source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(directory, hash_type='md5', **kwargs):
size_map, hash_map = defaultdict(list), defaultdict(list)
for item in find_files(directory, **kwargs):
file_size = os.path.getsize(item)
size_map[file_size].append(item)
for possible_dups in (v for v in size_map.values() if len(v) > 1):
for each_item in possible_dups:
item_hash = file_hash(each_item, hash_type=hash_type)
hash_map[item_hash].append(each_item)
return [v for v in hash_map.values() if len(v) > 1]
|
directory_duplicates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory, hash_type='md5', **kwargs):\n size_map, hash_map = defaultdict(list), defaultdict(list)\n for item in find_files(directory, **kwargs):\n file_size = os.path.getsize(item)\n size_map[file_size].append(item)\n for possible_dups in (v for v in size_map.values() if len(v) > 1):\n for each_item in possible_dups:\n item_hash = file_hash(each_item, hash_type=hash_type)\n hash_map[item_hash].append(each_item)\n return [v for v in hash_map.values() if len(v) > 1]\n",
"role": "user"
},
{
"content": "directory_duplicates",
"role": "assistant"
}
] |
def x(*paths, **kwargs):
path = os.path.abspath(paths[0])
for next_path in paths[1:]:
path = os.path.join(path, next_path.lstrip('\\').lstrip('/').strip())
path.rstrip(os.sep)
return path if not kwargs.get('safe') else safe_path(path)
|
join_paths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*paths, **kwargs):\n path = os.path.abspath(paths[0])\n for next_path in paths[1:]:\n path = os.path.join(path, next_path.lstrip('\\\\').lstrip('/').strip())\n path.rstrip(os.sep)\n return path if not kwargs.get('safe') else safe_path(path)\n",
"role": "user"
},
{
"content": "join_paths",
"role": "assistant"
}
] |
def x(*paths, **kwargs):
path = os.path.abspath('.')
for next_path in paths:
next_path = next_path.lstrip('\\').lstrip('/').strip(
) if not kwargs.get('strict') else next_path
path = os.path.abspath(os.path.join(path, next_path))
return path if not kwargs.get('safe') else safe_path(path)
|
join_here
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*paths, **kwargs):\n path = os.path.abspath('.')\n for next_path in paths:\n next_path = next_path.lstrip('\\\\').lstrip('/').strip(\n ) if not kwargs.get('strict') else next_path\n path = os.path.abspath(os.path.join(path, next_path))\n return path if not kwargs.get('safe') else safe_path(path)\n",
"role": "user"
},
{
"content": "join_here",
"role": "assistant"
}
] |
def x(filename):
if not isinstance(filename, str):
raise TypeError('filename must be a string')
if regex.path.linux.filename.search(filename):
return True
return False
|
check_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if not isinstance(filename, str):\n raise TypeError('filename must be a string')\n if regex.path.linux.filename.search(filename):\n return True\n return False\n",
"role": "user"
},
{
"content": "check_filename",
"role": "assistant"
}
] |
def x(filename, replacement='_'):
if not isinstance(filename, str):
raise TypeError('filename must be a string')
if regex.path.linux.filename.search(filename):
return filename
safe_name = ''
for char in filename:
safe_name += char if regex.path.linux.filename.search(char
) else replacement
return safe_name
|
safe_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, replacement='_'):\n if not isinstance(filename, str):\n raise TypeError('filename must be a string')\n if regex.path.linux.filename.search(filename):\n return filename\n safe_name = ''\n for char in filename:\n safe_name += char if regex.path.linux.filename.search(char\n ) else replacement\n return safe_name\n",
"role": "user"
},
{
"content": "safe_filename",
"role": "assistant"
}
] |
def x(path, replacement='_'):
if not isinstance(path, str):
raise TypeError('path must be a string')
if os.sep not in path:
return safe_filename(path, replacement=replacement)
filename = safe_filename(os.path.basename(path))
dirname = os.path.dirname(path)
safe_dirname = ''
regexp = regex.path.windows.safe if win_based else regex.path.linux.safe
if win_based and dirname.find(':\\') == 1 and dirname[0].isalpha():
safe_dirname = dirname[0:3]
dirname = dirname[3:]
if regexp.search(dirname) and check_filename(filename):
return path
else:
for char in dirname:
safe_dirname += char if regexp.search(char) else replacement
sanitized_path = os.path.normpath('{path}{sep}{filename}'.format(path=
safe_dirname, sep=os.sep if not safe_dirname.endswith(os.sep) else
'', filename=filename))
if not filename and path.endswith(os.sep) and not sanitized_path.endswith(
os.sep):
sanitized_path += os.sep
return sanitized_path
|
safe_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, replacement='_'):\n if not isinstance(path, str):\n raise TypeError('path must be a string')\n if os.sep not in path:\n return safe_filename(path, replacement=replacement)\n filename = safe_filename(os.path.basename(path))\n dirname = os.path.dirname(path)\n safe_dirname = ''\n regexp = regex.path.windows.safe if win_based else regex.path.linux.safe\n if win_based and dirname.find(':\\\\') == 1 and dirname[0].isalpha():\n safe_dirname = dirname[0:3]\n dirname = dirname[3:]\n if regexp.search(dirname) and check_filename(filename):\n return path\n else:\n for char in dirname:\n safe_dirname += char if regexp.search(char) else replacement\n sanitized_path = os.path.normpath('{path}{sep}{filename}'.format(path=\n safe_dirname, sep=os.sep if not safe_dirname.endswith(os.sep) else\n '', filename=filename))\n if not filename and path.endswith(os.sep) and not sanitized_path.endswith(\n os.sep):\n sanitized_path += os.sep\n return sanitized_path\n",
"role": "user"
},
{
"content": "safe_path",
"role": "assistant"
}
] |
def x(self, size):
self._pause.value = True
self.log.debug('About to change task size to {0}'.format(size))
try:
size = int(size)
except ValueError:
self.log.error('Cannot change task size, non integer size provided')
return False
if size < 0:
self.log.error('Cannot change task size, less than 0 size provided')
return False
self.max_tasks = size
if size < self.max_tasks:
diff = self.max_tasks - size
self.log.debug('Reducing size offset by {0}'.format(diff))
while True:
self._update_tasks()
if len(self.free_tasks) >= diff:
for i in range(diff):
task_id = self.free_tasks.pop(0)
del self.current_tasks[task_id]
break
time.sleep(0.5)
if not size:
self._reset_and_pause()
return True
elif size > self.max_tasks:
diff = size - self.max_tasks
for i in range(diff):
task_id = str(uuid.uuid4())
self.current_tasks[task_id] = {}
self.free_tasks.append(task_id)
self._pause.value = False
self.log.debug('Task size changed to {0}'.format(size))
return True
|
change_task_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size):\n self._pause.value = True\n self.log.debug('About to change task size to {0}'.format(size))\n try:\n size = int(size)\n except ValueError:\n self.log.error('Cannot change task size, non integer size provided')\n return False\n if size < 0:\n self.log.error('Cannot change task size, less than 0 size provided')\n return False\n self.max_tasks = size\n if size < self.max_tasks:\n diff = self.max_tasks - size\n self.log.debug('Reducing size offset by {0}'.format(diff))\n while True:\n self._update_tasks()\n if len(self.free_tasks) >= diff:\n for i in range(diff):\n task_id = self.free_tasks.pop(0)\n del self.current_tasks[task_id]\n break\n time.sleep(0.5)\n if not size:\n self._reset_and_pause()\n return True\n elif size > self.max_tasks:\n diff = size - self.max_tasks\n for i in range(diff):\n task_id = str(uuid.uuid4())\n self.current_tasks[task_id] = {}\n self.free_tasks.append(task_id)\n self._pause.value = False\n self.log.debug('Task size changed to {0}'.format(size))\n return True\n",
"role": "user"
},
{
"content": "change_task_size",
"role": "assistant"
}
] |
def x(self):
self._end.value = True
if self.background_process:
try:
self.background_process.terminate()
except Exception:
pass
for task_id, values in self.current_tasks.items():
try:
values['proc'].terminate()
except Exception:
pass
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._end.value = True\n if self.background_process:\n try:\n self.background_process.terminate()\n except Exception:\n pass\n for task_id, values in self.current_tasks.items():\n try:\n values['proc'].terminate()\n except Exception:\n pass\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self):
return {'started': True if self.background_process and self.
background_process.is_alive() else False, 'paused': self._pause.
value, 'stopped': self._end.value, 'tasks': len(self.current_tasks),
'busy_tasks': len(self.busy_tasks), 'free_tasks': len(self.free_tasks)}
|
get_state
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'started': True if self.background_process and self.\n background_process.is_alive() else False, 'paused': self._pause.\n value, 'stopped': self._end.value, 'tasks': len(self.current_tasks),\n 'busy_tasks': len(self.busy_tasks), 'free_tasks': len(self.free_tasks)}\n",
"role": "user"
},
{
"content": "get_state",
"role": "assistant"
}
] |
def x(self, stop_at_empty=False):
try:
while True:
self.hook_pre_command()
self._check_command_queue()
if self.run_until and self.run_until < datetime.datetime.now():
self.log.info('Time limit reached')
break
if self._end.value:
break
if self._pause.value:
time.sleep(0.5)
continue
self.hook_post_command()
self._update_tasks()
task_id = self._free_task()
if task_id:
try:
task = self.task_queue.get(timeout=0.1)
except queue.Empty:
if stop_at_empty:
break
self._return_task(task_id)
else:
self.hook_pre_task()
self.log.debug('Starting task on {0}'.format(task_id))
try:
self._start_task(task_id, task)
except Exception as err:
self.log.exception('Could not start task {0} - {1}'
.format(task_id, err))
else:
self.hook_post_task()
finally:
self.log.info('Ending main loop')
|
main_loop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stop_at_empty=False):\n try:\n while True:\n self.hook_pre_command()\n self._check_command_queue()\n if self.run_until and self.run_until < datetime.datetime.now():\n self.log.info('Time limit reached')\n break\n if self._end.value:\n break\n if self._pause.value:\n time.sleep(0.5)\n continue\n self.hook_post_command()\n self._update_tasks()\n task_id = self._free_task()\n if task_id:\n try:\n task = self.task_queue.get(timeout=0.1)\n except queue.Empty:\n if stop_at_empty:\n break\n self._return_task(task_id)\n else:\n self.hook_pre_task()\n self.log.debug('Starting task on {0}'.format(task_id))\n try:\n self._start_task(task_id, task)\n except Exception as err:\n self.log.exception('Could not start task {0} - {1}'\n .format(task_id, err))\n else:\n self.hook_post_task()\n finally:\n self.log.info('Ending main loop')\n",
"role": "user"
},
{
"content": "main_loop",
"role": "assistant"
}
] |
def x(self):
if win_based:
raise NotImplementedError(
'Please run main_loop, backgrounding not supported on Windows')
self.background_process = mp.Process(target=self.main_loop)
self.background_process.start()
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if win_based:\n raise NotImplementedError(\n 'Please run main_loop, backgrounding not supported on Windows')\n self.background_process = mp.Process(target=self.main_loop)\n self.background_process.start()\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(command, ignore_stderr=False, raise_on_return=False, timeout=None,
encoding='utf-8'):
result = run(command, timeout=timeout, shell=True)
if raise_on_return:
result.check_returncode()
print(result.stdout.decode(encoding))
if not ignore_stderr and result.stderr:
print(result.stderr.decode(encoding))
|
cmd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, ignore_stderr=False, raise_on_return=False, timeout=None,\n encoding='utf-8'):\n result = run(command, timeout=timeout, shell=True)\n if raise_on_return:\n result.check_returncode()\n print(result.stdout.decode(encoding))\n if not ignore_stderr and result.stderr:\n print(result.stderr.decode(encoding))\n",
"role": "user"
},
{
"content": "cmd",
"role": "assistant"
}
] |
def x(directory):
directory = os.path.expanduser(directory)
_saved_paths.insert(0, os.path.abspath(os.getcwd()))
os.chdir(directory)
return [directory] + _saved_paths
|
pushd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory):\n directory = os.path.expanduser(directory)\n _saved_paths.insert(0, os.path.abspath(os.getcwd()))\n os.chdir(directory)\n return [directory] + _saved_paths\n",
"role": "user"
},
{
"content": "pushd",
"role": "assistant"
}
] |
def x():
try:
directory = _saved_paths.pop(0)
except IndexError:
return [os.getcwd()]
os.chdir(directory)
return [directory] + _saved_paths
|
popd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n directory = _saved_paths.pop(0)\n except IndexError:\n return [os.getcwd()]\n os.chdir(directory)\n return [directory] + _saved_paths\n",
"role": "user"
},
{
"content": "popd",
"role": "assistant"
}
] |
def x(params='', directory='.', printed=True):
command = '{0} {1} {2}'.format('ls' if not win_based else 'dir', params,
directory)
response = run(command, shell=True)
response.check_returncode()
if printed:
print(response.stdout.decode('utf-8'))
else:
return response.stdout
|
ls
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params='', directory='.', printed=True):\n command = '{0} {1} {2}'.format('ls' if not win_based else 'dir', params,\n directory)\n response = run(command, shell=True)\n response.check_returncode()\n if printed:\n print(response.stdout.decode('utf-8'))\n else:\n return response.stdout\n",
"role": "user"
},
{
"content": "ls",
"role": "assistant"
}
] |
def x(name=None, ext=None, directory='.', match_case=False, disable_glob=
False, depth=None):
return find_files_list(directory=directory, ext=ext, name=name,
match_case=match_case, disable_glob=disable_glob, depth=depth)
|
find
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name=None, ext=None, directory='.', match_case=False, disable_glob=\n False, depth=None):\n return find_files_list(directory=directory, ext=ext, name=name,\n match_case=match_case, disable_glob=disable_glob, depth=depth)\n",
"role": "user"
},
{
"content": "find",
"role": "assistant"
}
] |
def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):
data = []
with open(file_path, 'rb') as f:
for _ in range(lines):
try:
if python_version >= (2, 7):
data.append(next(f).decode(encoding, errors=errors))
else:
data.append(next(f).decode(encoding))
except StopIteration:
break
if printed:
print(''.join(data))
else:
return data
|
head
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):\n data = []\n with open(file_path, 'rb') as f:\n for _ in range(lines):\n try:\n if python_version >= (2, 7):\n data.append(next(f).decode(encoding, errors=errors))\n else:\n data.append(next(f).decode(encoding))\n except StopIteration:\n break\n if printed:\n print(''.join(data))\n else:\n return data\n",
"role": "user"
},
{
"content": "head",
"role": "assistant"
}
] |
def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):
data = deque()
with open(file_path, 'rb') as f:
for line in f:
if python_version >= (2, 7):
data.append(line.decode(encoding, errors=errors))
else:
data.append(line.decode(encoding))
if len(data) > lines:
data.popleft()
if printed:
print(''.join(data))
else:
return data
|
tail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, lines=10, encoding='utf-8', printed=True, errors='strict'):\n data = deque()\n with open(file_path, 'rb') as f:\n for line in f:\n if python_version >= (2, 7):\n data.append(line.decode(encoding, errors=errors))\n else:\n data.append(line.decode(encoding))\n if len(data) > lines:\n data.popleft()\n if printed:\n print(''.join(data))\n else:\n return data\n",
"role": "user"
},
{
"content": "tail",
"role": "assistant"
}
] |
def x(src, dst, overwrite=False):
if not isinstance(src, list):
src = [src]
dst = os.path.expanduser(dst)
dst_folder = os.path.isdir(dst)
if len(src) > 1 and not dst_folder:
raise OSError('Cannot copy multiple item to same file')
for item in src:
source = os.path.expanduser(item)
destination = dst if not dst_folder else os.path.join(dst, os.path.
basename(source))
if not overwrite and os.path.exists(destination):
_logger.warning('Not replacing {0} with {1}, overwrite not enabled'
.format(destination, source))
continue
shutil.copy(source, destination)
|
cp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src, dst, overwrite=False):\n if not isinstance(src, list):\n src = [src]\n dst = os.path.expanduser(dst)\n dst_folder = os.path.isdir(dst)\n if len(src) > 1 and not dst_folder:\n raise OSError('Cannot copy multiple item to same file')\n for item in src:\n source = os.path.expanduser(item)\n destination = dst if not dst_folder else os.path.join(dst, os.path.\n basename(source))\n if not overwrite and os.path.exists(destination):\n _logger.warning('Not replacing {0} with {1}, overwrite not enabled'\n .format(destination, source))\n continue\n shutil.copy(source, destination)\n",
"role": "user"
},
{
"content": "cp",
"role": "assistant"
}
] |
def x(string, characters=2, trailing='normal'):
split_str = [string[i:i + characters] for i in range(0, len(string),
characters)]
if trailing != 'normal' and len(split_str[-1]) != characters:
if trailing.lower() == 'remove':
return split_str[:-1]
if trailing.lower() == 'combine' and len(split_str) >= 2:
return split_str[:-2] + [split_str[-2] + split_str[-1]]
if trailing.lower() == 'error':
raise IndexError('String of length {0} not divisible by {1} to cut'
.format(len(string), characters))
return split_str
|
cut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, characters=2, trailing='normal'):\n split_str = [string[i:i + characters] for i in range(0, len(string),\n characters)]\n if trailing != 'normal' and len(split_str[-1]) != characters:\n if trailing.lower() == 'remove':\n return split_str[:-1]\n if trailing.lower() == 'combine' and len(split_str) >= 2:\n return split_str[:-2] + [split_str[-2] + split_str[-1]]\n if trailing.lower() == 'error':\n raise IndexError('String of length {0} not divisible by {1} to cut'\n .format(len(string), characters))\n return split_str\n",
"role": "user"
},
{
"content": "cut",
"role": "assistant"
}
] |
def x(integer):
if not isinstance(integer, int):
raise ValueError('Input integer must be of type int')
output = []
while integer > 0:
for r, i in sorted(_roman_dict.items(), key=lambda x: x[1], reverse
=True):
while integer >= i:
output.append(r)
integer -= i
return ''.join(output)
|
int_to_roman
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(integer):\n if not isinstance(integer, int):\n raise ValueError('Input integer must be of type int')\n output = []\n while integer > 0:\n for r, i in sorted(_roman_dict.items(), key=lambda x: x[1], reverse\n =True):\n while integer >= i:\n output.append(r)\n integer -= i\n return ''.join(output)\n",
"role": "user"
},
{
"content": "int_to_roman",
"role": "assistant"
}
] |
def x(roman_string):
roman_string = roman_string.upper().strip()
if 'IIII' in roman_string:
raise ValueError('Malformed roman string')
value = 0
skip_one = False
last_number = None
for i, letter in enumerate(roman_string):
if letter not in _roman_dict:
raise ValueError('Malformed roman string')
if skip_one:
skip_one = False
continue
if i < len(roman_string) - 1:
double_check = letter + roman_string[i + 1]
if double_check in _roman_dict:
if last_number and _roman_dict[double_check] > last_number:
raise ValueError('Malformed roman string')
last_number = _roman_dict[double_check]
value += _roman_dict[double_check]
skip_one = True
continue
if last_number and _roman_dict[letter] > last_number:
raise ValueError('Malformed roman string')
last_number = _roman_dict[letter]
value += _roman_dict[letter]
return value
|
roman_to_int
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(roman_string):\n roman_string = roman_string.upper().strip()\n if 'IIII' in roman_string:\n raise ValueError('Malformed roman string')\n value = 0\n skip_one = False\n last_number = None\n for i, letter in enumerate(roman_string):\n if letter not in _roman_dict:\n raise ValueError('Malformed roman string')\n if skip_one:\n skip_one = False\n continue\n if i < len(roman_string) - 1:\n double_check = letter + roman_string[i + 1]\n if double_check in _roman_dict:\n if last_number and _roman_dict[double_check] > last_number:\n raise ValueError('Malformed roman string')\n last_number = _roman_dict[double_check]\n value += _roman_dict[double_check]\n skip_one = True\n continue\n if last_number and _roman_dict[letter] > last_number:\n raise ValueError('Malformed roman string')\n last_number = _roman_dict[letter]\n value += _roman_dict[letter]\n return value\n",
"role": "user"
},
{
"content": "roman_to_int",
"role": "assistant"
}
] |
def x(number, european=False):
def x(n):
return '' if n == 0 else _numbers[n]
def x(n):
teen = int('{0}{1}'.format(n[0], n[1]))
if n[0] == 0:
return ones(n[1])
if teen in _numbers:
return _numbers[teen]
else:
ten = _numbers[int('{0}0'.format(n[0]))]
one = _numbers[n[1]]
return '{0}-{1}'.format(ten, one)
def x(n):
if n[0] == 0:
return tens(n[1:])
else:
t = tens(n[1:])
return '{0} hundred {1}'.format(_numbers[n[0]], '' if not t else t)
def x(list_of_strings):
if len(list_of_strings) > 1:
return '{0} '.format('' if len(list_of_strings) == 2 else ','
).join(list_of_strings)
else:
return list_of_strings[0]
def x(list_of_numbers, final_list):
index = 0
group_set = int(len(list_of_numbers) / 3)
while group_set != 0:
value = hundreds(list_of_numbers[index:index + 3])
if value:
final_list.append('{0} {1}'.format(value, _places[group_set
]) if _places[group_set] else value)
group_set -= 1
index += 3
number_list = []
decimal_list = []
decimal = ''
number = str(number)
group_delimiter, point_delimiter = (',', '.') if not european else ('.',
',')
if point_delimiter in number:
decimal = number.split(point_delimiter)[1]
number = number.split(point_delimiter)[0].replace(group_delimiter, '')
elif group_delimiter in number:
number = number.replace(group_delimiter, '')
if not number.isdigit():
raise ValueError('Number is not numeric')
if decimal and not decimal.isdigit():
raise ValueError('Decimal is not numeric')
if int(number) == 0:
number_list.append('zero')
r = len(number) % 3
d_r = len(decimal) % 3
number = number.zfill(len(number) + 3 - r if r else 0)
f_decimal = decimal.zfill(len(decimal) + 3 - d_r if d_r else 0)
d = [int(x) for x in f_decimal]
n = [int(x) for x in number]
while_loop(n, number_list)
if decimal and int(decimal) != 0:
while_loop(d, decimal_list)
if decimal_list:
name = ''
if len(decimal) % 3 == 1:
name = 'ten'
elif len(decimal) % 3 == 2:
name = 'hundred'
place = int(str(len(decimal) / 3).split('.')[0])
number_list.append('and {0} {1}{2}{3}ths'.format(
comma_separated(decimal_list), name, '-' if name and
_places[place + 1] else '', _places[place + 1]))
return comma_separated(number_list)
|
int_to_words
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(number, european=False):\n\n def x(n):\n return '' if n == 0 else _numbers[n]\n\n def x(n):\n teen = int('{0}{1}'.format(n[0], n[1]))\n if n[0] == 0:\n return ones(n[1])\n if teen in _numbers:\n return _numbers[teen]\n else:\n ten = _numbers[int('{0}0'.format(n[0]))]\n one = _numbers[n[1]]\n return '{0}-{1}'.format(ten, one)\n\n def x(n):\n if n[0] == 0:\n return tens(n[1:])\n else:\n t = tens(n[1:])\n return '{0} hundred {1}'.format(_numbers[n[0]], '' if not t else t)\n\n def x(list_of_strings):\n if len(list_of_strings) > 1:\n return '{0} '.format('' if len(list_of_strings) == 2 else ','\n ).join(list_of_strings)\n else:\n return list_of_strings[0]\n\n def x(list_of_numbers, final_list):\n index = 0\n group_set = int(len(list_of_numbers) / 3)\n while group_set != 0:\n value = hundreds(list_of_numbers[index:index + 3])\n if value:\n final_list.append('{0} {1}'.format(value, _places[group_set\n ]) if _places[group_set] else value)\n group_set -= 1\n index += 3\n number_list = []\n decimal_list = []\n decimal = ''\n number = str(number)\n group_delimiter, point_delimiter = (',', '.') if not european else ('.',\n ',')\n if point_delimiter in number:\n decimal = number.split(point_delimiter)[1]\n number = number.split(point_delimiter)[0].replace(group_delimiter, '')\n elif group_delimiter in number:\n number = number.replace(group_delimiter, '')\n if not number.isdigit():\n raise ValueError('Number is not numeric')\n if decimal and not decimal.isdigit():\n raise ValueError('Decimal is not numeric')\n if int(number) == 0:\n number_list.append('zero')\n r = len(number) % 3\n d_r = len(decimal) % 3\n number = number.zfill(len(number) + 3 - r if r else 0)\n f_decimal = decimal.zfill(len(decimal) + 3 - d_r if d_r else 0)\n d = [int(x) for x in f_decimal]\n n = [int(x) for x in number]\n while_loop(n, number_list)\n if decimal and int(decimal) != 0:\n while_loop(d, decimal_list)\n if decimal_list:\n name = ''\n if len(decimal) % 3 == 1:\n name = 'ten'\n elif len(decimal) % 3 == 2:\n name = 'hundred'\n place = int(str(len(decimal) / 3).split('.')[0])\n number_list.append('and {0} {1}{2}{3}ths'.format(\n comma_separated(decimal_list), name, '-' if name and\n _places[place + 1] else '', _places[place + 1]))\n return comma_separated(number_list)\n",
"role": "user"
},
{
"content": "int_to_words",
"role": "assistant"
}
] |
def x():
print_info('Filtering OSM file...')
start_time = time.time()
if check_osmfilter():
params = config.osm_filter_params
command = './osmfilter' if platform.system(
) == 'Linux' else 'osmfilter.exe'
if platform.system() == 'Linux':
filter_command = '%s "%s" %s | pv > "%s"' % (command, config.
osm_map_filename, params, config.filtered_osm_filename)
else:
filter_command = '%s "%s" %s > "%s"' % (command, config.
osm_map_filename, params, config.filtered_osm_filename)
os.system(filter_command)
else:
print_info('Osmfilter not available. Exiting.')
exit(1)
print_info('Filtering finished. (%.2f secs)' % (time.time() - start_time))
|
filter_osm_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n print_info('Filtering OSM file...')\n start_time = time.time()\n if check_osmfilter():\n params = config.osm_filter_params\n command = './osmfilter' if platform.system(\n ) == 'Linux' else 'osmfilter.exe'\n if platform.system() == 'Linux':\n filter_command = '%s \"%s\" %s | pv > \"%s\"' % (command, config.\n osm_map_filename, params, config.filtered_osm_filename)\n else:\n filter_command = '%s \"%s\" %s > \"%s\"' % (command, config.\n osm_map_filename, params, config.filtered_osm_filename)\n os.system(filter_command)\n else:\n print_info('Osmfilter not available. Exiting.')\n exit(1)\n print_info('Filtering finished. (%.2f secs)' % (time.time() - start_time))\n",
"role": "user"
},
{
"content": "filter_osm_file",
"role": "assistant"
}
] |
def x():
try:
jobs_module = settings.RQ_JOBS_MODULE
except AttributeError:
raise ImproperlyConfigured(_(
'You have to define RQ_JOBS_MODULE in settings.py'))
if isinstance(jobs_module, string_types):
jobs_modules = jobs_module,
elif isinstance(jobs_module, (tuple, list)):
jobs_modules = jobs_module
else:
raise ImproperlyConfigured(_(
'RQ_JOBS_MODULE must be a string or a tuple'))
choices = []
for module in jobs_modules:
try:
tasks = importlib.import_module(module)
except ImportError:
raise ImproperlyConfigured(_('Can not find module {}').format(
module))
module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x
)) for x, y in list(tasks.__dict__.items()) if type(y) ==
FunctionType and hasattr(y, 'delay')]
choices.extend(module_choices)
choices.sort(key=lambda tup: tup[1])
return choices
|
task_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n try:\n jobs_module = settings.RQ_JOBS_MODULE\n except AttributeError:\n raise ImproperlyConfigured(_(\n 'You have to define RQ_JOBS_MODULE in settings.py'))\n if isinstance(jobs_module, string_types):\n jobs_modules = jobs_module,\n elif isinstance(jobs_module, (tuple, list)):\n jobs_modules = jobs_module\n else:\n raise ImproperlyConfigured(_(\n 'RQ_JOBS_MODULE must be a string or a tuple'))\n choices = []\n for module in jobs_modules:\n try:\n tasks = importlib.import_module(module)\n except ImportError:\n raise ImproperlyConfigured(_('Can not find module {}').format(\n module))\n module_choices = [('%s.%s' % (module, x), underscore_to_camelcase(x\n )) for x, y in list(tasks.__dict__.items()) if type(y) ==\n FunctionType and hasattr(y, 'delay')]\n choices.extend(module_choices)\n choices.sort(key=lambda tup: tup[1])\n return choices\n",
"role": "user"
},
{
"content": "task_list",
"role": "assistant"
}
] |
def x(self):
if not self.rq_id or not self.rq_origin:
return
try:
return RQJob.fetch(self.rq_id, connection=get_connection(self.
rq_origin))
except NoSuchJobError:
return
|
rq_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.rq_id or not self.rq_origin:\n return\n try:\n return RQJob.fetch(self.rq_id, connection=get_connection(self.\n rq_origin))\n except NoSuchJobError:\n return\n",
"role": "user"
},
{
"content": "rq_job",
"role": "assistant"
}
] |
def x(self):
if self.rq_job:
url = reverse('rq_job_detail', kwargs={'job_id': self.rq_id,
'queue_index': queue_index_by_name(self.rq_origin)})
return '<a href="{}">{}</a>'.format(url, self.rq_id)
|
rq_link
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.rq_job:\n url = reverse('rq_job_detail', kwargs={'job_id': self.rq_id,\n 'queue_index': queue_index_by_name(self.rq_origin)})\n return '<a href=\"{}\">{}</a>'.format(url, self.rq_id)\n",
"role": "user"
},
{
"content": "rq_link",
"role": "assistant"
}
] |
def x(self):
task_path = self.task.split('.')
module_name = '.'.join(task_path[:-1])
task_name = task_path[-1]
module = importlib.import_module(module_name)
return getattr(module, task_name)
|
rq_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n task_path = self.task.split('.')\n module_name = '.'.join(task_path[:-1])\n task_name = task_path[-1]\n module = importlib.import_module(module_name)\n return getattr(module, task_name)\n",
"role": "user"
},
{
"content": "rq_task",
"role": "assistant"
}
] |
def x(job):
modules = settings.RQ_JOBS_MODULE
if not type(modules) == tuple:
modules = [modules]
for module in modules:
try:
module_match = importlib.import_module(module)
if hasattr(module_match, job.task):
job.task = '{}.{}'.format(module, job.task)
break
except ImportError:
continue
return job
|
fix_module
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(job):\n modules = settings.RQ_JOBS_MODULE\n if not type(modules) == tuple:\n modules = [modules]\n for module in modules:\n try:\n module_match = importlib.import_module(module)\n if hasattr(module_match, job.task):\n job.task = '{}.{}'.format(module, job.task)\n break\n except ImportError:\n continue\n return job\n",
"role": "user"
},
{
"content": "fix_module",
"role": "assistant"
}
] |
async def drop_model_tables(models, **drop_table_kwargs):
"""Drop tables for all given models (in the right order)."""
for m in reversed(sort_models_topologically(models)):
await m.drop_table(**drop_table_kwargs)
|
drop_model_tables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def drop_model_tables(models, **drop_table_kwargs):\n \"\"\"Drop tables for all given models (in the right order).\"\"\"\n for m in reversed(sort_models_topologically(models)):\n await m.drop_table(**drop_table_kwargs)\n",
"role": "user"
},
{
"content": "drop_model_tables",
"role": "assistant"
}
] |
async def model_to_dict(model, recurse=True, backrefs=False, only=None,
exclude=None, seen=None, extra_attrs=None, fields_from_query=None,
max_depth=None):
"""
Convert a model instance (and any related objects) to a dictionary.
:param bool recurse: Whether foreign-keys should be recursed.
:param bool backrefs: Whether lists of related objects should be recursed.
:param only: A list (or set) of field instances indicating which fields
should be included.
:param exclude: A list (or set) of field instances that should be
excluded from the dictionary.
:param list extra_attrs: Names of model instance attributes or methods
that should be included.
:param SelectQuery fields_from_query: Query that was source of model. Take
fields explicitly selected by the query and serialize them.
:param int max_depth: Maximum depth to recurse, value <= 0 means no max.
"""
max_depth = -1 if max_depth is None else max_depth
if max_depth == 0:
recurse = False
only = _clone_set(only)
extra_attrs = _clone_set(extra_attrs)
if fields_from_query is not None:
for item in fields_from_query._select:
if isinstance(item, Field):
only.add(item)
elif isinstance(item, Node) and item._alias:
extra_attrs.add(item._alias)
data = {}
exclude = _clone_set(exclude)
seen = _clone_set(seen)
exclude |= seen
model_class = type(model)
for field in model._meta.declared_fields:
if field in exclude or only and field not in only:
continue
field_data = model._data.get(field.name)
if isinstance(field, ForeignKeyField) and recurse:
if field_data:
seen.add(field)
rel_obj = getattr(model, field.name)
if iscoroutine(rel_obj):
rel_obj = await rel_obj
field_data = await model_to_dict(rel_obj, recurse=recurse,
backrefs=backrefs, only=only, exclude=exclude, seen=
seen, max_depth=max_depth - 1)
else:
field_data = None
data[field.name] = field_data
if extra_attrs:
for attr_name in extra_attrs:
attr = getattr(model, attr_name)
if callable(attr):
data[attr_name] = attr()
else:
data[attr_name] = attr
if backrefs and recurse:
for related_name, foreign_key in model._meta.reverse_rel.items():
descriptor = getattr(model_class, related_name)
if descriptor in exclude or foreign_key in exclude:
continue
if only and descriptor not in only and foreign_key not in only:
continue
accum = []
exclude.add(foreign_key)
related_query = getattr(model, related_name + '_prefetch',
getattr(model, related_name))
async for rel_obj in related_query:
accum.append(await model_to_dict(rel_obj, recurse=recurse,
backrefs=backrefs, only=only, exclude=exclude,
max_depth=max_depth - 1))
data[related_name] = accum
return data
|
model_to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def model_to_dict(model, recurse=True, backrefs=False, only=None,\n exclude=None, seen=None, extra_attrs=None, fields_from_query=None,\n max_depth=None):\n \"\"\"\n Convert a model instance (and any related objects) to a dictionary.\n :param bool recurse: Whether foreign-keys should be recursed.\n :param bool backrefs: Whether lists of related objects should be recursed.\n :param only: A list (or set) of field instances indicating which fields\n should be included.\n :param exclude: A list (or set) of field instances that should be\n excluded from the dictionary.\n :param list extra_attrs: Names of model instance attributes or methods\n that should be included.\n :param SelectQuery fields_from_query: Query that was source of model. Take\n fields explicitly selected by the query and serialize them.\n :param int max_depth: Maximum depth to recurse, value <= 0 means no max.\n \"\"\"\n max_depth = -1 if max_depth is None else max_depth\n if max_depth == 0:\n recurse = False\n only = _clone_set(only)\n extra_attrs = _clone_set(extra_attrs)\n if fields_from_query is not None:\n for item in fields_from_query._select:\n if isinstance(item, Field):\n only.add(item)\n elif isinstance(item, Node) and item._alias:\n extra_attrs.add(item._alias)\n data = {}\n exclude = _clone_set(exclude)\n seen = _clone_set(seen)\n exclude |= seen\n model_class = type(model)\n for field in model._meta.declared_fields:\n if field in exclude or only and field not in only:\n continue\n field_data = model._data.get(field.name)\n if isinstance(field, ForeignKeyField) and recurse:\n if field_data:\n seen.add(field)\n rel_obj = getattr(model, field.name)\n if iscoroutine(rel_obj):\n rel_obj = await rel_obj\n field_data = await model_to_dict(rel_obj, recurse=recurse,\n backrefs=backrefs, only=only, exclude=exclude, seen=\n seen, max_depth=max_depth - 1)\n else:\n field_data = None\n data[field.name] = field_data\n if extra_attrs:\n for attr_name in extra_attrs:\n attr = getattr(model, attr_name)\n if callable(attr):\n data[attr_name] = attr()\n else:\n data[attr_name] = attr\n if backrefs and recurse:\n for related_name, foreign_key in model._meta.reverse_rel.items():\n descriptor = getattr(model_class, related_name)\n if descriptor in exclude or foreign_key in exclude:\n continue\n if only and descriptor not in only and foreign_key not in only:\n continue\n accum = []\n exclude.add(foreign_key)\n related_query = getattr(model, related_name + '_prefetch',\n getattr(model, related_name))\n async for rel_obj in related_query:\n accum.append(await model_to_dict(rel_obj, recurse=recurse,\n backrefs=backrefs, only=only, exclude=exclude,\n max_depth=max_depth - 1))\n data[related_name] = accum\n return data\n",
"role": "user"
},
{
"content": "model_to_dict",
"role": "assistant"
}
] |
async def extract_rows(self, file_or_name, **reader_kwargs):
"""
Extract `self.sample_size` rows from the CSV file and analyze their
data-types.
:param str file_or_name: A string filename or a file handle.
:param reader_kwargs: Arbitrary parameters to pass to the CSV reader.
:returns: A 2-tuple containing a list of headers and list of rows
read from the CSV file.
"""
rows = []
rows_to_read = self.sample_size
async with self.get_reader(file_or_name, **reader_kwargs) as reader:
if self.has_header:
rows_to_read += 1
for i in range(self.sample_size):
try:
row = await reader.__anext__()
except AttributeError as te:
row = next(reader)
except:
raise
rows.append(row)
if self.has_header:
header, rows = rows[0], rows[1:]
else:
header = [('field_%d' % i) for i in range(len(rows[0]))]
return header, rows
|
extract_rows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def extract_rows(self, file_or_name, **reader_kwargs):\n \"\"\"\n Extract `self.sample_size` rows from the CSV file and analyze their\n data-types.\n :param str file_or_name: A string filename or a file handle.\n :param reader_kwargs: Arbitrary parameters to pass to the CSV reader.\n :returns: A 2-tuple containing a list of headers and list of rows\n read from the CSV file.\n \"\"\"\n rows = []\n rows_to_read = self.sample_size\n async with self.get_reader(file_or_name, **reader_kwargs) as reader:\n if self.has_header:\n rows_to_read += 1\n for i in range(self.sample_size):\n try:\n row = await reader.__anext__()\n except AttributeError as te:\n row = next(reader)\n except:\n raise\n rows.append(row)\n if self.has_header:\n header, rows = rows[0], rows[1:]\n else:\n header = [('field_%d' % i) for i in range(len(rows[0]))]\n return header, rows\n",
"role": "user"
},
{
"content": "extract_rows",
"role": "assistant"
}
] |
def x(self):
return [self.is_date, self.is_datetime, self.is_integer, self.is_float,
self.default]
|
get_checks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [self.is_date, self.is_datetime, self.is_integer, self.is_float,\n self.default]\n",
"role": "user"
},
{
"content": "get_checks",
"role": "assistant"
}
] |
def x(self, rows):
transposed = zip(*rows)
checks = self.get_checks()
column_types = []
for i, column in enumerate(transposed):
col_vals = [val for val in column if val != '']
for check in checks:
results = set(check(val) for val in col_vals)
if all(results):
column_types.append(check.field())
break
return column_types
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rows):\n transposed = zip(*rows)\n checks = self.get_checks()\n column_types = []\n for i, column in enumerate(transposed):\n col_vals = [val for val in column if val != '']\n for check in checks:\n results = set(check(val) for val in col_vals)\n if all(results):\n column_types.append(check.field())\n break\n return column_types\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(self, text):
if text is None:
return ''
text = re.sub(ILLEGAL_CHARACTERS_RE, '', text)
if '<' in text or '<' in text:
text = clean(text, tags=self.tags, strip=self.strip)
return unescape(text)
|
clean_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n if text is None:\n return ''\n text = re.sub(ILLEGAL_CHARACTERS_RE, '', text)\n if '<' in text or '<' in text:\n text = clean(text, tags=self.tags, strip=self.strip)\n return unescape(text)\n",
"role": "user"
},
{
"content": "clean_text",
"role": "assistant"
}
] |
def x(self, category=None, image=None, feature=None):
filename = None
if not category is None:
filename = join(self.impath, str(category))
if not image is None:
assert not category is None, 'The category has to be given if the image is given'
filename = join(filename, '%s_%s.png' % (str(category), str(image)))
if not feature is None:
assert category != None and image != None, 'If a feature name is given the category and image also have to be given.'
filename = join(self.ftrpath, str(category), feature, '%s_%s.mat' %
(str(category), str(image)))
return filename
|
path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, category=None, image=None, feature=None):\n filename = None\n if not category is None:\n filename = join(self.impath, str(category))\n if not image is None:\n assert not category is None, 'The category has to be given if the image is given'\n filename = join(filename, '%s_%s.png' % (str(category), str(image)))\n if not feature is None:\n assert category != None and image != None, 'If a feature name is given the category and image also have to be given.'\n filename = join(self.ftrpath, str(category), feature, '%s_%s.mat' %\n (str(category), str(image)))\n return filename\n",
"role": "user"
},
{
"content": "path",
"role": "assistant"
}
] |
def x(self, cat, img):
filename = self.path(cat, img)
data = []
if filename.endswith('mat'):
data = loadmat(filename)['output']
else:
data = imread(filename)
if self.size is not None:
return imresize(data, self.size)
else:
return data
|
get_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cat, img):\n filename = self.path(cat, img)\n data = []\n if filename.endswith('mat'):\n data = loadmat(filename)['output']\n else:\n data = imread(filename)\n if self.size is not None:\n return imresize(data, self.size)\n else:\n return data\n",
"role": "user"
},
{
"content": "get_image",
"role": "assistant"
}
] |
def x(self, cat, img, feature):
filename = self.path(cat, img, feature)
data = loadmat(filename)
name = [k for k in list(data.keys()) if not k.startswith('__')]
if self.size is not None:
return imresize(data[name.pop()], self.size)
return data[name.pop()]
|
get_feature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cat, img, feature):\n filename = self.path(cat, img, feature)\n data = loadmat(filename)\n name = [k for k in list(data.keys()) if not k.startswith('__')]\n if self.size is not None:\n return imresize(data[name.pop()], self.size)\n return data[name.pop()]\n",
"role": "user"
},
{
"content": "get_feature",
"role": "assistant"
}
] |
def x(self, cat, img, data):
filename = self.path(cat, img)
mkdir(filename)
if type(data) == np.ndarray:
data = Image.fromarray(data).convert('RGB')
data.save(filename)
|
save_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cat, img, data):\n filename = self.path(cat, img)\n mkdir(filename)\n if type(data) == np.ndarray:\n data = Image.fromarray(data).convert('RGB')\n data.save(filename)\n",
"role": "user"
},
{
"content": "save_image",
"role": "assistant"
}
] |
def x(self, cat, img, feature, data):
filename = self.path(cat, img, feature)
mkdir(filename)
savemat(filename, {'output': data})
|
save_feature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cat, img, feature, data):\n filename = self.path(cat, img, feature)\n mkdir(filename)\n savemat(filename, {'output': data})\n",
"role": "user"
},
{
"content": "save_feature",
"role": "assistant"
}
] |
def x(dm, field_name, boundary_char=None, parameter_name=None):
old_data = dm.field(field_name)
if isinstance(old_data[0], str) or isinstance(old_data[0], str):
new_data, common = factorise_strings(old_data, boundary_char)
new_data = array(new_data)
else:
raise NotImplementedError(
'factorising of fields not implemented for anything but string/unicode objects'
)
if len(common) > 0:
dm.__dict__[field_name] = new_data
if parameter_name is None:
parameter_name = field_name + '_common'
dm.add_parameter(parameter_name, common)
|
factorise_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dm, field_name, boundary_char=None, parameter_name=None):\n old_data = dm.field(field_name)\n if isinstance(old_data[0], str) or isinstance(old_data[0], str):\n new_data, common = factorise_strings(old_data, boundary_char)\n new_data = array(new_data)\n else:\n raise NotImplementedError(\n 'factorising of fields not implemented for anything but string/unicode objects'\n )\n if len(common) > 0:\n dm.__dict__[field_name] = new_data\n if parameter_name is None:\n parameter_name = field_name + '_common'\n dm.add_parameter(parameter_name, common)\n",
"role": "user"
},
{
"content": "factorise_field",
"role": "assistant"
}
] |
def x(vec, nr_samples, with_replacement=False):
if not with_replacement:
return np.random.permutation(vec)[0:nr_samples]
else:
return np.asarray(vec)[np.random.randint(0, len(vec), nr_samples)]
|
randsample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vec, nr_samples, with_replacement=False):\n if not with_replacement:\n return np.random.permutation(vec)[0:nr_samples]\n else:\n return np.asarray(vec)[np.random.randint(0, len(vec), nr_samples)]\n",
"role": "user"
},
{
"content": "randsample",
"role": "assistant"
}
] |
def x(prediction, image_size):
resize_factor_x = prediction.shape[1] / float(image_size[1])
resize_factor_y = prediction.shape[0] / float(image_size[0])
if abs(resize_factor_x - resize_factor_y) > 1.0 / image_size[1]:
raise RuntimeError(
"""The aspect ratio of the fixations does not
match with the prediction: %f vs. %f"""
% (resize_factor_y, resize_factor_x))
return resize_factor_y, resize_factor_x
|
calc_resize_factor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, image_size):\n resize_factor_x = prediction.shape[1] / float(image_size[1])\n resize_factor_y = prediction.shape[0] / float(image_size[0])\n if abs(resize_factor_x - resize_factor_y) > 1.0 / image_size[1]:\n raise RuntimeError(\n \"\"\"The aspect ratio of the fixations does not\n match with the prediction: %f vs. %f\"\"\"\n % (resize_factor_y, resize_factor_x))\n return resize_factor_y, resize_factor_x\n",
"role": "user"
},
{
"content": "calc_resize_factor",
"role": "assistant"
}
] |
def x(data, fill=True):
if any([(type(k) != int) for k in list(data.keys())]):
raise RuntimeError('Dictionary cannot be converted to matrix, ' +
'not all keys are ints')
base_shape = np.array(list(data.values())[0]).shape
result_shape = list(base_shape)
if fill:
result_shape.insert(0, max(data.keys()) + 1)
else:
result_shape.insert(0, len(list(data.keys())))
result = np.empty(result_shape) + np.nan
for i, (k, v) in enumerate(data.items()):
v = np.array(v)
if v.shape != base_shape:
raise RuntimeError('Dictionary cannot be converted to matrix, ' +
'not all values have same dimensions')
result[fill and [k][0] or [i][0]] = v
return result
|
dict_2_mat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, fill=True):\n if any([(type(k) != int) for k in list(data.keys())]):\n raise RuntimeError('Dictionary cannot be converted to matrix, ' +\n 'not all keys are ints')\n base_shape = np.array(list(data.values())[0]).shape\n result_shape = list(base_shape)\n if fill:\n result_shape.insert(0, max(data.keys()) + 1)\n else:\n result_shape.insert(0, len(list(data.keys())))\n result = np.empty(result_shape) + np.nan\n for i, (k, v) in enumerate(data.items()):\n v = np.array(v)\n if v.shape != base_shape:\n raise RuntimeError('Dictionary cannot be converted to matrix, ' +\n 'not all values have same dimensions')\n result[fill and [k][0] or [i][0]] = v\n return result\n",
"role": "user"
},
{
"content": "dict_2_mat",
"role": "assistant"
}
] |
def x(data, function):
return dict((k, function(v)) for k, v in list(data.items()))
|
dict_fun
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, function):\n return dict((k, function(v)) for k, v in list(data.items()))\n",
"role": "user"
},
{
"content": "dict_fun",
"role": "assistant"
}
] |
def x(string, max_len=20, snip_string='...'):
if len(string) <= max_len:
new_string = string
else:
visible_len = max_len - len(snip_string)
start_len = visible_len // 2
end_len = visible_len - start_len
new_string = string[0:start_len] + snip_string + string[-end_len:]
return new_string
|
snip_string_middle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, max_len=20, snip_string='...'):\n if len(string) <= max_len:\n new_string = string\n else:\n visible_len = max_len - len(snip_string)\n start_len = visible_len // 2\n end_len = visible_len - start_len\n new_string = string[0:start_len] + snip_string + string[-end_len:]\n return new_string\n",
"role": "user"
},
{
"content": "snip_string_middle",
"role": "assistant"
}
] |
def x(string, max_len=20, snip_string='...', snip_point=0.5):
if len(string) <= max_len:
new_string = string
else:
visible_len = max_len - len(snip_string)
start_len = int(visible_len * snip_point)
end_len = visible_len - start_len
new_string = string[0:start_len] + snip_string
if end_len > 0:
new_string += string[-end_len:]
return new_string
|
snip_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, max_len=20, snip_string='...', snip_point=0.5):\n if len(string) <= max_len:\n new_string = string\n else:\n visible_len = max_len - len(snip_string)\n start_len = int(visible_len * snip_point)\n end_len = visible_len - start_len\n new_string = string[0:start_len] + snip_string\n if end_len > 0:\n new_string += string[-end_len:]\n return new_string\n",
"role": "user"
},
{
"content": "snip_string",
"role": "assistant"
}
] |
def x(string_list, boundary_char=None):
common = ''
if len(string_list) > 1:
shortestLen = min([len(el) for el in string_list])
for idx in range(shortestLen):
chars = [s[idx] for s in string_list]
if chars.count(chars[0]) != len(chars):
break
common += chars[0]
if boundary_char is not None:
try:
end_idx = common.rindex(boundary_char)
common = common[0:end_idx + 1]
except ValueError:
common = ''
return common
|
find_common_beginning
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string_list, boundary_char=None):\n common = ''\n if len(string_list) > 1:\n shortestLen = min([len(el) for el in string_list])\n for idx in range(shortestLen):\n chars = [s[idx] for s in string_list]\n if chars.count(chars[0]) != len(chars):\n break\n common += chars[0]\n if boundary_char is not None:\n try:\n end_idx = common.rindex(boundary_char)\n common = common[0:end_idx + 1]\n except ValueError:\n common = ''\n return common\n",
"role": "user"
},
{
"content": "find_common_beginning",
"role": "assistant"
}
] |
def x(string_list, boundary_char=None):
cmn = find_common_beginning(string_list, boundary_char)
new_list = [el[len(cmn):] for el in string_list]
return new_list, cmn
|
factorise_strings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string_list, boundary_char=None):\n cmn = find_common_beginning(string_list, boundary_char)\n new_list = [el[len(cmn):] for el in string_list]\n return new_list, cmn\n",
"role": "user"
},
{
"content": "factorise_strings",
"role": "assistant"
}
] |
def x(path, variable='Datamat'):
f = h5py.File(path, 'r')
try:
dm = fromhdf5(f[variable])
finally:
f.close()
return dm
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, variable='Datamat'):\n f = h5py.File(path, 'r')\n try:\n dm = fromhdf5(f[variable])\n finally:\n f.close()\n return dm\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(fields, parameters, categories=None):
fm = Datamat(categories=categories)
fm._fields = list(fields.keys())
for field, value in list(fields.items()):
try:
fm.__dict__[field] = np.asarray(value)
except ValueError:
fm.__dict__[field] = np.asarray(value, dtype=np.object)
fm._parameters = parameters
for field, value in list(parameters.items()):
fm.__dict__[field] = value
fm._num_fix = len(fm.__dict__[list(fields.keys())[0]])
return fm
|
VectorFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fields, parameters, categories=None):\n fm = Datamat(categories=categories)\n fm._fields = list(fields.keys())\n for field, value in list(fields.items()):\n try:\n fm.__dict__[field] = np.asarray(value)\n except ValueError:\n fm.__dict__[field] = np.asarray(value, dtype=np.object)\n fm._parameters = parameters\n for field, value in list(parameters.items()):\n fm.__dict__[field] = value\n fm._num_fix = len(fm.__dict__[list(fields.keys())[0]])\n return fm\n",
"role": "user"
},
{
"content": "VectorFactory",
"role": "assistant"
}
] |
def x(self, index):
return Datamat(categories=self._categories, datamat=self, index=index)
|
filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n return Datamat(categories=self._categories, datamat=self, index=index)\n",
"role": "user"
},
{
"content": "filter",
"role": "assistant"
}
] |
def x(self):
return self.filter(np.ones(self._num_fix).astype(bool))
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.filter(np.ones(self._num_fix).astype(bool))\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, path):
f = h5py.File(path, 'w')
try:
fm_group = f.create_group('Datamat')
for field in self.fieldnames():
try:
fm_group.create_dataset(field, data=self.__dict__[field])
except (TypeError,) as e:
sub_group = fm_group.create_group(field)
for i, d in enumerate(self.__dict__[field]):
index_group = sub_group.create_group(str(i))
print((field, d))
for key, value in list(d.items()):
index_group.create_dataset(key, data=value)
for param in self.parameters():
fm_group.attrs[param] = self.__dict__[param]
finally:
f.close()
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path):\n f = h5py.File(path, 'w')\n try:\n fm_group = f.create_group('Datamat')\n for field in self.fieldnames():\n try:\n fm_group.create_dataset(field, data=self.__dict__[field])\n except (TypeError,) as e:\n sub_group = fm_group.create_group(field)\n for i, d in enumerate(self.__dict__[field]):\n index_group = sub_group.create_group(str(i))\n print((field, d))\n for key, value in list(d.items()):\n index_group.create_dataset(key, data=value)\n for param in self.parameters():\n fm_group.attrs[param] = self.__dict__[param]\n finally:\n f.close()\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, key, value):
self.__dict__[key] = value
self._parameters[key] = value
|
set_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, value):\n self.__dict__[key] = value\n self._parameters[key] = value\n",
"role": "user"
},
{
"content": "set_param",
"role": "assistant"
}
] |
def x(self, field):
for value in np.unique(self.__dict__[field]):
yield self.filter(self.__dict__[field] == value)
|
by_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field):\n for value in np.unique(self.__dict__[field]):\n yield self.filter(self.__dict__[field] == value)\n",
"role": "user"
},
{
"content": "by_field",
"role": "assistant"
}
] |
def x(self):
for value in np.unique(self.category):
cat_fm = self.filter(self.category == value)
if self._categories:
yield cat_fm, self._categories[value]
else:
yield cat_fm, None
|
by_cat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for value in np.unique(self.category):\n cat_fm = self.filter(self.category == value)\n if self._categories:\n yield cat_fm, self._categories[value]\n else:\n yield cat_fm, None\n",
"role": "user"
},
{
"content": "by_cat",
"role": "assistant"
}
] |
def x(self):
for value in np.unique(self.filenumber):
file_fm = self.filter(self.filenumber == value)
if self._categories:
yield file_fm, self._categories[self.category[0]][value]
else:
yield file_fm, None
|
by_filenumber
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for value in np.unique(self.filenumber):\n file_fm = self.filter(self.filenumber == value)\n if self._categories:\n yield file_fm, self._categories[self.category[0]][value]\n else:\n yield file_fm, None\n",
"role": "user"
},
{
"content": "by_filenumber",
"role": "assistant"
}
] |
def x(self, name, data):
if name in self._fields:
raise ValueError
if not len(data) == self._num_fix:
raise ValueError
self._fields.append(name)
self.__dict__[name] = data
|
add_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, data):\n if name in self._fields:\n raise ValueError\n if not len(data) == self._num_fix:\n raise ValueError\n self._fields.append(name)\n self.__dict__[name] = data\n",
"role": "user"
},
{
"content": "add_field",
"role": "assistant"
}
] |
def x(self, name, like_array):
new_shape = list(like_array.shape)
new_shape[0] = len(self)
new_data = ma.empty(new_shape, like_array.dtype)
new_data.mask = True
self.add_field(name, new_data)
|
add_field_like
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, like_array):\n new_shape = list(like_array.shape)\n new_shape[0] = len(self)\n new_data = ma.empty(new_shape, like_array.dtype)\n new_data.mask = True\n self.add_field(name, new_data)\n",
"role": "user"
},
{
"content": "add_field_like",
"role": "assistant"
}
] |
def x(self, src_dm, data_field, key_field, take_first=True):
if key_field not in self._fields or key_field not in src_dm._fields:
raise AttributeError('key field (%s) must exist in both Datamats' %
key_field)
if data_field not in src_dm._fields:
raise AttributeError('data field (%s) must exist in source Datamat' %
data_field)
if data_field in self._fields:
raise AttributeError(
'data field (%s) already exists in target Datamat' % data_field)
data_to_copy = dict([(x.field(key_field)[0], x.field(data_field)) for x in
src_dm.by_field(key_field)])
data_element = list(data_to_copy.values())[0]
new_shape = [len(self)] + list(data_element.shape)
new_data = ma.empty(new_shape, data_element.dtype)
new_data.mask = True
if np.issubdtype(new_data.dtype, np.float):
new_data.fill(np.NaN)
for key, val in list(data_to_copy.items()):
if take_first:
new_data[self.field(key_field) == key] = val[0]
else:
new_data[self.field(key_field) == key] = val
self.add_field(data_field, new_data)
|
annotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, src_dm, data_field, key_field, take_first=True):\n if key_field not in self._fields or key_field not in src_dm._fields:\n raise AttributeError('key field (%s) must exist in both Datamats' %\n key_field)\n if data_field not in src_dm._fields:\n raise AttributeError('data field (%s) must exist in source Datamat' %\n data_field)\n if data_field in self._fields:\n raise AttributeError(\n 'data field (%s) already exists in target Datamat' % data_field)\n data_to_copy = dict([(x.field(key_field)[0], x.field(data_field)) for x in\n src_dm.by_field(key_field)])\n data_element = list(data_to_copy.values())[0]\n new_shape = [len(self)] + list(data_element.shape)\n new_data = ma.empty(new_shape, data_element.dtype)\n new_data.mask = True\n if np.issubdtype(new_data.dtype, np.float):\n new_data.fill(np.NaN)\n for key, val in list(data_to_copy.items()):\n if take_first:\n new_data[self.field(key_field) == key] = val[0]\n else:\n new_data[self.field(key_field) == key] = val\n self.add_field(data_field, new_data)\n",
"role": "user"
},
{
"content": "annotate",
"role": "assistant"
}
] |
def x(self, name):
if not name in self._fields:
raise ValueError
self._fields.remove(name)
del self.__dict__[name]
|
rm_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n if not name in self._fields:\n raise ValueError\n self._fields.remove(name)\n del self.__dict__[name]\n",
"role": "user"
},
{
"content": "rm_field",
"role": "assistant"
}
] |
def x(self, name, value):
if name in self._parameters:
raise ValueError("'%s' is already a parameter" % name)
elif name in self.__dict__:
raise ValueError("'%s' conflicts with the Datamat name-space" % name)
self.__dict__[name] = value
self._parameters[name] = self.__dict__[name]
|
add_parameter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, value):\n if name in self._parameters:\n raise ValueError(\"'%s' is already a parameter\" % name)\n elif name in self.__dict__:\n raise ValueError(\"'%s' conflicts with the Datamat name-space\" % name)\n self.__dict__[name] = value\n self._parameters[name] = self.__dict__[name]\n",
"role": "user"
},
{
"content": "add_parameter",
"role": "assistant"
}
] |
def x(self, name):
if name not in self._parameters:
raise ValueError("no '%s' parameter found" % name)
del self._parameters[name]
del self.__dict__[name]
|
rm_parameter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n if name not in self._parameters:\n raise ValueError(\"no '%s' parameter found\" % name)\n del self._parameters[name]\n del self.__dict__[name]\n",
"role": "user"
},
{
"content": "rm_parameter",
"role": "assistant"
}
] |
def x(self, name):
if name not in self._parameters:
raise ValueError("no '%s' parameter found" % name)
if self._fields.count(name) > 0:
raise ValueError("field with name '%s' already exists" % name)
data = np.array([self._parameters[name]] * self._num_fix)
self.rm_parameter(name)
self.add_field(name, data)
|
parameter_to_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n if name not in self._parameters:\n raise ValueError(\"no '%s' parameter found\" % name)\n if self._fields.count(name) > 0:\n raise ValueError(\"field with name '%s' already exists\" % name)\n data = np.array([self._parameters[name]] * self._num_fix)\n self.rm_parameter(name)\n self.add_field(name, data)\n",
"role": "user"
},
{
"content": "parameter_to_field",
"role": "assistant"
}
] |
def x(self, fm_new, minimal_subset=True):
"""
for (nm, val) in fm_new._parameters.items():
if self._parameters.has_key(nm):
if (val != self._parameters[nm]):
self.parameter_to_field(nm)
fm_new.parameter_to_field(nm)
else:
fm_new.parameter_to_field(nm)
"""
orig_fields = self._fields[:]
for field in orig_fields:
if not field in fm_new._fields:
if minimal_subset:
self.rm_field(field)
else:
warnings.warn(
'This option is deprecated. Clean and Filter your data before it is joined.'
, DeprecationWarning)
fm_new.add_field_like(field, self.field(field))
orig_fields = fm_new._fields[:]
for field in orig_fields:
if not field in self._fields:
if minimal_subset:
fm_new.rm_field(field)
else:
warnings.warn(
'This option is deprecated. Clean and Filter your data before it is joined.'
, DeprecationWarning)
self.add_field_like(field, fm_new.field(field))
if 'SUBJECTINDEX' in self._fields[:]:
if fm_new.SUBJECTINDEX[0] in self.SUBJECTINDEX:
fm_new.SUBJECTINDEX[:] = self.SUBJECTINDEX.max() + 1
for field in self._fields:
self.__dict__[field] = ma.hstack((self.__dict__[field], fm_new.
__dict__[field]))
self._num_fix += fm_new._num_fix
|
join
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fm_new, minimal_subset=True):\n \"\"\"\n for (nm, val) in fm_new._parameters.items():\n if self._parameters.has_key(nm):\n if (val != self._parameters[nm]):\n self.parameter_to_field(nm)\n fm_new.parameter_to_field(nm)\n else:\n fm_new.parameter_to_field(nm)\n \"\"\"\n orig_fields = self._fields[:]\n for field in orig_fields:\n if not field in fm_new._fields:\n if minimal_subset:\n self.rm_field(field)\n else:\n warnings.warn(\n 'This option is deprecated. Clean and Filter your data before it is joined.'\n , DeprecationWarning)\n fm_new.add_field_like(field, self.field(field))\n orig_fields = fm_new._fields[:]\n for field in orig_fields:\n if not field in self._fields:\n if minimal_subset:\n fm_new.rm_field(field)\n else:\n warnings.warn(\n 'This option is deprecated. Clean and Filter your data before it is joined.'\n , DeprecationWarning)\n self.add_field_like(field, fm_new.field(field))\n if 'SUBJECTINDEX' in self._fields[:]:\n if fm_new.SUBJECTINDEX[0] in self.SUBJECTINDEX:\n fm_new.SUBJECTINDEX[:] = self.SUBJECTINDEX.max() + 1\n for field in self._fields:\n self.__dict__[field] = ma.hstack((self.__dict__[field], fm_new.\n __dict__[field]))\n self._num_fix += fm_new._num_fix\n",
"role": "user"
},
{
"content": "join",
"role": "assistant"
}
] |
def x(ad, ld, fm=None, collapse=True, fit=spline_base.fit2d):
if fm:
ad, ld = anglendiff(fm, roll=2)
ad, ld = ad[0], ld[0]
ld = ld[~np.isnan(ld)]
ad = reshift(ad[~np.isnan(ad)])
if collapse:
e_y = np.linspace(-36.5, 36.5, 74)
e_x = np.linspace(0, 180, 181)
H = makeHist(abs(ad), ld, fit=fit, bins=[e_y, e_x])
H = H / H.sum()
return H
else:
e_x = np.linspace(-180, 180, 361)
e_y = np.linspace(-36.5, 36.5, 74)
return makeHist(ad, ld, fit=fit, bins=[e_y, e_x])
|
makeAngLenHist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ad, ld, fm=None, collapse=True, fit=spline_base.fit2d):\n if fm:\n ad, ld = anglendiff(fm, roll=2)\n ad, ld = ad[0], ld[0]\n ld = ld[~np.isnan(ld)]\n ad = reshift(ad[~np.isnan(ad)])\n if collapse:\n e_y = np.linspace(-36.5, 36.5, 74)\n e_x = np.linspace(0, 180, 181)\n H = makeHist(abs(ad), ld, fit=fit, bins=[e_y, e_x])\n H = H / H.sum()\n return H\n else:\n e_x = np.linspace(-180, 180, 361)\n e_y = np.linspace(-36.5, 36.5, 74)\n return makeHist(ad, ld, fit=fit, bins=[e_y, e_x])\n",
"role": "user"
},
{
"content": "makeAngLenHist",
"role": "assistant"
}
] |
def x(x_val, y_val, fit=spline_base.fit2d, bins=[np.linspace(-36.5, 36.5,
74), np.linspace(-180, 180, 361)]):
y_val = y_val[~np.isnan(y_val)]
x_val = x_val[~np.isnan(x_val)]
samples = list(zip(y_val, x_val))
K, xedges, yedges = np.histogram2d(y_val, x_val, bins=bins)
if fit is None:
return K / K.sum()
elif hasattr(fit, '__call__'):
H = fit(np.array(samples), bins[0], bins[1], p_est=K)[0]
return H / H.sum()
else:
raise TypeError('Not a valid argument, insert spline function or None')
|
makeHist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x_val, y_val, fit=spline_base.fit2d, bins=[np.linspace(-36.5, 36.5, \n 74), np.linspace(-180, 180, 361)]):\n y_val = y_val[~np.isnan(y_val)]\n x_val = x_val[~np.isnan(x_val)]\n samples = list(zip(y_val, x_val))\n K, xedges, yedges = np.histogram2d(y_val, x_val, bins=bins)\n if fit is None:\n return K / K.sum()\n elif hasattr(fit, '__call__'):\n H = fit(np.array(samples), bins[0], bins[1], p_est=K)[0]\n return H / H.sum()\n else:\n raise TypeError('Not a valid argument, insert spline function or None')\n",
"role": "user"
},
{
"content": "makeHist",
"role": "assistant"
}
] |
def x(fm):
ang, leng, ad, ld = anglendiff(fm, return_abs=True)
y_arg = leng[0][np.roll(fm.fix == min(fm.fix), 1)] / fm.pixels_per_degree
x_arg = reshift(ang[0][np.roll(fm.fix == min(fm.fix), 1)])
bins = [list(range(int(ceil(np.nanmax(y_arg))) + 1)), np.linspace(-180,
180, 361)]
return makeHist(x_arg, y_arg, fit=None, bins=bins)
|
firstSacDist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm):\n ang, leng, ad, ld = anglendiff(fm, return_abs=True)\n y_arg = leng[0][np.roll(fm.fix == min(fm.fix), 1)] / fm.pixels_per_degree\n x_arg = reshift(ang[0][np.roll(fm.fix == min(fm.fix), 1)])\n bins = [list(range(int(ceil(np.nanmax(y_arg))) + 1)), np.linspace(-180,\n 180, 361)]\n return makeHist(x_arg, y_arg, fit=None, bins=bins)\n",
"role": "user"
},
{
"content": "firstSacDist",
"role": "assistant"
}
] |
def x(fm):
trajLen = np.roll(fm.fix, 1)[fm.fix == min(fm.fix)]
val, borders = np.histogram(trajLen, bins=np.linspace(-0.5, max(trajLen
) + 0.5, max(trajLen) + 2))
cumsum = np.cumsum(val.astype(float) / val.sum())
return cumsum, borders
|
trajLenDist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm):\n trajLen = np.roll(fm.fix, 1)[fm.fix == min(fm.fix)]\n val, borders = np.histogram(trajLen, bins=np.linspace(-0.5, max(trajLen\n ) + 0.5, max(trajLen) + 2))\n cumsum = np.cumsum(val.astype(float) / val.sum())\n return cumsum, borders\n",
"role": "user"
},
{
"content": "trajLenDist",
"role": "assistant"
}
] |
def x(I):
if type(I) == list:
I = np.array(I)
return (I - 180) % 360 - 180
|
reshift
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(I):\n if type(I) == list:\n I = np.array(I)\n return (I - 180) % 360 - 180\n",
"role": "user"
},
{
"content": "reshift",
"role": "assistant"
}
] |
def x(self, fit=None, full_H1=None, max_length=40, in_deg=True):
a, l, ad, ld = anglendiff(self.fm, roll=1, return_abs=True)
if in_deg:
self.fm.pixels_per_degree = 1
samples = np.zeros([3, len(l[0])])
samples[0] = l[0] / self.fm.pixels_per_degree
samples[1] = np.roll(l[0] / self.fm.pixels_per_degree, -1)
samples[2] = np.roll(reshift(ad[0]), -1)
z = np.any(np.isnan(samples), axis=0)
samples = samples[:, ~np.isnan(samples).any(0)]
if full_H1 is None:
self.full_H1 = []
for i in range(1, int(ceil(max_length + 1))):
idx = np.logical_and(samples[0] <= i, samples[0] > i - 1)
if idx.any():
self.full_H1.append(makeHist(samples[2][idx], samples[1][
idx], fit=fit, bins=[np.linspace(0, max_length - 1,
max_length), np.linspace(-180, 180, 361)]))
if np.isnan(self.full_H1[-1]).any():
self.full_H1[-1] = np.array([])
self.nosamples.append(len(samples[2][idx]))
else:
self.full_H1.append(np.array([]))
self.nosamples.append(0)
else:
self.full_H1 = full_H1
self.firstLenAng_cumsum, self.firstLenAng_shape = compute_cumsum(
firstSacDist(self.fm))
self.probability_cumsum = []
for i in range(len(self.full_H1)):
if self.full_H1[i] == []:
self.probability_cumsum.append(np.array([]))
else:
self.probability_cumsum.append(np.cumsum(self.full_H1[i].flat))
self.trajLen_cumsum, self.trajLen_borders = trajLenDist(self.fm)
min_distance = 1 / np.array([min((np.unique(self.probability_cumsum[i]) -
np.roll(np.unique(self.probability_cumsum[i]), 1))[1:]) for i in
range(len(self.probability_cumsum))])
min_distance[min_distance < 10] = 10
self.linind = {}
for i in range(len(self.probability_cumsum)):
self.linind['self.probability_cumsum ' + repr(i)] = np.linspace(0,
1, min_distance[i])[0:-1]
for elem in [self.firstLenAng_cumsum, self.trajLen_cumsum]:
self.linind[elem] = np.linspace(0, 1, 1 / min((np.unique(elem) - np
.roll(np.unique(elem), 1))[1:]))[0:-1]
|
initializeData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fit=None, full_H1=None, max_length=40, in_deg=True):\n a, l, ad, ld = anglendiff(self.fm, roll=1, return_abs=True)\n if in_deg:\n self.fm.pixels_per_degree = 1\n samples = np.zeros([3, len(l[0])])\n samples[0] = l[0] / self.fm.pixels_per_degree\n samples[1] = np.roll(l[0] / self.fm.pixels_per_degree, -1)\n samples[2] = np.roll(reshift(ad[0]), -1)\n z = np.any(np.isnan(samples), axis=0)\n samples = samples[:, ~np.isnan(samples).any(0)]\n if full_H1 is None:\n self.full_H1 = []\n for i in range(1, int(ceil(max_length + 1))):\n idx = np.logical_and(samples[0] <= i, samples[0] > i - 1)\n if idx.any():\n self.full_H1.append(makeHist(samples[2][idx], samples[1][\n idx], fit=fit, bins=[np.linspace(0, max_length - 1,\n max_length), np.linspace(-180, 180, 361)]))\n if np.isnan(self.full_H1[-1]).any():\n self.full_H1[-1] = np.array([])\n self.nosamples.append(len(samples[2][idx]))\n else:\n self.full_H1.append(np.array([]))\n self.nosamples.append(0)\n else:\n self.full_H1 = full_H1\n self.firstLenAng_cumsum, self.firstLenAng_shape = compute_cumsum(\n firstSacDist(self.fm))\n self.probability_cumsum = []\n for i in range(len(self.full_H1)):\n if self.full_H1[i] == []:\n self.probability_cumsum.append(np.array([]))\n else:\n self.probability_cumsum.append(np.cumsum(self.full_H1[i].flat))\n self.trajLen_cumsum, self.trajLen_borders = trajLenDist(self.fm)\n min_distance = 1 / np.array([min((np.unique(self.probability_cumsum[i]) -\n np.roll(np.unique(self.probability_cumsum[i]), 1))[1:]) for i in\n range(len(self.probability_cumsum))])\n min_distance[min_distance < 10] = 10\n self.linind = {}\n for i in range(len(self.probability_cumsum)):\n self.linind['self.probability_cumsum ' + repr(i)] = np.linspace(0, \n 1, min_distance[i])[0:-1]\n for elem in [self.firstLenAng_cumsum, self.trajLen_cumsum]:\n self.linind[elem] = np.linspace(0, 1, 1 / min((np.unique(elem) - np\n .roll(np.unique(elem), 1))[1:]))[0:-1]\n",
"role": "user"
},
{
"content": "initializeData",
"role": "assistant"
}
] |
def x(self, xxx_todo_changeme, angle, length):
x, y = xxx_todo_changeme
return x + cos(radians(angle)) * length, y + sin(radians(angle)) * length
|
calc_xy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xxx_todo_changeme, angle, length):\n x, y = xxx_todo_changeme\n return x + cos(radians(angle)) * length, y + sin(radians(angle)) * length\n",
"role": "user"
},
{
"content": "calc_xy",
"role": "assistant"
}
] |
def x(self, prev_angle=None, prev_length=None):
if prev_angle is None or prev_length is None:
length, angle = np.unravel_index(self.drawFrom(
'self.firstLenAng_cumsum', self.getrand(
'self.firstLenAng_cumsum')), self.firstLenAng_shape)
angle = angle - (self.firstLenAng_shape[1] - 1) / 2
angle += 0.5
length += 0.5
length *= self.fm.pixels_per_degree
else:
ind = int(floor(prev_length / self.fm.pixels_per_degree))
while ind >= len(self.probability_cumsum):
ind -= 1
while not self.probability_cumsum[ind].any():
ind -= 1
J, I = np.unravel_index(self.drawFrom('self.probability_cumsum ' +
repr(ind), self.getrand('self.probability_cumsum ' + repr(ind))
), self.full_H1[ind].shape)
angle = reshift(I - self.full_H1[ind].shape[1] / 2 + prev_angle)
angle += 0.5
length = J + 0.5
length *= self.fm.pixels_per_degree
return angle, length
|
draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prev_angle=None, prev_length=None):\n if prev_angle is None or prev_length is None:\n length, angle = np.unravel_index(self.drawFrom(\n 'self.firstLenAng_cumsum', self.getrand(\n 'self.firstLenAng_cumsum')), self.firstLenAng_shape)\n angle = angle - (self.firstLenAng_shape[1] - 1) / 2\n angle += 0.5\n length += 0.5\n length *= self.fm.pixels_per_degree\n else:\n ind = int(floor(prev_length / self.fm.pixels_per_degree))\n while ind >= len(self.probability_cumsum):\n ind -= 1\n while not self.probability_cumsum[ind].any():\n ind -= 1\n J, I = np.unravel_index(self.drawFrom('self.probability_cumsum ' +\n repr(ind), self.getrand('self.probability_cumsum ' + repr(ind))\n ), self.full_H1[ind].shape)\n angle = reshift(I - self.full_H1[ind].shape[1] / 2 + prev_angle)\n angle += 0.5\n length = J + 0.5\n length *= self.fm.pixels_per_degree\n return angle, length\n",
"role": "user"
},
{
"content": "draw",
"role": "assistant"
}
] |
def x(self, num_samples=2000):
x = []
y = []
fix = []
sample = []
pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=num_samples
).start()
for s in range(0, num_samples):
for i, (xs, ys) in enumerate(self.sample()):
x.append(xs)
y.append(ys)
fix.append(i + 1)
sample.append(s)
pbar.update(s + 1)
fields = {'fix': np.array(fix), 'y': np.array(y), 'x': np.array(x)}
param = {'pixels_per_degree': self.fm.pixels_per_degree}
out = fixmat.VectorFixmatFactory(fields, param)
return out
|
sample_many
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, num_samples=2000):\n x = []\n y = []\n fix = []\n sample = []\n pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=num_samples\n ).start()\n for s in range(0, num_samples):\n for i, (xs, ys) in enumerate(self.sample()):\n x.append(xs)\n y.append(ys)\n fix.append(i + 1)\n sample.append(s)\n pbar.update(s + 1)\n fields = {'fix': np.array(fix), 'y': np.array(y), 'x': np.array(x)}\n param = {'pixels_per_degree': self.fm.pixels_per_degree}\n out = fixmat.VectorFixmatFactory(fields, param)\n return out\n",
"role": "user"
},
{
"content": "sample_many",
"role": "assistant"
}
] |
def x(self):
lenghts = []
angles = []
coordinates = []
fix = []
sample_size = int(round(self.trajLen_borders[self.drawFrom(
'self.trajLen_cumsum', self.getrand('self.trajLen_cumsum'))]))
coordinates.append([0, 0])
fix.append(1)
while len(coordinates) < sample_size:
if len(lenghts) == 0 and len(angles) == 0:
angle, length = self._draw(self)
else:
angle, length = self._draw(prev_angle=angles[-1], prev_length=
lenghts[-1])
x, y = self._calc_xy(coordinates[-1], angle, length)
coordinates.append([x, y])
lenghts.append(length)
angles.append(angle)
fix.append(fix[-1] + 1)
return coordinates
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n lenghts = []\n angles = []\n coordinates = []\n fix = []\n sample_size = int(round(self.trajLen_borders[self.drawFrom(\n 'self.trajLen_cumsum', self.getrand('self.trajLen_cumsum'))]))\n coordinates.append([0, 0])\n fix.append(1)\n while len(coordinates) < sample_size:\n if len(lenghts) == 0 and len(angles) == 0:\n angle, length = self._draw(self)\n else:\n angle, length = self._draw(prev_angle=angles[-1], prev_length=\n lenghts[-1])\n x, y = self._calc_xy(coordinates[-1], angle, length)\n coordinates.append([x, y])\n lenghts.append(length)\n angles.append(angle)\n fix.append(fix[-1] + 1)\n return coordinates\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, cumsum, r):
a = cumsum.rsplit()
if len(a) > 1:
b = eval(a[0])[int(a[1])]
else:
b = eval(a[0])
return np.nonzero(b >= r)[0][0]
|
drawFrom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cumsum, r):\n a = cumsum.rsplit()\n if len(a) > 1:\n b = eval(a[0])[int(a[1])]\n else:\n b = eval(a[0])\n return np.nonzero(b >= r)[0][0]\n",
"role": "user"
},
{
"content": "drawFrom",
"role": "assistant"
}
] |
def x(path):
f = h5py.File(path, 'r')
if 'Fixmat' in f:
fm_group = f['Fixmat']
else:
fm_group = f['Datamat']
fields = {}
params = {}
for field, value in list(fm_group.items()):
fields[field] = np.array(value)
for param, value in list(fm_group.attrs.items()):
params[param] = value
f.close()
return VectorFixmatFactory(fields, params)
|
load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path):\n f = h5py.File(path, 'r')\n if 'Fixmat' in f:\n fm_group = f['Fixmat']\n else:\n fm_group = f['Datamat']\n fields = {}\n params = {}\n for field, value in list(fm_group.items()):\n fields[field] = np.array(value)\n for param, value in list(fm_group.attrs.items()):\n params[param] = value\n f.close()\n return VectorFixmatFactory(fields, params)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(fixmat, fwhm=2, scale_factor=1):
assert len(fixmat.image_size) == 2 and fixmat.image_size[0
] > 0 and fixmat.image_size[1
] > 0, 'The image_size is either 0, or not 2D'
if fixmat._num_fix == 0 or len(fixmat.x) == 0 or len(fixmat.y) == 0:
raise RuntimeError('There are no fixations in the fixmat.')
assert not scale_factor <= 0, 'scale_factor has to be > 0'
e_y = np.arange(0, np.round(scale_factor * fixmat.image_size[0] + 1))
e_x = np.arange(0, np.round(scale_factor * fixmat.image_size[1] + 1))
samples = np.array(list(zip(scale_factor * fixmat.y, scale_factor *
fixmat.x)))
hist, _ = np.histogramdd(samples, (e_y, e_x))
kernel_sigma = fwhm * fixmat.pixels_per_degree * scale_factor
kernel_sigma = kernel_sigma / (2 * (2 * np.log(2)) ** 0.5)
fdm = gaussian_filter(hist, kernel_sigma, order=0, mode='constant')
return fdm / fdm.sum()
|
compute_fdm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fixmat, fwhm=2, scale_factor=1):\n assert len(fixmat.image_size) == 2 and fixmat.image_size[0\n ] > 0 and fixmat.image_size[1\n ] > 0, 'The image_size is either 0, or not 2D'\n if fixmat._num_fix == 0 or len(fixmat.x) == 0 or len(fixmat.y) == 0:\n raise RuntimeError('There are no fixations in the fixmat.')\n assert not scale_factor <= 0, 'scale_factor has to be > 0'\n e_y = np.arange(0, np.round(scale_factor * fixmat.image_size[0] + 1))\n e_x = np.arange(0, np.round(scale_factor * fixmat.image_size[1] + 1))\n samples = np.array(list(zip(scale_factor * fixmat.y, scale_factor *\n fixmat.x)))\n hist, _ = np.histogramdd(samples, (e_y, e_x))\n kernel_sigma = fwhm * fixmat.pixels_per_degree * scale_factor\n kernel_sigma = kernel_sigma / (2 * (2 * np.log(2)) ** 0.5)\n fdm = gaussian_filter(hist, kernel_sigma, order=0, mode='constant')\n return fdm / fdm.sum()\n",
"role": "user"
},
{
"content": "compute_fdm",
"role": "assistant"
}
] |
def x(fm, scale_factor=1, estimator=None):
assert 'fix' in fm.fieldnames(), 'Can not work without fixation numbers'
excl = fm.fix - np.roll(fm.fix, 1) != 1
diff_x = (np.roll(fm.x, 1) - fm.x)[~excl]
diff_y = (np.roll(fm.y, 1) - fm.y)[~excl]
ylim = np.round(scale_factor * fm.image_size[0])
xlim = np.round(scale_factor * fm.image_size[1])
x_steps = np.ceil(2 * xlim) + 1
if x_steps % 2 != 0:
x_steps += 1
y_steps = np.ceil(2 * ylim) + 1
if y_steps % 2 != 0:
y_steps += 1
e_x = np.linspace(-xlim, xlim, x_steps)
e_y = np.linspace(-ylim, ylim, y_steps)
samples = np.array(list(zip(scale_factor * diff_y, scale_factor * diff_x)))
if estimator == None:
hist, _ = np.histogramdd(samples, (e_y, e_x))
else:
hist = estimator(samples, e_y, e_x)
return hist
|
relative_bias
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, scale_factor=1, estimator=None):\n assert 'fix' in fm.fieldnames(), 'Can not work without fixation numbers'\n excl = fm.fix - np.roll(fm.fix, 1) != 1\n diff_x = (np.roll(fm.x, 1) - fm.x)[~excl]\n diff_y = (np.roll(fm.y, 1) - fm.y)[~excl]\n ylim = np.round(scale_factor * fm.image_size[0])\n xlim = np.round(scale_factor * fm.image_size[1])\n x_steps = np.ceil(2 * xlim) + 1\n if x_steps % 2 != 0:\n x_steps += 1\n y_steps = np.ceil(2 * ylim) + 1\n if y_steps % 2 != 0:\n y_steps += 1\n e_x = np.linspace(-xlim, xlim, x_steps)\n e_y = np.linspace(-ylim, ylim, y_steps)\n samples = np.array(list(zip(scale_factor * diff_y, scale_factor * diff_x)))\n if estimator == None:\n hist, _ = np.histogramdd(samples, (e_y, e_x))\n else:\n hist = estimator(samples, e_y, e_x)\n return hist\n",
"role": "user"
},
{
"content": "relative_bias",
"role": "assistant"
}
] |
def x(directory, categories=None, glob_str='*.mat', var_name='fixmat'):
files = glob(join(directory, glob_str))
if len(files) == 0:
raise ValueError('Could not find any fixmats in ' + join(directory,
glob_str))
f_all = FixmatFactory(files.pop(), categories, var_name)
for fname in files:
f_current = FixmatFactory(fname, categories, var_name)
f_all.join(f_current)
return f_all
|
DirectoryFixmatFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory, categories=None, glob_str='*.mat', var_name='fixmat'):\n files = glob(join(directory, glob_str))\n if len(files) == 0:\n raise ValueError('Could not find any fixmats in ' + join(directory,\n glob_str))\n f_all = FixmatFactory(files.pop(), categories, var_name)\n for fname in files:\n f_current = FixmatFactory(fname, categories, var_name)\n f_all.join(f_current)\n return f_all\n",
"role": "user"
},
{
"content": "DirectoryFixmatFactory",
"role": "assistant"
}
] |
def x(fixmatfile, categories=None, var_name='fixmat', field_name='x'):
try:
data = loadmat(fixmatfile, struct_as_record=False)
keys = list(data.keys())
data = data[var_name][0][0]
except KeyError:
raise RuntimeError(
'%s is not a field of the matlab structure. Possible' +
'Keys are %s' % str(keys))
num_fix = data.__getattribute__(field_name).size
fields = {}
parameters = {}
for field in data._fieldnames:
if data.__getattribute__(field).size == num_fix:
fields[field] = data.__getattribute__(field)
else:
parameters[field] = data.__getattribute__(field)[0].tolist()
if len(parameters[field]) == 1:
parameters[field] = parameters[field][0]
fixmat = FixMat(categories=categories)
fixmat._fields = list(fields.keys())
for field, value in list(fields.items()):
fixmat.__dict__[field] = value.reshape(-1)
fixmat._parameters = parameters
fixmat._subjects = None
for field, value in list(parameters.items()):
fixmat.__dict__[field] = value
fixmat._num_fix = num_fix
return fixmat
|
FixmatFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fixmatfile, categories=None, var_name='fixmat', field_name='x'):\n try:\n data = loadmat(fixmatfile, struct_as_record=False)\n keys = list(data.keys())\n data = data[var_name][0][0]\n except KeyError:\n raise RuntimeError(\n '%s is not a field of the matlab structure. Possible' + \n 'Keys are %s' % str(keys))\n num_fix = data.__getattribute__(field_name).size\n fields = {}\n parameters = {}\n for field in data._fieldnames:\n if data.__getattribute__(field).size == num_fix:\n fields[field] = data.__getattribute__(field)\n else:\n parameters[field] = data.__getattribute__(field)[0].tolist()\n if len(parameters[field]) == 1:\n parameters[field] = parameters[field][0]\n fixmat = FixMat(categories=categories)\n fixmat._fields = list(fields.keys())\n for field, value in list(fields.items()):\n fixmat.__dict__[field] = value.reshape(-1)\n fixmat._parameters = parameters\n fixmat._subjects = None\n for field, value in list(parameters.items()):\n fixmat.__dict__[field] = value\n fixmat._num_fix = num_fix\n return fixmat\n",
"role": "user"
},
{
"content": "FixmatFactory",
"role": "assistant"
}
] |
def x(self, features):
if not 'x' in self.fieldnames():
raise RuntimeError(
"""add_feature_values expects to find
(x,y) locations in self.x and self.y. But self.x does not exist"""
)
if not self._categories:
raise RuntimeError(
""""%s" does not exist as a fieldname and the
fixmat does not have a Categories object (no features
available. The fixmat has these fields: %s"""
% (features, str(self._fields)))
for feature in features:
feat_vals = np.zeros([len(self.x)]) * np.nan
for cat_mat, imgs in self.by_cat():
for img in np.unique(cat_mat.filenumber).astype(int):
fmap = imgs[img][feature]
on_image = (self.x >= 0) & (self.x <= self.image_size[1])
on_image = on_image & (self.y >= 0) & (self.y <= self.
image_size[0])
idx = (self.category == imgs.category) & (self.filenumber ==
img) & on_image.astype('bool')
feat_vals[idx] = fmap[self.y[idx].astype('int'), self.x[idx
].astype('int')]
self.add_field(feature, feat_vals)
|
add_feature_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, features):\n if not 'x' in self.fieldnames():\n raise RuntimeError(\n \"\"\"add_feature_values expects to find\n (x,y) locations in self.x and self.y. But self.x does not exist\"\"\"\n )\n if not self._categories:\n raise RuntimeError(\n \"\"\"\"%s\" does not exist as a fieldname and the\n fixmat does not have a Categories object (no features \n available. The fixmat has these fields: %s\"\"\"\n % (features, str(self._fields)))\n for feature in features:\n feat_vals = np.zeros([len(self.x)]) * np.nan\n for cat_mat, imgs in self.by_cat():\n for img in np.unique(cat_mat.filenumber).astype(int):\n fmap = imgs[img][feature]\n on_image = (self.x >= 0) & (self.x <= self.image_size[1])\n on_image = on_image & (self.y >= 0) & (self.y <= self.\n image_size[0])\n idx = (self.category == imgs.category) & (self.filenumber ==\n img) & on_image.astype('bool')\n feat_vals[idx] = fmap[self.y[idx].astype('int'), self.x[idx\n ].astype('int')]\n self.add_field(feature, feat_vals)\n",
"role": "user"
},
{
"content": "add_feature_values",
"role": "assistant"
}
] |
def x(self, feature_list=None, all_controls=False):
if not 'x' in self.fieldnames():
raise RuntimeError(
"""make_reg_data expects to find
(x,y) locations in self.x and self.y. But self.x does not exist"""
)
on_image = (self.x >= 0) & (self.x <= self.image_size[1])
on_image = on_image & (self.y >= 0) & (self.y <= self.image_size[0])
assert on_image.all(), 'All Fixations need to be on the image'
assert len(np.unique(self.filenumber) > 1
), 'Fixmat has to have more than one filenumber'
self.x = self.x.astype(int)
self.y = self.y.astype(int)
if feature_list == None:
feature_list = np.sort(self._categories._features)
all_act = np.zeros((len(feature_list), 1)) * np.nan
all_ctrls = all_act.copy()
for cfm, imgs in self.by_cat():
imfiles = np.array(imgs.images())
ctrl_imgs = imfiles.copy()
np.random.shuffle(ctrl_imgs)
while (imfiles == ctrl_imgs).any():
np.random.shuffle(ctrl_imgs)
for imidx, img in enumerate(imfiles):
xact = cfm.x[cfm.filenumber == img]
yact = cfm.y[cfm.filenumber == img]
if all_controls:
idx = np.ones(self.image_size)
idx[cfm.y[cfm.filenumber == img], cfm.x[cfm.filenumber == img]
] = 0
yctrl, xctrl = idx.nonzero()
idx = np.random.randint(0, len(yctrl), len(xact))
yctrl = yctrl[idx]
xctrl = xctrl[idx]
del idx
else:
xctrl = cfm.x[cfm.filenumber == ctrl_imgs[imidx]]
yctrl = cfm.y[cfm.filenumber == ctrl_imgs[imidx]]
actuals = np.zeros((1, len(xact))) * np.nan
controls = np.zeros((1, len(xctrl))) * np.nan
for feature in feature_list:
fmap = imgs[img][feature]
actuals = np.vstack((actuals, fmap[yact, xact]))
controls = np.vstack((controls, fmap[yctrl, xctrl]))
all_act = np.hstack((all_act, actuals[1:, :]))
all_ctrls = np.hstack((all_ctrls, controls[1:, :]))
return all_act[:, 1:], all_ctrls[:, 1:]
|
make_reg_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, feature_list=None, all_controls=False):\n if not 'x' in self.fieldnames():\n raise RuntimeError(\n \"\"\"make_reg_data expects to find\n (x,y) locations in self.x and self.y. But self.x does not exist\"\"\"\n )\n on_image = (self.x >= 0) & (self.x <= self.image_size[1])\n on_image = on_image & (self.y >= 0) & (self.y <= self.image_size[0])\n assert on_image.all(), 'All Fixations need to be on the image'\n assert len(np.unique(self.filenumber) > 1\n ), 'Fixmat has to have more than one filenumber'\n self.x = self.x.astype(int)\n self.y = self.y.astype(int)\n if feature_list == None:\n feature_list = np.sort(self._categories._features)\n all_act = np.zeros((len(feature_list), 1)) * np.nan\n all_ctrls = all_act.copy()\n for cfm, imgs in self.by_cat():\n imfiles = np.array(imgs.images())\n ctrl_imgs = imfiles.copy()\n np.random.shuffle(ctrl_imgs)\n while (imfiles == ctrl_imgs).any():\n np.random.shuffle(ctrl_imgs)\n for imidx, img in enumerate(imfiles):\n xact = cfm.x[cfm.filenumber == img]\n yact = cfm.y[cfm.filenumber == img]\n if all_controls:\n idx = np.ones(self.image_size)\n idx[cfm.y[cfm.filenumber == img], cfm.x[cfm.filenumber == img]\n ] = 0\n yctrl, xctrl = idx.nonzero()\n idx = np.random.randint(0, len(yctrl), len(xact))\n yctrl = yctrl[idx]\n xctrl = xctrl[idx]\n del idx\n else:\n xctrl = cfm.x[cfm.filenumber == ctrl_imgs[imidx]]\n yctrl = cfm.y[cfm.filenumber == ctrl_imgs[imidx]]\n actuals = np.zeros((1, len(xact))) * np.nan\n controls = np.zeros((1, len(xctrl))) * np.nan\n for feature in feature_list:\n fmap = imgs[img][feature]\n actuals = np.vstack((actuals, fmap[yact, xact]))\n controls = np.vstack((controls, fmap[yctrl, xctrl]))\n all_act = np.hstack((all_act, actuals[1:, :]))\n all_ctrls = np.hstack((all_ctrls, controls[1:, :]))\n return all_act[:, 1:], all_ctrls[:, 1:]\n",
"role": "user"
},
{
"content": "make_reg_data",
"role": "assistant"
}
] |
def x(samplemat, Hz, blinks=None):
Hz = float(Hz)
distance = (np.diff(samplemat.x) ** 2 + np.diff(samplemat.y) ** 2) ** 0.5
distance = np.hstack(([distance[0]], distance))
if blinks is not None:
distance[blinks[1:]] = np.nan
win = np.ones(velocity_window_size) / float(velocity_window_size)
velocity = np.convolve(distance, win, mode='same')
velocity = velocity / (velocity_window_size / Hz)
acceleration = np.diff(velocity) / (1.0 / Hz)
acceleration = abs(np.hstack(([acceleration[0]], acceleration)))
return velocity, acceleration
|
get_velocity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samplemat, Hz, blinks=None):\n Hz = float(Hz)\n distance = (np.diff(samplemat.x) ** 2 + np.diff(samplemat.y) ** 2) ** 0.5\n distance = np.hstack(([distance[0]], distance))\n if blinks is not None:\n distance[blinks[1:]] = np.nan\n win = np.ones(velocity_window_size) / float(velocity_window_size)\n velocity = np.convolve(distance, win, mode='same')\n velocity = velocity / (velocity_window_size / Hz)\n acceleration = np.diff(velocity) / (1.0 / Hz)\n acceleration = abs(np.hstack(([acceleration[0]], acceleration)))\n return velocity, acceleration\n",
"role": "user"
},
{
"content": "get_velocity",
"role": "assistant"
}
] |
def x(samplemat, Hz=200, threshold=30, acc_thresh=2000, min_duration=21,
min_movement=0.35, ignore_blinks=False):
if ignore_blinks:
velocity, acceleration = get_velocity(samplemat, float(Hz), blinks=
samplemat.blinks)
else:
velocity, acceleration = get_velocity(samplemat, float(Hz))
saccades = velocity > threshold
borders = np.where(np.diff(saccades.astype(int)))[0] + 1
if velocity[1] > threshold:
borders = np.hstack(([0], borders))
saccade = 0 * np.ones(samplemat.x.shape)
for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):
if sum(acceleration[start:end] > acc_thresh) >= 1:
saccade[start:end] = 1
borders = np.where(np.diff(saccade.astype(int)))[0] + 1
if saccade[0] == 0:
borders = np.hstack(([0], borders))
for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):
if 1000 * (end - start) / float(Hz) < min_duration:
saccade[start:end] = 1
dists_ok = False
while not dists_ok:
dists_ok = True
num_merges = 0
for i, (lfixstart, lfixend, start, end, nfixstart, nfixend
) in enumerate(zip(borders[0::2], borders[1::2], borders[1::2],
borders[2::2], borders[2::2], borders[3::2])):
lastx = samplemat.x[lfixstart:lfixend].mean()
lasty = samplemat.y[lfixstart:lfixend].mean()
nextx = samplemat.x[nfixstart:nfixend].mean()
nexty = samplemat.y[nfixstart:nfixend].mean()
if 1000 * (lfixend - lfixstart) / float(Hz) < min_duration:
saccade[lfixstart:lfixend] = 1
continue
distance = ((nextx - lastx) ** 2 + (nexty - lasty) ** 2) ** 0.5
if distance < min_movement:
num_merges += 1
dists_ok = False
saccade[start:end] = 0
borders = np.where(np.diff(saccade.astype(int)))[0] + 1
if saccade[0] == 0:
borders = np.hstack(([0], borders))
return saccade.astype(bool)
|
saccade_detection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samplemat, Hz=200, threshold=30, acc_thresh=2000, min_duration=21,\n min_movement=0.35, ignore_blinks=False):\n if ignore_blinks:\n velocity, acceleration = get_velocity(samplemat, float(Hz), blinks=\n samplemat.blinks)\n else:\n velocity, acceleration = get_velocity(samplemat, float(Hz))\n saccades = velocity > threshold\n borders = np.where(np.diff(saccades.astype(int)))[0] + 1\n if velocity[1] > threshold:\n borders = np.hstack(([0], borders))\n saccade = 0 * np.ones(samplemat.x.shape)\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n if sum(acceleration[start:end] > acc_thresh) >= 1:\n saccade[start:end] = 1\n borders = np.where(np.diff(saccade.astype(int)))[0] + 1\n if saccade[0] == 0:\n borders = np.hstack(([0], borders))\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n if 1000 * (end - start) / float(Hz) < min_duration:\n saccade[start:end] = 1\n dists_ok = False\n while not dists_ok:\n dists_ok = True\n num_merges = 0\n for i, (lfixstart, lfixend, start, end, nfixstart, nfixend\n ) in enumerate(zip(borders[0::2], borders[1::2], borders[1::2],\n borders[2::2], borders[2::2], borders[3::2])):\n lastx = samplemat.x[lfixstart:lfixend].mean()\n lasty = samplemat.y[lfixstart:lfixend].mean()\n nextx = samplemat.x[nfixstart:nfixend].mean()\n nexty = samplemat.y[nfixstart:nfixend].mean()\n if 1000 * (lfixend - lfixstart) / float(Hz) < min_duration:\n saccade[lfixstart:lfixend] = 1\n continue\n distance = ((nextx - lastx) ** 2 + (nexty - lasty) ** 2) ** 0.5\n if distance < min_movement:\n num_merges += 1\n dists_ok = False\n saccade[start:end] = 0\n borders = np.where(np.diff(saccade.astype(int)))[0] + 1\n if saccade[0] == 0:\n borders = np.hstack(([0], borders))\n return saccade.astype(bool)\n",
"role": "user"
},
{
"content": "saccade_detection",
"role": "assistant"
}
] |
def x(samplemat, saccades, Hz=200, samples2fix=None, respect_trial_borders=
False, sample_times=None):
if samples2fix is None:
samples2fix = {}
fixations = ~saccades
acc = AccumulatorFactory()
if not respect_trial_borders:
borders = np.where(np.diff(fixations.astype(int)))[0] + 1
else:
borders = np.where(~(np.diff(fixations.astype(int)) == 0) | ~(np.
diff(samplemat.trial.astype(int)) == 0))[0] + 1
fixations = 0 * saccades.copy()
if not saccades[0]:
borders = np.hstack(([0], borders))
for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):
current = {}
for k in samplemat.fieldnames():
if k in list(samples2fix.keys()):
current[k] = samples2fix[k](samplemat, k, start, end)
else:
current[k] = np.mean(samplemat.field(k)[start:end])
current['start_sample'] = start
current['end_sample'] = end
fixations[start:end] = 1
if sample_times is None:
current['start'] = 1000 * start / Hz
current['end'] = 1000 * end / Hz
else:
current['start'] = sample_times[start]
current['end'] = sample_times[end]
acc.update(current)
return acc.get_dm(params=samplemat.parameters()), fixations.astype(bool)
|
fixation_detection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samplemat, saccades, Hz=200, samples2fix=None, respect_trial_borders=\n False, sample_times=None):\n if samples2fix is None:\n samples2fix = {}\n fixations = ~saccades\n acc = AccumulatorFactory()\n if not respect_trial_borders:\n borders = np.where(np.diff(fixations.astype(int)))[0] + 1\n else:\n borders = np.where(~(np.diff(fixations.astype(int)) == 0) | ~(np.\n diff(samplemat.trial.astype(int)) == 0))[0] + 1\n fixations = 0 * saccades.copy()\n if not saccades[0]:\n borders = np.hstack(([0], borders))\n for i, (start, end) in enumerate(zip(borders[0::2], borders[1::2])):\n current = {}\n for k in samplemat.fieldnames():\n if k in list(samples2fix.keys()):\n current[k] = samples2fix[k](samplemat, k, start, end)\n else:\n current[k] = np.mean(samplemat.field(k)[start:end])\n current['start_sample'] = start\n current['end_sample'] = end\n fixations[start:end] = 1\n if sample_times is None:\n current['start'] = 1000 * start / Hz\n current['end'] = 1000 * end / Hz\n else:\n current['start'] = sample_times[start]\n current['end'] = sample_times[end]\n acc.update(current)\n return acc.get_dm(params=samplemat.parameters()), fixations.astype(bool)\n",
"role": "user"
},
{
"content": "fixation_detection",
"role": "assistant"
}
] |
def x(parse_obj, agent=None, etag=None, modified=None, inject=False):
guarantees = common.SuperDict({'bozo': 0, 'feeds': [], 'lists': [],
'opportunities': [], 'meta': common.SuperDict(), 'version': ''})
fileobj, info = _mkfile(parse_obj, agent or USER_AGENT, etag, modified)
guarantees.update(info)
if not fileobj:
return guarantees
handler = Handler()
handler.harvest.update(guarantees)
parser = xml.sax.make_parser()
parser.setFeature(xml.sax.handler.feature_namespaces, True)
parser.setContentHandler(handler)
parser.setErrorHandler(handler)
if inject:
fileobj = Injector(fileobj)
try:
parser.parse(fileobj)
except (SAXParseException, MalformedByteSequenceException):
err = sys.exc_info()[1]
handler.harvest.bozo = 1
handler.harvest.bozo_exception = err
finally:
fileobj.close()
if hasattr(handler.harvest, 'bozo_exception'):
if 'entity' in handler.harvest.bozo_exception.__str__():
if not inject:
return parse(parse_obj, agent, etag, modified, True)
if inject and not handler.harvest.bozo:
handler.harvest.bozo = 1
handler.harvest.bozo_exception = ListError('undefined entity found')
return handler.harvest
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parse_obj, agent=None, etag=None, modified=None, inject=False):\n guarantees = common.SuperDict({'bozo': 0, 'feeds': [], 'lists': [],\n 'opportunities': [], 'meta': common.SuperDict(), 'version': ''})\n fileobj, info = _mkfile(parse_obj, agent or USER_AGENT, etag, modified)\n guarantees.update(info)\n if not fileobj:\n return guarantees\n handler = Handler()\n handler.harvest.update(guarantees)\n parser = xml.sax.make_parser()\n parser.setFeature(xml.sax.handler.feature_namespaces, True)\n parser.setContentHandler(handler)\n parser.setErrorHandler(handler)\n if inject:\n fileobj = Injector(fileobj)\n try:\n parser.parse(fileobj)\n except (SAXParseException, MalformedByteSequenceException):\n err = sys.exc_info()[1]\n handler.harvest.bozo = 1\n handler.harvest.bozo_exception = err\n finally:\n fileobj.close()\n if hasattr(handler.harvest, 'bozo_exception'):\n if 'entity' in handler.harvest.bozo_exception.__str__():\n if not inject:\n return parse(parse_obj, agent, etag, modified, True)\n if inject and not handler.harvest.bozo:\n handler.harvest.bozo = 1\n handler.harvest.bozo_exception = ListError('undefined entity found')\n return handler.harvest\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(fm, loader):
features = []
if loader.ftrpath:
assert os.access(loader.ftrpath, os.R_OK)
features = os.listdir(os.path.join(loader.ftrpath, str(fm.category[0]))
)
img_per_cat = {}
for cat in np.unique(fm.category):
if not loader.test_for_category(cat):
raise ValueError('Category %s is specified in fixmat but ' % (
str(cat) + 'can not be located by loader'))
img_per_cat[cat] = []
for img in np.unique(fm[fm.category == cat].filenumber):
if not loader.test_for_image(cat, img):
raise ValueError('Image %s in category %s is ' % (str(cat),
str(img)) +
'specified in fixmat but can be located by loader')
img_per_cat[cat].append(img)
if loader.ftrpath:
for feature in features:
if not loader.test_for_feature(cat, img, feature):
raise RuntimeError('Feature %s for image %s' % (str
(feature), str(img)) + ' in category %s ' % str
(cat) + 'can not be located by loader')
return Categories(loader, img_per_cat=img_per_cat, features=features,
fixations=fm)
|
FixmatStimuliFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, loader):\n features = []\n if loader.ftrpath:\n assert os.access(loader.ftrpath, os.R_OK)\n features = os.listdir(os.path.join(loader.ftrpath, str(fm.category[0]))\n )\n img_per_cat = {}\n for cat in np.unique(fm.category):\n if not loader.test_for_category(cat):\n raise ValueError('Category %s is specified in fixmat but ' % (\n str(cat) + 'can not be located by loader'))\n img_per_cat[cat] = []\n for img in np.unique(fm[fm.category == cat].filenumber):\n if not loader.test_for_image(cat, img):\n raise ValueError('Image %s in category %s is ' % (str(cat),\n str(img)) +\n 'specified in fixmat but can be located by loader')\n img_per_cat[cat].append(img)\n if loader.ftrpath:\n for feature in features:\n if not loader.test_for_feature(cat, img, feature):\n raise RuntimeError('Feature %s for image %s' % (str\n (feature), str(img)) + ' in category %s ' % str\n (cat) + 'can not be located by loader')\n return Categories(loader, img_per_cat=img_per_cat, features=features,\n fixations=fm)\n",
"role": "user"
},
{
"content": "FixmatStimuliFactory",
"role": "assistant"
}
] |
def x(loader):
impath = loader.impath
ftrpath = loader.ftrpath
assert os.access(impath, os.R_OK)
assert os.access(ftrpath, os.R_OK)
img_per_cat = {}
subfolders = [name for name in os.listdir(impath) if os.path.isdir(os.
path.join(impath, name))]
if not subfolders:
[_, _, files] = next(os.walk(os.path.join(impath)))
entries = {(1): [int(cur_file[cur_file.find('_') + 1:-4]) for
cur_file in files if cur_file.endswith('.png')]}
img_per_cat.update(entries)
subfolders = ['']
else:
for directory in subfolders:
[_, _, files] = next(os.walk(os.path.join(impath, directory)))
imagenumbers = [int(cur_file[cur_file.find('_') + 1:-4]) for
cur_file in files if cur_file.endswith('.png') & (len(
cur_file) > 4)]
entries = {int(directory): imagenumbers}
img_per_cat.update(entries)
del directory
del imagenumbers
_, features, files = next(os.walk(os.path.join(ftrpath, subfolders[0])))
return Categories(loader, img_per_cat=img_per_cat, features=features)
|
DirectoryStimuliFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loader):\n impath = loader.impath\n ftrpath = loader.ftrpath\n assert os.access(impath, os.R_OK)\n assert os.access(ftrpath, os.R_OK)\n img_per_cat = {}\n subfolders = [name for name in os.listdir(impath) if os.path.isdir(os.\n path.join(impath, name))]\n if not subfolders:\n [_, _, files] = next(os.walk(os.path.join(impath)))\n entries = {(1): [int(cur_file[cur_file.find('_') + 1:-4]) for\n cur_file in files if cur_file.endswith('.png')]}\n img_per_cat.update(entries)\n subfolders = ['']\n else:\n for directory in subfolders:\n [_, _, files] = next(os.walk(os.path.join(impath, directory)))\n imagenumbers = [int(cur_file[cur_file.find('_') + 1:-4]) for\n cur_file in files if cur_file.endswith('.png') & (len(\n cur_file) > 4)]\n entries = {int(directory): imagenumbers}\n img_per_cat.update(entries)\n del directory\n del imagenumbers\n _, features, files = next(os.walk(os.path.join(ftrpath, subfolders[0])))\n return Categories(loader, img_per_cat=img_per_cat, features=features)\n",
"role": "user"
},
{
"content": "DirectoryStimuliFactory",
"role": "assistant"
}
] |
def x(self):
if not self._fixations:
raise RuntimeError('This Images object does not have' +
' an associated fixmat')
if len(list(self._categories.keys())) == 0:
return None
else:
idx = np.zeros(self._fixations.x.shape, dtype='bool')
for cat, _ in list(self._categories.items()):
idx = idx | (self._fixations.category == cat)
return self._fixations[idx]
|
fixations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._fixations:\n raise RuntimeError('This Images object does not have' +\n ' an associated fixmat')\n if len(list(self._categories.keys())) == 0:\n return None\n else:\n idx = np.zeros(self._fixations.x.shape, dtype='bool')\n for cat, _ in list(self._categories.items()):\n idx = idx | (self._fixations.category == cat)\n return self._fixations[idx]\n",
"role": "user"
},
{
"content": "fixations",
"role": "assistant"
}
] |
def x(self, value):
self.loader.save_image(self.category, self.image, value)
|
data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self.loader.save_image(self.category, self.image, value)\n",
"role": "user"
},
{
"content": "data",
"role": "assistant"
}
] |
def x(self):
if not self._fixations:
raise RuntimeError('This Images object does not have' +
' an associated fixmat')
return self._fixations[(self._fixations.category == self.category) & (
self._fixations.filenumber == self.image)]
|
fixations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._fixations:\n raise RuntimeError('This Images object does not have' +\n ' an associated fixmat')\n return self._fixations[(self._fixations.category == self.category) & (\n self._fixations.filenumber == self.image)]\n",
"role": "user"
},
{
"content": "fixations",
"role": "assistant"
}
] |
def x(self):
for _ in range(0, self.num_slices):
subjects = np.unique(self.fm.SUBJECTINDEX)
test_subs = randsample(subjects, self.subject_hold_out * len(subjects))
train_subs = [x for x in subjects if x not in test_subs]
test_fm = self.fm[ismember(self.fm.SUBJECTINDEX, test_subs)]
train_fm = self.fm[ismember(self.fm.SUBJECTINDEX, train_subs)]
test_imgs = {}
train_imgs = {}
id_test = (test_fm.x < 1) & False
id_train = (train_fm.x < 1) & False
for cat in self.categories:
imgs = cat.images()
test_imgs.update({cat.category: randsample(imgs, self.
image_hold_out * len(imgs)).tolist()})
train_imgs.update({cat.category: [x for x in imgs if not
ismember(x, test_imgs[cat.category])]})
id_test = id_test | ismember(test_fm.filenumber, test_imgs[cat.
category]) & (test_fm.category == cat.category)
id_train = id_train | ismember(train_fm.filenumber, train_imgs[
cat.category]) & (train_fm.category == cat.category)
test_stimuli = Categories(self.categories.loader, test_imgs,
features=self.categories._features, fixations=test_fm)
train_stimuli = Categories(self.categories.loader, train_imgs,
features=self.categories._features, fixations=train_fm)
yield train_fm[id_train], train_stimuli, test_fm[id_test], test_stimuli
|
generate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for _ in range(0, self.num_slices):\n subjects = np.unique(self.fm.SUBJECTINDEX)\n test_subs = randsample(subjects, self.subject_hold_out * len(subjects))\n train_subs = [x for x in subjects if x not in test_subs]\n test_fm = self.fm[ismember(self.fm.SUBJECTINDEX, test_subs)]\n train_fm = self.fm[ismember(self.fm.SUBJECTINDEX, train_subs)]\n test_imgs = {}\n train_imgs = {}\n id_test = (test_fm.x < 1) & False\n id_train = (train_fm.x < 1) & False\n for cat in self.categories:\n imgs = cat.images()\n test_imgs.update({cat.category: randsample(imgs, self.\n image_hold_out * len(imgs)).tolist()})\n train_imgs.update({cat.category: [x for x in imgs if not\n ismember(x, test_imgs[cat.category])]})\n id_test = id_test | ismember(test_fm.filenumber, test_imgs[cat.\n category]) & (test_fm.category == cat.category)\n id_train = id_train | ismember(train_fm.filenumber, train_imgs[\n cat.category]) & (train_fm.category == cat.category)\n test_stimuli = Categories(self.categories.loader, test_imgs,\n features=self.categories._features, fixations=test_fm)\n train_stimuli = Categories(self.categories.loader, train_imgs,\n features=self.categories._features, fixations=train_fm)\n yield train_fm[id_train], train_stimuli, test_fm[id_test], test_stimuli\n",
"role": "user"
},
{
"content": "generate",
"role": "assistant"
}
] |
def x(fm, max_back, dur_cap=700):
durations = np.roll(fm.end - fm.start, 1).astype(float)
angles, lengths, ads, lds = anglendiff(fm, roll=max_back, return_abs=True)
forward_angle = abs(reshift(ads[0])).astype(float)
ads = [abs(reshift(a)) for a in ads]
id_in = durations > dur_cap
durations[id_in] = np.nan
forward_angle[id_in] = np.nan
return fm, durations, forward_angle, ads, lds
|
prepare_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, max_back, dur_cap=700):\n durations = np.roll(fm.end - fm.start, 1).astype(float)\n angles, lengths, ads, lds = anglendiff(fm, roll=max_back, return_abs=True)\n forward_angle = abs(reshift(ads[0])).astype(float)\n ads = [abs(reshift(a)) for a in ads]\n id_in = durations > dur_cap\n durations[id_in] = np.nan\n forward_angle[id_in] = np.nan\n return fm, durations, forward_angle, ads, lds\n",
"role": "user"
},
{
"content": "prepare_data",
"role": "assistant"
}
] |
def x(durations, forward_angle, summary_stat=nanmean):
durations_per_da = np.nan * np.ones((len(e_angle) - 1,))
for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])):
idx = (bo <= forward_angle) & (forward_angle < b1) & ~np.isnan(
durations)
durations_per_da[i] = summary_stat(durations[idx])
return durations_per_da
|
saccadic_momentum_effect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(durations, forward_angle, summary_stat=nanmean):\n durations_per_da = np.nan * np.ones((len(e_angle) - 1,))\n for i, (bo, b1) in enumerate(zip(e_angle[:-1], e_angle[1:])):\n idx = (bo <= forward_angle) & (forward_angle < b1) & ~np.isnan(\n durations)\n durations_per_da[i] = summary_stat(durations[idx])\n return durations_per_da\n",
"role": "user"
},
{
"content": "saccadic_momentum_effect",
"role": "assistant"
}
] |
def x(durations, angle_diffs, length_diffs, summary_stat=np.mean, parallel=
True, min_samples=20):
raster = np.empty((len(e_dist) - 1, len(e_angle) - 1), dtype=object)
for a, (a_low, a_upp) in enumerate(zip(e_angle[:-1], e_angle[1:])):
for d, (d_low, d_upp) in enumerate(zip(e_dist[:-1], e_dist[1:])):
idx = (d_low <= length_diffs) & (length_diffs < d_upp) & (a_low <=
angle_diffs) & (angle_diffs < a_upp)
if sum(idx) < min_samples:
raster[d, a] = np.array([np.nan])
else:
raster[d, a] = durations[idx]
if parallel:
p = pool.Pool(3)
result = p.map(summary_stat, list(raster.flatten()))
p.terminate()
else:
result = list(map(summary_stat, list(raster.flatten())))
for idx, value in enumerate(result):
i, j = np.unravel_index(idx, raster.shape)
raster[i, j] = value
return raster
|
ior_effect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(durations, angle_diffs, length_diffs, summary_stat=np.mean, parallel=\n True, min_samples=20):\n raster = np.empty((len(e_dist) - 1, len(e_angle) - 1), dtype=object)\n for a, (a_low, a_upp) in enumerate(zip(e_angle[:-1], e_angle[1:])):\n for d, (d_low, d_upp) in enumerate(zip(e_dist[:-1], e_dist[1:])):\n idx = (d_low <= length_diffs) & (length_diffs < d_upp) & (a_low <=\n angle_diffs) & (angle_diffs < a_upp)\n if sum(idx) < min_samples:\n raster[d, a] = np.array([np.nan])\n else:\n raster[d, a] = durations[idx]\n if parallel:\n p = pool.Pool(3)\n result = p.map(summary_stat, list(raster.flatten()))\n p.terminate()\n else:\n result = list(map(summary_stat, list(raster.flatten())))\n for idx, value in enumerate(result):\n i, j = np.unravel_index(idx, raster.shape)\n raster[i, j] = value\n return raster\n",
"role": "user"
},
{
"content": "ior_effect",
"role": "assistant"
}
] |
def x(durations, angles, length_diffs, dataset=None, params=None):
if dataset is None:
dataset = np.ones(durations.shape)
corrected_durations = np.nan * np.ones(durations.shape)
for i, ds in enumerate(np.unique(dataset)):
e = lambda v, x, y, z: leastsq_dual_model(x, z, *v) - y
v0 = [120, 220.0, -0.1, 0.5, 0.1, 0.1]
id_ds = dataset == ds
idnan = ~np.isnan(angles) & ~np.isnan(durations) & ~np.isnan(
length_diffs)
v, s = leastsq(e, v0, args=(angles[idnan & id_ds], durations[idnan &
id_ds], length_diffs[idnan & id_ds]), maxfev=10000)
corrected_durations[id_ds] = durations[id_ds] - leastsq_dual_model(
angles[id_ds], length_diffs[id_ds], *v)
if params is not None:
params['v' + str(i)] = v
params['s' + str(i)] = s
return corrected_durations
|
predict_fixation_duration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(durations, angles, length_diffs, dataset=None, params=None):\n if dataset is None:\n dataset = np.ones(durations.shape)\n corrected_durations = np.nan * np.ones(durations.shape)\n for i, ds in enumerate(np.unique(dataset)):\n e = lambda v, x, y, z: leastsq_dual_model(x, z, *v) - y\n v0 = [120, 220.0, -0.1, 0.5, 0.1, 0.1]\n id_ds = dataset == ds\n idnan = ~np.isnan(angles) & ~np.isnan(durations) & ~np.isnan(\n length_diffs)\n v, s = leastsq(e, v0, args=(angles[idnan & id_ds], durations[idnan &\n id_ds], length_diffs[idnan & id_ds]), maxfev=10000)\n corrected_durations[id_ds] = durations[id_ds] - leastsq_dual_model(\n angles[id_ds], length_diffs[id_ds], *v)\n if params is not None:\n params['v' + str(i)] = v\n params['s' + str(i)] = s\n return corrected_durations\n",
"role": "user"
},
{
"content": "predict_fixation_duration",
"role": "assistant"
}
] |
def x(fm, field='SUBJECTINDEX', method=predict_fixation_duration, data=None):
if data is None:
fma, dura, faa, adsa, ldsa = prepare_data(fm, dur_cap=700, max_back=5)
adsa = adsa[0]
ldsa = ldsa[0]
else:
fma, dura, faa, adsa, ldsa = data
fma = fma.copy()
sub_effects = []
sub_predictions = []
parameters = []
for i, fmsub in enumerate(np.unique(fma.field(field))):
id = fma.field(field) == fmsub
dur, fa, ads, lds = dura[id], faa[id], adsa[id], ldsa[id]
params = {}
_ = method(dur, fa, lds, params=params)
ps = params['v0']
ld_corrected = leastsq_only_dist(lds, ps[4], ps[5])
prediction = leastsq_only_angle(fa, ps[0], ps[1], ps[2], ps[3])
sub_predictions += [saccadic_momentum_effect(prediction, fa)]
sub_effects += [saccadic_momentum_effect(dur - ld_corrected, fa)]
parameters += [ps]
return np.array(sub_effects), np.array(sub_predictions), parameters
|
subject_predictions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, field='SUBJECTINDEX', method=predict_fixation_duration, data=None):\n if data is None:\n fma, dura, faa, adsa, ldsa = prepare_data(fm, dur_cap=700, max_back=5)\n adsa = adsa[0]\n ldsa = ldsa[0]\n else:\n fma, dura, faa, adsa, ldsa = data\n fma = fma.copy()\n sub_effects = []\n sub_predictions = []\n parameters = []\n for i, fmsub in enumerate(np.unique(fma.field(field))):\n id = fma.field(field) == fmsub\n dur, fa, ads, lds = dura[id], faa[id], adsa[id], ldsa[id]\n params = {}\n _ = method(dur, fa, lds, params=params)\n ps = params['v0']\n ld_corrected = leastsq_only_dist(lds, ps[4], ps[5])\n prediction = leastsq_only_angle(fa, ps[0], ps[1], ps[2], ps[3])\n sub_predictions += [saccadic_momentum_effect(prediction, fa)]\n sub_effects += [saccadic_momentum_effect(dur - ld_corrected, fa)]\n parameters += [ps]\n return np.array(sub_effects), np.array(sub_predictions), parameters\n",
"role": "user"
},
{
"content": "subject_predictions",
"role": "assistant"
}
] |
def x(fm, category, predicting_filenumbers, predicting_subjects,
predicted_filenumbers, predicted_subjects, controls=True, scale_factor=1):
predicting_fm = fm[ismember(fm.SUBJECTINDEX, predicting_subjects) &
ismember(fm.filenumber, predicting_filenumbers) & (fm.category ==
category)]
predicted_fm = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) &
ismember(fm.filenumber, predicted_filenumbers) & (fm.category ==
category)]
try:
predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor)
except RuntimeError:
predicting_fdm = None
if controls == True:
fm_controls = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) & (
ismember(fm.filenumber, predicted_filenumbers) != True) & (fm.
category == category)]
return measures.prediction_scores(predicting_fdm, predicted_fm,
controls=(fm_controls.y, fm_controls.x))
return measures.prediction_scores(predicting_fdm, predicted_fm,
controls=None)
|
intersubject_scores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, category, predicting_filenumbers, predicting_subjects,\n predicted_filenumbers, predicted_subjects, controls=True, scale_factor=1):\n predicting_fm = fm[ismember(fm.SUBJECTINDEX, predicting_subjects) &\n ismember(fm.filenumber, predicting_filenumbers) & (fm.category ==\n category)]\n predicted_fm = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) &\n ismember(fm.filenumber, predicted_filenumbers) & (fm.category ==\n category)]\n try:\n predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n if controls == True:\n fm_controls = fm[ismember(fm.SUBJECTINDEX, predicted_subjects) & (\n ismember(fm.filenumber, predicted_filenumbers) != True) & (fm.\n category == category)]\n return measures.prediction_scores(predicting_fdm, predicted_fm,\n controls=(fm_controls.y, fm_controls.x))\n return measures.prediction_scores(predicting_fdm, predicted_fm,\n controls=None)\n",
"role": "user"
},
{
"content": "intersubject_scores",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.