source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
for event in sys.stdin:
if event.startswith('['):
continue
name = json.loads(event.lstrip(','))['name']
for obj in self.loader.objects:
if obj.output_options['name'] == name:
obj.on_click(json.loads(event.lstrip(',')))
|
handle_events
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for event in sys.stdin:\n if event.startswith('['):\n continue\n name = json.loads(event.lstrip(','))['name']\n for obj in self.loader.objects:\n if obj.output_options['name'] == name:\n obj.on_click(json.loads(event.lstrip(',')))\n",
"role": "user"
},
{
"content": "handle_events",
"role": "assistant"
}
] |
def x(self, model):
if self.field_filter:
return dict([(f.name, f) for f in model._meta.fields if self.
field_filter(f)])
else:
return dict([(f.name, f) for f in model._meta.fields if not f.rel and
not f.primary_key and not f.unique and not isinstance(f, (
models.AutoField, models.TextField))])
|
field_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model):\n if self.field_filter:\n return dict([(f.name, f) for f in model._meta.fields if self.\n field_filter(f)])\n else:\n return dict([(f.name, f) for f in model._meta.fields if not f.rel and\n not f.primary_key and not f.unique and not isinstance(f, (\n models.AutoField, models.TextField))])\n",
"role": "user"
},
{
"content": "field_dict",
"role": "assistant"
}
] |
def x(self):
self.running = True
while self.running:
ret = self.func()
self.output_dict[ret['name']] = ret
time.sleep(self.interval)
return
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.running = True\n while self.running:\n ret = self.func()\n self.output_dict[ret['name']] = ret\n time.sleep(self.interval)\n return\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, func, interval):
t = Thread(func, interval, self.output_dict)
t.start()
self._thread_pool.append(t)
|
add_thread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, interval):\n t = Thread(func, interval, self.output_dict)\n t.start()\n self._thread_pool.append(t)\n",
"role": "user"
},
{
"content": "add_thread",
"role": "assistant"
}
] |
def x(self):
for f in glob.glob(os.path.join(self.dir_path, '*.py')):
if not os.path.isfile(os.path.join(self.dir_path, f + 'c')):
compileall.compile_dir(self.dir_path, quiet=True)
logging.debug('Compiled plugins as a new plugin has been added.')
return
elif os.path.getmtime(os.path.join(self.dir_path, f)
) > os.path.getmtime(os.path.join(self.dir_path, f + 'c')):
compileall.compile_dir(self.dir_path, quiet=True)
logging.debug('Compiled plugins as a plugin has been changed.')
return
|
compile_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for f in glob.glob(os.path.join(self.dir_path, '*.py')):\n if not os.path.isfile(os.path.join(self.dir_path, f + 'c')):\n compileall.compile_dir(self.dir_path, quiet=True)\n logging.debug('Compiled plugins as a new plugin has been added.')\n return\n elif os.path.getmtime(os.path.join(self.dir_path, f)\n ) > os.path.getmtime(os.path.join(self.dir_path, f + 'c')):\n compileall.compile_dir(self.dir_path, quiet=True)\n logging.debug('Compiled plugins as a plugin has been changed.')\n return\n",
"role": "user"
},
{
"content": "compile_files",
"role": "assistant"
}
] |
def x(self, file_path):
name = os.path.splitext(os.path.split(file_path)[-1])[0]
plugin_directory = os.sep.join(os.path.split(file_path)[0:-1])
compiled_directory = os.path.join(plugin_directory, '__pycache__')
compiled_file = glob.glob(os.path.join(compiled_directory, name + '.*'))[0]
plugin = imp.load_compiled(name, compiled_file)
return plugin
|
load_compiled
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file_path):\n name = os.path.splitext(os.path.split(file_path)[-1])[0]\n plugin_directory = os.sep.join(os.path.split(file_path)[0:-1])\n compiled_directory = os.path.join(plugin_directory, '__pycache__')\n compiled_file = glob.glob(os.path.join(compiled_directory, name + '.*'))[0]\n plugin = imp.load_compiled(name, compiled_file)\n return plugin\n",
"role": "user"
},
{
"content": "load_compiled",
"role": "assistant"
}
] |
def x(self):
objects = []
for settings in self._config:
if settings['plugin'] in self.plugins:
module = self.plugins[settings['plugin']]
plugin_class = getattr(module, module.__all__)
objects.append(plugin_class(settings))
logging.debug('Loaded a plugin object based upon {0}'.format(
settings['plugin']))
else:
logging.critical('Missing plugin {0} was not found in {1}'.
format(settings['plugin'], self.dir_path))
raise MissingPlugin('The plugin {0} was not found in {1}'.
format(settings['plugin'], self.dir_path))
return objects
|
load_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n objects = []\n for settings in self._config:\n if settings['plugin'] in self.plugins:\n module = self.plugins[settings['plugin']]\n plugin_class = getattr(module, module.__all__)\n objects.append(plugin_class(settings))\n logging.debug('Loaded a plugin object based upon {0}'.format(\n settings['plugin']))\n else:\n logging.critical('Missing plugin {0} was not found in {1}'.\n format(settings['plugin'], self.dir_path))\n raise MissingPlugin('The plugin {0} was not found in {1}'.\n format(settings['plugin'], self.dir_path))\n return objects\n",
"role": "user"
},
{
"content": "load_objects",
"role": "assistant"
}
] |
def x(self):
plugins = {}
_plugin_files = glob.glob(os.path.join(self.dir_path, '[!_]*.pyc'))
for f in glob.glob(os.path.join(self.dir_path, '[!_]*.py')):
if not any(os.path.splitext(f)[0] == os.path.splitext(x)[0] for x in
_plugin_files):
logging.debug('Adding plugin {0}'.format(f))
_plugin_files.append(f)
for f in _plugin_files:
plugin = self._load_compiled(f)
plugins[plugin.__name__] = plugin
logging.debug('Loaded module object for plugin: {0}'.format(f))
return plugins
|
refresh_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n plugins = {}\n _plugin_files = glob.glob(os.path.join(self.dir_path, '[!_]*.pyc'))\n for f in glob.glob(os.path.join(self.dir_path, '[!_]*.py')):\n if not any(os.path.splitext(f)[0] == os.path.splitext(x)[0] for x in\n _plugin_files):\n logging.debug('Adding plugin {0}'.format(f))\n _plugin_files.append(f)\n for f in _plugin_files:\n plugin = self._load_compiled(f)\n plugins[plugin.__name__] = plugin\n logging.debug('Loaded module object for plugin: {0}'.format(f))\n return plugins\n",
"role": "user"
},
{
"content": "refresh_files",
"role": "assistant"
}
] |
def x(self, request, url):
if url is None:
return self.main_view(request)
try:
plugin_name, rest_of_url = url.split('/', 1)
except ValueError:
plugin_name, rest_of_url = url, None
try:
plugin = self.plugins[plugin_name]
except KeyError:
raise http.Http404('A plugin with the requested name does not exist.')
return plugin.model_view(request, self, rest_of_url)
|
root
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, url):\n if url is None:\n return self.main_view(request)\n try:\n plugin_name, rest_of_url = url.split('/', 1)\n except ValueError:\n plugin_name, rest_of_url = url, None\n try:\n plugin = self.plugins[plugin_name]\n except KeyError:\n raise http.Http404('A plugin with the requested name does not exist.')\n return plugin.model_view(request, self, rest_of_url)\n",
"role": "user"
},
{
"content": "root",
"role": "assistant"
}
] |
def x(self, *model_list, **options):
databrowse_class = options.pop('databrowse_class', DefaultModelDatabrowse)
for model in model_list:
if model in self.registry:
raise AlreadyRegistered('The model %s is already registered' %
model.__name__)
self.registry[model] = databrowse_class
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *model_list, **options):\n databrowse_class = options.pop('databrowse_class', DefaultModelDatabrowse)\n for model in model_list:\n if model in self.registry:\n raise AlreadyRegistered('The model %s is already registered' %\n model.__name__)\n self.registry[model] = databrowse_class\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(self, *model_list):
for model in model_list:
if model not in self.registry:
raise NotRegistered('The model %s is not registered' % model.
__name__)
del self.registry[model]
|
unregister
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *model_list):\n for model in model_list:\n if model not in self.registry:\n raise NotRegistered('The model %s is not registered' % model.\n __name__)\n del self.registry[model]\n",
"role": "user"
},
{
"content": "unregister",
"role": "assistant"
}
] |
def x(self, request, url):
self.root_url = request.path[:len(request.path) - len(url)]
url = url.rstrip('/')
if url == '':
return self.index(request)
elif '/' in url:
return self.model_page(request, *url.split('/', 2))
raise http.Http404('The requested databrowse page does not exist.')
|
root
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, url):\n self.root_url = request.path[:len(request.path) - len(url)]\n url = url.rstrip('/')\n if url == '':\n return self.index(request)\n elif '/' in url:\n return self.model_page(request, *url.split('/', 2))\n raise http.Http404('The requested databrowse page does not exist.')\n",
"role": "user"
},
{
"content": "root",
"role": "assistant"
}
] |
def x(self, request, app_label, model_name, rest_of_url=None):
try:
model = get_model(app_label, model_name)
except LookupError:
model = None
if model is None:
raise http.Http404('App %r, model %r, not found.' % (app_label,
model_name))
try:
databrowse_class = self.registry[model]
except KeyError:
raise http.Http404(
'This model exists but has not been registered with databrowse.')
return databrowse_class(model, self).root(request, rest_of_url)
|
model_page
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, app_label, model_name, rest_of_url=None):\n try:\n model = get_model(app_label, model_name)\n except LookupError:\n model = None\n if model is None:\n raise http.Http404('App %r, model %r, not found.' % (app_label,\n model_name))\n try:\n databrowse_class = self.registry[model]\n except KeyError:\n raise http.Http404(\n 'This model exists but has not been registered with databrowse.')\n return databrowse_class(model, self).root(request, rest_of_url)\n",
"role": "user"
},
{
"content": "model_page",
"role": "assistant"
}
] |
def x(self):
if self.field.rel:
if isinstance(self.field.rel, models.ManyToOneRel):
objs = getattr(self.instance.instance, self.field.name)
elif isinstance(self.field.rel, models.ManyToManyRel):
return list(getattr(self.instance.instance, self.field.name).all())
elif self.field.choices:
objs = dict(self.field.choices).get(self.raw_value, EMPTY_VALUE)
elif isinstance(self.field, models.DateField) or isinstance(self.field,
models.TimeField):
if self.raw_value:
if isinstance(self.field, models.DateTimeField):
objs = capfirst(formats.date_format(self.raw_value,
'DATETIME_FORMAT'))
elif isinstance(self.field, models.TimeField):
objs = capfirst(formats.time_format(self.raw_value,
'TIME_FORMAT'))
else:
objs = capfirst(formats.date_format(self.raw_value,
'DATE_FORMAT'))
else:
objs = EMPTY_VALUE
elif isinstance(self.field, models.BooleanField) or isinstance(self.
field, models.NullBooleanField):
objs = {(True): 'Yes', (False): 'No', None: 'Unknown'}[self.raw_value]
else:
objs = self.raw_value
return [objs]
|
values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.field.rel:\n if isinstance(self.field.rel, models.ManyToOneRel):\n objs = getattr(self.instance.instance, self.field.name)\n elif isinstance(self.field.rel, models.ManyToManyRel):\n return list(getattr(self.instance.instance, self.field.name).all())\n elif self.field.choices:\n objs = dict(self.field.choices).get(self.raw_value, EMPTY_VALUE)\n elif isinstance(self.field, models.DateField) or isinstance(self.field,\n models.TimeField):\n if self.raw_value:\n if isinstance(self.field, models.DateTimeField):\n objs = capfirst(formats.date_format(self.raw_value,\n 'DATETIME_FORMAT'))\n elif isinstance(self.field, models.TimeField):\n objs = capfirst(formats.time_format(self.raw_value,\n 'TIME_FORMAT'))\n else:\n objs = capfirst(formats.date_format(self.raw_value,\n 'DATE_FORMAT'))\n else:\n objs = EMPTY_VALUE\n elif isinstance(self.field, models.BooleanField) or isinstance(self.\n field, models.NullBooleanField):\n objs = {(True): 'Yes', (False): 'No', None: 'Unknown'}[self.raw_value]\n else:\n objs = self.raw_value\n return [objs]\n",
"role": "user"
},
{
"content": "values",
"role": "assistant"
}
] |
def x(self):
plugin_urls = []
for plugin_name, plugin in self.model.model_databrowse().plugins.items():
urls = plugin.urls(plugin_name, self)
if urls is not None:
values = self.values()
return zip(self.values(), urls)
if self.field.rel:
m = EasyModel(self.model.site, self.field.rel.to)
if self.field.rel.to in self.model.model_list:
lst = []
for value in self.values():
if value is None:
continue
url = mark_safe('%s%s/%s/objects/%s/' % (self.model.site.
root_url, m.model._meta.app_label, m.model._meta.
model_name, iri_to_uri(value._get_pk_val())))
lst.append((smart_text(value), url))
else:
lst = [(value, None) for value in self.values()]
elif self.field.choices:
lst = []
for value in self.values():
url = mark_safe('%s%s/%s/fields/%s/%s/' % (self.model.site.
root_url, self.model.model._meta.app_label, self.model.
model._meta.model_name, self.field.name, iri_to_uri(self.
raw_value)))
lst.append((value, url))
elif isinstance(self.field, models.URLField):
val = self.values()[0]
lst = [(val, iri_to_uri(val))]
else:
lst = [(self.values()[0], None)]
return lst
|
urls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n plugin_urls = []\n for plugin_name, plugin in self.model.model_databrowse().plugins.items():\n urls = plugin.urls(plugin_name, self)\n if urls is not None:\n values = self.values()\n return zip(self.values(), urls)\n if self.field.rel:\n m = EasyModel(self.model.site, self.field.rel.to)\n if self.field.rel.to in self.model.model_list:\n lst = []\n for value in self.values():\n if value is None:\n continue\n url = mark_safe('%s%s/%s/objects/%s/' % (self.model.site.\n root_url, m.model._meta.app_label, m.model._meta.\n model_name, iri_to_uri(value._get_pk_val())))\n lst.append((smart_text(value), url))\n else:\n lst = [(value, None) for value in self.values()]\n elif self.field.choices:\n lst = []\n for value in self.values():\n url = mark_safe('%s%s/%s/fields/%s/%s/' % (self.model.site.\n root_url, self.model.model._meta.app_label, self.model.\n model._meta.model_name, self.field.name, iri_to_uri(self.\n raw_value)))\n lst.append((value, url))\n elif isinstance(self.field, models.URLField):\n val = self.values()[0]\n lst = [(val, iri_to_uri(val))]\n else:\n lst = [(self.values()[0], None)]\n return lst\n",
"role": "user"
},
{
"content": "urls",
"role": "assistant"
}
] |
def x(self, model):
if self.field_names is None:
return dict([(f.name, f) for f in model._meta.fields if isinstance(
f, models.DateField)])
else:
return dict([(f.name, f) for f in model._meta.fields if isinstance(
f, models.DateField) and f.name in self.field_names])
|
field_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model):\n if self.field_names is None:\n return dict([(f.name, f) for f in model._meta.fields if isinstance(\n f, models.DateField)])\n else:\n return dict([(f.name, f) for f in model._meta.fields if isinstance(\n f, models.DateField) and f.name in self.field_names])\n",
"role": "user"
},
{
"content": "field_dict",
"role": "assistant"
}
] |
def x(job, input_file, output_path, kmer_length, spark_conf, workers, cores,
memory, sudo):
require(spark_conf is not None and workers is None or workers is not
None and cores is not None and memory is not None and spark_conf is not
None,
'Either worker count (--workers) must be defined or user must pass in Spark configuration (--spark-conf).'
)
if spark_conf is None:
master_hostname = spawn_spark_cluster(job, sudo, workers, cores)
else:
spark_conf = shlex.split(spark_conf)
job.addChildJobFn(download_count_upload, masterHostname, input_file,
output_file, kmer_length, spark_conf, memory, sudo)
|
kmer_dag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_file, output_path, kmer_length, spark_conf, workers, cores,\n memory, sudo):\n require(spark_conf is not None and workers is None or workers is not\n None and cores is not None and memory is not None and spark_conf is not\n None,\n 'Either worker count (--workers) must be defined or user must pass in Spark configuration (--spark-conf).'\n )\n if spark_conf is None:\n master_hostname = spawn_spark_cluster(job, sudo, workers, cores)\n else:\n spark_conf = shlex.split(spark_conf)\n job.addChildJobFn(download_count_upload, masterHostname, input_file,\n output_file, kmer_length, spark_conf, memory, sudo)\n",
"role": "user"
},
{
"content": "kmer_dag",
"role": "assistant"
}
] |
def x(job, master_ip, input_file, output_file, kmer_length, spark_conf,
memory, sudo):
if master_ip is not None:
hdfs_dir = 'hdfs://{0}:{1}/'.format(master_ip, HDFS_MASTER_PORT)
else:
_log.warn(
'Master IP is not set. If default filesystem is not set, jobs may fail.'
)
hdfs_dir = ''
hdfs_input_file = hdfs_dir
if input_file.startswith('s3://'):
hdfs_input_file += input_file.split('/')[-1]
_log.info('Downloading input file %s to %s.', input_file,
hdfs_input_file)
call_conductor(job, master_ip, input_file, hdfs_input_file, memory=
memory, override_parameters=spark_conf)
elif not input_file.startswith('hdfs://'):
_log.warn('If not in S3, input file (%s) expected to be in HDFS (%s).',
input_file, hdfs_dir)
run_upload = True
hdfs_output_file = hdfs_dir + 'kmer_output.txt'
if output_file.startswith(hdfs_dir):
run_upload = False
hdfs_output_file = output_file
if hdfs_input_file.endswith('.bam') or hdfs_input_file.endswith('.sam'
) or hdfs_input_file.endswith('.fq') or hdfs_input_file.endswith(
'.fastq'):
hdfs_tmp_file = hdfs_input_file
hdfs_input_file = '.'.join(hdfs_input_file.split('.')[:-1].append(
'adam'))
_log.info('Converting %s into ADAM format at %s.', hdfs_tmp_file,
hdfs_input_file)
call_adam(job, master_ip, ['transform', hdfs_tmp_file,
hdfs_input_file], memory=memory, override_parameters=spark_conf)
_log.info('Counting %d-mers in %s, and saving to %s.', kmer_length,
hdfs_input_file, hdfs_output_file)
call_adam(job, master_ip, ['count_kmers', hdfs_input_file,
hdfs_output_file, str(kmer_length)], memory=memory,
override_parameters=spark_conf)
if run_upload:
_log.info('Uploading output file %s to %s.', hdfs_output_file,
output_file)
call_conductor(job, master_ip, hdfs_output_file, output_file,
memory=memory, override_parameters=spark_conf)
|
download_count_upload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, input_file, output_file, kmer_length, spark_conf,\n memory, sudo):\n if master_ip is not None:\n hdfs_dir = 'hdfs://{0}:{1}/'.format(master_ip, HDFS_MASTER_PORT)\n else:\n _log.warn(\n 'Master IP is not set. If default filesystem is not set, jobs may fail.'\n )\n hdfs_dir = ''\n hdfs_input_file = hdfs_dir\n if input_file.startswith('s3://'):\n hdfs_input_file += input_file.split('/')[-1]\n _log.info('Downloading input file %s to %s.', input_file,\n hdfs_input_file)\n call_conductor(job, master_ip, input_file, hdfs_input_file, memory=\n memory, override_parameters=spark_conf)\n elif not input_file.startswith('hdfs://'):\n _log.warn('If not in S3, input file (%s) expected to be in HDFS (%s).',\n input_file, hdfs_dir)\n run_upload = True\n hdfs_output_file = hdfs_dir + 'kmer_output.txt'\n if output_file.startswith(hdfs_dir):\n run_upload = False\n hdfs_output_file = output_file\n if hdfs_input_file.endswith('.bam') or hdfs_input_file.endswith('.sam'\n ) or hdfs_input_file.endswith('.fq') or hdfs_input_file.endswith(\n '.fastq'):\n hdfs_tmp_file = hdfs_input_file\n hdfs_input_file = '.'.join(hdfs_input_file.split('.')[:-1].append(\n 'adam'))\n _log.info('Converting %s into ADAM format at %s.', hdfs_tmp_file,\n hdfs_input_file)\n call_adam(job, master_ip, ['transform', hdfs_tmp_file,\n hdfs_input_file], memory=memory, override_parameters=spark_conf)\n _log.info('Counting %d-mers in %s, and saving to %s.', kmer_length,\n hdfs_input_file, hdfs_output_file)\n call_adam(job, master_ip, ['count_kmers', hdfs_input_file,\n hdfs_output_file, str(kmer_length)], memory=memory,\n override_parameters=spark_conf)\n if run_upload:\n _log.info('Uploading output file %s to %s.', hdfs_output_file,\n output_file)\n call_conductor(job, master_ip, hdfs_output_file, output_file,\n memory=memory, override_parameters=spark_conf)\n",
"role": "user"
},
{
"content": "download_count_upload",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser()
parser.add_argument('--input_path', help=
'The full path to the input SAM/BAM/ADAM/FASTQ file.')
parser.add_argument('--output-path', help=
'full path where final results will be output.')
parser.add_argument('--kmer-length', help=
'Length to use for k-mer counting. Defaults to 20.', default=20,
type=int)
parser.add_argument('--spark-conf', help=
'Optional configuration to pass to Spark commands. Either this or --workers must be specified.'
, default=None)
parser.add_argument('--memory', help=
'Optional memory configuration for Spark workers/driver. This must be specified if --workers is specified.'
, default=None, type=int)
parser.add_argument('--cores', help=
'Optional core configuration for Spark workers/driver. This must be specified if --workers is specified.'
, default=None, type=int)
parser.add_argument('--workers', help=
'Number of workers to spin up in Toil. Either this or --spark-conf must be specified. If this is specified, --memory and --cores must be specified.'
, default=None, type=int)
parser.add_argument('--sudo', help=
'Run docker containers with sudo. Defaults to False.', default=
False, action='store_true')
Job.Runner.addToilOptions(parser)
args = parser.parse_args()
Job.Runner.startToil(Job.wrapJobFn(kmer_dag, args.kmer_length, args.
input_path, args.output_path, args.spark_conf, args.workers, args.
cores, args.memory, args.sudo, checkpoint=True), args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser()\n parser.add_argument('--input_path', help=\n 'The full path to the input SAM/BAM/ADAM/FASTQ file.')\n parser.add_argument('--output-path', help=\n 'full path where final results will be output.')\n parser.add_argument('--kmer-length', help=\n 'Length to use for k-mer counting. Defaults to 20.', default=20,\n type=int)\n parser.add_argument('--spark-conf', help=\n 'Optional configuration to pass to Spark commands. Either this or --workers must be specified.'\n , default=None)\n parser.add_argument('--memory', help=\n 'Optional memory configuration for Spark workers/driver. This must be specified if --workers is specified.'\n , default=None, type=int)\n parser.add_argument('--cores', help=\n 'Optional core configuration for Spark workers/driver. This must be specified if --workers is specified.'\n , default=None, type=int)\n parser.add_argument('--workers', help=\n 'Number of workers to spin up in Toil. Either this or --spark-conf must be specified. If this is specified, --memory and --cores must be specified.'\n , default=None, type=int)\n parser.add_argument('--sudo', help=\n 'Run docker containers with sudo. Defaults to False.', default=\n False, action='store_true')\n Job.Runner.addToilOptions(parser)\n args = parser.parse_args()\n Job.Runner.startToil(Job.wrapJobFn(kmer_dag, args.kmer_length, args.\n input_path, args.output_path, args.spark_conf, args.workers, args.\n cores, args.memory, args.sudo, checkpoint=True), args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(job, samples, config):
work_dir = job.fileStore.getLocalTempDir()
st = os.statvfs(work_dir)
config.available_disk = st.f_bavail * st.f_frsize
num_samples = len(samples)
if config.joint_genotype and not 30 < num_samples < 200:
job.fileStore.logToMaster(
'WARNING: GATK recommends batches of 30 to 200 samples for joint genotyping. The current cohort has %d samples.'
% num_samples)
shared_files = Job.wrapJobFn(download_shared_files, config).encapsulate()
job.addChild(shared_files)
if config.preprocess_only:
for sample in samples:
shared_files.addChildJobFn(prepare_bam, sample.uuid, sample.url,
shared_files.rv(), paired_url=sample.paired_url, rg_line=
sample.rg_line)
else:
run_pipeline = Job.wrapJobFn(gatk_germline_pipeline, samples,
shared_files.rv()).encapsulate()
shared_files.addChild(run_pipeline)
if config.run_oncotator:
annotate = Job.wrapJobFn(annotate_vcfs, run_pipeline.rv(),
shared_files.rv())
run_pipeline.addChild(annotate)
|
run_gatk_germline_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, samples, config):\n work_dir = job.fileStore.getLocalTempDir()\n st = os.statvfs(work_dir)\n config.available_disk = st.f_bavail * st.f_frsize\n num_samples = len(samples)\n if config.joint_genotype and not 30 < num_samples < 200:\n job.fileStore.logToMaster(\n 'WARNING: GATK recommends batches of 30 to 200 samples for joint genotyping. The current cohort has %d samples.'\n % num_samples)\n shared_files = Job.wrapJobFn(download_shared_files, config).encapsulate()\n job.addChild(shared_files)\n if config.preprocess_only:\n for sample in samples:\n shared_files.addChildJobFn(prepare_bam, sample.uuid, sample.url,\n shared_files.rv(), paired_url=sample.paired_url, rg_line=\n sample.rg_line)\n else:\n run_pipeline = Job.wrapJobFn(gatk_germline_pipeline, samples,\n shared_files.rv()).encapsulate()\n shared_files.addChild(run_pipeline)\n if config.run_oncotator:\n annotate = Job.wrapJobFn(annotate_vcfs, run_pipeline.rv(),\n shared_files.rv())\n run_pipeline.addChild(annotate)\n",
"role": "user"
},
{
"content": "run_gatk_germline_pipeline",
"role": "assistant"
}
] |
def x(job, samples, config):
require(len(samples) > 0, 'No samples were provided!')
genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +
config.genome_dict.size)
group_bam_jobs = Job()
gvcfs = {}
for sample in samples:
get_bam = group_bam_jobs.addChildJobFn(prepare_bam, sample.uuid,
sample.url, config, paired_url=sample.paired_url, rg_line=
sample.rg_line)
hc_disk = PromisedRequirement(lambda bam, bai, ref_size: 2 * bam.
size + bai.size + ref_size, get_bam.rv(0), get_bam.rv(1),
genome_ref_size)
get_gvcf = get_bam.addFollowOnJobFn(gatk_haplotype_caller, get_bam.
rv(0), get_bam.rv(1), config.genome_fasta, config.genome_fai,
config.genome_dict, annotations=config.annotations, cores=
config.cores, disk=hc_disk, memory=config.xmx, hc_output=config
.hc_output)
gvcfs[sample.uuid] = get_gvcf.rv()
vqsr_name = '{}{}.g.vcf'.format(sample.uuid, config.suffix)
get_gvcf.addChildJobFn(output_file_job, vqsr_name, get_gvcf.rv(),
os.path.join(config.output_dir, sample.uuid), s3_key_path=
config.ssec, disk=PromisedRequirement(lambda x: x.size,
get_gvcf.rv()))
filtered_vcfs = {}
if config.joint_genotype:
filtered_vcfs = group_bam_jobs.addFollowOnJobFn(
joint_genotype_and_filter, gvcfs, config).rv()
else:
for uuid, gvcf_id in gvcfs.iteritems():
filtered_vcfs[uuid] = group_bam_jobs.addFollowOnJobFn(
genotype_and_filter, {uuid: gvcf_id}, config).rv()
job.addChild(group_bam_jobs)
return filtered_vcfs
|
gatk_germline_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, samples, config):\n require(len(samples) > 0, 'No samples were provided!')\n genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +\n config.genome_dict.size)\n group_bam_jobs = Job()\n gvcfs = {}\n for sample in samples:\n get_bam = group_bam_jobs.addChildJobFn(prepare_bam, sample.uuid,\n sample.url, config, paired_url=sample.paired_url, rg_line=\n sample.rg_line)\n hc_disk = PromisedRequirement(lambda bam, bai, ref_size: 2 * bam.\n size + bai.size + ref_size, get_bam.rv(0), get_bam.rv(1),\n genome_ref_size)\n get_gvcf = get_bam.addFollowOnJobFn(gatk_haplotype_caller, get_bam.\n rv(0), get_bam.rv(1), config.genome_fasta, config.genome_fai,\n config.genome_dict, annotations=config.annotations, cores=\n config.cores, disk=hc_disk, memory=config.xmx, hc_output=config\n .hc_output)\n gvcfs[sample.uuid] = get_gvcf.rv()\n vqsr_name = '{}{}.g.vcf'.format(sample.uuid, config.suffix)\n get_gvcf.addChildJobFn(output_file_job, vqsr_name, get_gvcf.rv(),\n os.path.join(config.output_dir, sample.uuid), s3_key_path=\n config.ssec, disk=PromisedRequirement(lambda x: x.size,\n get_gvcf.rv()))\n filtered_vcfs = {}\n if config.joint_genotype:\n filtered_vcfs = group_bam_jobs.addFollowOnJobFn(\n joint_genotype_and_filter, gvcfs, config).rv()\n else:\n for uuid, gvcf_id in gvcfs.iteritems():\n filtered_vcfs[uuid] = group_bam_jobs.addFollowOnJobFn(\n genotype_and_filter, {uuid: gvcf_id}, config).rv()\n job.addChild(group_bam_jobs)\n return filtered_vcfs\n",
"role": "user"
},
{
"content": "gatk_germline_pipeline",
"role": "assistant"
}
] |
def x(job, gvcfs, config):
genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +
config.genome_dict.size)
cohort_size = sum(gvcf.size for gvcf in gvcfs.values())
require(int(2.5 * cohort_size + genome_ref_size) < config.
available_disk,
"""There is not enough disk space to joint genotype samples:
{}""".
format('\n'.join(gvcfs.keys())))
job.fileStore.logToMaster('Merging cohort into a single GVCF file')
return job.addChildJobFn(genotype_and_filter, gvcfs, config).rv()
|
joint_genotype_and_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, gvcfs, config):\n genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +\n config.genome_dict.size)\n cohort_size = sum(gvcf.size for gvcf in gvcfs.values())\n require(int(2.5 * cohort_size + genome_ref_size) < config.\n available_disk,\n \"\"\"There is not enough disk space to joint genotype samples:\n{}\"\"\".\n format('\\n'.join(gvcfs.keys())))\n job.fileStore.logToMaster('Merging cohort into a single GVCF file')\n return job.addChildJobFn(genotype_and_filter, gvcfs, config).rv()\n",
"role": "user"
},
{
"content": "joint_genotype_and_filter",
"role": "assistant"
}
] |
def x(job, gvcfs, config):
genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +
config.genome_dict.size)
genotype_gvcf_disk = PromisedRequirement(lambda gvcf_ids, ref_size: 2 *
sum(gvcf_.size for gvcf_ in gvcf_ids) + ref_size, gvcfs.values(),
genome_ref_size)
genotype_gvcf = job.addChildJobFn(gatk_genotype_gvcfs, gvcfs, config.
genome_fasta, config.genome_fai, config.genome_dict, annotations=
config.annotations, unsafe_mode=config.unsafe_mode, cores=config.
cores, disk=genotype_gvcf_disk, memory=config.xmx)
if len(gvcfs) == 1:
uuid = gvcfs.keys()[0]
else:
uuid = 'joint_genotyped'
genotyped_filename = '%s.genotyped%s.vcf' % (uuid, config.suffix)
genotype_gvcf.addChildJobFn(output_file_job, genotyped_filename,
genotype_gvcf.rv(), os.path.join(config.output_dir, uuid),
s3_key_path=config.ssec, disk=PromisedRequirement(lambda x: x.size,
genotype_gvcf.rv()))
if config.run_vqsr:
if not config.joint_genotype:
job.fileStore.logToMaster(
'WARNING: Running VQSR without joint genotyping.')
joint_genotype_vcf = genotype_gvcf.addFollowOnJobFn(vqsr_pipeline,
uuid, genotype_gvcf.rv(), config)
else:
joint_genotype_vcf = genotype_gvcf.addFollowOnJobFn(
hard_filter_pipeline, uuid, genotype_gvcf.rv(), config)
return joint_genotype_vcf.rv()
|
genotype_and_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, gvcfs, config):\n genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +\n config.genome_dict.size)\n genotype_gvcf_disk = PromisedRequirement(lambda gvcf_ids, ref_size: 2 *\n sum(gvcf_.size for gvcf_ in gvcf_ids) + ref_size, gvcfs.values(),\n genome_ref_size)\n genotype_gvcf = job.addChildJobFn(gatk_genotype_gvcfs, gvcfs, config.\n genome_fasta, config.genome_fai, config.genome_dict, annotations=\n config.annotations, unsafe_mode=config.unsafe_mode, cores=config.\n cores, disk=genotype_gvcf_disk, memory=config.xmx)\n if len(gvcfs) == 1:\n uuid = gvcfs.keys()[0]\n else:\n uuid = 'joint_genotyped'\n genotyped_filename = '%s.genotyped%s.vcf' % (uuid, config.suffix)\n genotype_gvcf.addChildJobFn(output_file_job, genotyped_filename,\n genotype_gvcf.rv(), os.path.join(config.output_dir, uuid),\n s3_key_path=config.ssec, disk=PromisedRequirement(lambda x: x.size,\n genotype_gvcf.rv()))\n if config.run_vqsr:\n if not config.joint_genotype:\n job.fileStore.logToMaster(\n 'WARNING: Running VQSR without joint genotyping.')\n joint_genotype_vcf = genotype_gvcf.addFollowOnJobFn(vqsr_pipeline,\n uuid, genotype_gvcf.rv(), config)\n else:\n joint_genotype_vcf = genotype_gvcf.addFollowOnJobFn(\n hard_filter_pipeline, uuid, genotype_gvcf.rv(), config)\n return joint_genotype_vcf.rv()\n",
"role": "user"
},
{
"content": "genotype_and_filter",
"role": "assistant"
}
] |
def x(job, vcfs, config):
job.fileStore.logToMaster(
'Running Oncotator on the following samples:\n%s' % '\n'.join(vcfs.
keys()))
for uuid, vcf_id in vcfs.iteritems():
onco_disk = PromisedRequirement(lambda vcf, db: 3 * vcf.size + db.
size, vcf_id, config.oncotator_db)
annotated_vcf = job.addChildJobFn(run_oncotator, vcf_id, config.
oncotator_db, disk=onco_disk, cores=config.cores, memory=config.xmx
)
output_dir = os.path.join(config.output_dir, uuid)
filename = '{}.oncotator{}.vcf'.format(uuid, config.suffix)
annotated_vcf.addChildJobFn(output_file_job, filename,
annotated_vcf.rv(), output_dir, s3_key_path=config.ssec, disk=
PromisedRequirement(lambda x: x.size, annotated_vcf.rv()))
|
annotate_vcfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, vcfs, config):\n job.fileStore.logToMaster(\n 'Running Oncotator on the following samples:\\n%s' % '\\n'.join(vcfs.\n keys()))\n for uuid, vcf_id in vcfs.iteritems():\n onco_disk = PromisedRequirement(lambda vcf, db: 3 * vcf.size + db.\n size, vcf_id, config.oncotator_db)\n annotated_vcf = job.addChildJobFn(run_oncotator, vcf_id, config.\n oncotator_db, disk=onco_disk, cores=config.cores, memory=config.xmx\n )\n output_dir = os.path.join(config.output_dir, uuid)\n filename = '{}.oncotator{}.vcf'.format(uuid, config.suffix)\n annotated_vcf.addChildJobFn(output_file_job, filename,\n annotated_vcf.rv(), output_dir, s3_key_path=config.ssec, disk=\n PromisedRequirement(lambda x: x.size, annotated_vcf.rv()))\n",
"role": "user"
},
{
"content": "annotate_vcfs",
"role": "assistant"
}
] |
def x(path_to_manifest):
bam_re = '^(?P<uuid>\\S+)\\s(?P<url>\\S+[bsc][r]?am)'
fq_re = (
'^(?P<uuid>\\S+)\\s(?P<url>\\S+)\\s(?P<paired_url>\\S+)?\\s?(?P<rg_line>@RG\\S+)'
)
samples = []
with open(path_to_manifest, 'r') as f:
for line in f.readlines():
line = line.strip()
if line.startswith('#'):
continue
bam_match = re.match(bam_re, line)
fastq_match = re.match(fq_re, line)
if bam_match:
uuid = bam_match.group('uuid')
url = bam_match.group('url')
paired_url = None
rg_line = None
require('.bam' in url.lower(),
'Expected .bam extension:\n{}:\t{}'.format(uuid, url))
elif fastq_match:
uuid = fastq_match.group('uuid')
url = fastq_match.group('url')
paired_url = fastq_match.group('paired_url')
rg_line = fastq_match.group('rg_line')
require('.fq' in url.lower() or '.fastq' in url.lower(),
"""Expected .fq extension:
{}: {}""".format(uuid, url))
else:
raise ValueError(
'Could not parse entry in manifest: %s\n%s' % (f.name,
line))
require(urlparse(url).scheme, 'Invalid URL passed for {}'.
format(url))
samples.append(GermlineSample(uuid, url, paired_url, rg_line))
return samples
|
parse_manifest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_to_manifest):\n bam_re = '^(?P<uuid>\\\\S+)\\\\s(?P<url>\\\\S+[bsc][r]?am)'\n fq_re = (\n '^(?P<uuid>\\\\S+)\\\\s(?P<url>\\\\S+)\\\\s(?P<paired_url>\\\\S+)?\\\\s?(?P<rg_line>@RG\\\\S+)'\n )\n samples = []\n with open(path_to_manifest, 'r') as f:\n for line in f.readlines():\n line = line.strip()\n if line.startswith('#'):\n continue\n bam_match = re.match(bam_re, line)\n fastq_match = re.match(fq_re, line)\n if bam_match:\n uuid = bam_match.group('uuid')\n url = bam_match.group('url')\n paired_url = None\n rg_line = None\n require('.bam' in url.lower(),\n 'Expected .bam extension:\\n{}:\\t{}'.format(uuid, url))\n elif fastq_match:\n uuid = fastq_match.group('uuid')\n url = fastq_match.group('url')\n paired_url = fastq_match.group('paired_url')\n rg_line = fastq_match.group('rg_line')\n require('.fq' in url.lower() or '.fastq' in url.lower(),\n \"\"\"Expected .fq extension:\n{}:\t{}\"\"\".format(uuid, url))\n else:\n raise ValueError(\n 'Could not parse entry in manifest: %s\\n%s' % (f.name,\n line))\n require(urlparse(url).scheme, 'Invalid URL passed for {}'.\n format(url))\n samples.append(GermlineSample(uuid, url, paired_url, rg_line))\n return samples\n",
"role": "user"
},
{
"content": "parse_manifest",
"role": "assistant"
}
] |
def x(job, config):
job.fileStore.logToMaster('Downloading shared reference files')
shared_files = {'genome_fasta', 'genome_fai', 'genome_dict'}
nonessential_files = {'genome_fai', 'genome_dict'}
if config.run_bwa:
shared_files |= {'amb', 'ann', 'bwt', 'pac', 'sa', 'alt'}
nonessential_files.add('alt')
if config.preprocess:
shared_files |= {'g1k_indel', 'mills', 'dbsnp'}
if config.run_vqsr:
shared_files |= {'g1k_snp', 'mills', 'dbsnp', 'hapmap', 'omni'}
if config.run_oncotator:
shared_files.add('oncotator_db')
for name in shared_files:
try:
url = getattr(config, name, None)
if url is None:
continue
setattr(config, name, job.addChildJobFn(download_url_job, url,
name=name, s3_key_path=config.ssec, disk='15G').rv())
finally:
if getattr(config, name, None
) is None and name not in nonessential_files:
raise ValueError(
'Necessary configuration parameter is missing:\n{}'.
format(name))
return job.addFollowOnJobFn(reference_preprocessing, config).rv()
|
download_shared_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, config):\n job.fileStore.logToMaster('Downloading shared reference files')\n shared_files = {'genome_fasta', 'genome_fai', 'genome_dict'}\n nonessential_files = {'genome_fai', 'genome_dict'}\n if config.run_bwa:\n shared_files |= {'amb', 'ann', 'bwt', 'pac', 'sa', 'alt'}\n nonessential_files.add('alt')\n if config.preprocess:\n shared_files |= {'g1k_indel', 'mills', 'dbsnp'}\n if config.run_vqsr:\n shared_files |= {'g1k_snp', 'mills', 'dbsnp', 'hapmap', 'omni'}\n if config.run_oncotator:\n shared_files.add('oncotator_db')\n for name in shared_files:\n try:\n url = getattr(config, name, None)\n if url is None:\n continue\n setattr(config, name, job.addChildJobFn(download_url_job, url,\n name=name, s3_key_path=config.ssec, disk='15G').rv())\n finally:\n if getattr(config, name, None\n ) is None and name not in nonessential_files:\n raise ValueError(\n 'Necessary configuration parameter is missing:\\n{}'.\n format(name))\n return job.addFollowOnJobFn(reference_preprocessing, config).rv()\n",
"role": "user"
},
{
"content": "download_shared_files",
"role": "assistant"
}
] |
def x(job, config):
job.fileStore.logToMaster('Preparing Reference Files')
genome_id = config.genome_fasta
if getattr(config, 'genome_fai', None) is None:
config.genome_fai = job.addChildJobFn(run_samtools_faidx, genome_id,
cores=config.cores).rv()
if getattr(config, 'genome_dict', None) is None:
config.genome_dict = job.addChildJobFn(
run_picard_create_sequence_dictionary, genome_id, cores=config.
cores, memory=config.xmx).rv()
return config
|
reference_preprocessing
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, config):\n job.fileStore.logToMaster('Preparing Reference Files')\n genome_id = config.genome_fasta\n if getattr(config, 'genome_fai', None) is None:\n config.genome_fai = job.addChildJobFn(run_samtools_faidx, genome_id,\n cores=config.cores).rv()\n if getattr(config, 'genome_dict', None) is None:\n config.genome_dict = job.addChildJobFn(\n run_picard_create_sequence_dictionary, genome_id, cores=config.\n cores, memory=config.xmx).rv()\n return config\n",
"role": "user"
},
{
"content": "reference_preprocessing",
"role": "assistant"
}
] |
def x(job, uuid, url, config, paired_url=None, rg_line=None):
if config.run_bwa:
get_bam = job.wrapJobFn(setup_and_run_bwakit, uuid, url, rg_line,
config, paired_url=paired_url).encapsulate()
elif '.bam' in url.lower():
job.fileStore.logToMaster('Downloading BAM: %s' % uuid)
get_bam = job.wrapJobFn(download_url_job, url, name='toil.bam',
s3_key_path=config.ssec, disk=config.file_size).encapsulate()
else:
raise ValueError(
"""Could not generate BAM file for %s
Provide a FASTQ URL and set run-bwa or provide a BAM URL that includes .bam extension."""
% uuid)
if config.sorted and not config.run_bwa:
sorted_bam = get_bam
else:
sorted_bam_disk = PromisedRequirement(lambda bam: 3 * bam.size,
get_bam.rv())
sorted_bam = get_bam.addChildJobFn(run_samtools_sort, get_bam.rv(),
cores=config.cores, disk=sorted_bam_disk)
index_bam_disk = PromisedRequirement(lambda bam: bam.size, sorted_bam.rv())
index_bam = job.wrapJobFn(run_samtools_index, sorted_bam.rv(), disk=
index_bam_disk)
job.addChild(get_bam)
sorted_bam.addChild(index_bam)
if config.preprocess:
preprocess = job.wrapJobFn(run_gatk_preprocessing, sorted_bam.rv(),
index_bam.rv(), config.genome_fasta, config.genome_dict, config
.genome_fai, config.g1k_indel, config.mills, config.dbsnp,
memory=config.xmx, cores=config.cores).encapsulate()
sorted_bam.addChild(preprocess)
index_bam.addChild(preprocess)
output_bam_promise = preprocess.rv(0)
output_bai_promise = preprocess.rv(1)
output_dir = os.path.join(config.output_dir, uuid)
filename = '{}.preprocessed{}.bam'.format(uuid, config.suffix)
output_bam = job.wrapJobFn(output_file_job, filename, preprocess.rv
(0), output_dir, s3_key_path=config.ssec)
preprocess.addChild(output_bam)
else:
output_bam_promise = sorted_bam.rv()
output_bai_promise = index_bam.rv()
return output_bam_promise, output_bai_promise
|
prepare_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid, url, config, paired_url=None, rg_line=None):\n if config.run_bwa:\n get_bam = job.wrapJobFn(setup_and_run_bwakit, uuid, url, rg_line,\n config, paired_url=paired_url).encapsulate()\n elif '.bam' in url.lower():\n job.fileStore.logToMaster('Downloading BAM: %s' % uuid)\n get_bam = job.wrapJobFn(download_url_job, url, name='toil.bam',\n s3_key_path=config.ssec, disk=config.file_size).encapsulate()\n else:\n raise ValueError(\n \"\"\"Could not generate BAM file for %s\nProvide a FASTQ URL and set run-bwa or provide a BAM URL that includes .bam extension.\"\"\"\n % uuid)\n if config.sorted and not config.run_bwa:\n sorted_bam = get_bam\n else:\n sorted_bam_disk = PromisedRequirement(lambda bam: 3 * bam.size,\n get_bam.rv())\n sorted_bam = get_bam.addChildJobFn(run_samtools_sort, get_bam.rv(),\n cores=config.cores, disk=sorted_bam_disk)\n index_bam_disk = PromisedRequirement(lambda bam: bam.size, sorted_bam.rv())\n index_bam = job.wrapJobFn(run_samtools_index, sorted_bam.rv(), disk=\n index_bam_disk)\n job.addChild(get_bam)\n sorted_bam.addChild(index_bam)\n if config.preprocess:\n preprocess = job.wrapJobFn(run_gatk_preprocessing, sorted_bam.rv(),\n index_bam.rv(), config.genome_fasta, config.genome_dict, config\n .genome_fai, config.g1k_indel, config.mills, config.dbsnp,\n memory=config.xmx, cores=config.cores).encapsulate()\n sorted_bam.addChild(preprocess)\n index_bam.addChild(preprocess)\n output_bam_promise = preprocess.rv(0)\n output_bai_promise = preprocess.rv(1)\n output_dir = os.path.join(config.output_dir, uuid)\n filename = '{}.preprocessed{}.bam'.format(uuid, config.suffix)\n output_bam = job.wrapJobFn(output_file_job, filename, preprocess.rv\n (0), output_dir, s3_key_path=config.ssec)\n preprocess.addChild(output_bam)\n else:\n output_bam_promise = sorted_bam.rv()\n output_bai_promise = index_bam.rv()\n return output_bam_promise, output_bai_promise\n",
"role": "user"
},
{
"content": "prepare_bam",
"role": "assistant"
}
] |
def x(job, uuid, url, rg_line, config, paired_url=None):
bwa_config = deepcopy(config)
bwa_config.uuid = uuid
bwa_config.rg_line = rg_line
bwa_config.ref = config.genome_fasta
bwa_config.fai = config.genome_fai
basename, ext = os.path.splitext(url)
ext = ext.lower()
if ext == '.gz':
_, ext = os.path.splitext(basename)
ext = ext.lower()
require(ext in ['.fq', '.fastq', '.bam'],
'Please use .fq or .bam file extensions:\n%s' % url)
samples = []
input1 = job.addChildJobFn(download_url_job, url, name='file1',
s3_key_path=config.ssec, disk=config.file_size)
samples.append(input1.rv())
if ext == '.bam':
bwa_config.bam = input1.rv()
else:
bwa_config.r1 = input1.rv()
if paired_url:
input2 = job.addChildJobFn(download_url_job, paired_url, name=
'file2', s3_key_path=config.ssec, disk=config.file_size)
samples.append(input2.rv())
bwa_config.r2 = input2.rv()
bwa_index_size = sum([getattr(config, index_file).size for index_file in
['amb', 'ann', 'bwt', 'pac', 'sa', 'alt'] if getattr(config,
index_file, None) is not None])
bwakit_disk = PromisedRequirement(lambda lst, index_size: int(4 * sum(x
.size for x in lst) + index_size), samples, bwa_index_size)
return job.addFollowOnJobFn(run_bwakit, bwa_config, sort=False, trim=
config.trim, cores=config.cores, disk=bwakit_disk).rv()
|
setup_and_run_bwakit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid, url, rg_line, config, paired_url=None):\n bwa_config = deepcopy(config)\n bwa_config.uuid = uuid\n bwa_config.rg_line = rg_line\n bwa_config.ref = config.genome_fasta\n bwa_config.fai = config.genome_fai\n basename, ext = os.path.splitext(url)\n ext = ext.lower()\n if ext == '.gz':\n _, ext = os.path.splitext(basename)\n ext = ext.lower()\n require(ext in ['.fq', '.fastq', '.bam'], \n 'Please use .fq or .bam file extensions:\\n%s' % url)\n samples = []\n input1 = job.addChildJobFn(download_url_job, url, name='file1',\n s3_key_path=config.ssec, disk=config.file_size)\n samples.append(input1.rv())\n if ext == '.bam':\n bwa_config.bam = input1.rv()\n else:\n bwa_config.r1 = input1.rv()\n if paired_url:\n input2 = job.addChildJobFn(download_url_job, paired_url, name=\n 'file2', s3_key_path=config.ssec, disk=config.file_size)\n samples.append(input2.rv())\n bwa_config.r2 = input2.rv()\n bwa_index_size = sum([getattr(config, index_file).size for index_file in\n ['amb', 'ann', 'bwt', 'pac', 'sa', 'alt'] if getattr(config,\n index_file, None) is not None])\n bwakit_disk = PromisedRequirement(lambda lst, index_size: int(4 * sum(x\n .size for x in lst) + index_size), samples, bwa_index_size)\n return job.addFollowOnJobFn(run_bwakit, bwa_config, sort=False, trim=\n config.trim, cores=config.cores, disk=bwakit_disk).rv()\n",
"role": "user"
},
{
"content": "setup_and_run_bwakit",
"role": "assistant"
}
] |
def x(job, bam, bai, ref, fai, ref_dict, annotations=None, emit_threshold=
10.0, call_threshold=30.0, unsafe_mode=False, hc_output=None):
job.fileStore.logToMaster('Running GATK HaplotypeCaller')
inputs = {'genome.fa': ref, 'genome.fa.fai': fai, 'genome.dict':
ref_dict, 'input.bam': bam, 'input.bam.bai': bai}
work_dir = job.fileStore.getLocalTempDir()
for name, file_store_id in inputs.iteritems():
job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir,
name))
command = ['-T', 'HaplotypeCaller', '-nct', str(job.cores), '-R',
'genome.fa', '-I', 'input.bam', '-o', 'output.g.vcf',
'-stand_call_conf', str(call_threshold), '-stand_emit_conf', str(
emit_threshold), '-variant_index_type', 'LINEAR',
'-variant_index_parameter', '128000', '--genotyping_mode',
'Discovery', '--emitRefConfidence', 'GVCF']
if unsafe_mode:
command = ['-U', 'ALLOW_SEQ_DICT_INCOMPATIBILITY'] + command
if annotations:
for annotation in annotations:
command.extend(['-A', annotation])
outputs = {'output.g.vcf': hc_output}
docker_call(job=job, work_dir=work_dir, env={'JAVA_OPTS':
'-Djava.io.tmpdir=/data/ -Xmx{}'.format(job.memory)}, parameters=
command, tool=
'quay.io/ucsc_cgl/gatk:3.5--dba6dae49156168a909c43330350c6161dc7ecc2',
inputs=inputs.keys(), outputs=outputs, mock=True if outputs[
'output.g.vcf'] else False)
return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'output.g.vcf')
)
|
gatk_haplotype_caller
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, bam, bai, ref, fai, ref_dict, annotations=None, emit_threshold=\n 10.0, call_threshold=30.0, unsafe_mode=False, hc_output=None):\n job.fileStore.logToMaster('Running GATK HaplotypeCaller')\n inputs = {'genome.fa': ref, 'genome.fa.fai': fai, 'genome.dict':\n ref_dict, 'input.bam': bam, 'input.bam.bai': bai}\n work_dir = job.fileStore.getLocalTempDir()\n for name, file_store_id in inputs.iteritems():\n job.fileStore.readGlobalFile(file_store_id, os.path.join(work_dir,\n name))\n command = ['-T', 'HaplotypeCaller', '-nct', str(job.cores), '-R',\n 'genome.fa', '-I', 'input.bam', '-o', 'output.g.vcf',\n '-stand_call_conf', str(call_threshold), '-stand_emit_conf', str(\n emit_threshold), '-variant_index_type', 'LINEAR',\n '-variant_index_parameter', '128000', '--genotyping_mode',\n 'Discovery', '--emitRefConfidence', 'GVCF']\n if unsafe_mode:\n command = ['-U', 'ALLOW_SEQ_DICT_INCOMPATIBILITY'] + command\n if annotations:\n for annotation in annotations:\n command.extend(['-A', annotation])\n outputs = {'output.g.vcf': hc_output}\n docker_call(job=job, work_dir=work_dir, env={'JAVA_OPTS':\n '-Djava.io.tmpdir=/data/ -Xmx{}'.format(job.memory)}, parameters=\n command, tool=\n 'quay.io/ucsc_cgl/gatk:3.5--dba6dae49156168a909c43330350c6161dc7ecc2',\n inputs=inputs.keys(), outputs=outputs, mock=True if outputs[\n 'output.g.vcf'] else False)\n return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'output.g.vcf')\n )\n",
"role": "user"
},
{
"content": "gatk_haplotype_caller",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=__doc__, formatter_class=
argparse.RawTextHelpFormatter)
subparsers = parser.add_subparsers(dest='command')
subparsers.add_parser('generate-config', help=
'Generates an editable config in the current working directory.')
subparsers.add_parser('generate-manifest', help=
'Generates an editable manifest in the current working directory.')
subparsers.add_parser('generate', help=
'Generates a config and manifest in the current working directory.')
parser_run = subparsers.add_parser('run', help=
'Runs the GATK germline pipeline')
parser_run.add_argument('--config', required=True, type=str, help=
'Path to the (filled in) config file, generated with "generate-config".'
)
parser_run.add_argument('--manifest', type=str, help=
"""Path to the (filled in) manifest file, generated with "generate-manifest".
Default value: "%(default)s"."""
)
parser_run.add_argument('--sample', default=None, nargs=2, type=str,
help='Input sample identifier and BAM file URL or local path')
parser_run.add_argument('--output-dir', default=None, help=
'Path/URL to output directory')
parser_run.add_argument('-s', '--suffix', default=None, help=
'Additional suffix to add to the names of the output files')
parser_run.add_argument('--preprocess-only', action='store_true', help=
'Only runs preprocessing steps')
Job.Runner.addToilOptions(parser_run)
options = parser.parse_args()
cwd = os.getcwd()
if options.command == 'generate-config' or options.command == 'generate':
generate_file(os.path.join(cwd, 'config-toil-germline.yaml'),
generate_config)
if options.command == 'generate-manifest' or options.command == 'generate':
generate_file(os.path.join(cwd, 'manifest-toil-germline.tsv'),
generate_manifest)
elif options.command == 'run':
for program in ['curl', 'docker']:
require(next(which(program)), program +
' must be installed on every node.'.format(program))
require(os.path.exists(options.config),
'{} not found. Please run "generate-config"'.format(options.config)
)
samples = []
if options.manifest:
samples.extend(parse_manifest(options.manifest))
if options.sample:
uuid, url = options.sample
samples.append(GermlineSample(uuid, url, None, None))
require(len(samples) > 0,
'No samples were detected in the manifest or on the command line')
inputs = {x.replace('-', '_'): y for x, y in yaml.load(open(options
.config).read()).iteritems()}
required_fields = {'genome_fasta', 'output_dir', 'run_bwa',
'sorted', 'snp_filter_annotations', 'indel_filter_annotations',
'preprocess', 'preprocess_only', 'run_vqsr', 'joint_genotype',
'run_oncotator', 'cores', 'file_size', 'xmx', 'suffix'}
input_fields = set(inputs.keys())
require(input_fields > required_fields,
'Missing config parameters:\n{}'.format(', '.join(
required_fields - input_fields)))
if inputs['output_dir'] is None:
inputs['output_dir'] = options.output_dir
require(inputs['output_dir'] is not None,
'Missing output directory PATH/URL')
if inputs['suffix'] is None:
inputs['suffix'] = options.suffix if options.suffix else ''
if inputs['preprocess_only'] is None:
inputs['preprocess_only'] = options.preprocess_only
if inputs['run_vqsr']:
vqsr_fields = {'g1k_snp', 'mills', 'dbsnp', 'hapmap', 'omni'}
require(input_fields > vqsr_fields,
'Missing parameters for VQSR:\n{}'.format(', '.join(
vqsr_fields - input_fields)))
elif not inputs['preprocess_only']:
hard_filter_fields = {'snp_filter_name',
'snp_filter_expression', 'indel_filter_name',
'indel_filter_expression'}
require(input_fields > hard_filter_fields,
'Missing parameters for hard filtering:\n{}'.format(', '.
join(hard_filter_fields - input_fields)))
for hard_filter_field in hard_filter_fields:
require(inputs[hard_filter_field],
'Missing %s value for hard filtering, got %s.' % (
hard_filter_field, inputs[hard_filter_field]))
inputs['xmx'] = human2bytes(inputs['xmx'])
inputs['file_size'] = human2bytes(inputs['file_size'])
inputs['cores'] = int(inputs['cores'])
inputs['annotations'] = set(inputs['snp_filter_annotations'] +
inputs['indel_filter_annotations'])
inputs['hc_output'] = inputs.get('hc_output', None)
config = argparse.Namespace(**inputs)
root = Job.wrapJobFn(run_gatk_germline_pipeline, samples, config)
Job.Runner.startToil(root, options)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=__doc__, formatter_class=\n argparse.RawTextHelpFormatter)\n subparsers = parser.add_subparsers(dest='command')\n subparsers.add_parser('generate-config', help=\n 'Generates an editable config in the current working directory.')\n subparsers.add_parser('generate-manifest', help=\n 'Generates an editable manifest in the current working directory.')\n subparsers.add_parser('generate', help=\n 'Generates a config and manifest in the current working directory.')\n parser_run = subparsers.add_parser('run', help=\n 'Runs the GATK germline pipeline')\n parser_run.add_argument('--config', required=True, type=str, help=\n 'Path to the (filled in) config file, generated with \"generate-config\".'\n )\n parser_run.add_argument('--manifest', type=str, help=\n \"\"\"Path to the (filled in) manifest file, generated with \"generate-manifest\".\nDefault value: \"%(default)s\".\"\"\"\n )\n parser_run.add_argument('--sample', default=None, nargs=2, type=str,\n help='Input sample identifier and BAM file URL or local path')\n parser_run.add_argument('--output-dir', default=None, help=\n 'Path/URL to output directory')\n parser_run.add_argument('-s', '--suffix', default=None, help=\n 'Additional suffix to add to the names of the output files')\n parser_run.add_argument('--preprocess-only', action='store_true', help=\n 'Only runs preprocessing steps')\n Job.Runner.addToilOptions(parser_run)\n options = parser.parse_args()\n cwd = os.getcwd()\n if options.command == 'generate-config' or options.command == 'generate':\n generate_file(os.path.join(cwd, 'config-toil-germline.yaml'),\n generate_config)\n if options.command == 'generate-manifest' or options.command == 'generate':\n generate_file(os.path.join(cwd, 'manifest-toil-germline.tsv'),\n generate_manifest)\n elif options.command == 'run':\n for program in ['curl', 'docker']:\n require(next(which(program)), program +\n ' must be installed on every node.'.format(program))\n require(os.path.exists(options.config),\n '{} not found. Please run \"generate-config\"'.format(options.config)\n )\n samples = []\n if options.manifest:\n samples.extend(parse_manifest(options.manifest))\n if options.sample:\n uuid, url = options.sample\n samples.append(GermlineSample(uuid, url, None, None))\n require(len(samples) > 0,\n 'No samples were detected in the manifest or on the command line')\n inputs = {x.replace('-', '_'): y for x, y in yaml.load(open(options\n .config).read()).iteritems()}\n required_fields = {'genome_fasta', 'output_dir', 'run_bwa',\n 'sorted', 'snp_filter_annotations', 'indel_filter_annotations',\n 'preprocess', 'preprocess_only', 'run_vqsr', 'joint_genotype',\n 'run_oncotator', 'cores', 'file_size', 'xmx', 'suffix'}\n input_fields = set(inputs.keys())\n require(input_fields > required_fields,\n 'Missing config parameters:\\n{}'.format(', '.join(\n required_fields - input_fields)))\n if inputs['output_dir'] is None:\n inputs['output_dir'] = options.output_dir\n require(inputs['output_dir'] is not None,\n 'Missing output directory PATH/URL')\n if inputs['suffix'] is None:\n inputs['suffix'] = options.suffix if options.suffix else ''\n if inputs['preprocess_only'] is None:\n inputs['preprocess_only'] = options.preprocess_only\n if inputs['run_vqsr']:\n vqsr_fields = {'g1k_snp', 'mills', 'dbsnp', 'hapmap', 'omni'}\n require(input_fields > vqsr_fields,\n 'Missing parameters for VQSR:\\n{}'.format(', '.join(\n vqsr_fields - input_fields)))\n elif not inputs['preprocess_only']:\n hard_filter_fields = {'snp_filter_name',\n 'snp_filter_expression', 'indel_filter_name',\n 'indel_filter_expression'}\n require(input_fields > hard_filter_fields,\n 'Missing parameters for hard filtering:\\n{}'.format(', '.\n join(hard_filter_fields - input_fields)))\n for hard_filter_field in hard_filter_fields:\n require(inputs[hard_filter_field], \n 'Missing %s value for hard filtering, got %s.' % (\n hard_filter_field, inputs[hard_filter_field]))\n inputs['xmx'] = human2bytes(inputs['xmx'])\n inputs['file_size'] = human2bytes(inputs['file_size'])\n inputs['cores'] = int(inputs['cores'])\n inputs['annotations'] = set(inputs['snp_filter_annotations'] +\n inputs['indel_filter_annotations'])\n inputs['hc_output'] = inputs.get('hc_output', None)\n config = argparse.Namespace(**inputs)\n root = Job.wrapJobFn(run_gatk_germline_pipeline, samples, config)\n Job.Runner.startToil(root, options)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(job, uuid_list, inputs):
for uuid_rg in uuid_list:
uuid_items = uuid_rg.split(',')
uuid = uuid_items[0]
rg_line = None
if len(uuid_items) > 1:
rg_line = uuid_items[1]
job.addChildJobFn(static_dag, uuid, rg_line, inputs)
|
sample_loop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid_list, inputs):\n for uuid_rg in uuid_list:\n uuid_items = uuid_rg.split(',')\n uuid = uuid_items[0]\n rg_line = None\n if len(uuid_items) > 1:\n rg_line = uuid_items[1]\n job.addChildJobFn(static_dag, uuid, rg_line, inputs)\n",
"role": "user"
},
{
"content": "sample_loop",
"role": "assistant"
}
] |
def x(job, uuid, rg_line, inputs):
work_dir = job.fileStore.getLocalTempDir()
inputs.cpu_count = cpu_count()
inputs.maxCores = sys.maxint
args = {'uuid': uuid, 's3_bucket': inputs.s3_bucket, 'sequence_dir':
inputs.sequence_dir, 'dir_suffix': inputs.dir_suffix}
inputs.rg_line = rg_line
inputs.output_dir = 's3://{s3_bucket}/alignment{dir_suffix}'.format(**args)
bwa = job.wrapJobFn(download_reference_files, inputs, [[uuid, [
's3://{s3_bucket}/{sequence_dir}/{uuid}_1.fastq.gz'.format(**args),
's3://{s3_bucket}/{sequence_dir}/{uuid}_2.fastq.gz'.format(**args)]]]
).encapsulate()
adam_preprocess = job.wrapJobFn(static_adam_preprocessing_dag, inputs,
's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),
's3://{s3_bucket}/analysis{dir_suffix}/{uuid}'.format(**args),
suffix='.adam').encapsulate()
gatk_preprocessing_inputs = copy.deepcopy(inputs)
gatk_preprocessing_inputs.suffix = '.gatk'
gatk_preprocessing_inputs.preprocess = True
gatk_preprocessing_inputs.preprocess_only = True
gatk_preprocessing_inputs.output_dir = (
's3://{s3_bucket}/analysis{dir_suffix}'.format(**args))
gatk_preprocess = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),
None, None), gatk_preprocessing_inputs).encapsulate()
adam_call_inputs = inputs
adam_call_inputs.suffix = '.adam'
adam_call_inputs.sorted = True
adam_call_inputs.preprocess = False
adam_call_inputs.run_vqsr = False
adam_call_inputs.joint_genotype = False
adam_call_inputs.output_dir = ('s3://{s3_bucket}/analysis{dir_suffix}'.
format(**args))
gatk_adam_call = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
's3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.adam.bam'.
format(**args), None, None), adam_call_inputs).encapsulate()
gatk_call_inputs = copy.deepcopy(inputs)
gatk_call_inputs.sorted = True
gatk_call_inputs.preprocess = False
gatk_call_inputs.run_vqsr = False
gatk_call_inputs.joint_genotype = False
gatk_call_inputs.output_dir = ('s3://{s3_bucket}/analysis{dir_suffix}'.
format(**args))
gatk_gatk_call = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
'S3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.gatk.bam'.
format(**args), None, None), gatk_call_inputs).encapsulate()
if not inputs.skip_alignment:
job.addChild(bwa)
if inputs.pipeline_to_run == 'adam' or inputs.pipeline_to_run == 'both':
if inputs.skip_preprocessing:
job.addChild(gatk_adam_call)
else:
if inputs.skip_alignment:
job.addChild(adam_preprocess)
else:
bwa.addChild(adam_preprocess)
adam_preprocess.addChild(gatk_adam_call)
if inputs.pipeline_to_run == 'gatk' or inputs.pipeline_to_run == 'both':
if inputs.skip_preprocessing:
job.addChild(gatk_gatk_call)
else:
if inputs.skip_alignment:
job.addChild(gatk_preprocess)
else:
bwa.addChild(gatk_preprocess)
gatk_preprocess.addChild(gatk_gatk_call)
|
static_dag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid, rg_line, inputs):\n work_dir = job.fileStore.getLocalTempDir()\n inputs.cpu_count = cpu_count()\n inputs.maxCores = sys.maxint\n args = {'uuid': uuid, 's3_bucket': inputs.s3_bucket, 'sequence_dir':\n inputs.sequence_dir, 'dir_suffix': inputs.dir_suffix}\n inputs.rg_line = rg_line\n inputs.output_dir = 's3://{s3_bucket}/alignment{dir_suffix}'.format(**args)\n bwa = job.wrapJobFn(download_reference_files, inputs, [[uuid, [\n 's3://{s3_bucket}/{sequence_dir}/{uuid}_1.fastq.gz'.format(**args),\n 's3://{s3_bucket}/{sequence_dir}/{uuid}_2.fastq.gz'.format(**args)]]]\n ).encapsulate()\n adam_preprocess = job.wrapJobFn(static_adam_preprocessing_dag, inputs,\n 's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),\n 's3://{s3_bucket}/analysis{dir_suffix}/{uuid}'.format(**args),\n suffix='.adam').encapsulate()\n gatk_preprocessing_inputs = copy.deepcopy(inputs)\n gatk_preprocessing_inputs.suffix = '.gatk'\n gatk_preprocessing_inputs.preprocess = True\n gatk_preprocessing_inputs.preprocess_only = True\n gatk_preprocessing_inputs.output_dir = (\n 's3://{s3_bucket}/analysis{dir_suffix}'.format(**args))\n gatk_preprocess = job.wrapJobFn(run_gatk_germline_pipeline,\n GermlineSample(uuid,\n 's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),\n None, None), gatk_preprocessing_inputs).encapsulate()\n adam_call_inputs = inputs\n adam_call_inputs.suffix = '.adam'\n adam_call_inputs.sorted = True\n adam_call_inputs.preprocess = False\n adam_call_inputs.run_vqsr = False\n adam_call_inputs.joint_genotype = False\n adam_call_inputs.output_dir = ('s3://{s3_bucket}/analysis{dir_suffix}'.\n format(**args))\n gatk_adam_call = job.wrapJobFn(run_gatk_germline_pipeline,\n GermlineSample(uuid,\n 's3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.adam.bam'.\n format(**args), None, None), adam_call_inputs).encapsulate()\n gatk_call_inputs = copy.deepcopy(inputs)\n gatk_call_inputs.sorted = True\n gatk_call_inputs.preprocess = False\n gatk_call_inputs.run_vqsr = False\n gatk_call_inputs.joint_genotype = False\n gatk_call_inputs.output_dir = ('s3://{s3_bucket}/analysis{dir_suffix}'.\n format(**args))\n gatk_gatk_call = job.wrapJobFn(run_gatk_germline_pipeline,\n GermlineSample(uuid,\n 'S3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.gatk.bam'.\n format(**args), None, None), gatk_call_inputs).encapsulate()\n if not inputs.skip_alignment:\n job.addChild(bwa)\n if inputs.pipeline_to_run == 'adam' or inputs.pipeline_to_run == 'both':\n if inputs.skip_preprocessing:\n job.addChild(gatk_adam_call)\n else:\n if inputs.skip_alignment:\n job.addChild(adam_preprocess)\n else:\n bwa.addChild(adam_preprocess)\n adam_preprocess.addChild(gatk_adam_call)\n if inputs.pipeline_to_run == 'gatk' or inputs.pipeline_to_run == 'both':\n if inputs.skip_preprocessing:\n job.addChild(gatk_gatk_call)\n else:\n if inputs.skip_alignment:\n job.addChild(gatk_preprocess)\n else:\n bwa.addChild(gatk_preprocess)\n gatk_preprocess.addChild(gatk_gatk_call)\n",
"role": "user"
},
{
"content": "static_dag",
"role": "assistant"
}
] |
def x():
if mock_mode():
usage_msg = (
'You have the TOIL_SCRIPTS_MOCK_MODE environment variable set, so this pipeline will run in mock mode. To disable mock mode, set TOIL_SCRIPTS_MOCK_MODE=0'
)
else:
usage_msg = None
parser = argparse.ArgumentParser(usage=usage_msg)
subparsers = parser.add_subparsers(dest='command')
subparsers.add_parser('generate-config', help=
'Generates an editable config in the current working directory.')
subparsers.add_parser('generate-manifest', help=
'Generates an editable manifest in the current working directory.')
subparsers.add_parser('generate', help=
'Generates a config and manifest in the current working directory.')
parser_run = subparsers.add_parser('run', help=
'Runs the ADAM/GATK pipeline')
default_config = 'adam-gatk-mock.config' if mock_mode(
) else 'adam-gatk.config'
default_manifest = 'adam-gatk-mock-manifest.csv' if mock_mode(
) else 'adam-gatk-manifest.csv'
parser_run.add_argument('--config', default=default_config, type=str,
help=
'Path to the (filled in) config file, generated with "generate-config".'
)
parser_run.add_argument('--manifest', default=default_manifest, type=
str, help=
"""Path to the (filled in) manifest file, generated with "generate-manifest".
Default value: "%(default)s"."""
)
Job.Runner.addToilOptions(parser_run)
args = parser.parse_args()
cwd = os.getcwd()
if args.command == 'generate-config' or args.command == 'generate':
generate_file(os.path.join(cwd, default_config), generate_config)
if args.command == 'generate-manifest' or args.command == 'generate':
generate_file(os.path.join(cwd, default_manifest), generate_manifest)
elif args.command == 'run':
require(os.path.exists(args.config),
'{} not found. Please run generate-config'.format(args.config))
if not hasattr(args, 'sample'):
require(os.path.exists(args.manifest),
'{} not found and no samples provided. Please run "generate-manifest"'
.format(args.manifest))
parsed_config = {x.replace('-', '_'): y for x, y in yaml.load(open(
args.config).read()).iteritems()}
inputs = argparse.Namespace(**parsed_config)
uuid_list = []
with open(args.manifest) as f_manifest:
for line in f_manifest:
if not line.isspace() and not line.startswith('#'):
uuid_list.append(line.strip())
inputs.sort = False
if not inputs.dir_suffix:
inputs.dir_suffix = ''
if not inputs.s3_bucket:
inputs.s3_bucket = ''
if inputs.master_ip and inputs.num_nodes:
raise ValueError(
'Exactly one of master_ip (%s) and num_nodes (%d) must be provided.'
% (inputs.master_ip, inputs.num_nodes))
if not hasattr(inputs, 'master_ip') and inputs.num_nodes <= 1:
raise ValueError(
'num_nodes allocates one Spark/HDFS master and n-1 workers, and thus must be greater than 1. %d was passed.'
% inputs.num_nodes)
if (inputs.pipeline_to_run != 'adam' and inputs.pipeline_to_run !=
'gatk' and inputs.pipeline_to_run != 'both'):
raise ValueError(
"pipeline_to_run must be either 'adam', 'gatk', or 'both'. %s was passed."
% inputs.pipeline_to_run)
Job.Runner.startToil(Job.wrapJobFn(sample_loop, uuid_list, inputs),
args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if mock_mode():\n usage_msg = (\n 'You have the TOIL_SCRIPTS_MOCK_MODE environment variable set, so this pipeline will run in mock mode. To disable mock mode, set TOIL_SCRIPTS_MOCK_MODE=0'\n )\n else:\n usage_msg = None\n parser = argparse.ArgumentParser(usage=usage_msg)\n subparsers = parser.add_subparsers(dest='command')\n subparsers.add_parser('generate-config', help=\n 'Generates an editable config in the current working directory.')\n subparsers.add_parser('generate-manifest', help=\n 'Generates an editable manifest in the current working directory.')\n subparsers.add_parser('generate', help=\n 'Generates a config and manifest in the current working directory.')\n parser_run = subparsers.add_parser('run', help=\n 'Runs the ADAM/GATK pipeline')\n default_config = 'adam-gatk-mock.config' if mock_mode(\n ) else 'adam-gatk.config'\n default_manifest = 'adam-gatk-mock-manifest.csv' if mock_mode(\n ) else 'adam-gatk-manifest.csv'\n parser_run.add_argument('--config', default=default_config, type=str,\n help=\n 'Path to the (filled in) config file, generated with \"generate-config\".'\n )\n parser_run.add_argument('--manifest', default=default_manifest, type=\n str, help=\n \"\"\"Path to the (filled in) manifest file, generated with \"generate-manifest\". \nDefault value: \"%(default)s\".\"\"\"\n )\n Job.Runner.addToilOptions(parser_run)\n args = parser.parse_args()\n cwd = os.getcwd()\n if args.command == 'generate-config' or args.command == 'generate':\n generate_file(os.path.join(cwd, default_config), generate_config)\n if args.command == 'generate-manifest' or args.command == 'generate':\n generate_file(os.path.join(cwd, default_manifest), generate_manifest)\n elif args.command == 'run':\n require(os.path.exists(args.config),\n '{} not found. Please run generate-config'.format(args.config))\n if not hasattr(args, 'sample'):\n require(os.path.exists(args.manifest),\n '{} not found and no samples provided. Please run \"generate-manifest\"'\n .format(args.manifest))\n parsed_config = {x.replace('-', '_'): y for x, y in yaml.load(open(\n args.config).read()).iteritems()}\n inputs = argparse.Namespace(**parsed_config)\n uuid_list = []\n with open(args.manifest) as f_manifest:\n for line in f_manifest:\n if not line.isspace() and not line.startswith('#'):\n uuid_list.append(line.strip())\n inputs.sort = False\n if not inputs.dir_suffix:\n inputs.dir_suffix = ''\n if not inputs.s3_bucket:\n inputs.s3_bucket = ''\n if inputs.master_ip and inputs.num_nodes:\n raise ValueError(\n 'Exactly one of master_ip (%s) and num_nodes (%d) must be provided.'\n % (inputs.master_ip, inputs.num_nodes))\n if not hasattr(inputs, 'master_ip') and inputs.num_nodes <= 1:\n raise ValueError(\n 'num_nodes allocates one Spark/HDFS master and n-1 workers, and thus must be greater than 1. %d was passed.'\n % inputs.num_nodes)\n if (inputs.pipeline_to_run != 'adam' and inputs.pipeline_to_run !=\n 'gatk' and inputs.pipeline_to_run != 'both'):\n raise ValueError(\n \"pipeline_to_run must be either 'adam', 'gatk', or 'both'. %s was passed.\"\n % inputs.pipeline_to_run)\n Job.Runner.startToil(Job.wrapJobFn(sample_loop, uuid_list, inputs),\n args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(master_key_path, url):
with open(master_key_path, 'r') as f:
master_key = f.read()
assert len(master_key
) == 32, 'Invalid Key! Must be 32 characters. Key: {}, Length: {}'.format(
master_key, len(master_key))
new_key = hashlib.sha256(master_key + url).digest()
assert len(new_key
) == 32, 'New key is invalid and is not 32 characters: {}'.format(
new_key)
return new_key
|
generate_unique_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(master_key_path, url):\n with open(master_key_path, 'r') as f:\n master_key = f.read()\n assert len(master_key\n ) == 32, 'Invalid Key! Must be 32 characters. Key: {}, Length: {}'.format(\n master_key, len(master_key))\n new_key = hashlib.sha256(master_key + url).digest()\n assert len(new_key\n ) == 32, 'New key is invalid and is not 32 characters: {}'.format(\n new_key)\n return new_key\n",
"role": "user"
},
{
"content": "generate_unique_key",
"role": "assistant"
}
] |
def x(work_dir, url, key_path, name):
file_path = os.path.join(work_dir, name)
key = generate_unique_key(key_path, url)
encoded_key = base64.b64encode(key)
encoded_key_md5 = base64.b64encode(hashlib.md5(key).digest())
h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256'
h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key)
h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(
encoded_key_md5)
try:
subprocess.check_call(['curl', '-fs', '--retry', '5', '-H', h1,
'-H', h2, '-H', h3, url, '-o', file_path])
except OSError:
raise RuntimeError(
'Failed to find "curl". Install via "apt-get install curl"')
assert os.path.exists(file_path)
|
download_encrypted_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(work_dir, url, key_path, name):\n file_path = os.path.join(work_dir, name)\n key = generate_unique_key(key_path, url)\n encoded_key = base64.b64encode(key)\n encoded_key_md5 = base64.b64encode(hashlib.md5(key).digest())\n h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256'\n h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key)\n h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(\n encoded_key_md5)\n try:\n subprocess.check_call(['curl', '-fs', '--retry', '5', '-H', h1,\n '-H', h2, '-H', h3, url, '-o', file_path])\n except OSError:\n raise RuntimeError(\n 'Failed to find \"curl\". Install via \"apt-get install curl\"')\n assert os.path.exists(file_path)\n",
"role": "user"
},
{
"content": "download_encrypted_file",
"role": "assistant"
}
] |
def x(job, work_dir, ids, *args):
paths = OrderedDict()
for name in args:
if not os.path.exists(os.path.join(work_dir, name)):
file_path = job.fileStore.readGlobalFile(ids[name], os.path.
join(work_dir, name))
else:
file_path = os.path.join(work_dir, name)
paths[name] = file_path
if len(args) == 1:
return file_path
return paths.values()
|
return_input_paths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, work_dir, ids, *args):\n paths = OrderedDict()\n for name in args:\n if not os.path.exists(os.path.join(work_dir, name)):\n file_path = job.fileStore.readGlobalFile(ids[name], os.path.\n join(work_dir, name))\n else:\n file_path = os.path.join(work_dir, name)\n paths[name] = file_path\n if len(args) == 1:\n return file_path\n return paths.values()\n",
"role": "user"
},
{
"content": "return_input_paths",
"role": "assistant"
}
] |
def x(work_dir, output_dir, uuid=None, files=list()):
for fname in files:
if uuid is None:
shutil.move(os.path.join(work_dir, fname), os.path.join(
output_dir, fname))
else:
shutil.move(os.path.join(work_dir, fname), os.path.join(
output_dir, '{}.{}'.format(uuid, fname)))
|
move_to_output_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(work_dir, output_dir, uuid=None, files=list()):\n for fname in files:\n if uuid is None:\n shutil.move(os.path.join(work_dir, fname), os.path.join(\n output_dir, fname))\n else:\n shutil.move(os.path.join(work_dir, fname), os.path.join(\n output_dir, '{}.{}'.format(uuid, fname)))\n",
"role": "user"
},
{
"content": "move_to_output_dir",
"role": "assistant"
}
] |
def x(job, input_args):
shared_files = ['ref.fa', 'ref.fa.amb', 'ref.fa.ann', 'ref.fa.bwt',
'ref.fa.pac', 'ref.fa.sa', 'ref.fa.fai']
shared_ids = {}
for fname in shared_files:
url = input_args[fname]
shared_ids[fname] = job.addChildJobFn(download_from_url, url, fname
).rv()
job.addFollowOnJobFn(spawn_batch_jobs, shared_ids, input_args)
|
batch_start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args):\n shared_files = ['ref.fa', 'ref.fa.amb', 'ref.fa.ann', 'ref.fa.bwt',\n 'ref.fa.pac', 'ref.fa.sa', 'ref.fa.fai']\n shared_ids = {}\n for fname in shared_files:\n url = input_args[fname]\n shared_ids[fname] = job.addChildJobFn(download_from_url, url, fname\n ).rv()\n job.addFollowOnJobFn(spawn_batch_jobs, shared_ids, input_args)\n",
"role": "user"
},
{
"content": "batch_start",
"role": "assistant"
}
] |
def x(job, shared_ids, input_args):
samples = []
config = input_args['config']
with open(config, 'r') as f_in:
for line in f_in:
line = line.strip().split(',')
uuid = line[0]
urls = line[1:]
samples.append((uuid, urls))
for sample in samples:
job.addChildJobFn(alignment, shared_ids, input_args, sample, cores=
32, memory='20 G', disk='100 G')
|
spawn_batch_jobs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, shared_ids, input_args):\n samples = []\n config = input_args['config']\n with open(config, 'r') as f_in:\n for line in f_in:\n line = line.strip().split(',')\n uuid = line[0]\n urls = line[1:]\n samples.append((uuid, urls))\n for sample in samples:\n job.addChildJobFn(alignment, shared_ids, input_args, sample, cores=\n 32, memory='20 G', disk='100 G')\n",
"role": "user"
},
{
"content": "spawn_batch_jobs",
"role": "assistant"
}
] |
def x(job, ids, input_args, sample):
uuid, urls = sample
work_dir = job.fileStore.getLocalTempDir()
output_dir = input_args['output_dir']
key_path = input_args['ssec']
cores = multiprocessing.cpu_count()
return_input_paths(job, work_dir, ids, 'ref.fa', 'ref.fa.amb',
'ref.fa.ann', 'ref.fa.bwt', 'ref.fa.pac', 'ref.fa.sa', 'ref.fa.fai')
for url in urls:
download_encrypted_file(work_dir, url, key_path, os.path.basename(url))
docker_cmd = ['docker', 'run', '--rm', '-v', '{}:/data'.format(work_dir)]
bwa_command = ['jvivian/bwa', 'mem', '-R',
'@RG\tID:{0}\tPL:Illumina\tSM:{0}\tLB:KapaHyper'.format(uuid), '-T',
str(0), '-t', str(cores), '/data/ref.fa'] + [os.path.join('/data/',
os.path.basename(x)) for x in urls]
bamsort_command = ['jeltje/biobambam', '/usr/local/bin/bamsort',
'inputformat=sam', 'level=1', 'inputthreads={}'.format(cores),
'outputthreads={}'.format(cores), 'calmdnm=1',
'calmdnmrecompindetonly=1', 'calmdnmreference=/data/ref.fa',
'I=/data/{}'.format(uuid + '.sam')]
with open(os.path.join(work_dir, uuid + '.sam'), 'w') as f_out:
subprocess.check_call(docker_cmd + bwa_command, stdout=f_out)
with open(os.path.join(work_dir, uuid + '.bam'), 'w') as f_out:
subprocess.check_call(docker_cmd + bamsort_command, stdout=f_out)
ids['bam'] = job.fileStore.writeGlobalFile(os.path.join(work_dir, uuid +
'.bam'))
if input_args['s3_dir']:
job.addChildJobFn(upload_bam_to_s3, ids, input_args, sample, cores=
32, memory='20 G', disk='30 G')
if input_args['output_dir']:
move_to_output_dir(work_dir, output_dir, uuid=None, files=[uuid +
'.bam'])
|
alignment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, ids, input_args, sample):\n uuid, urls = sample\n work_dir = job.fileStore.getLocalTempDir()\n output_dir = input_args['output_dir']\n key_path = input_args['ssec']\n cores = multiprocessing.cpu_count()\n return_input_paths(job, work_dir, ids, 'ref.fa', 'ref.fa.amb',\n 'ref.fa.ann', 'ref.fa.bwt', 'ref.fa.pac', 'ref.fa.sa', 'ref.fa.fai')\n for url in urls:\n download_encrypted_file(work_dir, url, key_path, os.path.basename(url))\n docker_cmd = ['docker', 'run', '--rm', '-v', '{}:/data'.format(work_dir)]\n bwa_command = ['jvivian/bwa', 'mem', '-R',\n '@RG\\tID:{0}\\tPL:Illumina\\tSM:{0}\\tLB:KapaHyper'.format(uuid), '-T',\n str(0), '-t', str(cores), '/data/ref.fa'] + [os.path.join('/data/',\n os.path.basename(x)) for x in urls]\n bamsort_command = ['jeltje/biobambam', '/usr/local/bin/bamsort',\n 'inputformat=sam', 'level=1', 'inputthreads={}'.format(cores),\n 'outputthreads={}'.format(cores), 'calmdnm=1',\n 'calmdnmrecompindetonly=1', 'calmdnmreference=/data/ref.fa',\n 'I=/data/{}'.format(uuid + '.sam')]\n with open(os.path.join(work_dir, uuid + '.sam'), 'w') as f_out:\n subprocess.check_call(docker_cmd + bwa_command, stdout=f_out)\n with open(os.path.join(work_dir, uuid + '.bam'), 'w') as f_out:\n subprocess.check_call(docker_cmd + bamsort_command, stdout=f_out)\n ids['bam'] = job.fileStore.writeGlobalFile(os.path.join(work_dir, uuid +\n '.bam'))\n if input_args['s3_dir']:\n job.addChildJobFn(upload_bam_to_s3, ids, input_args, sample, cores=\n 32, memory='20 G', disk='30 G')\n if input_args['output_dir']:\n move_to_output_dir(work_dir, output_dir, uuid=None, files=[uuid +\n '.bam'])\n",
"role": "user"
},
{
"content": "alignment",
"role": "assistant"
}
] |
def x(job, ids, input_args, sample):
uuid, urls = sample
key_path = input_args['ssec']
work_dir = job.fileStore.getLocalTempDir()
s3_dir = input_args['s3_dir']
bucket_name = s3_dir.lstrip('/').split('/')[0]
bucket_dir = '/'.join(s3_dir.lstrip('/').split('/')[1:])
base_url = 'https://s3-us-west-2.amazonaws.com/'
url = os.path.join(base_url, bucket_name, bucket_dir, uuid + '.bam')
job.fileStore.readGlobalFile(ids['bam'], os.path.join(work_dir, uuid +
'.bam'))
with open(os.path.join(work_dir, uuid + '.key'), 'wb') as f_out:
f_out.write(generate_unique_key(key_path, url))
s3am_command = ['s3am', 'upload', '--sse-key-file', os.path.join(
work_dir, uuid + '.key'), 'file://{}'.format(os.path.join(work_dir,
uuid + '.bam')), bucket_name, os.path.join(bucket_dir, uuid + '.bam')]
subprocess.check_call(s3am_command)
|
upload_bam_to_s3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, ids, input_args, sample):\n uuid, urls = sample\n key_path = input_args['ssec']\n work_dir = job.fileStore.getLocalTempDir()\n s3_dir = input_args['s3_dir']\n bucket_name = s3_dir.lstrip('/').split('/')[0]\n bucket_dir = '/'.join(s3_dir.lstrip('/').split('/')[1:])\n base_url = 'https://s3-us-west-2.amazonaws.com/'\n url = os.path.join(base_url, bucket_name, bucket_dir, uuid + '.bam')\n job.fileStore.readGlobalFile(ids['bam'], os.path.join(work_dir, uuid +\n '.bam'))\n with open(os.path.join(work_dir, uuid + '.key'), 'wb') as f_out:\n f_out.write(generate_unique_key(key_path, url))\n s3am_command = ['s3am', 'upload', '--sse-key-file', os.path.join(\n work_dir, uuid + '.key'), 'file://{}'.format(os.path.join(work_dir,\n uuid + '.bam')), bucket_name, os.path.join(bucket_dir, uuid + '.bam')]\n subprocess.check_call(s3am_command)\n",
"role": "user"
},
{
"content": "upload_bam_to_s3",
"role": "assistant"
}
] |
def x(job, uuid, vcf_id, config):
genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +
config.genome_dict.size)
snp_resources = ['hapmap', 'omni', 'dbsnp', 'g1k_snp']
snp_resource_size = sum(getattr(config, resource).size for resource in
snp_resources)
snp_recal_disk = PromisedRequirement(lambda in_vcf, ref_size,
resource_size: 2 * in_vcf.size + ref_size + resource_size, vcf_id,
genome_ref_size, snp_resource_size)
snp_recal = job.wrapJobFn(gatk_variant_recalibrator, 'SNP', vcf_id,
config.genome_fasta, config.genome_fai, config.genome_dict,
get_short_annotations(config.snp_filter_annotations), hapmap=config
.hapmap, omni=config.omni, phase=config.g1k_snp, dbsnp=config.dbsnp,
unsafe_mode=config.unsafe_mode, disk=snp_recal_disk, cores=config.
cores, memory=config.xmx)
indel_resource_size = config.mills.size + config.dbsnp.size
indel_recal_disk = PromisedRequirement(lambda in_vcf, ref_size,
resource_size: 2 * in_vcf.size + ref_size + resource_size, vcf_id,
genome_ref_size, indel_resource_size)
indel_recal = job.wrapJobFn(gatk_variant_recalibrator, 'INDEL', vcf_id,
config.genome_fasta, config.genome_fai, config.genome_dict,
get_short_annotations(config.indel_filter_annotations), dbsnp=
config.dbsnp, mills=config.mills, unsafe_mode=config.unsafe_mode,
disk=indel_recal_disk, cores=config.cores, memory=config.xmx)
apply_snp_recal_disk = PromisedRequirement(lambda in_vcf, recal,
tranche, ref_size: int(2.1 * in_vcf.size + recal.size + tranche.
size + ref_size), vcf_id, snp_recal.rv(0), snp_recal.rv(1),
genome_ref_size)
apply_snp_recal = job.wrapJobFn(gatk_apply_variant_recalibration, 'SNP',
vcf_id, snp_recal.rv(0), snp_recal.rv(1), config.genome_fasta,
config.genome_fai, config.genome_dict, unsafe_mode=config.
unsafe_mode, disk=apply_snp_recal_disk, cores=config.cores, memory=
config.xmx)
apply_indel_recal_disk = PromisedRequirement(lambda in_vcf, recal,
tranche, ref_size: int(2.1 * in_vcf.size + recal.size + tranche.
size + ref_size), vcf_id, indel_recal.rv(0), indel_recal.rv(1),
genome_ref_size)
apply_indel_recal = job.wrapJobFn(gatk_apply_variant_recalibration,
'INDEL', apply_snp_recal.rv(), indel_recal.rv(0), indel_recal.rv(1),
config.genome_fasta, config.genome_fai, config.genome_dict,
unsafe_mode=config.unsafe_mode, disk=apply_indel_recal_disk, cores=
config.cores, memory=config.xmx)
job.addChild(snp_recal)
job.addChild(indel_recal)
snp_recal.addChild(apply_snp_recal)
indel_recal.addChild(apply_indel_recal)
apply_snp_recal.addChild(apply_indel_recal)
output_dir = config.output_dir
output_dir = os.path.join(output_dir, uuid)
vqsr_name = '%s.vqsr%s.vcf' % (uuid, config.suffix)
output_vqsr = job.wrapJobFn(output_file_job, vqsr_name,
apply_indel_recal.rv(), output_dir, s3_key_path=config.ssec, disk=
PromisedRequirement(lambda x: x.size, apply_indel_recal.rv()))
apply_indel_recal.addChild(output_vqsr)
return apply_indel_recal.rv()
|
vqsr_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid, vcf_id, config):\n genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +\n config.genome_dict.size)\n snp_resources = ['hapmap', 'omni', 'dbsnp', 'g1k_snp']\n snp_resource_size = sum(getattr(config, resource).size for resource in\n snp_resources)\n snp_recal_disk = PromisedRequirement(lambda in_vcf, ref_size,\n resource_size: 2 * in_vcf.size + ref_size + resource_size, vcf_id,\n genome_ref_size, snp_resource_size)\n snp_recal = job.wrapJobFn(gatk_variant_recalibrator, 'SNP', vcf_id,\n config.genome_fasta, config.genome_fai, config.genome_dict,\n get_short_annotations(config.snp_filter_annotations), hapmap=config\n .hapmap, omni=config.omni, phase=config.g1k_snp, dbsnp=config.dbsnp,\n unsafe_mode=config.unsafe_mode, disk=snp_recal_disk, cores=config.\n cores, memory=config.xmx)\n indel_resource_size = config.mills.size + config.dbsnp.size\n indel_recal_disk = PromisedRequirement(lambda in_vcf, ref_size,\n resource_size: 2 * in_vcf.size + ref_size + resource_size, vcf_id,\n genome_ref_size, indel_resource_size)\n indel_recal = job.wrapJobFn(gatk_variant_recalibrator, 'INDEL', vcf_id,\n config.genome_fasta, config.genome_fai, config.genome_dict,\n get_short_annotations(config.indel_filter_annotations), dbsnp=\n config.dbsnp, mills=config.mills, unsafe_mode=config.unsafe_mode,\n disk=indel_recal_disk, cores=config.cores, memory=config.xmx)\n apply_snp_recal_disk = PromisedRequirement(lambda in_vcf, recal,\n tranche, ref_size: int(2.1 * in_vcf.size + recal.size + tranche.\n size + ref_size), vcf_id, snp_recal.rv(0), snp_recal.rv(1),\n genome_ref_size)\n apply_snp_recal = job.wrapJobFn(gatk_apply_variant_recalibration, 'SNP',\n vcf_id, snp_recal.rv(0), snp_recal.rv(1), config.genome_fasta,\n config.genome_fai, config.genome_dict, unsafe_mode=config.\n unsafe_mode, disk=apply_snp_recal_disk, cores=config.cores, memory=\n config.xmx)\n apply_indel_recal_disk = PromisedRequirement(lambda in_vcf, recal,\n tranche, ref_size: int(2.1 * in_vcf.size + recal.size + tranche.\n size + ref_size), vcf_id, indel_recal.rv(0), indel_recal.rv(1),\n genome_ref_size)\n apply_indel_recal = job.wrapJobFn(gatk_apply_variant_recalibration,\n 'INDEL', apply_snp_recal.rv(), indel_recal.rv(0), indel_recal.rv(1),\n config.genome_fasta, config.genome_fai, config.genome_dict,\n unsafe_mode=config.unsafe_mode, disk=apply_indel_recal_disk, cores=\n config.cores, memory=config.xmx)\n job.addChild(snp_recal)\n job.addChild(indel_recal)\n snp_recal.addChild(apply_snp_recal)\n indel_recal.addChild(apply_indel_recal)\n apply_snp_recal.addChild(apply_indel_recal)\n output_dir = config.output_dir\n output_dir = os.path.join(output_dir, uuid)\n vqsr_name = '%s.vqsr%s.vcf' % (uuid, config.suffix)\n output_vqsr = job.wrapJobFn(output_file_job, vqsr_name,\n apply_indel_recal.rv(), output_dir, s3_key_path=config.ssec, disk=\n PromisedRequirement(lambda x: x.size, apply_indel_recal.rv()))\n apply_indel_recal.addChild(output_vqsr)\n return apply_indel_recal.rv()\n",
"role": "user"
},
{
"content": "vqsr_pipeline",
"role": "assistant"
}
] |
def x(annotations):
short_name = {'QualByDepth': 'QD', 'FisherStrand': 'FS',
'StrandOddsRatio': 'SOR', 'ReadPosRankSumTest': 'ReadPosRankSum',
'MappingQualityRankSumTest': 'MQRankSum', 'RMSMappingQuality': 'MQ',
'InbreedingCoeff': 'ID'}
short_annotations = []
for annotation in annotations:
if annotation in short_name:
annotation = short_name[annotation]
short_annotations.append(annotation)
return short_annotations
|
get_short_annotations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(annotations):\n short_name = {'QualByDepth': 'QD', 'FisherStrand': 'FS',\n 'StrandOddsRatio': 'SOR', 'ReadPosRankSumTest': 'ReadPosRankSum',\n 'MappingQualityRankSumTest': 'MQRankSum', 'RMSMappingQuality': 'MQ',\n 'InbreedingCoeff': 'ID'}\n short_annotations = []\n for annotation in annotations:\n if annotation in short_name:\n annotation = short_name[annotation]\n short_annotations.append(annotation)\n return short_annotations\n",
"role": "user"
},
{
"content": "get_short_annotations",
"role": "assistant"
}
] |
def x(path_to_config):
samples = []
with open(path_to_config, 'r') as f:
for line in f.readlines():
if not line.isspace():
samples.append(line.strip())
return samples
|
parse_sra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_to_config):\n samples = []\n with open(path_to_config, 'r') as f:\n for line in f.readlines():\n if not line.isspace():\n samples.append(line.strip())\n return samples\n",
"role": "user"
},
{
"content": "parse_sra",
"role": "assistant"
}
] |
def x(work_dir, tar_name, uuid=None, files=None):
with tarfile.open(os.path.join(work_dir, tar_name), 'w:gz') as f_out:
for fname in files:
if uuid:
f_out.add(os.path.join(work_dir, fname), arcname=uuid + '.' +
fname)
else:
f_out.add(os.path.join(work_dir, fname), arcname=fname)
|
tarball_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(work_dir, tar_name, uuid=None, files=None):\n with tarfile.open(os.path.join(work_dir, tar_name), 'w:gz') as f_out:\n for fname in files:\n if uuid:\n f_out.add(os.path.join(work_dir, fname), arcname=uuid + '.' +\n fname)\n else:\n f_out.add(os.path.join(work_dir, fname), arcname=fname)\n",
"role": "user"
},
{
"content": "tarball_files",
"role": "assistant"
}
] |
def x(job, input_args):
samples = parse_sra(input_args['sra'])
job.addChildJobFn(download_and_transfer_sample, input_args, samples,
cores=1, disk='30')
|
start_batch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args):\n samples = parse_sra(input_args['sra'])\n job.addChildJobFn(download_and_transfer_sample, input_args, samples,\n cores=1, disk='30')\n",
"role": "user"
},
{
"content": "start_batch",
"role": "assistant"
}
] |
def x(job, input_args, samples):
if len(samples) > 1:
a = samples[len(samples) / 2:]
b = samples[:len(samples) / 2]
job.addChildJobFn(download_and_transfer_sample, input_args, a, disk
='30G')
job.addChildJobFn(download_and_transfer_sample, input_args, b, disk
='30G')
else:
analysis_id = samples[0]
work_dir = job.fileStore.getLocalTempDir()
sudo = input_args['sudo']
shutil.copy(input_args['dbgap_key'], os.path.join(work_dir,
'dbgap.ngc'))
if input_args['single_end']:
parameters = [analysis_id]
else:
parameters = ['--split-files', analysis_id]
docker_call(tool=
'quay.io/ucsc_cgl/fastq-dump:2.5.7--4577a6c1a3c94adaa0c25dd6c03518ee610433d1'
, work_dir=work_dir, tool_parameters=parameters, sudo=sudo)
shutil.rmtree(os.path.join(work_dir, 'sra'))
sample_name = analysis_id + '.tar.gz'
if input_args['single_end']:
r = [os.path.basename(x) for x in glob.glob(os.path.join(
work_dir, '*.f*'))]
tarball_files(work_dir, tar_name=sample_name, files=r)
else:
r1 = [os.path.basename(x) for x in glob.glob(os.path.join(
work_dir, '*_1*'))]
r2 = [os.path.basename(x) for x in glob.glob(os.path.join(
work_dir, '*_2*'))]
tarball_files(work_dir, tar_name=sample_name, files=r1 + r2)
key_path = input_args['ssec']
s3_dir = input_args['s3_dir']
bucket_name = s3_dir.lstrip('/').split('/')[0]
base_url = 'https://s3-us-west-2.amazonaws.com/'
url = os.path.join(base_url, bucket_name, sample_name)
with open(os.path.join(work_dir, 'temp.key'), 'wb') as f_out:
f_out.write(generate_unique_key(key_path, url))
s3am_command = ['s3am', 'upload', '--sse-key-file', os.path.join(
work_dir, 'temp.key'), 'file://{}'.format(os.path.join(work_dir,
sample_name)), 's3://' + bucket_name + '/']
subprocess.check_call(s3am_command)
|
download_and_transfer_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args, samples):\n if len(samples) > 1:\n a = samples[len(samples) / 2:]\n b = samples[:len(samples) / 2]\n job.addChildJobFn(download_and_transfer_sample, input_args, a, disk\n ='30G')\n job.addChildJobFn(download_and_transfer_sample, input_args, b, disk\n ='30G')\n else:\n analysis_id = samples[0]\n work_dir = job.fileStore.getLocalTempDir()\n sudo = input_args['sudo']\n shutil.copy(input_args['dbgap_key'], os.path.join(work_dir,\n 'dbgap.ngc'))\n if input_args['single_end']:\n parameters = [analysis_id]\n else:\n parameters = ['--split-files', analysis_id]\n docker_call(tool=\n 'quay.io/ucsc_cgl/fastq-dump:2.5.7--4577a6c1a3c94adaa0c25dd6c03518ee610433d1'\n , work_dir=work_dir, tool_parameters=parameters, sudo=sudo)\n shutil.rmtree(os.path.join(work_dir, 'sra'))\n sample_name = analysis_id + '.tar.gz'\n if input_args['single_end']:\n r = [os.path.basename(x) for x in glob.glob(os.path.join(\n work_dir, '*.f*'))]\n tarball_files(work_dir, tar_name=sample_name, files=r)\n else:\n r1 = [os.path.basename(x) for x in glob.glob(os.path.join(\n work_dir, '*_1*'))]\n r2 = [os.path.basename(x) for x in glob.glob(os.path.join(\n work_dir, '*_2*'))]\n tarball_files(work_dir, tar_name=sample_name, files=r1 + r2)\n key_path = input_args['ssec']\n s3_dir = input_args['s3_dir']\n bucket_name = s3_dir.lstrip('/').split('/')[0]\n base_url = 'https://s3-us-west-2.amazonaws.com/'\n url = os.path.join(base_url, bucket_name, sample_name)\n with open(os.path.join(work_dir, 'temp.key'), 'wb') as f_out:\n f_out.write(generate_unique_key(key_path, url))\n s3am_command = ['s3am', 'upload', '--sse-key-file', os.path.join(\n work_dir, 'temp.key'), 'file://{}'.format(os.path.join(work_dir,\n sample_name)), 's3://' + bucket_name + '/']\n subprocess.check_call(s3am_command)\n",
"role": "user"
},
{
"content": "download_and_transfer_sample",
"role": "assistant"
}
] |
def x():
parser = build_parser()
Job.Runner.addToilOptions(parser)
args = parser.parse_args()
inputs = {'sra': args.sra, 'dbgap_key': args.dbgap_key, 'ssec': args.
ssec, 's3_dir': args.s3_dir, 'single_end': args.single_end, 'sudo':
args.sudo}
if args.ssec:
assert os.path.isfile(args.ssec)
if args.sra:
assert os.path.isfile(args.sra)
if args.dbgap_key:
assert os.path.isfile(args.dbgap_key)
Job.Runner.startToil(Job.wrapJobFn(start_batch, inputs), args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = build_parser()\n Job.Runner.addToilOptions(parser)\n args = parser.parse_args()\n inputs = {'sra': args.sra, 'dbgap_key': args.dbgap_key, 'ssec': args.\n ssec, 's3_dir': args.s3_dir, 'single_end': args.single_end, 'sudo':\n args.sudo}\n if args.ssec:\n assert os.path.isfile(args.ssec)\n if args.sra:\n assert os.path.isfile(args.sra)\n if args.dbgap_key:\n assert os.path.isfile(args.dbgap_key)\n Job.Runner.startToil(Job.wrapJobFn(start_batch, inputs), args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(job, filename, file_id, output_dir, s3_key_path=None):
job.fileStore.logToMaster('Writing {} to {}'.format(filename, output_dir))
work_dir = job.fileStore.getLocalTempDir()
filepath = job.fileStore.readGlobalFile(file_id, os.path.join(work_dir,
filename))
if urlparse(output_dir).scheme == 's3':
s3am_upload(job=job, fpath=os.path.join(work_dir, filepath), s3_dir
=output_dir, s3_key_path=s3_key_path)
elif os.path.exists(os.path.join(output_dir, filename)):
job.fileStore.logToMaster('File already exists: {}'.format(filename))
else:
mkdir_p(output_dir)
copy_files([filepath], output_dir)
|
output_file_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, filename, file_id, output_dir, s3_key_path=None):\n job.fileStore.logToMaster('Writing {} to {}'.format(filename, output_dir))\n work_dir = job.fileStore.getLocalTempDir()\n filepath = job.fileStore.readGlobalFile(file_id, os.path.join(work_dir,\n filename))\n if urlparse(output_dir).scheme == 's3':\n s3am_upload(job=job, fpath=os.path.join(work_dir, filepath), s3_dir\n =output_dir, s3_key_path=s3_key_path)\n elif os.path.exists(os.path.join(output_dir, filename)):\n job.fileStore.logToMaster('File already exists: {}'.format(filename))\n else:\n mkdir_p(output_dir)\n copy_files([filepath], output_dir)\n",
"role": "user"
},
{
"content": "output_file_job",
"role": "assistant"
}
] |
def x(job, input_args, name):
work_dir = job.fileStore.getLocalTempDir()
key_path = input_args['ssec']
file_path = os.path.join(work_dir, name)
url = input_args[name]
with open(key_path, 'r') as f:
key = f.read()
if len(key) != 32:
raise RuntimeError('Invalid Key! Must be 32 bytes: {}'.format(key))
key = generate_unique_key(key_path, url)
encoded_key = base64.b64encode(key)
encoded_key_md5 = base64.b64encode(hashlib.md5(key).digest())
h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256'
h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key)
h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(
encoded_key_md5)
try:
subprocess.check_call(['curl', '-fs', '--retry', '5', '-H', h1,
'-H', h2, '-H', h3, url, '-o', file_path])
except OSError:
raise RuntimeError(
'Failed to find "curl". Install via "apt-get install curl"')
assert os.path.exists(file_path)
return job.fileStore.writeGlobalFile(file_path)
|
download_encrypted_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args, name):\n work_dir = job.fileStore.getLocalTempDir()\n key_path = input_args['ssec']\n file_path = os.path.join(work_dir, name)\n url = input_args[name]\n with open(key_path, 'r') as f:\n key = f.read()\n if len(key) != 32:\n raise RuntimeError('Invalid Key! Must be 32 bytes: {}'.format(key))\n key = generate_unique_key(key_path, url)\n encoded_key = base64.b64encode(key)\n encoded_key_md5 = base64.b64encode(hashlib.md5(key).digest())\n h1 = 'x-amz-server-side-encryption-customer-algorithm:AES256'\n h2 = 'x-amz-server-side-encryption-customer-key:{}'.format(encoded_key)\n h3 = 'x-amz-server-side-encryption-customer-key-md5:{}'.format(\n encoded_key_md5)\n try:\n subprocess.check_call(['curl', '-fs', '--retry', '5', '-H', h1,\n '-H', h2, '-H', h3, url, '-o', file_path])\n except OSError:\n raise RuntimeError(\n 'Failed to find \"curl\". Install via \"apt-get install curl\"')\n assert os.path.exists(file_path)\n return job.fileStore.writeGlobalFile(file_path)\n",
"role": "user"
},
{
"content": "download_encrypted_file",
"role": "assistant"
}
] |
def x(job, url):
work_dir = job.fileStore.getLocalTempDir()
file_path = os.path.join(work_dir, os.path.basename(url))
if not os.path.exists(file_path):
if url.startswith('s3:'):
download_from_s3_url(file_path, url)
else:
try:
subprocess.check_call(['curl', '-fs', '--retry', '5',
'--create-dir', url, '-o', file_path])
except OSError:
raise RuntimeError(
'Failed to find "curl". Install via "apt-get install curl"'
)
assert os.path.exists(file_path)
return job.fileStore.writeGlobalFile(file_path)
|
download_from_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, url):\n work_dir = job.fileStore.getLocalTempDir()\n file_path = os.path.join(work_dir, os.path.basename(url))\n if not os.path.exists(file_path):\n if url.startswith('s3:'):\n download_from_s3_url(file_path, url)\n else:\n try:\n subprocess.check_call(['curl', '-fs', '--retry', '5',\n '--create-dir', url, '-o', file_path])\n except OSError:\n raise RuntimeError(\n 'Failed to find \"curl\". Install via \"apt-get install curl\"'\n )\n assert os.path.exists(file_path)\n return job.fileStore.writeGlobalFile(file_path)\n",
"role": "user"
},
{
"content": "download_from_url",
"role": "assistant"
}
] |
def x(work_dir, tool_parameters, tool, java_opts=None, outfile=None, sudo=False
):
base_docker_call = 'docker run --log-driver=none --rm -v {}:/data'.format(
work_dir).split()
if sudo:
base_docker_call = ['sudo'] + base_docker_call
if java_opts:
base_docker_call = base_docker_call + ['-e', 'JAVA_OPTS={}'.format(
java_opts)]
try:
if outfile:
subprocess.check_call(base_docker_call + [tool] +
tool_parameters, stdout=outfile)
else:
subprocess.check_call(base_docker_call + [tool] + tool_parameters)
except subprocess.CalledProcessError:
raise RuntimeError(
'docker command returned a non-zero exit status. Check error logs.'
)
except OSError:
raise RuntimeError('docker not found on system. Install on all nodes.')
|
docker_call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(work_dir, tool_parameters, tool, java_opts=None, outfile=None, sudo=False\n ):\n base_docker_call = 'docker run --log-driver=none --rm -v {}:/data'.format(\n work_dir).split()\n if sudo:\n base_docker_call = ['sudo'] + base_docker_call\n if java_opts:\n base_docker_call = base_docker_call + ['-e', 'JAVA_OPTS={}'.format(\n java_opts)]\n try:\n if outfile:\n subprocess.check_call(base_docker_call + [tool] +\n tool_parameters, stdout=outfile)\n else:\n subprocess.check_call(base_docker_call + [tool] + tool_parameters)\n except subprocess.CalledProcessError:\n raise RuntimeError(\n 'docker command returned a non-zero exit status. Check error logs.'\n )\n except OSError:\n raise RuntimeError('docker not found on system. Install on all nodes.')\n",
"role": "user"
},
{
"content": "docker_call",
"role": "assistant"
}
] |
def x(work_dir, output_dir, uuid=None, files=list()):
for fname in files:
if uuid is None:
shutil.copy(os.path.join(work_dir, fname), os.path.join(
output_dir, fname))
else:
shutil.copy(os.path.join(work_dir, fname), os.path.join(
output_dir, '{}.{}'.format(uuid, fname)))
|
copy_to_output_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(work_dir, output_dir, uuid=None, files=list()):\n for fname in files:\n if uuid is None:\n shutil.copy(os.path.join(work_dir, fname), os.path.join(\n output_dir, fname))\n else:\n shutil.copy(os.path.join(work_dir, fname), os.path.join(\n output_dir, '{}.{}'.format(uuid, fname)))\n",
"role": "user"
},
{
"content": "copy_to_output_dir",
"role": "assistant"
}
] |
def x(job, input_args):
for program in ['curl', 'docker', 'unzip', 'samtools']:
assert which(program
), 'Program "{}" must be installed on every node.'.format(program)
job.addChildJobFn(download_shared_files, input_args)
|
program_checks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args):\n for program in ['curl', 'docker', 'unzip', 'samtools']:\n assert which(program\n ), 'Program \"{}\" must be installed on every node.'.format(program)\n job.addChildJobFn(download_shared_files, input_args)\n",
"role": "user"
},
{
"content": "program_checks",
"role": "assistant"
}
] |
def x(job, input_args):
shared_files = ['unc.bed', 'hg19.transcripts.fa', 'composite_exons.bed',
'normalize.pl', 'rsem_ref.zip', 'ebwt.zip', 'chromosomes.zip']
shared_ids = {}
for f in shared_files:
shared_ids[f] = job.addChildJobFn(download_from_url, input_args[f]).rv(
)
if input_args['config'] or input_args['config_fastq']:
job.addFollowOnJobFn(parse_config_file, shared_ids, input_args)
else:
sample_path = input_args['input']
uuid = os.path.splitext(os.path.basename(sample_path))[0]
sample = uuid, sample_path
job.addFollowOnJobFn(download_sample, shared_ids, input_args, sample)
|
download_shared_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, input_args):\n shared_files = ['unc.bed', 'hg19.transcripts.fa', 'composite_exons.bed',\n 'normalize.pl', 'rsem_ref.zip', 'ebwt.zip', 'chromosomes.zip']\n shared_ids = {}\n for f in shared_files:\n shared_ids[f] = job.addChildJobFn(download_from_url, input_args[f]).rv(\n )\n if input_args['config'] or input_args['config_fastq']:\n job.addFollowOnJobFn(parse_config_file, shared_ids, input_args)\n else:\n sample_path = input_args['input']\n uuid = os.path.splitext(os.path.basename(sample_path))[0]\n sample = uuid, sample_path\n job.addFollowOnJobFn(download_sample, shared_ids, input_args, sample)\n",
"role": "user"
},
{
"content": "download_shared_files",
"role": "assistant"
}
] |
def x(job, ids, input_args):
samples = []
config = input_args['config']
with open(config, 'r') as f:
for line in f.readlines():
if not line.isspace():
sample = line.strip().split(',')
samples.append(sample)
for sample in samples:
job.addChildJobFn(download_sample, ids, input_args, sample)
|
parse_config_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, ids, input_args):\n samples = []\n config = input_args['config']\n with open(config, 'r') as f:\n for line in f.readlines():\n if not line.isspace():\n sample = line.strip().split(',')\n samples.append(sample)\n for sample in samples:\n job.addChildJobFn(download_sample, ids, input_args, sample)\n",
"role": "user"
},
{
"content": "parse_config_file",
"role": "assistant"
}
] |
def x(job, ids, input_args, sample):
if len(sample) == 2:
uuid, sample_location = sample
url1, url2 = None, None
else:
uuid, url1, url2 = sample
sample_location = None
sample_input = dict(input_args)
sample_input['uuid'] = uuid
sample_input['sample.tar'] = sample_location
if sample_input['output_dir']:
sample_input['output_dir'] = os.path.join(input_args['output_dir'],
uuid)
sample_input['cpu_count'] = multiprocessing.cpu_count()
job_vars = sample_input, ids
if sample_input['input']:
ids['sample.tar'] = job.fileStore.writeGlobalFile(os.path.abspath(
sample_location))
elif sample_input['config_fastq']:
ids['R1.fastq'] = job.fileStore.writeGlobalFile(urlparse(url1).path)
ids['R2.fastq'] = job.fileStore.writeGlobalFile(urlparse(url2).path)
elif sample_input['ssec']:
ids['sample.tar'] = job.addChildJobFn(download_encrypted_file,
sample_input, 'sample.tar', disk='25G').rv()
else:
ids['sample.tar'] = job.addChildJobFn(download_from_url,
sample_input['sample.tar'], disk='25G').rv()
job.addFollowOnJobFn(static_dag_launchpoint, job_vars)
|
download_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, ids, input_args, sample):\n if len(sample) == 2:\n uuid, sample_location = sample\n url1, url2 = None, None\n else:\n uuid, url1, url2 = sample\n sample_location = None\n sample_input = dict(input_args)\n sample_input['uuid'] = uuid\n sample_input['sample.tar'] = sample_location\n if sample_input['output_dir']:\n sample_input['output_dir'] = os.path.join(input_args['output_dir'],\n uuid)\n sample_input['cpu_count'] = multiprocessing.cpu_count()\n job_vars = sample_input, ids\n if sample_input['input']:\n ids['sample.tar'] = job.fileStore.writeGlobalFile(os.path.abspath(\n sample_location))\n elif sample_input['config_fastq']:\n ids['R1.fastq'] = job.fileStore.writeGlobalFile(urlparse(url1).path)\n ids['R2.fastq'] = job.fileStore.writeGlobalFile(urlparse(url2).path)\n elif sample_input['ssec']:\n ids['sample.tar'] = job.addChildJobFn(download_encrypted_file,\n sample_input, 'sample.tar', disk='25G').rv()\n else:\n ids['sample.tar'] = job.addChildJobFn(download_from_url,\n sample_input['sample.tar'], disk='25G').rv()\n job.addFollowOnJobFn(static_dag_launchpoint, job_vars)\n",
"role": "user"
},
{
"content": "download_sample",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
if input_args['config_fastq']:
cores = input_args['cpu_count']
a = job.wrapJobFn(mapsplice, job_vars, cores=cores, disk='130G'
).encapsulate()
else:
a = job.wrapJobFn(merge_fastqs, job_vars, disk='70 G').encapsulate()
b = job.wrapJobFn(consolidate_output, job_vars, a.rv())
job.addChild(a)
a.addChild(b)
|
static_dag_launchpoint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n if input_args['config_fastq']:\n cores = input_args['cpu_count']\n a = job.wrapJobFn(mapsplice, job_vars, cores=cores, disk='130G'\n ).encapsulate()\n else:\n a = job.wrapJobFn(merge_fastqs, job_vars, disk='70 G').encapsulate()\n b = job.wrapJobFn(consolidate_output, job_vars, a.rv())\n job.addChild(a)\n a.addChild(b)\n",
"role": "user"
},
{
"content": "static_dag_launchpoint",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
cores = input_args['cpu_count']
single_end_reads = input_args['single_end_reads']
sample = return_input_paths(job, work_dir, ids, 'sample.tar')
subprocess.check_call(['tar', '-xvf', sample, '-C', work_dir])
os.remove(os.path.join(work_dir, 'sample.tar'))
if single_end_reads:
files = sorted(glob.glob(os.path.join(work_dir, '*')))
with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:
subprocess.check_call(['zcat'] + files, stdout=f1)
ids['R1.fastq'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'R1.fastq'))
else:
r1_files = sorted(glob.glob(os.path.join(work_dir, '*R1*')))
r2_files = sorted(glob.glob(os.path.join(work_dir, '*R2*')))
with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:
p1 = subprocess.Popen(['zcat'] + r1_files, stdout=f1)
with open(os.path.join(work_dir, 'R2.fastq'), 'w') as f2:
p2 = subprocess.Popen(['zcat'] + r2_files, stdout=f2)
p1.wait()
p2.wait()
ids['R1.fastq'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'R1.fastq'))
ids['R2.fastq'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'R2.fastq'))
job.fileStore.deleteGlobalFile(ids['sample.tar'])
return job.addChildJobFn(mapsplice, job_vars, cores=cores, disk='130 G'
).rv()
|
merge_fastqs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n cores = input_args['cpu_count']\n single_end_reads = input_args['single_end_reads']\n sample = return_input_paths(job, work_dir, ids, 'sample.tar')\n subprocess.check_call(['tar', '-xvf', sample, '-C', work_dir])\n os.remove(os.path.join(work_dir, 'sample.tar'))\n if single_end_reads:\n files = sorted(glob.glob(os.path.join(work_dir, '*')))\n with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:\n subprocess.check_call(['zcat'] + files, stdout=f1)\n ids['R1.fastq'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'R1.fastq'))\n else:\n r1_files = sorted(glob.glob(os.path.join(work_dir, '*R1*')))\n r2_files = sorted(glob.glob(os.path.join(work_dir, '*R2*')))\n with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:\n p1 = subprocess.Popen(['zcat'] + r1_files, stdout=f1)\n with open(os.path.join(work_dir, 'R2.fastq'), 'w') as f2:\n p2 = subprocess.Popen(['zcat'] + r2_files, stdout=f2)\n p1.wait()\n p2.wait()\n ids['R1.fastq'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'R1.fastq'))\n ids['R2.fastq'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'R2.fastq'))\n job.fileStore.deleteGlobalFile(ids['sample.tar'])\n return job.addChildJobFn(mapsplice, job_vars, cores=cores, disk='130 G'\n ).rv()\n",
"role": "user"
},
{
"content": "merge_fastqs",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
cores = input_args['cpu_count']
sudo = input_args['sudo']
single_end_reads = input_args['single_end_reads']
files_to_delete = ['R1.fastq']
return_input_paths(job, work_dir, ids, 'ebwt.zip', 'chromosomes.zip')
if single_end_reads:
return_input_paths(job, work_dir, ids, 'R1.fastq')
else:
return_input_paths(job, work_dir, ids, 'R1.fastq', 'R2.fastq')
files_to_delete.extend(['R2.fastq'])
for fname in ['chromosomes.zip', 'ebwt.zip']:
subprocess.check_call(['unzip', '-o', os.path.join(work_dir, fname),
'-d', work_dir])
parameters = ['-p', str(cores), '-s', '25', '--bam', '--min-map-len',
'50', '-x', '/data/ebwt', '-c', '/data/chromosomes', '-1',
'/data/R1.fastq', '-o', '/data']
if not single_end_reads:
parameters.extend(['-2', '/data/R2.fastq'])
docker_call(tool=
'quay.io/ucsc_cgl/mapsplice:2.1.8--dd5ac549b95eb3e5d166a5e310417ef13651994e'
, tool_parameters=parameters, work_dir=work_dir, sudo=sudo)
for fname in ['alignments.bam', 'stats.txt']:
ids[fname] = job.fileStore.writeGlobalFile(os.path.join(work_dir,
fname))
for fname in files_to_delete:
job.fileStore.deleteGlobalFile(ids[fname])
if input_args['upload_bam_to_s3'] and input_args['s3_dir']:
job.addChildJobFn(upload_bam_to_s3, job_vars)
output_ids = job.addChildJobFn(add_read_groups, job_vars, disk='30 G').rv()
return output_ids
|
mapsplice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n cores = input_args['cpu_count']\n sudo = input_args['sudo']\n single_end_reads = input_args['single_end_reads']\n files_to_delete = ['R1.fastq']\n return_input_paths(job, work_dir, ids, 'ebwt.zip', 'chromosomes.zip')\n if single_end_reads:\n return_input_paths(job, work_dir, ids, 'R1.fastq')\n else:\n return_input_paths(job, work_dir, ids, 'R1.fastq', 'R2.fastq')\n files_to_delete.extend(['R2.fastq'])\n for fname in ['chromosomes.zip', 'ebwt.zip']:\n subprocess.check_call(['unzip', '-o', os.path.join(work_dir, fname),\n '-d', work_dir])\n parameters = ['-p', str(cores), '-s', '25', '--bam', '--min-map-len',\n '50', '-x', '/data/ebwt', '-c', '/data/chromosomes', '-1',\n '/data/R1.fastq', '-o', '/data']\n if not single_end_reads:\n parameters.extend(['-2', '/data/R2.fastq'])\n docker_call(tool=\n 'quay.io/ucsc_cgl/mapsplice:2.1.8--dd5ac549b95eb3e5d166a5e310417ef13651994e'\n , tool_parameters=parameters, work_dir=work_dir, sudo=sudo)\n for fname in ['alignments.bam', 'stats.txt']:\n ids[fname] = job.fileStore.writeGlobalFile(os.path.join(work_dir,\n fname))\n for fname in files_to_delete:\n job.fileStore.deleteGlobalFile(ids[fname])\n if input_args['upload_bam_to_s3'] and input_args['s3_dir']:\n job.addChildJobFn(upload_bam_to_s3, job_vars)\n output_ids = job.addChildJobFn(add_read_groups, job_vars, disk='30 G').rv()\n return output_ids\n",
"role": "user"
},
{
"content": "mapsplice",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
sudo = input_args['sudo']
alignments = return_input_paths(job, work_dir, ids, 'alignments.bam')
output = os.path.join(work_dir, 'rg_alignments.bam')
parameter = ['AddOrReplaceReadGroups', 'INPUT={}'.format(docker_path(
alignments)), 'OUTPUT={}'.format(docker_path(output)), 'RGSM={}'.
format(input_args['uuid']), 'RGID={}'.format(input_args['uuid']),
'RGLB=TruSeq', 'RGPL=illumina', 'RGPU=barcode',
'VALIDATION_STRINGENCY=SILENT']
docker_call(tool=
'quay.io/ucsc_cgl/picardtools:1.95--dd5ac549b95eb3e5d166a5e310417ef13651994e'
, tool_parameters=parameter, work_dir=work_dir, sudo=sudo)
ids['rg_alignments.bam'] = job.fileStore.writeGlobalFile(output)
return job.addChildJobFn(bamsort_and_index, job_vars, disk='30 G').rv()
|
add_read_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n sudo = input_args['sudo']\n alignments = return_input_paths(job, work_dir, ids, 'alignments.bam')\n output = os.path.join(work_dir, 'rg_alignments.bam')\n parameter = ['AddOrReplaceReadGroups', 'INPUT={}'.format(docker_path(\n alignments)), 'OUTPUT={}'.format(docker_path(output)), 'RGSM={}'.\n format(input_args['uuid']), 'RGID={}'.format(input_args['uuid']),\n 'RGLB=TruSeq', 'RGPL=illumina', 'RGPU=barcode',\n 'VALIDATION_STRINGENCY=SILENT']\n docker_call(tool=\n 'quay.io/ucsc_cgl/picardtools:1.95--dd5ac549b95eb3e5d166a5e310417ef13651994e'\n , tool_parameters=parameter, work_dir=work_dir, sudo=sudo)\n ids['rg_alignments.bam'] = job.fileStore.writeGlobalFile(output)\n return job.addChildJobFn(bamsort_and_index, job_vars, disk='30 G').rv()\n",
"role": "user"
},
{
"content": "add_read_groups",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
sudo = input_args['sudo']
rg_alignments = return_input_paths(job, work_dir, ids, 'rg_alignments.bam')
output = os.path.join(work_dir, 'sorted.bam')
cmd1 = ['sort', docker_path(rg_alignments), docker_path('sorted')]
cmd2 = ['index', docker_path(output)]
docker_call(tool=
'quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e'
, tool_parameters=cmd1, work_dir=work_dir, sudo=sudo)
docker_call(tool=
'quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e'
, tool_parameters=cmd2, work_dir=work_dir, sudo=sudo)
ids['sorted.bam'] = job.fileStore.writeGlobalFile(output)
ids['sorted.bam.bai'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'sorted.bam.bai'))
output_ids = job.addChildJobFn(sort_bam_by_reference, job_vars, disk='50 G'
).rv()
rseq_id = job.addChildJobFn(rseq_qc, job_vars, disk='20 G').rv()
return rseq_id, output_ids
|
bamsort_and_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n sudo = input_args['sudo']\n rg_alignments = return_input_paths(job, work_dir, ids, 'rg_alignments.bam')\n output = os.path.join(work_dir, 'sorted.bam')\n cmd1 = ['sort', docker_path(rg_alignments), docker_path('sorted')]\n cmd2 = ['index', docker_path(output)]\n docker_call(tool=\n 'quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e'\n , tool_parameters=cmd1, work_dir=work_dir, sudo=sudo)\n docker_call(tool=\n 'quay.io/ucsc_cgl/samtools:0.1.19--dd5ac549b95eb3e5d166a5e310417ef13651994e'\n , tool_parameters=cmd2, work_dir=work_dir, sudo=sudo)\n ids['sorted.bam'] = job.fileStore.writeGlobalFile(output)\n ids['sorted.bam.bai'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'sorted.bam.bai'))\n output_ids = job.addChildJobFn(sort_bam_by_reference, job_vars, disk='50 G'\n ).rv()\n rseq_id = job.addChildJobFn(rseq_qc, job_vars, disk='20 G').rv()\n return rseq_id, output_ids\n",
"role": "user"
},
{
"content": "bamsort_and_index",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
uuid = input_args['uuid']
sudo = input_args['sudo']
return_input_paths(job, work_dir, ids, 'sorted.bam', 'sorted.bam.bai')
docker_call(tool='jvivian/qc', tool_parameters=[
'/opt/cgl-docker-lib/RseqQC_v2.sh', '/data/sorted.bam', uuid],
work_dir=work_dir, sudo=sudo)
output_files = [f for f in glob.glob(os.path.join(work_dir, '*')) if
'sorted.bam' not in f]
tarball_files(work_dir, tar_name='qc.tar.gz', uuid=None, files=output_files
)
return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'qc.tar.gz'))
|
rseq_qc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n uuid = input_args['uuid']\n sudo = input_args['sudo']\n return_input_paths(job, work_dir, ids, 'sorted.bam', 'sorted.bam.bai')\n docker_call(tool='jvivian/qc', tool_parameters=[\n '/opt/cgl-docker-lib/RseqQC_v2.sh', '/data/sorted.bam', uuid],\n work_dir=work_dir, sudo=sudo)\n output_files = [f for f in glob.glob(os.path.join(work_dir, '*')) if \n 'sorted.bam' not in f]\n tarball_files(work_dir, tar_name='qc.tar.gz', uuid=None, files=output_files\n )\n return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'qc.tar.gz'))\n",
"role": "user"
},
{
"content": "rseq_qc",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
sorted_bam, sorted_bai = return_input_paths(job, work_dir, ids,
'sorted.bam', 'sorted.bam.bai')
output = os.path.join(work_dir, 'sort_by_ref.bam')
ref_seqs = []
handle = subprocess.Popen(['samtools', 'view', '-H', sorted_bam],
stdout=subprocess.PIPE).stdout
for line in handle:
if line.startswith('@SQ'):
tmp = line.split('\t')
chrom = tmp[1].split(':')[1]
ref_seqs.append(chrom)
handle.close()
for chrom in ref_seqs:
cmd_view = ['samtools', 'view', '-b', sorted_bam, chrom]
cmd_sort = ['samtools', 'sort', '-m', '3000000000', '-n', '-', os.
path.join(work_dir, chrom)]
p1 = subprocess.Popen(cmd_view, stdout=subprocess.PIPE)
subprocess.check_call(cmd_sort, stdin=p1.stdout)
sorted_files = [(os.path.join(work_dir, chrom) + '.bam') for chrom in
ref_seqs]
cmd = ['samtools', 'cat', '-o', output] + sorted_files
subprocess.check_call(cmd)
ids['sort_by_ref.bam'] = job.fileStore.writeGlobalFile(output)
rsem_id = job.addChildJobFn(transcriptome, job_vars, disk='30 G',
memory='30 G').rv()
exon_id = job.addChildJobFn(exon_count, job_vars, disk='30 G').rv()
return exon_id, rsem_id
|
sort_bam_by_reference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n sorted_bam, sorted_bai = return_input_paths(job, work_dir, ids,\n 'sorted.bam', 'sorted.bam.bai')\n output = os.path.join(work_dir, 'sort_by_ref.bam')\n ref_seqs = []\n handle = subprocess.Popen(['samtools', 'view', '-H', sorted_bam],\n stdout=subprocess.PIPE).stdout\n for line in handle:\n if line.startswith('@SQ'):\n tmp = line.split('\\t')\n chrom = tmp[1].split(':')[1]\n ref_seqs.append(chrom)\n handle.close()\n for chrom in ref_seqs:\n cmd_view = ['samtools', 'view', '-b', sorted_bam, chrom]\n cmd_sort = ['samtools', 'sort', '-m', '3000000000', '-n', '-', os.\n path.join(work_dir, chrom)]\n p1 = subprocess.Popen(cmd_view, stdout=subprocess.PIPE)\n subprocess.check_call(cmd_sort, stdin=p1.stdout)\n sorted_files = [(os.path.join(work_dir, chrom) + '.bam') for chrom in\n ref_seqs]\n cmd = ['samtools', 'cat', '-o', output] + sorted_files\n subprocess.check_call(cmd)\n ids['sort_by_ref.bam'] = job.fileStore.writeGlobalFile(output)\n rsem_id = job.addChildJobFn(transcriptome, job_vars, disk='30 G',\n memory='30 G').rv()\n exon_id = job.addChildJobFn(exon_count, job_vars, disk='30 G').rv()\n return exon_id, rsem_id\n",
"role": "user"
},
{
"content": "sort_bam_by_reference",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
uuid = input_args['uuid']
sudo = input_args['sudo']
sort_by_ref, normalize_pl, composite_bed = return_input_paths(job,
work_dir, ids, 'sort_by_ref.bam', 'normalize.pl', 'composite_exons.bed'
)
tool = 'jvivian/bedtools'
cmd_1 = ['coverage', '-split', '-abam', docker_path(sort_by_ref), '-b',
docker_path(composite_bed)]
cmd_2 = ['perl', os.path.join(work_dir, 'normalize.pl'), sort_by_ref,
composite_bed]
popen_docker = ['docker', 'run', '-v', '{}:/data'.format(work_dir), tool]
if sudo:
popen_docker = ['sudo'] + popen_docker
p = subprocess.Popen(popen_docker + cmd_1, stdout=subprocess.PIPE)
with open(os.path.join(work_dir, 'exon_quant'), 'w') as f:
subprocess.check_call(cmd_2, stdin=p.stdout, stdout=f)
p1 = subprocess.Popen(['cat', os.path.join(work_dir, 'exon_quant')],
stdout=subprocess.PIPE)
p2 = subprocess.Popen(['tr', '":"', '"\t"'], stdin=p1.stdout, stdout=
subprocess.PIPE)
p3 = subprocess.Popen(['tr', '"-"', '"\t"'], stdin=p2.stdout, stdout=
subprocess.PIPE)
with open(os.path.join(work_dir, 'exon_quant.bed'), 'w') as f:
subprocess.check_call(['cut', '-f1-4'], stdin=p3.stdout, stdout=f)
output_files = ['exon_quant.bed', 'exon_quant']
tarball_files(work_dir, tar_name='exon.tar.gz', uuid=uuid, files=
output_files)
return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'exon.tar.gz'))
|
exon_count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n uuid = input_args['uuid']\n sudo = input_args['sudo']\n sort_by_ref, normalize_pl, composite_bed = return_input_paths(job,\n work_dir, ids, 'sort_by_ref.bam', 'normalize.pl', 'composite_exons.bed'\n )\n tool = 'jvivian/bedtools'\n cmd_1 = ['coverage', '-split', '-abam', docker_path(sort_by_ref), '-b',\n docker_path(composite_bed)]\n cmd_2 = ['perl', os.path.join(work_dir, 'normalize.pl'), sort_by_ref,\n composite_bed]\n popen_docker = ['docker', 'run', '-v', '{}:/data'.format(work_dir), tool]\n if sudo:\n popen_docker = ['sudo'] + popen_docker\n p = subprocess.Popen(popen_docker + cmd_1, stdout=subprocess.PIPE)\n with open(os.path.join(work_dir, 'exon_quant'), 'w') as f:\n subprocess.check_call(cmd_2, stdin=p.stdout, stdout=f)\n p1 = subprocess.Popen(['cat', os.path.join(work_dir, 'exon_quant')],\n stdout=subprocess.PIPE)\n p2 = subprocess.Popen(['tr', '\":\"', '\"\\t\"'], stdin=p1.stdout, stdout=\n subprocess.PIPE)\n p3 = subprocess.Popen(['tr', '\"-\"', '\"\\t\"'], stdin=p2.stdout, stdout=\n subprocess.PIPE)\n with open(os.path.join(work_dir, 'exon_quant.bed'), 'w') as f:\n subprocess.check_call(['cut', '-f1-4'], stdin=p3.stdout, stdout=f)\n output_files = ['exon_quant.bed', 'exon_quant']\n tarball_files(work_dir, tar_name='exon.tar.gz', uuid=uuid, files=\n output_files)\n return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'exon.tar.gz'))\n",
"role": "user"
},
{
"content": "exon_count",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
sudo = input_args['sudo']
sort_by_ref, bed, hg19_fa = return_input_paths(job, work_dir, ids,
'sort_by_ref.bam', 'unc.bed', 'hg19.transcripts.fa')
output = os.path.join(work_dir, 'transcriptome.bam')
parameters = ['sam-xlate', '--bed', docker_path(bed), '--in',
docker_path(sort_by_ref), '--order', docker_path(hg19_fa), '--out',
docker_path(output), '--xgtag', '--reverse']
docker_call(tool=
'quay.io/ucsc_cgl/ubu:1.2--02806964cdf74bf5c39411b236b4c4e36d026843',
tool_parameters=parameters, work_dir=work_dir, java_opts='-Xmx30g',
sudo=sudo)
ids['transcriptome.bam'] = job.fileStore.writeGlobalFile(output)
return job.addChildJobFn(filter_bam, job_vars, memory='30G', disk='30G'
).rv()
|
transcriptome
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n sudo = input_args['sudo']\n sort_by_ref, bed, hg19_fa = return_input_paths(job, work_dir, ids,\n 'sort_by_ref.bam', 'unc.bed', 'hg19.transcripts.fa')\n output = os.path.join(work_dir, 'transcriptome.bam')\n parameters = ['sam-xlate', '--bed', docker_path(bed), '--in',\n docker_path(sort_by_ref), '--order', docker_path(hg19_fa), '--out',\n docker_path(output), '--xgtag', '--reverse']\n docker_call(tool=\n 'quay.io/ucsc_cgl/ubu:1.2--02806964cdf74bf5c39411b236b4c4e36d026843',\n tool_parameters=parameters, work_dir=work_dir, java_opts='-Xmx30g',\n sudo=sudo)\n ids['transcriptome.bam'] = job.fileStore.writeGlobalFile(output)\n return job.addChildJobFn(filter_bam, job_vars, memory='30G', disk='30G'\n ).rv()\n",
"role": "user"
},
{
"content": "transcriptome",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
cores = input_args['cpu_count']
sudo = input_args['sudo']
transcriptome_bam = return_input_paths(job, work_dir, ids,
'transcriptome.bam')
output = os.path.join(work_dir, 'filtered.bam')
parameters = ['sam-filter', '--strip-indels', '--max-insert', '1000',
'--mapq', '1', '--in', docker_path(transcriptome_bam), '--out',
docker_path(output)]
docker_call(tool=
'quay.io/ucsc_cgl/ubu:1.2--02806964cdf74bf5c39411b236b4c4e36d026843',
tool_parameters=parameters, work_dir=os.path.dirname(output),
java_opts='-Xmx30g', sudo=sudo)
ids['filtered.bam'] = job.fileStore.writeGlobalFile(output)
return job.addChildJobFn(rsem, job_vars, cores=cores, disk='30 G').rv()
|
filter_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n cores = input_args['cpu_count']\n sudo = input_args['sudo']\n transcriptome_bam = return_input_paths(job, work_dir, ids,\n 'transcriptome.bam')\n output = os.path.join(work_dir, 'filtered.bam')\n parameters = ['sam-filter', '--strip-indels', '--max-insert', '1000',\n '--mapq', '1', '--in', docker_path(transcriptome_bam), '--out',\n docker_path(output)]\n docker_call(tool=\n 'quay.io/ucsc_cgl/ubu:1.2--02806964cdf74bf5c39411b236b4c4e36d026843',\n tool_parameters=parameters, work_dir=os.path.dirname(output),\n java_opts='-Xmx30g', sudo=sudo)\n ids['filtered.bam'] = job.fileStore.writeGlobalFile(output)\n return job.addChildJobFn(rsem, job_vars, cores=cores, disk='30 G').rv()\n",
"role": "user"
},
{
"content": "filter_bam",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
cpus = input_args['cpu_count']
sudo = input_args['sudo']
single_end_reads = input_args['single_end_reads']
filtered_bam, rsem_ref = return_input_paths(job, work_dir, ids,
'filtered.bam', 'rsem_ref.zip')
subprocess.check_call(['unzip', '-o', os.path.join(work_dir,
'rsem_ref.zip'), '-d', work_dir])
output_prefix = 'rsem'
parameters = ['--quiet', '--no-qualities', '-p', str(cpus),
'--forward-prob', '0.5', '--seed-length', '25',
'--fragment-length-mean', '-1.0', '--bam', docker_path(filtered_bam)]
if not single_end_reads:
parameters.extend(['--paired-end'])
parameters.extend(['/data/rsem_ref/hg19_M_rCRS_ref', output_prefix])
docker_call(tool=
'quay.io/ucsc_cgl/rsem:1.2.25--4e8d1b31d4028f464b3409c6558fb9dfcad73f88'
, tool_parameters=parameters, work_dir=work_dir, sudo=sudo)
os.rename(os.path.join(work_dir, output_prefix + '.genes.results'), os.
path.join(work_dir, 'rsem_gene.tab'))
os.rename(os.path.join(work_dir, output_prefix + '.isoforms.results'),
os.path.join(work_dir, 'rsem_isoform.tab'))
ids['rsem_gene.tab'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'rsem_gene.tab'))
ids['rsem_isoform.tab'] = job.fileStore.writeGlobalFile(os.path.join(
work_dir, 'rsem_isoform.tab'))
return job.addChildJobFn(rsem_postprocess, job_vars).rv()
|
rsem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n cpus = input_args['cpu_count']\n sudo = input_args['sudo']\n single_end_reads = input_args['single_end_reads']\n filtered_bam, rsem_ref = return_input_paths(job, work_dir, ids,\n 'filtered.bam', 'rsem_ref.zip')\n subprocess.check_call(['unzip', '-o', os.path.join(work_dir,\n 'rsem_ref.zip'), '-d', work_dir])\n output_prefix = 'rsem'\n parameters = ['--quiet', '--no-qualities', '-p', str(cpus),\n '--forward-prob', '0.5', '--seed-length', '25',\n '--fragment-length-mean', '-1.0', '--bam', docker_path(filtered_bam)]\n if not single_end_reads:\n parameters.extend(['--paired-end'])\n parameters.extend(['/data/rsem_ref/hg19_M_rCRS_ref', output_prefix])\n docker_call(tool=\n 'quay.io/ucsc_cgl/rsem:1.2.25--4e8d1b31d4028f464b3409c6558fb9dfcad73f88'\n , tool_parameters=parameters, work_dir=work_dir, sudo=sudo)\n os.rename(os.path.join(work_dir, output_prefix + '.genes.results'), os.\n path.join(work_dir, 'rsem_gene.tab'))\n os.rename(os.path.join(work_dir, output_prefix + '.isoforms.results'),\n os.path.join(work_dir, 'rsem_isoform.tab'))\n ids['rsem_gene.tab'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'rsem_gene.tab'))\n ids['rsem_isoform.tab'] = job.fileStore.writeGlobalFile(os.path.join(\n work_dir, 'rsem_isoform.tab'))\n return job.addChildJobFn(rsem_postprocess, job_vars).rv()\n",
"role": "user"
},
{
"content": "rsem",
"role": "assistant"
}
] |
def x(job, job_vars, output_ids):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
uuid = input_args['uuid']
rseq_id, exon_id, rsem_id = flatten(output_ids)
qc_tar = job.fileStore.readGlobalFile(rseq_id, os.path.join(work_dir,
'qc.tar.gz'))
exon_tar = job.fileStore.readGlobalFile(exon_id, os.path.join(work_dir,
'exon.tar.gz'))
rsem_tar = job.fileStore.readGlobalFile(rsem_id, os.path.join(work_dir,
'rsem.tar.gz'))
out_tar = os.path.join(work_dir, uuid + '.tar.gz')
with tarfile.open(os.path.join(work_dir, out_tar), 'w:gz') as f_out:
for tar in [rsem_tar, exon_tar, qc_tar]:
with tarfile.open(tar, 'r') as f_in:
for tarinfo in f_in:
with closing(f_in.extractfile(tarinfo)) as f_in_file:
if tar == qc_tar:
tarinfo.name = os.path.join(uuid, 'rseq_qc', os
.path.basename(tarinfo.name))
else:
tarinfo.name = os.path.join(uuid, os.path.
basename(tarinfo.name))
f_out.addfile(tarinfo, fileobj=f_in_file)
if input_args['output_dir']:
output_dir = input_args['output_dir']
mkdir_p(output_dir)
copy_to_output_dir(work_dir, output_dir, uuid=None, files=[uuid +
'.tar.gz'])
ids['uuid.tar.gz'] = job.fileStore.writeGlobalFile(out_tar)
if input_args['s3_dir']:
job.addChildJobFn(upload_output_to_s3, job_vars)
|
consolidate_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars, output_ids):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n uuid = input_args['uuid']\n rseq_id, exon_id, rsem_id = flatten(output_ids)\n qc_tar = job.fileStore.readGlobalFile(rseq_id, os.path.join(work_dir,\n 'qc.tar.gz'))\n exon_tar = job.fileStore.readGlobalFile(exon_id, os.path.join(work_dir,\n 'exon.tar.gz'))\n rsem_tar = job.fileStore.readGlobalFile(rsem_id, os.path.join(work_dir,\n 'rsem.tar.gz'))\n out_tar = os.path.join(work_dir, uuid + '.tar.gz')\n with tarfile.open(os.path.join(work_dir, out_tar), 'w:gz') as f_out:\n for tar in [rsem_tar, exon_tar, qc_tar]:\n with tarfile.open(tar, 'r') as f_in:\n for tarinfo in f_in:\n with closing(f_in.extractfile(tarinfo)) as f_in_file:\n if tar == qc_tar:\n tarinfo.name = os.path.join(uuid, 'rseq_qc', os\n .path.basename(tarinfo.name))\n else:\n tarinfo.name = os.path.join(uuid, os.path.\n basename(tarinfo.name))\n f_out.addfile(tarinfo, fileobj=f_in_file)\n if input_args['output_dir']:\n output_dir = input_args['output_dir']\n mkdir_p(output_dir)\n copy_to_output_dir(work_dir, output_dir, uuid=None, files=[uuid +\n '.tar.gz'])\n ids['uuid.tar.gz'] = job.fileStore.writeGlobalFile(out_tar)\n if input_args['s3_dir']:\n job.addChildJobFn(upload_output_to_s3, job_vars)\n",
"role": "user"
},
{
"content": "consolidate_output",
"role": "assistant"
}
] |
def x(job, job_vars):
import boto
from boto.s3.key import Key
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
uuid = input_args['uuid']
s3_dir = input_args['s3_dir']
bucket_name = s3_dir.split('/')[0]
bucket_dir = '/'.join(s3_dir.split('/')[1:])
uuid_tar = return_input_paths(job, work_dir, ids, 'uuid.tar.gz')
conn = boto.connect_s3()
bucket = conn.get_bucket(bucket_name)
k = Key(bucket)
k.key = os.path.join(bucket_dir, uuid + '.tar.gz')
k.set_contents_from_filename(uuid_tar)
|
upload_output_to_s3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n import boto\n from boto.s3.key import Key\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n uuid = input_args['uuid']\n s3_dir = input_args['s3_dir']\n bucket_name = s3_dir.split('/')[0]\n bucket_dir = '/'.join(s3_dir.split('/')[1:])\n uuid_tar = return_input_paths(job, work_dir, ids, 'uuid.tar.gz')\n conn = boto.connect_s3()\n bucket = conn.get_bucket(bucket_name)\n k = Key(bucket)\n k.key = os.path.join(bucket_dir, uuid + '.tar.gz')\n k.set_contents_from_filename(uuid_tar)\n",
"role": "user"
},
{
"content": "upload_output_to_s3",
"role": "assistant"
}
] |
def x(job, job_vars):
input_args, ids = job_vars
work_dir = job.fileStore.getLocalTempDir()
uuid = input_args['uuid']
job.fileStore.readGlobalFile(ids['alignments.bam'], os.path.join(
work_dir, 'alignments.bam'))
bam_path = os.path.join(work_dir, 'alignments.bam')
sample_name = uuid + '.bam'
s3_dir = input_args['s3_dir']
bucket_name = s3_dir.split('/')[0]
bucket_dir = os.path.join('/'.join(s3_dir.split('/')[1:]), 'bam_files')
s3am_command = ['s3am', 'upload', 'file://{}'.format(bam_path), os.path
.join('s3://', bucket_name, bucket_dir, sample_name)]
subprocess.check_call(s3am_command)
|
upload_bam_to_s3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, job_vars):\n input_args, ids = job_vars\n work_dir = job.fileStore.getLocalTempDir()\n uuid = input_args['uuid']\n job.fileStore.readGlobalFile(ids['alignments.bam'], os.path.join(\n work_dir, 'alignments.bam'))\n bam_path = os.path.join(work_dir, 'alignments.bam')\n sample_name = uuid + '.bam'\n s3_dir = input_args['s3_dir']\n bucket_name = s3_dir.split('/')[0]\n bucket_dir = os.path.join('/'.join(s3_dir.split('/')[1:]), 'bam_files')\n s3am_command = ['s3am', 'upload', 'file://{}'.format(bam_path), os.path\n .join('s3://', bucket_name, bucket_dir, sample_name)]\n subprocess.check_call(s3am_command)\n",
"role": "user"
},
{
"content": "upload_bam_to_s3",
"role": "assistant"
}
] |
def x():
parser = build_parser()
Job.Runner.addToilOptions(parser)
args = parser.parse_args()
inputs = {'config': args.config, 'config_fastq': args.config_fastq,
'input': args.input, 'unc.bed': args.unc, 'hg19.transcripts.fa':
args.fasta, 'composite_exons.bed': args.composite_exons,
'normalize.pl': args.normalize, 'output_dir': args.output_dir,
'rsem_ref.zip': args.rsem_ref, 'chromosomes.zip': args.chromosomes,
'ebwt.zip': args.ebwt, 'ssec': args.ssec, 's3_dir': args.s3_dir,
'sudo': args.sudo, 'single_end_reads': args.single_end_reads,
'upload_bam_to_s3': args.upload_bam_to_s3, 'uuid': None,
'sample.tar': None, 'cpu_count': None}
Job.Runner.startToil(Job.wrapJobFn(download_shared_files, inputs), args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = build_parser()\n Job.Runner.addToilOptions(parser)\n args = parser.parse_args()\n inputs = {'config': args.config, 'config_fastq': args.config_fastq,\n 'input': args.input, 'unc.bed': args.unc, 'hg19.transcripts.fa':\n args.fasta, 'composite_exons.bed': args.composite_exons,\n 'normalize.pl': args.normalize, 'output_dir': args.output_dir,\n 'rsem_ref.zip': args.rsem_ref, 'chromosomes.zip': args.chromosomes,\n 'ebwt.zip': args.ebwt, 'ssec': args.ssec, 's3_dir': args.s3_dir,\n 'sudo': args.sudo, 'single_end_reads': args.single_end_reads,\n 'upload_bam_to_s3': args.upload_bam_to_s3, 'uuid': None,\n 'sample.tar': None, 'cpu_count': None}\n Job.Runner.startToil(Job.wrapJobFn(download_shared_files, inputs), args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(master_ip, filename, spark_on_toil):
master_ip = master_ip.actual
ssh_call = ['ssh', '-o', 'StrictHostKeyChecking=no', master_ip]
if spark_on_toil:
output = check_output(ssh_call + ['docker', 'ps'])
container_id = next(line.split()[0] for line in output.splitlines() if
'apache-hadoop-master' in line)
ssh_call += ['docker', 'exec', container_id]
try:
check_call(ssh_call + ['hdfs', 'dfs', '-rm', '-r', '/' + filename])
except:
pass
|
remove_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(master_ip, filename, spark_on_toil):\n master_ip = master_ip.actual\n ssh_call = ['ssh', '-o', 'StrictHostKeyChecking=no', master_ip]\n if spark_on_toil:\n output = check_output(ssh_call + ['docker', 'ps'])\n container_id = next(line.split()[0] for line in output.splitlines() if\n 'apache-hadoop-master' in line)\n ssh_call += ['docker', 'exec', container_id]\n try:\n check_call(ssh_call + ['hdfs', 'dfs', '-rm', '-r', '/' + filename])\n except:\n pass\n",
"role": "user"
},
{
"content": "remove_file",
"role": "assistant"
}
] |
def x(job, master_ip, inputs, known_snps, bam, hdfs_snps, hdfs_bam):
log.info('Downloading known sites file %s to %s.', known_snps, hdfs_snps)
call_conductor(job, master_ip, known_snps, hdfs_snps, memory=inputs.memory)
log.info('Downloading input BAM %s to %s.', bam, hdfs_bam)
call_conductor(job, master_ip, bam, hdfs_bam, memory=inputs.memory)
|
download_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, inputs, known_snps, bam, hdfs_snps, hdfs_bam):\n log.info('Downloading known sites file %s to %s.', known_snps, hdfs_snps)\n call_conductor(job, master_ip, known_snps, hdfs_snps, memory=inputs.memory)\n log.info('Downloading input BAM %s to %s.', bam, hdfs_bam)\n call_conductor(job, master_ip, bam, hdfs_bam, memory=inputs.memory)\n",
"role": "user"
},
{
"content": "download_data",
"role": "assistant"
}
] |
def x(job, master_ip, inputs, in_file, in_snps, adam_file, adam_snps,
spark_on_toil):
log.info('Converting input BAM to ADAM.')
call_adam(job, master_ip, ['transform', in_file, adam_file], memory=
inputs.memory, run_local=inputs.run_local, native_adam_path=inputs.
native_adam_path)
in_file_name = in_file.split('/')[-1]
remove_file(master_ip, in_file_name, spark_on_toil)
log.info('Converting known sites VCF to ADAM.')
call_adam(job, master_ip, ['vcf2adam', '-only_variants', in_snps,
adam_snps], memory=inputs.memory, run_local=inputs.run_local,
native_adam_path=inputs.native_adam_path)
in_snps_name = in_snps.split('/')[-1]
remove_file(master_ip, in_snps_name, spark_on_toil)
|
adam_convert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, inputs, in_file, in_snps, adam_file, adam_snps,\n spark_on_toil):\n log.info('Converting input BAM to ADAM.')\n call_adam(job, master_ip, ['transform', in_file, adam_file], memory=\n inputs.memory, run_local=inputs.run_local, native_adam_path=inputs.\n native_adam_path)\n in_file_name = in_file.split('/')[-1]\n remove_file(master_ip, in_file_name, spark_on_toil)\n log.info('Converting known sites VCF to ADAM.')\n call_adam(job, master_ip, ['vcf2adam', '-only_variants', in_snps,\n adam_snps], memory=inputs.memory, run_local=inputs.run_local,\n native_adam_path=inputs.native_adam_path)\n in_snps_name = in_snps.split('/')[-1]\n remove_file(master_ip, in_snps_name, spark_on_toil)\n",
"role": "user"
},
{
"content": "adam_convert",
"role": "assistant"
}
] |
def x(job, master_ip, inputs, in_file, snp_file, hdfs_dir, out_file,
spark_on_toil):
log.info('Marking duplicate reads.')
call_adam(job, master_ip, ['transform', in_file, hdfs_dir +
'/mkdups.adam', '-aligned_read_predicate', '-limit_projection',
'-mark_duplicate_reads'], memory=inputs.memory, run_local=inputs.
run_local, native_adam_path=inputs.native_adam_path)
in_file_name = in_file.split('/')[-1]
remove_file(master_ip, in_file_name + '*', spark_on_toil)
log.info('Realigning INDELs.')
call_adam(job, master_ip, ['transform', hdfs_dir + '/mkdups.adam',
hdfs_dir + '/ri.adam', '-realign_indels'], memory=inputs.memory,
run_local=inputs.run_local, native_adam_path=inputs.native_adam_path)
remove_file(master_ip, hdfs_dir + '/mkdups.adam*', spark_on_toil)
log.info('Recalibrating base quality scores.')
call_adam(job, master_ip, ['transform', hdfs_dir + '/ri.adam', hdfs_dir +
'/bqsr.adam', '-recalibrate_base_qualities', '-known_snps',
snp_file], memory=inputs.memory, run_local=inputs.run_local,
native_adam_path=inputs.native_adam_path)
remove_file(master_ip, 'ri.adam*', spark_on_toil)
log.info('Sorting reads and saving a single BAM file.')
call_adam(job, master_ip, ['transform', hdfs_dir + '/bqsr.adam',
out_file, '-sort_reads', '-single'], memory=inputs.memory,
run_local=inputs.run_local, native_adam_path=inputs.native_adam_path)
remove_file(master_ip, 'bqsr.adam*', spark_on_toil)
return out_file
|
adam_transform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, inputs, in_file, snp_file, hdfs_dir, out_file,\n spark_on_toil):\n log.info('Marking duplicate reads.')\n call_adam(job, master_ip, ['transform', in_file, hdfs_dir +\n '/mkdups.adam', '-aligned_read_predicate', '-limit_projection',\n '-mark_duplicate_reads'], memory=inputs.memory, run_local=inputs.\n run_local, native_adam_path=inputs.native_adam_path)\n in_file_name = in_file.split('/')[-1]\n remove_file(master_ip, in_file_name + '*', spark_on_toil)\n log.info('Realigning INDELs.')\n call_adam(job, master_ip, ['transform', hdfs_dir + '/mkdups.adam', \n hdfs_dir + '/ri.adam', '-realign_indels'], memory=inputs.memory,\n run_local=inputs.run_local, native_adam_path=inputs.native_adam_path)\n remove_file(master_ip, hdfs_dir + '/mkdups.adam*', spark_on_toil)\n log.info('Recalibrating base quality scores.')\n call_adam(job, master_ip, ['transform', hdfs_dir + '/ri.adam', hdfs_dir +\n '/bqsr.adam', '-recalibrate_base_qualities', '-known_snps',\n snp_file], memory=inputs.memory, run_local=inputs.run_local,\n native_adam_path=inputs.native_adam_path)\n remove_file(master_ip, 'ri.adam*', spark_on_toil)\n log.info('Sorting reads and saving a single BAM file.')\n call_adam(job, master_ip, ['transform', hdfs_dir + '/bqsr.adam',\n out_file, '-sort_reads', '-single'], memory=inputs.memory,\n run_local=inputs.run_local, native_adam_path=inputs.native_adam_path)\n remove_file(master_ip, 'bqsr.adam*', spark_on_toil)\n return out_file\n",
"role": "user"
},
{
"content": "adam_transform",
"role": "assistant"
}
] |
def x(job, master_ip, inputs, hdfs_name, upload_name, spark_on_toil):
if mock_mode():
truncate_file(master_ip, hdfs_name, spark_on_toil)
log.info('Uploading output BAM %s to %s.', hdfs_name, upload_name)
call_conductor(job, master_ip, hdfs_name, upload_name, memory=inputs.memory
)
remove_file(master_ip, hdfs_name, spark_on_toil)
|
upload_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, inputs, hdfs_name, upload_name, spark_on_toil):\n if mock_mode():\n truncate_file(master_ip, hdfs_name, spark_on_toil)\n log.info('Uploading output BAM %s to %s.', hdfs_name, upload_name)\n call_conductor(job, master_ip, hdfs_name, upload_name, memory=inputs.memory\n )\n remove_file(master_ip, hdfs_name, spark_on_toil)\n",
"role": "user"
},
{
"content": "upload_data",
"role": "assistant"
}
] |
def x(job, master_ip, inputs, spark_on_toil):
master_ip = MasterAddress(master_ip)
bam_name = inputs.sample.split('://')[-1].split('/')[-1]
sample_name = '.'.join(os.path.splitext(bam_name)[:-1])
hdfs_subdir = sample_name + '-dir'
if inputs.run_local:
inputs.local_dir = job.fileStore.getLocalTempDir()
if inputs.native_adam_path is None:
hdfs_dir = '/data/'
else:
hdfs_dir = inputs.local_dir
else:
inputs.local_dir = None
hdfs_dir = 'hdfs://{0}:{1}/{2}'.format(master_ip, HDFS_MASTER_PORT,
hdfs_subdir)
try:
hdfs_prefix = hdfs_dir + '/' + sample_name
hdfs_bam = hdfs_dir + '/' + bam_name
hdfs_snps = hdfs_dir + '/' + inputs.dbsnp.split('://')[-1].split('/')[
-1]
if not inputs.run_local:
download_data(job, master_ip, inputs, inputs.dbsnp, inputs.
sample, hdfs_snps, hdfs_bam)
else:
copy_files([inputs.sample, inputs.dbsnp], inputs.local_dir)
adam_input = hdfs_prefix + '.adam'
adam_snps = hdfs_dir + '/snps.var.adam'
adam_convert(job, master_ip, inputs, hdfs_bam, hdfs_snps,
adam_input, adam_snps, spark_on_toil)
adam_output = hdfs_prefix + '.processed.bam'
adam_transform(job, master_ip, inputs, adam_input, adam_snps,
hdfs_dir, adam_output, spark_on_toil)
out_file = (inputs.output_dir + '/' + sample_name + inputs.suffix +
'.bam')
if not inputs.run_local:
upload_data(job, master_ip, inputs, adam_output, out_file,
spark_on_toil)
else:
local_adam_output = '%s/%s.processed.bam' % (inputs.local_dir,
sample_name)
move_files([local_adam_output], inputs.output_dir)
remove_file(master_ip, hdfs_subdir, spark_on_toil)
except:
remove_file(master_ip, hdfs_subdir, spark_on_toil)
raise
|
download_run_and_upload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, master_ip, inputs, spark_on_toil):\n master_ip = MasterAddress(master_ip)\n bam_name = inputs.sample.split('://')[-1].split('/')[-1]\n sample_name = '.'.join(os.path.splitext(bam_name)[:-1])\n hdfs_subdir = sample_name + '-dir'\n if inputs.run_local:\n inputs.local_dir = job.fileStore.getLocalTempDir()\n if inputs.native_adam_path is None:\n hdfs_dir = '/data/'\n else:\n hdfs_dir = inputs.local_dir\n else:\n inputs.local_dir = None\n hdfs_dir = 'hdfs://{0}:{1}/{2}'.format(master_ip, HDFS_MASTER_PORT,\n hdfs_subdir)\n try:\n hdfs_prefix = hdfs_dir + '/' + sample_name\n hdfs_bam = hdfs_dir + '/' + bam_name\n hdfs_snps = hdfs_dir + '/' + inputs.dbsnp.split('://')[-1].split('/')[\n -1]\n if not inputs.run_local:\n download_data(job, master_ip, inputs, inputs.dbsnp, inputs.\n sample, hdfs_snps, hdfs_bam)\n else:\n copy_files([inputs.sample, inputs.dbsnp], inputs.local_dir)\n adam_input = hdfs_prefix + '.adam'\n adam_snps = hdfs_dir + '/snps.var.adam'\n adam_convert(job, master_ip, inputs, hdfs_bam, hdfs_snps,\n adam_input, adam_snps, spark_on_toil)\n adam_output = hdfs_prefix + '.processed.bam'\n adam_transform(job, master_ip, inputs, adam_input, adam_snps,\n hdfs_dir, adam_output, spark_on_toil)\n out_file = (inputs.output_dir + '/' + sample_name + inputs.suffix +\n '.bam')\n if not inputs.run_local:\n upload_data(job, master_ip, inputs, adam_output, out_file,\n spark_on_toil)\n else:\n local_adam_output = '%s/%s.processed.bam' % (inputs.local_dir,\n sample_name)\n move_files([local_adam_output], inputs.output_dir)\n remove_file(master_ip, hdfs_subdir, spark_on_toil)\n except:\n remove_file(master_ip, hdfs_subdir, spark_on_toil)\n raise\n",
"role": "user"
},
{
"content": "download_run_and_upload",
"role": "assistant"
}
] |
def x(job, inputs, sample, output_dir, suffix=''):
inputs.sample = sample
inputs.output_dir = output_dir
inputs.suffix = suffix
if inputs.master_ip is not None or inputs.run_local:
if not inputs.run_local and inputs.master_ip == 'auto':
spark_on_toil = False
scale_up = job.wrapJobFn(scale_external_spark_cluster, 1)
job.addChild(scale_up)
spark_work = job.wrapJobFn(download_run_and_upload, inputs.
master_ip, inputs, spark_on_toil)
scale_up.addChild(spark_work)
scale_down = job.wrapJobFn(scale_external_spark_cluster, -1)
spark_work.addChild(scale_down)
else:
spark_on_toil = False
spark_work = job.wrapJobFn(download_run_and_upload, inputs.
master_ip, inputs, spark_on_toil)
job.addChild(spark_work)
else:
spark_on_toil = True
cores = multiprocessing.cpu_count()
master_ip = spawn_spark_cluster(job, False, inputs.num_nodes - 1,
cores=cores, memory=inputs.memory)
spark_work = job.wrapJobFn(download_run_and_upload, master_ip,
inputs, spark_on_toil)
job.addChild(spark_work)
|
static_adam_preprocessing_dag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, sample, output_dir, suffix=''):\n inputs.sample = sample\n inputs.output_dir = output_dir\n inputs.suffix = suffix\n if inputs.master_ip is not None or inputs.run_local:\n if not inputs.run_local and inputs.master_ip == 'auto':\n spark_on_toil = False\n scale_up = job.wrapJobFn(scale_external_spark_cluster, 1)\n job.addChild(scale_up)\n spark_work = job.wrapJobFn(download_run_and_upload, inputs.\n master_ip, inputs, spark_on_toil)\n scale_up.addChild(spark_work)\n scale_down = job.wrapJobFn(scale_external_spark_cluster, -1)\n spark_work.addChild(scale_down)\n else:\n spark_on_toil = False\n spark_work = job.wrapJobFn(download_run_and_upload, inputs.\n master_ip, inputs, spark_on_toil)\n job.addChild(spark_work)\n else:\n spark_on_toil = True\n cores = multiprocessing.cpu_count()\n master_ip = spawn_spark_cluster(job, False, inputs.num_nodes - 1,\n cores=cores, memory=inputs.memory)\n spark_work = job.wrapJobFn(download_run_and_upload, master_ip,\n inputs, spark_on_toil)\n job.addChild(spark_work)\n",
"role": "user"
},
{
"content": "static_adam_preprocessing_dag",
"role": "assistant"
}
] |
def x(job, uuid, vcf_id, config):
job.fileStore.logToMaster('Running Hard Filter on {}'.format(uuid))
genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +
config.genome_dict.size)
select_variants_disk = PromisedRequirement(lambda vcf, ref_size: 2 *
vcf.size + ref_size, vcf_id, genome_ref_size)
select_snps = job.wrapJobFn(gatk_select_variants, 'SNP', vcf_id, config
.genome_fasta, config.genome_fai, config.genome_dict, memory=config
.xmx, disk=select_variants_disk)
snp_filter_disk = PromisedRequirement(lambda vcf, ref_size: 2 * vcf.
size + ref_size, select_snps.rv(), genome_ref_size)
snp_filter = job.wrapJobFn(gatk_variant_filtration, select_snps.rv(),
config.snp_filter_name, config.snp_filter_expression, config.
genome_fasta, config.genome_fai, config.genome_dict, memory=config.
xmx, disk=snp_filter_disk)
select_indels = job.wrapJobFn(gatk_select_variants, 'INDEL', vcf_id,
config.genome_fasta, config.genome_fai, config.genome_dict, memory=
config.xmx, disk=select_variants_disk)
indel_filter_disk = PromisedRequirement(lambda vcf, ref_size: 2 * vcf.
size + ref_size, select_indels.rv(), genome_ref_size)
indel_filter = job.wrapJobFn(gatk_variant_filtration, select_indels.rv(
), config.indel_filter_name, config.indel_filter_expression, config
.genome_fasta, config.genome_fai, config.genome_dict, memory=config
.xmx, disk=indel_filter_disk)
combine_vcfs_disk = PromisedRequirement(lambda vcf1, vcf2, ref_size: 2 *
(vcf1.size + vcf2.size) + ref_size, indel_filter.rv(), snp_filter.
rv(), genome_ref_size)
combine_vcfs = job.wrapJobFn(gatk_combine_variants, {'SNPs': snp_filter
.rv(), 'INDELs': indel_filter.rv()}, config.genome_fasta, config.
genome_fai, config.genome_dict, merge_option='UNSORTED', memory=
config.xmx, disk=combine_vcfs_disk)
job.addChild(select_snps)
job.addChild(select_indels)
select_snps.addChild(snp_filter)
snp_filter.addChild(combine_vcfs)
select_indels.addChild(indel_filter)
indel_filter.addChild(combine_vcfs)
output_dir = os.path.join(config.output_dir, uuid)
output_filename = '%s.hard_filter%s.vcf' % (uuid, config.suffix)
output_vcf = job.wrapJobFn(output_file_job, output_filename,
combine_vcfs.rv(), output_dir, s3_key_path=config.ssec, disk=
PromisedRequirement(lambda x: x.size, combine_vcfs.rv()))
combine_vcfs.addChild(output_vcf)
return combine_vcfs.rv()
|
hard_filter_pipeline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, uuid, vcf_id, config):\n job.fileStore.logToMaster('Running Hard Filter on {}'.format(uuid))\n genome_ref_size = (config.genome_fasta.size + config.genome_fai.size +\n config.genome_dict.size)\n select_variants_disk = PromisedRequirement(lambda vcf, ref_size: 2 *\n vcf.size + ref_size, vcf_id, genome_ref_size)\n select_snps = job.wrapJobFn(gatk_select_variants, 'SNP', vcf_id, config\n .genome_fasta, config.genome_fai, config.genome_dict, memory=config\n .xmx, disk=select_variants_disk)\n snp_filter_disk = PromisedRequirement(lambda vcf, ref_size: 2 * vcf.\n size + ref_size, select_snps.rv(), genome_ref_size)\n snp_filter = job.wrapJobFn(gatk_variant_filtration, select_snps.rv(),\n config.snp_filter_name, config.snp_filter_expression, config.\n genome_fasta, config.genome_fai, config.genome_dict, memory=config.\n xmx, disk=snp_filter_disk)\n select_indels = job.wrapJobFn(gatk_select_variants, 'INDEL', vcf_id,\n config.genome_fasta, config.genome_fai, config.genome_dict, memory=\n config.xmx, disk=select_variants_disk)\n indel_filter_disk = PromisedRequirement(lambda vcf, ref_size: 2 * vcf.\n size + ref_size, select_indels.rv(), genome_ref_size)\n indel_filter = job.wrapJobFn(gatk_variant_filtration, select_indels.rv(\n ), config.indel_filter_name, config.indel_filter_expression, config\n .genome_fasta, config.genome_fai, config.genome_dict, memory=config\n .xmx, disk=indel_filter_disk)\n combine_vcfs_disk = PromisedRequirement(lambda vcf1, vcf2, ref_size: 2 *\n (vcf1.size + vcf2.size) + ref_size, indel_filter.rv(), snp_filter.\n rv(), genome_ref_size)\n combine_vcfs = job.wrapJobFn(gatk_combine_variants, {'SNPs': snp_filter\n .rv(), 'INDELs': indel_filter.rv()}, config.genome_fasta, config.\n genome_fai, config.genome_dict, merge_option='UNSORTED', memory=\n config.xmx, disk=combine_vcfs_disk)\n job.addChild(select_snps)\n job.addChild(select_indels)\n select_snps.addChild(snp_filter)\n snp_filter.addChild(combine_vcfs)\n select_indels.addChild(indel_filter)\n indel_filter.addChild(combine_vcfs)\n output_dir = os.path.join(config.output_dir, uuid)\n output_filename = '%s.hard_filter%s.vcf' % (uuid, config.suffix)\n output_vcf = job.wrapJobFn(output_file_job, output_filename,\n combine_vcfs.rv(), output_dir, s3_key_path=config.ssec, disk=\n PromisedRequirement(lambda x: x.size, combine_vcfs.rv()))\n combine_vcfs.addChild(output_vcf)\n return combine_vcfs.rv()\n",
"role": "user"
},
{
"content": "hard_filter_pipeline",
"role": "assistant"
}
] |
def x():
parser = build_parser()
Job.Runner.addToilOptions(parser)
args = parser.parse_args()
inputs = {'genetorrent': args.genetorrent, 'genetorrent_key': args.
genetorrent_key, 'ssec': args.ssec, 's3_dir': args.s3_dir}
if args.ssec:
assert os.path.isfile(args.ssec)
if args.genetorrent:
assert os.path.isfile(args.genetorrent)
if args.genetorrent_key:
assert os.path.isfile(args.genetorrent_key)
samples = parse_genetorrent(args.genetorrent)
Job.Runner.startToil(Job.wrapJobFn(map_job,
download_and_transfer_sample, samples, inputs), args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = build_parser()\n Job.Runner.addToilOptions(parser)\n args = parser.parse_args()\n inputs = {'genetorrent': args.genetorrent, 'genetorrent_key': args.\n genetorrent_key, 'ssec': args.ssec, 's3_dir': args.s3_dir}\n if args.ssec:\n assert os.path.isfile(args.ssec)\n if args.genetorrent:\n assert os.path.isfile(args.genetorrent)\n if args.genetorrent_key:\n assert os.path.isfile(args.genetorrent_key)\n samples = parse_genetorrent(args.genetorrent)\n Job.Runner.startToil(Job.wrapJobFn(map_job,\n download_and_transfer_sample, samples, inputs), args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(s):
if _HEX_RE.match(s):
return len(s.split('::')) <= 2
if _DOTTED_QUAD_RE.match(s):
halves = s.split('::')
if len(halves) > 2:
return False
hextets = s.split(':')
quads = hextets[-1].split('.')
for q in quads:
if int(q) > 255:
return False
return True
return False
|
validate_ip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if _HEX_RE.match(s):\n return len(s.split('::')) <= 2\n if _DOTTED_QUAD_RE.match(s):\n halves = s.split('::')\n if len(halves) > 2:\n return False\n hextets = s.split(':')\n quads = hextets[-1].split('.')\n for q in quads:\n if int(q) > 255:\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "validate_ip",
"role": "assistant"
}
] |
def x(ip):
if not validate_ip(ip):
return None
if '.' in ip:
chunks = ip.split(':')
v4_int = ipv4.ip2long(chunks.pop())
if v4_int is None:
return None
chunks.append('%x' % (v4_int >> 16 & 65535))
chunks.append('%x' % (v4_int & 65535))
ip = ':'.join(chunks)
halves = ip.split('::')
hextets = halves[0].split(':')
if len(halves) == 2:
h2 = halves[1].split(':')
for z in range(8 - (len(hextets) + len(h2))):
hextets.append('0')
for h in h2:
hextets.append(h)
lngip = 0
for h in hextets:
if '' == h:
h = '0'
lngip = lngip << 16 | int(h, 16)
return lngip
|
ip2long
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ip):\n if not validate_ip(ip):\n return None\n if '.' in ip:\n chunks = ip.split(':')\n v4_int = ipv4.ip2long(chunks.pop())\n if v4_int is None:\n return None\n chunks.append('%x' % (v4_int >> 16 & 65535))\n chunks.append('%x' % (v4_int & 65535))\n ip = ':'.join(chunks)\n halves = ip.split('::')\n hextets = halves[0].split(':')\n if len(halves) == 2:\n h2 = halves[1].split(':')\n for z in range(8 - (len(hextets) + len(h2))):\n hextets.append('0')\n for h in h2:\n hextets.append(h)\n lngip = 0\n for h in hextets:\n if '' == h:\n h = '0'\n lngip = lngip << 16 | int(h, 16)\n return lngip\n",
"role": "user"
},
{
"content": "ip2long",
"role": "assistant"
}
] |
def x(l, rfc1924=False):
if MAX_IP < l or l < MIN_IP:
raise TypeError('expected int between %d and %d inclusive' % (
MIN_IP, MAX_IP))
if rfc1924:
return long2rfc1924(l)
hex_str = '%032x' % l
hextets = [('%x' % int(hex_str[x:x + 4], 16)) for x in range(0, 32, 4)]
dc_start, dc_len = -1, 0
run_start, run_len = -1, 0
for idx, hextet in enumerate(hextets):
if '0' == hextet:
run_len += 1
if -1 == run_start:
run_start = idx
if run_len > dc_len:
dc_len, dc_start = run_len, run_start
else:
run_len, run_start = 0, -1
if dc_len > 1:
dc_end = dc_start + dc_len
if dc_end == len(hextets):
hextets += ['']
hextets[dc_start:dc_end] = ['']
if dc_start == 0:
hextets = [''] + hextets
return ':'.join(hextets)
|
long2ip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, rfc1924=False):\n if MAX_IP < l or l < MIN_IP:\n raise TypeError('expected int between %d and %d inclusive' % (\n MIN_IP, MAX_IP))\n if rfc1924:\n return long2rfc1924(l)\n hex_str = '%032x' % l\n hextets = [('%x' % int(hex_str[x:x + 4], 16)) for x in range(0, 32, 4)]\n dc_start, dc_len = -1, 0\n run_start, run_len = -1, 0\n for idx, hextet in enumerate(hextets):\n if '0' == hextet:\n run_len += 1\n if -1 == run_start:\n run_start = idx\n if run_len > dc_len:\n dc_len, dc_start = run_len, run_start\n else:\n run_len, run_start = 0, -1\n if dc_len > 1:\n dc_end = dc_start + dc_len\n if dc_end == len(hextets):\n hextets += ['']\n hextets[dc_start:dc_end] = ['']\n if dc_start == 0:\n hextets = [''] + hextets\n return ':'.join(hextets)\n",
"role": "user"
},
{
"content": "long2ip",
"role": "assistant"
}
] |
def x(l):
if MAX_IP < l or l < MIN_IP:
raise TypeError('expected int between %d and %d inclusive' % (
MIN_IP, MAX_IP))
o = []
r = l
while r > 85:
o.append(_RFC1924_ALPHABET[r % 85])
r = r // 85
o.append(_RFC1924_ALPHABET[r])
return ''.join(reversed(o)).zfill(20)
|
long2rfc1924
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l):\n if MAX_IP < l or l < MIN_IP:\n raise TypeError('expected int between %d and %d inclusive' % (\n MIN_IP, MAX_IP))\n o = []\n r = l\n while r > 85:\n o.append(_RFC1924_ALPHABET[r % 85])\n r = r // 85\n o.append(_RFC1924_ALPHABET[r])\n return ''.join(reversed(o)).zfill(20)\n",
"role": "user"
},
{
"content": "long2rfc1924",
"role": "assistant"
}
] |
def x(s):
global _RFC1924_REV
if not _RFC1924_RE.match(s):
return None
if _RFC1924_REV is None:
_RFC1924_REV = {v: k for k, v in enumerate(_RFC1924_ALPHABET)}
x = 0
for c in s:
x = x * 85 + _RFC1924_REV[c]
if x > MAX_IP:
return None
return x
|
rfc19242long
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n global _RFC1924_REV\n if not _RFC1924_RE.match(s):\n return None\n if _RFC1924_REV is None:\n _RFC1924_REV = {v: k for k, v in enumerate(_RFC1924_ALPHABET)}\n x = 0\n for c in s:\n x = x * 85 + _RFC1924_REV[c]\n if x > MAX_IP:\n return None\n return x\n",
"role": "user"
},
{
"content": "rfc19242long",
"role": "assistant"
}
] |
def x(s):
if _CIDR_RE.match(s):
ip, mask = s.split('/')
if validate_ip(ip):
if int(mask) > 128:
return False
else:
return False
return True
return False
|
validate_cidr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if _CIDR_RE.match(s):\n ip, mask = s.split('/')\n if validate_ip(ip):\n if int(mask) > 128:\n return False\n else:\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "validate_cidr",
"role": "assistant"
}
] |
def x(cidr):
if not validate_cidr(cidr):
return None
ip, prefix = cidr.split('/')
prefix = int(prefix)
ip = ip2long(ip)
shift = 128 - prefix
block_start = ip >> shift << shift
mask = (1 << shift) - 1
block_end = block_start | mask
return long2ip(block_start), long2ip(block_end)
|
cidr2block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cidr):\n if not validate_cidr(cidr):\n return None\n ip, prefix = cidr.split('/')\n prefix = int(prefix)\n ip = ip2long(ip)\n shift = 128 - prefix\n block_start = ip >> shift << shift\n mask = (1 << shift) - 1\n block_end = block_start | mask\n return long2ip(block_start), long2ip(block_end)\n",
"role": "user"
},
{
"content": "cidr2block",
"role": "assistant"
}
] |
def x(job, inputs):
job.fileStore.logToMaster('Parsing input samples and batching jobs')
samples = []
if inputs.config:
with open(inputs.config, 'r') as f:
for line in f.readlines():
if not line.isspace():
sample = line.strip().split(',')
assert len(sample
) == 2, 'Error: Config file is inappropriately formatted.'
samples.append(sample)
job.addChildJobFn(map_job, download_sample, samples, inputs)
|
parse_input_samples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs):\n job.fileStore.logToMaster('Parsing input samples and batching jobs')\n samples = []\n if inputs.config:\n with open(inputs.config, 'r') as f:\n for line in f.readlines():\n if not line.isspace():\n sample = line.strip().split(',')\n assert len(sample\n ) == 2, 'Error: Config file is inappropriately formatted.'\n samples.append(sample)\n job.addChildJobFn(map_job, download_sample, samples, inputs)\n",
"role": "user"
},
{
"content": "parse_input_samples",
"role": "assistant"
}
] |
def x(job, sample, inputs):
uuid, url = sample
job.fileStore.logToMaster('Downloading sample: {}'.format(uuid))
tar_id = job.addChildJobFn(download_url_job, url, s3_key_path=inputs.
ssec, disk='30G').rv()
sample_inputs = argparse.Namespace(**vars(inputs))
sample_inputs.uuid = uuid
sample_inputs.cores = multiprocessing.cpu_count()
job.addFollowOnJobFn(process_sample, sample_inputs, tar_id, cores=2,
disk='60G')
|
download_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, sample, inputs):\n uuid, url = sample\n job.fileStore.logToMaster('Downloading sample: {}'.format(uuid))\n tar_id = job.addChildJobFn(download_url_job, url, s3_key_path=inputs.\n ssec, disk='30G').rv()\n sample_inputs = argparse.Namespace(**vars(inputs))\n sample_inputs.uuid = uuid\n sample_inputs.cores = multiprocessing.cpu_count()\n job.addFollowOnJobFn(process_sample, sample_inputs, tar_id, cores=2,\n disk='60G')\n",
"role": "user"
},
{
"content": "download_sample",
"role": "assistant"
}
] |
def x(job, inputs, tar_id):
job.fileStore.logToMaster('Processing sample into read pairs: {}'.
format(inputs.uuid))
work_dir = job.fileStore.getLocalTempDir()
tar_path = job.fileStore.readGlobalFile(tar_id, os.path.join(work_dir,
'sample.tar'))
subprocess.check_call(['tar', '-xvf', tar_path, '-C', work_dir])
os.remove(os.path.join(work_dir, 'sample.tar'))
fastqs = []
for root, subdir, files in os.walk(work_dir):
fastqs.extend([os.path.join(root, x) for x in files])
r1 = sorted([x for x in fastqs if 'R1' in x])
r2 = sorted([x for x in fastqs if 'R2' in x])
if not r1 or not r2:
r1 = sorted([x for x in fastqs if '_1' in x])
r2 = sorted([x for x in fastqs if '_2' in x])
if len(r1) > len(r2):
r1 = [x for x in r1 if x not in r2]
elif len(r2) > len(r1):
r2 = [x for x in r2 if x not in r1]
assert r1 and r2, 'This pipeline does not support single-ended data. R1: {}\nR2:{}'.format(
r1, r2)
command = 'zcat' if r1[0].endswith('gz') and r2[0].endswith('gz'
) else 'cat'
with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:
p1 = subprocess.Popen([command] + r1, stdout=f1)
with open(os.path.join(work_dir, 'R2.fastq'), 'w') as f2:
p2 = subprocess.Popen([command] + r2, stdout=f2)
p1.wait()
p2.wait()
r1_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R1.fastq'))
r2_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R2.fastq'))
job.fileStore.deleteGlobalFile(tar_id)
job.addChildJobFn(cutadapt, inputs, r1_id, r2_id, disk='60G').rv()
|
process_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, tar_id):\n job.fileStore.logToMaster('Processing sample into read pairs: {}'.\n format(inputs.uuid))\n work_dir = job.fileStore.getLocalTempDir()\n tar_path = job.fileStore.readGlobalFile(tar_id, os.path.join(work_dir,\n 'sample.tar'))\n subprocess.check_call(['tar', '-xvf', tar_path, '-C', work_dir])\n os.remove(os.path.join(work_dir, 'sample.tar'))\n fastqs = []\n for root, subdir, files in os.walk(work_dir):\n fastqs.extend([os.path.join(root, x) for x in files])\n r1 = sorted([x for x in fastqs if 'R1' in x])\n r2 = sorted([x for x in fastqs if 'R2' in x])\n if not r1 or not r2:\n r1 = sorted([x for x in fastqs if '_1' in x])\n r2 = sorted([x for x in fastqs if '_2' in x])\n if len(r1) > len(r2):\n r1 = [x for x in r1 if x not in r2]\n elif len(r2) > len(r1):\n r2 = [x for x in r2 if x not in r1]\n assert r1 and r2, 'This pipeline does not support single-ended data. R1: {}\\nR2:{}'.format(\n r1, r2)\n command = 'zcat' if r1[0].endswith('gz') and r2[0].endswith('gz'\n ) else 'cat'\n with open(os.path.join(work_dir, 'R1.fastq'), 'w') as f1:\n p1 = subprocess.Popen([command] + r1, stdout=f1)\n with open(os.path.join(work_dir, 'R2.fastq'), 'w') as f2:\n p2 = subprocess.Popen([command] + r2, stdout=f2)\n p1.wait()\n p2.wait()\n r1_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R1.fastq'))\n r2_id = job.fileStore.writeGlobalFile(os.path.join(work_dir, 'R2.fastq'))\n job.fileStore.deleteGlobalFile(tar_id)\n job.addChildJobFn(cutadapt, inputs, r1_id, r2_id, disk='60G').rv()\n",
"role": "user"
},
{
"content": "process_sample",
"role": "assistant"
}
] |
def x(job, inputs, r1_id, r2_id):
job.fileStore.logToMaster('Running CutAdapt: {}'.format(inputs.uuid))
work_dir = job.fileStore.getLocalTempDir()
inputs.improper_pair = None
job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))
job.fileStore.readGlobalFile(r2_id, os.path.join(work_dir, 'R2.fastq'))
parameters = ['-a', inputs.fwd_3pr_adapter, '-m', '35', '-A', inputs.
rev_3pr_adapter, '-o', '/data/R1_cutadapt.fastq', '-p',
'/data/R2_cutadapt.fastq', '/data/R1.fastq', '/data/R2.fastq']
base_docker_call = 'docker run --log-driver=none --rm -v {}:/data'.format(
work_dir).split()
if inputs.sudo:
base_docker_call = ['sudo'] + base_docker_call
tool = (
'quay.io/ucsc_cgl/cutadapt:1.9--6bd44edd2b8f8f17e25c5a268fedaab65fa851d2'
)
p = subprocess.Popen(base_docker_call + [tool] + parameters, stderr=
subprocess.PIPE, stdout=subprocess.PIPE)
stdout, stderr = p.communicate()
if p.returncode != 0:
if 'improperly paired' in stderr:
inputs.improper_pair = True
shutil.move(os.path.join(work_dir, 'R1.fastq'), os.path.join(
work_dir, 'R1_cutadapt.fastq'))
shutil.move(os.path.join(work_dir, 'R2.fastq'), os.path.join(
work_dir, 'R2_cutadapt.fastq'))
if inputs.improper_pair:
r1_cutadapt = r1_id
r2_cutadapt = r2_id
else:
r1_cutadapt = job.fileStore.writeGlobalFile(os.path.join(work_dir,
'R1_cutadapt.fastq'))
r2_cutadapt = job.fileStore.writeGlobalFile(os.path.join(work_dir,
'R2_cutadapt.fastq'))
job.fileStore.deleteGlobalFile(r1_id)
job.fileStore.deleteGlobalFile(r2_id)
cores = min(inputs.cores, 16)
job.addChildJobFn(star, inputs, r1_cutadapt, r2_cutadapt, cores=cores,
disk='100G', memory='40G').rv()
|
cutadapt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, r1_id, r2_id):\n job.fileStore.logToMaster('Running CutAdapt: {}'.format(inputs.uuid))\n work_dir = job.fileStore.getLocalTempDir()\n inputs.improper_pair = None\n job.fileStore.readGlobalFile(r1_id, os.path.join(work_dir, 'R1.fastq'))\n job.fileStore.readGlobalFile(r2_id, os.path.join(work_dir, 'R2.fastq'))\n parameters = ['-a', inputs.fwd_3pr_adapter, '-m', '35', '-A', inputs.\n rev_3pr_adapter, '-o', '/data/R1_cutadapt.fastq', '-p',\n '/data/R2_cutadapt.fastq', '/data/R1.fastq', '/data/R2.fastq']\n base_docker_call = 'docker run --log-driver=none --rm -v {}:/data'.format(\n work_dir).split()\n if inputs.sudo:\n base_docker_call = ['sudo'] + base_docker_call\n tool = (\n 'quay.io/ucsc_cgl/cutadapt:1.9--6bd44edd2b8f8f17e25c5a268fedaab65fa851d2'\n )\n p = subprocess.Popen(base_docker_call + [tool] + parameters, stderr=\n subprocess.PIPE, stdout=subprocess.PIPE)\n stdout, stderr = p.communicate()\n if p.returncode != 0:\n if 'improperly paired' in stderr:\n inputs.improper_pair = True\n shutil.move(os.path.join(work_dir, 'R1.fastq'), os.path.join(\n work_dir, 'R1_cutadapt.fastq'))\n shutil.move(os.path.join(work_dir, 'R2.fastq'), os.path.join(\n work_dir, 'R2_cutadapt.fastq'))\n if inputs.improper_pair:\n r1_cutadapt = r1_id\n r2_cutadapt = r2_id\n else:\n r1_cutadapt = job.fileStore.writeGlobalFile(os.path.join(work_dir,\n 'R1_cutadapt.fastq'))\n r2_cutadapt = job.fileStore.writeGlobalFile(os.path.join(work_dir,\n 'R2_cutadapt.fastq'))\n job.fileStore.deleteGlobalFile(r1_id)\n job.fileStore.deleteGlobalFile(r2_id)\n cores = min(inputs.cores, 16)\n job.addChildJobFn(star, inputs, r1_cutadapt, r2_cutadapt, cores=cores,\n disk='100G', memory='40G').rv()\n",
"role": "user"
},
{
"content": "cutadapt",
"role": "assistant"
}
] |
def x(job, inputs, r1_cutadapt, r2_cutadapt):
job.fileStore.logToMaster('Aligning with STAR: {}'.format(inputs.uuid))
work_dir = job.fileStore.getLocalTempDir()
cores = min(inputs.cores, 16)
job.fileStore.readGlobalFile(r1_cutadapt, os.path.join(work_dir,
'R1_cutadapt.fastq'))
job.fileStore.readGlobalFile(r2_cutadapt, os.path.join(work_dir,
'R2_cutadapt.fastq'))
download_url(job=job, url=inputs.star_index, work_dir=work_dir, name=
'starIndex.tar.gz')
subprocess.check_call(['tar', '-xvf', os.path.join(work_dir,
'starIndex.tar.gz'), '-C', work_dir])
parameters = ['--runThreadN', str(cores), '--genomeDir',
'/data/starIndex', '--outFileNamePrefix', 'rna', '--outSAMtype',
'BAM', 'SortedByCoordinate', '--outSAMunmapped', 'Within',
'--quantMode', 'TranscriptomeSAM', '--outSAMattributes', 'NH', 'HI',
'AS', 'NM', 'MD', '--outFilterType', 'BySJout',
'--outFilterMultimapNmax', '20', '--outFilterMismatchNmax', '999',
'--outFilterMismatchNoverReadLmax', '0.04', '--alignIntronMin',
'20', '--alignIntronMax', '1000000', '--alignMatesGapMax',
'1000000', '--alignSJoverhangMin', '8', '--alignSJDBoverhangMin',
'1', '--sjdbScore', '1', '--readFilesIn', '/data/R1_cutadapt.fastq',
'/data/R2_cutadapt.fastq']
docker_call(job=job, tool=
'quay.io/ucsc_cgl/star:2.4.2a--bcbd5122b69ff6ac4ef61958e47bde94001cfe80'
, work_dir=work_dir, parameters=parameters)
index_command = ['index', '/data/rnaAligned.sortedByCoord.out.bam']
docker_call(job=job, work_dir=work_dir, parameters=index_command, tool=
'quay.io/ucsc_cgl/samtools:1.3--256539928ea162949d8a65ca5c79a72ef557ce7c'
)
bam_id = job.fileStore.writeGlobalFile(os.path.join(work_dir,
'rnaAligned.sortedByCoord.out.bam'))
bai_id = job.fileStore.writeGlobalFile(os.path.join(work_dir,
'rnaAligned.sortedByCoord.out.bam.bai'))
job.fileStore.deleteGlobalFile(r1_cutadapt)
job.fileStore.deleteGlobalFile(r2_cutadapt)
vcqc_id = job.addChildJobFn(variant_calling_and_qc, inputs, bam_id,
bai_id, cores=2, disk='30G').rv()
spladder_id = job.addChildJobFn(spladder, inputs, bam_id, bai_id, disk=
'30G').rv()
job.addFollowOnJobFn(consolidate_output_tarballs, inputs, vcqc_id,
spladder_id, disk='30G')
|
star
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, r1_cutadapt, r2_cutadapt):\n job.fileStore.logToMaster('Aligning with STAR: {}'.format(inputs.uuid))\n work_dir = job.fileStore.getLocalTempDir()\n cores = min(inputs.cores, 16)\n job.fileStore.readGlobalFile(r1_cutadapt, os.path.join(work_dir,\n 'R1_cutadapt.fastq'))\n job.fileStore.readGlobalFile(r2_cutadapt, os.path.join(work_dir,\n 'R2_cutadapt.fastq'))\n download_url(job=job, url=inputs.star_index, work_dir=work_dir, name=\n 'starIndex.tar.gz')\n subprocess.check_call(['tar', '-xvf', os.path.join(work_dir,\n 'starIndex.tar.gz'), '-C', work_dir])\n parameters = ['--runThreadN', str(cores), '--genomeDir',\n '/data/starIndex', '--outFileNamePrefix', 'rna', '--outSAMtype',\n 'BAM', 'SortedByCoordinate', '--outSAMunmapped', 'Within',\n '--quantMode', 'TranscriptomeSAM', '--outSAMattributes', 'NH', 'HI',\n 'AS', 'NM', 'MD', '--outFilterType', 'BySJout',\n '--outFilterMultimapNmax', '20', '--outFilterMismatchNmax', '999',\n '--outFilterMismatchNoverReadLmax', '0.04', '--alignIntronMin',\n '20', '--alignIntronMax', '1000000', '--alignMatesGapMax',\n '1000000', '--alignSJoverhangMin', '8', '--alignSJDBoverhangMin',\n '1', '--sjdbScore', '1', '--readFilesIn', '/data/R1_cutadapt.fastq',\n '/data/R2_cutadapt.fastq']\n docker_call(job=job, tool=\n 'quay.io/ucsc_cgl/star:2.4.2a--bcbd5122b69ff6ac4ef61958e47bde94001cfe80'\n , work_dir=work_dir, parameters=parameters)\n index_command = ['index', '/data/rnaAligned.sortedByCoord.out.bam']\n docker_call(job=job, work_dir=work_dir, parameters=index_command, tool=\n 'quay.io/ucsc_cgl/samtools:1.3--256539928ea162949d8a65ca5c79a72ef557ce7c'\n )\n bam_id = job.fileStore.writeGlobalFile(os.path.join(work_dir,\n 'rnaAligned.sortedByCoord.out.bam'))\n bai_id = job.fileStore.writeGlobalFile(os.path.join(work_dir,\n 'rnaAligned.sortedByCoord.out.bam.bai'))\n job.fileStore.deleteGlobalFile(r1_cutadapt)\n job.fileStore.deleteGlobalFile(r2_cutadapt)\n vcqc_id = job.addChildJobFn(variant_calling_and_qc, inputs, bam_id,\n bai_id, cores=2, disk='30G').rv()\n spladder_id = job.addChildJobFn(spladder, inputs, bam_id, bai_id, disk=\n '30G').rv()\n job.addFollowOnJobFn(consolidate_output_tarballs, inputs, vcqc_id,\n spladder_id, disk='30G')\n",
"role": "user"
},
{
"content": "star",
"role": "assistant"
}
] |
def x(job, inputs, bam_id, bai_id):
job.fileStore.logToMaster('Variant calling and QC: {}'.format(inputs.uuid))
work_dir = job.fileStore.getLocalTempDir()
job.fileStore.readGlobalFile(bam_id, os.path.join(work_dir,
'alignment.bam'))
job.fileStore.readGlobalFile(bai_id, os.path.join(work_dir,
'alignment.bam.bai'))
input_info = [(inputs.genome, 'genome.fa'), (inputs.positions,
'positions.tsv'), (inputs.genome_index, 'genome.fa.fai'), (inputs.
gtf, 'annotation.gtf'), (inputs.gtf_m53, 'annotation.m53')]
for url, fname in input_info:
download_url(job=job, url=url, work_dir=work_dir, name=fname)
variant_command = ['mpileup', '-f', 'genome.fa', '-l', 'positions.tsv',
'-v', 'alignment.bam', '-t',
'DP,SP,INFO/AD,INFO/ADF,INFO/ADR,INFO/DPR,SP', '-o',
'/data/output.vcf.gz']
docker_call(job=job, work_dir=work_dir, parameters=variant_command,
tool=
'quay.io/ucsc_cgl/samtools:1.3--256539928ea162949d8a65ca5c79a72ef557ce7c'
)
qc_command = ['-o', 'qc', '-n', 'alignment.bam', '-a', 'annotation.gtf',
'-m', 'annotation.m53']
docker_call(job=job, work_dir=work_dir, parameters=qc_command, tool=
'jvivian/checkbias:612f129--b08a1fb6526a620bbb0304b08356f2ae7c3c0ec3')
output_tsv = glob(os.path.join(work_dir, '*counts.tsv*'))[0]
output_vcf = os.path.join(work_dir, 'output.vcf.gz')
tarball_files('vcqc.tar.gz', file_paths=[output_tsv, output_vcf],
output_dir=work_dir)
return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'vcqc.tar.gz'))
|
variant_calling_and_qc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, bam_id, bai_id):\n job.fileStore.logToMaster('Variant calling and QC: {}'.format(inputs.uuid))\n work_dir = job.fileStore.getLocalTempDir()\n job.fileStore.readGlobalFile(bam_id, os.path.join(work_dir,\n 'alignment.bam'))\n job.fileStore.readGlobalFile(bai_id, os.path.join(work_dir,\n 'alignment.bam.bai'))\n input_info = [(inputs.genome, 'genome.fa'), (inputs.positions,\n 'positions.tsv'), (inputs.genome_index, 'genome.fa.fai'), (inputs.\n gtf, 'annotation.gtf'), (inputs.gtf_m53, 'annotation.m53')]\n for url, fname in input_info:\n download_url(job=job, url=url, work_dir=work_dir, name=fname)\n variant_command = ['mpileup', '-f', 'genome.fa', '-l', 'positions.tsv',\n '-v', 'alignment.bam', '-t',\n 'DP,SP,INFO/AD,INFO/ADF,INFO/ADR,INFO/DPR,SP', '-o',\n '/data/output.vcf.gz']\n docker_call(job=job, work_dir=work_dir, parameters=variant_command,\n tool=\n 'quay.io/ucsc_cgl/samtools:1.3--256539928ea162949d8a65ca5c79a72ef557ce7c'\n )\n qc_command = ['-o', 'qc', '-n', 'alignment.bam', '-a', 'annotation.gtf',\n '-m', 'annotation.m53']\n docker_call(job=job, work_dir=work_dir, parameters=qc_command, tool=\n 'jvivian/checkbias:612f129--b08a1fb6526a620bbb0304b08356f2ae7c3c0ec3')\n output_tsv = glob(os.path.join(work_dir, '*counts.tsv*'))[0]\n output_vcf = os.path.join(work_dir, 'output.vcf.gz')\n tarball_files('vcqc.tar.gz', file_paths=[output_tsv, output_vcf],\n output_dir=work_dir)\n return job.fileStore.writeGlobalFile(os.path.join(work_dir, 'vcqc.tar.gz'))\n",
"role": "user"
},
{
"content": "variant_calling_and_qc",
"role": "assistant"
}
] |
def x(job, inputs, vcqc_id, spladder_id):
job.fileStore.logToMaster('Consolidating files and uploading: {}'.
format(inputs.uuid))
work_dir = job.fileStore.getLocalTempDir()
uuid = inputs.uuid
vcqc_tar = job.fileStore.readGlobalFile(vcqc_id, os.path.join(work_dir,
'vcqc.tar.gz'))
spladder_tar = job.fileStore.readGlobalFile(spladder_id, os.path.join(
work_dir, 'spladder.tar.gz'))
fname = (uuid + '.tar.gz' if not inputs.improper_pair else
'IMPROPER_PAIR' + uuid + '.tar.gz')
out_tar = os.path.join(work_dir, fname)
with tarfile.open(os.path.join(work_dir, out_tar), 'w:gz') as f_out:
for tar in [vcqc_tar, spladder_tar]:
with tarfile.open(tar, 'r') as f_in:
for tarinfo in f_in:
with closing(f_in.extractfile(tarinfo)) as f_in_file:
if tar == vcqc_tar:
tarinfo.name = os.path.join(uuid,
'variants_and_qc', os.path.basename(tarinfo
.name))
else:
tarinfo.name = os.path.join(uuid, 'spladder',
os.path.basename(tarinfo.name))
f_out.addfile(tarinfo, fileobj=f_in_file)
if inputs.output_dir:
mkdir_p(inputs.output_dir)
shutil.copy(out_tar, os.path.join(inputs.output_dir, os.path.
basename(out_tar)))
if inputs.output_s3_dir:
out_id = job.fileStore.writeGlobalFile(out_tar)
job.addChildJobFn(s3am_upload_job, file_id=out_id, s3_dir=inputs.
output_s3_dir, file_name=fname, key_path=inputs.ssec, cores=
inputs.cores)
|
consolidate_output_tarballs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job, inputs, vcqc_id, spladder_id):\n job.fileStore.logToMaster('Consolidating files and uploading: {}'.\n format(inputs.uuid))\n work_dir = job.fileStore.getLocalTempDir()\n uuid = inputs.uuid\n vcqc_tar = job.fileStore.readGlobalFile(vcqc_id, os.path.join(work_dir,\n 'vcqc.tar.gz'))\n spladder_tar = job.fileStore.readGlobalFile(spladder_id, os.path.join(\n work_dir, 'spladder.tar.gz'))\n fname = (uuid + '.tar.gz' if not inputs.improper_pair else \n 'IMPROPER_PAIR' + uuid + '.tar.gz')\n out_tar = os.path.join(work_dir, fname)\n with tarfile.open(os.path.join(work_dir, out_tar), 'w:gz') as f_out:\n for tar in [vcqc_tar, spladder_tar]:\n with tarfile.open(tar, 'r') as f_in:\n for tarinfo in f_in:\n with closing(f_in.extractfile(tarinfo)) as f_in_file:\n if tar == vcqc_tar:\n tarinfo.name = os.path.join(uuid,\n 'variants_and_qc', os.path.basename(tarinfo\n .name))\n else:\n tarinfo.name = os.path.join(uuid, 'spladder',\n os.path.basename(tarinfo.name))\n f_out.addfile(tarinfo, fileobj=f_in_file)\n if inputs.output_dir:\n mkdir_p(inputs.output_dir)\n shutil.copy(out_tar, os.path.join(inputs.output_dir, os.path.\n basename(out_tar)))\n if inputs.output_s3_dir:\n out_id = job.fileStore.writeGlobalFile(out_tar)\n job.addChildJobFn(s3am_upload_job, file_id=out_id, s3_dir=inputs.\n output_s3_dir, file_name=fname, key_path=inputs.ssec, cores=\n inputs.cores)\n",
"role": "user"
},
{
"content": "consolidate_output_tarballs",
"role": "assistant"
}
] |
def x():
url_prefix = 'https://s3-us-west-2.amazonaws.com/cgl-pipeline-inputs/'
parser = argparse.ArgumentParser(description=main.__doc__,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--config', required=True, help=
'Path to configuration file for samples, one per line. UUID,URL_to_bamfile. The URL may be a standard "http://", a "file://<abs_path>", or "s3://<bucket>/<key>"'
)
parser.add_argument('--gtf', help='URL to annotation GTF file', default
=url_prefix + 'rnaseq_cgl/gencode.v23.annotation.gtf')
parser.add_argument('--gtf-pickle', help='Pickled GTF file', default=
url_prefix + 'spladder/gencode.v23.annotation.gtf.pickle')
parser.add_argument('--gtf-m53', help=
'M53 preprocessing annotation table', default=url_prefix +
'spladder/gencode.v23.annotation.gtf.m53')
parser.add_argument('--positions', help=
'URL to SNP positions over genes file (TSV)', default=url_prefix +
'spladder/positions_fixed.tsv')
parser.add_argument('--genome', help='URL to Genome fasta', default=
url_prefix + 'rnaseq_cgl/hg38_no_alt.fa')
parser.add_argument('--genome-index', help='Index file (fai) of genome',
default=url_prefix + 'spladder/hg38_no_alt.fa.fai')
parser.add_argument('--ssec', default=None, help=
'Path to master key used for downloading encrypted files.')
parser.add_argument('--output-s3-dir', default=None, help=
'S3 Directory of the form: s3://bucket/directory')
parser.add_argument('--output-dir', default=None, help=
'full path where final results will be output')
parser.add_argument('--sudo', action='store_true', default=False, help=
'Set flag if sudo is required to run Docker.')
parser.add_argument('--star-index', help=
'URL to download STAR Index built from HG38/gencodev23 annotation.',
default=url_prefix + 'rnaseq_cgl/starIndex_hg38_no_alt.tar.gz')
parser.add_argument('--fwd-3pr-adapter', help=
"Sequence for the FWD 3' Read Adapter.", default='AGATCGGAAGAG')
parser.add_argument('--rev-3pr-adapter', help=
"Sequence for the REV 3' Read Adapter.", default='AGATCGGAAGAG')
Job.Runner.addToilOptions(parser)
args = parser.parse_args()
if args.config:
assert os.path.isfile(args.config), 'Config not found at: {}'.format(
args.config)
if args.ssec:
assert os.path.isfile(args.ssec
), 'Encryption key not found at: {}'.format(args.config)
if args.output_s3_dir:
assert args.output_s3_dir.startswith('s3://'
), 'Wrong format for output s3 directory'
for program in ['curl', 'docker']:
assert which(program
), 'Program "{}" must be installed on every node.'.format(program)
Job.Runner.startToil(Job.wrapJobFn(parse_input_samples, args), args)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n url_prefix = 'https://s3-us-west-2.amazonaws.com/cgl-pipeline-inputs/'\n parser = argparse.ArgumentParser(description=main.__doc__,\n formatter_class=argparse.RawTextHelpFormatter)\n parser.add_argument('--config', required=True, help=\n 'Path to configuration file for samples, one per line. UUID,URL_to_bamfile. The URL may be a standard \"http://\", a \"file://<abs_path>\", or \"s3://<bucket>/<key>\"'\n )\n parser.add_argument('--gtf', help='URL to annotation GTF file', default\n =url_prefix + 'rnaseq_cgl/gencode.v23.annotation.gtf')\n parser.add_argument('--gtf-pickle', help='Pickled GTF file', default=\n url_prefix + 'spladder/gencode.v23.annotation.gtf.pickle')\n parser.add_argument('--gtf-m53', help=\n 'M53 preprocessing annotation table', default=url_prefix +\n 'spladder/gencode.v23.annotation.gtf.m53')\n parser.add_argument('--positions', help=\n 'URL to SNP positions over genes file (TSV)', default=url_prefix +\n 'spladder/positions_fixed.tsv')\n parser.add_argument('--genome', help='URL to Genome fasta', default=\n url_prefix + 'rnaseq_cgl/hg38_no_alt.fa')\n parser.add_argument('--genome-index', help='Index file (fai) of genome',\n default=url_prefix + 'spladder/hg38_no_alt.fa.fai')\n parser.add_argument('--ssec', default=None, help=\n 'Path to master key used for downloading encrypted files.')\n parser.add_argument('--output-s3-dir', default=None, help=\n 'S3 Directory of the form: s3://bucket/directory')\n parser.add_argument('--output-dir', default=None, help=\n 'full path where final results will be output')\n parser.add_argument('--sudo', action='store_true', default=False, help=\n 'Set flag if sudo is required to run Docker.')\n parser.add_argument('--star-index', help=\n 'URL to download STAR Index built from HG38/gencodev23 annotation.',\n default=url_prefix + 'rnaseq_cgl/starIndex_hg38_no_alt.tar.gz')\n parser.add_argument('--fwd-3pr-adapter', help=\n \"Sequence for the FWD 3' Read Adapter.\", default='AGATCGGAAGAG')\n parser.add_argument('--rev-3pr-adapter', help=\n \"Sequence for the REV 3' Read Adapter.\", default='AGATCGGAAGAG')\n Job.Runner.addToilOptions(parser)\n args = parser.parse_args()\n if args.config:\n assert os.path.isfile(args.config), 'Config not found at: {}'.format(\n args.config)\n if args.ssec:\n assert os.path.isfile(args.ssec\n ), 'Encryption key not found at: {}'.format(args.config)\n if args.output_s3_dir:\n assert args.output_s3_dir.startswith('s3://'\n ), 'Wrong format for output s3 directory'\n for program in ['curl', 'docker']:\n assert which(program\n ), 'Program \"{}\" must be installed on every node.'.format(program)\n Job.Runner.startToil(Job.wrapJobFn(parse_input_samples, args), args)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(s):
if _DOTTED_QUAD_RE.match(s):
quads = s.split('.')
for q in quads:
if int(q) > 255:
return False
return True
return False
|
validate_ip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if _DOTTED_QUAD_RE.match(s):\n quads = s.split('.')\n for q in quads:\n if int(q) > 255:\n return False\n return True\n return False\n",
"role": "user"
},
{
"content": "validate_ip",
"role": "assistant"
}
] |
def x(s):
if validate_ip(s):
mask = bin(ip2network(s))[2:].zfill(32)
seen0 = False
for c in mask:
if '1' == c:
if seen0:
return False
else:
seen0 = True
return True
else:
return False
|
validate_netmask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if validate_ip(s):\n mask = bin(ip2network(s))[2:].zfill(32)\n seen0 = False\n for c in mask:\n if '1' == c:\n if seen0:\n return False\n else:\n seen0 = True\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "validate_netmask",
"role": "assistant"
}
] |
def x(s):
if isinstance(s, basestring):
if '/' in s:
start, mask = s.split('/', 2)
return validate_ip(start) and validate_netmask(mask)
else:
return False
raise TypeError('expected string or unicode')
|
validate_subnet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if isinstance(s, basestring):\n if '/' in s:\n start, mask = s.split('/', 2)\n return validate_ip(start) and validate_netmask(mask)\n else:\n return False\n raise TypeError('expected string or unicode')\n",
"role": "user"
},
{
"content": "validate_subnet",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.