source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(mat, vec, axis=None, inplace=False, target=None, substract=False): assert mat.flags.c_contiguous if axis is None: if vec.shape[0] == mat.shape[0]: axis = 0 elif vec.shape[0] == mat.shape[1]: axis = 1 else: raise ValueError( 'Vector length must be equal to one side of the matrix') n, m = mat.shape block = _compilation_constants['add_vec_block_size' ], _compilation_constants['add_vec_block_size'], 1 gridx = ceil_div(n, block[0]) gridy = ceil_div(m, block[1]) grid = gridx, gridy, 1 if inplace: target = mat elif target is None: target = gpuarray.empty_like(mat) if axis == 0: assert vec.shape[0] == mat.shape[0] add_col_vec_kernel.prepared_call(grid, block, mat.gpudata, vec. gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32( substract)) elif axis == 1: assert vec.shape[0] == mat.shape[1] add_row_vec_kernel.prepared_call(grid, block, mat.gpudata, vec. gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32( substract)) return target
add_vec_to_mat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mat, vec, axis=None, inplace=False, target=None, substract=False):\n assert mat.flags.c_contiguous\n if axis is None:\n if vec.shape[0] == mat.shape[0]:\n axis = 0\n elif vec.shape[0] == mat.shape[1]:\n axis = 1\n else:\n raise ValueError(\n 'Vector length must be equal to one side of the matrix')\n n, m = mat.shape\n block = _compilation_constants['add_vec_block_size'\n ], _compilation_constants['add_vec_block_size'], 1\n gridx = ceil_div(n, block[0])\n gridy = ceil_div(m, block[1])\n grid = gridx, gridy, 1\n if inplace:\n target = mat\n elif target is None:\n target = gpuarray.empty_like(mat)\n if axis == 0:\n assert vec.shape[0] == mat.shape[0]\n add_col_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.\n gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(\n substract))\n elif axis == 1:\n assert vec.shape[0] == mat.shape[1]\n add_row_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.\n gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(\n substract))\n return target\n", "role": "user" }, { "content": "add_vec_to_mat", "role": "assistant" } ]
def x(mat, max_vec_norm=1.0): assert mat.flags.c_contiguous n, m = mat.shape vector_normalize_kernel.prepared_call((m, 1, 1), (32, 1, 1), mat. gpudata, np.float32(max_vec_norm), np.int32(m), np.int32(n))
vector_normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mat, max_vec_norm=1.0):\n assert mat.flags.c_contiguous\n n, m = mat.shape\n vector_normalize_kernel.prepared_call((m, 1, 1), (32, 1, 1), mat.\n gpudata, np.float32(max_vec_norm), np.int32(m), np.int32(n))\n", "role": "user" }, { "content": "vector_normalize", "role": "assistant" } ]
def x(string): split = string.split('${') rval = [split[0]] for candidate in split[1:]: subsplit = candidate.split('}') if len(subsplit) < 2: raise ValueError('Open ${ not followed by } before ' + 'end of string or next ${ in "' + string + '"') varname = subsplit[0] if varname == 'PYLEARN2_TRAIN_FILE_NAME': warnings.warn( 'PYLEARN2_TRAIN_FILE_NAME is deprecated and may be removed from the library on or after Oct 22, 2013. Switch to PYLEARN2_TRAIN_FILE_FULL_STEM' ) try: val = os.environ[varname] except KeyError: if varname == 'PYLEARN2_DATA_PATH': raise NoDataPathError() if varname == 'PYLEARN2_VIEWER_COMMAND': raise EnvironmentVariableError(environment_variable_essay) raise ValueError('Unrecognized environment variable "' + varname + '". Did you mean ' + match(varname, os.environ. keys()) + '?') rval.append(val) rval.append('}'.join(subsplit[1:])) rval = ''.join(rval) return rval
preprocess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string):\n split = string.split('${')\n rval = [split[0]]\n for candidate in split[1:]:\n subsplit = candidate.split('}')\n if len(subsplit) < 2:\n raise ValueError('Open ${ not followed by } before ' +\n 'end of string or next ${ in \"' + string + '\"')\n varname = subsplit[0]\n if varname == 'PYLEARN2_TRAIN_FILE_NAME':\n warnings.warn(\n 'PYLEARN2_TRAIN_FILE_NAME is deprecated and may be removed from the library on or after Oct 22, 2013. Switch to PYLEARN2_TRAIN_FILE_FULL_STEM'\n )\n try:\n val = os.environ[varname]\n except KeyError:\n if varname == 'PYLEARN2_DATA_PATH':\n raise NoDataPathError()\n if varname == 'PYLEARN2_VIEWER_COMMAND':\n raise EnvironmentVariableError(environment_variable_essay)\n raise ValueError('Unrecognized environment variable \"' +\n varname + '\". Did you mean ' + match(varname, os.environ.\n keys()) + '?')\n rval.append(val)\n rval.append('}'.join(subsplit[1:]))\n rval = ''.join(rval)\n return rval\n", "role": "user" }, { "content": "preprocess", "role": "assistant" } ]
def x(s): r = find_number(s) if r == None: return [s] else: tokens = [] if r[0] > 0: tokens.append(s[0:r[0]]) tokens.append(float(s[r[0]:r[1]])) if r[1] < len(s): tokens.extend(tokenize_by_number(s[r[1]:])) return tokens assert False
tokenize_by_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n r = find_number(s)\n if r == None:\n return [s]\n else:\n tokens = []\n if r[0] > 0:\n tokens.append(s[0:r[0]])\n tokens.append(float(s[r[0]:r[1]]))\n if r[1] < len(s):\n tokens.extend(tokenize_by_number(s[r[1]:]))\n return tokens\n assert False\n", "role": "user" }, { "content": "tokenize_by_number", "role": "assistant" } ]
def x(str1, str2): def x(tokens): l = [] for token in tokens: if isinstance(token, str): for char in token: l.append(char) else: assert isinstance(token, float) l.append(token) return l seq1 = flatten_tokens(tokenize_by_number(str1)) seq2 = flatten_tokens(tokenize_by_number(str2)) l = min(len(seq1), len(seq2)) i = 0 while i < l: if seq1[i] < seq2[i]: return -1 elif seq1[i] > seq2[i]: return 1 i += 1 if len(seq1) < len(seq2): return -1 elif len(seq1) > len(seq2): return 1 return 0
number_aware_alphabetical_cmp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(str1, str2):\n\n def x(tokens):\n l = []\n for token in tokens:\n if isinstance(token, str):\n for char in token:\n l.append(char)\n else:\n assert isinstance(token, float)\n l.append(token)\n return l\n seq1 = flatten_tokens(tokenize_by_number(str1))\n seq2 = flatten_tokens(tokenize_by_number(str2))\n l = min(len(seq1), len(seq2))\n i = 0\n while i < l:\n if seq1[i] < seq2[i]:\n return -1\n elif seq1[i] > seq2[i]:\n return 1\n i += 1\n if len(seq1) < len(seq2):\n return -1\n elif len(seq1) > len(seq2):\n return 1\n return 0\n", "role": "user" }, { "content": "number_aware_alphabetical_cmp", "role": "assistant" } ]
def x(wrong, candidates): assert len(candidates) > 0 def x(w1, w2): w1 = w1.lower() w2 = w2.lower() def x(w): rval = {} for i in xrange(len(w)): l = w[i] rval[l] = rval.get(l, 0.0) + 1.0 if i < len(w) - 1: b = w[i:i + 2] rval[b] = rval.get(b, 0.0) + 1.0 return rval d1 = phi(w1) d2 = phi(w2) def x(d1, d2): rval = 0 for key in set(d1).union(d2): rval += d1.get(key, 0) * d2.get(key, 0) return rval tot_score = mul(phi(w1), phi(w2)) / float(len(w1) * len(w2) ) + 0.1 * mul(phi(w1[0:1]), phi(w2[0:1])) + 0.1 * mul(phi(w1[-1 :]), phi(w2[-1:])) return tot_score scored_candidates = [(-score(wrong, candidate), candidate) for candidate in candidates] scored_candidates.sort() return scored_candidates[0][1]
match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wrong, candidates):\n assert len(candidates) > 0\n\n def x(w1, w2):\n w1 = w1.lower()\n w2 = w2.lower()\n\n def x(w):\n rval = {}\n for i in xrange(len(w)):\n l = w[i]\n rval[l] = rval.get(l, 0.0) + 1.0\n if i < len(w) - 1:\n b = w[i:i + 2]\n rval[b] = rval.get(b, 0.0) + 1.0\n return rval\n d1 = phi(w1)\n d2 = phi(w2)\n\n def x(d1, d2):\n rval = 0\n for key in set(d1).union(d2):\n rval += d1.get(key, 0) * d2.get(key, 0)\n return rval\n tot_score = mul(phi(w1), phi(w2)) / float(len(w1) * len(w2)\n ) + 0.1 * mul(phi(w1[0:1]), phi(w2[0:1])) + 0.1 * mul(phi(w1[-1\n :]), phi(w2[-1:]))\n return tot_score\n scored_candidates = [(-score(wrong, candidate), candidate) for\n candidate in candidates]\n scored_candidates.sort()\n return scored_candidates[0][1]\n", "role": "user" }, { "content": "match", "role": "assistant" } ]
def x(s): def x(ch): if ch >= 'A' and ch <= 'z' or ch >= '0' and ch <= '9': return ch return '*' return ''.join([censor(ch) for ch in s])
censor_non_alphanum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n\n def x(ch):\n if ch >= 'A' and ch <= 'z' or ch >= '0' and ch <= '9':\n return ch\n return '*'\n return ''.join([censor(ch) for ch in s])\n", "role": "user" }, { "content": "censor_non_alphanum", "role": "assistant" } ]
def x(period): for i in range(1, 6): if 0.99 / float(i) < period < 1.004 / float(i): return True if 1.03 / float(i) < period < 1.04 / float(i): return True if 29.2 / float(i) < period < 29.9 / float(i): return True if 0.96465 / float(i) < period < 0.96485 / float(i): return True if 0.96725 / float(i) < period < 0.96745 / float(i): return True if 0.9819 / float(i) < period < 0.9823 / float(i): return True if 1.01034 / float(i) < period < 1.01076 / float(i): return True if 1.01568 / float(i) < period < 1.01604 / float(i): return True if 1.01718 / float(i) < period < 1.01742 / float(i): return True if 0.50776 / float(i) < period < 0.50861 / float(i): return True if 0.96434 / float(i) < period < 0.9652 / float(i): return True if 0.96688 / float(i) < period < 0.96731 / float(i): return True if 1.0722 / float(i) < period < 1.0729 / float(i): return True if 27.1 / float(i) < period < 27.5 / float(i): return True return False
is_period_alias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(period):\n for i in range(1, 6):\n if 0.99 / float(i) < period < 1.004 / float(i):\n return True\n if 1.03 / float(i) < period < 1.04 / float(i):\n return True\n if 29.2 / float(i) < period < 29.9 / float(i):\n return True\n if 0.96465 / float(i) < period < 0.96485 / float(i):\n return True\n if 0.96725 / float(i) < period < 0.96745 / float(i):\n return True\n if 0.9819 / float(i) < period < 0.9823 / float(i):\n return True\n if 1.01034 / float(i) < period < 1.01076 / float(i):\n return True\n if 1.01568 / float(i) < period < 1.01604 / float(i):\n return True\n if 1.01718 / float(i) < period < 1.01742 / float(i):\n return True\n if 0.50776 / float(i) < period < 0.50861 / float(i):\n return True\n if 0.96434 / float(i) < period < 0.9652 / float(i):\n return True\n if 0.96688 / float(i) < period < 0.96731 / float(i):\n return True\n if 1.0722 / float(i) < period < 1.0729 / float(i):\n return True\n if 27.1 / float(i) < period < 27.5 / float(i):\n return True\n return False\n", "role": "user" }, { "content": "is_period_alias", "role": "assistant" } ]
def x(): try: protocol_str = os.environ['PYLEARN2_PICKLE_PROTOCOL'] except KeyError: protocol_str = '0' if protocol_str == 'pickle.HIGHEST_PROTOCOL': return pickle.HIGHEST_PROTOCOL return int(protocol_str)
get_pickle_protocol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n protocol_str = os.environ['PYLEARN2_PICKLE_PROTOCOL']\n except KeyError:\n protocol_str = '0'\n if protocol_str == 'pickle.HIGHEST_PROTOCOL':\n return pickle.HIGHEST_PROTOCOL\n return int(protocol_str)\n", "role": "user" }, { "content": "get_pickle_protocol", "role": "assistant" } ]
def x(config_file_path): from pylearn2.config import yaml_parse suffix_to_strip = '.yaml' if config_file_path.endswith(suffix_to_strip): config_file_full_stem = config_file_path[0:-len(suffix_to_strip)] else: config_file_full_stem = config_file_path for varname in ['PYLEARN2_TRAIN_FILE_NAME', 'PYLEARN2_TRAIN_FILE_FULL_STEM' ]: environ.putenv(varname, config_file_full_stem) directory = config_file_path.split('/')[:-1] directory = '/'.join(directory) if directory != '': directory += '/' environ.putenv('PYLEARN2_TRAIN_DIR', directory) environ.putenv('PYLEARN2_TRAIN_BASE_NAME', config_file_path.split('/')[-1]) environ.putenv('PYLEARN2_TRAIN_FILE_STEM', config_file_full_stem.split( '/')[-1]) return yaml_parse.load_path(config_file_path)
load_train_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config_file_path):\n from pylearn2.config import yaml_parse\n suffix_to_strip = '.yaml'\n if config_file_path.endswith(suffix_to_strip):\n config_file_full_stem = config_file_path[0:-len(suffix_to_strip)]\n else:\n config_file_full_stem = config_file_path\n for varname in ['PYLEARN2_TRAIN_FILE_NAME', 'PYLEARN2_TRAIN_FILE_FULL_STEM'\n ]:\n environ.putenv(varname, config_file_full_stem)\n directory = config_file_path.split('/')[:-1]\n directory = '/'.join(directory)\n if directory != '':\n directory += '/'\n environ.putenv('PYLEARN2_TRAIN_DIR', directory)\n environ.putenv('PYLEARN2_TRAIN_BASE_NAME', config_file_path.split('/')[-1])\n environ.putenv('PYLEARN2_TRAIN_FILE_STEM', config_file_full_stem.split(\n '/')[-1])\n return yaml_parse.load_path(config_file_path)\n", "role": "user" }, { "content": "load_train_file", "role": "assistant" } ]
def x(self, input_data, prediction=False): if input_data.shape[1] != self.n_in: raise ValueError( 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)' % (input_data.shape[1], self.n_in)) if not prediction: dropout_input = gpuarray.empty_like(input_data) dropout_mask = sample_dropout_mask(input_data, self. dropout_probability, target=dropout_input) return dropout_input, dropout_mask else: return input_data * (1 - self.dropout_probability),
feed_forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, prediction=False):\n if input_data.shape[1] != self.n_in:\n raise ValueError(\n 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'\n % (input_data.shape[1], self.n_in))\n if not prediction:\n dropout_input = gpuarray.empty_like(input_data)\n dropout_mask = sample_dropout_mask(input_data, self.\n dropout_probability, target=dropout_input)\n return dropout_input, dropout_mask\n else:\n return input_data * (1 - self.dropout_probability),\n", "role": "user" }, { "content": "feed_forward", "role": "assistant" } ]
def x(self, input_data, df_output, cache=None): if self.compute_input_gradients: apply_dropout_mask(df_output, dropout_mask) return tuple(), df_output
backprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, df_output, cache=None):\n if self.compute_input_gradients:\n apply_dropout_mask(df_output, dropout_mask)\n return tuple(), df_output\n", "role": "user" }, { "content": "backprop", "role": "assistant" } ]
def x(obj): p = ctypes.POINTER(obj) if not isinstance(p.from_param, classmethod): def x(cls, x): if x is None: return cls() else: return x p.from_param = classmethod(from_param) return p
POINTER
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n p = ctypes.POINTER(obj)\n if not isinstance(p.from_param, classmethod):\n\n def x(cls, x):\n if x is None:\n return cls()\n else:\n return x\n p.from_param = classmethod(from_param)\n return p\n", "role": "user" }, { "content": "POINTER", "role": "assistant" } ]
def x(g): addr = int(g.gpudata) if g.dtype == np.int8: return ctypes.cast(addr, POINTER(ctypes.c_byte)) if g.dtype == np.uint8: return ctypes.cast(addr, POINTER(ctypes.c_ubyte)) if g.dtype == np.int16: return ctypes.cast(addr, POINTER(ctypes.c_short)) if g.dtype == np.uint16: return ctypes.cast(addr, POINTER(ctypes.c_ushort)) if g.dtype == np.int32: return ctypes.cast(addr, POINTER(ctypes.c_int)) if g.dtype == np.uint32: return ctypes.cast(addr, POINTER(ctypes.c_uint)) if g.dtype == np.int64: return ctypes.cast(addr, POINTER(ctypes.c_long)) if g.dtype == np.uint64: return ctypes.cast(addr, POINTER(ctypes.c_ulong)) if g.dtype == np.float32: return ctypes.cast(addr, POINTER(ctypes.c_float)) elif g.dtype == np.float64: return ctypes.cast(addr, POINTER(ctypes.c_double)) elif g.dtype == np.complex64: return ctypes.cast(addr, POINTER(cuFloatComplex)) elif g.dtype == np.complex128: return ctypes.cast(addr, POINTER(cuDoubleComplex)) else: raise ValueError('unrecognized type')
gpuarray_ptr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g):\n addr = int(g.gpudata)\n if g.dtype == np.int8:\n return ctypes.cast(addr, POINTER(ctypes.c_byte))\n if g.dtype == np.uint8:\n return ctypes.cast(addr, POINTER(ctypes.c_ubyte))\n if g.dtype == np.int16:\n return ctypes.cast(addr, POINTER(ctypes.c_short))\n if g.dtype == np.uint16:\n return ctypes.cast(addr, POINTER(ctypes.c_ushort))\n if g.dtype == np.int32:\n return ctypes.cast(addr, POINTER(ctypes.c_int))\n if g.dtype == np.uint32:\n return ctypes.cast(addr, POINTER(ctypes.c_uint))\n if g.dtype == np.int64:\n return ctypes.cast(addr, POINTER(ctypes.c_long))\n if g.dtype == np.uint64:\n return ctypes.cast(addr, POINTER(ctypes.c_ulong))\n if g.dtype == np.float32:\n return ctypes.cast(addr, POINTER(ctypes.c_float))\n elif g.dtype == np.float64:\n return ctypes.cast(addr, POINTER(ctypes.c_double))\n elif g.dtype == np.complex64:\n return ctypes.cast(addr, POINTER(cuFloatComplex))\n elif g.dtype == np.complex128:\n return ctypes.cast(addr, POINTER(cuDoubleComplex))\n else:\n raise ValueError('unrecognized type')\n", "role": "user" }, { "content": "gpuarray_ptr", "role": "assistant" } ]
def x(count, ctype=None): ptr = ctypes.c_void_p() status = _libcudart.cudaMalloc(ctypes.byref(ptr), count) cudaCheckStatus(status) if ctype != None: ptr = ctypes.cast(ptr, ctypes.POINTER(ctype)) return ptr
cudaMalloc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(count, ctype=None):\n ptr = ctypes.c_void_p()\n status = _libcudart.cudaMalloc(ctypes.byref(ptr), count)\n cudaCheckStatus(status)\n if ctype != None:\n ptr = ctypes.cast(ptr, ctypes.POINTER(ctype))\n return ptr\n", "role": "user" }, { "content": "cudaMalloc", "role": "assistant" } ]
def x(pitch, rows, cols, elesize): ptr = ctypes.c_void_p() status = _libcudart.cudaMallocPitch(ctypes.byref(ptr), ctypes.c_size_t( pitch), cols * elesize, rows) cudaCheckStatus(status) return ptr, pitch
cudaMallocPitch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pitch, rows, cols, elesize):\n ptr = ctypes.c_void_p()\n status = _libcudart.cudaMallocPitch(ctypes.byref(ptr), ctypes.c_size_t(\n pitch), cols * elesize, rows)\n cudaCheckStatus(status)\n return ptr, pitch\n", "role": "user" }, { "content": "cudaMallocPitch", "role": "assistant" } ]
def x(dst, src, count): status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count), cudaMemcpyHostToDevice) cudaCheckStatus(status)
cudaMemcpy_htod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dst, src, count):\n status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),\n cudaMemcpyHostToDevice)\n cudaCheckStatus(status)\n", "role": "user" }, { "content": "cudaMemcpy_htod", "role": "assistant" } ]
def x(dst, src, count): status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count), cudaMemcpyDeviceToHost) cudaCheckStatus(status)
cudaMemcpy_dtoh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dst, src, count):\n status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),\n cudaMemcpyDeviceToHost)\n cudaCheckStatus(status)\n", "role": "user" }, { "content": "cudaMemcpy_dtoh", "role": "assistant" } ]
def x(): free = ctypes.c_size_t() total = ctypes.c_size_t() status = _libcudart.cudaMemGetInfo(ctypes.byref(free), ctypes.byref(total)) cudaCheckStatus(status) return free.value, total.value
cudaMemGetInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n free = ctypes.c_size_t()\n total = ctypes.c_size_t()\n status = _libcudart.cudaMemGetInfo(ctypes.byref(free), ctypes.byref(total))\n cudaCheckStatus(status)\n return free.value, total.value\n", "role": "user" }, { "content": "cudaMemGetInfo", "role": "assistant" } ]
def x(): dev = ctypes.c_int() status = _libcudart.cudaGetDevice(ctypes.byref(dev)) cudaCheckStatus(status) return dev.value
cudaGetDevice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n dev = ctypes.c_int()\n status = _libcudart.cudaGetDevice(ctypes.byref(dev))\n cudaCheckStatus(status)\n return dev.value\n", "role": "user" }, { "content": "cudaGetDevice", "role": "assistant" } ]
def x(): version = ctypes.c_int() status = _libcudart.cudaDriverGetVersion(ctypes.byref(version)) cudaCheckStatus(status) return version.value
cudaDriverGetVersion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n version = ctypes.c_int()\n status = _libcudart.cudaDriverGetVersion(ctypes.byref(version))\n cudaCheckStatus(status)\n return version.value\n", "role": "user" }, { "content": "cudaDriverGetVersion", "role": "assistant" } ]
def x(ptr): attributes = cudaPointerAttributes() status = _libcudart.cudaPointerGetAttributes(ctypes.byref(attributes), ptr) cudaCheckStatus(status) return attributes.memoryType, attributes.device
cudaPointerGetAttributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ptr):\n attributes = cudaPointerAttributes()\n status = _libcudart.cudaPointerGetAttributes(ctypes.byref(attributes), ptr)\n cudaCheckStatus(status)\n return attributes.memoryType, attributes.device\n", "role": "user" }, { "content": "cudaPointerGetAttributes", "role": "assistant" } ]
def x(thunk, env): key = Activation.key(thunk, env) if Activation.activated(key): raise exceptions.RecursionError('Reference cycle') with Activation(key): return eval_cache.get(key, thunk.eval, env)
eval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(thunk, env):\n key = Activation.key(thunk, env)\n if Activation.activated(key):\n raise exceptions.RecursionError('Reference cycle')\n with Activation(key):\n return eval_cache.get(key, thunk.eval, env)\n", "role": "user" }, { "content": "eval", "role": "assistant" } ]
def x(self, key): if key in self.names: return self.values.get_member_node(key) if hasattr(self.values, 'get_member_node') else None return self.parent.get_node(key)
get_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n if key in self.names:\n return self.values.get_member_node(key) if hasattr(self.values,\n 'get_member_node') else None\n return self.parent.get_node(key)\n", "role": "user" }, { "content": "get_node", "role": "assistant" } ]
def x(cls): schema_editor = getattr(connection, 'schema_editor', None) if schema_editor: with schema_editor() as schema_editor: schema_editor.create_model(cls) else: raw_sql, _ = connection.creation.sql_create_model(cls, no_style(), []) cls.delete_table() cursor = connection.cursor() try: cursor.execute(*raw_sql) finally: cursor.close()
create_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n schema_editor = getattr(connection, 'schema_editor', None)\n if schema_editor:\n with schema_editor() as schema_editor:\n schema_editor.create_model(cls)\n else:\n raw_sql, _ = connection.creation.sql_create_model(cls, no_style(), [])\n cls.delete_table()\n cursor = connection.cursor()\n try:\n cursor.execute(*raw_sql)\n finally:\n cursor.close()\n", "role": "user" }, { "content": "create_table", "role": "assistant" } ]
def x(cls): schema_editor = getattr(connection, 'schema_editor', None) if schema_editor: with connection.schema_editor() as schema_editor: schema_editor.delete_model(cls) else: cursor = connection.cursor() try: with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'unknown table') cursor.execute('DROP TABLE IF EXISTS {0}'.format(cls._meta. db_table)) finally: cursor.close()
delete_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n schema_editor = getattr(connection, 'schema_editor', None)\n if schema_editor:\n with connection.schema_editor() as schema_editor:\n schema_editor.delete_model(cls)\n else:\n cursor = connection.cursor()\n try:\n with warnings.catch_warnings():\n warnings.filterwarnings('ignore', 'unknown table')\n cursor.execute('DROP TABLE IF EXISTS {0}'.format(cls._meta.\n db_table))\n finally:\n cursor.close()\n", "role": "user" }, { "content": "delete_table", "role": "assistant" } ]
def x(cls, source): if source and type(source) == type and issubclass(source, SimpleTestCase): return cls._class_extension(source) elif hasattr(source, '__call__'): return cls._decorator(source) else: raise AttributeError( 'source - must be a SimpleTestCase subclass of function')
fake_me
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, source):\n if source and type(source) == type and issubclass(source, SimpleTestCase):\n return cls._class_extension(source)\n elif hasattr(source, '__call__'):\n return cls._decorator(source)\n else:\n raise AttributeError(\n 'source - must be a SimpleTestCase subclass of function')\n", "role": "user" }, { "content": "fake_me", "role": "assistant" } ]
def x(decorated_func=None, debug=False, overwrite=False, disabled=False, playback_only=False, tape_name=None): def x(func): def x(*args, **kwargs): if disabled or VCRSystem.disabled: return func(*args, **kwargs) if func.__module__ == 'doctest': source_filename = func.__self__._dt_test.filename file_name = os.path.splitext(os.path.basename(source_filename) )[0] path = os.path.join(os.path.dirname(source_filename), 'tests') if os.path.exists(path): path = os.path.join(os.path.dirname(source_filename), 'tests', 'vcrtapes') else: path = os.path.join(os.path.dirname(source_filename), 'vcrtapes') func_name = func.__self__._dt_test.name.split('.')[-1] else: source_filename = func.__code__.co_filename file_name = os.path.splitext(os.path.basename(source_filename) )[0] path = os.path.join(os.path.dirname(source_filename), 'vcrtapes') func_name = func.__name__ if tape_name: if os.sep in tape_name: temp = os.path.abspath(tape_name) path = os.path.dirname(temp) if not os.path.isdir(path): os.makedirs(path) tape = os.path.join(path, '%s' % tape_name) else: if not os.path.isdir(path): os.makedirs(path) tape = os.path.join(path, '%s.%s.vcr' % (file_name, func_name)) with VCRSystem(debug=debug): if not (playback_only or VCRSystem.playback_only) and (not os.path.isfile(tape) or overwrite or VCRSystem.overwrite): if PY2: msg = ('VCR records only in PY3 to be backward ' + 'compatible with PY2 - skipping VCR ' + 'mechanics for %s') warnings.warn(msg % func.__name__) VCRSystem.stop() return func(*args, **kwargs) if VCRSystem.debug: print('\nVCR RECORDING (%s) ...' % func_name) VCRSystem.status = VCR_RECORD value = func(*args, **kwargs) if len(VCRSystem.playlist) == 0: msg = 'no socket activity - @vcr unneeded for %s' msg = msg % func.__name__ if VCRSystem.raise_if_not_needed: raise Exception(msg) else: warnings.warn(msg) else: try: os.remove(tape) except OSError: pass with gzip.open(tape, 'wb') as fh: pickle.dump(VCRSystem.playlist, fh, protocol=2) else: if VCRSystem.debug: print('\nVCR PLAYBACK (%s) ...' % func_name) VCRSystem.status = VCR_PLAYBACK if not os.path.exists(tape): msg = 'Missing VCR tape file for playback: {}' raise IOError(msg.format(tape)) try: with gzip.open(tape, 'rb') as fh: VCRSystem.playlist = pickle.load(fh) except OSError: with open(tape, 'rb') as fh: VCRSystem.playlist = pickle.load(fh) if VCRSystem.debug: print('Loaded playlist:') for i, item in enumerate(VCRSystem.playlist): print('{:3d}: {} {} {}'.format(i, *item)) print() value = func(*args, **kwargs) return value return _vcr_inner if decorated_func is None: return _vcr_outer else: return _vcr_outer(decorated_func)
vcr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(decorated_func=None, debug=False, overwrite=False, disabled=False,\n playback_only=False, tape_name=None):\n\n def x(func):\n\n def x(*args, **kwargs):\n if disabled or VCRSystem.disabled:\n return func(*args, **kwargs)\n if func.__module__ == 'doctest':\n source_filename = func.__self__._dt_test.filename\n file_name = os.path.splitext(os.path.basename(source_filename)\n )[0]\n path = os.path.join(os.path.dirname(source_filename), 'tests')\n if os.path.exists(path):\n path = os.path.join(os.path.dirname(source_filename),\n 'tests', 'vcrtapes')\n else:\n path = os.path.join(os.path.dirname(source_filename),\n 'vcrtapes')\n func_name = func.__self__._dt_test.name.split('.')[-1]\n else:\n source_filename = func.__code__.co_filename\n file_name = os.path.splitext(os.path.basename(source_filename)\n )[0]\n path = os.path.join(os.path.dirname(source_filename),\n 'vcrtapes')\n func_name = func.__name__\n if tape_name:\n if os.sep in tape_name:\n temp = os.path.abspath(tape_name)\n path = os.path.dirname(temp)\n if not os.path.isdir(path):\n os.makedirs(path)\n tape = os.path.join(path, '%s' % tape_name)\n else:\n if not os.path.isdir(path):\n os.makedirs(path)\n tape = os.path.join(path, '%s.%s.vcr' % (file_name, func_name))\n with VCRSystem(debug=debug):\n if not (playback_only or VCRSystem.playback_only) and (not\n os.path.isfile(tape) or overwrite or VCRSystem.overwrite):\n if PY2:\n msg = ('VCR records only in PY3 to be backward ' +\n 'compatible with PY2 - skipping VCR ' +\n 'mechanics for %s')\n warnings.warn(msg % func.__name__)\n VCRSystem.stop()\n return func(*args, **kwargs)\n if VCRSystem.debug:\n print('\\nVCR RECORDING (%s) ...' % func_name)\n VCRSystem.status = VCR_RECORD\n value = func(*args, **kwargs)\n if len(VCRSystem.playlist) == 0:\n msg = 'no socket activity - @vcr unneeded for %s'\n msg = msg % func.__name__\n if VCRSystem.raise_if_not_needed:\n raise Exception(msg)\n else:\n warnings.warn(msg)\n else:\n try:\n os.remove(tape)\n except OSError:\n pass\n with gzip.open(tape, 'wb') as fh:\n pickle.dump(VCRSystem.playlist, fh, protocol=2)\n else:\n if VCRSystem.debug:\n print('\\nVCR PLAYBACK (%s) ...' % func_name)\n VCRSystem.status = VCR_PLAYBACK\n if not os.path.exists(tape):\n msg = 'Missing VCR tape file for playback: {}'\n raise IOError(msg.format(tape))\n try:\n with gzip.open(tape, 'rb') as fh:\n VCRSystem.playlist = pickle.load(fh)\n except OSError:\n with open(tape, 'rb') as fh:\n VCRSystem.playlist = pickle.load(fh)\n if VCRSystem.debug:\n print('Loaded playlist:')\n for i, item in enumerate(VCRSystem.playlist):\n print('{:3d}: {} {} {}'.format(i, *item))\n print()\n value = func(*args, **kwargs)\n return value\n return _vcr_inner\n if decorated_func is None:\n return _vcr_outer\n else:\n return _vcr_outer(decorated_func)\n", "role": "user" }, { "content": "vcr", "role": "assistant" } ]
def x(cls): cls.debug = False cls.disabled = False cls.overwrite = False cls.playback_only = False cls.recv_timeout = 5 cls.recv_endmarkers = [] cls.recv_size = None
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n cls.debug = False\n cls.disabled = False\n cls.overwrite = False\n cls.playback_only = False\n cls.recv_timeout = 5\n cls.recv_endmarkers = []\n cls.recv_size = None\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(value, seen=None): seen = seen or set() if isinstance(value, framework.TupleLike): if value.ident in seen: raise RecursionException( 'to_python: infinite recursion while evaluating %r' % value) new_seen = seen.union([value.ident]) return {k: to_python(value[k], seen=new_seen) for k in value. exportable_keys()} if isinstance(value, dict): return {k: to_python(value[k], seen=seen) for k in value.keys()} if isinstance(value, list): return [to_python(x, seen=seen) for x in value] return value
to_python
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, seen=None):\n seen = seen or set()\n if isinstance(value, framework.TupleLike):\n if value.ident in seen:\n raise RecursionException(\n 'to_python: infinite recursion while evaluating %r' % value)\n new_seen = seen.union([value.ident])\n return {k: to_python(value[k], seen=new_seen) for k in value.\n exportable_keys()}\n if isinstance(value, dict):\n return {k: to_python(value[k], seen=seen) for k in value.keys()}\n if isinstance(value, list):\n return [to_python(x, seen=seen) for x in value]\n return value\n", "role": "user" }, { "content": "to_python", "role": "assistant" } ]
def x(value, walker, path=None, seen=None): seen = seen or set() path = path or [] if id(value) in seen: walker.visitRecursion(path) return if isinstance(value, Exception): walker.visitError(path, value) return if isinstance(value, list): recurse = walker.enterList(value, path) if not recurse: return next_walker = walker if recurse is True else recurse with TempSetAdd(seen, id(value)): for i, x in enumerate(value): walk(x, next_walker, path=path + ['[%d]' % i], seen=seen) walker.leaveList(value, path) return if not isinstance(value, framework.TupleLike): walker.visitScalar(path, value) return recurse = walker.enterTuple(value, path) if not recurse: return next_walker = walker if recurse is True else recurse with TempSetAdd(seen, id(value)): keys = sorted(value.keys()) for key in keys: key_path = path + [key] elm = get_or_error(value, key) walk(elm, next_walker, path=key_path, seen=seen) walker.leaveTuple(value, path)
walk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, walker, path=None, seen=None):\n seen = seen or set()\n path = path or []\n if id(value) in seen:\n walker.visitRecursion(path)\n return\n if isinstance(value, Exception):\n walker.visitError(path, value)\n return\n if isinstance(value, list):\n recurse = walker.enterList(value, path)\n if not recurse:\n return\n next_walker = walker if recurse is True else recurse\n with TempSetAdd(seen, id(value)):\n for i, x in enumerate(value):\n walk(x, next_walker, path=path + ['[%d]' % i], seen=seen)\n walker.leaveList(value, path)\n return\n if not isinstance(value, framework.TupleLike):\n walker.visitScalar(path, value)\n return\n recurse = walker.enterTuple(value, path)\n if not recurse:\n return\n next_walker = walker if recurse is True else recurse\n with TempSetAdd(seen, id(value)):\n keys = sorted(value.keys())\n for key in keys:\n key_path = path + [key]\n elm = get_or_error(value, key)\n walk(elm, next_walker, path=key_path, seen=seen)\n walker.leaveTuple(value, path)\n", "role": "user" }, { "content": "walk", "role": "assistant" } ]
def x(value): h = hashlib.sha256() _digest(value, h) return h.digest().encode('hex')
fingerprint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n h = hashlib.sha256()\n _digest(value, h)\n return h.digest().encode('hex')\n", "role": "user" }, { "content": "fingerprint", "role": "assistant" } ]
def x(err): def x(e): if isinstance(e, exceptions.EvaluationError) and e.inner: message, i = err2(e.inner) if i == 1: return ', '.join([e.args[0], str(e.inner)]), i + 1 else: return message, i + 1 else: return str(e), 1 return err2(err)[0]
compact_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(err):\n\n def x(e):\n if isinstance(e, exceptions.EvaluationError) and e.inner:\n message, i = err2(e.inner)\n if i == 1:\n return ', '.join([e.args[0], str(e.inner)]), i + 1\n else:\n return message, i + 1\n else:\n return str(e), 1\n return err2(err)[0]\n", "role": "user" }, { "content": "compact_error", "role": "assistant" } ]
def x(self, input_data, targets, cache=None): if cache is not None: activations = cache else: activations = self.feed_forward(input_data, prediction=False) if activations.shape != targets.shape: raise ValueError( 'Activations (shape = %s) and targets (shape = %s) are different sizes' % (activations.shape, targets.shape)) delta = substract_matrix(activations, targets) nan_to_zeros(delta, delta) df_W = linalg.dot(input_data, delta, transa='T') df_b = matrix_sum_out_axis(delta, 0) df_input = linalg.dot(delta, self.W, transb='T') if self.l1_penalty_weight: df_W += self.l1_penalty_weight * sign(self.W) if self.l2_penalty_weight: df_W += self.l2_penalty_weight * self.W return (df_W, df_b), df_input
backprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, cache=None):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=False)\n if activations.shape != targets.shape:\n raise ValueError(\n 'Activations (shape = %s) and targets (shape = %s) are different sizes'\n % (activations.shape, targets.shape))\n delta = substract_matrix(activations, targets)\n nan_to_zeros(delta, delta)\n df_W = linalg.dot(input_data, delta, transa='T')\n df_b = matrix_sum_out_axis(delta, 0)\n df_input = linalg.dot(delta, self.W, transb='T')\n if self.l1_penalty_weight:\n df_W += self.l1_penalty_weight * sign(self.W)\n if self.l2_penalty_weight:\n df_W += self.l2_penalty_weight * self.W\n return (df_W, df_b), df_input\n", "role": "user" }, { "content": "backprop", "role": "assistant" } ]
def x(self, input_data, targets, average=True, cache=None, prediction=False): if cache is not None: activations = cache else: activations = self.feed_forward(input_data, prediction=prediction) loss = cross_entropy_logistic(activations, targets) if average: loss /= targets.shape[0] return loss.get()
cross_entropy_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, average=True, cache=None, prediction=False):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n loss = cross_entropy_logistic(activations, targets)\n if average:\n loss /= targets.shape[0]\n return loss.get()\n", "role": "user" }, { "content": "cross_entropy_error", "role": "assistant" } ]
def x(lines): normal, sep, in_code = range(3) state = normal for line in lines: indented = line.startswith(' ') empty_line = line.strip() == '' if state == normal and empty_line: state = sep elif state in [sep, normal] and indented: yield '' if indented: yield '.. code-block:: javascript' yield '' yield line state = in_code else: state = normal elif state == sep and not empty_line: yield '' yield line state = normal else: yield line if state == in_code and not (indented or empty_line): sep = normal
stylize_comment_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lines):\n normal, sep, in_code = range(3)\n state = normal\n for line in lines:\n indented = line.startswith(' ')\n empty_line = line.strip() == ''\n if state == normal and empty_line:\n state = sep\n elif state in [sep, normal] and indented:\n yield ''\n if indented:\n yield '.. code-block:: javascript'\n yield ''\n yield line\n state = in_code\n else:\n state = normal\n elif state == sep and not empty_line:\n yield ''\n yield line\n state = normal\n else:\n yield line\n if state == in_code and not (indented or empty_line):\n sep = normal\n", "role": "user" }, { "content": "stylize_comment_block", "role": "assistant" } ]
def x(tup, names): scalars, tuples = partition(lambda x: not is_tuple_node(tup.member[x]. value), names) unbound, bound = partition(lambda x: tup.member[x].value.is_unbound(), scalars) return usorted(unbound) + usorted(bound), usorted(tuples)
sort_members
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tup, names):\n scalars, tuples = partition(lambda x: not is_tuple_node(tup.member[x].\n value), names)\n unbound, bound = partition(lambda x: tup.member[x].value.is_unbound(),\n scalars)\n return usorted(unbound) + usorted(bound), usorted(tuples)\n", "role": "user" }, { "content": "sort_members", "role": "assistant" } ]
def x(fname, paths): fpath = path.abspath(fname) for p in paths: spath = path.abspath(p) if fpath.startswith(spath): return fpath[len(spath) + 1:] return fname
resolve_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, paths):\n fpath = path.abspath(fname)\n for p in paths:\n spath = path.abspath(p)\n if fpath.startswith(spath):\n return fpath[len(spath) + 1:]\n return fname\n", "role": "user" }, { "content": "resolve_file", "role": "assistant" } ]
def x(self): header = ' '.join('=' * self.width[i] for i in range(self.w)) lines = [' '.join(row[i].ljust(self.width[i]) for i in range(self.w)) for row in self.rows] return [header] + lines + [header]
generate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n header = ' '.join('=' * self.width[i] for i in range(self.w))\n lines = [' '.join(row[i].ljust(self.width[i]) for i in range(self.w)) for\n row in self.rows]\n return [header] + lines + [header]\n", "role": "user" }, { "content": "generate", "role": "assistant" } ]
def x(pred, iterable): t1, t2 = itertools.tee(iterable) return list(filter(negate(pred), t1)), list(filter(pred, t2))
partition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pred, iterable):\n t1, t2 = itertools.tee(iterable)\n return list(filter(negate(pred), t1)), list(filter(pred, t2))\n", "role": "user" }, { "content": "partition", "role": "assistant" } ]
def x(self, model): res = [] def x(value, pre, remaining): if not remaining: res.append((pre, value)) else: if not is_tuple(value) and not isinstance(value, list): return qhead, qtail = remaining[0], remaining[1:] if isinstance(qhead, tuple) and is_tuple(value): for alt in qhead: if alt in value: doSelect(value[alt], pre + [alt], qtail) elif qhead == '*': if isinstance(value, list): indices = range(len(value)) reprs = [listKey(i) for i in indices] else: indices = value.keys() reprs = indices for key, rep in zip(indices, reprs): doSelect(value[key], pre + [rep], qtail) elif isinstance(qhead, int) and isinstance(value, list): doSelect(value[qhead], pre + [listKey(qhead)], qtail) elif is_tuple(value): if qhead in value: doSelect(value[qhead], pre + [qhead], qtail) for selector in self.selectors: doSelect(model, [], selector) return QueryResult(res)
select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model):\n res = []\n\n def x(value, pre, remaining):\n if not remaining:\n res.append((pre, value))\n else:\n if not is_tuple(value) and not isinstance(value, list):\n return\n qhead, qtail = remaining[0], remaining[1:]\n if isinstance(qhead, tuple) and is_tuple(value):\n for alt in qhead:\n if alt in value:\n doSelect(value[alt], pre + [alt], qtail)\n elif qhead == '*':\n if isinstance(value, list):\n indices = range(len(value))\n reprs = [listKey(i) for i in indices]\n else:\n indices = value.keys()\n reprs = indices\n for key, rep in zip(indices, reprs):\n doSelect(value[key], pre + [rep], qtail)\n elif isinstance(qhead, int) and isinstance(value, list):\n doSelect(value[qhead], pre + [listKey(qhead)], qtail)\n elif is_tuple(value):\n if qhead in value:\n doSelect(value[qhead], pre + [qhead], qtail)\n for selector in self.selectors:\n doSelect(model, [], selector)\n return QueryResult(res)\n", "role": "user" }, { "content": "select", "role": "assistant" } ]
def x(self): self.lists = {} ret = {} for path, value in self.paths_values(): self.recursiveSet(ret, path, value) self.removeMissingValuesFromLists() return ret
deep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.lists = {}\n ret = {}\n for path, value in self.paths_values():\n self.recursiveSet(ret, path, value)\n self.removeMissingValuesFromLists()\n return ret\n", "role": "user" }, { "content": "deep", "role": "assistant" } ]
def x(self, what, key, value): if isListKey(key): self.lists[id(what)] = what ix = listKeyIndex(key) while len(what) <= ix: what.append(missing_value) what[ix] = value else: what[key] = value return value
ldSet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, what, key, value):\n if isListKey(key):\n self.lists[id(what)] = what\n ix = listKeyIndex(key)\n while len(what) <= ix:\n what.append(missing_value)\n what[ix] = value\n else:\n what[key] = value\n return value\n", "role": "user" }, { "content": "ldSet", "role": "assistant" } ]
def x(self, what, key): if isListKey(key): return what[listKeyIndex(key)] else: return what[key]
ldGet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, what, key):\n if isListKey(key):\n return what[listKeyIndex(key)]\n else:\n return what[key]\n", "role": "user" }, { "content": "ldGet", "role": "assistant" } ]
def x(self, what, key): if isListKey(key): i = listKeyIndex(key) return i < len(what) and what[i] != missing_value else: return key in what and what[key] != missing_value
ldContains
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, what, key):\n if isListKey(key):\n i = listKeyIndex(key)\n return i < len(what) and what[i] != missing_value\n else:\n return key in what and what[key] != missing_value\n", "role": "user" }, { "content": "ldContains", "role": "assistant" } ]
def x(self): nodes_on_path = [] def x(nodes): for node in nodes: cycle = node in nodes_on_path nodes_on_path.append(node) if cycle or helper(self.deps.get(node, [])): return True nodes_on_path.pop() return False helper(self.unordered) return nodes_on_path
find_recursive_dependency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nodes_on_path = []\n\n def x(nodes):\n for node in nodes:\n cycle = node in nodes_on_path\n nodes_on_path.append(node)\n if cycle or helper(self.deps.get(node, [])):\n return True\n nodes_on_path.pop()\n return False\n helper(self.unordered)\n return nodes_on_path\n", "role": "user" }, { "content": "find_recursive_dependency", "role": "assistant" } ]
def x(self, tuple, path): if skip_name(path): return False node = Node(path, tuple) if self.condition.matches(node): self.unordered.append(node) return False return True
enterTuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tuple, path):\n if skip_name(path):\n return False\n node = Node(path, tuple)\n if self.condition.matches(node):\n self.unordered.append(node)\n return False\n return True\n", "role": "user" }, { "content": "enterTuple", "role": "assistant" } ]
def x(converter, handler): def x(loc, value): return handler(loc, converter(value)) return convertAction
convertAndMake
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(converter, handler):\n\n def x(loc, value):\n return handler(loc, converter(value))\n return convertAction\n", "role": "user" }, { "content": "convertAndMake", "role": "assistant" } ]
def x(location, *atoms): atoms = list(atoms) while len(atoms) > 1: atoms[0:2] = [Application(location, atoms[0], atoms[1])] return atoms[0]
mkApplications
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(location, *atoms):\n atoms = list(atoms)\n while len(atoms) > 1:\n atoms[0:2] = [Application(location, atoms[0], atoms[1])]\n return atoms[0]\n", "role": "user" }, { "content": "mkApplications", "role": "assistant" } ]
def x(fn, arglist, env): if isinstance(fn, framework.LazyFunction): thunks = [(lambda thunk: lambda : framework.eval(thunk, env))(th) for th in arglist.values] return fn(*thunks) evaled_args = framework.eval(arglist, env) if isinstance(fn, framework.EnvironmentFunction): return fn(*evaled_args, env=env) return fn(*evaled_args)
call_fn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn, arglist, env):\n if isinstance(fn, framework.LazyFunction):\n thunks = [(lambda thunk: lambda : framework.eval(thunk, env))(th) for\n th in arglist.values]\n return fn(*thunks)\n evaled_args = framework.eval(arglist, env)\n if isinstance(fn, framework.EnvironmentFunction):\n return fn(*evaled_args, env=env)\n return fn(*evaled_args)\n", "role": "user" }, { "content": "call_fn", "role": "assistant" } ]
def x(tup): if hasattr(tup, 'get_schema_spec'): return schema.from_spec({'fields': TupleSchemaAccess(tup), 'required': tup.get_required_fields()}) return schema.AnySchema()
schema_spec_from_tuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tup):\n if hasattr(tup, 'get_schema_spec'):\n return schema.from_spec({'fields': TupleSchemaAccess(tup),\n 'required': tup.get_required_fields()})\n return schema.AnySchema()\n", "role": "user" }, { "content": "schema_spec_from_tuple", "role": "assistant" } ]
def x(value, env): if isinstance(value, framework.Thunk): value = framework.eval(value, env) if isinstance(value, schema.Schema): return value if framework.is_tuple(value): return schema_spec_from_tuple(value) if framework.is_list(value): return schema.from_spec([make_schema_from(x, env) for x in value]) raise exceptions.EvaluationError("Can't make a schema from %r" % value)
make_schema_from
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, env):\n if isinstance(value, framework.Thunk):\n value = framework.eval(value, env)\n if isinstance(value, schema.Schema):\n return value\n if framework.is_tuple(value):\n return schema_spec_from_tuple(value)\n if framework.is_list(value):\n return schema.from_spec([make_schema_from(x, env) for x in value])\n raise exceptions.EvaluationError(\"Can't make a schema from %r\" % value)\n", "role": "user" }, { "content": "make_schema_from", "role": "assistant" } ]
def x(l, r, sep, expr, allow_missing_close=False): strict = l != '[' closer = sym(r) if not allow_missing_close else p.Optional(sym(r)) if strict: return sym(l) - listMembers(sep, expr) - closer else: return sym(l) + listMembers(sep, expr) + closer
bracketedList
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, r, sep, expr, allow_missing_close=False):\n strict = l != '['\n closer = sym(r) if not allow_missing_close else p.Optional(sym(r))\n if strict:\n return sym(l) - listMembers(sep, expr) - closer\n else:\n return sym(l) + listMembers(sep, expr) + closer\n", "role": "user" }, { "content": "bracketedList", "role": "assistant" } ]
def x(s): i, N = 1, len(s) - 1 ret = [] while i < N: if s[i] == '\\' and i < N - 1: ret.append(UNQUOTE_MAP.get(s[i + 1], s[i + 1])) i += 2 else: ret.append(s[i]) i += 1 return ''.join(ret)
unquote
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n i, N = 1, len(s) - 1\n ret = []\n while i < N:\n if s[i] == '\\\\' and i < N - 1:\n ret.append(UNQUOTE_MAP.get(s[i + 1], s[i + 1]))\n i += 2\n else:\n ret.append(s[i])\n i += 1\n return ''.join(ret)\n", "role": "user" }, { "content": "unquote", "role": "assistant" } ]
def x(name, pattern): pattern.setName(name) astracing.maybe_trace(pattern) return pattern
pattern
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, pattern):\n pattern.setName(name)\n astracing.maybe_trace(pattern)\n return pattern\n", "role": "user" }, { "content": "pattern", "role": "assistant" } ]
def x(s, filename, loader, implicit_tuple, allow_errors): try: the_context.filename = filename the_context.loader = loader grammar = make_grammar(allow_errors=allow_errors) root = grammar.start_tuple if implicit_tuple else grammar.start return root.parseWithTabs().parseString(s, parseAll=True)[0] except (p.ParseException, p.ParseSyntaxException) as e: loc = SourceLocation(s, find_offset(s, e.lineno, e.col)) raise exceptions.ParseError(the_context.filename, loc, e.msg)
reads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, filename, loader, implicit_tuple, allow_errors):\n try:\n the_context.filename = filename\n the_context.loader = loader\n grammar = make_grammar(allow_errors=allow_errors)\n root = grammar.start_tuple if implicit_tuple else grammar.start\n return root.parseWithTabs().parseString(s, parseAll=True)[0]\n except (p.ParseException, p.ParseSyntaxException) as e:\n loc = SourceLocation(s, find_offset(s, e.lineno, e.col))\n raise exceptions.ParseError(the_context.filename, loc, e.msg)\n", "role": "user" }, { "content": "reads", "role": "assistant" } ]
def x(self, q): found_me = [] if hasattr(self, 'location'): if self.location.contains(q): found_me = [self] elif self._found_by(q): found_me = [self] cs = [n.find_tokens(q) for n in self._children()] return found_me + list(itertools.chain(*cs))
find_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n found_me = []\n if hasattr(self, 'location'):\n if self.location.contains(q):\n found_me = [self]\n elif self._found_by(q):\n found_me = [self]\n cs = [n.find_tokens(q) for n in self._children()]\n return found_me + list(itertools.chain(*cs))\n", "role": "user" }, { "content": "find_tokens", "role": "assistant" } ]
def x(self, env): t = runtime.Tuple(self, env, dict2tuple) schema = schema_spec_from_tuple(t) t.attach_schema(schema) return t
make_tuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, env):\n t = runtime.Tuple(self, env, dict2tuple)\n schema = schema_spec_from_tuple(t)\n t.attach_schema(schema)\n return t\n", "role": "user" }, { "content": "make_tuple", "role": "assistant" } ]
def x(self, tuple, right, env): if len(right) != 1: raise exceptions.EvaluationError( 'Tuple (%r) can only be applied to one argument, got %r' % ( self.left, self.right)) right = right[0] return tuple(right)
applyTuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tuple, right, env):\n if len(right) != 1:\n raise exceptions.EvaluationError(\n 'Tuple (%r) can only be applied to one argument, got %r' % (\n self.left, self.right))\n right = right[0]\n return tuple(right)\n", "role": "user" }, { "content": "applyTuple", "role": "assistant" } ]
def x(self, lst, right): if len(right) != 1: raise exceptions.EvaluationError( '%r can only be applied to one argument, got %r' % (self.left, self.right)) right = right[0] if isinstance(right, int): return lst[right] raise exceptions.EvaluationError( "Can't apply %r to argument (%r): integer expected, got %r" % (self .left, self.right, right))
applyIndex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lst, right):\n if len(right) != 1:\n raise exceptions.EvaluationError(\n '%r can only be applied to one argument, got %r' % (self.left,\n self.right))\n right = right[0]\n if isinstance(right, int):\n return lst[right]\n raise exceptions.EvaluationError(\n \"Can't apply %r to argument (%r): integer expected, got %r\" % (self\n .left, self.right, right))\n", "role": "user" }, { "content": "applyIndex", "role": "assistant" } ]
def x(self): updates = zip(self.velocity, self.model.n_parameters * [1.0]) self.model.update_parameters(updates)
pre_gradient_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n updates = zip(self.velocity, self.model.n_parameters * [1.0])\n self.model.update_parameters(updates)\n", "role": "user" }, { "content": "pre_gradient_update", "role": "assistant" } ]
def x(self, input_data, targets, average=True, cache=None, prediction=False): if cache is not None: activations = cache else: activations = self.feed_forward(input_data, prediction=prediction) targets = targets.get().argmax(1) class_error = np.sum(activations.get().argmax(1) != targets) if average: class_error = float(class_error) / targets.shape[0] return class_error
class_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, average=True, cache=None, prediction=False):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n targets = targets.get().argmax(1)\n class_error = np.sum(activations.get().argmax(1) != targets)\n if average:\n class_error = float(class_error) / targets.shape[0]\n return class_error\n", "role": "user" }, { "content": "class_error", "role": "assistant" } ]
def x(self, input_data, targets, average=True, cache=None, prediction=True): if cache is not None: activations = cache else: activations = self.feed_forward(input_data, prediction=prediction) targets_non_nan = gpuarray.empty_like(targets) nan_to_zeros(targets, targets_non_nan) kl_error = gpuarray.sum(targets_non_nan * (cumath.log(targets_non_nan + eps) - cumath.log(activations + eps))) if average: kl_error /= targets.shape[0] return kl_error.get()
kl_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, average=True, cache=None, prediction=True):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n targets_non_nan = gpuarray.empty_like(targets)\n nan_to_zeros(targets, targets_non_nan)\n kl_error = gpuarray.sum(targets_non_nan * (cumath.log(targets_non_nan +\n eps) - cumath.log(activations + eps)))\n if average:\n kl_error /= targets.shape[0]\n return kl_error.get()\n", "role": "user" }, { "content": "kl_error", "role": "assistant" } ]
def x(x_gpu, y_gpu, transa='N', transb='N', handle=None, target=None): if handle is None: handle = _global_cublas_handle if len(x_gpu.shape) == 1 and len(y_gpu.shape) == 1: if x_gpu.size != y_gpu.size: raise ValueError( 'arrays must be of same length: x_gpu.size = %d, y_gpu.size = %d' % (x_gpu.size, y_gpu.size)) if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64: cublas_func = cublas.cublasCdotu elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32: cublas_func = cublas.cublasSdot elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128: cublas_func = cublas.cublasZdotu elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64: cublas_func = cublas.cublasDdot else: raise ValueError( 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s' % (str(x_gpu.dtype), str(y_gpu.dtype))) return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1, y_gpu. gpudata, 1) else: x_shape = x_gpu.shape y_shape = y_gpu.shape if len(x_shape) == 1: x_shape = 1, x_shape[0] if len(y_shape) == 1: y_shape = 1, y_shape[0] if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64: cublas_func = cublas.cublasCgemm alpha = np.complex64(1.0) beta = np.complex64(0.0) elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32: cublas_func = cublas.cublasSgemm alpha = np.float32(1.0) beta = np.float32(0.0) elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128: cublas_func = cublas.cublasZgemm alpha = np.complex128(1.0) beta = np.complex128(0.0) elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64: cublas_func = cublas.cublasDgemm alpha = np.float64(1.0) beta = np.float64(0.0) else: raise ValueError( 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s' % (str(x_gpu.dtype), str(y_gpu.dtype))) transa = lower(transa) transb = lower(transb) if transb in ['t', 'c']: m, k = y_shape elif transb in ['n']: k, m = y_shape else: raise ValueError('invalid value "%s" for transb' % transb) if transa in ['t', 'c']: l, n = x_shape elif transa in ['n']: n, l = x_shape else: raise ValueError('invalid value "%s" for transa' % transa) if l != k: raise ValueError( 'objects are not aligned: x_shape = %s, y_shape = %s' % ( x_shape, y_shape)) if transb == 'n': lda = max(1, m) else: lda = max(1, k) if transa == 'n': ldb = max(1, k) else: ldb = max(1, n) ldc = max(1, m) if target is None: target = gpuarray.empty((n, ldc), x_gpu.dtype, allocator= memory_pool.allocate) cublas_func(handle, transb, transa, m, n, k, alpha, y_gpu.gpudata, lda, x_gpu.gpudata, ldb, beta, target.gpudata, ldc) return target
dot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_gpu, y_gpu, transa='N', transb='N', handle=None, target=None):\n if handle is None:\n handle = _global_cublas_handle\n if len(x_gpu.shape) == 1 and len(y_gpu.shape) == 1:\n if x_gpu.size != y_gpu.size:\n raise ValueError(\n 'arrays must be of same length: x_gpu.size = %d, y_gpu.size = %d'\n % (x_gpu.size, y_gpu.size))\n if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:\n cublas_func = cublas.cublasCdotu\n elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:\n cublas_func = cublas.cublasSdot\n elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:\n cublas_func = cublas.cublasZdotu\n elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:\n cublas_func = cublas.cublasDdot\n else:\n raise ValueError(\n 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'\n % (str(x_gpu.dtype), str(y_gpu.dtype)))\n return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1, y_gpu.\n gpudata, 1)\n else:\n x_shape = x_gpu.shape\n y_shape = y_gpu.shape\n if len(x_shape) == 1:\n x_shape = 1, x_shape[0]\n if len(y_shape) == 1:\n y_shape = 1, y_shape[0]\n if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:\n cublas_func = cublas.cublasCgemm\n alpha = np.complex64(1.0)\n beta = np.complex64(0.0)\n elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:\n cublas_func = cublas.cublasSgemm\n alpha = np.float32(1.0)\n beta = np.float32(0.0)\n elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:\n cublas_func = cublas.cublasZgemm\n alpha = np.complex128(1.0)\n beta = np.complex128(0.0)\n elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:\n cublas_func = cublas.cublasDgemm\n alpha = np.float64(1.0)\n beta = np.float64(0.0)\n else:\n raise ValueError(\n 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'\n % (str(x_gpu.dtype), str(y_gpu.dtype)))\n transa = lower(transa)\n transb = lower(transb)\n if transb in ['t', 'c']:\n m, k = y_shape\n elif transb in ['n']:\n k, m = y_shape\n else:\n raise ValueError('invalid value \"%s\" for transb' % transb)\n if transa in ['t', 'c']:\n l, n = x_shape\n elif transa in ['n']:\n n, l = x_shape\n else:\n raise ValueError('invalid value \"%s\" for transa' % transa)\n if l != k:\n raise ValueError(\n 'objects are not aligned: x_shape = %s, y_shape = %s' % (\n x_shape, y_shape))\n if transb == 'n':\n lda = max(1, m)\n else:\n lda = max(1, k)\n if transa == 'n':\n ldb = max(1, k)\n else:\n ldb = max(1, n)\n ldc = max(1, m)\n if target is None:\n target = gpuarray.empty((n, ldc), x_gpu.dtype, allocator=\n memory_pool.allocate)\n cublas_func(handle, transb, transa, m, n, k, alpha, y_gpu.gpudata,\n lda, x_gpu.gpudata, ldb, beta, target.gpudata, ldc)\n return target\n", "role": "user" }, { "content": "dot", "role": "assistant" } ]
def x(data=None): with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp: temp.write(six.text_type(data if data is not None else os.getpid())) return temp.name
make_tempfile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data=None):\n with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp:\n temp.write(six.text_type(data if data is not None else os.getpid()))\n return temp.name\n", "role": "user" }, { "content": "make_tempfile", "role": "assistant" } ]
def x(self): parameters = [] for task in self.tasks: parameters.extend(task.parameters) return parameters
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n parameters = []\n for task in self.tasks:\n parameters.extend(task.parameters)\n return parameters\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self, value): assert len(value) == self.n_parameters i = 0 for task in self.tasks: task.parameters = value[i:i + task.n_parameters] i += task.n_parameters
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n assert len(value) == self.n_parameters\n i = 0\n for task in self.tasks:\n task.parameters = value[i:i + task.n_parameters]\n i += task.n_parameters\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self, input_data, prediction=False): activations = [] for task in self.tasks: activations_task = task.feed_forward(input_data, prediction) activations.append(activations_task) return activations
feed_forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, prediction=False):\n activations = []\n for task in self.tasks:\n activations_task = task.feed_forward(input_data, prediction)\n activations.append(activations_task)\n return activations\n", "role": "user" }, { "content": "feed_forward", "role": "assistant" } ]
def x(self, input_data, targets, cache=None): df_input = gpuarray.zeros_like(input_data) if cache is None: cache = self.n_tasks * [None] gradients = [] for targets_task, cache_task, task, task_weight in izip(targets, cache, self.tasks, self.task_weights): gradients_task, df_input_task = task.backprop(input_data, targets_task, cache_task) df_input = df_input.mul_add(1.0, df_input_task, task_weight) gradients.extend(gradients_task) return gradients, df_input
backprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, cache=None):\n df_input = gpuarray.zeros_like(input_data)\n if cache is None:\n cache = self.n_tasks * [None]\n gradients = []\n for targets_task, cache_task, task, task_weight in izip(targets, cache,\n self.tasks, self.task_weights):\n gradients_task, df_input_task = task.backprop(input_data,\n targets_task, cache_task)\n df_input = df_input.mul_add(1.0, df_input_task, task_weight)\n gradients.extend(gradients_task)\n return gradients, df_input\n", "role": "user" }, { "content": "backprop", "role": "assistant" } ]
def x(self, input_data, targets, average=True, cache=None, prediction=False, sum_errors=True): loss = [] if cache is None: cache = self.n_tasks * [None] for targets_task, cache_task, task in izip(targets, cache, self.tasks): loss.append(task.cross_entropy_error(input_data, targets_task, average=average, cache=cache_task, prediction=prediction)) if sum_errors: return sum(loss) else: return loss
cross_entropy_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, targets, average=True, cache=None, prediction=False,\n sum_errors=True):\n loss = []\n if cache is None:\n cache = self.n_tasks * [None]\n for targets_task, cache_task, task in izip(targets, cache, self.tasks):\n loss.append(task.cross_entropy_error(input_data, targets_task,\n average=average, cache=cache_task, prediction=prediction))\n if sum_errors:\n return sum(loss)\n else:\n return loss\n", "role": "user" }, { "content": "cross_entropy_error", "role": "assistant" } ]
def x(self, value): self.W = value[0] if isinstance(value[0], GPUArray) else gpuarray.to_gpu( value[0]) self.b = value[1] if isinstance(value[0], GPUArray) else gpuarray.to_gpu( value[1])
parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self.W = value[0] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(\n value[0])\n self.b = value[1] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(\n value[1])\n", "role": "user" }, { "content": "parameters", "role": "assistant" } ]
def x(self): arch = {'class': self.__class__, 'n_in': self.n_in, 'n_units': self. n_units, 'activation_function': self.activation_function if hasattr (self, 'activation_function') else None} return arch
architecture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n arch = {'class': self.__class__, 'n_in': self.n_in, 'n_units': self.\n n_units, 'activation_function': self.activation_function if hasattr\n (self, 'activation_function') else None}\n return arch\n", "role": "user" }, { "content": "architecture", "role": "assistant" } ]
def x(self, input_data, prediction=False): if input_data.shape[1] != self.W.shape[0]: raise ValueError( 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)' % (input_data.shape[1], self.W.shape[0])) activations = linalg.dot(input_data, self.W) activations = add_vec_to_mat(activations, self.b, inplace=True) self.f(activations) if self.dropout > 0: if prediction: activations *= 1 - self.dropout else: dropout_mask = sample_dropout_mask(activations, self.dropout) return activations, dropout_mask return activations,
feed_forward
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, prediction=False):\n if input_data.shape[1] != self.W.shape[0]:\n raise ValueError(\n 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'\n % (input_data.shape[1], self.W.shape[0]))\n activations = linalg.dot(input_data, self.W)\n activations = add_vec_to_mat(activations, self.b, inplace=True)\n self.f(activations)\n if self.dropout > 0:\n if prediction:\n activations *= 1 - self.dropout\n else:\n dropout_mask = sample_dropout_mask(activations, self.dropout)\n return activations, dropout_mask\n return activations,\n", "role": "user" }, { "content": "feed_forward", "role": "assistant" } ]
def x(self, input_data, df_output, cache=None): if cache is None: cache = self.feed_forward(input_data, prediction=False) if len(cache) == 2: activations, dropout_mask = cache else: activations = cache[0] if self.dropout > 0 and dropout_mask is not None: apply_dropout_mask(df_output, dropout_mask) df_activations = self.df(activations) delta = mult_matrix(df_activations, df_output) df_W = linalg.dot(input_data, delta, transa='T') df_b = matrix_sum_out_axis(delta, 0) df_input = linalg.dot(delta, self.W, transb='T') if self.l1_penalty_weight: df_W += self.l1_penalty_weight * sign(self.W) if self.l2_penalty_weight: df_W += self.l2_penalty_weight * self.W return (df_W, df_b), df_input
backprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data, df_output, cache=None):\n if cache is None:\n cache = self.feed_forward(input_data, prediction=False)\n if len(cache) == 2:\n activations, dropout_mask = cache\n else:\n activations = cache[0]\n if self.dropout > 0 and dropout_mask is not None:\n apply_dropout_mask(df_output, dropout_mask)\n df_activations = self.df(activations)\n delta = mult_matrix(df_activations, df_output)\n df_W = linalg.dot(input_data, delta, transa='T')\n df_b = matrix_sum_out_axis(delta, 0)\n df_input = linalg.dot(delta, self.W, transb='T')\n if self.l1_penalty_weight:\n df_W += self.l1_penalty_weight * sign(self.W)\n if self.l2_penalty_weight:\n df_W += self.l2_penalty_weight * self.W\n return (df_W, df_b), df_input\n", "role": "user" }, { "content": "backprop", "role": "assistant" } ]
def x(): handle = ctypes.c_void_p() status = _libcublas.cublasCreate_v2(ctypes.byref(handle)) cublasCheckStatus(status) return handle.value
cublasCreate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n handle = ctypes.c_void_p()\n status = _libcublas.cublasCreate_v2(ctypes.byref(handle))\n cublasCheckStatus(status)\n return handle.value\n", "role": "user" }, { "content": "cublasCreate", "role": "assistant" } ]
def x(handle): status = _libcublas.cublasDestroy_v2(ctypes.c_void_p(handle)) cublasCheckStatus(status)
cublasDestroy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle):\n status = _libcublas.cublasDestroy_v2(ctypes.c_void_p(handle))\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDestroy", "role": "assistant" } ]
def x(handle): version = ctypes.c_int() status = _libcublas.cublasGetVersion_v2(handle, ctypes.byref(version)) cublasCheckStatus(status) return version.value
cublasGetVersion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle):\n version = ctypes.c_int()\n status = _libcublas.cublasGetVersion_v2(handle, ctypes.byref(version))\n cublasCheckStatus(status)\n return version.value\n", "role": "user" }, { "content": "cublasGetVersion", "role": "assistant" } ]
def x(handle, id): status = _libcublas.cublasSetStream_v2(handle, id) cublasCheckStatus(status)
cublasSetStream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, id):\n status = _libcublas.cublasSetStream_v2(handle, id)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSetStream", "role": "assistant" } ]
def x(handle): id = ctypes.c_int() status = _libcublas.cublasGetStream_v2(handle, ctypes.byref(id)) cublasCheckStatus(status) return id.value
cublasGetStream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle):\n id = ctypes.c_int()\n status = _libcublas.cublasGetStream_v2(handle, ctypes.byref(id))\n cublasCheckStatus(status)\n return id.value\n", "role": "user" }, { "content": "cublasGetStream", "role": "assistant" } ]
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasSgbmv_v2(handle, trans, m, n, kl, ku, ctypes. byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes. byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
cublasSgbmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.\n byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSgbmv", "role": "assistant" } ]
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasCgbmv_v2(handle, trans, m, n, kl, ku, ctypes. byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag )), int(y), incy) cublasCheckStatus(status)
cublasCgbmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasCgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda,\n int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag\n )), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasCgbmv", "role": "assistant" } ]
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasZgbmv_v2(handle, trans, m, n, kl, ku, ctypes. byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta. imag)), int(y), incy) cublasCheckStatus(status)
cublasZgbmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasZgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda,\n int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.\n imag)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasZgbmv", "role": "assistant" } ]
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasSgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
cublasSgemv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSgemv", "role": "assistant" } ]
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
cublasDgemv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDgemv", "role": "assistant" } ]
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta .imag)), int(y), incy) cublasCheckStatus(status)
cublasCgemv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A),\n lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta\n .imag)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasCgemv", "role": "assistant" } ]
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
cublasZgemv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A),\n lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real,\n beta.imag)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasZgemv", "role": "assistant" } ]
def x(handle, m, n, alpha, x, incx, y, incy, A, lda): status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes. c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
cublasSger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.\n c_float(alpha)), int(x), incx, int(y), incy, int(A), lda)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSger", "role": "assistant" } ]
def x(handle, m, n, alpha, x, incx, y, incy, A, lda): status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes. c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
cublasDger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.\n c_double(alpha)), int(x), incx, int(y), incy, int(A), lda)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDger", "role": "assistant" } ]
def x(handle, m, n, alpha, x, incx, y, incy, A, lda): status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda. cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
cublasCgeru
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.\n cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy,\n int(A), lda)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasCgeru", "role": "assistant" } ]
def x(handle, m, n, alpha, x, incx, y, incy, A, lda): status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda. cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
cublasZgerc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.\n cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y),\n incy, int(A), lda)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasZgerc", "role": "assistant" } ]
def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
cublasSsbmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSsbmv", "role": "assistant" } ]
def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
cublasDsbmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDsbmv", "role": "assistant" } ]
def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP )), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
cublasSspmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):\n status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP\n )), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSspmv", "role": "assistant" } ]
def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double( AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
cublasDspmv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):\n status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(\n AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDspmv", "role": "assistant" } ]
def x(handle, uplo, n, alpha, x, incx, AP): status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
cublasSspr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, x, incx, AP):\n status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP))\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSspr", "role": "assistant" } ]
def x(handle, uplo, n, alpha, x, incx, AP): status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
cublasDspr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, x, incx, AP):\n status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP))\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDspr", "role": "assistant" } ]
def x(handle, uplo, n, alpha, x, incx, y, incy, AP): status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
cublasSspr2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, x, incx, y, incy, AP):\n status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy,\n int(AP))\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSspr2", "role": "assistant" } ]
def x(handle, uplo, n, alpha, x, incx, y, incy, AP): status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
cublasDspr2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, x, incx, y, incy, AP):\n status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy,\n int(AP))\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDspr2", "role": "assistant" } ]
def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
cublasSsymv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasSsymv", "role": "assistant" } ]
def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
cublasDsymv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n", "role": "user" }, { "content": "cublasDsymv", "role": "assistant" } ]