source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(directory, hash_type='md5', **kwargs): size_map, hash_map = defaultdict(list), defaultdict(list) for item in find_files(directory, **kwargs): file_size = os.path.getsize(item) size_map[file_size].append(item) for possible_dups in (v for v in size_map.values() if len(v) > 1): for each_item in possible_dups: item_hash = file_hash(each_item, hash_type=hash_type) hash_map[item_hash].append(each_item) return [v for v in hash_map.values() if len(v) > 1]
directory_duplicates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory, hash_type='md5', **kwargs):\n size_map, hash_map = defaultdict(list), defaultdict(list)\n for item in find_files(directory, **kwargs):\n file_size = os.path.getsize(item)\n size_map[file_size].append(item)\n for possible_dups in (v for v in size_map.values() if len(v) > 1):\n for each_item in possible_dups:\n item_hash = file_hash(each_item, hash_type=hash_type)\n hash_map[item_hash].append(each_item)\n return [v for v in hash_map.values() if len(v) > 1]\n", "role": "user" }, { "content": "directory_duplicates", "role": "assistant" } ]
def x(*paths, **kwargs): path = os.path.abspath(paths[0]) for next_path in paths[1:]: path = os.path.join(path, next_path.lstrip('\\').lstrip('/').strip()) path.rstrip(os.sep) return path if not kwargs.get('safe') else safe_path(path)
join_paths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*paths, **kwargs):\n path = os.path.abspath(paths[0])\n for next_path in paths[1:]:\n path = os.path.join(path, next_path.lstrip('\\\\').lstrip('/').strip())\n path.rstrip(os.sep)\n return path if not kwargs.get('safe') else safe_path(path)\n", "role": "user" }, { "content": "join_paths", "role": "assistant" } ]
def x(*paths, **kwargs): path = os.path.abspath('.') for next_path in paths: next_path = next_path.lstrip('\\').lstrip('/').strip( ) if not kwargs.get('strict') else next_path path = os.path.abspath(os.path.join(path, next_path)) return path if not kwargs.get('safe') else safe_path(path)
join_here
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*paths, **kwargs):\n path = os.path.abspath('.')\n for next_path in paths:\n next_path = next_path.lstrip('\\\\').lstrip('/').strip(\n ) if not kwargs.get('strict') else next_path\n path = os.path.abspath(os.path.join(path, next_path))\n return path if not kwargs.get('safe') else safe_path(path)\n", "role": "user" }, { "content": "join_here", "role": "assistant" } ]
def x(filename): if not isinstance(filename, str): raise TypeError('filename must be a string') if regex.path.linux.filename.search(filename): return True return False
check_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if not isinstance(filename, str):\n raise TypeError('filename must be a string')\n if regex.path.linux.filename.search(filename):\n return True\n return False\n", "role": "user" }, { "content": "check_filename", "role": "assistant" } ]
def x(filename, replacement='_'): if not isinstance(filename, str): raise TypeError('filename must be a string') if regex.path.linux.filename.search(filename): return filename safe_name = '' for char in filename: safe_name += char if regex.path.linux.filename.search(char ) else replacement return safe_name
safe_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, replacement='_'):\n if not isinstance(filename, str):\n raise TypeError('filename must be a string')\n if regex.path.linux.filename.search(filename):\n return filename\n safe_name = ''\n for char in filename:\n safe_name += char if regex.path.linux.filename.search(char\n ) else replacement\n return safe_name\n", "role": "user" }, { "content": "safe_filename", "role": "assistant" } ]
def x(path, replacement='_'): if not isinstance(path, str): raise TypeError('path must be a string') if os.sep not in path: return safe_filename(path, replacement=replacement) filename = safe_filename(os.path.basename(path)) dirname = os.path.dirname(path) safe_dirname = '' regexp = regex.path.windows.safe if win_based else regex.path.linux.safe if win_based and dirname.find(':\\') == 1 and dirname[0].isalpha(): safe_dirname = dirname[0:3] dirname = dirname[3:] if regexp.search(dirname) and check_filename(filename): return path else: for char in dirname: safe_dirname += char if regexp.search(char) else replacement sanitized_path = os.path.normpath('{path}{sep}{filename}'.format(path= safe_dirname, sep=os.sep if not safe_dirname.endswith(os.sep) else '', filename=filename)) if not filename and path.endswith(os.sep) and not sanitized_path.endswith( os.sep): sanitized_path += os.sep return sanitized_path
safe_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, replacement='_'):\n if not isinstance(path, str):\n raise TypeError('path must be a string')\n if os.sep not in path:\n return safe_filename(path, replacement=replacement)\n filename = safe_filename(os.path.basename(path))\n dirname = os.path.dirname(path)\n safe_dirname = ''\n regexp = regex.path.windows.safe if win_based else regex.path.linux.safe\n if win_based and dirname.find(':\\\\') == 1 and dirname[0].isalpha():\n safe_dirname = dirname[0:3]\n dirname = dirname[3:]\n if regexp.search(dirname) and check_filename(filename):\n return path\n else:\n for char in dirname:\n safe_dirname += char if regexp.search(char) else replacement\n sanitized_path = os.path.normpath('{path}{sep}{filename}'.format(path=\n safe_dirname, sep=os.sep if not safe_dirname.endswith(os.sep) else\n '', filename=filename))\n if not filename and path.endswith(os.sep) and not sanitized_path.endswith(\n os.sep):\n sanitized_path += os.sep\n return sanitized_path\n", "role": "user" }, { "content": "safe_path", "role": "assistant" } ]
def x(self, size): self._pause.value = True self.log.debug('About to change task size to {0}'.format(size)) try: size = int(size) except ValueError: self.log.error('Cannot change task size, non integer size provided') return False if size < 0: self.log.error('Cannot change task size, less than 0 size provided') return False self.max_tasks = size if size < self.max_tasks: diff = self.max_tasks - size self.log.debug('Reducing size offset by {0}'.format(diff)) while True: self._update_tasks() if len(self.free_tasks) >= diff: for i in range(diff): task_id = self.free_tasks.pop(0) del self.current_tasks[task_id] break time.sleep(0.5) if not size: self._reset_and_pause() return True elif size > self.max_tasks: diff = size - self.max_tasks for i in range(diff): task_id = str(uuid.uuid4()) self.current_tasks[task_id] = {} self.free_tasks.append(task_id) self._pause.value = False self.log.debug('Task size changed to {0}'.format(size)) return True
change_task_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size):\n self._pause.value = True\n self.log.debug('About to change task size to {0}'.format(size))\n try:\n size = int(size)\n except ValueError:\n self.log.error('Cannot change task size, non integer size provided')\n return False\n if size < 0:\n self.log.error('Cannot change task size, less than 0 size provided')\n return False\n self.max_tasks = size\n if size < self.max_tasks:\n diff = self.max_tasks - size\n self.log.debug('Reducing size offset by {0}'.format(diff))\n while True:\n self._update_tasks()\n if len(self.free_tasks) >= diff:\n for i in range(diff):\n task_id = self.free_tasks.pop(0)\n del self.current_tasks[task_id]\n break\n time.sleep(0.5)\n if not size:\n self._reset_and_pause()\n return True\n elif size > self.max_tasks:\n diff = size - self.max_tasks\n for i in range(diff):\n task_id = str(uuid.uuid4())\n self.current_tasks[task_id] = {}\n self.free_tasks.append(task_id)\n self._pause.value = False\n self.log.debug('Task size changed to {0}'.format(size))\n return True\n", "role": "user" }, { "content": "change_task_size", "role": "assistant" } ]
def x(self): self._end.value = True if self.background_process: try: self.background_process.terminate() except Exception: pass for task_id, values in self.current_tasks.items(): try: values['proc'].terminate() except Exception: pass
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._end.value = True\n if self.background_process:\n try:\n self.background_process.terminate()\n except Exception:\n pass\n for task_id, values in self.current_tasks.items():\n try:\n values['proc'].terminate()\n except Exception:\n pass\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self): return {'started': True if self.background_process and self. background_process.is_alive() else False, 'paused': self._pause. value, 'stopped': self._end.value, 'tasks': len(self.current_tasks), 'busy_tasks': len(self.busy_tasks), 'free_tasks': len(self.free_tasks)}
get_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'started': True if self.background_process and self.\n background_process.is_alive() else False, 'paused': self._pause.\n value, 'stopped': self._end.value, 'tasks': len(self.current_tasks),\n 'busy_tasks': len(self.busy_tasks), 'free_tasks': len(self.free_tasks)}\n", "role": "user" }, { "content": "get_state", "role": "assistant" } ]
def x(self, stop_at_empty=False): try: while True: self.hook_pre_command() self._check_command_queue() if self.run_until and self.run_until < datetime.datetime.now(): self.log.info('Time limit reached') break if self._end.value: break if self._pause.value: time.sleep(0.5) continue self.hook_post_command() self._update_tasks() task_id = self._free_task() if task_id: try: task = self.task_queue.get(timeout=0.1) except queue.Empty: if stop_at_empty: break self._return_task(task_id) else: self.hook_pre_task() self.log.debug('Starting task on {0}'.format(task_id)) try: self._start_task(task_id, task) except Exception as err: self.log.exception('Could not start task {0} - {1}' .format(task_id, err)) else: self.hook_post_task() finally: self.log.info('Ending main loop')
main_loop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stop_at_empty=False):\n try:\n while True:\n self.hook_pre_command()\n self._check_command_queue()\n if self.run_until and self.run_until < datetime.datetime.now():\n self.log.info('Time limit reached')\n break\n if self._end.value:\n break\n if self._pause.value:\n time.sleep(0.5)\n continue\n self.hook_post_command()\n self._update_tasks()\n task_id = self._free_task()\n if task_id:\n try:\n task = self.task_queue.get(timeout=0.1)\n except queue.Empty:\n if stop_at_empty:\n break\n self._return_task(task_id)\n else:\n self.hook_pre_task()\n self.log.debug('Starting task on {0}'.format(task_id))\n try:\n self._start_task(task_id, task)\n except Exception as err:\n self.log.exception('Could not start task {0} - {1}'\n .format(task_id, err))\n else:\n self.hook_post_task()\n finally:\n self.log.info('Ending main loop')\n", "role": "user" }, { "content": "main_loop", "role": "assistant" } ]
def x(self): if win_based: raise NotImplementedError( 'Please run main_loop, backgrounding not supported on Windows') self.background_process = mp.Process(target=self.main_loop) self.background_process.start()
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if win_based:\n raise NotImplementedError(\n 'Please run main_loop, backgrounding not supported on Windows')\n self.background_process = mp.Process(target=self.main_loop)\n self.background_process.start()\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(command, ignore_stderr=False, raise_on_return=False, timeout=None, encoding='utf-8'): result = run(command, timeout=timeout, shell=True) if raise_on_return: result.check_returncode() print(result.stdout.decode(encoding)) if not ignore_stderr and result.stderr: print(result.stderr.decode(encoding))
cmd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, ignore_stderr=False, raise_on_return=False, timeout=None,\n encoding='utf-8'):\n result = run(command, timeout=timeout, shell=True)\n if raise_on_return:\n result.check_returncode()\n print(result.stdout.decode(encoding))\n if not ignore_stderr and result.stderr:\n print(result.stderr.decode(encoding))\n", "role": "user" }, { "content": "cmd", "role": "assistant" } ]
def x(directory): directory = os.path.expanduser(directory) _saved_paths.insert(0, os.path.abspath(os.getcwd())) os.chdir(directory) return [directory] + _saved_paths
pushd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory):\n directory = os.path.expanduser(directory)\n _saved_paths.insert(0, os.path.abspath(os.getcwd()))\n os.chdir(directory)\n return [directory] + _saved_paths\n", "role": "user" }, { "content": "pushd", "role": "assistant" } ]
def x(): try: directory = _saved_paths.pop(0) except IndexError: return [os.getcwd()] os.chdir(directory) return [directory] + _saved_paths
popd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n directory = _saved_paths.pop(0)\n except IndexError:\n return [os.getcwd()]\n os.chdir(directory)\n return [directory] + _saved_paths\n", "role": "user" }, { "content": "popd", "role": "assistant" } ]
def x(params='', directory='.', printed=True): command = '{0} {1} {2}'.format('ls' if not win_based else 'dir', params, directory) response = run(command, shell=True) response.check_returncode() if printed: print(response.stdout.decode('utf-8')) else: return response.stdout
ls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params='', directory='.', printed=True):\n command = '{0} {1} {2}'.format('ls' if not win_based else 'dir', params,\n directory)\n response = run(command, shell=True)\n response.check_returncode()\n if printed:\n print(response.stdout.decode('utf-8'))\n else:\n return response.stdout\n", "role": "user" }, { "content": "ls", "role": "assistant" } ]
def x(name=None, ext=None, directory='.', match_case=False, disable_glob= False, depth=None): return find_files_list(directory=directory, ext=ext, name=name, match_case=match_case, disable_glob=disable_glob, depth=depth)
find
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name=None, ext=None, directory='.', match_case=False, disable_glob=\n False, depth=None):\n return find_files_list(directory=directory, ext=ext, name=name,\n match_case=match_case, disable_glob=disable_glob, depth=depth)\n", "role": "user" }, { "content": "find", "role": "assistant" } ]
def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'): data = [] with open(file_path, 'rb') as f: for _ in range(lines): try: if python_version >= (2, 7): data.append(next(f).decode(encoding, errors=errors)) else: data.append(next(f).decode(encoding)) except StopIteration: break if printed: print(''.join(data)) else: return data
head
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):\n data = []\n with open(file_path, 'rb') as f:\n for _ in range(lines):\n try:\n if python_version >= (2, 7):\n data.append(next(f).decode(encoding, errors=errors))\n else:\n data.append(next(f).decode(encoding))\n except StopIteration:\n break\n if printed:\n print(''.join(data))\n else:\n return data\n", "role": "user" }, { "content": "head", "role": "assistant" } ]
def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'): data = deque() with open(file_path, 'rb') as f: for line in f: if python_version >= (2, 7): data.append(line.decode(encoding, errors=errors)) else: data.append(line.decode(encoding)) if len(data) > lines: data.popleft() if printed: print(''.join(data)) else: return data
tail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):\n data = deque()\n with open(file_path, 'rb') as f:\n for line in f:\n if python_version >= (2, 7):\n data.append(line.decode(encoding, errors=errors))\n else:\n data.append(line.decode(encoding))\n if len(data) > lines:\n data.popleft()\n if printed:\n print(''.join(data))\n else:\n return data\n", "role": "user" }, { "content": "tail", "role": "assistant" } ]
def x(src, dst, overwrite=False): if not isinstance(src, list): src = [src] dst = os.path.expanduser(dst) dst_folder = os.path.isdir(dst) if len(src) > 1 and not dst_folder: raise OSError('Cannot copy multiple item to same file') for item in src: source = os.path.expanduser(item) destination = dst if not dst_folder else os.path.join(dst, os.path. basename(source)) if not overwrite and os.path.exists(destination): _logger.warning('Not replacing {0} with {1}, overwrite not enabled' .format(destination, source)) continue shutil.copy(source, destination)
cp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src, dst, overwrite=False):\n if not isinstance(src, list):\n src = [src]\n dst = os.path.expanduser(dst)\n dst_folder = os.path.isdir(dst)\n if len(src) > 1 and not dst_folder:\n raise OSError('Cannot copy multiple item to same file')\n for item in src:\n source = os.path.expanduser(item)\n destination = dst if not dst_folder else os.path.join(dst, os.path.\n basename(source))\n if not overwrite and os.path.exists(destination):\n _logger.warning('Not replacing {0} with {1}, overwrite not enabled'\n .format(destination, source))\n continue\n shutil.copy(source, destination)\n", "role": "user" }, { "content": "cp", "role": "assistant" } ]
def x(string, characters=2, trailing='normal'): split_str = [string[i:i + characters] for i in range(0, len(string), characters)] if trailing != 'normal' and len(split_str[-1]) != characters: if trailing.lower() == 'remove': return split_str[:-1] if trailing.lower() == 'combine' and len(split_str) >= 2: return split_str[:-2] + [split_str[-2] + split_str[-1]] if trailing.lower() == 'error': raise IndexError('String of length {0} not divisible by {1} to cut' .format(len(string), characters)) return split_str
cut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, characters=2, trailing='normal'):\n split_str = [string[i:i + characters] for i in range(0, len(string),\n characters)]\n if trailing != 'normal' and len(split_str[-1]) != characters:\n if trailing.lower() == 'remove':\n return split_str[:-1]\n if trailing.lower() == 'combine' and len(split_str) >= 2:\n return split_str[:-2] + [split_str[-2] + split_str[-1]]\n if trailing.lower() == 'error':\n raise IndexError('String of length {0} not divisible by {1} to cut'\n .format(len(string), characters))\n return split_str\n", "role": "user" }, { "content": "cut", "role": "assistant" } ]
def x(integer): if not isinstance(integer, int): raise ValueError('Input integer must be of type int') output = [] while integer > 0: for r, i in sorted(_roman_dict.items(), key=lambda x: x[1], reverse =True): while integer >= i: output.append(r) integer -= i return ''.join(output)
int_to_roman
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(integer):\n if not isinstance(integer, int):\n raise ValueError('Input integer must be of type int')\n output = []\n while integer > 0:\n for r, i in sorted(_roman_dict.items(), key=lambda x: x[1], reverse\n =True):\n while integer >= i:\n output.append(r)\n integer -= i\n return ''.join(output)\n", "role": "user" }, { "content": "int_to_roman", "role": "assistant" } ]
def x(roman_string): roman_string = roman_string.upper().strip() if 'IIII' in roman_string: raise ValueError('Malformed roman string') value = 0 skip_one = False last_number = None for i, letter in enumerate(roman_string): if letter not in _roman_dict: raise ValueError('Malformed roman string') if skip_one: skip_one = False continue if i < len(roman_string) - 1: double_check = letter + roman_string[i + 1] if double_check in _roman_dict: if last_number and _roman_dict[double_check] > last_number: raise ValueError('Malformed roman string') last_number = _roman_dict[double_check] value += _roman_dict[double_check] skip_one = True continue if last_number and _roman_dict[letter] > last_number: raise ValueError('Malformed roman string') last_number = _roman_dict[letter] value += _roman_dict[letter] return value
roman_to_int
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(roman_string):\n roman_string = roman_string.upper().strip()\n if 'IIII' in roman_string:\n raise ValueError('Malformed roman string')\n value = 0\n skip_one = False\n last_number = None\n for i, letter in enumerate(roman_string):\n if letter not in _roman_dict:\n raise ValueError('Malformed roman string')\n if skip_one:\n skip_one = False\n continue\n if i < len(roman_string) - 1:\n double_check = letter + roman_string[i + 1]\n if double_check in _roman_dict:\n if last_number and _roman_dict[double_check] > last_number:\n raise ValueError('Malformed roman string')\n last_number = _roman_dict[double_check]\n value += _roman_dict[double_check]\n skip_one = True\n continue\n if last_number and _roman_dict[letter] > last_number:\n raise ValueError('Malformed roman string')\n last_number = _roman_dict[letter]\n value += _roman_dict[letter]\n return value\n", "role": "user" }, { "content": "roman_to_int", "role": "assistant" } ]
def x(number, european=False): def x(n): return '' if n == 0 else _numbers[n] def x(n): teen = int('{0}{1}'.format(n[0], n[1])) if n[0] == 0: return ones(n[1]) if teen in _numbers: return _numbers[teen] else: ten = _numbers[int('{0}0'.format(n[0]))] one = _numbers[n[1]] return '{0}-{1}'.format(ten, one) def x(n): if n[0] == 0: return tens(n[1:]) else: t = tens(n[1:]) return '{0} hundred {1}'.format(_numbers[n[0]], '' if not t else t) def x(list_of_strings): if len(list_of_strings) > 1: return '{0} '.format('' if len(list_of_strings) == 2 else ',' ).join(list_of_strings) else: return list_of_strings[0] def x(list_of_numbers, final_list): index = 0 group_set = int(len(list_of_numbers) / 3) while group_set != 0: value = hundreds(list_of_numbers[index:index + 3]) if value: final_list.append('{0} {1}'.format(value, _places[group_set ]) if _places[group_set] else value) group_set -= 1 index += 3 number_list = [] decimal_list = [] decimal = '' number = str(number) group_delimiter, point_delimiter = (',', '.') if not european else ('.', ',') if point_delimiter in number: decimal = number.split(point_delimiter)[1] number = number.split(point_delimiter)[0].replace(group_delimiter, '') elif group_delimiter in number: number = number.replace(group_delimiter, '') if not number.isdigit(): raise ValueError('Number is not numeric') if decimal and not decimal.isdigit(): raise ValueError('Decimal is not numeric') if int(number) == 0: number_list.append('zero') r = len(number) % 3 d_r = len(decimal) % 3 number = number.zfill(len(number) + 3 - r if r else 0) f_decimal = decimal.zfill(len(decimal) + 3 - d_r if d_r else 0) d = [int(x) for x in f_decimal] n = [int(x) for x in number] while_loop(n, number_list) if decimal and int(decimal) != 0: while_loop(d, decimal_list) if decimal_list: name = '' if len(decimal) % 3 == 1: name = 'ten' elif len(decimal) % 3 == 2: name = 'hundred' place = int(str(len(decimal) / 3).split('.')[0]) number_list.append('and {0} {1}{2}{3}ths'.format( comma_separated(decimal_list), name, '-' if name and _places[place + 1] else '', _places[place + 1])) return comma_separated(number_list)
int_to_words
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(number, european=False):\n\n def x(n):\n return '' if n == 0 else _numbers[n]\n\n def x(n):\n teen = int('{0}{1}'.format(n[0], n[1]))\n if n[0] == 0:\n return ones(n[1])\n if teen in _numbers:\n return _numbers[teen]\n else:\n ten = _numbers[int('{0}0'.format(n[0]))]\n one = _numbers[n[1]]\n return '{0}-{1}'.format(ten, one)\n\n def x(n):\n if n[0] == 0:\n return tens(n[1:])\n else:\n t = tens(n[1:])\n return '{0} hundred {1}'.format(_numbers[n[0]], '' if not t else t)\n\n def x(list_of_strings):\n if len(list_of_strings) > 1:\n return '{0} '.format('' if len(list_of_strings) == 2 else ','\n ).join(list_of_strings)\n else:\n return list_of_strings[0]\n\n def x(list_of_numbers, final_list):\n index = 0\n group_set = int(len(list_of_numbers) / 3)\n while group_set != 0:\n value = hundreds(list_of_numbers[index:index + 3])\n if value:\n final_list.append('{0} {1}'.format(value, _places[group_set\n ]) if _places[group_set] else value)\n group_set -= 1\n index += 3\n number_list = []\n decimal_list = []\n decimal = ''\n number = str(number)\n group_delimiter, point_delimiter = (',', '.') if not european else ('.',\n ',')\n if point_delimiter in number:\n decimal = number.split(point_delimiter)[1]\n number = number.split(point_delimiter)[0].replace(group_delimiter, '')\n elif group_delimiter in number:\n number = number.replace(group_delimiter, '')\n if not number.isdigit():\n raise ValueError('Number is not numeric')\n if decimal and not decimal.isdigit():\n raise ValueError('Decimal is not numeric')\n if int(number) == 0:\n number_list.append('zero')\n r = len(number) % 3\n d_r = len(decimal) % 3\n number = number.zfill(len(number) + 3 - r if r else 0)\n f_decimal = decimal.zfill(len(decimal) + 3 - d_r if d_r else 0)\n d = [int(x) for x in f_decimal]\n n = [int(x) for x in number]\n while_loop(n, number_list)\n if decimal and int(decimal) != 0:\n while_loop(d, decimal_list)\n if decimal_list:\n name = ''\n if len(decimal) % 3 == 1:\n name = 'ten'\n elif len(decimal) % 3 == 2:\n name = 'hundred'\n place = int(str(len(decimal) / 3).split('.')[0])\n number_list.append('and {0} {1}{2}{3}ths'.format(\n comma_separated(decimal_list), name, '-' if name and\n _places[place + 1] else '', _places[place + 1]))\n return comma_separated(number_list)\n", "role": "user" }, { "content": "int_to_words", "role": "assistant" } ]
def x(): print_info('Filtering OSM file...') start_time = time.time() if check_osmfilter(): params = config.osm_filter_params command = './osmfilter' if platform.system( ) == 'Linux' else 'osmfilter.exe' if platform.system() == 'Linux': filter_command = '%s "%s" %s | pv > "%s"' % (command, config. osm_map_filename, params, config.filtered_osm_filename) else: filter_command = '%s "%s" %s > "%s"' % (command, config. osm_map_filename, params, config.filtered_osm_filename) os.system(filter_command) else: print_info('Osmfilter not available. Exiting.') exit(1) print_info('Filtering finished. (%.2f secs)' % (time.time() - start_time))
filter_osm_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n print_info('Filtering OSM file...')\n start_time = time.time()\n if check_osmfilter():\n params = config.osm_filter_params\n command = './osmfilter' if platform.system(\n ) == 'Linux' else 'osmfilter.exe'\n if platform.system() == 'Linux':\n filter_command = '%s \"%s\" %s | pv > \"%s\"' % (command, config.\n osm_map_filename, params, config.filtered_osm_filename)\n else:\n filter_command = '%s \"%s\" %s > \"%s\"' % (command, config.\n osm_map_filename, params, config.filtered_osm_filename)\n os.system(filter_command)\n else:\n print_info('Osmfilter not available. Exiting.')\n exit(1)\n print_info('Filtering finished. (%.2f secs)' % (time.time() - start_time))\n", "role": "user" }, { "content": "filter_osm_file", "role": "assistant" } ]
def x(): try: jobs_module = settings.RQ_JOBS_MODULE except AttributeError: raise ImproperlyConfigured(_( 'You have to define RQ_JOBS_MODULE in settings.py')) if isinstance(jobs_module, string_types): jobs_modules = jobs_module, elif isinstance(jobs_module, (tuple, list)): jobs_modules = jobs_module else: raise ImproperlyConfigured(_( 'RQ_JOBS_MODULE must be a string or a tuple')) choices = [] for module in jobs_modules: try: tasks = importlib.import_module(module) except ImportError: raise ImproperlyConfigured(_('Can not find module {}').format( module)) module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x )) for x, y in list(tasks.__dict__.items()) if type(y) == FunctionType and hasattr(y, 'delay')] choices.extend(module_choices) choices.sort(key=lambda tup: tup[1]) return choices
task_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n jobs_module = settings.RQ_JOBS_MODULE\n except AttributeError:\n raise ImproperlyConfigured(_(\n 'You have to define RQ_JOBS_MODULE in settings.py'))\n if isinstance(jobs_module, string_types):\n jobs_modules = jobs_module,\n elif isinstance(jobs_module, (tuple, list)):\n jobs_modules = jobs_module\n else:\n raise ImproperlyConfigured(_(\n 'RQ_JOBS_MODULE must be a string or a tuple'))\n choices = []\n for module in jobs_modules:\n try:\n tasks = importlib.import_module(module)\n except ImportError:\n raise ImproperlyConfigured(_('Can not find module {}').format(\n module))\n module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x\n )) for x, y in list(tasks.__dict__.items()) if type(y) ==\n FunctionType and hasattr(y, 'delay')]\n choices.extend(module_choices)\n choices.sort(key=lambda tup: tup[1])\n return choices\n", "role": "user" }, { "content": "task_list", "role": "assistant" } ]
def x(self): if not self.rq_id or not self.rq_origin: return try: return RQJob.fetch(self.rq_id, connection=get_connection(self. rq_origin)) except NoSuchJobError: return
rq_job
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.rq_id or not self.rq_origin:\n return\n try:\n return RQJob.fetch(self.rq_id, connection=get_connection(self.\n rq_origin))\n except NoSuchJobError:\n return\n", "role": "user" }, { "content": "rq_job", "role": "assistant" } ]
def x(self): if self.rq_job: url = reverse('rq_job_detail', kwargs={'job_id': self.rq_id, 'queue_index': queue_index_by_name(self.rq_origin)}) return '<a href="{}">{}</a>'.format(url, self.rq_id)
rq_link
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.rq_job:\n url = reverse('rq_job_detail', kwargs={'job_id': self.rq_id,\n 'queue_index': queue_index_by_name(self.rq_origin)})\n return '<a href=\"{}\">{}</a>'.format(url, self.rq_id)\n", "role": "user" }, { "content": "rq_link", "role": "assistant" } ]
def x(self): task_path = self.task.split('.') module_name = '.'.join(task_path[:-1]) task_name = task_path[-1] module = importlib.import_module(module_name) return getattr(module, task_name)
rq_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n task_path = self.task.split('.')\n module_name = '.'.join(task_path[:-1])\n task_name = task_path[-1]\n module = importlib.import_module(module_name)\n return getattr(module, task_name)\n", "role": "user" }, { "content": "rq_task", "role": "assistant" } ]
def x(job): modules = settings.RQ_JOBS_MODULE if not type(modules) == tuple: modules = [modules] for module in modules: try: module_match = importlib.import_module(module) if hasattr(module_match, job.task): job.task = '{}.{}'.format(module, job.task) break except ImportError: continue return job
fix_module
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(job):\n modules = settings.RQ_JOBS_MODULE\n if not type(modules) == tuple:\n modules = [modules]\n for module in modules:\n try:\n module_match = importlib.import_module(module)\n if hasattr(module_match, job.task):\n job.task = '{}.{}'.format(module, job.task)\n break\n except ImportError:\n continue\n return job\n", "role": "user" }, { "content": "fix_module", "role": "assistant" } ]
async def drop_model_tables(models, **drop_table_kwargs): """Drop tables for all given models (in the right order).""" for m in reversed(sort_models_topologically(models)): await m.drop_table(**drop_table_kwargs)
drop_model_tables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def drop_model_tables(models, **drop_table_kwargs):\n \"\"\"Drop tables for all given models (in the right order).\"\"\"\n for m in reversed(sort_models_topologically(models)):\n await m.drop_table(**drop_table_kwargs)\n", "role": "user" }, { "content": "drop_model_tables", "role": "assistant" } ]
async def model_to_dict(model, recurse=True, backrefs=False, only=None, exclude=None, seen=None, extra_attrs=None, fields_from_query=None, max_depth=None): """ Convert a model instance (and any related objects) to a dictionary. :param bool recurse: Whether foreign-keys should be recursed. :param bool backrefs: Whether lists of related objects should be recursed. :param only: A list (or set) of field instances indicating which fields should be included. :param exclude: A list (or set) of field instances that should be excluded from the dictionary. :param list extra_attrs: Names of model instance attributes or methods that should be included. :param SelectQuery fields_from_query: Query that was source of model. Take fields explicitly selected by the query and serialize them. :param int max_depth: Maximum depth to recurse, value <= 0 means no max. """ max_depth = -1 if max_depth is None else max_depth if max_depth == 0: recurse = False only = _clone_set(only) extra_attrs = _clone_set(extra_attrs) if fields_from_query is not None: for item in fields_from_query._select: if isinstance(item, Field): only.add(item) elif isinstance(item, Node) and item._alias: extra_attrs.add(item._alias) data = {} exclude = _clone_set(exclude) seen = _clone_set(seen) exclude |= seen model_class = type(model) for field in model._meta.declared_fields: if field in exclude or only and field not in only: continue field_data = model._data.get(field.name) if isinstance(field, ForeignKeyField) and recurse: if field_data: seen.add(field) rel_obj = getattr(model, field.name) if iscoroutine(rel_obj): rel_obj = await rel_obj field_data = await model_to_dict(rel_obj, recurse=recurse, backrefs=backrefs, only=only, exclude=exclude, seen= seen, max_depth=max_depth - 1) else: field_data = None data[field.name] = field_data if extra_attrs: for attr_name in extra_attrs: attr = getattr(model, attr_name) if callable(attr): data[attr_name] = attr() else: data[attr_name] = attr if backrefs and recurse: for related_name, foreign_key in model._meta.reverse_rel.items(): descriptor = getattr(model_class, related_name) if descriptor in exclude or foreign_key in exclude: continue if only and descriptor not in only and foreign_key not in only: continue accum = [] exclude.add(foreign_key) related_query = getattr(model, related_name + '_prefetch', getattr(model, related_name)) async for rel_obj in related_query: accum.append(await model_to_dict(rel_obj, recurse=recurse, backrefs=backrefs, only=only, exclude=exclude, max_depth=max_depth - 1)) data[related_name] = accum return data
model_to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def model_to_dict(model, recurse=True, backrefs=False, only=None,\n exclude=None, seen=None, extra_attrs=None, fields_from_query=None,\n max_depth=None):\n \"\"\"\n Convert a model instance (and any related objects) to a dictionary.\n :param bool recurse: Whether foreign-keys should be recursed.\n :param bool backrefs: Whether lists of related objects should be recursed.\n :param only: A list (or set) of field instances indicating which fields\n should be included.\n :param exclude: A list (or set) of field instances that should be\n excluded from the dictionary.\n :param list extra_attrs: Names of model instance attributes or methods\n that should be included.\n :param SelectQuery fields_from_query: Query that was source of model. Take\n fields explicitly selected by the query and serialize them.\n :param int max_depth: Maximum depth to recurse, value <= 0 means no max.\n \"\"\"\n max_depth = -1 if max_depth is None else max_depth\n if max_depth == 0:\n recurse = False\n only = _clone_set(only)\n extra_attrs = _clone_set(extra_attrs)\n if fields_from_query is not None:\n for item in fields_from_query._select:\n if isinstance(item, Field):\n only.add(item)\n elif isinstance(item, Node) and item._alias:\n extra_attrs.add(item._alias)\n data = {}\n exclude = _clone_set(exclude)\n seen = _clone_set(seen)\n exclude |= seen\n model_class = type(model)\n for field in model._meta.declared_fields:\n if field in exclude or only and field not in only:\n continue\n field_data = model._data.get(field.name)\n if isinstance(field, ForeignKeyField) and recurse:\n if field_data:\n seen.add(field)\n rel_obj = getattr(model, field.name)\n if iscoroutine(rel_obj):\n rel_obj = await rel_obj\n field_data = await model_to_dict(rel_obj, recurse=recurse,\n backrefs=backrefs, only=only, exclude=exclude, seen=\n seen, max_depth=max_depth - 1)\n else:\n field_data = None\n data[field.name] = field_data\n if extra_attrs:\n for attr_name in extra_attrs:\n attr = getattr(model, attr_name)\n if callable(attr):\n data[attr_name] = attr()\n else:\n data[attr_name] = attr\n if backrefs and recurse:\n for related_name, foreign_key in model._meta.reverse_rel.items():\n descriptor = getattr(model_class, related_name)\n if descriptor in exclude or foreign_key in exclude:\n continue\n if only and descriptor not in only and foreign_key not in only:\n continue\n accum = []\n exclude.add(foreign_key)\n related_query = getattr(model, related_name + '_prefetch',\n getattr(model, related_name))\n async for rel_obj in related_query:\n accum.append(await model_to_dict(rel_obj, recurse=recurse,\n backrefs=backrefs, only=only, exclude=exclude,\n max_depth=max_depth - 1))\n data[related_name] = accum\n return data\n", "role": "user" }, { "content": "model_to_dict", "role": "assistant" } ]
async def extract_rows(self, file_or_name, **reader_kwargs): """ Extract `self.sample_size` rows from the CSV file and analyze their data-types. :param str file_or_name: A string filename or a file handle. :param reader_kwargs: Arbitrary parameters to pass to the CSV reader. :returns: A 2-tuple containing a list of headers and list of rows read from the CSV file. """ rows = [] rows_to_read = self.sample_size async with self.get_reader(file_or_name, **reader_kwargs) as reader: if self.has_header: rows_to_read += 1 for i in range(self.sample_size): try: row = await reader.__anext__() except AttributeError as te: row = next(reader) except: raise rows.append(row) if self.has_header: header, rows = rows[0], rows[1:] else: header = [('field_%d' % i) for i in range(len(rows[0]))] return header, rows
extract_rows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "async def extract_rows(self, file_or_name, **reader_kwargs):\n \"\"\"\n Extract `self.sample_size` rows from the CSV file and analyze their\n data-types.\n :param str file_or_name: A string filename or a file handle.\n :param reader_kwargs: Arbitrary parameters to pass to the CSV reader.\n :returns: A 2-tuple containing a list of headers and list of rows\n read from the CSV file.\n \"\"\"\n rows = []\n rows_to_read = self.sample_size\n async with self.get_reader(file_or_name, **reader_kwargs) as reader:\n if self.has_header:\n rows_to_read += 1\n for i in range(self.sample_size):\n try:\n row = await reader.__anext__()\n except AttributeError as te:\n row = next(reader)\n except:\n raise\n rows.append(row)\n if self.has_header:\n header, rows = rows[0], rows[1:]\n else:\n header = [('field_%d' % i) for i in range(len(rows[0]))]\n return header, rows\n", "role": "user" }, { "content": "extract_rows", "role": "assistant" } ]
def x(self): return [self.is_date, self.is_datetime, self.is_integer, self.is_float, self.default]
get_checks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [self.is_date, self.is_datetime, self.is_integer, self.is_float,\n self.default]\n", "role": "user" }, { "content": "get_checks", "role": "assistant" } ]
def x(self, rows): transposed = zip(*rows) checks = self.get_checks() column_types = [] for i, column in enumerate(transposed): col_vals = [val for val in column if val != ''] for check in checks: results = set(check(val) for val in col_vals) if all(results): column_types.append(check.field()) break return column_types
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rows):\n transposed = zip(*rows)\n checks = self.get_checks()\n column_types = []\n for i, column in enumerate(transposed):\n col_vals = [val for val in column if val != '']\n for check in checks:\n results = set(check(val) for val in col_vals)\n if all(results):\n column_types.append(check.field())\n break\n return column_types\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(self, text): if text is None: return '' text = re.sub(ILLEGAL_CHARACTERS_RE, '', text) if '<' in text or '&lt' in text: text = clean(text, tags=self.tags, strip=self.strip) return unescape(text)
clean_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n if text is None:\n return ''\n text = re.sub(ILLEGAL_CHARACTERS_RE, '', text)\n if '<' in text or '&lt' in text:\n text = clean(text, tags=self.tags, strip=self.strip)\n return unescape(text)\n", "role": "user" }, { "content": "clean_text", "role": "assistant" } ]
def x(self, category=None, image=None, feature=None): filename = None if not category is None: filename = join(self.impath, str(category)) if not image is None: assert not category is None, 'The category has to be given if the image is given' filename = join(filename, '%s_%s.png' % (str(category), str(image))) if not feature is None: assert category != None and image != None, 'If a feature name is given the category and image also have to be given.' filename = join(self.ftrpath, str(category), feature, '%s_%s.mat' % (str(category), str(image))) return filename
path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, category=None, image=None, feature=None):\n filename = None\n if not category is None:\n filename = join(self.impath, str(category))\n if not image is None:\n assert not category is None, 'The category has to be given if the image is given'\n filename = join(filename, '%s_%s.png' % (str(category), str(image)))\n if not feature is None:\n assert category != None and image != None, 'If a feature name is given the category and image also have to be given.'\n filename = join(self.ftrpath, str(category), feature, '%s_%s.mat' %\n (str(category), str(image)))\n return filename\n", "role": "user" }, { "content": "path", "role": "assistant" } ]
def x(self, cat, img): filename = self.path(cat, img) data = [] if filename.endswith('mat'): data = loadmat(filename)['output'] else: data = imread(filename) if self.size is not None: return imresize(data, self.size) else: return data
get_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cat, img):\n filename = self.path(cat, img)\n data = []\n if filename.endswith('mat'):\n data = loadmat(filename)['output']\n else:\n data = imread(filename)\n if self.size is not None:\n return imresize(data, self.size)\n else:\n return data\n", "role": "user" }, { "content": "get_image", "role": "assistant" } ]
def x(self, cat, img, feature): filename = self.path(cat, img, feature) data = loadmat(filename) name = [k for k in list(data.keys()) if not k.startswith('__')] if self.size is not None: return imresize(data[name.pop()], self.size) return data[name.pop()]
get_feature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cat, img, feature):\n filename = self.path(cat, img, feature)\n data = loadmat(filename)\n name = [k for k in list(data.keys()) if not k.startswith('__')]\n if self.size is not None:\n return imresize(data[name.pop()], self.size)\n return data[name.pop()]\n", "role": "user" }, { "content": "get_feature", "role": "assistant" } ]
def x(self, cat, img, data): filename = self.path(cat, img) mkdir(filename) if type(data) == np.ndarray: data = Image.fromarray(data).convert('RGB') data.save(filename)
save_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cat, img, data):\n filename = self.path(cat, img)\n mkdir(filename)\n if type(data) == np.ndarray:\n data = Image.fromarray(data).convert('RGB')\n data.save(filename)\n", "role": "user" }, { "content": "save_image", "role": "assistant" } ]
def x(self, cat, img, feature, data): filename = self.path(cat, img, feature) mkdir(filename) savemat(filename, {'output': data})
save_feature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cat, img, feature, data):\n filename = self.path(cat, img, feature)\n mkdir(filename)\n savemat(filename, {'output': data})\n", "role": "user" }, { "content": "save_feature", "role": "assistant" } ]
def x(dm, field_name, boundary_char=None, parameter_name=None): old_data = dm.field(field_name) if isinstance(old_data[0], str) or isinstance(old_data[0], str): new_data, common = factorise_strings(old_data, boundary_char) new_data = array(new_data) else: raise NotImplementedError( 'factorising of fields not implemented for anything but string/unicode objects' ) if len(common) > 0: dm.__dict__[field_name] = new_data if parameter_name is None: parameter_name = field_name + '_common' dm.add_parameter(parameter_name, common)
factorise_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dm, field_name, boundary_char=None, parameter_name=None):\n old_data = dm.field(field_name)\n if isinstance(old_data[0], str) or isinstance(old_data[0], str):\n new_data, common = factorise_strings(old_data, boundary_char)\n new_data = array(new_data)\n else:\n raise NotImplementedError(\n 'factorising of fields not implemented for anything but string/unicode objects'\n )\n if len(common) > 0:\n dm.__dict__[field_name] = new_data\n if parameter_name is None:\n parameter_name = field_name + '_common'\n dm.add_parameter(parameter_name, common)\n", "role": "user" }, { "content": "factorise_field", "role": "assistant" } ]
def x(vec, nr_samples, with_replacement=False): if not with_replacement: return np.random.permutation(vec)[0:nr_samples] else: return np.asarray(vec)[np.random.randint(0, len(vec), nr_samples)]
randsample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vec, nr_samples, with_replacement=False):\n if not with_replacement:\n return np.random.permutation(vec)[0:nr_samples]\n else:\n return np.asarray(vec)[np.random.randint(0, len(vec), nr_samples)]\n", "role": "user" }, { "content": "randsample", "role": "assistant" } ]
def x(prediction, image_size): resize_factor_x = prediction.shape[1] / float(image_size[1]) resize_factor_y = prediction.shape[0] / float(image_size[0]) if abs(resize_factor_x - resize_factor_y) > 1.0 / image_size[1]: raise RuntimeError( """The aspect ratio of the fixations does not match with the prediction: %f vs. %f""" % (resize_factor_y, resize_factor_x)) return resize_factor_y, resize_factor_x
calc_resize_factor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, image_size):\n resize_factor_x = prediction.shape[1] / float(image_size[1])\n resize_factor_y = prediction.shape[0] / float(image_size[0])\n if abs(resize_factor_x - resize_factor_y) > 1.0 / image_size[1]:\n raise RuntimeError(\n \"\"\"The aspect ratio of the fixations does not\n match with the prediction: %f vs. %f\"\"\"\n % (resize_factor_y, resize_factor_x))\n return resize_factor_y, resize_factor_x\n", "role": "user" }, { "content": "calc_resize_factor", "role": "assistant" } ]
def x(data, fill=True): if any([(type(k) != int) for k in list(data.keys())]): raise RuntimeError('Dictionary cannot be converted to matrix, ' + 'not all keys are ints') base_shape = np.array(list(data.values())[0]).shape result_shape = list(base_shape) if fill: result_shape.insert(0, max(data.keys()) + 1) else: result_shape.insert(0, len(list(data.keys()))) result = np.empty(result_shape) + np.nan for i, (k, v) in enumerate(data.items()): v = np.array(v) if v.shape != base_shape: raise RuntimeError('Dictionary cannot be converted to matrix, ' + 'not all values have same dimensions') result[fill and [k][0] or [i][0]] = v return result
dict_2_mat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, fill=True):\n if any([(type(k) != int) for k in list(data.keys())]):\n raise RuntimeError('Dictionary cannot be converted to matrix, ' +\n 'not all keys are ints')\n base_shape = np.array(list(data.values())[0]).shape\n result_shape = list(base_shape)\n if fill:\n result_shape.insert(0, max(data.keys()) + 1)\n else:\n result_shape.insert(0, len(list(data.keys())))\n result = np.empty(result_shape) + np.nan\n for i, (k, v) in enumerate(data.items()):\n v = np.array(v)\n if v.shape != base_shape:\n raise RuntimeError('Dictionary cannot be converted to matrix, ' +\n 'not all values have same dimensions')\n result[fill and [k][0] or [i][0]] = v\n return result\n", "role": "user" }, { "content": "dict_2_mat", "role": "assistant" } ]
def x(data, function): return dict((k, function(v)) for k, v in list(data.items()))
dict_fun
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, function):\n return dict((k, function(v)) for k, v in list(data.items()))\n", "role": "user" }, { "content": "dict_fun", "role": "assistant" } ]
def x(string, max_len=20, snip_string='...'): if len(string) <= max_len: new_string = string else: visible_len = max_len - len(snip_string) start_len = visible_len // 2 end_len = visible_len - start_len new_string = string[0:start_len] + snip_string + string[-end_len:] return new_string
snip_string_middle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, max_len=20, snip_string='...'):\n if len(string) <= max_len:\n new_string = string\n else:\n visible_len = max_len - len(snip_string)\n start_len = visible_len // 2\n end_len = visible_len - start_len\n new_string = string[0:start_len] + snip_string + string[-end_len:]\n return new_string\n", "role": "user" }, { "content": "snip_string_middle", "role": "assistant" } ]
def x(string, max_len=20, snip_string='...', snip_point=0.5): if len(string) <= max_len: new_string = string else: visible_len = max_len - len(snip_string) start_len = int(visible_len * snip_point) end_len = visible_len - start_len new_string = string[0:start_len] + snip_string if end_len > 0: new_string += string[-end_len:] return new_string
snip_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, max_len=20, snip_string='...', snip_point=0.5):\n if len(string) <= max_len:\n new_string = string\n else:\n visible_len = max_len - len(snip_string)\n start_len = int(visible_len * snip_point)\n end_len = visible_len - start_len\n new_string = string[0:start_len] + snip_string\n if end_len > 0:\n new_string += string[-end_len:]\n return new_string\n", "role": "user" }, { "content": "snip_string", "role": "assistant" } ]
def x(string_list, boundary_char=None): common = '' if len(string_list) > 1: shortestLen = min([len(el) for el in string_list]) for idx in range(shortestLen): chars = [s[idx] for s in string_list] if chars.count(chars[0]) != len(chars): break common += chars[0] if boundary_char is not None: try: end_idx = common.rindex(boundary_char) common = common[0:end_idx + 1] except ValueError: common = '' return common
find_common_beginning
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string_list, boundary_char=None):\n common = ''\n if len(string_list) > 1:\n shortestLen = min([len(el) for el in string_list])\n for idx in range(shortestLen):\n chars = [s[idx] for s in string_list]\n if chars.count(chars[0]) != len(chars):\n break\n common += chars[0]\n if boundary_char is not None:\n try:\n end_idx = common.rindex(boundary_char)\n common = common[0:end_idx + 1]\n except ValueError:\n common = ''\n return common\n", "role": "user" }, { "content": "find_common_beginning", "role": "assistant" } ]
def x(string_list, boundary_char=None): cmn = find_common_beginning(string_list, boundary_char) new_list = [el[len(cmn):] for el in string_list] return new_list, cmn
factorise_strings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string_list, boundary_char=None):\n cmn = find_common_beginning(string_list, boundary_char)\n new_list = [el[len(cmn):] for el in string_list]\n return new_list, cmn\n", "role": "user" }, { "content": "factorise_strings", "role": "assistant" } ]
def x(path, variable='Datamat'): f = h5py.File(path, 'r') try: dm = fromhdf5(f[variable]) finally: f.close() return dm
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, variable='Datamat'):\n f = h5py.File(path, 'r')\n try:\n dm = fromhdf5(f[variable])\n finally:\n f.close()\n return dm\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(fields, parameters, categories=None): fm = Datamat(categories=categories) fm._fields = list(fields.keys()) for field, value in list(fields.items()): try: fm.__dict__[field] = np.asarray(value) except ValueError: fm.__dict__[field] = np.asarray(value, dtype=np.object) fm._parameters = parameters for field, value in list(parameters.items()): fm.__dict__[field] = value fm._num_fix = len(fm.__dict__[list(fields.keys())[0]]) return fm
VectorFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fields, parameters, categories=None):\n fm = Datamat(categories=categories)\n fm._fields = list(fields.keys())\n for field, value in list(fields.items()):\n try:\n fm.__dict__[field] = np.asarray(value)\n except ValueError:\n fm.__dict__[field] = np.asarray(value, dtype=np.object)\n fm._parameters = parameters\n for field, value in list(parameters.items()):\n fm.__dict__[field] = value\n fm._num_fix = len(fm.__dict__[list(fields.keys())[0]])\n return fm\n", "role": "user" }, { "content": "VectorFactory", "role": "assistant" } ]
def x(self, index): return Datamat(categories=self._categories, datamat=self, index=index)
filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n return Datamat(categories=self._categories, datamat=self, index=index)\n", "role": "user" }, { "content": "filter", "role": "assistant" } ]
def x(self): return self.filter(np.ones(self._num_fix).astype(bool))
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.filter(np.ones(self._num_fix).astype(bool))\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self, path): f = h5py.File(path, 'w') try: fm_group = f.create_group('Datamat') for field in self.fieldnames(): try: fm_group.create_dataset(field, data=self.__dict__[field]) except (TypeError,) as e: sub_group = fm_group.create_group(field) for i, d in enumerate(self.__dict__[field]): index_group = sub_group.create_group(str(i)) print((field, d)) for key, value in list(d.items()): index_group.create_dataset(key, data=value) for param in self.parameters(): fm_group.attrs[param] = self.__dict__[param] finally: f.close()
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path):\n f = h5py.File(path, 'w')\n try:\n fm_group = f.create_group('Datamat')\n for field in self.fieldnames():\n try:\n fm_group.create_dataset(field, data=self.__dict__[field])\n except (TypeError,) as e:\n sub_group = fm_group.create_group(field)\n for i, d in enumerate(self.__dict__[field]):\n index_group = sub_group.create_group(str(i))\n print((field, d))\n for key, value in list(d.items()):\n index_group.create_dataset(key, data=value)\n for param in self.parameters():\n fm_group.attrs[param] = self.__dict__[param]\n finally:\n f.close()\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, key, value): self.__dict__[key] = value self._parameters[key] = value
set_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, value):\n self.__dict__[key] = value\n self._parameters[key] = value\n", "role": "user" }, { "content": "set_param", "role": "assistant" } ]
def x(self, field): for value in np.unique(self.__dict__[field]): yield self.filter(self.__dict__[field] == value)
by_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field):\n for value in np.unique(self.__dict__[field]):\n yield self.filter(self.__dict__[field] == value)\n", "role": "user" }, { "content": "by_field", "role": "assistant" } ]
def x(self): for value in np.unique(self.category): cat_fm = self.filter(self.category == value) if self._categories: yield cat_fm, self._categories[value] else: yield cat_fm, None
by_cat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for value in np.unique(self.category):\n cat_fm = self.filter(self.category == value)\n if self._categories:\n yield cat_fm, self._categories[value]\n else:\n yield cat_fm, None\n", "role": "user" }, { "content": "by_cat", "role": "assistant" } ]
def x(self): for value in np.unique(self.filenumber): file_fm = self.filter(self.filenumber == value) if self._categories: yield file_fm, self._categories[self.category[0]][value] else: yield file_fm, None
by_filenumber
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for value in np.unique(self.filenumber):\n file_fm = self.filter(self.filenumber == value)\n if self._categories:\n yield file_fm, self._categories[self.category[0]][value]\n else:\n yield file_fm, None\n", "role": "user" }, { "content": "by_filenumber", "role": "assistant" } ]
def x(self, name, data): if name in self._fields: raise ValueError if not len(data) == self._num_fix: raise ValueError self._fields.append(name) self.__dict__[name] = data
add_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, data):\n if name in self._fields:\n raise ValueError\n if not len(data) == self._num_fix:\n raise ValueError\n self._fields.append(name)\n self.__dict__[name] = data\n", "role": "user" }, { "content": "add_field", "role": "assistant" } ]
def x(self, name, like_array): new_shape = list(like_array.shape) new_shape[0] = len(self) new_data = ma.empty(new_shape, like_array.dtype) new_data.mask = True self.add_field(name, new_data)
add_field_like
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, like_array):\n new_shape = list(like_array.shape)\n new_shape[0] = len(self)\n new_data = ma.empty(new_shape, like_array.dtype)\n new_data.mask = True\n self.add_field(name, new_data)\n", "role": "user" }, { "content": "add_field_like", "role": "assistant" } ]
def x(self, src_dm, data_field, key_field, take_first=True): if key_field not in self._fields or key_field not in src_dm._fields: raise AttributeError('key field (%s) must exist in both Datamats' % key_field) if data_field not in src_dm._fields: raise AttributeError('data field (%s) must exist in source Datamat' % data_field) if data_field in self._fields: raise AttributeError( 'data field (%s) already exists in target Datamat' % data_field) data_to_copy = dict([(x.field(key_field)[0], x.field(data_field)) for x in src_dm.by_field(key_field)]) data_element = list(data_to_copy.values())[0] new_shape = [len(self)] + list(data_element.shape) new_data = ma.empty(new_shape, data_element.dtype) new_data.mask = True if np.issubdtype(new_data.dtype, np.float): new_data.fill(np.NaN) for key, val in list(data_to_copy.items()): if take_first: new_data[self.field(key_field) == key] = val[0] else: new_data[self.field(key_field) == key] = val self.add_field(data_field, new_data)
annotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, src_dm, data_field, key_field, take_first=True):\n if key_field not in self._fields or key_field not in src_dm._fields:\n raise AttributeError('key field (%s) must exist in both Datamats' %\n key_field)\n if data_field not in src_dm._fields:\n raise AttributeError('data field (%s) must exist in source Datamat' %\n data_field)\n if data_field in self._fields:\n raise AttributeError(\n 'data field (%s) already exists in target Datamat' % data_field)\n data_to_copy = dict([(x.field(key_field)[0], x.field(data_field)) for x in\n src_dm.by_field(key_field)])\n data_element = list(data_to_copy.values())[0]\n new_shape = [len(self)] + list(data_element.shape)\n new_data = ma.empty(new_shape, data_element.dtype)\n new_data.mask = True\n if np.issubdtype(new_data.dtype, np.float):\n new_data.fill(np.NaN)\n for key, val in list(data_to_copy.items()):\n if take_first:\n new_data[self.field(key_field) == key] = val[0]\n else:\n new_data[self.field(key_field) == key] = val\n self.add_field(data_field, new_data)\n", "role": "user" }, { "content": "annotate", "role": "assistant" } ]
def x(self, name): if not name in self._fields: raise ValueError self._fields.remove(name) del self.__dict__[name]
rm_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if not name in self._fields:\n raise ValueError\n self._fields.remove(name)\n del self.__dict__[name]\n", "role": "user" }, { "content": "rm_field", "role": "assistant" } ]
def x(self, name, value): if name in self._parameters: raise ValueError("'%s' is already a parameter" % name) elif name in self.__dict__: raise ValueError("'%s' conflicts with the Datamat name-space" % name) self.__dict__[name] = value self._parameters[name] = self.__dict__[name]
add_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, value):\n if name in self._parameters:\n raise ValueError(\"'%s' is already a parameter\" % name)\n elif name in self.__dict__:\n raise ValueError(\"'%s' conflicts with the Datamat name-space\" % name)\n self.__dict__[name] = value\n self._parameters[name] = self.__dict__[name]\n", "role": "user" }, { "content": "add_parameter", "role": "assistant" } ]
def x(self, name): if name not in self._parameters: raise ValueError("no '%s' parameter found" % name) del self._parameters[name] del self.__dict__[name]
rm_parameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if name not in self._parameters:\n raise ValueError(\"no '%s' parameter found\" % name)\n del self._parameters[name]\n del self.__dict__[name]\n", "role": "user" }, { "content": "rm_parameter", "role": "assistant" } ]
def x(self, name): if name not in self._parameters: raise ValueError("no '%s' parameter found" % name) if self._fields.count(name) > 0: raise ValueError("field with name '%s' already exists" % name) data = np.array([self._parameters[name]] * self._num_fix) self.rm_parameter(name) self.add_field(name, data)
parameter_to_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if name not in self._parameters:\n raise ValueError(\"no '%s' parameter found\" % name)\n if self._fields.count(name) > 0:\n raise ValueError(\"field with name '%s' already exists\" % name)\n data = np.array([self._parameters[name]] * self._num_fix)\n self.rm_parameter(name)\n self.add_field(name, data)\n", "role": "user" }, { "content": "parameter_to_field", "role": "assistant" } ]
def x(self, fm_new, minimal_subset=True): """ for (nm, val) in fm_new._parameters.items(): if self._parameters.has_key(nm): if (val != self._parameters[nm]): self.parameter_to_field(nm) fm_new.parameter_to_field(nm) else: fm_new.parameter_to_field(nm) """ orig_fields = self._fields[:] for field in orig_fields: if not field in fm_new._fields: if minimal_subset: self.rm_field(field) else: warnings.warn( 'This option is deprecated. Clean and Filter your data before it is joined.' , DeprecationWarning) fm_new.add_field_like(field, self.field(field)) orig_fields = fm_new._fields[:] for field in orig_fields: if not field in self._fields: if minimal_subset: fm_new.rm_field(field) else: warnings.warn( 'This option is deprecated. Clean and Filter your data before it is joined.' , DeprecationWarning) self.add_field_like(field, fm_new.field(field)) if 'SUBJECTINDEX' in self._fields[:]: if fm_new.SUBJECTINDEX[0] in self.SUBJECTINDEX: fm_new.SUBJECTINDEX[:] = self.SUBJECTINDEX.max() + 1 for field in self._fields: self.__dict__[field] = ma.hstack((self.__dict__[field], fm_new. __dict__[field])) self._num_fix += fm_new._num_fix
join
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fm_new, minimal_subset=True):\n \"\"\"\n for (nm, val) in fm_new._parameters.items():\n if self._parameters.has_key(nm):\n if (val != self._parameters[nm]):\n self.parameter_to_field(nm)\n fm_new.parameter_to_field(nm)\n else:\n fm_new.parameter_to_field(nm)\n \"\"\"\n orig_fields = self._fields[:]\n for field in orig_fields:\n if not field in fm_new._fields:\n if minimal_subset:\n self.rm_field(field)\n else:\n warnings.warn(\n 'This option is deprecated. Clean and Filter your data before it is joined.'\n , DeprecationWarning)\n fm_new.add_field_like(field, self.field(field))\n orig_fields = fm_new._fields[:]\n for field in orig_fields:\n if not field in self._fields:\n if minimal_subset:\n fm_new.rm_field(field)\n else:\n warnings.warn(\n 'This option is deprecated. Clean and Filter your data before it is joined.'\n , DeprecationWarning)\n self.add_field_like(field, fm_new.field(field))\n if 'SUBJECTINDEX' in self._fields[:]:\n if fm_new.SUBJECTINDEX[0] in self.SUBJECTINDEX:\n fm_new.SUBJECTINDEX[:] = self.SUBJECTINDEX.max() + 1\n for field in self._fields:\n self.__dict__[field] = ma.hstack((self.__dict__[field], fm_new.\n __dict__[field]))\n self._num_fix += fm_new._num_fix\n", "role": "user" }, { "content": "join", "role": "assistant" } ]
def x(ad, ld, fm=None, collapse=True, fit=spline_base.fit2d): if fm: ad, ld = anglendiff(fm, roll=2) ad, ld = ad[0], ld[0] ld = ld[~np.isnan(ld)] ad = reshift(ad[~np.isnan(ad)]) if collapse: e_y = np.linspace(-36.5, 36.5, 74) e_x = np.linspace(0, 180, 181) H = makeHist(abs(ad), ld, fit=fit, bins=[e_y, e_x]) H = H / H.sum() return H else: e_x = np.linspace(-180, 180, 361) e_y = np.linspace(-36.5, 36.5, 74) return makeHist(ad, ld, fit=fit, bins=[e_y, e_x])
makeAngLenHist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ad, ld, fm=None, collapse=True, fit=spline_base.fit2d):\n if fm:\n ad, ld = anglendiff(fm, roll=2)\n ad, ld = ad[0], ld[0]\n ld = ld[~np.isnan(ld)]\n ad = reshift(ad[~np.isnan(ad)])\n if collapse:\n e_y = np.linspace(-36.5, 36.5, 74)\n e_x = np.linspace(0, 180, 181)\n H = makeHist(abs(ad), ld, fit=fit, bins=[e_y, e_x])\n H = H / H.sum()\n return H\n else:\n e_x = np.linspace(-180, 180, 361)\n e_y = np.linspace(-36.5, 36.5, 74)\n return makeHist(ad, ld, fit=fit, bins=[e_y, e_x])\n", "role": "user" }, { "content": "makeAngLenHist", "role": "assistant" } ]
def x(x_val, y_val, fit=spline_base.fit2d, bins=[np.linspace(-36.5, 36.5, 74), np.linspace(-180, 180, 361)]): y_val = y_val[~np.isnan(y_val)] x_val = x_val[~np.isnan(x_val)] samples = list(zip(y_val, x_val)) K, xedges, yedges = np.histogram2d(y_val, x_val, bins=bins) if fit is None: return K / K.sum() elif hasattr(fit, '__call__'): H = fit(np.array(samples), bins[0], bins[1], p_est=K)[0] return H / H.sum() else: raise TypeError('Not a valid argument, insert spline function or None')
makeHist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x_val, y_val, fit=spline_base.fit2d, bins=[np.linspace(-36.5, 36.5, \n 74), np.linspace(-180, 180, 361)]):\n y_val = y_val[~np.isnan(y_val)]\n x_val = x_val[~np.isnan(x_val)]\n samples = list(zip(y_val, x_val))\n K, xedges, yedges = np.histogram2d(y_val, x_val, bins=bins)\n if fit is None:\n return K / K.sum()\n elif hasattr(fit, '__call__'):\n H = fit(np.array(samples), bins[0], bins[1], p_est=K)[0]\n return H / H.sum()\n else:\n raise TypeError('Not a valid argument, insert spline function or None')\n", "role": "user" }, { "content": "makeHist", "role": "assistant" } ]
def x(fm): ang, leng, ad, ld = anglendiff(fm, return_abs=True) y_arg = leng[0][np.roll(fm.fix == min(fm.fix), 1)] / fm.pixels_per_degree x_arg = reshift(ang[0][np.roll(fm.fix == min(fm.fix), 1)]) bins = [list(range(int(ceil(np.nanmax(y_arg))) + 1)), np.linspace(-180, 180, 361)] return makeHist(x_arg, y_arg, fit=None, bins=bins)
firstSacDist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm):\n ang, leng, ad, ld = anglendiff(fm, return_abs=True)\n y_arg = leng[0][np.roll(fm.fix == min(fm.fix), 1)] / fm.pixels_per_degree\n x_arg = reshift(ang[0][np.roll(fm.fix == min(fm.fix), 1)])\n bins = [list(range(int(ceil(np.nanmax(y_arg))) + 1)), np.linspace(-180,\n 180, 361)]\n return makeHist(x_arg, y_arg, fit=None, bins=bins)\n", "role": "user" }, { "content": "firstSacDist", "role": "assistant" } ]
def x(fm): trajLen = np.roll(fm.fix, 1)[fm.fix == min(fm.fix)] val, borders = np.histogram(trajLen, bins=np.linspace(-0.5, max(trajLen ) + 0.5, max(trajLen) + 2)) cumsum = np.cumsum(val.astype(float) / val.sum()) return cumsum, borders
trajLenDist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm):\n trajLen = np.roll(fm.fix, 1)[fm.fix == min(fm.fix)]\n val, borders = np.histogram(trajLen, bins=np.linspace(-0.5, max(trajLen\n ) + 0.5, max(trajLen) + 2))\n cumsum = np.cumsum(val.astype(float) / val.sum())\n return cumsum, borders\n", "role": "user" }, { "content": "trajLenDist", "role": "assistant" } ]
def x(I): if type(I) == list: I = np.array(I) return (I - 180) % 360 - 180
reshift
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(I):\n if type(I) == list:\n I = np.array(I)\n return (I - 180) % 360 - 180\n", "role": "user" }, { "content": "reshift", "role": "assistant" } ]
def x(self, fit=None, full_H1=None, max_length=40, in_deg=True): a, l, ad, ld = anglendiff(self.fm, roll=1, return_abs=True) if in_deg: self.fm.pixels_per_degree = 1 samples = np.zeros([3, len(l[0])]) samples[0] = l[0] / self.fm.pixels_per_degree samples[1] = np.roll(l[0] / self.fm.pixels_per_degree, -1) samples[2] = np.roll(reshift(ad[0]), -1) z = np.any(np.isnan(samples), axis=0) samples = samples[:, ~np.isnan(samples).any(0)] if full_H1 is None: self.full_H1 = [] for i in range(1, int(ceil(max_length + 1))): idx = np.logical_and(samples[0] <= i, samples[0] > i - 1) if idx.any(): self.full_H1.append(makeHist(samples[2][idx], samples[1][ idx], fit=fit, bins=[np.linspace(0, max_length - 1, max_length), np.linspace(-180, 180, 361)])) if np.isnan(self.full_H1[-1]).any(): self.full_H1[-1] = np.array([]) self.nosamples.append(len(samples[2][idx])) else: self.full_H1.append(np.array([])) self.nosamples.append(0) else: self.full_H1 = full_H1 self.firstLenAng_cumsum, self.firstLenAng_shape = compute_cumsum( firstSacDist(self.fm)) self.probability_cumsum = [] for i in range(len(self.full_H1)): if self.full_H1[i] == []: self.probability_cumsum.append(np.array([])) else: self.probability_cumsum.append(np.cumsum(self.full_H1[i].flat)) self.trajLen_cumsum, self.trajLen_borders = trajLenDist(self.fm) min_distance = 1 / np.array([min((np.unique(self.probability_cumsum[i]) - np.roll(np.unique(self.probability_cumsum[i]), 1))[1:]) for i in range(len(self.probability_cumsum))]) min_distance[min_distance < 10] = 10 self.linind = {} for i in range(len(self.probability_cumsum)): self.linind['self.probability_cumsum ' + repr(i)] = np.linspace(0, 1, min_distance[i])[0:-1] for elem in [self.firstLenAng_cumsum, self.trajLen_cumsum]: self.linind[elem] = np.linspace(0, 1, 1 / min((np.unique(elem) - np .roll(np.unique(elem), 1))[1:]))[0:-1]
initializeData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fit=None, full_H1=None, max_length=40, in_deg=True):\n a, l, ad, ld = anglendiff(self.fm, roll=1, return_abs=True)\n if in_deg:\n self.fm.pixels_per_degree = 1\n samples = np.zeros([3, len(l[0])])\n samples[0] = l[0] / self.fm.pixels_per_degree\n samples[1] = np.roll(l[0] / self.fm.pixels_per_degree, -1)\n samples[2] = np.roll(reshift(ad[0]), -1)\n z = np.any(np.isnan(samples), axis=0)\n samples = samples[:, ~np.isnan(samples).any(0)]\n if full_H1 is None:\n self.full_H1 = []\n for i in range(1, int(ceil(max_length + 1))):\n idx = np.logical_and(samples[0] <= i, samples[0] > i - 1)\n if idx.any():\n self.full_H1.append(makeHist(samples[2][idx], samples[1][\n idx], fit=fit, bins=[np.linspace(0, max_length - 1,\n max_length), np.linspace(-180, 180, 361)]))\n if np.isnan(self.full_H1[-1]).any():\n self.full_H1[-1] = np.array([])\n self.nosamples.append(len(samples[2][idx]))\n else:\n self.full_H1.append(np.array([]))\n self.nosamples.append(0)\n else:\n self.full_H1 = full_H1\n self.firstLenAng_cumsum, self.firstLenAng_shape = compute_cumsum(\n firstSacDist(self.fm))\n self.probability_cumsum = []\n for i in range(len(self.full_H1)):\n if self.full_H1[i] == []:\n self.probability_cumsum.append(np.array([]))\n else:\n self.probability_cumsum.append(np.cumsum(self.full_H1[i].flat))\n self.trajLen_cumsum, self.trajLen_borders = trajLenDist(self.fm)\n min_distance = 1 / np.array([min((np.unique(self.probability_cumsum[i]) -\n np.roll(np.unique(self.probability_cumsum[i]), 1))[1:]) for i in\n range(len(self.probability_cumsum))])\n min_distance[min_distance < 10] = 10\n self.linind = {}\n for i in range(len(self.probability_cumsum)):\n self.linind['self.probability_cumsum ' + repr(i)] = np.linspace(0, \n 1, min_distance[i])[0:-1]\n for elem in [self.firstLenAng_cumsum, self.trajLen_cumsum]:\n self.linind[elem] = np.linspace(0, 1, 1 / min((np.unique(elem) - np\n .roll(np.unique(elem), 1))[1:]))[0:-1]\n", "role": "user" }, { "content": "initializeData", "role": "assistant" } ]
def x(self, xxx_todo_changeme, angle, length): x, y = xxx_todo_changeme return x + cos(radians(angle)) * length, y + sin(radians(angle)) * length
calc_xy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xxx_todo_changeme, angle, length):\n x, y = xxx_todo_changeme\n return x + cos(radians(angle)) * length, y + sin(radians(angle)) * length\n", "role": "user" }, { "content": "calc_xy", "role": "assistant" } ]
def x(self, prev_angle=None, prev_length=None): if prev_angle is None or prev_length is None: length, angle = np.unravel_index(self.drawFrom( 'self.firstLenAng_cumsum', self.getrand( 'self.firstLenAng_cumsum')), self.firstLenAng_shape) angle = angle - (self.firstLenAng_shape[1] - 1) / 2 angle += 0.5 length += 0.5 length *= self.fm.pixels_per_degree else: ind = int(floor(prev_length / self.fm.pixels_per_degree)) while ind >= len(self.probability_cumsum): ind -= 1 while not self.probability_cumsum[ind].any(): ind -= 1 J, I = np.unravel_index(self.drawFrom('self.probability_cumsum ' + repr(ind), self.getrand('self.probability_cumsum ' + repr(ind)) ), self.full_H1[ind].shape) angle = reshift(I - self.full_H1[ind].shape[1] / 2 + prev_angle) angle += 0.5 length = J + 0.5 length *= self.fm.pixels_per_degree return angle, length
draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prev_angle=None, prev_length=None):\n if prev_angle is None or prev_length is None:\n length, angle = np.unravel_index(self.drawFrom(\n 'self.firstLenAng_cumsum', self.getrand(\n 'self.firstLenAng_cumsum')), self.firstLenAng_shape)\n angle = angle - (self.firstLenAng_shape[1] - 1) / 2\n angle += 0.5\n length += 0.5\n length *= self.fm.pixels_per_degree\n else:\n ind = int(floor(prev_length / self.fm.pixels_per_degree))\n while ind >= len(self.probability_cumsum):\n ind -= 1\n while not self.probability_cumsum[ind].any():\n ind -= 1\n J, I = np.unravel_index(self.drawFrom('self.probability_cumsum ' +\n repr(ind), self.getrand('self.probability_cumsum ' + repr(ind))\n ), self.full_H1[ind].shape)\n angle = reshift(I - self.full_H1[ind].shape[1] / 2 + prev_angle)\n angle += 0.5\n length = J + 0.5\n length *= self.fm.pixels_per_degree\n return angle, length\n", "role": "user" }, { "content": "draw", "role": "assistant" } ]
def x(self, num_samples=2000): x = [] y = [] fix = [] sample = [] pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=num_samples ).start() for s in range(0, num_samples): for i, (xs, ys) in enumerate(self.sample()): x.append(xs) y.append(ys) fix.append(i + 1) sample.append(s) pbar.update(s + 1) fields = {'fix': np.array(fix), 'y': np.array(y), 'x': np.array(x)} param = {'pixels_per_degree': self.fm.pixels_per_degree} out = fixmat.VectorFixmatFactory(fields, param) return out
sample_many
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, num_samples=2000):\n x = []\n y = []\n fix = []\n sample = []\n pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=num_samples\n ).start()\n for s in range(0, num_samples):\n for i, (xs, ys) in enumerate(self.sample()):\n x.append(xs)\n y.append(ys)\n fix.append(i + 1)\n sample.append(s)\n pbar.update(s + 1)\n fields = {'fix': np.array(fix), 'y': np.array(y), 'x': np.array(x)}\n param = {'pixels_per_degree': self.fm.pixels_per_degree}\n out = fixmat.VectorFixmatFactory(fields, param)\n return out\n", "role": "user" }, { "content": "sample_many", "role": "assistant" } ]
def x(self): lenghts = [] angles = [] coordinates = [] fix = [] sample_size = int(round(self.trajLen_borders[self.drawFrom( 'self.trajLen_cumsum', self.getrand('self.trajLen_cumsum'))])) coordinates.append([0, 0]) fix.append(1) while len(coordinates) < sample_size: if len(lenghts) == 0 and len(angles) == 0: angle, length = self._draw(self) else: angle, length = self._draw(prev_angle=angles[-1], prev_length= lenghts[-1]) x, y = self._calc_xy(coordinates[-1], angle, length) coordinates.append([x, y]) lenghts.append(length) angles.append(angle) fix.append(fix[-1] + 1) return coordinates
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lenghts = []\n angles = []\n coordinates = []\n fix = []\n sample_size = int(round(self.trajLen_borders[self.drawFrom(\n 'self.trajLen_cumsum', self.getrand('self.trajLen_cumsum'))]))\n coordinates.append([0, 0])\n fix.append(1)\n while len(coordinates) < sample_size:\n if len(lenghts) == 0 and len(angles) == 0:\n angle, length = self._draw(self)\n else:\n angle, length = self._draw(prev_angle=angles[-1], prev_length=\n lenghts[-1])\n x, y = self._calc_xy(coordinates[-1], angle, length)\n coordinates.append([x, y])\n lenghts.append(length)\n angles.append(angle)\n fix.append(fix[-1] + 1)\n return coordinates\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, cumsum, r): a = cumsum.rsplit() if len(a) > 1: b = eval(a[0])[int(a[1])] else: b = eval(a[0]) return np.nonzero(b >= r)[0][0]
drawFrom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cumsum, r):\n a = cumsum.rsplit()\n if len(a) > 1:\n b = eval(a[0])[int(a[1])]\n else:\n b = eval(a[0])\n return np.nonzero(b >= r)[0][0]\n", "role": "user" }, { "content": "drawFrom", "role": "assistant" } ]
def x(path): f = h5py.File(path, 'r') if 'Fixmat' in f: fm_group = f['Fixmat'] else: fm_group = f['Datamat'] fields = {} params = {} for field, value in list(fm_group.items()): fields[field] = np.array(value) for param, value in list(fm_group.attrs.items()): params[param] = value f.close() return VectorFixmatFactory(fields, params)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path):\n f = h5py.File(path, 'r')\n if 'Fixmat' in f:\n fm_group = f['Fixmat']\n else:\n fm_group = f['Datamat']\n fields = {}\n params = {}\n for field, value in list(fm_group.items()):\n fields[field] = np.array(value)\n for param, value in list(fm_group.attrs.items()):\n params[param] = value\n f.close()\n return VectorFixmatFactory(fields, params)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(fixmat, fwhm=2, scale_factor=1): assert len(fixmat.image_size) == 2 and fixmat.image_size[0 ] > 0 and fixmat.image_size[1 ] > 0, 'The image_size is either 0, or not 2D' if fixmat._num_fix == 0 or len(fixmat.x) == 0 or len(fixmat.y) == 0: raise RuntimeError('There are no fixations in the fixmat.') assert not scale_factor <= 0, 'scale_factor has to be > 0' e_y = np.arange(0, np.round(scale_factor * fixmat.image_size[0] + 1)) e_x = np.arange(0, np.round(scale_factor * fixmat.image_size[1] + 1)) samples = np.array(list(zip(scale_factor * fixmat.y, scale_factor * fixmat.x))) hist, _ = np.histogramdd(samples, (e_y, e_x)) kernel_sigma = fwhm * fixmat.pixels_per_degree * scale_factor kernel_sigma = kernel_sigma / (2 * (2 * np.log(2)) ** 0.5) fdm = gaussian_filter(hist, kernel_sigma, order=0, mode='constant') return fdm / fdm.sum()
compute_fdm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fixmat, fwhm=2, scale_factor=1):\n assert len(fixmat.image_size) == 2 and fixmat.image_size[0\n ] > 0 and fixmat.image_size[1\n ] > 0, 'The image_size is either 0, or not 2D'\n if fixmat._num_fix == 0 or len(fixmat.x) == 0 or len(fixmat.y) == 0:\n raise RuntimeError('There are no fixations in the fixmat.')\n assert not scale_factor <= 0, 'scale_factor has to be > 0'\n e_y = np.arange(0, np.round(scale_factor * fixmat.image_size[0] + 1))\n e_x = np.arange(0, np.round(scale_factor * fixmat.image_size[1] + 1))\n samples = np.array(list(zip(scale_factor * fixmat.y, scale_factor *\n fixmat.x)))\n hist, _ = np.histogramdd(samples, (e_y, e_x))\n kernel_sigma = fwhm * fixmat.pixels_per_degree * scale_factor\n kernel_sigma = kernel_sigma / (2 * (2 * np.log(2)) ** 0.5)\n fdm = gaussian_filter(hist, kernel_sigma, order=0, mode='constant')\n return fdm / fdm.sum()\n", "role": "user" }, { "content": "compute_fdm", "role": "assistant" } ]
def x(fm, scale_factor=1, estimator=None): assert 'fix' in fm.fieldnames(), 'Can not work without fixation numbers' excl = fm.fix - np.roll(fm.fix, 1) != 1 diff_x = (np.roll(fm.x, 1) - fm.x)[~excl] diff_y = (np.roll(fm.y, 1) - fm.y)[~excl] ylim = np.round(scale_factor * fm.image_size[0]) xlim = np.round(scale_factor * fm.image_size[1]) x_steps = np.ceil(2 * xlim) + 1 if x_steps % 2 != 0: x_steps += 1 y_steps = np.ceil(2 * ylim) + 1 if y_steps % 2 != 0: y_steps += 1 e_x = np.linspace(-xlim, xlim, x_steps) e_y = np.linspace(-ylim, ylim, y_steps) samples = np.array(list(zip(scale_factor * diff_y, scale_factor * diff_x))) if estimator == None: hist, _ = np.histogramdd(samples, (e_y, e_x)) else: hist = estimator(samples, e_y, e_x) return hist
relative_bias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, scale_factor=1, estimator=None):\n assert 'fix' in fm.fieldnames(), 'Can not work without fixation numbers'\n excl = fm.fix - np.roll(fm.fix, 1) != 1\n diff_x = (np.roll(fm.x, 1) - fm.x)[~excl]\n diff_y = (np.roll(fm.y, 1) - fm.y)[~excl]\n ylim = np.round(scale_factor * fm.image_size[0])\n xlim = np.round(scale_factor * fm.image_size[1])\n x_steps = np.ceil(2 * xlim) + 1\n if x_steps % 2 != 0:\n x_steps += 1\n y_steps = np.ceil(2 * ylim) + 1\n if y_steps % 2 != 0:\n y_steps += 1\n e_x = np.linspace(-xlim, xlim, x_steps)\n e_y = np.linspace(-ylim, ylim, y_steps)\n samples = np.array(list(zip(scale_factor * diff_y, scale_factor * diff_x)))\n if estimator == None:\n hist, _ = np.histogramdd(samples, (e_y, e_x))\n else:\n hist = estimator(samples, e_y, e_x)\n return hist\n", "role": "user" }, { "content": "relative_bias", "role": "assistant" } ]
def x(directory, categories=None, glob_str='*.mat', var_name='fixmat'): files = glob(join(directory, glob_str)) if len(files) == 0: raise ValueError('Could not find any fixmats in ' + join(directory, glob_str)) f_all = FixmatFactory(files.pop(), categories, var_name) for fname in files: f_current = FixmatFactory(fname, categories, var_name) f_all.join(f_current) return f_all
DirectoryFixmatFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory, categories=None, glob_str='*.mat', var_name='fixmat'):\n files = glob(join(directory, glob_str))\n if len(files) == 0:\n raise ValueError('Could not find any fixmats in ' + join(directory,\n glob_str))\n f_all = FixmatFactory(files.pop(), categories, var_name)\n for fname in files:\n f_current = FixmatFactory(fname, categories, var_name)\n f_all.join(f_current)\n return f_all\n", "role": "user" }, { "content": "DirectoryFixmatFactory", "role": "assistant" } ]
def x(fixmatfile, categories=None, var_name='fixmat', field_name='x'): try: data = loadmat(fixmatfile, struct_as_record=False) keys = list(data.keys()) data = data[var_name][0][0] except KeyError: raise RuntimeError( '%s is not a field of the matlab structure. Possible' + 'Keys are %s' % str(keys)) num_fix = data.__getattribute__(field_name).size fields = {} parameters = {} for field in data._fieldnames: if data.__getattribute__(field).size == num_fix: fields[field] = data.__getattribute__(field) else: parameters[field] = data.__getattribute__(field)[0].tolist() if len(parameters[field]) == 1: parameters[field] = parameters[field][0] fixmat = FixMat(categories=categories) fixmat._fields = list(fields.keys()) for field, value in list(fields.items()): fixmat.__dict__[field] = value.reshape(-1) fixmat._parameters = parameters fixmat._subjects = None for field, value in list(parameters.items()): fixmat.__dict__[field] = value fixmat._num_fix = num_fix return fixmat
FixmatFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fixmatfile, categories=None, var_name='fixmat', field_name='x'):\n try:\n data = loadmat(fixmatfile, struct_as_record=False)\n keys = list(data.keys())\n data = data[var_name][0][0]\n except KeyError:\n raise RuntimeError(\n '%s is not a field of the matlab structure. Possible' + \n 'Keys are %s' % str(keys))\n num_fix = data.__getattribute__(field_name).size\n fields = {}\n parameters = {}\n for field in data._fieldnames:\n if data.__getattribute__(field).size == num_fix:\n fields[field] = data.__getattribute__(field)\n else:\n parameters[field] = data.__getattribute__(field)[0].tolist()\n if len(parameters[field]) == 1:\n parameters[field] = parameters[field][0]\n fixmat = FixMat(categories=categories)\n fixmat._fields = list(fields.keys())\n for field, value in list(fields.items()):\n fixmat.__dict__[field] = value.reshape(-1)\n fixmat._parameters = parameters\n fixmat._subjects = None\n for field, value in list(parameters.items()):\n fixmat.__dict__[field] = value\n fixmat._num_fix = num_fix\n return fixmat\n", "role": "user" }, { "content": "FixmatFactory", "role": "assistant" } ]
def x(self, features): if not 'x' in self.fieldnames(): raise RuntimeError( """add_feature_values expects to find (x,y) locations in self.x and self.y. But self.x does not exist""" ) if not self._categories: raise RuntimeError( """"%s" does not exist as a fieldname and the fixmat does not have a Categories object (no features available. The fixmat has these fields: %s""" % (features, str(self._fields))) for feature in features: feat_vals = np.zeros([len(self.x)]) * np.nan for cat_mat, imgs in self.by_cat(): for img in np.unique(cat_mat.filenumber).astype(int): fmap = imgs[img][feature] on_image = (self.x >= 0) & (self.x <= self.image_size[1]) on_image = on_image & (self.y >= 0) & (self.y <= self. image_size[0]) idx = (self.category == imgs.category) & (self.filenumber == img) & on_image.astype('bool') feat_vals[idx] = fmap[self.y[idx].astype('int'), self.x[idx ].astype('int')] self.add_field(feature, feat_vals)
add_feature_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, features):\n if not 'x' in self.fieldnames():\n raise RuntimeError(\n \"\"\"add_feature_values expects to find\n (x,y) locations in self.x and self.y. But self.x does not exist\"\"\"\n )\n if not self._categories:\n raise RuntimeError(\n \"\"\"\"%s\" does not exist as a fieldname and the\n fixmat does not have a Categories object (no features \n available. The fixmat has these fields: %s\"\"\"\n % (features, str(self._fields)))\n for feature in features:\n feat_vals = np.zeros([len(self.x)]) * np.nan\n for cat_mat, imgs in self.by_cat():\n for img in np.unique(cat_mat.filenumber).astype(int):\n fmap = imgs[img][feature]\n on_image = (self.x >= 0) & (self.x <= self.image_size[1])\n on_image = on_image & (self.y >= 0) & (self.y <= self.\n image_size[0])\n idx = (self.category == imgs.category) & (self.filenumber ==\n img) & on_image.astype('bool')\n feat_vals[idx] = fmap[self.y[idx].astype('int'), self.x[idx\n ].astype('int')]\n self.add_field(feature, feat_vals)\n", "role": "user" }, { "content": "add_feature_values", "role": "assistant" } ]
def x(self, feature_list=None, all_controls=False): if not 'x' in self.fieldnames(): raise RuntimeError( """make_reg_data expects to find (x,y) locations in self.x and self.y. But self.x does not exist""" ) on_image = (self.x >= 0) & (self.x <= self.image_size[1]) on_image = on_image & (self.y >= 0) & (self.y <= self.image_size[0]) assert on_image.all(), 'All Fixations need to be on the image' assert len(np.unique(self.filenumber) > 1 ), 'Fixmat has to have more than one filenumber' self.x = self.x.astype(int) self.y = self.y.astype(int) if feature_list == None: feature_list = np.sort(self._categories._features) all_act = np.zeros((len(feature_list), 1)) * np.nan all_ctrls = all_act.copy() for cfm, imgs in self.by_cat(): imfiles = np.array(imgs.images()) ctrl_imgs = imfiles.copy() np.random.shuffle(ctrl_imgs) while (imfiles == ctrl_imgs).any(): np.random.shuffle(ctrl_imgs) for imidx, img in enumerate(imfiles): xact = cfm.x[cfm.filenumber == img] yact = cfm.y[cfm.filenumber == img] if all_controls: idx = np.ones(self.image_size) idx[cfm.y[cfm.filenumber == img], cfm.x[cfm.filenumber == img] ] = 0 yctrl, xctrl = idx.nonzero() idx = np.random.randint(0, len(yctrl), len(xact)) yctrl = yctrl[idx] xctrl = xctrl[idx] del idx else: xctrl = cfm.x[cfm.filenumber == ctrl_imgs[imidx]] yctrl = cfm.y[cfm.filenumber == ctrl_imgs[imidx]] actuals = np.zeros((1, len(xact))) * np.nan controls = np.zeros((1, len(xctrl))) * np.nan for feature in feature_list: fmap = imgs[img][feature] actuals = np.vstack((actuals, fmap[yact, xact])) controls = np.vstack((controls, fmap[yctrl, xctrl])) all_act = np.hstack((all_act, actuals[1:, :])) all_ctrls = np.hstack((all_ctrls, controls[1:, :])) return all_act[:, 1:], all_ctrls[:, 1:]
make_reg_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, feature_list=None, all_controls=False):\n if not 'x' in self.fieldnames():\n raise RuntimeError(\n \"\"\"make_reg_data expects to find\n (x,y) locations in self.x and self.y. But self.x does not exist\"\"\"\n )\n on_image = (self.x >= 0) & (self.x <= self.image_size[1])\n on_image = on_image & (self.y >= 0) & (self.y <= self.image_size[0])\n assert on_image.all(), 'All Fixations need to be on the image'\n assert len(np.unique(self.filenumber) > 1\n ), 'Fixmat has to have more than one filenumber'\n self.x = self.x.astype(int)\n self.y = self.y.astype(int)\n if feature_list == None:\n feature_list = np.sort(self._categories._features)\n all_act = np.zeros((len(feature_list), 1)) * np.nan\n all_ctrls = all_act.copy()\n for cfm, imgs in self.by_cat():\n imfiles = np.array(imgs.images())\n ctrl_imgs = imfiles.copy()\n np.random.shuffle(ctrl_imgs)\n while (imfiles == ctrl_imgs).any():\n np.random.shuffle(ctrl_imgs)\n for imidx, img in enumerate(imfiles):\n xact = cfm.x[cfm.filenumber == img]\n yact = cfm.y[cfm.filenumber == img]\n if all_controls:\n idx = np.ones(self.image_size)\n idx[cfm.y[cfm.filenumber == img], cfm.x[cfm.filenumber == img]\n ] = 0\n yctrl, xctrl = idx.nonzero()\n idx = np.random.randint(0, len(yctrl), len(xact))\n yctrl = yctrl[idx]\n xctrl = xctrl[idx]\n del idx\n else:\n xctrl = cfm.x[cfm.filenumber == ctrl_imgs[imidx]]\n yctrl = cfm.y[cfm.filenumber == ctrl_imgs[imidx]]\n actuals = np.zeros((1, len(xact))) * np.nan\n controls = np.zeros((1, len(xctrl))) * np.nan\n for feature in feature_list:\n fmap = imgs[img][feature]\n actuals = np.vstack((actuals, fmap[yact, xact]))\n controls = np.vstack((controls, fmap[yctrl, xctrl]))\n all_act = np.hstack((all_act, actuals[1:, :]))\n all_ctrls = np.hstack((all_ctrls, controls[1:, :]))\n return all_act[:, 1:], all_ctrls[:, 1:]\n", "role": "user" }, { "content": "make_reg_data", "role": "assistant" } ]
def x(samplemat, Hz, blinks=None): Hz = float(Hz) distance = (np.diff(samplemat.x) ** 2 + np.diff(samplemat.y) ** 2) ** 0.5 distance = np.hstack(([distance[0]], distance)) if blinks is not None: distance[blinks[1:]] = np.nan win = np.ones(velocity_window_size) / float(velocity_window_size) velocity = np.convolve(distance, win, mode='same') velocity = velocity / (velocity_window_size / Hz) acceleration = np.diff(velocity) / (1.0 / Hz) acceleration = abs(np.hstack(([acceleration[0]], acceleration))) return velocity, acceleration
get_velocity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samplemat, Hz, blinks=None):\n Hz = float(Hz)\n distance = (np.diff(samplemat.x) ** 2 + np.diff(samplemat.y) ** 2) ** 0.5\n distance = np.hstack(([distance[0]], distance))\n if blinks is not None:\n distance[blinks[1:]] = np.nan\n win = np.ones(velocity_window_size) / float(velocity_window_size)\n velocity = np.convolve(distance, win, mode='same')\n velocity = velocity / (velocity_window_size / Hz)\n acceleration = np.diff(velocity) / (1.0 / Hz)\n acceleration = abs(np.hstack(([acceleration[0]], acceleration)))\n return velocity, acceleration\n", "role": "user" }, { "content": "get_velocity", "role": "assistant" } ]
def x(samplemat, Hz=200, threshold=30, acc_thresh=2000, min_duration=21, min_movement=0.35, ignore_blinks=False): if ignore_blinks: velocity, acceleration = get_velocity(samplemat, float(Hz), blinks= samplemat.blinks) else: velocity, acceleration = get_velocity(samplemat, float(Hz)) saccades = velocity > threshold borders = np.where(np.diff(saccades.astype(int)))[0] + 1 if velocity[1] > threshold: borders = np.hstack(([0], borders)) saccade = 0 * np.ones(samplemat.x.shape) for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])): if sum(acceleration[start:end] > acc_thresh) >= 1: saccade[start:end] = 1 borders = np.where(np.diff(saccade.astype(int)))[0] + 1 if saccade[0] == 0: borders = np.hstack(([0], borders)) for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])): if 1000 * (end - start) / float(Hz) < min_duration: saccade[start:end] = 1 dists_ok = False while not dists_ok: dists_ok = True num_merges = 0 for i, (lfixstart, lfixend, start, end, nfixstart, nfixend ) in enumerate(zip(borders[0::2], borders[1::2], borders[1::2], borders[2::2], borders[2::2], borders[3::2])): lastx = samplemat.x[lfixstart:lfixend].mean() lasty = samplemat.y[lfixstart:lfixend].mean() nextx = samplemat.x[nfixstart:nfixend].mean() nexty = samplemat.y[nfixstart:nfixend].mean() if 1000 * (lfixend - lfixstart) / float(Hz) < min_duration: saccade[lfixstart:lfixend] = 1 continue distance = ((nextx - lastx) ** 2 + (nexty - lasty) ** 2) ** 0.5 if distance < min_movement: num_merges += 1 dists_ok = False saccade[start:end] = 0 borders = np.where(np.diff(saccade.astype(int)))[0] + 1 if saccade[0] == 0: borders = np.hstack(([0], borders)) return saccade.astype(bool)
saccade_detection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samplemat, Hz=200, threshold=30, acc_thresh=2000, min_duration=21,\n min_movement=0.35, ignore_blinks=False):\n if ignore_blinks:\n velocity, acceleration = get_velocity(samplemat, float(Hz), blinks=\n samplemat.blinks)\n else:\n velocity, acceleration = get_velocity(samplemat, float(Hz))\n saccades = velocity > threshold\n borders = np.where(np.diff(saccades.astype(int)))[0] + 1\n if velocity[1] > threshold:\n borders = np.hstack(([0], borders))\n saccade = 0 * np.ones(samplemat.x.shape)\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n if sum(acceleration[start:end] > acc_thresh) >= 1:\n saccade[start:end] = 1\n borders = np.where(np.diff(saccade.astype(int)))[0] + 1\n if saccade[0] == 0:\n borders = np.hstack(([0], borders))\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n if 1000 * (end - start) / float(Hz) < min_duration:\n saccade[start:end] = 1\n dists_ok = False\n while not dists_ok:\n dists_ok = True\n num_merges = 0\n for i, (lfixstart, lfixend, start, end, nfixstart, nfixend\n ) in enumerate(zip(borders[0::2], borders[1::2], borders[1::2],\n borders[2::2], borders[2::2], borders[3::2])):\n lastx = samplemat.x[lfixstart:lfixend].mean()\n lasty = samplemat.y[lfixstart:lfixend].mean()\n nextx = samplemat.x[nfixstart:nfixend].mean()\n nexty = samplemat.y[nfixstart:nfixend].mean()\n if 1000 * (lfixend - lfixstart) / float(Hz) < min_duration:\n saccade[lfixstart:lfixend] = 1\n continue\n distance = ((nextx - lastx) ** 2 + (nexty - lasty) ** 2) ** 0.5\n if distance < min_movement:\n num_merges += 1\n dists_ok = False\n saccade[start:end] = 0\n borders = np.where(np.diff(saccade.astype(int)))[0] + 1\n if saccade[0] == 0:\n borders = np.hstack(([0], borders))\n return saccade.astype(bool)\n", "role": "user" }, { "content": "saccade_detection", "role": "assistant" } ]
def x(samplemat, saccades, Hz=200, samples2fix=None, respect_trial_borders= False, sample_times=None): if samples2fix is None: samples2fix = {} fixations = ~saccades acc = AccumulatorFactory() if not respect_trial_borders: borders = np.where(np.diff(fixations.astype(int)))[0] + 1 else: borders = np.where(~(np.diff(fixations.astype(int)) == 0) | ~(np. diff(samplemat.trial.astype(int)) == 0))[0] + 1 fixations = 0 * saccades.copy() if not saccades[0]: borders = np.hstack(([0], borders)) for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])): current = {} for k in samplemat.fieldnames(): if k in list(samples2fix.keys()): current[k] = samples2fix[k](samplemat, k, start, end) else: current[k] = np.mean(samplemat.field(k)[start:end]) current['start_sample'] = start current['end_sample'] = end fixations[start:end] = 1 if sample_times is None: current['start'] = 1000 * start / Hz current['end'] = 1000 * end / Hz else: current['start'] = sample_times[start] current['end'] = sample_times[end] acc.update(current) return acc.get_dm(params=samplemat.parameters()), fixations.astype(bool)
fixation_detection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samplemat, saccades, Hz=200, samples2fix=None, respect_trial_borders=\n False, sample_times=None):\n if samples2fix is None:\n samples2fix = {}\n fixations = ~saccades\n acc = AccumulatorFactory()\n if not respect_trial_borders:\n borders = np.where(np.diff(fixations.astype(int)))[0] + 1\n else:\n borders = np.where(~(np.diff(fixations.astype(int)) == 0) | ~(np.\n diff(samplemat.trial.astype(int)) == 0))[0] + 1\n fixations = 0 * saccades.copy()\n if not saccades[0]:\n borders = np.hstack(([0], borders))\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n current = {}\n for k in samplemat.fieldnames():\n if k in list(samples2fix.keys()):\n current[k] = samples2fix[k](samplemat, k, start, end)\n else:\n current[k] = np.mean(samplemat.field(k)[start:end])\n current['start_sample'] = start\n current['end_sample'] = end\n fixations[start:end] = 1\n if sample_times is None:\n current['start'] = 1000 * start / Hz\n current['end'] = 1000 * end / Hz\n else:\n current['start'] = sample_times[start]\n current['end'] = sample_times[end]\n acc.update(current)\n return acc.get_dm(params=samplemat.parameters()), fixations.astype(bool)\n", "role": "user" }, { "content": "fixation_detection", "role": "assistant" } ]
def x(parse_obj, agent=None, etag=None, modified=None, inject=False): guarantees = common.SuperDict({'bozo': 0, 'feeds': [], 'lists': [], 'opportunities': [], 'meta': common.SuperDict(), 'version': ''}) fileobj, info = _mkfile(parse_obj, agent or USER_AGENT, etag, modified) guarantees.update(info) if not fileobj: return guarantees handler = Handler() handler.harvest.update(guarantees) parser = xml.sax.make_parser() parser.setFeature(xml.sax.handler.feature_namespaces, True) parser.setContentHandler(handler) parser.setErrorHandler(handler) if inject: fileobj = Injector(fileobj) try: parser.parse(fileobj) except (SAXParseException, MalformedByteSequenceException): err = sys.exc_info()[1] handler.harvest.bozo = 1 handler.harvest.bozo_exception = err finally: fileobj.close() if hasattr(handler.harvest, 'bozo_exception'): if 'entity' in handler.harvest.bozo_exception.__str__(): if not inject: return parse(parse_obj, agent, etag, modified, True) if inject and not handler.harvest.bozo: handler.harvest.bozo = 1 handler.harvest.bozo_exception = ListError('undefined entity found') return handler.harvest
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parse_obj, agent=None, etag=None, modified=None, inject=False):\n guarantees = common.SuperDict({'bozo': 0, 'feeds': [], 'lists': [],\n 'opportunities': [], 'meta': common.SuperDict(), 'version': ''})\n fileobj, info = _mkfile(parse_obj, agent or USER_AGENT, etag, modified)\n guarantees.update(info)\n if not fileobj:\n return guarantees\n handler = Handler()\n handler.harvest.update(guarantees)\n parser = xml.sax.make_parser()\n parser.setFeature(xml.sax.handler.feature_namespaces, True)\n parser.setContentHandler(handler)\n parser.setErrorHandler(handler)\n if inject:\n fileobj = Injector(fileobj)\n try:\n parser.parse(fileobj)\n except (SAXParseException, MalformedByteSequenceException):\n err = sys.exc_info()[1]\n handler.harvest.bozo = 1\n handler.harvest.bozo_exception = err\n finally:\n fileobj.close()\n if hasattr(handler.harvest, 'bozo_exception'):\n if 'entity' in handler.harvest.bozo_exception.__str__():\n if not inject:\n return parse(parse_obj, agent, etag, modified, True)\n if inject and not handler.harvest.bozo:\n handler.harvest.bozo = 1\n handler.harvest.bozo_exception = ListError('undefined entity found')\n return handler.harvest\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(fm, loader): features = [] if loader.ftrpath: assert os.access(loader.ftrpath, os.R_OK) features = os.listdir(os.path.join(loader.ftrpath, str(fm.category[0])) ) img_per_cat = {} for cat in np.unique(fm.category): if not loader.test_for_category(cat): raise ValueError('Category %s is specified in fixmat but ' % ( str(cat) + 'can not be located by loader')) img_per_cat[cat] = [] for img in np.unique(fm[fm.category == cat].filenumber): if not loader.test_for_image(cat, img): raise ValueError('Image %s in category %s is ' % (str(cat), str(img)) + 'specified in fixmat but can be located by loader') img_per_cat[cat].append(img) if loader.ftrpath: for feature in features: if not loader.test_for_feature(cat, img, feature): raise RuntimeError('Feature %s for image %s' % (str (feature), str(img)) + ' in category %s ' % str (cat) + 'can not be located by loader') return Categories(loader, img_per_cat=img_per_cat, features=features, fixations=fm)
FixmatStimuliFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, loader):\n features = []\n if loader.ftrpath:\n assert os.access(loader.ftrpath, os.R_OK)\n features = os.listdir(os.path.join(loader.ftrpath, str(fm.category[0]))\n )\n img_per_cat = {}\n for cat in np.unique(fm.category):\n if not loader.test_for_category(cat):\n raise ValueError('Category %s is specified in fixmat but ' % (\n str(cat) + 'can not be located by loader'))\n img_per_cat[cat] = []\n for img in np.unique(fm[fm.category == cat].filenumber):\n if not loader.test_for_image(cat, img):\n raise ValueError('Image %s in category %s is ' % (str(cat),\n str(img)) +\n 'specified in fixmat but can be located by loader')\n img_per_cat[cat].append(img)\n if loader.ftrpath:\n for feature in features:\n if not loader.test_for_feature(cat, img, feature):\n raise RuntimeError('Feature %s for image %s' % (str\n (feature), str(img)) + ' in category %s ' % str\n (cat) + 'can not be located by loader')\n return Categories(loader, img_per_cat=img_per_cat, features=features,\n fixations=fm)\n", "role": "user" }, { "content": "FixmatStimuliFactory", "role": "assistant" } ]
def x(loader): impath = loader.impath ftrpath = loader.ftrpath assert os.access(impath, os.R_OK) assert os.access(ftrpath, os.R_OK) img_per_cat = {} subfolders = [name for name in os.listdir(impath) if os.path.isdir(os. path.join(impath, name))] if not subfolders: [_, _, files] = next(os.walk(os.path.join(impath))) entries = {(1): [int(cur_file[cur_file.find('_') + 1:-4]) for cur_file in files if cur_file.endswith('.png')]} img_per_cat.update(entries) subfolders = [''] else: for directory in subfolders: [_, _, files] = next(os.walk(os.path.join(impath, directory))) imagenumbers = [int(cur_file[cur_file.find('_') + 1:-4]) for cur_file in files if cur_file.endswith('.png') & (len( cur_file) > 4)] entries = {int(directory): imagenumbers} img_per_cat.update(entries) del directory del imagenumbers _, features, files = next(os.walk(os.path.join(ftrpath, subfolders[0]))) return Categories(loader, img_per_cat=img_per_cat, features=features)
DirectoryStimuliFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loader):\n impath = loader.impath\n ftrpath = loader.ftrpath\n assert os.access(impath, os.R_OK)\n assert os.access(ftrpath, os.R_OK)\n img_per_cat = {}\n subfolders = [name for name in os.listdir(impath) if os.path.isdir(os.\n path.join(impath, name))]\n if not subfolders:\n [_, _, files] = next(os.walk(os.path.join(impath)))\n entries = {(1): [int(cur_file[cur_file.find('_') + 1:-4]) for\n cur_file in files if cur_file.endswith('.png')]}\n img_per_cat.update(entries)\n subfolders = ['']\n else:\n for directory in subfolders:\n [_, _, files] = next(os.walk(os.path.join(impath, directory)))\n imagenumbers = [int(cur_file[cur_file.find('_') + 1:-4]) for\n cur_file in files if cur_file.endswith('.png') & (len(\n cur_file) > 4)]\n entries = {int(directory): imagenumbers}\n img_per_cat.update(entries)\n del directory\n del imagenumbers\n _, features, files = next(os.walk(os.path.join(ftrpath, subfolders[0])))\n return Categories(loader, img_per_cat=img_per_cat, features=features)\n", "role": "user" }, { "content": "DirectoryStimuliFactory", "role": "assistant" } ]
def x(self): if not self._fixations: raise RuntimeError('This Images object does not have' + ' an associated fixmat') if len(list(self._categories.keys())) == 0: return None else: idx = np.zeros(self._fixations.x.shape, dtype='bool') for cat, _ in list(self._categories.items()): idx = idx | (self._fixations.category == cat) return self._fixations[idx]
fixations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._fixations:\n raise RuntimeError('This Images object does not have' +\n ' an associated fixmat')\n if len(list(self._categories.keys())) == 0:\n return None\n else:\n idx = np.zeros(self._fixations.x.shape, dtype='bool')\n for cat, _ in list(self._categories.items()):\n idx = idx | (self._fixations.category == cat)\n return self._fixations[idx]\n", "role": "user" }, { "content": "fixations", "role": "assistant" } ]
def x(self, value): self.loader.save_image(self.category, self.image, value)
data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self.loader.save_image(self.category, self.image, value)\n", "role": "user" }, { "content": "data", "role": "assistant" } ]
def x(self): if not self._fixations: raise RuntimeError('This Images object does not have' + ' an associated fixmat') return self._fixations[(self._fixations.category == self.category) & ( self._fixations.filenumber == self.image)]
fixations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._fixations:\n raise RuntimeError('This Images object does not have' +\n ' an associated fixmat')\n return self._fixations[(self._fixations.category == self.category) & (\n self._fixations.filenumber == self.image)]\n", "role": "user" }, { "content": "fixations", "role": "assistant" } ]
def x(self): for _ in range(0, self.num_slices): subjects = np.unique(self.fm.SUBJECTINDEX) test_subs = randsample(subjects, self.subject_hold_out * len(subjects)) train_subs = [x for x in subjects if x not in test_subs] test_fm = self.fm[ismember(self.fm.SUBJECTINDEX, test_subs)] train_fm = self.fm[ismember(self.fm.SUBJECTINDEX, train_subs)] test_imgs = {} train_imgs = {} id_test = (test_fm.x < 1) & False id_train = (train_fm.x < 1) & False for cat in self.categories: imgs = cat.images() test_imgs.update({cat.category: randsample(imgs, self. image_hold_out * len(imgs)).tolist()}) train_imgs.update({cat.category: [x for x in imgs if not ismember(x, test_imgs[cat.category])]}) id_test = id_test | ismember(test_fm.filenumber, test_imgs[cat. category]) & (test_fm.category == cat.category) id_train = id_train | ismember(train_fm.filenumber, train_imgs[ cat.category]) & (train_fm.category == cat.category) test_stimuli = Categories(self.categories.loader, test_imgs, features=self.categories._features, fixations=test_fm) train_stimuli = Categories(self.categories.loader, train_imgs, features=self.categories._features, fixations=train_fm) yield train_fm[id_train], train_stimuli, test_fm[id_test], test_stimuli
generate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for _ in range(0, self.num_slices):\n subjects = np.unique(self.fm.SUBJECTINDEX)\n test_subs = randsample(subjects, self.subject_hold_out * len(subjects))\n train_subs = [x for x in subjects if x not in test_subs]\n test_fm = self.fm[ismember(self.fm.SUBJECTINDEX, test_subs)]\n train_fm = self.fm[ismember(self.fm.SUBJECTINDEX, train_subs)]\n test_imgs = {}\n train_imgs = {}\n id_test = (test_fm.x < 1) & False\n id_train = (train_fm.x < 1) & False\n for cat in self.categories:\n imgs = cat.images()\n test_imgs.update({cat.category: randsample(imgs, self.\n image_hold_out * len(imgs)).tolist()})\n train_imgs.update({cat.category: [x for x in imgs if not\n ismember(x, test_imgs[cat.category])]})\n id_test = id_test | ismember(test_fm.filenumber, test_imgs[cat.\n category]) & (test_fm.category == cat.category)\n id_train = id_train | ismember(train_fm.filenumber, train_imgs[\n cat.category]) & (train_fm.category == cat.category)\n test_stimuli = Categories(self.categories.loader, test_imgs,\n features=self.categories._features, fixations=test_fm)\n train_stimuli = Categories(self.categories.loader, train_imgs,\n features=self.categories._features, fixations=train_fm)\n yield train_fm[id_train], train_stimuli, test_fm[id_test], test_stimuli\n", "role": "user" }, { "content": "generate", "role": "assistant" } ]
def x(fm, max_back, dur_cap=700): durations = np.roll(fm.end - fm.start, 1).astype(float) angles, lengths, ads, lds = anglendiff(fm, roll=max_back, return_abs=True) forward_angle = abs(reshift(ads[0])).astype(float) ads = [abs(reshift(a)) for a in ads] id_in = durations > dur_cap durations[id_in] = np.nan forward_angle[id_in] = np.nan return fm, durations, forward_angle, ads, lds
prepare_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, max_back, dur_cap=700):\n durations = np.roll(fm.end - fm.start, 1).astype(float)\n angles, lengths, ads, lds = anglendiff(fm, roll=max_back, return_abs=True)\n forward_angle = abs(reshift(ads[0])).astype(float)\n ads = [abs(reshift(a)) for a in ads]\n id_in = durations > dur_cap\n durations[id_in] = np.nan\n forward_angle[id_in] = np.nan\n return fm, durations, forward_angle, ads, lds\n", "role": "user" }, { "content": "prepare_data", "role": "assistant" } ]
def x(durations, forward_angle, summary_stat=nanmean): durations_per_da = np.nan * np.ones((len(e_angle) - 1,)) for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])): idx = (bo <= forward_angle) & (forward_angle < b1) & ~np.isnan( durations) durations_per_da[i] = summary_stat(durations[idx]) return durations_per_da
saccadic_momentum_effect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(durations, forward_angle, summary_stat=nanmean):\n durations_per_da = np.nan * np.ones((len(e_angle) - 1,))\n for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])):\n idx = (bo <= forward_angle) & (forward_angle < b1) & ~np.isnan(\n durations)\n durations_per_da[i] = summary_stat(durations[idx])\n return durations_per_da\n", "role": "user" }, { "content": "saccadic_momentum_effect", "role": "assistant" } ]
def x(durations, angle_diffs, length_diffs, summary_stat=np.mean, parallel= True, min_samples=20): raster = np.empty((len(e_dist) - 1, len(e_angle) - 1), dtype=object) for a, (a_low, a_upp) in enumerate(zip(e_angle[:-1], e_angle[1:])): for d, (d_low, d_upp) in enumerate(zip(e_dist[:-1], e_dist[1:])): idx = (d_low <= length_diffs) & (length_diffs < d_upp) & (a_low <= angle_diffs) & (angle_diffs < a_upp) if sum(idx) < min_samples: raster[d, a] = np.array([np.nan]) else: raster[d, a] = durations[idx] if parallel: p = pool.Pool(3) result = p.map(summary_stat, list(raster.flatten())) p.terminate() else: result = list(map(summary_stat, list(raster.flatten()))) for idx, value in enumerate(result): i, j = np.unravel_index(idx, raster.shape) raster[i, j] = value return raster
ior_effect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(durations, angle_diffs, length_diffs, summary_stat=np.mean, parallel=\n True, min_samples=20):\n raster = np.empty((len(e_dist) - 1, len(e_angle) - 1), dtype=object)\n for a, (a_low, a_upp) in enumerate(zip(e_angle[:-1], e_angle[1:])):\n for d, (d_low, d_upp) in enumerate(zip(e_dist[:-1], e_dist[1:])):\n idx = (d_low <= length_diffs) & (length_diffs < d_upp) & (a_low <=\n angle_diffs) & (angle_diffs < a_upp)\n if sum(idx) < min_samples:\n raster[d, a] = np.array([np.nan])\n else:\n raster[d, a] = durations[idx]\n if parallel:\n p = pool.Pool(3)\n result = p.map(summary_stat, list(raster.flatten()))\n p.terminate()\n else:\n result = list(map(summary_stat, list(raster.flatten())))\n for idx, value in enumerate(result):\n i, j = np.unravel_index(idx, raster.shape)\n raster[i, j] = value\n return raster\n", "role": "user" }, { "content": "ior_effect", "role": "assistant" } ]
def x(durations, angles, length_diffs, dataset=None, params=None): if dataset is None: dataset = np.ones(durations.shape) corrected_durations = np.nan * np.ones(durations.shape) for i, ds in enumerate(np.unique(dataset)): e = lambda v, x, y, z: leastsq_dual_model(x, z, *v) - y v0 = [120, 220.0, -0.1, 0.5, 0.1, 0.1] id_ds = dataset == ds idnan = ~np.isnan(angles) & ~np.isnan(durations) & ~np.isnan( length_diffs) v, s = leastsq(e, v0, args=(angles[idnan & id_ds], durations[idnan & id_ds], length_diffs[idnan & id_ds]), maxfev=10000) corrected_durations[id_ds] = durations[id_ds] - leastsq_dual_model( angles[id_ds], length_diffs[id_ds], *v) if params is not None: params['v' + str(i)] = v params['s' + str(i)] = s return corrected_durations
predict_fixation_duration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(durations, angles, length_diffs, dataset=None, params=None):\n if dataset is None:\n dataset = np.ones(durations.shape)\n corrected_durations = np.nan * np.ones(durations.shape)\n for i, ds in enumerate(np.unique(dataset)):\n e = lambda v, x, y, z: leastsq_dual_model(x, z, *v) - y\n v0 = [120, 220.0, -0.1, 0.5, 0.1, 0.1]\n id_ds = dataset == ds\n idnan = ~np.isnan(angles) & ~np.isnan(durations) & ~np.isnan(\n length_diffs)\n v, s = leastsq(e, v0, args=(angles[idnan & id_ds], durations[idnan &\n id_ds], length_diffs[idnan & id_ds]), maxfev=10000)\n corrected_durations[id_ds] = durations[id_ds] - leastsq_dual_model(\n angles[id_ds], length_diffs[id_ds], *v)\n if params is not None:\n params['v' + str(i)] = v\n params['s' + str(i)] = s\n return corrected_durations\n", "role": "user" }, { "content": "predict_fixation_duration", "role": "assistant" } ]
def x(fm, field='SUBJECTINDEX', method=predict_fixation_duration, data=None): if data is None: fma, dura, faa, adsa, ldsa = prepare_data(fm, dur_cap=700, max_back=5) adsa = adsa[0] ldsa = ldsa[0] else: fma, dura, faa, adsa, ldsa = data fma = fma.copy() sub_effects = [] sub_predictions = [] parameters = [] for i, fmsub in enumerate(np.unique(fma.field(field))): id = fma.field(field) == fmsub dur, fa, ads, lds = dura[id], faa[id], adsa[id], ldsa[id] params = {} _ = method(dur, fa, lds, params=params) ps = params['v0'] ld_corrected = leastsq_only_dist(lds, ps[4], ps[5]) prediction = leastsq_only_angle(fa, ps[0], ps[1], ps[2], ps[3]) sub_predictions += [saccadic_momentum_effect(prediction, fa)] sub_effects += [saccadic_momentum_effect(dur - ld_corrected, fa)] parameters += [ps] return np.array(sub_effects), np.array(sub_predictions), parameters
subject_predictions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, field='SUBJECTINDEX', method=predict_fixation_duration, data=None):\n if data is None:\n fma, dura, faa, adsa, ldsa = prepare_data(fm, dur_cap=700, max_back=5)\n adsa = adsa[0]\n ldsa = ldsa[0]\n else:\n fma, dura, faa, adsa, ldsa = data\n fma = fma.copy()\n sub_effects = []\n sub_predictions = []\n parameters = []\n for i, fmsub in enumerate(np.unique(fma.field(field))):\n id = fma.field(field) == fmsub\n dur, fa, ads, lds = dura[id], faa[id], adsa[id], ldsa[id]\n params = {}\n _ = method(dur, fa, lds, params=params)\n ps = params['v0']\n ld_corrected = leastsq_only_dist(lds, ps[4], ps[5])\n prediction = leastsq_only_angle(fa, ps[0], ps[1], ps[2], ps[3])\n sub_predictions += [saccadic_momentum_effect(prediction, fa)]\n sub_effects += [saccadic_momentum_effect(dur - ld_corrected, fa)]\n parameters += [ps]\n return np.array(sub_effects), np.array(sub_predictions), parameters\n", "role": "user" }, { "content": "subject_predictions", "role": "assistant" } ]
def x(fm, category, predicting_filenumbers, predicting_subjects, predicted_filenumbers, predicted_subjects, controls=True, scale_factor=1): predicting_fm = fm[ismember(fm.SUBJECTINDEX, predicting_subjects) & ismember(fm.filenumber, predicting_filenumbers) & (fm.category == category)] predicted_fm = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) & ismember(fm.filenumber, predicted_filenumbers) & (fm.category == category)] try: predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor) except RuntimeError: predicting_fdm = None if controls == True: fm_controls = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) & ( ismember(fm.filenumber, predicted_filenumbers) != True) & (fm. category == category)] return measures.prediction_scores(predicting_fdm, predicted_fm, controls=(fm_controls.y, fm_controls.x)) return measures.prediction_scores(predicting_fdm, predicted_fm, controls=None)
intersubject_scores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, category, predicting_filenumbers, predicting_subjects,\n predicted_filenumbers, predicted_subjects, controls=True, scale_factor=1):\n predicting_fm = fm[ismember(fm.SUBJECTINDEX, predicting_subjects) &\n ismember(fm.filenumber, predicting_filenumbers) & (fm.category ==\n category)]\n predicted_fm = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) &\n ismember(fm.filenumber, predicted_filenumbers) & (fm.category ==\n category)]\n try:\n predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n if controls == True:\n fm_controls = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) & (\n ismember(fm.filenumber, predicted_filenumbers) != True) & (fm.\n category == category)]\n return measures.prediction_scores(predicting_fdm, predicted_fm,\n controls=(fm_controls.y, fm_controls.x))\n return measures.prediction_scores(predicting_fdm, predicted_fm,\n controls=None)\n", "role": "user" }, { "content": "intersubject_scores", "role": "assistant" } ]