source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(mat, vec, axis=None, inplace=False, target=None, substract=False):
assert mat.flags.c_contiguous
if axis is None:
if vec.shape[0] == mat.shape[0]:
axis = 0
elif vec.shape[0] == mat.shape[1]:
axis = 1
else:
raise ValueError(
'Vector length must be equal to one side of the matrix')
n, m = mat.shape
block = _compilation_constants['add_vec_block_size'
], _compilation_constants['add_vec_block_size'], 1
gridx = ceil_div(n, block[0])
gridy = ceil_div(m, block[1])
grid = gridx, gridy, 1
if inplace:
target = mat
elif target is None:
target = gpuarray.empty_like(mat)
if axis == 0:
assert vec.shape[0] == mat.shape[0]
add_col_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.
gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(
substract))
elif axis == 1:
assert vec.shape[0] == mat.shape[1]
add_row_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.
gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(
substract))
return target
|
add_vec_to_mat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mat, vec, axis=None, inplace=False, target=None, substract=False):\n assert mat.flags.c_contiguous\n if axis is None:\n if vec.shape[0] == mat.shape[0]:\n axis = 0\n elif vec.shape[0] == mat.shape[1]:\n axis = 1\n else:\n raise ValueError(\n 'Vector length must be equal to one side of the matrix')\n n, m = mat.shape\n block = _compilation_constants['add_vec_block_size'\n ], _compilation_constants['add_vec_block_size'], 1\n gridx = ceil_div(n, block[0])\n gridy = ceil_div(m, block[1])\n grid = gridx, gridy, 1\n if inplace:\n target = mat\n elif target is None:\n target = gpuarray.empty_like(mat)\n if axis == 0:\n assert vec.shape[0] == mat.shape[0]\n add_col_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.\n gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(\n substract))\n elif axis == 1:\n assert vec.shape[0] == mat.shape[1]\n add_row_vec_kernel.prepared_call(grid, block, mat.gpudata, vec.\n gpudata, target.gpudata, np.uint32(n), np.uint32(m), np.int32(\n substract))\n return target\n",
"role": "user"
},
{
"content": "add_vec_to_mat",
"role": "assistant"
}
] |
def x(mat, max_vec_norm=1.0):
assert mat.flags.c_contiguous
n, m = mat.shape
vector_normalize_kernel.prepared_call((m, 1, 1), (32, 1, 1), mat.
gpudata, np.float32(max_vec_norm), np.int32(m), np.int32(n))
|
vector_normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mat, max_vec_norm=1.0):\n assert mat.flags.c_contiguous\n n, m = mat.shape\n vector_normalize_kernel.prepared_call((m, 1, 1), (32, 1, 1), mat.\n gpudata, np.float32(max_vec_norm), np.int32(m), np.int32(n))\n",
"role": "user"
},
{
"content": "vector_normalize",
"role": "assistant"
}
] |
def x(string):
split = string.split('${')
rval = [split[0]]
for candidate in split[1:]:
subsplit = candidate.split('}')
if len(subsplit) < 2:
raise ValueError('Open ${ not followed by } before ' +
'end of string or next ${ in "' + string + '"')
varname = subsplit[0]
if varname == 'PYLEARN2_TRAIN_FILE_NAME':
warnings.warn(
'PYLEARN2_TRAIN_FILE_NAME is deprecated and may be removed from the library on or after Oct 22, 2013. Switch to PYLEARN2_TRAIN_FILE_FULL_STEM'
)
try:
val = os.environ[varname]
except KeyError:
if varname == 'PYLEARN2_DATA_PATH':
raise NoDataPathError()
if varname == 'PYLEARN2_VIEWER_COMMAND':
raise EnvironmentVariableError(environment_variable_essay)
raise ValueError('Unrecognized environment variable "' +
varname + '". Did you mean ' + match(varname, os.environ.
keys()) + '?')
rval.append(val)
rval.append('}'.join(subsplit[1:]))
rval = ''.join(rval)
return rval
|
preprocess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string):\n split = string.split('${')\n rval = [split[0]]\n for candidate in split[1:]:\n subsplit = candidate.split('}')\n if len(subsplit) < 2:\n raise ValueError('Open ${ not followed by } before ' +\n 'end of string or next ${ in \"' + string + '\"')\n varname = subsplit[0]\n if varname == 'PYLEARN2_TRAIN_FILE_NAME':\n warnings.warn(\n 'PYLEARN2_TRAIN_FILE_NAME is deprecated and may be removed from the library on or after Oct 22, 2013. Switch to PYLEARN2_TRAIN_FILE_FULL_STEM'\n )\n try:\n val = os.environ[varname]\n except KeyError:\n if varname == 'PYLEARN2_DATA_PATH':\n raise NoDataPathError()\n if varname == 'PYLEARN2_VIEWER_COMMAND':\n raise EnvironmentVariableError(environment_variable_essay)\n raise ValueError('Unrecognized environment variable \"' +\n varname + '\". Did you mean ' + match(varname, os.environ.\n keys()) + '?')\n rval.append(val)\n rval.append('}'.join(subsplit[1:]))\n rval = ''.join(rval)\n return rval\n",
"role": "user"
},
{
"content": "preprocess",
"role": "assistant"
}
] |
def x(s):
r = find_number(s)
if r == None:
return [s]
else:
tokens = []
if r[0] > 0:
tokens.append(s[0:r[0]])
tokens.append(float(s[r[0]:r[1]]))
if r[1] < len(s):
tokens.extend(tokenize_by_number(s[r[1]:]))
return tokens
assert False
|
tokenize_by_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n r = find_number(s)\n if r == None:\n return [s]\n else:\n tokens = []\n if r[0] > 0:\n tokens.append(s[0:r[0]])\n tokens.append(float(s[r[0]:r[1]]))\n if r[1] < len(s):\n tokens.extend(tokenize_by_number(s[r[1]:]))\n return tokens\n assert False\n",
"role": "user"
},
{
"content": "tokenize_by_number",
"role": "assistant"
}
] |
def x(str1, str2):
def x(tokens):
l = []
for token in tokens:
if isinstance(token, str):
for char in token:
l.append(char)
else:
assert isinstance(token, float)
l.append(token)
return l
seq1 = flatten_tokens(tokenize_by_number(str1))
seq2 = flatten_tokens(tokenize_by_number(str2))
l = min(len(seq1), len(seq2))
i = 0
while i < l:
if seq1[i] < seq2[i]:
return -1
elif seq1[i] > seq2[i]:
return 1
i += 1
if len(seq1) < len(seq2):
return -1
elif len(seq1) > len(seq2):
return 1
return 0
|
number_aware_alphabetical_cmp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(str1, str2):\n\n def x(tokens):\n l = []\n for token in tokens:\n if isinstance(token, str):\n for char in token:\n l.append(char)\n else:\n assert isinstance(token, float)\n l.append(token)\n return l\n seq1 = flatten_tokens(tokenize_by_number(str1))\n seq2 = flatten_tokens(tokenize_by_number(str2))\n l = min(len(seq1), len(seq2))\n i = 0\n while i < l:\n if seq1[i] < seq2[i]:\n return -1\n elif seq1[i] > seq2[i]:\n return 1\n i += 1\n if len(seq1) < len(seq2):\n return -1\n elif len(seq1) > len(seq2):\n return 1\n return 0\n",
"role": "user"
},
{
"content": "number_aware_alphabetical_cmp",
"role": "assistant"
}
] |
def x(wrong, candidates):
assert len(candidates) > 0
def x(w1, w2):
w1 = w1.lower()
w2 = w2.lower()
def x(w):
rval = {}
for i in xrange(len(w)):
l = w[i]
rval[l] = rval.get(l, 0.0) + 1.0
if i < len(w) - 1:
b = w[i:i + 2]
rval[b] = rval.get(b, 0.0) + 1.0
return rval
d1 = phi(w1)
d2 = phi(w2)
def x(d1, d2):
rval = 0
for key in set(d1).union(d2):
rval += d1.get(key, 0) * d2.get(key, 0)
return rval
tot_score = mul(phi(w1), phi(w2)) / float(len(w1) * len(w2)
) + 0.1 * mul(phi(w1[0:1]), phi(w2[0:1])) + 0.1 * mul(phi(w1[-1
:]), phi(w2[-1:]))
return tot_score
scored_candidates = [(-score(wrong, candidate), candidate) for
candidate in candidates]
scored_candidates.sort()
return scored_candidates[0][1]
|
match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wrong, candidates):\n assert len(candidates) > 0\n\n def x(w1, w2):\n w1 = w1.lower()\n w2 = w2.lower()\n\n def x(w):\n rval = {}\n for i in xrange(len(w)):\n l = w[i]\n rval[l] = rval.get(l, 0.0) + 1.0\n if i < len(w) - 1:\n b = w[i:i + 2]\n rval[b] = rval.get(b, 0.0) + 1.0\n return rval\n d1 = phi(w1)\n d2 = phi(w2)\n\n def x(d1, d2):\n rval = 0\n for key in set(d1).union(d2):\n rval += d1.get(key, 0) * d2.get(key, 0)\n return rval\n tot_score = mul(phi(w1), phi(w2)) / float(len(w1) * len(w2)\n ) + 0.1 * mul(phi(w1[0:1]), phi(w2[0:1])) + 0.1 * mul(phi(w1[-1\n :]), phi(w2[-1:]))\n return tot_score\n scored_candidates = [(-score(wrong, candidate), candidate) for\n candidate in candidates]\n scored_candidates.sort()\n return scored_candidates[0][1]\n",
"role": "user"
},
{
"content": "match",
"role": "assistant"
}
] |
def x(s):
def x(ch):
if ch >= 'A' and ch <= 'z' or ch >= '0' and ch <= '9':
return ch
return '*'
return ''.join([censor(ch) for ch in s])
|
censor_non_alphanum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n\n def x(ch):\n if ch >= 'A' and ch <= 'z' or ch >= '0' and ch <= '9':\n return ch\n return '*'\n return ''.join([censor(ch) for ch in s])\n",
"role": "user"
},
{
"content": "censor_non_alphanum",
"role": "assistant"
}
] |
def x(period):
for i in range(1, 6):
if 0.99 / float(i) < period < 1.004 / float(i):
return True
if 1.03 / float(i) < period < 1.04 / float(i):
return True
if 29.2 / float(i) < period < 29.9 / float(i):
return True
if 0.96465 / float(i) < period < 0.96485 / float(i):
return True
if 0.96725 / float(i) < period < 0.96745 / float(i):
return True
if 0.9819 / float(i) < period < 0.9823 / float(i):
return True
if 1.01034 / float(i) < period < 1.01076 / float(i):
return True
if 1.01568 / float(i) < period < 1.01604 / float(i):
return True
if 1.01718 / float(i) < period < 1.01742 / float(i):
return True
if 0.50776 / float(i) < period < 0.50861 / float(i):
return True
if 0.96434 / float(i) < period < 0.9652 / float(i):
return True
if 0.96688 / float(i) < period < 0.96731 / float(i):
return True
if 1.0722 / float(i) < period < 1.0729 / float(i):
return True
if 27.1 / float(i) < period < 27.5 / float(i):
return True
return False
|
is_period_alias
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(period):\n for i in range(1, 6):\n if 0.99 / float(i) < period < 1.004 / float(i):\n return True\n if 1.03 / float(i) < period < 1.04 / float(i):\n return True\n if 29.2 / float(i) < period < 29.9 / float(i):\n return True\n if 0.96465 / float(i) < period < 0.96485 / float(i):\n return True\n if 0.96725 / float(i) < period < 0.96745 / float(i):\n return True\n if 0.9819 / float(i) < period < 0.9823 / float(i):\n return True\n if 1.01034 / float(i) < period < 1.01076 / float(i):\n return True\n if 1.01568 / float(i) < period < 1.01604 / float(i):\n return True\n if 1.01718 / float(i) < period < 1.01742 / float(i):\n return True\n if 0.50776 / float(i) < period < 0.50861 / float(i):\n return True\n if 0.96434 / float(i) < period < 0.9652 / float(i):\n return True\n if 0.96688 / float(i) < period < 0.96731 / float(i):\n return True\n if 1.0722 / float(i) < period < 1.0729 / float(i):\n return True\n if 27.1 / float(i) < period < 27.5 / float(i):\n return True\n return False\n",
"role": "user"
},
{
"content": "is_period_alias",
"role": "assistant"
}
] |
def x():
try:
protocol_str = os.environ['PYLEARN2_PICKLE_PROTOCOL']
except KeyError:
protocol_str = '0'
if protocol_str == 'pickle.HIGHEST_PROTOCOL':
return pickle.HIGHEST_PROTOCOL
return int(protocol_str)
|
get_pickle_protocol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n protocol_str = os.environ['PYLEARN2_PICKLE_PROTOCOL']\n except KeyError:\n protocol_str = '0'\n if protocol_str == 'pickle.HIGHEST_PROTOCOL':\n return pickle.HIGHEST_PROTOCOL\n return int(protocol_str)\n",
"role": "user"
},
{
"content": "get_pickle_protocol",
"role": "assistant"
}
] |
def x(config_file_path):
from pylearn2.config import yaml_parse
suffix_to_strip = '.yaml'
if config_file_path.endswith(suffix_to_strip):
config_file_full_stem = config_file_path[0:-len(suffix_to_strip)]
else:
config_file_full_stem = config_file_path
for varname in ['PYLEARN2_TRAIN_FILE_NAME', 'PYLEARN2_TRAIN_FILE_FULL_STEM'
]:
environ.putenv(varname, config_file_full_stem)
directory = config_file_path.split('/')[:-1]
directory = '/'.join(directory)
if directory != '':
directory += '/'
environ.putenv('PYLEARN2_TRAIN_DIR', directory)
environ.putenv('PYLEARN2_TRAIN_BASE_NAME', config_file_path.split('/')[-1])
environ.putenv('PYLEARN2_TRAIN_FILE_STEM', config_file_full_stem.split(
'/')[-1])
return yaml_parse.load_path(config_file_path)
|
load_train_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config_file_path):\n from pylearn2.config import yaml_parse\n suffix_to_strip = '.yaml'\n if config_file_path.endswith(suffix_to_strip):\n config_file_full_stem = config_file_path[0:-len(suffix_to_strip)]\n else:\n config_file_full_stem = config_file_path\n for varname in ['PYLEARN2_TRAIN_FILE_NAME', 'PYLEARN2_TRAIN_FILE_FULL_STEM'\n ]:\n environ.putenv(varname, config_file_full_stem)\n directory = config_file_path.split('/')[:-1]\n directory = '/'.join(directory)\n if directory != '':\n directory += '/'\n environ.putenv('PYLEARN2_TRAIN_DIR', directory)\n environ.putenv('PYLEARN2_TRAIN_BASE_NAME', config_file_path.split('/')[-1])\n environ.putenv('PYLEARN2_TRAIN_FILE_STEM', config_file_full_stem.split(\n '/')[-1])\n return yaml_parse.load_path(config_file_path)\n",
"role": "user"
},
{
"content": "load_train_file",
"role": "assistant"
}
] |
def x(self, input_data, prediction=False):
if input_data.shape[1] != self.n_in:
raise ValueError(
'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'
% (input_data.shape[1], self.n_in))
if not prediction:
dropout_input = gpuarray.empty_like(input_data)
dropout_mask = sample_dropout_mask(input_data, self.
dropout_probability, target=dropout_input)
return dropout_input, dropout_mask
else:
return input_data * (1 - self.dropout_probability),
|
feed_forward
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, prediction=False):\n if input_data.shape[1] != self.n_in:\n raise ValueError(\n 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'\n % (input_data.shape[1], self.n_in))\n if not prediction:\n dropout_input = gpuarray.empty_like(input_data)\n dropout_mask = sample_dropout_mask(input_data, self.\n dropout_probability, target=dropout_input)\n return dropout_input, dropout_mask\n else:\n return input_data * (1 - self.dropout_probability),\n",
"role": "user"
},
{
"content": "feed_forward",
"role": "assistant"
}
] |
def x(self, input_data, df_output, cache=None):
if self.compute_input_gradients:
apply_dropout_mask(df_output, dropout_mask)
return tuple(), df_output
|
backprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, df_output, cache=None):\n if self.compute_input_gradients:\n apply_dropout_mask(df_output, dropout_mask)\n return tuple(), df_output\n",
"role": "user"
},
{
"content": "backprop",
"role": "assistant"
}
] |
def x(obj):
p = ctypes.POINTER(obj)
if not isinstance(p.from_param, classmethod):
def x(cls, x):
if x is None:
return cls()
else:
return x
p.from_param = classmethod(from_param)
return p
|
POINTER
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n p = ctypes.POINTER(obj)\n if not isinstance(p.from_param, classmethod):\n\n def x(cls, x):\n if x is None:\n return cls()\n else:\n return x\n p.from_param = classmethod(from_param)\n return p\n",
"role": "user"
},
{
"content": "POINTER",
"role": "assistant"
}
] |
def x(g):
addr = int(g.gpudata)
if g.dtype == np.int8:
return ctypes.cast(addr, POINTER(ctypes.c_byte))
if g.dtype == np.uint8:
return ctypes.cast(addr, POINTER(ctypes.c_ubyte))
if g.dtype == np.int16:
return ctypes.cast(addr, POINTER(ctypes.c_short))
if g.dtype == np.uint16:
return ctypes.cast(addr, POINTER(ctypes.c_ushort))
if g.dtype == np.int32:
return ctypes.cast(addr, POINTER(ctypes.c_int))
if g.dtype == np.uint32:
return ctypes.cast(addr, POINTER(ctypes.c_uint))
if g.dtype == np.int64:
return ctypes.cast(addr, POINTER(ctypes.c_long))
if g.dtype == np.uint64:
return ctypes.cast(addr, POINTER(ctypes.c_ulong))
if g.dtype == np.float32:
return ctypes.cast(addr, POINTER(ctypes.c_float))
elif g.dtype == np.float64:
return ctypes.cast(addr, POINTER(ctypes.c_double))
elif g.dtype == np.complex64:
return ctypes.cast(addr, POINTER(cuFloatComplex))
elif g.dtype == np.complex128:
return ctypes.cast(addr, POINTER(cuDoubleComplex))
else:
raise ValueError('unrecognized type')
|
gpuarray_ptr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g):\n addr = int(g.gpudata)\n if g.dtype == np.int8:\n return ctypes.cast(addr, POINTER(ctypes.c_byte))\n if g.dtype == np.uint8:\n return ctypes.cast(addr, POINTER(ctypes.c_ubyte))\n if g.dtype == np.int16:\n return ctypes.cast(addr, POINTER(ctypes.c_short))\n if g.dtype == np.uint16:\n return ctypes.cast(addr, POINTER(ctypes.c_ushort))\n if g.dtype == np.int32:\n return ctypes.cast(addr, POINTER(ctypes.c_int))\n if g.dtype == np.uint32:\n return ctypes.cast(addr, POINTER(ctypes.c_uint))\n if g.dtype == np.int64:\n return ctypes.cast(addr, POINTER(ctypes.c_long))\n if g.dtype == np.uint64:\n return ctypes.cast(addr, POINTER(ctypes.c_ulong))\n if g.dtype == np.float32:\n return ctypes.cast(addr, POINTER(ctypes.c_float))\n elif g.dtype == np.float64:\n return ctypes.cast(addr, POINTER(ctypes.c_double))\n elif g.dtype == np.complex64:\n return ctypes.cast(addr, POINTER(cuFloatComplex))\n elif g.dtype == np.complex128:\n return ctypes.cast(addr, POINTER(cuDoubleComplex))\n else:\n raise ValueError('unrecognized type')\n",
"role": "user"
},
{
"content": "gpuarray_ptr",
"role": "assistant"
}
] |
def x(count, ctype=None):
ptr = ctypes.c_void_p()
status = _libcudart.cudaMalloc(ctypes.byref(ptr), count)
cudaCheckStatus(status)
if ctype != None:
ptr = ctypes.cast(ptr, ctypes.POINTER(ctype))
return ptr
|
cudaMalloc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(count, ctype=None):\n ptr = ctypes.c_void_p()\n status = _libcudart.cudaMalloc(ctypes.byref(ptr), count)\n cudaCheckStatus(status)\n if ctype != None:\n ptr = ctypes.cast(ptr, ctypes.POINTER(ctype))\n return ptr\n",
"role": "user"
},
{
"content": "cudaMalloc",
"role": "assistant"
}
] |
def x(pitch, rows, cols, elesize):
ptr = ctypes.c_void_p()
status = _libcudart.cudaMallocPitch(ctypes.byref(ptr), ctypes.c_size_t(
pitch), cols * elesize, rows)
cudaCheckStatus(status)
return ptr, pitch
|
cudaMallocPitch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pitch, rows, cols, elesize):\n ptr = ctypes.c_void_p()\n status = _libcudart.cudaMallocPitch(ctypes.byref(ptr), ctypes.c_size_t(\n pitch), cols * elesize, rows)\n cudaCheckStatus(status)\n return ptr, pitch\n",
"role": "user"
},
{
"content": "cudaMallocPitch",
"role": "assistant"
}
] |
def x(dst, src, count):
status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),
cudaMemcpyHostToDevice)
cudaCheckStatus(status)
|
cudaMemcpy_htod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dst, src, count):\n status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),\n cudaMemcpyHostToDevice)\n cudaCheckStatus(status)\n",
"role": "user"
},
{
"content": "cudaMemcpy_htod",
"role": "assistant"
}
] |
def x(dst, src, count):
status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),
cudaMemcpyDeviceToHost)
cudaCheckStatus(status)
|
cudaMemcpy_dtoh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dst, src, count):\n status = _libcudart.cudaMemcpy(dst, src, ctypes.c_size_t(count),\n cudaMemcpyDeviceToHost)\n cudaCheckStatus(status)\n",
"role": "user"
},
{
"content": "cudaMemcpy_dtoh",
"role": "assistant"
}
] |
def x():
free = ctypes.c_size_t()
total = ctypes.c_size_t()
status = _libcudart.cudaMemGetInfo(ctypes.byref(free), ctypes.byref(total))
cudaCheckStatus(status)
return free.value, total.value
|
cudaMemGetInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n free = ctypes.c_size_t()\n total = ctypes.c_size_t()\n status = _libcudart.cudaMemGetInfo(ctypes.byref(free), ctypes.byref(total))\n cudaCheckStatus(status)\n return free.value, total.value\n",
"role": "user"
},
{
"content": "cudaMemGetInfo",
"role": "assistant"
}
] |
def x():
dev = ctypes.c_int()
status = _libcudart.cudaGetDevice(ctypes.byref(dev))
cudaCheckStatus(status)
return dev.value
|
cudaGetDevice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n dev = ctypes.c_int()\n status = _libcudart.cudaGetDevice(ctypes.byref(dev))\n cudaCheckStatus(status)\n return dev.value\n",
"role": "user"
},
{
"content": "cudaGetDevice",
"role": "assistant"
}
] |
def x():
version = ctypes.c_int()
status = _libcudart.cudaDriverGetVersion(ctypes.byref(version))
cudaCheckStatus(status)
return version.value
|
cudaDriverGetVersion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n version = ctypes.c_int()\n status = _libcudart.cudaDriverGetVersion(ctypes.byref(version))\n cudaCheckStatus(status)\n return version.value\n",
"role": "user"
},
{
"content": "cudaDriverGetVersion",
"role": "assistant"
}
] |
def x(ptr):
attributes = cudaPointerAttributes()
status = _libcudart.cudaPointerGetAttributes(ctypes.byref(attributes), ptr)
cudaCheckStatus(status)
return attributes.memoryType, attributes.device
|
cudaPointerGetAttributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ptr):\n attributes = cudaPointerAttributes()\n status = _libcudart.cudaPointerGetAttributes(ctypes.byref(attributes), ptr)\n cudaCheckStatus(status)\n return attributes.memoryType, attributes.device\n",
"role": "user"
},
{
"content": "cudaPointerGetAttributes",
"role": "assistant"
}
] |
def x(thunk, env):
key = Activation.key(thunk, env)
if Activation.activated(key):
raise exceptions.RecursionError('Reference cycle')
with Activation(key):
return eval_cache.get(key, thunk.eval, env)
|
eval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(thunk, env):\n key = Activation.key(thunk, env)\n if Activation.activated(key):\n raise exceptions.RecursionError('Reference cycle')\n with Activation(key):\n return eval_cache.get(key, thunk.eval, env)\n",
"role": "user"
},
{
"content": "eval",
"role": "assistant"
}
] |
def x(self, key):
if key in self.names:
return self.values.get_member_node(key) if hasattr(self.values,
'get_member_node') else None
return self.parent.get_node(key)
|
get_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n if key in self.names:\n return self.values.get_member_node(key) if hasattr(self.values,\n 'get_member_node') else None\n return self.parent.get_node(key)\n",
"role": "user"
},
{
"content": "get_node",
"role": "assistant"
}
] |
def x(cls):
schema_editor = getattr(connection, 'schema_editor', None)
if schema_editor:
with schema_editor() as schema_editor:
schema_editor.create_model(cls)
else:
raw_sql, _ = connection.creation.sql_create_model(cls, no_style(), [])
cls.delete_table()
cursor = connection.cursor()
try:
cursor.execute(*raw_sql)
finally:
cursor.close()
|
create_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n schema_editor = getattr(connection, 'schema_editor', None)\n if schema_editor:\n with schema_editor() as schema_editor:\n schema_editor.create_model(cls)\n else:\n raw_sql, _ = connection.creation.sql_create_model(cls, no_style(), [])\n cls.delete_table()\n cursor = connection.cursor()\n try:\n cursor.execute(*raw_sql)\n finally:\n cursor.close()\n",
"role": "user"
},
{
"content": "create_table",
"role": "assistant"
}
] |
def x(cls):
schema_editor = getattr(connection, 'schema_editor', None)
if schema_editor:
with connection.schema_editor() as schema_editor:
schema_editor.delete_model(cls)
else:
cursor = connection.cursor()
try:
with warnings.catch_warnings():
warnings.filterwarnings('ignore', 'unknown table')
cursor.execute('DROP TABLE IF EXISTS {0}'.format(cls._meta.
db_table))
finally:
cursor.close()
|
delete_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n schema_editor = getattr(connection, 'schema_editor', None)\n if schema_editor:\n with connection.schema_editor() as schema_editor:\n schema_editor.delete_model(cls)\n else:\n cursor = connection.cursor()\n try:\n with warnings.catch_warnings():\n warnings.filterwarnings('ignore', 'unknown table')\n cursor.execute('DROP TABLE IF EXISTS {0}'.format(cls._meta.\n db_table))\n finally:\n cursor.close()\n",
"role": "user"
},
{
"content": "delete_table",
"role": "assistant"
}
] |
def x(cls, source):
if source and type(source) == type and issubclass(source, SimpleTestCase):
return cls._class_extension(source)
elif hasattr(source, '__call__'):
return cls._decorator(source)
else:
raise AttributeError(
'source - must be a SimpleTestCase subclass of function')
|
fake_me
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, source):\n if source and type(source) == type and issubclass(source, SimpleTestCase):\n return cls._class_extension(source)\n elif hasattr(source, '__call__'):\n return cls._decorator(source)\n else:\n raise AttributeError(\n 'source - must be a SimpleTestCase subclass of function')\n",
"role": "user"
},
{
"content": "fake_me",
"role": "assistant"
}
] |
def x(decorated_func=None, debug=False, overwrite=False, disabled=False,
playback_only=False, tape_name=None):
def x(func):
def x(*args, **kwargs):
if disabled or VCRSystem.disabled:
return func(*args, **kwargs)
if func.__module__ == 'doctest':
source_filename = func.__self__._dt_test.filename
file_name = os.path.splitext(os.path.basename(source_filename)
)[0]
path = os.path.join(os.path.dirname(source_filename), 'tests')
if os.path.exists(path):
path = os.path.join(os.path.dirname(source_filename),
'tests', 'vcrtapes')
else:
path = os.path.join(os.path.dirname(source_filename),
'vcrtapes')
func_name = func.__self__._dt_test.name.split('.')[-1]
else:
source_filename = func.__code__.co_filename
file_name = os.path.splitext(os.path.basename(source_filename)
)[0]
path = os.path.join(os.path.dirname(source_filename),
'vcrtapes')
func_name = func.__name__
if tape_name:
if os.sep in tape_name:
temp = os.path.abspath(tape_name)
path = os.path.dirname(temp)
if not os.path.isdir(path):
os.makedirs(path)
tape = os.path.join(path, '%s' % tape_name)
else:
if not os.path.isdir(path):
os.makedirs(path)
tape = os.path.join(path, '%s.%s.vcr' % (file_name, func_name))
with VCRSystem(debug=debug):
if not (playback_only or VCRSystem.playback_only) and (not
os.path.isfile(tape) or overwrite or VCRSystem.overwrite):
if PY2:
msg = ('VCR records only in PY3 to be backward ' +
'compatible with PY2 - skipping VCR ' +
'mechanics for %s')
warnings.warn(msg % func.__name__)
VCRSystem.stop()
return func(*args, **kwargs)
if VCRSystem.debug:
print('\nVCR RECORDING (%s) ...' % func_name)
VCRSystem.status = VCR_RECORD
value = func(*args, **kwargs)
if len(VCRSystem.playlist) == 0:
msg = 'no socket activity - @vcr unneeded for %s'
msg = msg % func.__name__
if VCRSystem.raise_if_not_needed:
raise Exception(msg)
else:
warnings.warn(msg)
else:
try:
os.remove(tape)
except OSError:
pass
with gzip.open(tape, 'wb') as fh:
pickle.dump(VCRSystem.playlist, fh, protocol=2)
else:
if VCRSystem.debug:
print('\nVCR PLAYBACK (%s) ...' % func_name)
VCRSystem.status = VCR_PLAYBACK
if not os.path.exists(tape):
msg = 'Missing VCR tape file for playback: {}'
raise IOError(msg.format(tape))
try:
with gzip.open(tape, 'rb') as fh:
VCRSystem.playlist = pickle.load(fh)
except OSError:
with open(tape, 'rb') as fh:
VCRSystem.playlist = pickle.load(fh)
if VCRSystem.debug:
print('Loaded playlist:')
for i, item in enumerate(VCRSystem.playlist):
print('{:3d}: {} {} {}'.format(i, *item))
print()
value = func(*args, **kwargs)
return value
return _vcr_inner
if decorated_func is None:
return _vcr_outer
else:
return _vcr_outer(decorated_func)
|
vcr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(decorated_func=None, debug=False, overwrite=False, disabled=False,\n playback_only=False, tape_name=None):\n\n def x(func):\n\n def x(*args, **kwargs):\n if disabled or VCRSystem.disabled:\n return func(*args, **kwargs)\n if func.__module__ == 'doctest':\n source_filename = func.__self__._dt_test.filename\n file_name = os.path.splitext(os.path.basename(source_filename)\n )[0]\n path = os.path.join(os.path.dirname(source_filename), 'tests')\n if os.path.exists(path):\n path = os.path.join(os.path.dirname(source_filename),\n 'tests', 'vcrtapes')\n else:\n path = os.path.join(os.path.dirname(source_filename),\n 'vcrtapes')\n func_name = func.__self__._dt_test.name.split('.')[-1]\n else:\n source_filename = func.__code__.co_filename\n file_name = os.path.splitext(os.path.basename(source_filename)\n )[0]\n path = os.path.join(os.path.dirname(source_filename),\n 'vcrtapes')\n func_name = func.__name__\n if tape_name:\n if os.sep in tape_name:\n temp = os.path.abspath(tape_name)\n path = os.path.dirname(temp)\n if not os.path.isdir(path):\n os.makedirs(path)\n tape = os.path.join(path, '%s' % tape_name)\n else:\n if not os.path.isdir(path):\n os.makedirs(path)\n tape = os.path.join(path, '%s.%s.vcr' % (file_name, func_name))\n with VCRSystem(debug=debug):\n if not (playback_only or VCRSystem.playback_only) and (not\n os.path.isfile(tape) or overwrite or VCRSystem.overwrite):\n if PY2:\n msg = ('VCR records only in PY3 to be backward ' +\n 'compatible with PY2 - skipping VCR ' +\n 'mechanics for %s')\n warnings.warn(msg % func.__name__)\n VCRSystem.stop()\n return func(*args, **kwargs)\n if VCRSystem.debug:\n print('\\nVCR RECORDING (%s) ...' % func_name)\n VCRSystem.status = VCR_RECORD\n value = func(*args, **kwargs)\n if len(VCRSystem.playlist) == 0:\n msg = 'no socket activity - @vcr unneeded for %s'\n msg = msg % func.__name__\n if VCRSystem.raise_if_not_needed:\n raise Exception(msg)\n else:\n warnings.warn(msg)\n else:\n try:\n os.remove(tape)\n except OSError:\n pass\n with gzip.open(tape, 'wb') as fh:\n pickle.dump(VCRSystem.playlist, fh, protocol=2)\n else:\n if VCRSystem.debug:\n print('\\nVCR PLAYBACK (%s) ...' % func_name)\n VCRSystem.status = VCR_PLAYBACK\n if not os.path.exists(tape):\n msg = 'Missing VCR tape file for playback: {}'\n raise IOError(msg.format(tape))\n try:\n with gzip.open(tape, 'rb') as fh:\n VCRSystem.playlist = pickle.load(fh)\n except OSError:\n with open(tape, 'rb') as fh:\n VCRSystem.playlist = pickle.load(fh)\n if VCRSystem.debug:\n print('Loaded playlist:')\n for i, item in enumerate(VCRSystem.playlist):\n print('{:3d}: {} {} {}'.format(i, *item))\n print()\n value = func(*args, **kwargs)\n return value\n return _vcr_inner\n if decorated_func is None:\n return _vcr_outer\n else:\n return _vcr_outer(decorated_func)\n",
"role": "user"
},
{
"content": "vcr",
"role": "assistant"
}
] |
def x(cls):
cls.debug = False
cls.disabled = False
cls.overwrite = False
cls.playback_only = False
cls.recv_timeout = 5
cls.recv_endmarkers = []
cls.recv_size = None
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n cls.debug = False\n cls.disabled = False\n cls.overwrite = False\n cls.playback_only = False\n cls.recv_timeout = 5\n cls.recv_endmarkers = []\n cls.recv_size = None\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(value, seen=None):
seen = seen or set()
if isinstance(value, framework.TupleLike):
if value.ident in seen:
raise RecursionException(
'to_python: infinite recursion while evaluating %r' % value)
new_seen = seen.union([value.ident])
return {k: to_python(value[k], seen=new_seen) for k in value.
exportable_keys()}
if isinstance(value, dict):
return {k: to_python(value[k], seen=seen) for k in value.keys()}
if isinstance(value, list):
return [to_python(x, seen=seen) for x in value]
return value
|
to_python
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, seen=None):\n seen = seen or set()\n if isinstance(value, framework.TupleLike):\n if value.ident in seen:\n raise RecursionException(\n 'to_python: infinite recursion while evaluating %r' % value)\n new_seen = seen.union([value.ident])\n return {k: to_python(value[k], seen=new_seen) for k in value.\n exportable_keys()}\n if isinstance(value, dict):\n return {k: to_python(value[k], seen=seen) for k in value.keys()}\n if isinstance(value, list):\n return [to_python(x, seen=seen) for x in value]\n return value\n",
"role": "user"
},
{
"content": "to_python",
"role": "assistant"
}
] |
def x(value, walker, path=None, seen=None):
seen = seen or set()
path = path or []
if id(value) in seen:
walker.visitRecursion(path)
return
if isinstance(value, Exception):
walker.visitError(path, value)
return
if isinstance(value, list):
recurse = walker.enterList(value, path)
if not recurse:
return
next_walker = walker if recurse is True else recurse
with TempSetAdd(seen, id(value)):
for i, x in enumerate(value):
walk(x, next_walker, path=path + ['[%d]' % i], seen=seen)
walker.leaveList(value, path)
return
if not isinstance(value, framework.TupleLike):
walker.visitScalar(path, value)
return
recurse = walker.enterTuple(value, path)
if not recurse:
return
next_walker = walker if recurse is True else recurse
with TempSetAdd(seen, id(value)):
keys = sorted(value.keys())
for key in keys:
key_path = path + [key]
elm = get_or_error(value, key)
walk(elm, next_walker, path=key_path, seen=seen)
walker.leaveTuple(value, path)
|
walk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, walker, path=None, seen=None):\n seen = seen or set()\n path = path or []\n if id(value) in seen:\n walker.visitRecursion(path)\n return\n if isinstance(value, Exception):\n walker.visitError(path, value)\n return\n if isinstance(value, list):\n recurse = walker.enterList(value, path)\n if not recurse:\n return\n next_walker = walker if recurse is True else recurse\n with TempSetAdd(seen, id(value)):\n for i, x in enumerate(value):\n walk(x, next_walker, path=path + ['[%d]' % i], seen=seen)\n walker.leaveList(value, path)\n return\n if not isinstance(value, framework.TupleLike):\n walker.visitScalar(path, value)\n return\n recurse = walker.enterTuple(value, path)\n if not recurse:\n return\n next_walker = walker if recurse is True else recurse\n with TempSetAdd(seen, id(value)):\n keys = sorted(value.keys())\n for key in keys:\n key_path = path + [key]\n elm = get_or_error(value, key)\n walk(elm, next_walker, path=key_path, seen=seen)\n walker.leaveTuple(value, path)\n",
"role": "user"
},
{
"content": "walk",
"role": "assistant"
}
] |
def x(value):
h = hashlib.sha256()
_digest(value, h)
return h.digest().encode('hex')
|
fingerprint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n h = hashlib.sha256()\n _digest(value, h)\n return h.digest().encode('hex')\n",
"role": "user"
},
{
"content": "fingerprint",
"role": "assistant"
}
] |
def x(err):
def x(e):
if isinstance(e, exceptions.EvaluationError) and e.inner:
message, i = err2(e.inner)
if i == 1:
return ', '.join([e.args[0], str(e.inner)]), i + 1
else:
return message, i + 1
else:
return str(e), 1
return err2(err)[0]
|
compact_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(err):\n\n def x(e):\n if isinstance(e, exceptions.EvaluationError) and e.inner:\n message, i = err2(e.inner)\n if i == 1:\n return ', '.join([e.args[0], str(e.inner)]), i + 1\n else:\n return message, i + 1\n else:\n return str(e), 1\n return err2(err)[0]\n",
"role": "user"
},
{
"content": "compact_error",
"role": "assistant"
}
] |
def x(self, input_data, targets, cache=None):
if cache is not None:
activations = cache
else:
activations = self.feed_forward(input_data, prediction=False)
if activations.shape != targets.shape:
raise ValueError(
'Activations (shape = %s) and targets (shape = %s) are different sizes'
% (activations.shape, targets.shape))
delta = substract_matrix(activations, targets)
nan_to_zeros(delta, delta)
df_W = linalg.dot(input_data, delta, transa='T')
df_b = matrix_sum_out_axis(delta, 0)
df_input = linalg.dot(delta, self.W, transb='T')
if self.l1_penalty_weight:
df_W += self.l1_penalty_weight * sign(self.W)
if self.l2_penalty_weight:
df_W += self.l2_penalty_weight * self.W
return (df_W, df_b), df_input
|
backprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, cache=None):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=False)\n if activations.shape != targets.shape:\n raise ValueError(\n 'Activations (shape = %s) and targets (shape = %s) are different sizes'\n % (activations.shape, targets.shape))\n delta = substract_matrix(activations, targets)\n nan_to_zeros(delta, delta)\n df_W = linalg.dot(input_data, delta, transa='T')\n df_b = matrix_sum_out_axis(delta, 0)\n df_input = linalg.dot(delta, self.W, transb='T')\n if self.l1_penalty_weight:\n df_W += self.l1_penalty_weight * sign(self.W)\n if self.l2_penalty_weight:\n df_W += self.l2_penalty_weight * self.W\n return (df_W, df_b), df_input\n",
"role": "user"
},
{
"content": "backprop",
"role": "assistant"
}
] |
def x(self, input_data, targets, average=True, cache=None, prediction=False):
if cache is not None:
activations = cache
else:
activations = self.feed_forward(input_data, prediction=prediction)
loss = cross_entropy_logistic(activations, targets)
if average:
loss /= targets.shape[0]
return loss.get()
|
cross_entropy_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, average=True, cache=None, prediction=False):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n loss = cross_entropy_logistic(activations, targets)\n if average:\n loss /= targets.shape[0]\n return loss.get()\n",
"role": "user"
},
{
"content": "cross_entropy_error",
"role": "assistant"
}
] |
def x(lines):
normal, sep, in_code = range(3)
state = normal
for line in lines:
indented = line.startswith(' ')
empty_line = line.strip() == ''
if state == normal and empty_line:
state = sep
elif state in [sep, normal] and indented:
yield ''
if indented:
yield '.. code-block:: javascript'
yield ''
yield line
state = in_code
else:
state = normal
elif state == sep and not empty_line:
yield ''
yield line
state = normal
else:
yield line
if state == in_code and not (indented or empty_line):
sep = normal
|
stylize_comment_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines):\n normal, sep, in_code = range(3)\n state = normal\n for line in lines:\n indented = line.startswith(' ')\n empty_line = line.strip() == ''\n if state == normal and empty_line:\n state = sep\n elif state in [sep, normal] and indented:\n yield ''\n if indented:\n yield '.. code-block:: javascript'\n yield ''\n yield line\n state = in_code\n else:\n state = normal\n elif state == sep and not empty_line:\n yield ''\n yield line\n state = normal\n else:\n yield line\n if state == in_code and not (indented or empty_line):\n sep = normal\n",
"role": "user"
},
{
"content": "stylize_comment_block",
"role": "assistant"
}
] |
def x(tup, names):
scalars, tuples = partition(lambda x: not is_tuple_node(tup.member[x].
value), names)
unbound, bound = partition(lambda x: tup.member[x].value.is_unbound(),
scalars)
return usorted(unbound) + usorted(bound), usorted(tuples)
|
sort_members
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tup, names):\n scalars, tuples = partition(lambda x: not is_tuple_node(tup.member[x].\n value), names)\n unbound, bound = partition(lambda x: tup.member[x].value.is_unbound(),\n scalars)\n return usorted(unbound) + usorted(bound), usorted(tuples)\n",
"role": "user"
},
{
"content": "sort_members",
"role": "assistant"
}
] |
def x(fname, paths):
fpath = path.abspath(fname)
for p in paths:
spath = path.abspath(p)
if fpath.startswith(spath):
return fpath[len(spath) + 1:]
return fname
|
resolve_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, paths):\n fpath = path.abspath(fname)\n for p in paths:\n spath = path.abspath(p)\n if fpath.startswith(spath):\n return fpath[len(spath) + 1:]\n return fname\n",
"role": "user"
},
{
"content": "resolve_file",
"role": "assistant"
}
] |
def x(self):
header = ' '.join('=' * self.width[i] for i in range(self.w))
lines = [' '.join(row[i].ljust(self.width[i]) for i in range(self.w)) for
row in self.rows]
return [header] + lines + [header]
|
generate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n header = ' '.join('=' * self.width[i] for i in range(self.w))\n lines = [' '.join(row[i].ljust(self.width[i]) for i in range(self.w)) for\n row in self.rows]\n return [header] + lines + [header]\n",
"role": "user"
},
{
"content": "generate",
"role": "assistant"
}
] |
def x(pred, iterable):
t1, t2 = itertools.tee(iterable)
return list(filter(negate(pred), t1)), list(filter(pred, t2))
|
partition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pred, iterable):\n t1, t2 = itertools.tee(iterable)\n return list(filter(negate(pred), t1)), list(filter(pred, t2))\n",
"role": "user"
},
{
"content": "partition",
"role": "assistant"
}
] |
def x(self, model):
res = []
def x(value, pre, remaining):
if not remaining:
res.append((pre, value))
else:
if not is_tuple(value) and not isinstance(value, list):
return
qhead, qtail = remaining[0], remaining[1:]
if isinstance(qhead, tuple) and is_tuple(value):
for alt in qhead:
if alt in value:
doSelect(value[alt], pre + [alt], qtail)
elif qhead == '*':
if isinstance(value, list):
indices = range(len(value))
reprs = [listKey(i) for i in indices]
else:
indices = value.keys()
reprs = indices
for key, rep in zip(indices, reprs):
doSelect(value[key], pre + [rep], qtail)
elif isinstance(qhead, int) and isinstance(value, list):
doSelect(value[qhead], pre + [listKey(qhead)], qtail)
elif is_tuple(value):
if qhead in value:
doSelect(value[qhead], pre + [qhead], qtail)
for selector in self.selectors:
doSelect(model, [], selector)
return QueryResult(res)
|
select
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model):\n res = []\n\n def x(value, pre, remaining):\n if not remaining:\n res.append((pre, value))\n else:\n if not is_tuple(value) and not isinstance(value, list):\n return\n qhead, qtail = remaining[0], remaining[1:]\n if isinstance(qhead, tuple) and is_tuple(value):\n for alt in qhead:\n if alt in value:\n doSelect(value[alt], pre + [alt], qtail)\n elif qhead == '*':\n if isinstance(value, list):\n indices = range(len(value))\n reprs = [listKey(i) for i in indices]\n else:\n indices = value.keys()\n reprs = indices\n for key, rep in zip(indices, reprs):\n doSelect(value[key], pre + [rep], qtail)\n elif isinstance(qhead, int) and isinstance(value, list):\n doSelect(value[qhead], pre + [listKey(qhead)], qtail)\n elif is_tuple(value):\n if qhead in value:\n doSelect(value[qhead], pre + [qhead], qtail)\n for selector in self.selectors:\n doSelect(model, [], selector)\n return QueryResult(res)\n",
"role": "user"
},
{
"content": "select",
"role": "assistant"
}
] |
def x(self):
self.lists = {}
ret = {}
for path, value in self.paths_values():
self.recursiveSet(ret, path, value)
self.removeMissingValuesFromLists()
return ret
|
deep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.lists = {}\n ret = {}\n for path, value in self.paths_values():\n self.recursiveSet(ret, path, value)\n self.removeMissingValuesFromLists()\n return ret\n",
"role": "user"
},
{
"content": "deep",
"role": "assistant"
}
] |
def x(self, what, key, value):
if isListKey(key):
self.lists[id(what)] = what
ix = listKeyIndex(key)
while len(what) <= ix:
what.append(missing_value)
what[ix] = value
else:
what[key] = value
return value
|
ldSet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, what, key, value):\n if isListKey(key):\n self.lists[id(what)] = what\n ix = listKeyIndex(key)\n while len(what) <= ix:\n what.append(missing_value)\n what[ix] = value\n else:\n what[key] = value\n return value\n",
"role": "user"
},
{
"content": "ldSet",
"role": "assistant"
}
] |
def x(self, what, key):
if isListKey(key):
return what[listKeyIndex(key)]
else:
return what[key]
|
ldGet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, what, key):\n if isListKey(key):\n return what[listKeyIndex(key)]\n else:\n return what[key]\n",
"role": "user"
},
{
"content": "ldGet",
"role": "assistant"
}
] |
def x(self, what, key):
if isListKey(key):
i = listKeyIndex(key)
return i < len(what) and what[i] != missing_value
else:
return key in what and what[key] != missing_value
|
ldContains
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, what, key):\n if isListKey(key):\n i = listKeyIndex(key)\n return i < len(what) and what[i] != missing_value\n else:\n return key in what and what[key] != missing_value\n",
"role": "user"
},
{
"content": "ldContains",
"role": "assistant"
}
] |
def x(self):
nodes_on_path = []
def x(nodes):
for node in nodes:
cycle = node in nodes_on_path
nodes_on_path.append(node)
if cycle or helper(self.deps.get(node, [])):
return True
nodes_on_path.pop()
return False
helper(self.unordered)
return nodes_on_path
|
find_recursive_dependency
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nodes_on_path = []\n\n def x(nodes):\n for node in nodes:\n cycle = node in nodes_on_path\n nodes_on_path.append(node)\n if cycle or helper(self.deps.get(node, [])):\n return True\n nodes_on_path.pop()\n return False\n helper(self.unordered)\n return nodes_on_path\n",
"role": "user"
},
{
"content": "find_recursive_dependency",
"role": "assistant"
}
] |
def x(self, tuple, path):
if skip_name(path):
return False
node = Node(path, tuple)
if self.condition.matches(node):
self.unordered.append(node)
return False
return True
|
enterTuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tuple, path):\n if skip_name(path):\n return False\n node = Node(path, tuple)\n if self.condition.matches(node):\n self.unordered.append(node)\n return False\n return True\n",
"role": "user"
},
{
"content": "enterTuple",
"role": "assistant"
}
] |
def x(converter, handler):
def x(loc, value):
return handler(loc, converter(value))
return convertAction
|
convertAndMake
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(converter, handler):\n\n def x(loc, value):\n return handler(loc, converter(value))\n return convertAction\n",
"role": "user"
},
{
"content": "convertAndMake",
"role": "assistant"
}
] |
def x(location, *atoms):
atoms = list(atoms)
while len(atoms) > 1:
atoms[0:2] = [Application(location, atoms[0], atoms[1])]
return atoms[0]
|
mkApplications
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(location, *atoms):\n atoms = list(atoms)\n while len(atoms) > 1:\n atoms[0:2] = [Application(location, atoms[0], atoms[1])]\n return atoms[0]\n",
"role": "user"
},
{
"content": "mkApplications",
"role": "assistant"
}
] |
def x(fn, arglist, env):
if isinstance(fn, framework.LazyFunction):
thunks = [(lambda thunk: lambda : framework.eval(thunk, env))(th) for
th in arglist.values]
return fn(*thunks)
evaled_args = framework.eval(arglist, env)
if isinstance(fn, framework.EnvironmentFunction):
return fn(*evaled_args, env=env)
return fn(*evaled_args)
|
call_fn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn, arglist, env):\n if isinstance(fn, framework.LazyFunction):\n thunks = [(lambda thunk: lambda : framework.eval(thunk, env))(th) for\n th in arglist.values]\n return fn(*thunks)\n evaled_args = framework.eval(arglist, env)\n if isinstance(fn, framework.EnvironmentFunction):\n return fn(*evaled_args, env=env)\n return fn(*evaled_args)\n",
"role": "user"
},
{
"content": "call_fn",
"role": "assistant"
}
] |
def x(tup):
if hasattr(tup, 'get_schema_spec'):
return schema.from_spec({'fields': TupleSchemaAccess(tup),
'required': tup.get_required_fields()})
return schema.AnySchema()
|
schema_spec_from_tuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tup):\n if hasattr(tup, 'get_schema_spec'):\n return schema.from_spec({'fields': TupleSchemaAccess(tup),\n 'required': tup.get_required_fields()})\n return schema.AnySchema()\n",
"role": "user"
},
{
"content": "schema_spec_from_tuple",
"role": "assistant"
}
] |
def x(value, env):
if isinstance(value, framework.Thunk):
value = framework.eval(value, env)
if isinstance(value, schema.Schema):
return value
if framework.is_tuple(value):
return schema_spec_from_tuple(value)
if framework.is_list(value):
return schema.from_spec([make_schema_from(x, env) for x in value])
raise exceptions.EvaluationError("Can't make a schema from %r" % value)
|
make_schema_from
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, env):\n if isinstance(value, framework.Thunk):\n value = framework.eval(value, env)\n if isinstance(value, schema.Schema):\n return value\n if framework.is_tuple(value):\n return schema_spec_from_tuple(value)\n if framework.is_list(value):\n return schema.from_spec([make_schema_from(x, env) for x in value])\n raise exceptions.EvaluationError(\"Can't make a schema from %r\" % value)\n",
"role": "user"
},
{
"content": "make_schema_from",
"role": "assistant"
}
] |
def x(l, r, sep, expr, allow_missing_close=False):
strict = l != '['
closer = sym(r) if not allow_missing_close else p.Optional(sym(r))
if strict:
return sym(l) - listMembers(sep, expr) - closer
else:
return sym(l) + listMembers(sep, expr) + closer
|
bracketedList
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, r, sep, expr, allow_missing_close=False):\n strict = l != '['\n closer = sym(r) if not allow_missing_close else p.Optional(sym(r))\n if strict:\n return sym(l) - listMembers(sep, expr) - closer\n else:\n return sym(l) + listMembers(sep, expr) + closer\n",
"role": "user"
},
{
"content": "bracketedList",
"role": "assistant"
}
] |
def x(s):
i, N = 1, len(s) - 1
ret = []
while i < N:
if s[i] == '\\' and i < N - 1:
ret.append(UNQUOTE_MAP.get(s[i + 1], s[i + 1]))
i += 2
else:
ret.append(s[i])
i += 1
return ''.join(ret)
|
unquote
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n i, N = 1, len(s) - 1\n ret = []\n while i < N:\n if s[i] == '\\\\' and i < N - 1:\n ret.append(UNQUOTE_MAP.get(s[i + 1], s[i + 1]))\n i += 2\n else:\n ret.append(s[i])\n i += 1\n return ''.join(ret)\n",
"role": "user"
},
{
"content": "unquote",
"role": "assistant"
}
] |
def x(name, pattern):
pattern.setName(name)
astracing.maybe_trace(pattern)
return pattern
|
pattern
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, pattern):\n pattern.setName(name)\n astracing.maybe_trace(pattern)\n return pattern\n",
"role": "user"
},
{
"content": "pattern",
"role": "assistant"
}
] |
def x(s, filename, loader, implicit_tuple, allow_errors):
try:
the_context.filename = filename
the_context.loader = loader
grammar = make_grammar(allow_errors=allow_errors)
root = grammar.start_tuple if implicit_tuple else grammar.start
return root.parseWithTabs().parseString(s, parseAll=True)[0]
except (p.ParseException, p.ParseSyntaxException) as e:
loc = SourceLocation(s, find_offset(s, e.lineno, e.col))
raise exceptions.ParseError(the_context.filename, loc, e.msg)
|
reads
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, filename, loader, implicit_tuple, allow_errors):\n try:\n the_context.filename = filename\n the_context.loader = loader\n grammar = make_grammar(allow_errors=allow_errors)\n root = grammar.start_tuple if implicit_tuple else grammar.start\n return root.parseWithTabs().parseString(s, parseAll=True)[0]\n except (p.ParseException, p.ParseSyntaxException) as e:\n loc = SourceLocation(s, find_offset(s, e.lineno, e.col))\n raise exceptions.ParseError(the_context.filename, loc, e.msg)\n",
"role": "user"
},
{
"content": "reads",
"role": "assistant"
}
] |
def x(self, q):
found_me = []
if hasattr(self, 'location'):
if self.location.contains(q):
found_me = [self]
elif self._found_by(q):
found_me = [self]
cs = [n.find_tokens(q) for n in self._children()]
return found_me + list(itertools.chain(*cs))
|
find_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n found_me = []\n if hasattr(self, 'location'):\n if self.location.contains(q):\n found_me = [self]\n elif self._found_by(q):\n found_me = [self]\n cs = [n.find_tokens(q) for n in self._children()]\n return found_me + list(itertools.chain(*cs))\n",
"role": "user"
},
{
"content": "find_tokens",
"role": "assistant"
}
] |
def x(self, env):
t = runtime.Tuple(self, env, dict2tuple)
schema = schema_spec_from_tuple(t)
t.attach_schema(schema)
return t
|
make_tuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, env):\n t = runtime.Tuple(self, env, dict2tuple)\n schema = schema_spec_from_tuple(t)\n t.attach_schema(schema)\n return t\n",
"role": "user"
},
{
"content": "make_tuple",
"role": "assistant"
}
] |
def x(self, tuple, right, env):
if len(right) != 1:
raise exceptions.EvaluationError(
'Tuple (%r) can only be applied to one argument, got %r' % (
self.left, self.right))
right = right[0]
return tuple(right)
|
applyTuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tuple, right, env):\n if len(right) != 1:\n raise exceptions.EvaluationError(\n 'Tuple (%r) can only be applied to one argument, got %r' % (\n self.left, self.right))\n right = right[0]\n return tuple(right)\n",
"role": "user"
},
{
"content": "applyTuple",
"role": "assistant"
}
] |
def x(self, lst, right):
if len(right) != 1:
raise exceptions.EvaluationError(
'%r can only be applied to one argument, got %r' % (self.left,
self.right))
right = right[0]
if isinstance(right, int):
return lst[right]
raise exceptions.EvaluationError(
"Can't apply %r to argument (%r): integer expected, got %r" % (self
.left, self.right, right))
|
applyIndex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lst, right):\n if len(right) != 1:\n raise exceptions.EvaluationError(\n '%r can only be applied to one argument, got %r' % (self.left,\n self.right))\n right = right[0]\n if isinstance(right, int):\n return lst[right]\n raise exceptions.EvaluationError(\n \"Can't apply %r to argument (%r): integer expected, got %r\" % (self\n .left, self.right, right))\n",
"role": "user"
},
{
"content": "applyIndex",
"role": "assistant"
}
] |
def x(self):
updates = zip(self.velocity, self.model.n_parameters * [1.0])
self.model.update_parameters(updates)
|
pre_gradient_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n updates = zip(self.velocity, self.model.n_parameters * [1.0])\n self.model.update_parameters(updates)\n",
"role": "user"
},
{
"content": "pre_gradient_update",
"role": "assistant"
}
] |
def x(self, input_data, targets, average=True, cache=None, prediction=False):
if cache is not None:
activations = cache
else:
activations = self.feed_forward(input_data, prediction=prediction)
targets = targets.get().argmax(1)
class_error = np.sum(activations.get().argmax(1) != targets)
if average:
class_error = float(class_error) / targets.shape[0]
return class_error
|
class_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, average=True, cache=None, prediction=False):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n targets = targets.get().argmax(1)\n class_error = np.sum(activations.get().argmax(1) != targets)\n if average:\n class_error = float(class_error) / targets.shape[0]\n return class_error\n",
"role": "user"
},
{
"content": "class_error",
"role": "assistant"
}
] |
def x(self, input_data, targets, average=True, cache=None, prediction=True):
if cache is not None:
activations = cache
else:
activations = self.feed_forward(input_data, prediction=prediction)
targets_non_nan = gpuarray.empty_like(targets)
nan_to_zeros(targets, targets_non_nan)
kl_error = gpuarray.sum(targets_non_nan * (cumath.log(targets_non_nan +
eps) - cumath.log(activations + eps)))
if average:
kl_error /= targets.shape[0]
return kl_error.get()
|
kl_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, average=True, cache=None, prediction=True):\n if cache is not None:\n activations = cache\n else:\n activations = self.feed_forward(input_data, prediction=prediction)\n targets_non_nan = gpuarray.empty_like(targets)\n nan_to_zeros(targets, targets_non_nan)\n kl_error = gpuarray.sum(targets_non_nan * (cumath.log(targets_non_nan +\n eps) - cumath.log(activations + eps)))\n if average:\n kl_error /= targets.shape[0]\n return kl_error.get()\n",
"role": "user"
},
{
"content": "kl_error",
"role": "assistant"
}
] |
def x(x_gpu, y_gpu, transa='N', transb='N', handle=None, target=None):
if handle is None:
handle = _global_cublas_handle
if len(x_gpu.shape) == 1 and len(y_gpu.shape) == 1:
if x_gpu.size != y_gpu.size:
raise ValueError(
'arrays must be of same length: x_gpu.size = %d, y_gpu.size = %d'
% (x_gpu.size, y_gpu.size))
if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:
cublas_func = cublas.cublasCdotu
elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:
cublas_func = cublas.cublasSdot
elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:
cublas_func = cublas.cublasZdotu
elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:
cublas_func = cublas.cublasDdot
else:
raise ValueError(
'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'
% (str(x_gpu.dtype), str(y_gpu.dtype)))
return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1, y_gpu.
gpudata, 1)
else:
x_shape = x_gpu.shape
y_shape = y_gpu.shape
if len(x_shape) == 1:
x_shape = 1, x_shape[0]
if len(y_shape) == 1:
y_shape = 1, y_shape[0]
if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:
cublas_func = cublas.cublasCgemm
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:
cublas_func = cublas.cublasSgemm
alpha = np.float32(1.0)
beta = np.float32(0.0)
elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:
cublas_func = cublas.cublasZgemm
alpha = np.complex128(1.0)
beta = np.complex128(0.0)
elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:
cublas_func = cublas.cublasDgemm
alpha = np.float64(1.0)
beta = np.float64(0.0)
else:
raise ValueError(
'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'
% (str(x_gpu.dtype), str(y_gpu.dtype)))
transa = lower(transa)
transb = lower(transb)
if transb in ['t', 'c']:
m, k = y_shape
elif transb in ['n']:
k, m = y_shape
else:
raise ValueError('invalid value "%s" for transb' % transb)
if transa in ['t', 'c']:
l, n = x_shape
elif transa in ['n']:
n, l = x_shape
else:
raise ValueError('invalid value "%s" for transa' % transa)
if l != k:
raise ValueError(
'objects are not aligned: x_shape = %s, y_shape = %s' % (
x_shape, y_shape))
if transb == 'n':
lda = max(1, m)
else:
lda = max(1, k)
if transa == 'n':
ldb = max(1, k)
else:
ldb = max(1, n)
ldc = max(1, m)
if target is None:
target = gpuarray.empty((n, ldc), x_gpu.dtype, allocator=
memory_pool.allocate)
cublas_func(handle, transb, transa, m, n, k, alpha, y_gpu.gpudata,
lda, x_gpu.gpudata, ldb, beta, target.gpudata, ldc)
return target
|
dot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_gpu, y_gpu, transa='N', transb='N', handle=None, target=None):\n if handle is None:\n handle = _global_cublas_handle\n if len(x_gpu.shape) == 1 and len(y_gpu.shape) == 1:\n if x_gpu.size != y_gpu.size:\n raise ValueError(\n 'arrays must be of same length: x_gpu.size = %d, y_gpu.size = %d'\n % (x_gpu.size, y_gpu.size))\n if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:\n cublas_func = cublas.cublasCdotu\n elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:\n cublas_func = cublas.cublasSdot\n elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:\n cublas_func = cublas.cublasZdotu\n elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:\n cublas_func = cublas.cublasDdot\n else:\n raise ValueError(\n 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'\n % (str(x_gpu.dtype), str(y_gpu.dtype)))\n return cublas_func(handle, x_gpu.size, x_gpu.gpudata, 1, y_gpu.\n gpudata, 1)\n else:\n x_shape = x_gpu.shape\n y_shape = y_gpu.shape\n if len(x_shape) == 1:\n x_shape = 1, x_shape[0]\n if len(y_shape) == 1:\n y_shape = 1, y_shape[0]\n if x_gpu.dtype == np.complex64 and y_gpu.dtype == np.complex64:\n cublas_func = cublas.cublasCgemm\n alpha = np.complex64(1.0)\n beta = np.complex64(0.0)\n elif x_gpu.dtype == np.float32 and y_gpu.dtype == np.float32:\n cublas_func = cublas.cublasSgemm\n alpha = np.float32(1.0)\n beta = np.float32(0.0)\n elif x_gpu.dtype == np.complex128 and y_gpu.dtype == np.complex128:\n cublas_func = cublas.cublasZgemm\n alpha = np.complex128(1.0)\n beta = np.complex128(0.0)\n elif x_gpu.dtype == np.float64 and y_gpu.dtype == np.float64:\n cublas_func = cublas.cublasDgemm\n alpha = np.float64(1.0)\n beta = np.float64(0.0)\n else:\n raise ValueError(\n 'unsupported combination of input types: x_gpu.dtype = %s, y_gpu.dtype = %s'\n % (str(x_gpu.dtype), str(y_gpu.dtype)))\n transa = lower(transa)\n transb = lower(transb)\n if transb in ['t', 'c']:\n m, k = y_shape\n elif transb in ['n']:\n k, m = y_shape\n else:\n raise ValueError('invalid value \"%s\" for transb' % transb)\n if transa in ['t', 'c']:\n l, n = x_shape\n elif transa in ['n']:\n n, l = x_shape\n else:\n raise ValueError('invalid value \"%s\" for transa' % transa)\n if l != k:\n raise ValueError(\n 'objects are not aligned: x_shape = %s, y_shape = %s' % (\n x_shape, y_shape))\n if transb == 'n':\n lda = max(1, m)\n else:\n lda = max(1, k)\n if transa == 'n':\n ldb = max(1, k)\n else:\n ldb = max(1, n)\n ldc = max(1, m)\n if target is None:\n target = gpuarray.empty((n, ldc), x_gpu.dtype, allocator=\n memory_pool.allocate)\n cublas_func(handle, transb, transa, m, n, k, alpha, y_gpu.gpudata,\n lda, x_gpu.gpudata, ldb, beta, target.gpudata, ldc)\n return target\n",
"role": "user"
},
{
"content": "dot",
"role": "assistant"
}
] |
def x(data=None):
with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp:
temp.write(six.text_type(data if data is not None else os.getpid()))
return temp.name
|
make_tempfile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data=None):\n with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp:\n temp.write(six.text_type(data if data is not None else os.getpid()))\n return temp.name\n",
"role": "user"
},
{
"content": "make_tempfile",
"role": "assistant"
}
] |
def x(self):
parameters = []
for task in self.tasks:
parameters.extend(task.parameters)
return parameters
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n parameters = []\n for task in self.tasks:\n parameters.extend(task.parameters)\n return parameters\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self, value):
assert len(value) == self.n_parameters
i = 0
for task in self.tasks:
task.parameters = value[i:i + task.n_parameters]
i += task.n_parameters
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n assert len(value) == self.n_parameters\n i = 0\n for task in self.tasks:\n task.parameters = value[i:i + task.n_parameters]\n i += task.n_parameters\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self, input_data, prediction=False):
activations = []
for task in self.tasks:
activations_task = task.feed_forward(input_data, prediction)
activations.append(activations_task)
return activations
|
feed_forward
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, prediction=False):\n activations = []\n for task in self.tasks:\n activations_task = task.feed_forward(input_data, prediction)\n activations.append(activations_task)\n return activations\n",
"role": "user"
},
{
"content": "feed_forward",
"role": "assistant"
}
] |
def x(self, input_data, targets, cache=None):
df_input = gpuarray.zeros_like(input_data)
if cache is None:
cache = self.n_tasks * [None]
gradients = []
for targets_task, cache_task, task, task_weight in izip(targets, cache,
self.tasks, self.task_weights):
gradients_task, df_input_task = task.backprop(input_data,
targets_task, cache_task)
df_input = df_input.mul_add(1.0, df_input_task, task_weight)
gradients.extend(gradients_task)
return gradients, df_input
|
backprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, cache=None):\n df_input = gpuarray.zeros_like(input_data)\n if cache is None:\n cache = self.n_tasks * [None]\n gradients = []\n for targets_task, cache_task, task, task_weight in izip(targets, cache,\n self.tasks, self.task_weights):\n gradients_task, df_input_task = task.backprop(input_data,\n targets_task, cache_task)\n df_input = df_input.mul_add(1.0, df_input_task, task_weight)\n gradients.extend(gradients_task)\n return gradients, df_input\n",
"role": "user"
},
{
"content": "backprop",
"role": "assistant"
}
] |
def x(self, input_data, targets, average=True, cache=None, prediction=False,
sum_errors=True):
loss = []
if cache is None:
cache = self.n_tasks * [None]
for targets_task, cache_task, task in izip(targets, cache, self.tasks):
loss.append(task.cross_entropy_error(input_data, targets_task,
average=average, cache=cache_task, prediction=prediction))
if sum_errors:
return sum(loss)
else:
return loss
|
cross_entropy_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, targets, average=True, cache=None, prediction=False,\n sum_errors=True):\n loss = []\n if cache is None:\n cache = self.n_tasks * [None]\n for targets_task, cache_task, task in izip(targets, cache, self.tasks):\n loss.append(task.cross_entropy_error(input_data, targets_task,\n average=average, cache=cache_task, prediction=prediction))\n if sum_errors:\n return sum(loss)\n else:\n return loss\n",
"role": "user"
},
{
"content": "cross_entropy_error",
"role": "assistant"
}
] |
def x(self, value):
self.W = value[0] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(
value[0])
self.b = value[1] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(
value[1])
|
parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self.W = value[0] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(\n value[0])\n self.b = value[1] if isinstance(value[0], GPUArray) else gpuarray.to_gpu(\n value[1])\n",
"role": "user"
},
{
"content": "parameters",
"role": "assistant"
}
] |
def x(self):
arch = {'class': self.__class__, 'n_in': self.n_in, 'n_units': self.
n_units, 'activation_function': self.activation_function if hasattr
(self, 'activation_function') else None}
return arch
|
architecture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n arch = {'class': self.__class__, 'n_in': self.n_in, 'n_units': self.\n n_units, 'activation_function': self.activation_function if hasattr\n (self, 'activation_function') else None}\n return arch\n",
"role": "user"
},
{
"content": "architecture",
"role": "assistant"
}
] |
def x(self, input_data, prediction=False):
if input_data.shape[1] != self.W.shape[0]:
raise ValueError(
'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'
% (input_data.shape[1], self.W.shape[0]))
activations = linalg.dot(input_data, self.W)
activations = add_vec_to_mat(activations, self.b, inplace=True)
self.f(activations)
if self.dropout > 0:
if prediction:
activations *= 1 - self.dropout
else:
dropout_mask = sample_dropout_mask(activations, self.dropout)
return activations, dropout_mask
return activations,
|
feed_forward
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, prediction=False):\n if input_data.shape[1] != self.W.shape[0]:\n raise ValueError(\n 'Number of outputs from previous layer (%d) does not match number of inputs to this layer (%d)'\n % (input_data.shape[1], self.W.shape[0]))\n activations = linalg.dot(input_data, self.W)\n activations = add_vec_to_mat(activations, self.b, inplace=True)\n self.f(activations)\n if self.dropout > 0:\n if prediction:\n activations *= 1 - self.dropout\n else:\n dropout_mask = sample_dropout_mask(activations, self.dropout)\n return activations, dropout_mask\n return activations,\n",
"role": "user"
},
{
"content": "feed_forward",
"role": "assistant"
}
] |
def x(self, input_data, df_output, cache=None):
if cache is None:
cache = self.feed_forward(input_data, prediction=False)
if len(cache) == 2:
activations, dropout_mask = cache
else:
activations = cache[0]
if self.dropout > 0 and dropout_mask is not None:
apply_dropout_mask(df_output, dropout_mask)
df_activations = self.df(activations)
delta = mult_matrix(df_activations, df_output)
df_W = linalg.dot(input_data, delta, transa='T')
df_b = matrix_sum_out_axis(delta, 0)
df_input = linalg.dot(delta, self.W, transb='T')
if self.l1_penalty_weight:
df_W += self.l1_penalty_weight * sign(self.W)
if self.l2_penalty_weight:
df_W += self.l2_penalty_weight * self.W
return (df_W, df_b), df_input
|
backprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data, df_output, cache=None):\n if cache is None:\n cache = self.feed_forward(input_data, prediction=False)\n if len(cache) == 2:\n activations, dropout_mask = cache\n else:\n activations = cache[0]\n if self.dropout > 0 and dropout_mask is not None:\n apply_dropout_mask(df_output, dropout_mask)\n df_activations = self.df(activations)\n delta = mult_matrix(df_activations, df_output)\n df_W = linalg.dot(input_data, delta, transa='T')\n df_b = matrix_sum_out_axis(delta, 0)\n df_input = linalg.dot(delta, self.W, transb='T')\n if self.l1_penalty_weight:\n df_W += self.l1_penalty_weight * sign(self.W)\n if self.l2_penalty_weight:\n df_W += self.l2_penalty_weight * self.W\n return (df_W, df_b), df_input\n",
"role": "user"
},
{
"content": "backprop",
"role": "assistant"
}
] |
def x():
handle = ctypes.c_void_p()
status = _libcublas.cublasCreate_v2(ctypes.byref(handle))
cublasCheckStatus(status)
return handle.value
|
cublasCreate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n handle = ctypes.c_void_p()\n status = _libcublas.cublasCreate_v2(ctypes.byref(handle))\n cublasCheckStatus(status)\n return handle.value\n",
"role": "user"
},
{
"content": "cublasCreate",
"role": "assistant"
}
] |
def x(handle):
status = _libcublas.cublasDestroy_v2(ctypes.c_void_p(handle))
cublasCheckStatus(status)
|
cublasDestroy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle):\n status = _libcublas.cublasDestroy_v2(ctypes.c_void_p(handle))\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDestroy",
"role": "assistant"
}
] |
def x(handle):
version = ctypes.c_int()
status = _libcublas.cublasGetVersion_v2(handle, ctypes.byref(version))
cublasCheckStatus(status)
return version.value
|
cublasGetVersion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle):\n version = ctypes.c_int()\n status = _libcublas.cublasGetVersion_v2(handle, ctypes.byref(version))\n cublasCheckStatus(status)\n return version.value\n",
"role": "user"
},
{
"content": "cublasGetVersion",
"role": "assistant"
}
] |
def x(handle, id):
status = _libcublas.cublasSetStream_v2(handle, id)
cublasCheckStatus(status)
|
cublasSetStream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, id):\n status = _libcublas.cublasSetStream_v2(handle, id)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSetStream",
"role": "assistant"
}
] |
def x(handle):
id = ctypes.c_int()
status = _libcublas.cublasGetStream_v2(handle, ctypes.byref(id))
cublasCheckStatus(status)
return id.value
|
cublasGetStream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle):\n id = ctypes.c_int()\n status = _libcublas.cublasGetStream_v2(handle, ctypes.byref(id))\n cublasCheckStatus(status)\n return id.value\n",
"role": "user"
},
{
"content": "cublasGetStream",
"role": "assistant"
}
] |
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasSgbmv_v2(handle, trans, m, n, kl, ku, ctypes.
byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.
byref(ctypes.c_float(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasSgbmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.\n byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSgbmv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasCgbmv_v2(handle, trans, m, n, kl, ku, ctypes.
byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda,
int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag
)), int(y), incy)
cublasCheckStatus(status)
|
cublasCgbmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasCgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda,\n int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag\n )), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasCgbmv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasZgbmv_v2(handle, trans, m, n, kl, ku, ctypes.
byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda,
int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.
imag)), int(y), incy)
cublasCheckStatus(status)
|
cublasZgbmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasZgbmv_v2(handle, trans, m, n, kl, ku, ctypes.\n byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda,\n int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.\n imag)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasZgbmv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasSgemv_v2(handle, _CUBLAS_OP[trans], m, n,
ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_float(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasSgemv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSgemv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n,
ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_double(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasDgemv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDgemv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n,
ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A),
lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta
.imag)), int(y), incy)
cublasCheckStatus(status)
|
cublasCgemv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A),\n lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta\n .imag)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasCgemv",
"role": "assistant"
}
] |
def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n,
ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A),
lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real,
beta.imag)), int(y), incy)
cublasCheckStatus(status)
|
cublasZgemv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n,\n ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A),\n lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real,\n beta.imag)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasZgemv",
"role": "assistant"
}
] |
def x(handle, m, n, alpha, x, incx, y, incy, A, lda):
status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.
c_float(alpha)), int(x), incx, int(y), incy, int(A), lda)
cublasCheckStatus(status)
|
cublasSger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.\n c_float(alpha)), int(x), incx, int(y), incy, int(A), lda)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSger",
"role": "assistant"
}
] |
def x(handle, m, n, alpha, x, incx, y, incy, A, lda):
status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.
c_double(alpha)), int(x), incx, int(y), incy, int(A), lda)
cublasCheckStatus(status)
|
cublasDger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.\n c_double(alpha)), int(x), incx, int(y), incy, int(A), lda)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDger",
"role": "assistant"
}
] |
def x(handle, m, n, alpha, x, incx, y, incy, A, lda):
status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.
cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy,
int(A), lda)
cublasCheckStatus(status)
|
cublasCgeru
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.\n cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy,\n int(A), lda)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasCgeru",
"role": "assistant"
}
] |
def x(handle, m, n, alpha, x, incx, y, incy, A, lda):
status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.
cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y),
incy, int(A), lda)
cublasCheckStatus(status)
|
cublasZgerc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, m, n, alpha, x, incx, y, incy, A, lda):\n status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.\n cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y),\n incy, int(A), lda)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasZgerc",
"role": "assistant"
}
] |
def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_float(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasSsbmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSsbmv",
"role": "assistant"
}
] |
def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_double(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasDsbmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDsbmv",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):
status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP
)), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasSspmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):\n status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP\n )), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSspmv",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):
status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(
AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasDspmv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, AP, x, incx, beta, y, incy):\n status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(\n AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDspmv",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, x, incx, AP):
status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP))
cublasCheckStatus(status)
|
cublasSspr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, x, incx, AP):\n status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP))\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSspr",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, x, incx, AP):
status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP))
cublasCheckStatus(status)
|
cublasDspr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, x, incx, AP):\n status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP))\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDspr",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, x, incx, y, incy, AP):
status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy,
int(AP))
cublasCheckStatus(status)
|
cublasSspr2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, x, incx, y, incy, AP):\n status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy,\n int(AP))\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSspr2",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, x, incx, y, incy, AP):
status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy,
int(AP))
cublasCheckStatus(status)
|
cublasDspr2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, x, incx, y, incy, AP):\n status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy,\n int(AP))\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDspr2",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_float(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasSsymv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_float(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasSsymv",
"role": "assistant"
}
] |
def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):
status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,
ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,
ctypes.byref(ctypes.c_double(beta)), int(y), incy)
cublasCheckStatus(status)
|
cublasDsymv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy):\n status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n,\n ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx,\n ctypes.byref(ctypes.c_double(beta)), int(y), incy)\n cublasCheckStatus(status)\n",
"role": "user"
},
{
"content": "cublasDsymv",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.