(self.mag)
self.std = np.std(self.mag)
self.weighted_mean = np.sum(self.mag * self.weight) / self.weighted_sum
self.weighted_std = np.sqrt(np.sum((self.mag - self.weighted_mean) ** 2 *
self.weight) / self.weighted_sum)
self.skewness = ss.skew(self.mag)
self.kurtosis = ss.kurtosis(self.mag)
shapiro = ss.shapiro(self.mag)
self.shapiro_w = shapiro[0]
self.quartile31 = np.percentile(self.mag, 75) - np.percentile(self.mag, 25)
self.stetson_k = self.get_stetson_k(self.mag, self.median, self.err)
self.hl_amp_ratio = self.half_mag_amplitude_ratio(self.mag, self.median,
self.weight)
self.cusum = self.get_cusum(self.mag)
self.eta = self.get_eta(self.mag, self.weighted_std)
|
shallow_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.n_points = len(self.date)\n if not self.err.any():\n self.err = np.ones(len(self.mag)) * np.std(self.mag)\n elif not self.err.all():\n np.putmask(self.err, self.err == 0, np.median(self.err))\n self.weight = 1.0 / self.err\n self.weighted_sum = np.sum(self.weight)\n self.mean = np.mean(self.mag)\n self.median = np.median(self.mag)\n self.std = np.std(self.mag)\n self.weighted_mean = np.sum(self.mag * self.weight) / self.weighted_sum\n self.weighted_std = np.sqrt(np.sum((self.mag - self.weighted_mean) ** 2 *\n self.weight) / self.weighted_sum)\n self.skewness = ss.skew(self.mag)\n self.kurtosis = ss.kurtosis(self.mag)\n shapiro = ss.shapiro(self.mag)\n self.shapiro_w = shapiro[0]\n self.quartile31 = np.percentile(self.mag, 75) - np.percentile(self.mag, 25)\n self.stetson_k = self.get_stetson_k(self.mag, self.median, self.err)\n self.hl_amp_ratio = self.half_mag_amplitude_ratio(self.mag, self.median,\n self.weight)\n self.cusum = self.get_cusum(self.mag)\n self.eta = self.get_eta(self.mag, self.weighted_std)\n",
"role": "user"
},
{
"content": "shallow_run",
"role": "assistant"
}
] |
def x(self):
self.get_period_LS(self.date, self.mag, self.n_threads, self.min_period)
phase_folded_date = self.date % (self.period * 2.0)
sorted_index = np.argsort(phase_folded_date)
folded_date = phase_folded_date[sorted_index]
folded_mag = self.mag[sorted_index]
self.phase_eta = self.get_eta(folded_mag, self.weighted_std)
self.slope_per10, self.slope_per90 = self.slope_percentile(folded_date,
folded_mag)
self.phase_cusum = self.get_cusum(folded_mag)
|
deep_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.get_period_LS(self.date, self.mag, self.n_threads, self.min_period)\n phase_folded_date = self.date % (self.period * 2.0)\n sorted_index = np.argsort(phase_folded_date)\n folded_date = phase_folded_date[sorted_index]\n folded_mag = self.mag[sorted_index]\n self.phase_eta = self.get_eta(folded_mag, self.weighted_std)\n self.slope_per10, self.slope_per90 = self.slope_percentile(folded_date,\n folded_mag)\n self.phase_cusum = self.get_cusum(folded_mag)\n",
"role": "user"
},
{
"content": "deep_run",
"role": "assistant"
}
] |
def x(self, date, mag, n_threads, min_period):
oversampling = 3.0
hifac = int((max(date) - min(date)) / len(date) / min_period * 2.0)
if hifac < 100:
hifac = 100
fx, fy, nout, jmax, prob = pLS.fasper(date, mag, oversampling, hifac,
n_threads)
self.f = fx[jmax]
self.period = 1.0 / self.f
self.period_uncertainty = self.get_period_uncertainty(fx, fy, jmax)
self.period_log10FAP = np.log10(pLS.getSignificance(fx, fy, nout,
oversampling)[jmax])
self.period_SNR = (fy[jmax] - np.median(fy)) / np.std(fy)
order = 3
p0 = np.ones(order * 2 + 1)
date_period = date % self.period / self.period
p1, success = leastsq(self.residuals, p0, args=(date_period, mag, order))
self.amplitude = np.sqrt(p1[1] ** 2 + p1[2] ** 2)
self.r21 = np.sqrt(p1[3] ** 2 + p1[4] ** 2) / self.amplitude
self.r31 = np.sqrt(p1[5] ** 2 + p1[6] ** 2) / self.amplitude
self.f_phase = np.arctan(-p1[1] / p1[2])
self.phi21 = np.arctan(-p1[3] / p1[4]) - 2.0 * self.f_phase
self.phi31 = np.arctan(-p1[5] / p1[6]) - 3.0 * self.f_phase
"""
# Derive a second period.
# Whitening a light curve.
residual_mag = mag - fitted_y
# Lomb-Scargle again to find the second period.
omega_top, power_top = search_frequencies(date, residual_mag, err,
#LS_kwargs={'generalized':True, 'subtract_mean':True},
n_eval=5000, n_retry=3, n_save=50)
self.period2 = 2*np.pi/omega_top[np.where(power_top==np.max(power_top))][0]
self.f2 = 1. / self.period2
self.f2_SNR = power_top[np.where(power_top==np.max(power_top))][0] * (len(self.date) - 1) / 2.
# Fit Fourier Series again.
p0 = [1.] * order * 2
date_period = (date % self.period) / self.period
p2, success = leastsq(self.residuals, p0,
args=(date_period, residual_mag, order))
fitted_y = self.FourierSeries(p2, date_period, order)
#plt.plot(date%self.period2, residual_mag, 'b+')
#plt.show()
# Derive Fourier features for the first second.
self.f2_amp = 2. * np.sqrt(p2[1]**2 + p2[2]**2)
self.f2_R21 = np.sqrt(p2[3]**2 + p2[4]**2) / self.f2_amp
self.f2_R31 = np.sqrt(p2[5]**2 + p2[6]**2) / self.f2_amp
self.f2_R41 = np.sqrt(p2[7]**2 + p2[8]**2) / self.f2_amp
self.f2_R51 = np.sqrt(p2[9]**2 + p2[10]**2) / self.f2_amp
self.f2_phase = np.arctan(-p2[1] / p2[2])
self.f2_phi21 = np.arctan(-p2[3] / p2[4]) - 2. * self.f2_phase
self.f2_phi31 = np.arctan(-p2[5] / p2[6]) - 3. * self.f2_phase
self.f2_phi41 = np.arctan(-p2[7] / p2[8]) - 4. * self.f2_phase
self.f2_phi51 = np.arctan(-p2[9] / p2[10]) - 5. * self.f2_phase
# Calculate features using the first and second periods.
self.f12_ratio = self.f2 / self.f1
self.f12_remain = self.f1 % self.f2 if self.f1 > self.f2 else self.f2 % self.f1
self.f12_amp = self.f2_amp / self.f1_amp
self.f12_phase = self.f2_phase - self.f1_phase
"""
|
get_period_LS
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, date, mag, n_threads, min_period):\n oversampling = 3.0\n hifac = int((max(date) - min(date)) / len(date) / min_period * 2.0)\n if hifac < 100:\n hifac = 100\n fx, fy, nout, jmax, prob = pLS.fasper(date, mag, oversampling, hifac,\n n_threads)\n self.f = fx[jmax]\n self.period = 1.0 / self.f\n self.period_uncertainty = self.get_period_uncertainty(fx, fy, jmax)\n self.period_log10FAP = np.log10(pLS.getSignificance(fx, fy, nout,\n oversampling)[jmax])\n self.period_SNR = (fy[jmax] - np.median(fy)) / np.std(fy)\n order = 3\n p0 = np.ones(order * 2 + 1)\n date_period = date % self.period / self.period\n p1, success = leastsq(self.residuals, p0, args=(date_period, mag, order))\n self.amplitude = np.sqrt(p1[1] ** 2 + p1[2] ** 2)\n self.r21 = np.sqrt(p1[3] ** 2 + p1[4] ** 2) / self.amplitude\n self.r31 = np.sqrt(p1[5] ** 2 + p1[6] ** 2) / self.amplitude\n self.f_phase = np.arctan(-p1[1] / p1[2])\n self.phi21 = np.arctan(-p1[3] / p1[4]) - 2.0 * self.f_phase\n self.phi31 = np.arctan(-p1[5] / p1[6]) - 3.0 * self.f_phase\n \"\"\"\n # Derive a second period.\n # Whitening a light curve.\n residual_mag = mag - fitted_y\n\n # Lomb-Scargle again to find the second period.\n omega_top, power_top = search_frequencies(date, residual_mag, err,\n #LS_kwargs={'generalized':True, 'subtract_mean':True},\n n_eval=5000, n_retry=3, n_save=50)\n\n self.period2 = 2*np.pi/omega_top[np.where(power_top==np.max(power_top))][0]\n self.f2 = 1. / self.period2\n self.f2_SNR = power_top[np.where(power_top==np.max(power_top))][0] * (len(self.date) - 1) / 2.\n\n # Fit Fourier Series again.\n p0 = [1.] * order * 2\n date_period = (date % self.period) / self.period\n p2, success = leastsq(self.residuals, p0,\n args=(date_period, residual_mag, order))\n fitted_y = self.FourierSeries(p2, date_period, order)\n\n #plt.plot(date%self.period2, residual_mag, 'b+')\n #plt.show()\n\n # Derive Fourier features for the first second.\n self.f2_amp = 2. * np.sqrt(p2[1]**2 + p2[2]**2)\n self.f2_R21 = np.sqrt(p2[3]**2 + p2[4]**2) / self.f2_amp\n self.f2_R31 = np.sqrt(p2[5]**2 + p2[6]**2) / self.f2_amp\n self.f2_R41 = np.sqrt(p2[7]**2 + p2[8]**2) / self.f2_amp\n self.f2_R51 = np.sqrt(p2[9]**2 + p2[10]**2) / self.f2_amp\n self.f2_phase = np.arctan(-p2[1] / p2[2])\n self.f2_phi21 = np.arctan(-p2[3] / p2[4]) - 2. * self.f2_phase\n self.f2_phi31 = np.arctan(-p2[5] / p2[6]) - 3. * self.f2_phase\n self.f2_phi41 = np.arctan(-p2[7] / p2[8]) - 4. * self.f2_phase\n self.f2_phi51 = np.arctan(-p2[9] / p2[10]) - 5. * self.f2_phase\n\n # Calculate features using the first and second periods.\n self.f12_ratio = self.f2 / self.f1\n self.f12_remain = self.f1 % self.f2 if self.f1 > self.f2 else self.f2 % self.f1\n self.f12_amp = self.f2_amp / self.f1_amp\n self.f12_phase = self.f2_phase - self.f1_phase\n \"\"\"\n",
"role": "user"
},
{
"content": "get_period_LS",
"role": "assistant"
}
] |
def x(self, fx, fy, jmax, fx_width=100):
start_index = jmax - fx_width
end_index = jmax + fx_width
if start_index < 0:
start_index = 0
if end_index > len(fx) - 1:
end_index = len(fx) - 1
fx_subset = fx[start_index:end_index]
fy_subset = fy[start_index:end_index]
fy_mean = np.median(fy_subset)
fy_std = np.std(fy_subset)
max_index = np.argmax(fy_subset)
index = np.where(fy_subset <= fy_mean + fy_std)[0]
left_index = index[index < max_index]
if len(left_index) == 0:
left_index = 0
else:
left_index = left_index[-1]
right_index = index[index > max_index]
if len(right_index) == 0:
right_index = len(fy_subset) - 1
else:
right_index = right_index[0]
half_width = (1.0 / fx_subset[left_index] - 1.0 / fx_subset[right_index]
) / 2.0
period_uncertainty = half_width
return period_uncertainty
|
get_period_uncertainty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fx, fy, jmax, fx_width=100):\n start_index = jmax - fx_width\n end_index = jmax + fx_width\n if start_index < 0:\n start_index = 0\n if end_index > len(fx) - 1:\n end_index = len(fx) - 1\n fx_subset = fx[start_index:end_index]\n fy_subset = fy[start_index:end_index]\n fy_mean = np.median(fy_subset)\n fy_std = np.std(fy_subset)\n max_index = np.argmax(fy_subset)\n index = np.where(fy_subset <= fy_mean + fy_std)[0]\n left_index = index[index < max_index]\n if len(left_index) == 0:\n left_index = 0\n else:\n left_index = left_index[-1]\n right_index = index[index > max_index]\n if len(right_index) == 0:\n right_index = len(fy_subset) - 1\n else:\n right_index = right_index[0]\n half_width = (1.0 / fx_subset[left_index] - 1.0 / fx_subset[right_index]\n ) / 2.0\n period_uncertainty = half_width\n return period_uncertainty\n",
"role": "user"
},
{
"content": "get_period_uncertainty",
"role": "assistant"
}
] |
def x(self, pars, x, y, order):
return y - self.fourier_series(pars, x, order)
|
residuals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pars, x, y, order):\n return y - self.fourier_series(pars, x, order)\n",
"role": "user"
},
{
"content": "residuals",
"role": "assistant"
}
] |
def x(self, pars, x, order):
sum = pars[0]
for i in range(order):
sum += pars[i * 2 + 1] * np.sin(2 * np.pi * (i + 1) * x) + pars[i *
2 + 2] * np.cos(2 * np.pi * (i + 1) * x)
return sum
|
fourier_series
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pars, x, order):\n sum = pars[0]\n for i in range(order):\n sum += pars[i * 2 + 1] * np.sin(2 * np.pi * (i + 1) * x) + pars[i *\n 2 + 2] * np.cos(2 * np.pi * (i + 1) * x)\n return sum\n",
"role": "user"
},
{
"content": "fourier_series",
"role": "assistant"
}
] |
def x(self, mag, avg, err):
residual = (mag - avg) / err
stetson_k = np.sum(np.fabs(residual)) / np.sqrt(np.sum(residual * residual)
) / np.sqrt(len(mag))
return stetson_k
|
get_stetson_k
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mag, avg, err):\n residual = (mag - avg) / err\n stetson_k = np.sum(np.fabs(residual)) / np.sqrt(np.sum(residual * residual)\n ) / np.sqrt(len(mag))\n return stetson_k\n",
"role": "user"
},
{
"content": "get_stetson_k",
"role": "assistant"
}
] |
def x(self, mag, avg, weight):
index = np.where(mag > avg)
lower_weight = weight[index]
lower_weight_sum = np.sum(lower_weight)
lower_mag = mag[index]
lower_weighted_std = np.sum((lower_mag - avg) ** 2 * lower_weight
) / lower_weight_sum
index = np.where(mag <= avg)
higher_weight = weight[index]
higher_weight_sum = np.sum(higher_weight)
higher_mag = mag[index]
higher_weighted_std = np.sum((higher_mag - avg) ** 2 * higher_weight
) / higher_weight_sum
return np.sqrt(lower_weighted_std / higher_weighted_std)
|
half_mag_amplitude_ratio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mag, avg, weight):\n index = np.where(mag > avg)\n lower_weight = weight[index]\n lower_weight_sum = np.sum(lower_weight)\n lower_mag = mag[index]\n lower_weighted_std = np.sum((lower_mag - avg) ** 2 * lower_weight\n ) / lower_weight_sum\n index = np.where(mag <= avg)\n higher_weight = weight[index]\n higher_weight_sum = np.sum(higher_weight)\n higher_mag = mag[index]\n higher_weighted_std = np.sum((higher_mag - avg) ** 2 * higher_weight\n ) / higher_weight_sum\n return np.sqrt(lower_weighted_std / higher_weighted_std)\n",
"role": "user"
},
{
"content": "half_mag_amplitude_ratio",
"role": "assistant"
}
] |
def x(self, mag, avg):
index = np.where(mag > avg)
fainter_mag = mag[index]
lower_sum = np.sum((fainter_mag - avg) ** 2) / len(fainter_mag)
index = np.where(mag <= avg)
brighter_mag = mag[index]
higher_sum = np.sum((avg - brighter_mag) ** 2) / len(brighter_mag)
return np.sqrt(lower_sum / higher_sum)
|
half_mag_amplitude_ratio2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mag, avg):\n index = np.where(mag > avg)\n fainter_mag = mag[index]\n lower_sum = np.sum((fainter_mag - avg) ** 2) / len(fainter_mag)\n index = np.where(mag <= avg)\n brighter_mag = mag[index]\n higher_sum = np.sum((avg - brighter_mag) ** 2) / len(brighter_mag)\n return np.sqrt(lower_sum / higher_sum)\n",
"role": "user"
},
{
"content": "half_mag_amplitude_ratio2",
"role": "assistant"
}
] |
def x(self, mag, std):
diff = mag[1:] - mag[:len(mag) - 1]
eta = np.sum(diff * diff) / (len(mag) - 1.0) / std / std
return eta
|
get_eta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mag, std):\n diff = mag[1:] - mag[:len(mag) - 1]\n eta = np.sum(diff * diff) / (len(mag) - 1.0) / std / std\n return eta\n",
"role": "user"
},
{
"content": "get_eta",
"role": "assistant"
}
] |
def x(self, date, mag):
date_diff = date[1:] - date[:len(date) - 1]
mag_diff = mag[1:] - mag[:len(mag) - 1]
index = np.where(mag_diff != 0.0)
date_diff = date_diff[index]
mag_diff = mag_diff[index]
slope = date_diff / mag_diff
percentile_10 = np.percentile(slope, 10.0)
percentile_90 = np.percentile(slope, 90.0)
return percentile_10, percentile_90
|
slope_percentile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, date, mag):\n date_diff = date[1:] - date[:len(date) - 1]\n mag_diff = mag[1:] - mag[:len(mag) - 1]\n index = np.where(mag_diff != 0.0)\n date_diff = date_diff[index]\n mag_diff = mag_diff[index]\n slope = date_diff / mag_diff\n percentile_10 = np.percentile(slope, 10.0)\n percentile_90 = np.percentile(slope, 90.0)\n return percentile_10, percentile_90\n",
"role": "user"
},
{
"content": "slope_percentile",
"role": "assistant"
}
] |
def x(self, mag):
c = np.cumsum(mag - self.weighted_mean) / len(mag) / self.weighted_std
return np.max(c) - np.min(c)
|
get_cusum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mag):\n c = np.cumsum(mag - self.weighted_mean) / len(mag) / self.weighted_std\n return np.max(c) - np.min(c)\n",
"role": "user"
},
{
"content": "get_cusum",
"role": "assistant"
}
] |
def x(self):
feature_names = []
feature_values = []
all_vars = vars(self)
for name in all_vars.keys():
if not (name == 'date' or name == 'mag' or name == 'err' or name ==
'n_threads' or name == 'min_period'):
if not (name == 'f' or name == 'f_phase' or name ==
'period_log10FAP' or name == 'weight' or name ==
'weighted_sum' or name == 'median' or name == 'mean' or
name == 'std'):
feature_names.append(name)
feature_names.sort()
for name in feature_names:
feature_values.append(all_vars[name])
return feature_names, feature_values
|
get_features2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n feature_names = []\n feature_values = []\n all_vars = vars(self)\n for name in all_vars.keys():\n if not (name == 'date' or name == 'mag' or name == 'err' or name ==\n 'n_threads' or name == 'min_period'):\n if not (name == 'f' or name == 'f_phase' or name ==\n 'period_log10FAP' or name == 'weight' or name ==\n 'weighted_sum' or name == 'median' or name == 'mean' or \n name == 'std'):\n feature_names.append(name)\n feature_names.sort()\n for name in feature_names:\n feature_values.append(all_vars[name])\n return feature_names, feature_values\n",
"role": "user"
},
{
"content": "get_features2",
"role": "assistant"
}
] |
def x(self):
features = {}
all_vars = vars(self)
for name in all_vars.keys():
if name in feature_names_list_all:
features[name] = all_vars[name]
features = OrderedDict(sorted(features.items(), key=lambda t: t[0]))
return features
|
get_features_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n features = {}\n all_vars = vars(self)\n for name in all_vars.keys():\n if name in feature_names_list_all:\n features[name] = all_vars[name]\n features = OrderedDict(sorted(features.items(), key=lambda t: t[0]))\n return features\n",
"role": "user"
},
{
"content": "get_features_all",
"role": "assistant"
}
] |
def x(device_id=None, random_seed=None):
if device_id is None:
random_seed = _os.environ.get('CUDA_DEVICE')
if random_seed is None:
random_seed = _os.environ.get('RANDOM_SEED')
global is_initialized
if not is_initialized:
is_initialized = True
global context
context.init_context(device_id)
from pycuda import gpuarray, driver, curandom
global memory_pool
memory_pool.init()
global sampler
sampler.set_seed(random_seed)
from hebel import pycuda_ops
pycuda_ops.init()
|
init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(device_id=None, random_seed=None):\n if device_id is None:\n random_seed = _os.environ.get('CUDA_DEVICE')\n if random_seed is None:\n random_seed = _os.environ.get('RANDOM_SEED')\n global is_initialized\n if not is_initialized:\n is_initialized = True\n global context\n context.init_context(device_id)\n from pycuda import gpuarray, driver, curandom\n global memory_pool\n memory_pool.init()\n global sampler\n sampler.set_seed(random_seed)\n from hebel import pycuda_ops\n pycuda_ops.init()\n",
"role": "user"
},
{
"content": "init",
"role": "assistant"
}
] |
def x(ast_rootpath, root_env):
with util.LogTime('inflate_context_tuple'):
inflated = ast_rootpath[0].eval(root_env)
current = inflated
env = root_env
try:
for node in ast_rootpath[1:]:
if is_tuple_member_node(node):
assert framework.is_tuple(current)
with util.LogTime('into tuple'):
thunk, env = inflated.get_thunk_env(node.name)
current = framework.eval(thunk, env)
elif framework.is_list(current):
with util.LogTime('eval thing'):
current = framework.eval(node, env)
if framework.is_tuple(current):
inflated = current
except (gcl.EvaluationError, ast.UnparseableAccess):
pass
return inflated
|
inflate_context_tuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ast_rootpath, root_env):\n with util.LogTime('inflate_context_tuple'):\n inflated = ast_rootpath[0].eval(root_env)\n current = inflated\n env = root_env\n try:\n for node in ast_rootpath[1:]:\n if is_tuple_member_node(node):\n assert framework.is_tuple(current)\n with util.LogTime('into tuple'):\n thunk, env = inflated.get_thunk_env(node.name)\n current = framework.eval(thunk, env)\n elif framework.is_list(current):\n with util.LogTime('eval thing'):\n current = framework.eval(node, env)\n if framework.is_tuple(current):\n inflated = current\n except (gcl.EvaluationError, ast.UnparseableAccess):\n pass\n return inflated\n",
"role": "user"
},
{
"content": "inflate_context_tuple",
"role": "assistant"
}
] |
def x(ast_rootpath, root_env=None, include_default_builtins=False):
with util.LogTime('enumerate_scope'):
scope = {}
for node in reversed(ast_rootpath):
if is_tuple_node(node):
for member in node.members:
if member.name not in scope:
scope[member.name] = Completion(member.name, False,
member.comment.as_string(), member.location)
if include_default_builtins:
root_env = gcl.default_env
if root_env:
for k in root_env.keys():
if k not in scope and not hide_from_autocomplete(root_env[k]):
v = root_env[k]
scope[k] = Completion(k, True, dedent(v.__doc__ or ''),
None)
return scope
|
enumerate_scope
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ast_rootpath, root_env=None, include_default_builtins=False):\n with util.LogTime('enumerate_scope'):\n scope = {}\n for node in reversed(ast_rootpath):\n if is_tuple_node(node):\n for member in node.members:\n if member.name not in scope:\n scope[member.name] = Completion(member.name, False,\n member.comment.as_string(), member.location)\n if include_default_builtins:\n root_env = gcl.default_env\n if root_env:\n for k in root_env.keys():\n if k not in scope and not hide_from_autocomplete(root_env[k]):\n v = root_env[k]\n scope[k] = Completion(k, True, dedent(v.__doc__ or ''),\n None)\n return scope\n",
"role": "user"
},
{
"content": "enumerate_scope",
"role": "assistant"
}
] |
def x(ast_rootpath, root_env=gcl.default_env):
with util.LogTime('find_deref_completions'):
tup = inflate_context_tuple(ast_rootpath, root_env)
path = path_until(ast_rootpath, is_deref_node)
if not path:
return {}
deref = path[-1]
haystack = deref.haystack(tup.env(tup))
if not hasattr(haystack, 'keys'):
return {}
return {n: get_completion(haystack, n) for n in haystack.keys()}
|
find_deref_completions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ast_rootpath, root_env=gcl.default_env):\n with util.LogTime('find_deref_completions'):\n tup = inflate_context_tuple(ast_rootpath, root_env)\n path = path_until(ast_rootpath, is_deref_node)\n if not path:\n return {}\n deref = path[-1]\n haystack = deref.haystack(tup.env(tup))\n if not hasattr(haystack, 'keys'):\n return {}\n return {n: get_completion(haystack, n) for n in haystack.keys()}\n",
"role": "user"
},
{
"content": "find_deref_completions",
"role": "assistant"
}
] |
def x(rootpath):
if len(rootpath) >= 2 and is_tuple_member_node(rootpath[-2]
) and is_identifier(rootpath[-1]):
return True
if len(rootpath) >= 1 and is_tuple_node(rootpath[-1]):
return True
return False
|
is_identifier_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rootpath):\n if len(rootpath) >= 2 and is_tuple_member_node(rootpath[-2]\n ) and is_identifier(rootpath[-1]):\n return True\n if len(rootpath) >= 1 and is_tuple_node(rootpath[-1]):\n return True\n return False\n",
"role": "user"
},
{
"content": "is_identifier_position",
"role": "assistant"
}
] |
def x(ast_tree, filename, line, col, root_env=gcl.default_env):
q = gcl.SourceQuery(filename, line, col - 1)
rootpath = ast_tree.find_tokens(q)
if is_identifier_position(rootpath):
return find_inherited_key_completions(rootpath, root_env)
try:
ret = find_deref_completions(rootpath, root_env) or enumerate_scope(
rootpath, root_env=root_env)
assert isinstance(ret, dict)
return ret
except gcl.EvaluationError:
return {}
|
find_completions_at_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ast_tree, filename, line, col, root_env=gcl.default_env):\n q = gcl.SourceQuery(filename, line, col - 1)\n rootpath = ast_tree.find_tokens(q)\n if is_identifier_position(rootpath):\n return find_inherited_key_completions(rootpath, root_env)\n try:\n ret = find_deref_completions(rootpath, root_env) or enumerate_scope(\n rootpath, root_env=root_env)\n assert isinstance(ret, dict)\n return ret\n except gcl.EvaluationError:\n return {}\n",
"role": "user"
},
{
"content": "find_completions_at_cursor",
"role": "assistant"
}
] |
def x(rootpath, root_env):
tup = inflate_context_tuple(rootpath, root_env)
if isinstance(tup, runtime.CompositeTuple):
keys = set(k for t in tup.tuples[:-1] for k in t.keys())
return {n: get_completion(tup, n) for n in keys}
return {}
|
find_inherited_key_completions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rootpath, root_env):\n tup = inflate_context_tuple(rootpath, root_env)\n if isinstance(tup, runtime.CompositeTuple):\n keys = set(k for t in tup.tuples[:-1] for k in t.keys())\n return {n: get_completion(tup, n) for n in keys}\n return {}\n",
"role": "user"
},
{
"content": "find_inherited_key_completions",
"role": "assistant"
}
] |
def x(ast_tree, filename, line, col, root_env=gcl.default_env):
q = gcl.SourceQuery(filename, line, col)
rootpath = ast_tree.find_tokens(q)
rootpath = path_until(rootpath, is_thunk)
if len(rootpath) <= 1:
return None
tup = inflate_context_tuple(rootpath, root_env)
try:
if isinstance(rootpath[-1], ast.Inherit):
return tup[rootpath[-1].name]
return rootpath[-1].eval(tup.env(tup))
except gcl.EvaluationError as e:
return e
|
find_value_at_cursor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ast_tree, filename, line, col, root_env=gcl.default_env):\n q = gcl.SourceQuery(filename, line, col)\n rootpath = ast_tree.find_tokens(q)\n rootpath = path_until(rootpath, is_thunk)\n if len(rootpath) <= 1:\n return None\n tup = inflate_context_tuple(rootpath, root_env)\n try:\n if isinstance(rootpath[-1], ast.Inherit):\n return tup[rootpath[-1].name]\n return rootpath[-1].eval(tup.env(tup))\n except gcl.EvaluationError as e:\n return e\n",
"role": "user"
},
{
"content": "find_value_at_cursor",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.