source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(fm, category, filenumber, n_train, n_predict, controls=True,
scale_factor=1):
subjects = np.unique(fm.SUBJECTINDEX)
if len(subjects) < n_train + n_predict:
raise ValueError('Not enough subjects in fixmat')
np.random.shuffle(subjects)
predicted_subjects = subjects[0:n_predict]
predicting_subjects = subjects[n_predict:n_predict + n_train]
assert len(predicting_subjects) == n_train
assert len(predicted_subjects) == n_predict
assert [(x not in predicting_subjects) for x in predicted_subjects]
return intersubject_scores(fm, category, [filenumber],
predicting_subjects, [filenumber], predicted_subjects, controls,
scale_factor)
|
intersubject_scores_random_subjects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, category, filenumber, n_train, n_predict, controls=True,\n scale_factor=1):\n subjects = np.unique(fm.SUBJECTINDEX)\n if len(subjects) < n_train + n_predict:\n raise ValueError('Not enough subjects in fixmat')\n np.random.shuffle(subjects)\n predicted_subjects = subjects[0:n_predict]\n predicting_subjects = subjects[n_predict:n_predict + n_train]\n assert len(predicting_subjects) == n_train\n assert len(predicted_subjects) == n_predict\n assert [(x not in predicting_subjects) for x in predicted_subjects]\n return intersubject_scores(fm, category, [filenumber],\n predicting_subjects, [filenumber], predicted_subjects, controls,\n scale_factor)\n",
"role": "user"
},
{
"content": "intersubject_scores_random_subjects",
"role": "assistant"
}
] |
def x(fm, nr_subs=None, scale_factor=1):
nr_subs_total = len(np.unique(fm.SUBJECTINDEX))
if not nr_subs:
nr_subs = nr_subs_total - 1
assert nr_subs < nr_subs_total
intersub_scores = []
for measure in range(len(measures.scores)):
res_dict = {}
result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.
unique(fm.category)]
res_dict.update(list(zip(np.unique(fm.category), result_vectors)))
intersub_scores.append(res_dict)
for fm_cat in fm.by_field('category'):
cat = fm_cat.category[0]
for sub_counter, sub in enumerate(np.unique(fm_cat.SUBJECTINDEX)):
image_scores = []
for fm_single in fm_cat.by_field('filenumber'):
predicting_subs = np.setdiff1d(np.unique(fm_single.
SUBJECTINDEX), [sub])
np.random.shuffle(predicting_subs)
predicting_subs = predicting_subs[0:nr_subs]
predicting_fm = fm_single[ismember(fm_single.SUBJECTINDEX,
predicting_subs)]
predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]
try:
predicting_fdm = compute_fdm(predicting_fm,
scale_factor=scale_factor)
except RuntimeError:
predicting_fdm = None
image_scores.append(measures.prediction_scores(
predicting_fdm, predicted_fm))
for measure, score in enumerate(nanmean(image_scores, 0)):
intersub_scores[measure][cat][sub_counter] = score
return intersub_scores
|
upper_bound
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, nr_subs=None, scale_factor=1):\n nr_subs_total = len(np.unique(fm.SUBJECTINDEX))\n if not nr_subs:\n nr_subs = nr_subs_total - 1\n assert nr_subs < nr_subs_total\n intersub_scores = []\n for measure in range(len(measures.scores)):\n res_dict = {}\n result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.\n unique(fm.category)]\n res_dict.update(list(zip(np.unique(fm.category), result_vectors)))\n intersub_scores.append(res_dict)\n for fm_cat in fm.by_field('category'):\n cat = fm_cat.category[0]\n for sub_counter, sub in enumerate(np.unique(fm_cat.SUBJECTINDEX)):\n image_scores = []\n for fm_single in fm_cat.by_field('filenumber'):\n predicting_subs = np.setdiff1d(np.unique(fm_single.\n SUBJECTINDEX), [sub])\n np.random.shuffle(predicting_subs)\n predicting_subs = predicting_subs[0:nr_subs]\n predicting_fm = fm_single[ismember(fm_single.SUBJECTINDEX,\n predicting_subs)]\n predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]\n try:\n predicting_fdm = compute_fdm(predicting_fm,\n scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n image_scores.append(measures.prediction_scores(\n predicting_fdm, predicted_fm))\n for measure, score in enumerate(nanmean(image_scores, 0)):\n intersub_scores[measure][cat][sub_counter] = score\n return intersub_scores\n",
"role": "user"
},
{
"content": "upper_bound",
"role": "assistant"
}
] |
def x(fm, nr_subs=None, nr_imgs=None, scale_factor=1):
nr_subs_total = len(np.unique(fm.SUBJECTINDEX))
if nr_subs is None:
nr_subs = nr_subs_total - 1
assert nr_subs < nr_subs_total
sb_scores = []
for measure in range(len(measures.scores)):
res_dict = {}
result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.
unique(fm.category)]
res_dict.update(list(zip(np.unique(fm.category), result_vectors)))
sb_scores.append(res_dict)
for fm_cat in fm.by_field('category'):
cat = fm_cat.category[0]
nr_imgs_cat = len(np.unique(fm_cat.filenumber))
if not nr_imgs:
nr_imgs_current = nr_imgs_cat - 1
else:
nr_imgs_current = nr_imgs
assert nr_imgs_current < nr_imgs_cat
for sub_counter, sub in enumerate(np.unique(fm.SUBJECTINDEX)):
image_scores = []
for fm_single in fm_cat.by_field('filenumber'):
fn = fm_single.filenumber[0]
predicting_subs = np.setdiff1d(np.unique(fm_cat.
SUBJECTINDEX), [sub])
np.random.shuffle(predicting_subs)
predicting_subs = predicting_subs[0:nr_subs]
predicting_fns = np.setdiff1d(np.unique(fm_cat.filenumber),
[fn])
np.random.shuffle(predicting_fns)
predicting_fns = predicting_fns[0:nr_imgs_current]
predicting_fm = fm_cat[ismember(fm_cat.SUBJECTINDEX,
predicting_subs) & ismember(fm_cat.filenumber,
predicting_fns)]
predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]
try:
predicting_fdm = compute_fdm(predicting_fm,
scale_factor=scale_factor)
except RuntimeError:
predicting_fdm = None
image_scores.append(measures.prediction_scores(
predicting_fdm, predicted_fm))
for measure, score in enumerate(nanmean(image_scores, 0)):
sb_scores[measure][cat][sub_counter] = score
return sb_scores
|
lower_bound
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fm, nr_subs=None, nr_imgs=None, scale_factor=1):\n nr_subs_total = len(np.unique(fm.SUBJECTINDEX))\n if nr_subs is None:\n nr_subs = nr_subs_total - 1\n assert nr_subs < nr_subs_total\n sb_scores = []\n for measure in range(len(measures.scores)):\n res_dict = {}\n result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.\n unique(fm.category)]\n res_dict.update(list(zip(np.unique(fm.category), result_vectors)))\n sb_scores.append(res_dict)\n for fm_cat in fm.by_field('category'):\n cat = fm_cat.category[0]\n nr_imgs_cat = len(np.unique(fm_cat.filenumber))\n if not nr_imgs:\n nr_imgs_current = nr_imgs_cat - 1\n else:\n nr_imgs_current = nr_imgs\n assert nr_imgs_current < nr_imgs_cat\n for sub_counter, sub in enumerate(np.unique(fm.SUBJECTINDEX)):\n image_scores = []\n for fm_single in fm_cat.by_field('filenumber'):\n fn = fm_single.filenumber[0]\n predicting_subs = np.setdiff1d(np.unique(fm_cat.\n SUBJECTINDEX), [sub])\n np.random.shuffle(predicting_subs)\n predicting_subs = predicting_subs[0:nr_subs]\n predicting_fns = np.setdiff1d(np.unique(fm_cat.filenumber),\n [fn])\n np.random.shuffle(predicting_fns)\n predicting_fns = predicting_fns[0:nr_imgs_current]\n predicting_fm = fm_cat[ismember(fm_cat.SUBJECTINDEX,\n predicting_subs) & ismember(fm_cat.filenumber,\n predicting_fns)]\n predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]\n try:\n predicting_fdm = compute_fdm(predicting_fm,\n scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n image_scores.append(measures.prediction_scores(\n predicting_fdm, predicted_fm))\n for measure, score in enumerate(nanmean(image_scores, 0)):\n sb_scores[measure][cat][sub_counter] = score\n return sb_scores\n",
"role": "user"
},
{
"content": "lower_bound",
"role": "assistant"
}
] |
def x(ind, dimensions):
if ind >= np.prod(dimensions):
raise RuntimeError('ind2sub: index exceeds array size')
cum_dims = list(dimensions)
cum_dims.reverse()
m = 1
mult = []
for d in cum_dims:
m = m * d
mult.append(m)
mult.pop()
mult.reverse()
mult.append(1)
indices = []
for d in mult:
indices.append(ind / d + 1)
ind = ind - ind / d * d
return indices
|
ind2sub
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ind, dimensions):\n if ind >= np.prod(dimensions):\n raise RuntimeError('ind2sub: index exceeds array size')\n cum_dims = list(dimensions)\n cum_dims.reverse()\n m = 1\n mult = []\n for d in cum_dims:\n m = m * d\n mult.append(m)\n mult.pop()\n mult.reverse()\n mult.append(1)\n indices = []\n for d in mult:\n indices.append(ind / d + 1)\n ind = ind - ind / d * d\n return indices\n",
"role": "user"
},
{
"content": "ind2sub",
"role": "assistant"
}
] |
def x(indices, dimensions):
if any([(i > j) for i, j in zip(indices, dimensions)]):
raise RuntimeError("sub2ind:an index exceeds its dimension's size")
dims = list(dimensions)
dims.append(1)
dims.remove(dims[0])
dims.reverse()
ind = list(indices)
ind.reverse()
idx = 0
mult = 1
for cnt, dim in zip(ind, dims):
mult = dim * mult
idx = idx + (cnt - 1) * mult
return idx
|
sub2ind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(indices, dimensions):\n if any([(i > j) for i, j in zip(indices, dimensions)]):\n raise RuntimeError(\"sub2ind:an index exceeds its dimension's size\")\n dims = list(dimensions)\n dims.append(1)\n dims.remove(dims[0])\n dims.reverse()\n ind = list(indices)\n ind.reverse()\n idx = 0\n mult = 1\n for cnt, dim in zip(ind, dims):\n mult = dim * mult\n idx = idx + (cnt - 1) * mult\n return idx\n",
"role": "user"
},
{
"content": "sub2ind",
"role": "assistant"
}
] |
def x(store_class, chunk_size, restore_file, save_file):
intm_results = np.load(restore_file)
intm = intm_results[intm_results.files[0]]
idx = np.isnan(intm).flatten().nonzero()[0]
partitions = math.ceil(len(idx) / float(chunk_size))
task_store = store_class(partitions, idx.tolist(), save_file)
task_store.num_tasks = len(idx)
for f in intm_results.files:
task_store.__dict__[f] = intm_results[f]
return task_store
|
RestoreTaskStoreFactory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(store_class, chunk_size, restore_file, save_file):\n intm_results = np.load(restore_file)\n intm = intm_results[intm_results.files[0]]\n idx = np.isnan(intm).flatten().nonzero()[0]\n partitions = math.ceil(len(idx) / float(chunk_size))\n task_store = store_class(partitions, idx.tolist(), save_file)\n task_store.num_tasks = len(idx)\n for f in intm_results.files:\n task_store.__dict__[f] = intm_results[f]\n return task_store\n",
"role": "user"
},
{
"content": "RestoreTaskStoreFactory",
"role": "assistant"
}
] |
def x(self):
if not len(self.scheduled_tasks) == 0:
self.reschedule = list(self.scheduled_tasks.items())
self.scheduled_tasks = {}
return True
|
xmlrpc_reschedule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not len(self.scheduled_tasks) == 0:\n self.reschedule = list(self.scheduled_tasks.items())\n self.scheduled_tasks = {}\n return True\n",
"role": "user"
},
{
"content": "xmlrpc_reschedule",
"role": "assistant"
}
] |
def x(self):
try:
if len(self.reschedule) == 0:
task_id, cur_task = next(self.task_iterator)
else:
task_id, cur_task = self.reschedule.pop()
self.scheduled_tasks.update({task_id: cur_task})
return task_id, cur_task.to_dict()
except StopIteration:
print('StopIteration: No more tasks')
return False
except Exception as err:
print('Some other error')
print(err)
return False
|
xmlrpc_get_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n if len(self.reschedule) == 0:\n task_id, cur_task = next(self.task_iterator)\n else:\n task_id, cur_task = self.reschedule.pop()\n self.scheduled_tasks.update({task_id: cur_task})\n return task_id, cur_task.to_dict()\n except StopIteration:\n print('StopIteration: No more tasks')\n return False\n except Exception as err:\n print('Some other error')\n print(err)\n return False\n",
"role": "user"
},
{
"content": "xmlrpc_get_task",
"role": "assistant"
}
] |
def x(self, result):
task_id, task_results = result
del self.scheduled_tasks[task_id]
self.task_store.update_results(task_id, task_results)
self.results += 1
return True
|
xmlrpc_task_done
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result):\n task_id, task_results = result\n del self.scheduled_tasks[task_id]\n self.task_store.update_results(task_id, task_results)\n self.results += 1\n return True\n",
"role": "user"
},
{
"content": "xmlrpc_task_done",
"role": "assistant"
}
] |
def x(self):
return (
"""
%i Jobs are still wating for execution
%i Jobs are being processed
%i Jobs are done
"""
% (self.task_store.partitions - self.results - len(self.
scheduled_tasks), len(self.scheduled_tasks), self.results))
|
xmlrpc_status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (\n \"\"\"\n %i Jobs are still wating for execution\n %i Jobs are being processed\n %i Jobs are done\n \"\"\"\n % (self.task_store.partitions - self.results - len(self.\n scheduled_tasks), len(self.scheduled_tasks), self.results))\n",
"role": "user"
},
{
"content": "xmlrpc_status",
"role": "assistant"
}
] |
def x(self, filename):
savefile = open(filename, 'wb')
try:
pickle.dump({'scheduled': self.scheduled_tasks, 'reschedule': self.
reschedule}, savefile)
except pickle.PicklingError:
return -1
savefile.close()
return 1
|
xmlrpc_save2file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n savefile = open(filename, 'wb')\n try:\n pickle.dump({'scheduled': self.scheduled_tasks, 'reschedule': self.\n reschedule}, savefile)\n except pickle.PicklingError:\n return -1\n savefile.close()\n return 1\n",
"role": "user"
},
{
"content": "xmlrpc_save2file",
"role": "assistant"
}
] |
def x(self):
task_id, tasks = self.server.get_task()
self.task_store.from_dict(tasks)
for index, task in self.task_store:
result = self.compute(index, task)
self.results.append(result)
self.server.task_done((task_id, self.results))
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n task_id, tasks = self.server.get_task()\n self.task_store.from_dict(tasks)\n for index, task in self.task_store:\n result = self.compute(index, task)\n self.results.append(result)\n self.server.task_done((task_id, self.results))\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, description):
assert self.ident == description['ident']
self.partitions = description['partitions']
self.indices = description['indices']
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, description):\n assert self.ident == description['ident']\n self.partitions = description['partitions']\n self.indices = description['indices']\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(self):
step = int(math.ceil(self.num_tasks / float(self.partitions)))
if self.indices == None:
slice_ind = list(range(0, self.num_tasks, step))
for start in slice_ind:
yield self.__class__(self.partitions, list(range(start, start +
step)))
else:
slice_ind = list(range(0, len(self.indices), step))
for start in slice_ind:
if start + step <= len(self.indices):
yield self.__class__(self.partitions, self.indices[start:
start + step])
else:
yield self.__class__(self.partitions, self.indices[start:])
|
partition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n step = int(math.ceil(self.num_tasks / float(self.partitions)))\n if self.indices == None:\n slice_ind = list(range(0, self.num_tasks, step))\n for start in slice_ind:\n yield self.__class__(self.partitions, list(range(start, start +\n step)))\n else:\n slice_ind = list(range(0, len(self.indices), step))\n for start in slice_ind:\n if start + step <= len(self.indices):\n yield self.__class__(self.partitions, self.indices[start:\n start + step])\n else:\n yield self.__class__(self.partitions, self.indices[start:])\n",
"role": "user"
},
{
"content": "partition",
"role": "assistant"
}
] |
def x(samples, e_x, e_y, e_z, remove_zeros=False, **kw):
height, width, depth = len(e_y) - 1, len(e_x) - 1, len(e_z) - 1
p_est, _ = np.histogramdd(samples, (e_x, e_y, e_z))
p_est = p_est / sum(p_est.flat)
p_est = p_est.flatten()
if remove_zeros:
non_zero = ~(p_est == 0)
else:
non_zero = p_est >= 0
basis = spline_base3d(width, height, depth, **kw)
model = linear_model.BayesianRidge()
model.fit(basis[:, non_zero].T, p_est[:, np.newaxis][non_zero, :])
return model.predict(basis.T).reshape((width, height, depth)
), p_est.reshape((width, height, depth))
|
fit3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, e_x, e_y, e_z, remove_zeros=False, **kw):\n height, width, depth = len(e_y) - 1, len(e_x) - 1, len(e_z) - 1\n p_est, _ = np.histogramdd(samples, (e_x, e_y, e_z))\n p_est = p_est / sum(p_est.flat)\n p_est = p_est.flatten()\n if remove_zeros:\n non_zero = ~(p_est == 0)\n else:\n non_zero = p_est >= 0\n basis = spline_base3d(width, height, depth, **kw)\n model = linear_model.BayesianRidge()\n model.fit(basis[:, non_zero].T, p_est[:, np.newaxis][non_zero, :])\n return model.predict(basis.T).reshape((width, height, depth)\n ), p_est.reshape((width, height, depth))\n",
"role": "user"
},
{
"content": "fit3d",
"role": "assistant"
}
] |
def x(samples, e_x, e_y, remove_zeros=False, p_est=None, **kw):
if p_est is None:
height = len(e_y) - 1
width = len(e_x) - 1
p_est, _ = np.histogramdd(samples, (e_x, e_y))
else:
p_est = p_est.T
width, height = p_est.shape
shape = p_est.shape
p_est = (p_est / sum(p_est.flat)).reshape(shape)
mx = p_est.sum(1)
my = p_est.sum(0)
p_est = p_est.T.flatten()
basis, knots = spline_base2d(width, height, marginal_x=mx, marginal_y=
my, **kw)
model = linear_model.BayesianRidge()
if remove_zeros:
non_zero = ~(p_est == 0)
model.fit(basis[:, non_zero].T, p_est[non_zero])
else:
non_zero = p_est >= 0
p_est[~non_zero, :] = np.finfo(float).eps
model.fit(basis.T, p_est)
return model.predict(basis.T).reshape((height, width)), p_est.reshape((
height, width)), knots
|
fit2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, e_x, e_y, remove_zeros=False, p_est=None, **kw):\n if p_est is None:\n height = len(e_y) - 1\n width = len(e_x) - 1\n p_est, _ = np.histogramdd(samples, (e_x, e_y))\n else:\n p_est = p_est.T\n width, height = p_est.shape\n shape = p_est.shape\n p_est = (p_est / sum(p_est.flat)).reshape(shape)\n mx = p_est.sum(1)\n my = p_est.sum(0)\n p_est = p_est.T.flatten()\n basis, knots = spline_base2d(width, height, marginal_x=mx, marginal_y=\n my, **kw)\n model = linear_model.BayesianRidge()\n if remove_zeros:\n non_zero = ~(p_est == 0)\n model.fit(basis[:, non_zero].T, p_est[non_zero])\n else:\n non_zero = p_est >= 0\n p_est[~non_zero, :] = np.finfo(float).eps\n model.fit(basis.T, p_est)\n return model.predict(basis.T).reshape((height, width)), p_est.reshape((\n height, width)), knots\n",
"role": "user"
},
{
"content": "fit2d",
"role": "assistant"
}
] |
def x(samples, e, remove_zeros=False, **kw):
samples = samples[~np.isnan(samples)]
length = len(e) - 1
hist, _ = np.histogramdd(samples, (e,))
hist = hist / sum(hist)
basis, knots = spline_base1d(length, marginal=hist, **kw)
non_zero = hist > 0
model = linear_model.BayesianRidge()
if remove_zeros:
model.fit(basis[non_zero, :], hist[:, np.newaxis][non_zero, :])
else:
hist[~non_zero] = np.finfo(float).eps
model.fit(basis, hist[:, np.newaxis])
return model.predict(basis), hist, knots
|
fit1d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, e, remove_zeros=False, **kw):\n samples = samples[~np.isnan(samples)]\n length = len(e) - 1\n hist, _ = np.histogramdd(samples, (e,))\n hist = hist / sum(hist)\n basis, knots = spline_base1d(length, marginal=hist, **kw)\n non_zero = hist > 0\n model = linear_model.BayesianRidge()\n if remove_zeros:\n model.fit(basis[non_zero, :], hist[:, np.newaxis][non_zero, :])\n else:\n hist[~non_zero] = np.finfo(float).eps\n model.fit(basis, hist[:, np.newaxis])\n return model.predict(basis), hist, knots\n",
"role": "user"
},
{
"content": "fit1d",
"role": "assistant"
}
] |
def x(marginal, nr_knots, spline_order):
cumsum = np.cumsum(marginal)
cumsum = cumsum / cumsum.max()
borders = np.linspace(0, 1, nr_knots)
knot_placement = [0] + np.unique([np.where(cumsum >= b)[0][0] for b in
borders[1:-1]]).tolist() + [len(marginal) - 1]
knots = augknt(knot_placement, spline_order)
return knots
|
knots_from_marginal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(marginal, nr_knots, spline_order):\n cumsum = np.cumsum(marginal)\n cumsum = cumsum / cumsum.max()\n borders = np.linspace(0, 1, nr_knots)\n knot_placement = [0] + np.unique([np.where(cumsum >= b)[0][0] for b in\n borders[1:-1]]).tolist() + [len(marginal) - 1]\n knots = augknt(knot_placement, spline_order)\n return knots\n",
"role": "user"
},
{
"content": "knots_from_marginal",
"role": "assistant"
}
] |
def x(length, nr_knots=20, spline_order=5, marginal=None):
if marginal is None:
knots = augknt(np.linspace(0, length + 1, nr_knots), spline_order)
else:
knots = knots_from_marginal(marginal, nr_knots, spline_order)
x_eval = np.arange(1, length + 1).astype(float)
Bsplines = spcol(x_eval, knots, spline_order)
return Bsplines, knots
|
spline_base1d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(length, nr_knots=20, spline_order=5, marginal=None):\n if marginal is None:\n knots = augknt(np.linspace(0, length + 1, nr_knots), spline_order)\n else:\n knots = knots_from_marginal(marginal, nr_knots, spline_order)\n x_eval = np.arange(1, length + 1).astype(float)\n Bsplines = spcol(x_eval, knots, spline_order)\n return Bsplines, knots\n",
"role": "user"
},
{
"content": "spline_base1d",
"role": "assistant"
}
] |
def x(width, height, nr_knots_x=20.0, nr_knots_y=20.0, spline_order=5,
marginal_x=None, marginal_y=None):
if not (nr_knots_x < width and nr_knots_y < height):
raise RuntimeError('Too many knots for size of the base')
if marginal_x is None:
knots_x = augknt(np.linspace(0, width + 1, nr_knots_x), spline_order)
else:
knots_x = knots_from_marginal(marginal_x, nr_knots_x, spline_order)
if marginal_y is None:
knots_y = augknt(np.linspace(0, height + 1, nr_knots_y), spline_order)
else:
knots_y = knots_from_marginal(marginal_y, nr_knots_y, spline_order)
x_eval = np.arange(1, width + 1).astype(float)
y_eval = np.arange(1, height + 1).astype(float)
spline_setx = spcol(x_eval, knots_x, spline_order)
spline_sety = spcol(y_eval, knots_y, spline_order)
nr_coeff = [spline_sety.shape[1], spline_setx.shape[1]]
dim_bspline = [nr_coeff[0] * nr_coeff[1], len(x_eval) * len(y_eval)]
nr_basis = 0
bspline = np.zeros(dim_bspline)
for IDX1 in range(0, nr_coeff[0]):
for IDX2 in range(0, nr_coeff[1]):
rand_coeff = np.zeros((nr_coeff[0], nr_coeff[1]))
rand_coeff[IDX1, IDX2] = 1
tmp = np.dot(spline_sety, rand_coeff)
bspline[nr_basis, :] = np.dot(tmp, spline_setx.T).reshape((1, -1))
nr_basis = nr_basis + 1
return bspline, (knots_x, knots_y)
|
spline_base2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(width, height, nr_knots_x=20.0, nr_knots_y=20.0, spline_order=5,\n marginal_x=None, marginal_y=None):\n if not (nr_knots_x < width and nr_knots_y < height):\n raise RuntimeError('Too many knots for size of the base')\n if marginal_x is None:\n knots_x = augknt(np.linspace(0, width + 1, nr_knots_x), spline_order)\n else:\n knots_x = knots_from_marginal(marginal_x, nr_knots_x, spline_order)\n if marginal_y is None:\n knots_y = augknt(np.linspace(0, height + 1, nr_knots_y), spline_order)\n else:\n knots_y = knots_from_marginal(marginal_y, nr_knots_y, spline_order)\n x_eval = np.arange(1, width + 1).astype(float)\n y_eval = np.arange(1, height + 1).astype(float)\n spline_setx = spcol(x_eval, knots_x, spline_order)\n spline_sety = spcol(y_eval, knots_y, spline_order)\n nr_coeff = [spline_sety.shape[1], spline_setx.shape[1]]\n dim_bspline = [nr_coeff[0] * nr_coeff[1], len(x_eval) * len(y_eval)]\n nr_basis = 0\n bspline = np.zeros(dim_bspline)\n for IDX1 in range(0, nr_coeff[0]):\n for IDX2 in range(0, nr_coeff[1]):\n rand_coeff = np.zeros((nr_coeff[0], nr_coeff[1]))\n rand_coeff[IDX1, IDX2] = 1\n tmp = np.dot(spline_sety, rand_coeff)\n bspline[nr_basis, :] = np.dot(tmp, spline_setx.T).reshape((1, -1))\n nr_basis = nr_basis + 1\n return bspline, (knots_x, knots_y)\n",
"role": "user"
},
{
"content": "spline_base2d",
"role": "assistant"
}
] |
def x(width, height, depth, nr_knots_x=10.0, nr_knots_y=10.0, nr_knots_z=10,
spline_order=3, marginal_x=None, marginal_y=None, marginal_z=None):
if not nr_knots_z < depth:
raise RuntimeError('Too many knots for size of the base')
basis2d, (knots_x, knots_y) = spline_base2d(height, width, nr_knots_x,
nr_knots_y, spline_order, marginal_x, marginal_y)
if marginal_z is not None:
knots_z = knots_from_marginal(marginal_z, nr_knots_z, spline_order)
else:
knots_z = augknt(np.linspace(0, depth + 1, nr_knots_z), spline_order)
z_eval = np.arange(1, depth + 1).astype(float)
spline_setz = spcol(z_eval, knots_z, spline_order)
bspline = np.zeros((basis2d.shape[0] * len(z_eval), height * width * depth)
)
basis_nr = 0
for spline_a in spline_setz.T:
for spline_b in basis2d:
spline_b = spline_b.reshape((height, width))
bspline[basis_nr, :] = (spline_b[:, :, np.newaxis] * spline_a[:]
).flat
basis_nr += 1
return bspline, (knots_x, knots_y, knots_z)
|
spline_base3d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(width, height, depth, nr_knots_x=10.0, nr_knots_y=10.0, nr_knots_z=10,\n spline_order=3, marginal_x=None, marginal_y=None, marginal_z=None):\n if not nr_knots_z < depth:\n raise RuntimeError('Too many knots for size of the base')\n basis2d, (knots_x, knots_y) = spline_base2d(height, width, nr_knots_x,\n nr_knots_y, spline_order, marginal_x, marginal_y)\n if marginal_z is not None:\n knots_z = knots_from_marginal(marginal_z, nr_knots_z, spline_order)\n else:\n knots_z = augknt(np.linspace(0, depth + 1, nr_knots_z), spline_order)\n z_eval = np.arange(1, depth + 1).astype(float)\n spline_setz = spcol(z_eval, knots_z, spline_order)\n bspline = np.zeros((basis2d.shape[0] * len(z_eval), height * width * depth)\n )\n basis_nr = 0\n for spline_a in spline_setz.T:\n for spline_b in basis2d:\n spline_b = spline_b.reshape((height, width))\n bspline[basis_nr, :] = (spline_b[:, :, np.newaxis] * spline_a[:]\n ).flat\n basis_nr += 1\n return bspline, (knots_x, knots_y, knots_z)\n",
"role": "user"
},
{
"content": "spline_base3d",
"role": "assistant"
}
] |
def x(x, knots, p, i=0.0):
assert p + 1 < len(knots)
return np.array([N(float(u), float(i), float(p), knots) for u in x])
|
spline
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, knots, p, i=0.0):\n assert p + 1 < len(knots)\n return np.array([N(float(u), float(i), float(p), knots) for u in x])\n",
"role": "user"
},
{
"content": "spline",
"role": "assistant"
}
] |
def x(x, knots, spline_order):
colmat = np.nan * np.ones((len(x), len(knots) - spline_order - 1))
for i in range(0, len(knots) - spline_order - 1):
colmat[:, i] = spline(x, knots, spline_order, i)
return colmat
|
spcol
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, knots, spline_order):\n colmat = np.nan * np.ones((len(x), len(knots) - spline_order - 1))\n for i in range(0, len(knots) - spline_order - 1):\n colmat[:, i] = spline(x, knots, spline_order, i)\n return colmat\n",
"role": "user"
},
{
"content": "spcol",
"role": "assistant"
}
] |
def x(knots, order):
a = []
[a.append(knots[0]) for t in range(0, order)]
[a.append(k) for k in knots]
[a.append(knots[-1]) for t in range(0, order)]
return np.array(a)
|
augknt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(knots, order):\n a = []\n [a.append(knots[0]) for t in range(0, order)]\n [a.append(k) for k in knots]\n [a.append(knots[-1]) for t in range(0, order)]\n return np.array(a)\n",
"role": "user"
},
{
"content": "augknt",
"role": "assistant"
}
] |
def x(u, i, p, knots):
if p == 0:
if knots[i] < u and u <= knots[i + 1]:
return 1.0
else:
return 0.0
else:
try:
k = float(u - knots[i]) / float(knots[i + p] - knots[i]) * N(u,
i, p - 1, knots)
except ZeroDivisionError:
k = 0.0
try:
q = float(knots[i + p + 1] - u) / float(knots[i + p + 1] -
knots[i + 1]) * N(u, i + 1, p - 1, knots)
except ZeroDivisionError:
q = 0.0
return float(k + q)
|
N
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(u, i, p, knots):\n if p == 0:\n if knots[i] < u and u <= knots[i + 1]:\n return 1.0\n else:\n return 0.0\n else:\n try:\n k = float(u - knots[i]) / float(knots[i + p] - knots[i]) * N(u,\n i, p - 1, knots)\n except ZeroDivisionError:\n k = 0.0\n try:\n q = float(knots[i + p + 1] - u) / float(knots[i + p + 1] -\n knots[i + 1]) * N(u, i + 1, p - 1, knots)\n except ZeroDivisionError:\n q = 0.0\n return float(k + q)\n",
"role": "user"
},
{
"content": "N",
"role": "assistant"
}
] |
def x(prediction, fm, **kw):
if prediction == None:
return [np.NaN for measure in scores]
results = []
for measure in scores:
args, _, _, _ = inspect.getargspec(measure)
if len(args) > 2:
mdict = {}
[mdict.update({key: value}) for key, value in list(kw.items()) if
key in args]
score = measure(prediction, fm, **mdict)
else:
score = measure(prediction, fm)
results.append(score)
return results
|
prediction_scores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm, **kw):\n if prediction == None:\n return [np.NaN for measure in scores]\n results = []\n for measure in scores:\n args, _, _, _ = inspect.getargspec(measure)\n if len(args) > 2:\n mdict = {}\n [mdict.update({key: value}) for key, value in list(kw.items()) if\n key in args]\n score = measure(prediction, fm, **mdict)\n else:\n score = measure(prediction, fm)\n results.append(score)\n return results\n",
"role": "user"
},
{
"content": "prediction_scores",
"role": "assistant"
}
] |
def x(prediction, fm):
_, r_x = calc_resize_factor(prediction, fm.image_size)
q = np.array(prediction, copy=True)
q -= np.min(q.flatten())
q /= np.sum(q.flatten())
return kldiv(None, q, distp=fm, scale_factor=r_x)
|
kldiv_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n q = np.array(prediction, copy=True)\n q -= np.min(q.flatten())\n q /= np.sum(q.flatten())\n return kldiv(None, q, distp=fm, scale_factor=r_x)\n",
"role": "user"
},
{
"content": "kldiv_model",
"role": "assistant"
}
] |
def x(p, q, distp=None, distq=None, scale_factor=1):
assert q != None or distq != None, 'Either q or distq have to be given'
assert p != None or distp != None, 'Either p or distp have to be given'
try:
if p == None:
p = compute_fdm(distp, scale_factor=scale_factor)
if q == None:
q = compute_fdm(distq, scale_factor=scale_factor)
except RuntimeError:
return np.NaN
q += np.finfo(q.dtype).eps
p += np.finfo(p.dtype).eps
kl = np.sum(p * np.log2(p / q))
return kl
|
kldiv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, q, distp=None, distq=None, scale_factor=1):\n assert q != None or distq != None, 'Either q or distq have to be given'\n assert p != None or distp != None, 'Either p or distp have to be given'\n try:\n if p == None:\n p = compute_fdm(distp, scale_factor=scale_factor)\n if q == None:\n q = compute_fdm(distq, scale_factor=scale_factor)\n except RuntimeError:\n return np.NaN\n q += np.finfo(q.dtype).eps\n p += np.finfo(p.dtype).eps\n kl = np.sum(p * np.log2(p / q))\n return kl\n",
"role": "user"
},
{
"content": "kldiv",
"role": "assistant"
}
] |
def x(prediction, fm):
assert len(fm.image_size) == 2 and fm.image_size[0] > 0 and fm.image_size[1
] > 0
assert -1 not in fm.category
if len(fm.x) == 0:
return np.NaN
scale_factor, _ = calc_resize_factor(prediction, fm.image_size)
e_y = np.arange(0, np.round(scale_factor * fm.image_size[0] + 1))
e_x = np.arange(0, np.round(scale_factor * fm.image_size[1] + 1))
samples = np.array(list(zip(scale_factor * fm.y, scale_factor * fm.x)))
fdm, _ = np.histogramdd(samples, (e_y, e_x))
q = np.array(prediction, copy=True)
q[q == 0] = np.finfo(q.dtype).eps
q /= np.sum(q)
H, pa, la = chao_shen(fdm)
q = q[fdm > 0]
cross_entropy = -np.sum(pa * np.log2(q) / la)
return cross_entropy - H
|
kldiv_cs_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm):\n assert len(fm.image_size) == 2 and fm.image_size[0] > 0 and fm.image_size[1\n ] > 0\n assert -1 not in fm.category\n if len(fm.x) == 0:\n return np.NaN\n scale_factor, _ = calc_resize_factor(prediction, fm.image_size)\n e_y = np.arange(0, np.round(scale_factor * fm.image_size[0] + 1))\n e_x = np.arange(0, np.round(scale_factor * fm.image_size[1] + 1))\n samples = np.array(list(zip(scale_factor * fm.y, scale_factor * fm.x)))\n fdm, _ = np.histogramdd(samples, (e_y, e_x))\n q = np.array(prediction, copy=True)\n q[q == 0] = np.finfo(q.dtype).eps\n q /= np.sum(q)\n H, pa, la = chao_shen(fdm)\n q = q[fdm > 0]\n cross_entropy = -np.sum(pa * np.log2(q) / la)\n return cross_entropy - H\n",
"role": "user"
},
{
"content": "kldiv_cs_model",
"role": "assistant"
}
] |
def x(q):
yx = q[q > 0]
n = np.sum(yx)
p = yx.astype(float) / n
f1 = np.sum(yx == 1)
if f1 == n:
f1 -= 1
C = 1 - f1 / n
pa = C * p
la = 1 - (1 - pa) ** n
H = -np.sum(pa * np.log2(pa) / la)
return H, pa, la
|
chao_shen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(q):\n yx = q[q > 0]\n n = np.sum(yx)\n p = yx.astype(float) / n\n f1 = np.sum(yx == 1)\n if f1 == n:\n f1 -= 1\n C = 1 - f1 / n\n pa = C * p\n la = 1 - (1 - pa) ** n\n H = -np.sum(pa * np.log2(pa) / la)\n return H, pa, la\n",
"role": "user"
},
{
"content": "chao_shen",
"role": "assistant"
}
] |
def x(prediction, fm):
_, r_x = calc_resize_factor(prediction, fm.image_size)
fdm = compute_fdm(fm, scale_factor=r_x)
return np.corrcoef(fdm.flatten(), prediction.flatten())[0, 1]
|
correlation_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n fdm = compute_fdm(fm, scale_factor=r_x)\n return np.corrcoef(fdm.flatten(), prediction.flatten())[0, 1]\n",
"role": "user"
},
{
"content": "correlation_model",
"role": "assistant"
}
] |
def x(prediction, fm):
r_y, r_x = calc_resize_factor(prediction, fm.image_size)
fix = (np.array(fm.y - 1) * r_y).astype(int), (np.array(fm.x - 1) * r_x
).astype(int)
return nss(prediction, fix)
|
nss_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm):\n r_y, r_x = calc_resize_factor(prediction, fm.image_size)\n fix = (np.array(fm.y - 1) * r_y).astype(int), (np.array(fm.x - 1) * r_x\n ).astype(int)\n return nss(prediction, fix)\n",
"role": "user"
},
{
"content": "nss_model",
"role": "assistant"
}
] |
def x(prediction, fix):
prediction = prediction - np.mean(prediction)
prediction = prediction / np.std(prediction)
return np.mean(prediction[fix[0], fix[1]])
|
nss
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fix):\n prediction = prediction - np.mean(prediction)\n prediction = prediction / np.std(prediction)\n return np.mean(prediction[fix[0], fix[1]])\n",
"role": "user"
},
{
"content": "nss",
"role": "assistant"
}
] |
def x(prediction, fm, ctr_loc=None, ctr_size=None):
assert type(prediction) == np.ndarray
r_y, r_x = calc_resize_factor(prediction, fm.image_size)
y_index = (r_y * np.array(fm.y - 1)).astype(int)
x_index = (r_x * np.array(fm.x - 1)).astype(int)
actuals = prediction[y_index, x_index]
if not ctr_loc:
xc = np.random.randint(0, prediction.shape[1], 1000)
yc = np.random.randint(0, prediction.shape[0], 1000)
ctr_loc = yc.astype(int), xc.astype(int)
else:
if not ctr_size:
ctr_size = fm.image_size
else:
r_y, r_x = calc_resize_factor(prediction, ctr_size)
ctr_loc = (r_y * np.array(ctr_loc[0])).astype(int), (r_x * np.array
(ctr_loc[1])).astype(int)
controls = prediction[ctr_loc[0], ctr_loc[1]]
return fast_roc(actuals, controls)[0]
|
roc_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm, ctr_loc=None, ctr_size=None):\n assert type(prediction) == np.ndarray\n r_y, r_x = calc_resize_factor(prediction, fm.image_size)\n y_index = (r_y * np.array(fm.y - 1)).astype(int)\n x_index = (r_x * np.array(fm.x - 1)).astype(int)\n actuals = prediction[y_index, x_index]\n if not ctr_loc:\n xc = np.random.randint(0, prediction.shape[1], 1000)\n yc = np.random.randint(0, prediction.shape[0], 1000)\n ctr_loc = yc.astype(int), xc.astype(int)\n else:\n if not ctr_size:\n ctr_size = fm.image_size\n else:\n r_y, r_x = calc_resize_factor(prediction, ctr_size)\n ctr_loc = (r_y * np.array(ctr_loc[0])).astype(int), (r_x * np.array\n (ctr_loc[1])).astype(int)\n controls = prediction[ctr_loc[0], ctr_loc[1]]\n return fast_roc(actuals, controls)[0]\n",
"role": "user"
},
{
"content": "roc_model",
"role": "assistant"
}
] |
def x(actuals, controls):
assert type(actuals) is np.ndarray
assert type(controls) is np.ndarray
actuals = np.ravel(actuals)
controls = np.ravel(controls)
if np.isnan(actuals).any():
raise RuntimeError('NaN found in actuals')
if np.isnan(controls).any():
raise RuntimeError('NaN found in controls')
thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf])[::-1]
true_pos_rate = np.empty(thresholds.size)
false_pos_rate = np.empty(thresholds.size)
num_act = float(len(actuals))
num_ctr = float(len(controls))
for i, value in enumerate(thresholds):
true_pos_rate[i] = (actuals >= value).sum() / num_act
false_pos_rate[i] = (controls >= value).sum() / num_ctr
auc = np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])
if false_pos_rate[-2] == 1:
auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])
return auc, true_pos_rate, false_pos_rate
|
fast_roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(actuals, controls):\n assert type(actuals) is np.ndarray\n assert type(controls) is np.ndarray\n actuals = np.ravel(actuals)\n controls = np.ravel(controls)\n if np.isnan(actuals).any():\n raise RuntimeError('NaN found in actuals')\n if np.isnan(controls).any():\n raise RuntimeError('NaN found in controls')\n thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf])[::-1]\n true_pos_rate = np.empty(thresholds.size)\n false_pos_rate = np.empty(thresholds.size)\n num_act = float(len(actuals))\n num_ctr = float(len(controls))\n for i, value in enumerate(thresholds):\n true_pos_rate[i] = (actuals >= value).sum() / num_act\n false_pos_rate[i] = (controls >= value).sum() / num_ctr\n auc = np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])\n if false_pos_rate[-2] == 1:\n auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])\n return auc, true_pos_rate, false_pos_rate\n",
"role": "user"
},
{
"content": "fast_roc",
"role": "assistant"
}
] |
def x(actuals, controls):
assert type(actuals) is np.ndarray
assert type(controls) is np.ndarray
if len(actuals) < 500:
raise RuntimeError('This method might be incorrect when ' +
'not enough actuals are present. Needs to be checked before ' +
'proceeding. Stopping here for you to do so.')
actuals = np.ravel(actuals)
controls = np.ravel(controls)
if np.isnan(actuals).any():
raise RuntimeError('NaN found in actuals')
if np.isnan(controls).any():
raise RuntimeError('NaN found in controls')
thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf]) + np.finfo(
float).eps
true_pos_rate = np.nan * np.empty(thresholds.size - 1)
false_pos_rate = np.nan * np.empty(thresholds.size - 1)
num_act = float(len(actuals))
num_ctr = float(len(controls))
actuals = 1 - np.cumsum(np.histogram(actuals, thresholds)[0]) / num_act
controls = 1 - np.cumsum(np.histogram(controls, thresholds)[0]) / num_ctr
true_pos_rate = actuals
false_pos_rate = controls
false_pos_rate = false_pos_rate
auc = -1 * np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])
if false_pos_rate[-2] == 1:
auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])
return auc, true_pos_rate, false_pos_rate
|
faster_roc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(actuals, controls):\n assert type(actuals) is np.ndarray\n assert type(controls) is np.ndarray\n if len(actuals) < 500:\n raise RuntimeError('This method might be incorrect when ' +\n 'not enough actuals are present. Needs to be checked before ' +\n 'proceeding. Stopping here for you to do so.')\n actuals = np.ravel(actuals)\n controls = np.ravel(controls)\n if np.isnan(actuals).any():\n raise RuntimeError('NaN found in actuals')\n if np.isnan(controls).any():\n raise RuntimeError('NaN found in controls')\n thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf]) + np.finfo(\n float).eps\n true_pos_rate = np.nan * np.empty(thresholds.size - 1)\n false_pos_rate = np.nan * np.empty(thresholds.size - 1)\n num_act = float(len(actuals))\n num_ctr = float(len(controls))\n actuals = 1 - np.cumsum(np.histogram(actuals, thresholds)[0]) / num_act\n controls = 1 - np.cumsum(np.histogram(controls, thresholds)[0]) / num_ctr\n true_pos_rate = actuals\n false_pos_rate = controls\n false_pos_rate = false_pos_rate\n auc = -1 * np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])\n if false_pos_rate[-2] == 1:\n auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])\n return auc, true_pos_rate, false_pos_rate\n",
"role": "user"
},
{
"content": "faster_roc",
"role": "assistant"
}
] |
def x(prediction, fm):
_, r_x = calc_resize_factor(prediction, fm.image_size)
gt = fixmat.compute_fdm(fm, scale_factor=r_x)
return emd(prediction, gt)
|
emd_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n gt = fixmat.compute_fdm(fm, scale_factor=r_x)\n return emd(prediction, gt)\n",
"role": "user"
},
{
"content": "emd_model",
"role": "assistant"
}
] |
def x(prediction, ground_truth):
import opencv
if not prediction.shape == ground_truth.shape:
raise RuntimeError('Shapes of prediction and ground truth have' +
' to be equal. They are: %s, %s' % (str(prediction.shape), str(
ground_truth.shape)))
x, y = np.meshgrid(list(range(0, prediction.shape[1])), list(range(0,
prediction.shape[0])))
s1 = np.array([x.flatten(), y.flatten(), prediction.flatten()]).T
s2 = np.array([x.flatten(), y.flatten(), ground_truth.flatten()]).T
s1m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)
s2m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)
for r in range(0, s1.shape[0]):
for c in range(0, s1.shape[1]):
s1m[r, c] = float(s1[r, c])
s2m[r, c] = float(s2[r, c])
d = opencv.cvCalcEMD2(s1m, s2m, opencv.CV_DIST_L2)
return d
|
emd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(prediction, ground_truth):\n import opencv\n if not prediction.shape == ground_truth.shape:\n raise RuntimeError('Shapes of prediction and ground truth have' + \n ' to be equal. They are: %s, %s' % (str(prediction.shape), str(\n ground_truth.shape)))\n x, y = np.meshgrid(list(range(0, prediction.shape[1])), list(range(0,\n prediction.shape[0])))\n s1 = np.array([x.flatten(), y.flatten(), prediction.flatten()]).T\n s2 = np.array([x.flatten(), y.flatten(), ground_truth.flatten()]).T\n s1m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)\n s2m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)\n for r in range(0, s1.shape[0]):\n for c in range(0, s1.shape[1]):\n s1m[r, c] = float(s1[r, c])\n s2m[r, c] = float(s2[r, c])\n d = opencv.cvCalcEMD2(s1m, s2m, opencv.CV_DIST_L2)\n return d\n",
"role": "user"
},
{
"content": "emd",
"role": "assistant"
}
] |
def x(date):
daynames = set(['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'])
months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4, 'may': 5, 'jun': 6,
'jul': 7, 'aug': 8, 'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}
timezonenames = {'ut': 0, 'gmt': 0, 'z': 0, 'adt': -3, 'ast': -4, 'at':
-4, 'edt': -4, 'est': -5, 'et': -5, 'cdt': -5, 'cst': -6, 'ct': -6,
'mdt': -6, 'mst': -7, 'mt': -7, 'pdt': -7, 'pst': -8, 'pt': -8, 'a':
-1, 'n': 1, 'm': -12, 'y': 12}
parts = date.lower().split()
if len(parts) < 5:
parts.extend(('00:00:00', '0000'))
if parts[0][:3] in daynames:
parts = parts[1:]
if len(parts) < 5:
return None
try:
day = int(parts[0])
except ValueError:
if months.get(parts[0][:3]):
try:
day = int(parts[1])
except ValueError:
return None
else:
parts[1] = parts[0]
else:
return None
month = months.get(parts[1][:3])
if not month:
return None
try:
year = int(parts[2])
except ValueError:
return None
if len(parts[2]) <= 2:
year += (1900, 2000)[year < 90]
timeparts = parts[3].split(':')
timeparts = timeparts + [0] * (3 - len(timeparts))
try:
hour, minute, second = map(int, timeparts)
except ValueError:
return None
tzhour = 0
tzmin = 0
if parts[4].startswith('etc/'):
parts[4] = parts[4][4:]
if parts[4].startswith('gmt'):
parts[4] = ''.join(parts[4][3:].split(':')) or 'gmt'
if parts[4] and parts[4][0] in ('-', '+'):
try:
tzhour = int(parts[4][1:3])
tzmin = int(parts[4][3:])
except ValueError:
return None
if parts[4].startswith('-'):
tzhour = tzhour * -1
tzmin = tzmin * -1
else:
tzhour = timezonenames.get(parts[4], 0)
try:
stamp = datetime.datetime(year, month, day, hour, minute, second)
except ValueError:
return None
delta = datetime.timedelta(0, 0, 0, 0, tzmin, tzhour)
try:
return stamp - delta
except OverflowError:
return None
|
rfc822
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date):\n daynames = set(['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'])\n months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4, 'may': 5, 'jun': 6,\n 'jul': 7, 'aug': 8, 'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}\n timezonenames = {'ut': 0, 'gmt': 0, 'z': 0, 'adt': -3, 'ast': -4, 'at':\n -4, 'edt': -4, 'est': -5, 'et': -5, 'cdt': -5, 'cst': -6, 'ct': -6,\n 'mdt': -6, 'mst': -7, 'mt': -7, 'pdt': -7, 'pst': -8, 'pt': -8, 'a':\n -1, 'n': 1, 'm': -12, 'y': 12}\n parts = date.lower().split()\n if len(parts) < 5:\n parts.extend(('00:00:00', '0000'))\n if parts[0][:3] in daynames:\n parts = parts[1:]\n if len(parts) < 5:\n return None\n try:\n day = int(parts[0])\n except ValueError:\n if months.get(parts[0][:3]):\n try:\n day = int(parts[1])\n except ValueError:\n return None\n else:\n parts[1] = parts[0]\n else:\n return None\n month = months.get(parts[1][:3])\n if not month:\n return None\n try:\n year = int(parts[2])\n except ValueError:\n return None\n if len(parts[2]) <= 2:\n year += (1900, 2000)[year < 90]\n timeparts = parts[3].split(':')\n timeparts = timeparts + [0] * (3 - len(timeparts))\n try:\n hour, minute, second = map(int, timeparts)\n except ValueError:\n return None\n tzhour = 0\n tzmin = 0\n if parts[4].startswith('etc/'):\n parts[4] = parts[4][4:]\n if parts[4].startswith('gmt'):\n parts[4] = ''.join(parts[4][3:].split(':')) or 'gmt'\n if parts[4] and parts[4][0] in ('-', '+'):\n try:\n tzhour = int(parts[4][1:3])\n tzmin = int(parts[4][3:])\n except ValueError:\n return None\n if parts[4].startswith('-'):\n tzhour = tzhour * -1\n tzmin = tzmin * -1\n else:\n tzhour = timezonenames.get(parts[4], 0)\n try:\n stamp = datetime.datetime(year, month, day, hour, minute, second)\n except ValueError:\n return None\n delta = datetime.timedelta(0, 0, 0, 0, tzmin, tzhour)\n try:\n return stamp - delta\n except OverflowError:\n return None\n",
"role": "user"
},
{
"content": "rfc822",
"role": "assistant"
}
] |
def x(date):
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
'Oct', 'Nov', 'Dec']
days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
fmt = '{day}, {d:02} {month} {y:04} {h:02}:{m:02}:{s:02} GMT'
return fmt.format(day=days[date.weekday()], d=date.day, month=months[
date.month - 1], y=date.year, h=date.hour, m=date.minute, s=date.second
)
|
to_rfc822
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date):\n months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',\n 'Oct', 'Nov', 'Dec']\n days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']\n fmt = '{day}, {d:02} {month} {y:04} {h:02}:{m:02}:{s:02} GMT'\n return fmt.format(day=days[date.weekday()], d=date.day, month=months[\n date.month - 1], y=date.year, h=date.hour, m=date.minute, s=date.second\n )\n",
"role": "user"
},
{
"content": "to_rfc822",
"role": "assistant"
}
] |
def x(self, sql, params):
if isinstance(sql, unicode):
string_type = unicode
elif isinstance(sql, bytes):
string_type = bytes
sql = sql.decode(_BYTES_ENCODING)
else:
raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)
)
if self.named == 'numeric':
if isinstance(params, collections.Mapping):
params = {string_type(idx): val for idx, val in iteritems(params)}
elif isinstance(params, collections.Sequence) and not isinstance(params
, (unicode, bytes)):
params = {string_type(idx): val for idx, val in enumerate(
params, 1)}
if not isinstance(params, collections.Mapping):
raise TypeError('params:{!r} is not a dict.'.format(params))
names = self.match.findall(sql)
ord_params = []
name_to_ords = {}
for name in names:
value = params[name]
if isinstance(value, tuple):
ord_params.extend(value)
if name not in name_to_ords:
name_to_ords[name] = '(' + ','.join((self.replace,) * len(
value)) + ')'
else:
ord_params.append(value)
if name not in name_to_ords:
name_to_ords[name] = self.replace
sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)
if string_type is bytes:
sql = sql.encode(_BYTES_ENCODING)
return sql, ord_params
|
format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sql, params):\n if isinstance(sql, unicode):\n string_type = unicode\n elif isinstance(sql, bytes):\n string_type = bytes\n sql = sql.decode(_BYTES_ENCODING)\n else:\n raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)\n )\n if self.named == 'numeric':\n if isinstance(params, collections.Mapping):\n params = {string_type(idx): val for idx, val in iteritems(params)}\n elif isinstance(params, collections.Sequence) and not isinstance(params\n , (unicode, bytes)):\n params = {string_type(idx): val for idx, val in enumerate(\n params, 1)}\n if not isinstance(params, collections.Mapping):\n raise TypeError('params:{!r} is not a dict.'.format(params))\n names = self.match.findall(sql)\n ord_params = []\n name_to_ords = {}\n for name in names:\n value = params[name]\n if isinstance(value, tuple):\n ord_params.extend(value)\n if name not in name_to_ords:\n name_to_ords[name] = '(' + ','.join((self.replace,) * len(\n value)) + ')'\n else:\n ord_params.append(value)\n if name not in name_to_ords:\n name_to_ords[name] = self.replace\n sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)\n if string_type is bytes:\n sql = sql.encode(_BYTES_ENCODING)\n return sql, ord_params\n",
"role": "user"
},
{
"content": "format",
"role": "assistant"
}
] |
def x(self, sql, many_params):
if isinstance(sql, unicode):
string_type = unicode
elif isinstance(sql, bytes):
string_type = bytes
sql = sql.decode(_BYTES_ENCODING)
else:
raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)
)
if not isinstance(many_params, collections.Iterable) or isinstance(
many_params, (unicode, bytes)):
raise TypeError('many_params:{!r} is not iterable.'.format(many_params)
)
names = self.match.findall(sql)
name_set = set(names)
many_ord_params = []
name_to_ords = {}
name_to_len = {}
repl_str = self.replace
repl_tuple = repl_str,
for i, params in enumerate(many_params):
if self.named == 'numeric':
if isinstance(params, collections.Mapping):
params = {string_type(idx): val for idx, val in iteritems(
params)}
elif isinstance(params, collections.Sequence) and not isinstance(
params, (unicode, bytes)):
params = {string_type(idx): val for idx, val in enumerate(
params, 1)}
if not isinstance(params, collections.Mapping):
raise TypeError('many_params[{}]:{!r} is not a dict.'.format(i,
params))
if not i:
for name in name_set:
value = params[name]
if isinstance(value, tuple):
tuple_len = len(value)
name_to_ords[name] = '(' + ','.join(repl_tuple * tuple_len
) + ')'
name_to_len[name] = tuple_len
else:
name_to_ords[name] = repl_str
name_to_len[name] = None
ord_params = []
for name in names:
value = params[name]
tuple_len = name_to_len[name]
if tuple_len is not None:
if not isinstance(value, tuple):
raise TypeError(
'many_params[{}][{!r}]:{!r} was expected to be a tuple.'
.format(i, name, value))
elif len(value) != tuple_len:
raise ValueError(
'many_params[{}][{!r}]:{!r} length was expected to be {}.'
.format(i, name, value, tuple_len))
ord_params.extend(value)
else:
ord_params.append(value)
many_ord_params.append(ord_params)
sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)
if string_type is bytes:
sql = sql.encode(_BYTES_ENCODING)
return sql, many_ord_params
|
formatmany
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sql, many_params):\n if isinstance(sql, unicode):\n string_type = unicode\n elif isinstance(sql, bytes):\n string_type = bytes\n sql = sql.decode(_BYTES_ENCODING)\n else:\n raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)\n )\n if not isinstance(many_params, collections.Iterable) or isinstance(\n many_params, (unicode, bytes)):\n raise TypeError('many_params:{!r} is not iterable.'.format(many_params)\n )\n names = self.match.findall(sql)\n name_set = set(names)\n many_ord_params = []\n name_to_ords = {}\n name_to_len = {}\n repl_str = self.replace\n repl_tuple = repl_str,\n for i, params in enumerate(many_params):\n if self.named == 'numeric':\n if isinstance(params, collections.Mapping):\n params = {string_type(idx): val for idx, val in iteritems(\n params)}\n elif isinstance(params, collections.Sequence) and not isinstance(\n params, (unicode, bytes)):\n params = {string_type(idx): val for idx, val in enumerate(\n params, 1)}\n if not isinstance(params, collections.Mapping):\n raise TypeError('many_params[{}]:{!r} is not a dict.'.format(i,\n params))\n if not i:\n for name in name_set:\n value = params[name]\n if isinstance(value, tuple):\n tuple_len = len(value)\n name_to_ords[name] = '(' + ','.join(repl_tuple * tuple_len\n ) + ')'\n name_to_len[name] = tuple_len\n else:\n name_to_ords[name] = repl_str\n name_to_len[name] = None\n ord_params = []\n for name in names:\n value = params[name]\n tuple_len = name_to_len[name]\n if tuple_len is not None:\n if not isinstance(value, tuple):\n raise TypeError(\n 'many_params[{}][{!r}]:{!r} was expected to be a tuple.'\n .format(i, name, value))\n elif len(value) != tuple_len:\n raise ValueError(\n 'many_params[{}][{!r}]:{!r} length was expected to be {}.'\n .format(i, name, value, tuple_len))\n ord_params.extend(value)\n else:\n ord_params.append(value)\n many_ord_params.append(ord_params)\n sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)\n if string_type is bytes:\n sql = sql.encode(_BYTES_ENCODING)\n return sql, many_ord_params\n",
"role": "user"
},
{
"content": "formatmany",
"role": "assistant"
}
] |
def x(f):
_COMMAND_GROUPS[f.__module__].load()
if f.__name__ not in _COMMAND_GROUPS[f.__module__].parsers:
parser = _COMMAND_GROUPS[f.__module__].parser_generator.add_parser(f
.__name__, help=f.__doc__, description=f.__doc__)
parser.set_defaults(func=f)
_COMMAND_GROUPS[f.__module__].parsers[f.__name__] = parser
return _COMMAND_GROUPS[f.__module__].parsers[f.__name__]
|
get_parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f):\n _COMMAND_GROUPS[f.__module__].load()\n if f.__name__ not in _COMMAND_GROUPS[f.__module__].parsers:\n parser = _COMMAND_GROUPS[f.__module__].parser_generator.add_parser(f\n .__name__, help=f.__doc__, description=f.__doc__)\n parser.set_defaults(func=f)\n _COMMAND_GROUPS[f.__module__].parsers[f.__name__] = parser\n return _COMMAND_GROUPS[f.__module__].parsers[f.__name__]\n",
"role": "user"
},
{
"content": "get_parser",
"role": "assistant"
}
] |
def x(sourceURL, targetURL=None, exclude_domains=[], content=None,
test_urls=True, headers={}, timeout=None):
__doc__ = None
if test_urls:
URLValidator(message='invalid source URL')(sourceURL)
if content:
result = {'status': requests.codes.ok, 'headers': None}
else:
r = requests.get(sourceURL, verify=True, headers=headers, timeout=
timeout)
result = {'status': r.status_code, 'headers': r.headers}
if 'charset' in r.headers.get('content-type', ''):
content = r.text
else:
content = r.content
result.update({'refs': set(), 'post-url': sourceURL})
if result['status'] == requests.codes.ok:
if isinstance(content, BeautifulSoup):
__doc__ = content
result.update({'content': str(__doc__)})
else:
__doc__ = BeautifulSoup(content, _html_parser)
result.update({'content': content})
entry = __doc__.find(class_='h-entry') or __doc__
if targetURL:
all_links = entry.find_all('a', href=targetURL)
else:
all_links = entry.find_all('a', href=True)
for link in all_links:
href = link.get('href', None)
if href:
url = urlparse(href)
if url.scheme in ('http', 'https'):
if url.hostname and url.hostname not in exclude_domains:
result['refs'].add(href)
return result
|
findMentions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sourceURL, targetURL=None, exclude_domains=[], content=None,\n test_urls=True, headers={}, timeout=None):\n __doc__ = None\n if test_urls:\n URLValidator(message='invalid source URL')(sourceURL)\n if content:\n result = {'status': requests.codes.ok, 'headers': None}\n else:\n r = requests.get(sourceURL, verify=True, headers=headers, timeout=\n timeout)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n content = r.text\n else:\n content = r.content\n result.update({'refs': set(), 'post-url': sourceURL})\n if result['status'] == requests.codes.ok:\n if isinstance(content, BeautifulSoup):\n __doc__ = content\n result.update({'content': str(__doc__)})\n else:\n __doc__ = BeautifulSoup(content, _html_parser)\n result.update({'content': content})\n entry = __doc__.find(class_='h-entry') or __doc__\n if targetURL:\n all_links = entry.find_all('a', href=targetURL)\n else:\n all_links = entry.find_all('a', href=True)\n for link in all_links:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme in ('http', 'https'):\n if url.hostname and url.hostname not in exclude_domains:\n result['refs'].add(href)\n return result\n",
"role": "user"
},
{
"content": "findMentions",
"role": "assistant"
}
] |
def x(html):
poss_rels = ['webmention', 'http://webmention.org',
'http://webmention.org/', 'https://webmention.org',
'https://webmention.org/']
all_links = BeautifulSoup(html, _html_parser).find_all(rel=poss_rels,
href=True)
for link in all_links:
s = link.get('href', None)
if s is not None:
return s
return None
|
findEndpoint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(html):\n poss_rels = ['webmention', 'http://webmention.org',\n 'http://webmention.org/', 'https://webmention.org',\n 'https://webmention.org/']\n all_links = BeautifulSoup(html, _html_parser).find_all(rel=poss_rels,\n href=True)\n for link in all_links:\n s = link.get('href', None)\n if s is not None:\n return s\n return None\n",
"role": "user"
},
{
"content": "findEndpoint",
"role": "assistant"
}
] |
def x(url, test_urls=True, headers={}, timeout=None, request=None, debug=False
):
if test_urls:
URLValidator(message='invalid URL')(url)
endpointURL = None
debugOutput = []
try:
if request is not None:
targetRequest = request
else:
targetRequest = requests.get(url, verify=False, headers=headers,
timeout=timeout)
returnCode = targetRequest.status_code
debugOutput.append('%s %s' % (returnCode, url))
if returnCode == requests.codes.ok:
try:
linkHeader = parse_link_header(targetRequest.headers['link'])
endpointURL = linkHeader.get('webmention', ''
) or linkHeader.get('http://webmention.org', ''
) or linkHeader.get('http://webmention.org/', ''
) or linkHeader.get('https://webmention.org', ''
) or linkHeader.get('https://webmention.org/', '')
if not endpointURL:
raise AttributeError
debugOutput.append('found in link headers')
except (KeyError, AttributeError):
endpointURL = findEndpoint(targetRequest.text)
debugOutput.append('found in body')
if endpointURL is not None:
endpointURL = urljoin(url, endpointURL)
except (requests.exceptions.RequestException, requests.exceptions.
ConnectionError, requests.exceptions.HTTPError, requests.exceptions
.URLRequired, requests.exceptions.TooManyRedirects, requests.
exceptions.Timeout):
debugOutput.append('exception during GET request')
returnCode = 500
debugOutput.append('endpointURL: %s %s' % (returnCode, endpointURL))
if debug:
return returnCode, endpointURL, debugOutput
else:
return returnCode, endpointURL
|
discoverEndpoint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(url, test_urls=True, headers={}, timeout=None, request=None, debug=False\n ):\n if test_urls:\n URLValidator(message='invalid URL')(url)\n endpointURL = None\n debugOutput = []\n try:\n if request is not None:\n targetRequest = request\n else:\n targetRequest = requests.get(url, verify=False, headers=headers,\n timeout=timeout)\n returnCode = targetRequest.status_code\n debugOutput.append('%s %s' % (returnCode, url))\n if returnCode == requests.codes.ok:\n try:\n linkHeader = parse_link_header(targetRequest.headers['link'])\n endpointURL = linkHeader.get('webmention', ''\n ) or linkHeader.get('http://webmention.org', ''\n ) or linkHeader.get('http://webmention.org/', ''\n ) or linkHeader.get('https://webmention.org', ''\n ) or linkHeader.get('https://webmention.org/', '')\n if not endpointURL:\n raise AttributeError\n debugOutput.append('found in link headers')\n except (KeyError, AttributeError):\n endpointURL = findEndpoint(targetRequest.text)\n debugOutput.append('found in body')\n if endpointURL is not None:\n endpointURL = urljoin(url, endpointURL)\n except (requests.exceptions.RequestException, requests.exceptions.\n ConnectionError, requests.exceptions.HTTPError, requests.exceptions\n .URLRequired, requests.exceptions.TooManyRedirects, requests.\n exceptions.Timeout):\n debugOutput.append('exception during GET request')\n returnCode = 500\n debugOutput.append('endpointURL: %s %s' % (returnCode, endpointURL))\n if debug:\n return returnCode, endpointURL, debugOutput\n else:\n return returnCode, endpointURL\n",
"role": "user"
},
{
"content": "discoverEndpoint",
"role": "assistant"
}
] |
def x(sourceURL, targetURL, webmention=None, test_urls=True, vouchDomain=
None, headers={}, timeout=None, debug=False):
if test_urls:
v = URLValidator()
v(sourceURL)
v(targetURL)
debugOutput = []
originalURL = targetURL
try:
targetRequest = requests.get(targetURL)
if targetRequest.status_code == requests.codes.ok:
if len(targetRequest.history) > 0:
redirect = targetRequest.history[-1]
if (redirect.status_code == 301 or redirect.status_code == 302
) and 'Location' in redirect.headers:
targetURL = urljoin(targetURL, redirect.headers['Location']
)
debugOutput.append('targetURL redirected: %s' % targetURL)
if webmention is None:
wStatus, wUrl = discoverEndpoint(targetURL, headers=headers,
timeout=timeout, request=targetRequest)
else:
wStatus = 200
wUrl = webmention
debugOutput.append('endpointURL: %s %s' % (wStatus, wUrl))
if wStatus == requests.codes.ok and wUrl is not None:
if test_urls:
v(wUrl)
payload = {'source': sourceURL, 'target': originalURL}
if vouchDomain is not None:
payload['vouch'] = vouchDomain
try:
result = requests.post(wUrl, data=payload, headers=headers,
timeout=timeout)
debugOutput.append('POST %s -- %s' % (wUrl, result.status_code)
)
if result.status_code == 405 and len(result.history) > 0:
redirect = result.history[-1]
if (redirect.status_code == 301 and 'Location' in
redirect.headers):
result = requests.post(redirect.headers['Location'],
data=payload, headers=headers, timeout=timeout)
debugOutput.append('redirected POST %s -- %s' % (
redirect.headers['Location'], result.status_code))
except Exception as e:
result = None
except (requests.exceptions.RequestException, requests.exceptions.
ConnectionError, requests.exceptions.HTTPError, requests.exceptions
.URLRequired, requests.exceptions.TooManyRedirects, requests.
exceptions.Timeout):
debugOutput.append('exception during GET request')
result = None
return result
|
sendWebmention
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sourceURL, targetURL, webmention=None, test_urls=True, vouchDomain=\n None, headers={}, timeout=None, debug=False):\n if test_urls:\n v = URLValidator()\n v(sourceURL)\n v(targetURL)\n debugOutput = []\n originalURL = targetURL\n try:\n targetRequest = requests.get(targetURL)\n if targetRequest.status_code == requests.codes.ok:\n if len(targetRequest.history) > 0:\n redirect = targetRequest.history[-1]\n if (redirect.status_code == 301 or redirect.status_code == 302\n ) and 'Location' in redirect.headers:\n targetURL = urljoin(targetURL, redirect.headers['Location']\n )\n debugOutput.append('targetURL redirected: %s' % targetURL)\n if webmention is None:\n wStatus, wUrl = discoverEndpoint(targetURL, headers=headers,\n timeout=timeout, request=targetRequest)\n else:\n wStatus = 200\n wUrl = webmention\n debugOutput.append('endpointURL: %s %s' % (wStatus, wUrl))\n if wStatus == requests.codes.ok and wUrl is not None:\n if test_urls:\n v(wUrl)\n payload = {'source': sourceURL, 'target': originalURL}\n if vouchDomain is not None:\n payload['vouch'] = vouchDomain\n try:\n result = requests.post(wUrl, data=payload, headers=headers,\n timeout=timeout)\n debugOutput.append('POST %s -- %s' % (wUrl, result.status_code)\n )\n if result.status_code == 405 and len(result.history) > 0:\n redirect = result.history[-1]\n if (redirect.status_code == 301 and 'Location' in\n redirect.headers):\n result = requests.post(redirect.headers['Location'],\n data=payload, headers=headers, timeout=timeout)\n debugOutput.append('redirected POST %s -- %s' % (\n redirect.headers['Location'], result.status_code))\n except Exception as e:\n result = None\n except (requests.exceptions.RequestException, requests.exceptions.\n ConnectionError, requests.exceptions.HTTPError, requests.exceptions\n .URLRequired, requests.exceptions.TooManyRedirects, requests.\n exceptions.Timeout):\n debugOutput.append('exception during GET request')\n result = None\n return result\n",
"role": "user"
},
{
"content": "sendWebmention",
"role": "assistant"
}
] |
def x(link):
rel_dict = {}
for rels in link.split(','):
rel_break = quoted_split(rels, ';')
try:
rel_url = re.search('<(.+?)>', rel_break[0]).group(1)
rel_names = quoted_split(rel_break[1], '=')[-1]
if rel_names.startswith('"') and rel_names.endswith('"'):
rel_names = rel_names[1:-1]
for name in rel_names.split():
rel_dict[name] = rel_url
except (AttributeError, IndexError):
pass
return rel_dict
|
parse_link_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(link):\n rel_dict = {}\n for rels in link.split(','):\n rel_break = quoted_split(rels, ';')\n try:\n rel_url = re.search('<(.+?)>', rel_break[0]).group(1)\n rel_names = quoted_split(rel_break[1], '=')[-1]\n if rel_names.startswith('\"') and rel_names.endswith('\"'):\n rel_names = rel_names[1:-1]\n for name in rel_names.split():\n rel_dict[name] = rel_url\n except (AttributeError, IndexError):\n pass\n return rel_dict\n",
"role": "user"
},
{
"content": "parse_link_header",
"role": "assistant"
}
] |
def x(sourceURL):
r = requests.get(sourceURL)
result = {'status': r.status_code, 'headers': r.headers, 'history': r.
history, 'content': r.text, 'relme': [], 'url': sourceURL}
if r.status_code == requests.codes.ok:
dom = BeautifulSoup(r.text, _html_parser)
for link in dom.find_all('a', rel='me'):
rel = link.get('rel')
href = link.get('href')
if rel is not None and href is not None:
url = urlparse(href)
if url is not None and url.scheme in ('http', 'https'):
result['relme'].append(cleanURL(href))
return result
|
findRelMe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sourceURL):\n r = requests.get(sourceURL)\n result = {'status': r.status_code, 'headers': r.headers, 'history': r.\n history, 'content': r.text, 'relme': [], 'url': sourceURL}\n if r.status_code == requests.codes.ok:\n dom = BeautifulSoup(r.text, _html_parser)\n for link in dom.find_all('a', rel='me'):\n rel = link.get('rel')\n href = link.get('href')\n if rel is not None and href is not None:\n url = urlparse(href)\n if url is not None and url.scheme in ('http', 'https'):\n result['relme'].append(cleanURL(href))\n return result\n",
"role": "user"
},
{
"content": "findRelMe",
"role": "assistant"
}
] |
def x(profileURL, resourceURL, profileRelMes=None, resourceRelMes=None):
result = False
profile = normalizeURL(profileURL)
if profileRelMes is None:
profileRelMe = findRelMe(profileURL)
profileRelMes = profileRelMe['relme']
if resourceRelMes is None:
resourceRelMe = findRelMe(resourceURL)
resourceRelMes = resourceRelMe['relme']
for url in resourceRelMes:
if profile in (url, normalizeURL(url)):
result = True
break
return result
|
confirmRelMe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(profileURL, resourceURL, profileRelMes=None, resourceRelMes=None):\n result = False\n profile = normalizeURL(profileURL)\n if profileRelMes is None:\n profileRelMe = findRelMe(profileURL)\n profileRelMes = profileRelMe['relme']\n if resourceRelMes is None:\n resourceRelMe = findRelMe(resourceURL)\n resourceRelMes = resourceRelMe['relme']\n for url in resourceRelMes:\n if profile in (url, normalizeURL(url)):\n result = True\n break\n return result\n",
"role": "user"
},
{
"content": "confirmRelMe",
"role": "assistant"
}
] |
def x(string, indent_level=2):
indented_lines = []
indent_spaces = ' ' * indent_level
for line in string.split('\n'):
indented_lines.append(indent_spaces + line)
return '\n'.join(indented_lines)
|
indent_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, indent_level=2):\n indented_lines = []\n indent_spaces = ' ' * indent_level\n for line in string.split('\\n'):\n indented_lines.append(indent_spaces + line)\n return '\\n'.join(indented_lines)\n",
"role": "user"
},
{
"content": "indent_text",
"role": "assistant"
}
] |
def x(url, target, headers=None, trackers=()):
if headers is None:
headers = {}
headers.setdefault('user-agent', 'requests_download/' + __version__)
r = requests.get(url, headers=headers, stream=True)
r.raise_for_status()
for t in trackers:
t.on_start(r)
with open(target, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
for t in trackers:
t.on_chunk(chunk)
for t in trackers:
t.on_finish()
|
download
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(url, target, headers=None, trackers=()):\n if headers is None:\n headers = {}\n headers.setdefault('user-agent', 'requests_download/' + __version__)\n r = requests.get(url, headers=headers, stream=True)\n r.raise_for_status()\n for t in trackers:\n t.on_start(r)\n with open(target, 'wb') as f:\n for chunk in r.iter_content(chunk_size=8192):\n if chunk:\n f.write(chunk)\n for t in trackers:\n t.on_chunk(chunk)\n for t in trackers:\n t.on_finish()\n",
"role": "user"
},
{
"content": "download",
"role": "assistant"
}
] |
def x(parsed_obj, spec=None, filename=None):
if not isinstance(parsed_obj, BreadStruct):
raise ValueError(
'Object to write must be a structure created by bread.parse')
if filename is not None:
with open(filename, 'wb') as fp:
parsed_obj._data_bits[:parsed_obj._length].tofile(fp)
else:
return bytearray(parsed_obj._data_bits[:parsed_obj._length].tobytes())
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parsed_obj, spec=None, filename=None):\n if not isinstance(parsed_obj, BreadStruct):\n raise ValueError(\n 'Object to write must be a structure created by bread.parse')\n if filename is not None:\n with open(filename, 'wb') as fp:\n parsed_obj._data_bits[:parsed_obj._length].tofile(fp)\n else:\n return bytearray(parsed_obj._data_bits[:parsed_obj._length].tobytes())\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(file_path, bucket):
logger.info('Deploying {0}'.format(file_path))
k = Key(bucket)
k.key = file_path
try:
k.set_contents_from_filename(file_path)
k.set_acl('public-read')
except socket.error:
logger.warning('Caught socket.error while trying to upload {0}'.
format(file_path))
msg = 'Please file an issue with alotofeffort if you see this,'
logger.warning(msg)
logger.warning('providing as much info as you can.')
|
deploy_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, bucket):\n logger.info('Deploying {0}'.format(file_path))\n k = Key(bucket)\n k.key = file_path\n try:\n k.set_contents_from_filename(file_path)\n k.set_acl('public-read')\n except socket.error:\n logger.warning('Caught socket.error while trying to upload {0}'.\n format(file_path))\n msg = 'Please file an issue with alotofeffort if you see this,'\n logger.warning(msg)\n logger.warning('providing as much info as you can.')\n",
"role": "user"
},
{
"content": "deploy_file",
"role": "assistant"
}
] |
def x(www_dir, bucket_name):
conn = boto.connect_s3()
bucket = conn.get_bucket(bucket_name)
os.chdir(www_dir)
for root, dirs, files in os.walk('.'):
for f in files:
file_path = os.path.normpath(os.path.join(root, f))
if has_changed_since_last_deploy(file_path, bucket):
deploy_file(file_path, bucket)
else:
logger.info('Skipping {0}'.format(file_path))
bucket.set_acl('public-read')
bucket.configure_website('index.html', 'error.html')
msg = 'Your website is now live at {0}'.format(bucket.
get_website_endpoint())
logger.info(msg)
logger.info("If you haven't done so yet, point your domain name there!")
|
deploy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(www_dir, bucket_name):\n conn = boto.connect_s3()\n bucket = conn.get_bucket(bucket_name)\n os.chdir(www_dir)\n for root, dirs, files in os.walk('.'):\n for f in files:\n file_path = os.path.normpath(os.path.join(root, f))\n if has_changed_since_last_deploy(file_path, bucket):\n deploy_file(file_path, bucket)\n else:\n logger.info('Skipping {0}'.format(file_path))\n bucket.set_acl('public-read')\n bucket.configure_website('index.html', 'error.html')\n msg = 'Your website is now live at {0}'.format(bucket.\n get_website_endpoint())\n logger.info(msg)\n logger.info(\"If you haven't done so yet, point your domain name there!\")\n",
"role": "user"
},
{
"content": "deploy",
"role": "assistant"
}
] |
def x(file_path, bucket):
msg = 'Checking if {0} has changed since last deploy.'.format(file_path)
logger.debug(msg)
with open(file_path) as f:
data = f.read()
file_md5 = hashlib.md5(data.encode('utf-8')).hexdigest()
logger.debug('file_md5 is {0}'.format(file_md5))
key = bucket.get_key(file_path)
if key:
key_md5 = key.etag.replace('"', '').strip()
logger.debug('key_md5 is {0}'.format(key_md5))
else:
logger.debug('File does not exist in bucket')
return True
if file_md5 == key_md5:
logger.debug('File has not changed.')
return False
logger.debug('File has changed.')
return True
|
has_changed_since_last_deploy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, bucket):\n msg = 'Checking if {0} has changed since last deploy.'.format(file_path)\n logger.debug(msg)\n with open(file_path) as f:\n data = f.read()\n file_md5 = hashlib.md5(data.encode('utf-8')).hexdigest()\n logger.debug('file_md5 is {0}'.format(file_md5))\n key = bucket.get_key(file_path)\n if key:\n key_md5 = key.etag.replace('\"', '').strip()\n logger.debug('key_md5 is {0}'.format(key_md5))\n else:\n logger.debug('File does not exist in bucket')\n return True\n if file_md5 == key_md5:\n logger.debug('File has not changed.')\n return False\n logger.debug('File has changed.')\n return True\n",
"role": "user"
},
{
"content": "has_changed_since_last_deploy",
"role": "assistant"
}
] |
def x():
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO
)
msg = 'Instantly deploy static HTML sites to S3 at the command line.'
parser = argparse.ArgumentParser(description=msg)
parser.add_argument('www_dir', help=
'Directory containing the HTML files for your website.')
parser.add_argument('bucket_name', help=
'Name of S3 bucket to deploy to, e.g. mybucket.')
args = parser.parse_args()
deploy(args.www_dir, args.bucket_name)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO\n )\n msg = 'Instantly deploy static HTML sites to S3 at the command line.'\n parser = argparse.ArgumentParser(description=msg)\n parser.add_argument('www_dir', help=\n 'Directory containing the HTML files for your website.')\n parser.add_argument('bucket_name', help=\n 'Name of S3 bucket to deploy to, e.g. mybucket.')\n args = parser.parse_args()\n deploy(args.www_dir, args.bucket_name)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, port=None):
if port is None or int(port) == 0:
port = self._get_free_tcp_port()
self.port = port
start_retries = 0
started = False
while start_retries < 5:
try:
self._start_sikuli_java_process()
except RuntimeError as err:
print('error........%s' % err)
if self.process:
self.process.terminate_process()
self.port = self._get_free_tcp_port()
start_retries += 1
continue
started = True
break
if not started:
raise RuntimeError('Start sikuli java process failed!')
self.remote = self._connect_remote_library()
|
start_sikuli_process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, port=None):\n if port is None or int(port) == 0:\n port = self._get_free_tcp_port()\n self.port = port\n start_retries = 0\n started = False\n while start_retries < 5:\n try:\n self._start_sikuli_java_process()\n except RuntimeError as err:\n print('error........%s' % err)\n if self.process:\n self.process.terminate_process()\n self.port = self._get_free_tcp_port()\n start_retries += 1\n continue\n started = True\n break\n if not started:\n raise RuntimeError('Start sikuli java process failed!')\n self.remote = self._connect_remote_library()\n",
"role": "user"
},
{
"content": "start_sikuli_process",
"role": "assistant"
}
] |
def x(self, request):
serializer = AuthTokenSerializer(data=request.data)
if serializer.is_valid():
token, _ = ExpiringToken.objects.get_or_create(user=serializer.
validated_data['user'])
if token.expired():
token.delete()
token = ExpiringToken.objects.create(user=serializer.
validated_data['user'])
data = {'token': token.key}
return Response(data)
return Response(serializer.errors, status=HTTP_400_BAD_REQUEST)
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request):\n serializer = AuthTokenSerializer(data=request.data)\n if serializer.is_valid():\n token, _ = ExpiringToken.objects.get_or_create(user=serializer.\n validated_data['user'])\n if token.expired():\n token.delete()\n token = ExpiringToken.objects.create(user=serializer.\n validated_data['user'])\n data = {'token': token.key}\n return Response(data)\n return Response(serializer.errors, status=HTTP_400_BAD_REQUEST)\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self):
try:
val = settings.EXPIRING_TOKEN_LIFESPAN
except AttributeError:
val = timedelta(days=30)
return val
|
EXPIRING_TOKEN_LIFESPAN
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n val = settings.EXPIRING_TOKEN_LIFESPAN\n except AttributeError:\n val = timedelta(days=30)\n return val\n",
"role": "user"
},
{
"content": "EXPIRING_TOKEN_LIFESPAN",
"role": "assistant"
}
] |
def x(self):
now = timezone.now()
if self.created < now - token_settings.EXPIRING_TOKEN_LIFESPAN:
return True
return False
|
expired
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n now = timezone.now()\n if self.created < now - token_settings.EXPIRING_TOKEN_LIFESPAN:\n return True\n return False\n",
"role": "user"
},
{
"content": "expired",
"role": "assistant"
}
] |
def x(text):
for char in str_func(text):
category = unicodedata.category(char)[0]
if category not in 'PSZMC':
return False
return True
|
unicode_is_punctuation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n for char in str_func(text):\n category = unicodedata.category(char)[0]\n if category not in 'PSZMC':\n return False\n return True\n",
"role": "user"
},
{
"content": "unicode_is_punctuation",
"role": "assistant"
}
] |
def x(self):
if hasattr(self, '_process'):
return self._process
else:
self._process = self._get_process()
return self._process
|
process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if hasattr(self, '_process'):\n return self._process\n else:\n self._process = self._get_process()\n return self._process\n",
"role": "user"
},
{
"content": "process",
"role": "assistant"
}
] |
def x(self):
command = self._get_command()
return subprocess.Popen(command, bufsize=-1, close_fds=True, stdout=
subprocess.PIPE, stdin=subprocess.PIPE)
|
get_process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n command = self._get_command()\n return subprocess.Popen(command, bufsize=-1, close_fds=True, stdout=\n subprocess.PIPE, stdin=subprocess.PIPE)\n",
"role": "user"
},
{
"content": "get_process",
"role": "assistant"
}
] |
def x(self, text):
return [self.get_record_token(record) for record in self.analyze(text)]
|
tokenize_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n return [self.get_record_token(record) for record in self.analyze(text)]\n",
"role": "user"
},
{
"content": "tokenize_list",
"role": "assistant"
}
] |
def x(self, text):
found_content_word = False
for record in self.analyze(text):
if not self.is_stopword_record(record):
found_content_word = True
break
return not found_content_word
|
is_stopword
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n found_content_word = False\n for record in self.analyze(text):\n if not self.is_stopword_record(record):\n found_content_word = True\n break\n return not found_content_word\n",
"role": "user"
},
{
"content": "is_stopword",
"role": "assistant"
}
] |
def x(self, text, cache=None):
words = []
analysis = self.analyze(text)
for record in analysis:
if not self.is_stopword_record(record):
words.append(self.get_record_root(record))
if not words:
words = [self.get_record_token(record) for record in analysis]
return words
|
normalize_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, cache=None):\n words = []\n analysis = self.analyze(text)\n for record in analysis:\n if not self.is_stopword_record(record):\n words.append(self.get_record_root(record))\n if not words:\n words = [self.get_record_token(record) for record in analysis]\n return words\n",
"role": "user"
},
{
"content": "normalize_list",
"role": "assistant"
}
] |
def x(self, text, cache=None):
analysis = self.analyze(text)
triples = []
for record in analysis:
root = self.get_record_root(record)
token = self.get_record_token(record)
if token:
if unicode_is_punctuation(token):
triples.append((token, '.', token))
else:
pos = self.get_record_pos(record)
triples.append((root, pos, token))
return triples
|
tag_and_stem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, cache=None):\n analysis = self.analyze(text)\n triples = []\n for record in analysis:\n root = self.get_record_root(record)\n token = self.get_record_token(record)\n if token:\n if unicode_is_punctuation(token):\n triples.append((token, '.', token))\n else:\n pos = self.get_record_pos(record)\n triples.append((root, pos, token))\n return triples\n",
"role": "user"
},
{
"content": "tag_and_stem",
"role": "assistant"
}
] |
def x(self, text):
analysis = self.analyze(text)
for pos1 in range(len(analysis)):
rec1 = analysis[pos1]
if not self.is_stopword_record(rec1):
yield self.get_record_root(rec1), rec1[0]
for pos2 in range(pos1 + 1, len(analysis)):
rec2 = analysis[pos2]
if not self.is_stopword_record(rec2):
roots = [self.get_record_root(rec1), self.
get_record_root(rec2)]
pieces = [analysis[i][0] for i in range(pos1, pos2 + 1)]
term = ' '.join(roots)
phrase = ''.join(pieces)
yield term, phrase
break
|
extract_phrases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n analysis = self.analyze(text)\n for pos1 in range(len(analysis)):\n rec1 = analysis[pos1]\n if not self.is_stopword_record(rec1):\n yield self.get_record_root(rec1), rec1[0]\n for pos2 in range(pos1 + 1, len(analysis)):\n rec2 = analysis[pos2]\n if not self.is_stopword_record(rec2):\n roots = [self.get_record_root(rec1), self.\n get_record_root(rec2)]\n pieces = [analysis[i][0] for i in range(pos1, pos2 + 1)]\n term = ' '.join(roots)\n phrase = ''.join(pieces)\n yield term, phrase\n break\n",
"role": "user"
},
{
"content": "extract_phrases",
"role": "assistant"
}
] |
def x(text):
records = MECAB.analyze(text)
kana = []
for record in records:
if record.pronunciation:
kana.append(record.pronunciation)
elif record.reading:
kana.append(record.reading)
else:
kana.append(record.surface)
return ' '.join(k for k in kana if k)
|
to_kana
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n records = MECAB.analyze(text)\n kana = []\n for record in records:\n if record.pronunciation:\n kana.append(record.pronunciation)\n elif record.reading:\n kana.append(record.reading)\n else:\n kana.append(record.surface)\n return ' '.join(k for k in kana if k)\n",
"role": "user"
},
{
"content": "to_kana",
"role": "assistant"
}
] |
def x(char):
try:
name = unicodedata.name(char)
except ValueError:
return char, NOT_KANA
if name.startswith('HIRAGANA LETTER') or name.startswith('KATAKANA LETTER'
) or name.startswith('KATAKANA-HIRAGANA'):
names = name.split()
syllable = str_func(names[-1].lower())
if name.endswith('SMALL TU'):
return 't', SMALL_TSU
elif names[-1] == 'N':
return 'n', NN
elif names[1] == 'PROLONGED':
return '_', PROLONG
elif names[-2] == 'SMALL':
if syllable.startswith('y'):
return 'x' + syllable, SMALL_Y
else:
return 'x' + syllable, SMALL
return syllable, KANA
else:
if char in ROMAN_PUNCTUATION_TABLE:
char = ROMAN_PUNCTUATION_TABLE[char]
return char, NOT_KANA
|
get_kana_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(char):\n try:\n name = unicodedata.name(char)\n except ValueError:\n return char, NOT_KANA\n if name.startswith('HIRAGANA LETTER') or name.startswith('KATAKANA LETTER'\n ) or name.startswith('KATAKANA-HIRAGANA'):\n names = name.split()\n syllable = str_func(names[-1].lower())\n if name.endswith('SMALL TU'):\n return 't', SMALL_TSU\n elif names[-1] == 'N':\n return 'n', NN\n elif names[1] == 'PROLONGED':\n return '_', PROLONG\n elif names[-2] == 'SMALL':\n if syllable.startswith('y'):\n return 'x' + syllable, SMALL_Y\n else:\n return 'x' + syllable, SMALL\n return syllable, KANA\n else:\n if char in ROMAN_PUNCTUATION_TABLE:\n char = ROMAN_PUNCTUATION_TABLE[char]\n return char, NOT_KANA\n",
"role": "user"
},
{
"content": "get_kana_info",
"role": "assistant"
}
] |
def x(self, text):
try:
self.process
text = render_safe(text).replace('\n', ' ').lower()
results = []
for chunk in string_pieces(text):
self.send_input((chunk + '\n').encode('utf-8'))
while True:
out_line = self.receive_output_line().decode('utf-8')
if out_line == 'EOS\n':
break
word, info = out_line.strip('\n').split('\t')
record_parts = [word] + info.split(',')
record_parts += [None] * (10 - len(record_parts))
record = MeCabRecord(*record_parts)
if record.surface == 'ん' and record.conjugation == '不変化型':
record_parts[MeCabRecord._fields.index('root')] = 'ない'
record = MeCabRecord(*record_parts)
results.append(record)
return results
except ProcessError:
self.restart_process()
return self.analyze(text)
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n try:\n self.process\n text = render_safe(text).replace('\\n', ' ').lower()\n results = []\n for chunk in string_pieces(text):\n self.send_input((chunk + '\\n').encode('utf-8'))\n while True:\n out_line = self.receive_output_line().decode('utf-8')\n if out_line == 'EOS\\n':\n break\n word, info = out_line.strip('\\n').split('\\t')\n record_parts = [word] + info.split(',')\n record_parts += [None] * (10 - len(record_parts))\n record = MeCabRecord(*record_parts)\n if record.surface == 'ん' and record.conjugation == '不変化型':\n record_parts[MeCabRecord._fields.index('root')] = 'ない'\n record = MeCabRecord(*record_parts)\n results.append(record)\n return results\n except ProcessError:\n self.restart_process()\n return self.analyze(text)\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(self, record):
if record.root == 'ない':
return False
return (record.pos in STOPWORD_CATEGORIES or record.subclass1 in
STOPWORD_CATEGORIES or record.root in STOPWORD_ROOTS)
|
is_stopword_record
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n if record.root == 'ない':\n return False\n return (record.pos in STOPWORD_CATEGORIES or record.subclass1 in\n STOPWORD_CATEGORIES or record.root in STOPWORD_ROOTS)\n",
"role": "user"
},
{
"content": "is_stopword_record",
"role": "assistant"
}
] |
def x(self, record):
if self.is_stopword_record(record):
return '~' + record.pos
else:
return record.pos
|
get_record_pos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n if self.is_stopword_record(record):\n return '~' + record.pos\n else:\n return record.pos\n",
"role": "user"
},
{
"content": "get_record_pos",
"role": "assistant"
}
] |
def x(self, text):
try:
text = render_safe(text).strip()
if not text:
return []
chunks = text.split('\n')
results = []
for chunk_text in chunks:
if chunk_text.strip():
textbytes = (chunk_text + '\n').encode('utf-8')
self.send_input(textbytes)
out_line = ''
while True:
out_line = self.receive_output_line()
out_line = out_line.decode('utf-8')
if out_line == '\n':
break
record = out_line.strip('\n').split(' ')
results.append(record)
return results
except ProcessError:
self.restart_process()
return self.analyze(text)
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n try:\n text = render_safe(text).strip()\n if not text:\n return []\n chunks = text.split('\\n')\n results = []\n for chunk_text in chunks:\n if chunk_text.strip():\n textbytes = (chunk_text + '\\n').encode('utf-8')\n self.send_input(textbytes)\n out_line = ''\n while True:\n out_line = self.receive_output_line()\n out_line = out_line.decode('utf-8')\n if out_line == '\\n':\n break\n record = out_line.strip('\\n').split(' ')\n results.append(record)\n return results\n except ProcessError:\n self.restart_process()\n return self.analyze(text)\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(words):
text = ' '.join(words)
step1 = text.replace('`` ', '"').replace(" ''", '"').replace('. . .', '...'
)
step2 = step1.replace(' ( ', ' (').replace(' ) ', ') ')
step3 = re.sub(' ([.,:;?!%]+)([ \\\'"`])', '\\1\\2', step2)
step4 = re.sub(' ([.,:;?!%]+)$', '\\1', step3)
step5 = step4.replace(" '", "'").replace(" n't", "n't").replace('can not',
'cannot')
step6 = step5.replace(' ` ', " '")
return step6.strip()
|
untokenize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(words):\n text = ' '.join(words)\n step1 = text.replace('`` ', '\"').replace(\" ''\", '\"').replace('. . .', '...'\n )\n step2 = step1.replace(' ( ', ' (').replace(' ) ', ') ')\n step3 = re.sub(' ([.,:;?!%]+)([ \\\\\\'\"`])', '\\\\1\\\\2', step2)\n step4 = re.sub(' ([.,:;?!%]+)$', '\\\\1', step3)\n step5 = step4.replace(\" '\", \"'\").replace(\" n't\", \"n't\").replace('can not',\n 'cannot')\n step6 = step5.replace(' ` ', \" '\")\n return step6.strip()\n",
"role": "user"
},
{
"content": "untokenize",
"role": "assistant"
}
] |
def x(text):
revtext = text[::-1]
pieces = []
while revtext:
match = CAMEL_RE.match(revtext)
if match:
pieces.append(match.group(1))
revtext = revtext[match.end():]
else:
pieces.append(revtext)
revtext = ''
revstr = ' '.join(piece.strip(' _') for piece in pieces if piece.strip(
' _'))
return revstr[::-1].replace('- ', '-')
|
un_camel_case
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n revtext = text[::-1]\n pieces = []\n while revtext:\n match = CAMEL_RE.match(revtext)\n if match:\n pieces.append(match.group(1))\n revtext = revtext[match.end():]\n else:\n pieces.append(revtext)\n revtext = ''\n revstr = ' '.join(piece.strip(' _') for piece in pieces if piece.strip(\n ' _'))\n return revstr[::-1].replace('- ', '-')\n",
"role": "user"
},
{
"content": "un_camel_case",
"role": "assistant"
}
] |
def x(s, maxlen=1024):
if not s:
return
i = 0
while True:
j = i + maxlen
if j >= len(s):
yield s[i:]
return
while unicodedata.category(s[j - 1]) not in BOUNDARY_CATEGORIES:
j -= 1
if j == i:
j = i + maxlen
break
yield s[i:j]
i = j
|
string_pieces
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, maxlen=1024):\n if not s:\n return\n i = 0\n while True:\n j = i + maxlen\n if j >= len(s):\n yield s[i:]\n return\n while unicodedata.category(s[j - 1]) not in BOUNDARY_CATEGORIES:\n j -= 1\n if j == i:\n j = i + maxlen\n break\n yield s[i:j]\n i = j\n",
"role": "user"
},
{
"content": "string_pieces",
"role": "assistant"
}
] |
def x(word):
if word.endswith('e'):
return len(word) - 2
elif word.endswith('ess'):
return len(word) - 10
elif word.endswith('ss'):
return len(word) - 4
else:
return len(word)
|
word_badness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(word):\n if word.endswith('e'):\n return len(word) - 2\n elif word.endswith('ess'):\n return len(word) - 10\n elif word.endswith('ss'):\n return len(word) - 4\n else:\n return len(word)\n",
"role": "user"
},
{
"content": "word_badness",
"role": "assistant"
}
] |
def x(word, pos=None):
results = []
if pos is None:
pos = 'nvar'
for pos_item in pos:
results.extend(morphy(word, pos_item))
if not results:
return None
results.sort(key=lambda x: _word_badness(x))
return results[0]
|
morphy_best
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(word, pos=None):\n results = []\n if pos is None:\n pos = 'nvar'\n for pos_item in pos:\n results.extend(morphy(word, pos_item))\n if not results:\n return None\n results.sort(key=lambda x: _word_badness(x))\n return results[0]\n",
"role": "user"
},
{
"content": "morphy_best",
"role": "assistant"
}
] |
def x(word, pos=None):
word = word.lower()
if pos is not None:
if pos.startswith('NN'):
pos = 'n'
elif pos.startswith('VB'):
pos = 'v'
elif pos.startswith('JJ'):
pos = 'a'
elif pos.startswith('RB'):
pos = 'r'
if pos is None and word.endswith('ing') or word.endswith('ed'):
pos = 'v'
if pos is not None and pos not in 'nvar':
pos = None
if word in EXCEPTIONS:
return EXCEPTIONS[word]
if pos is None:
if word in AMBIGUOUS_EXCEPTIONS:
return AMBIGUOUS_EXCEPTIONS[word]
return _morphy_best(word, pos) or word
|
morphy_stem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(word, pos=None):\n word = word.lower()\n if pos is not None:\n if pos.startswith('NN'):\n pos = 'n'\n elif pos.startswith('VB'):\n pos = 'v'\n elif pos.startswith('JJ'):\n pos = 'a'\n elif pos.startswith('RB'):\n pos = 'r'\n if pos is None and word.endswith('ing') or word.endswith('ed'):\n pos = 'v'\n if pos is not None and pos not in 'nvar':\n pos = None\n if word in EXCEPTIONS:\n return EXCEPTIONS[word]\n if pos is None:\n if word in AMBIGUOUS_EXCEPTIONS:\n return AMBIGUOUS_EXCEPTIONS[word]\n return _morphy_best(word, pos) or word\n",
"role": "user"
},
{
"content": "morphy_stem",
"role": "assistant"
}
] |
def x(text):
tokens = tokenize(text)
tagged = nltk.pos_tag(tokens)
out = []
for token, tag in tagged:
stem = morphy_stem(token, tag)
out.append((stem, tag, token))
return out
|
tag_and_stem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n tokens = tokenize(text)\n tagged = nltk.pos_tag(tokens)\n out = []\n for token, tag in tagged:\n stem = morphy_stem(token, tag)\n out.append((stem, tag, token))\n return out\n",
"role": "user"
},
{
"content": "tag_and_stem",
"role": "assistant"
}
] |
def x(text):
pieces = [morphy_stem(word) for word in tokenize(text)]
pieces = [piece for piece in pieces if good_lemma(piece)]
if not pieces:
return [text]
if pieces[0] == 'to':
pieces = pieces[1:]
return pieces
|
normalize_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n pieces = [morphy_stem(word) for word in tokenize(text)]\n pieces = [piece for piece in pieces if good_lemma(piece)]\n if not pieces:\n return [text]\n if pieces[0] == 'to':\n pieces = pieces[1:]\n return pieces\n",
"role": "user"
},
{
"content": "normalize_list",
"role": "assistant"
}
] |
def x(topic):
topic = topic.replace('_', ' ')
match = re.match('([^(]+) \\(([^)]+)\\)', topic)
if not match:
return normalize(topic), None
else:
return normalize(match.group(1)), 'n/' + match.group(2).strip(' _')
|
normalize_topic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(topic):\n topic = topic.replace('_', ' ')\n match = re.match('([^(]+) \\\\(([^)]+)\\\\)', topic)\n if not match:\n return normalize(topic), None\n else:\n return normalize(match.group(1)), 'n/' + match.group(2).strip(' _')\n",
"role": "user"
},
{
"content": "normalize_topic",
"role": "assistant"
}
] |
def x(key):
words = key.split('.')
first2words = words[:2]
lastword = words[-1]
namewords = words[2:-1]
namephrase = '.'.join(namewords)
if namephrase.startswith("'") and namephrase.endswith("'"):
namephrase = namephrase[1:-1]
return first2words + [namephrase] + [lastword]
|
key2elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key):\n words = key.split('.')\n first2words = words[:2]\n lastword = words[-1]\n namewords = words[2:-1]\n namephrase = '.'.join(namewords)\n if namephrase.startswith(\"'\") and namephrase.endswith(\"'\"):\n namephrase = namephrase[1:-1]\n return first2words + [namephrase] + [lastword]\n",
"role": "user"
},
{
"content": "key2elements",
"role": "assistant"
}
] |
def x(idf, dct):
for key in list(dct.keys()):
if key.startswith('idf.'):
idftag, objkey, objname, field = key2elements(key)
if objname == '':
try:
idfobj = idf.idfobjects[objkey.upper()][0]
except IndexError as e:
idfobj = idf.newidfobject(objkey.upper())
else:
idfobj = idf.getobject(objkey.upper(), objname)
if idfobj == None:
idfobj = idf.newidfobject(objkey.upper(), Name=objname)
idfobj[field] = dct[key]
|
updateidf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(idf, dct):\n for key in list(dct.keys()):\n if key.startswith('idf.'):\n idftag, objkey, objname, field = key2elements(key)\n if objname == '':\n try:\n idfobj = idf.idfobjects[objkey.upper()][0]\n except IndexError as e:\n idfobj = idf.newidfobject(objkey.upper())\n else:\n idfobj = idf.getobject(objkey.upper(), objname)\n if idfobj == None:\n idfobj = idf.newidfobject(objkey.upper(), Name=objname)\n idfobj[field] = dct[key]\n",
"role": "user"
},
{
"content": "updateidf",
"role": "assistant"
}
] |
def x(fan_tot_eff, pascal, m3s):
inh2o = pascal2inh2o(pascal)
cfm = m3s2cfm(m3s)
return cfm * inh2o * 1.0 / (6356.0 * fan_tot_eff)
|
fan_bhp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fan_tot_eff, pascal, m3s):\n inh2o = pascal2inh2o(pascal)\n cfm = m3s2cfm(m3s)\n return cfm * inh2o * 1.0 / (6356.0 * fan_tot_eff)\n",
"role": "user"
},
{
"content": "fan_bhp",
"role": "assistant"
}
] |
def x(bhp, cfm, fan_tot_eff):
inh2o = bhp * 6356.0 * fan_tot_eff / cfm
pascal = inh2o2pascal(inh2o)
m3s = cfm2m3s(cfm)
return pascal, m3s
|
bhp2pascal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bhp, cfm, fan_tot_eff):\n inh2o = bhp * 6356.0 * fan_tot_eff / cfm\n pascal = inh2o2pascal(inh2o)\n m3s = cfm2m3s(cfm)\n return pascal, m3s\n",
"role": "user"
},
{
"content": "bhp2pascal",
"role": "assistant"
}
] |
def x(fan_tot_eff, pascal, m3s):
bhp = fan_bhp(fan_tot_eff, pascal, m3s)
return bhp2watts(bhp)
|
fan_watts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fan_tot_eff, pascal, m3s):\n bhp = fan_bhp(fan_tot_eff, pascal, m3s)\n return bhp2watts(bhp)\n",
"role": "user"
},
{
"content": "fan_watts",
"role": "assistant"
}
] |
def x(watts, cfm, fan_tot_eff):
bhp = watts2bhp(watts)
return bhp2pascal(bhp, cfm, fan_tot_eff)
|
watts2pascal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(watts, cfm, fan_tot_eff):\n bhp = watts2bhp(watts)\n return bhp2pascal(bhp, cfm, fan_tot_eff)\n",
"role": "user"
},
{
"content": "watts2pascal",
"role": "assistant"
}
] |
def x(ddtt):
from eppy.bunch_subclass import BadEPFieldError
try:
fan_tot_eff = ddtt.Fan_Total_Efficiency
except BadEPFieldError as e:
fan_tot_eff = ddtt.Fan_Efficiency
pascal = float(ddtt.Pressure_Rise)
if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':
return 'autosize'
else:
m3s = float(ddtt.Maximum_Flow_Rate)
return fan_bhp(fan_tot_eff, pascal, m3s)
|
fanpower_bhp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ddtt):\n from eppy.bunch_subclass import BadEPFieldError\n try:\n fan_tot_eff = ddtt.Fan_Total_Efficiency\n except BadEPFieldError as e:\n fan_tot_eff = ddtt.Fan_Efficiency\n pascal = float(ddtt.Pressure_Rise)\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return fan_bhp(fan_tot_eff, pascal, m3s)\n",
"role": "user"
},
{
"content": "fanpower_bhp",
"role": "assistant"
}
] |
def x(ddtt):
from eppy.bunch_subclass import BadEPFieldError
try:
fan_tot_eff = ddtt.Fan_Total_Efficiency
except BadEPFieldError as e:
fan_tot_eff = ddtt.Fan_Efficiency
pascal = float(ddtt.Pressure_Rise)
if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':
return 'autosize'
else:
m3s = float(ddtt.Maximum_Flow_Rate)
return fan_watts(fan_tot_eff, pascal, m3s)
|
fanpower_watts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ddtt):\n from eppy.bunch_subclass import BadEPFieldError\n try:\n fan_tot_eff = ddtt.Fan_Total_Efficiency\n except BadEPFieldError as e:\n fan_tot_eff = ddtt.Fan_Efficiency\n pascal = float(ddtt.Pressure_Rise)\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return fan_watts(fan_tot_eff, pascal, m3s)\n",
"role": "user"
},
{
"content": "fanpower_watts",
"role": "assistant"
}
] |
def x(ddtt):
if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':
return 'autosize'
else:
m3s = float(ddtt.Maximum_Flow_Rate)
return m3s2cfm(m3s)
|
fan_maxcfm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ddtt):\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return m3s2cfm(m3s)\n",
"role": "user"
},
{
"content": "fan_maxcfm",
"role": "assistant"
}
] |
def x(version=None, iddname=None):
try:
eplus_exe, eplus_home = paths_from_iddname(iddname)
except (AttributeError, TypeError, ValueError):
eplus_exe, eplus_home = paths_from_version(version)
eplus_weather = os.path.join(eplus_home, 'WeatherData')
return eplus_exe, eplus_weather
|
install_paths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version=None, iddname=None):\n try:\n eplus_exe, eplus_home = paths_from_iddname(iddname)\n except (AttributeError, TypeError, ValueError):\n eplus_exe, eplus_home = paths_from_version(version)\n eplus_weather = os.path.join(eplus_home, 'WeatherData')\n return eplus_exe, eplus_weather\n",
"role": "user"
},
{
"content": "install_paths",
"role": "assistant"
}
] |
def x(iddname):
eplus_home = os.path.abspath(os.path.dirname(iddname))
if platform.system() == 'Windows':
eplus_exe = os.path.join(eplus_home, 'energyplus.exe')
elif platform.system() == 'Linux':
eplus_exe = os.path.join(eplus_home, 'energyplus')
else:
eplus_exe = os.path.join(eplus_home, 'energyplus')
if not os.path.isfile(eplus_exe):
raise ValueError
return eplus_exe, eplus_home
|
paths_from_iddname
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(iddname):\n eplus_home = os.path.abspath(os.path.dirname(iddname))\n if platform.system() == 'Windows':\n eplus_exe = os.path.join(eplus_home, 'energyplus.exe')\n elif platform.system() == 'Linux':\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n else:\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n if not os.path.isfile(eplus_exe):\n raise ValueError\n return eplus_exe, eplus_home\n",
"role": "user"
},
{
"content": "paths_from_iddname",
"role": "assistant"
}
] |
def x(version):
if platform.system() == 'Windows':
eplus_home = 'C:/EnergyPlusV{version}'.format(version=version)
eplus_exe = os.path.join(eplus_home, 'energyplus.exe')
elif platform.system() == 'Linux':
eplus_home = '/usr/local/EnergyPlus-{version}'.format(version=version)
eplus_exe = os.path.join(eplus_home, 'energyplus')
else:
eplus_home = '/Applications/EnergyPlus-{version}'.format(version=
version)
eplus_exe = os.path.join(eplus_home, 'energyplus')
return eplus_exe, eplus_home
|
paths_from_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version):\n if platform.system() == 'Windows':\n eplus_home = 'C:/EnergyPlusV{version}'.format(version=version)\n eplus_exe = os.path.join(eplus_home, 'energyplus.exe')\n elif platform.system() == 'Linux':\n eplus_home = '/usr/local/EnergyPlus-{version}'.format(version=version)\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n else:\n eplus_home = '/Applications/EnergyPlus-{version}'.format(version=\n version)\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n return eplus_exe, eplus_home\n",
"role": "user"
},
{
"content": "paths_from_version",
"role": "assistant"
}
] |
def x(wrapped_func):
def x(wrapper_func):
wrapper_func.__doc__ = (
'This method wraps the following method:\n\n' + pydoc.text.
document(wrapped_func))
return wrapper_func
return decorator
|
wrapped_help_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wrapped_func):\n\n def x(wrapper_func):\n wrapper_func.__doc__ = (\n 'This method wraps the following method:\\n\\n' + pydoc.text.\n document(wrapped_func))\n return wrapper_func\n return decorator\n",
"role": "user"
},
{
"content": "wrapped_help_text",
"role": "assistant"
}
] |
def x(jobs, processors=1):
if processors <= 0:
processors = max(1, mp.cpu_count() - processors)
shutil.rmtree('multi_runs', ignore_errors=True)
os.mkdir('multi_runs')
prepared_runs = (prepare_run(run_id, run_data) for run_id, run_data in
enumerate(jobs))
try:
pool = mp.Pool(processors)
pool.map(multirunner, prepared_runs)
pool.close()
except NameError:
for job in prepared_runs:
multirunner([job])
shutil.rmtree('multi_runs', ignore_errors=True)
|
runIDFs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(jobs, processors=1):\n if processors <= 0:\n processors = max(1, mp.cpu_count() - processors)\n shutil.rmtree('multi_runs', ignore_errors=True)\n os.mkdir('multi_runs')\n prepared_runs = (prepare_run(run_id, run_data) for run_id, run_data in\n enumerate(jobs))\n try:\n pool = mp.Pool(processors)\n pool.map(multirunner, prepared_runs)\n pool.close()\n except NameError:\n for job in prepared_runs:\n multirunner([job])\n shutil.rmtree('multi_runs', ignore_errors=True)\n",
"role": "user"
},
{
"content": "runIDFs",
"role": "assistant"
}
] |
def x(run_id, run_data):
idf, kwargs = run_data
epw = idf.epw
idf_dir = os.path.join('multi_runs', 'idf_%i' % run_id)
os.mkdir(idf_dir)
idf_path = os.path.join(idf_dir, 'in.idf')
idf.saveas(idf_path)
return (idf_path, epw), kwargs
|
prepare_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(run_id, run_data):\n idf, kwargs = run_data\n epw = idf.epw\n idf_dir = os.path.join('multi_runs', 'idf_%i' % run_id)\n os.mkdir(idf_dir)\n idf_path = os.path.join(idf_dir, 'in.idf')\n idf.saveas(idf_path)\n return (idf_path, epw), kwargs\n",
"role": "user"
},
{
"content": "prepare_run",
"role": "assistant"
}
] |
def x(idf=None, weather=None, output_directory='', annual=False, design_day
=False, idd=None, epmacro=False, expandobjects=False, readvars=False,
output_prefix=None, output_suffix=None, version=False, verbose='v',
ep_version=None):
args = locals().copy()
verbose = args.pop('verbose')
idf = args.pop('idf')
iddname = args.get('idd')
if not isinstance(iddname, str):
args.pop('idd')
try:
idf_path = os.path.abspath(idf.idfname)
except AttributeError:
idf_path = os.path.abspath(idf)
ep_version = args.pop('ep_version')
if not ep_version:
try:
ep_version = '-'.join(str(x) for x in idf.idd_version[:3])
except AttributeError:
raise AttributeError(
'The ep_version must be set when passing an IDF path. Alternatively, use IDF.run()'
)
eplus_exe_path, eplus_weather_path = install_paths(ep_version, iddname)
if version:
cmd = [eplus_exe_path, '--version']
check_call(cmd)
return
if os.path.isfile(args['weather']):
args['weather'] = os.path.abspath(args['weather'])
else:
args['weather'] = os.path.join(eplus_weather_path, args['weather'])
output_dir = os.path.abspath(args['output_directory'])
args['output_directory'] = output_dir
cwd = os.getcwd()
run_dir = os.path.abspath(tempfile.mkdtemp())
os.chdir(run_dir)
cmd = [eplus_exe_path]
for arg in args:
if args[arg]:
if isinstance(args[arg], bool):
args[arg] = ''
cmd.extend(['--{}'.format(arg.replace('_', '-'))])
if args[arg] != '':
cmd.extend([args[arg]])
cmd.extend([idf_path])
try:
if verbose == 'v':
print('\r\n' + ' '.join(cmd) + '\r\n')
check_call(cmd)
elif verbose == 'q':
check_call(cmd, stdout=open(os.devnull, 'w'))
except CalledProcessError:
message = parse_error(output_dir)
raise EnergyPlusRunError(message)
finally:
os.chdir(cwd)
return 'OK'
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(idf=None, weather=None, output_directory='', annual=False, design_day\n =False, idd=None, epmacro=False, expandobjects=False, readvars=False,\n output_prefix=None, output_suffix=None, version=False, verbose='v',\n ep_version=None):\n args = locals().copy()\n verbose = args.pop('verbose')\n idf = args.pop('idf')\n iddname = args.get('idd')\n if not isinstance(iddname, str):\n args.pop('idd')\n try:\n idf_path = os.path.abspath(idf.idfname)\n except AttributeError:\n idf_path = os.path.abspath(idf)\n ep_version = args.pop('ep_version')\n if not ep_version:\n try:\n ep_version = '-'.join(str(x) for x in idf.idd_version[:3])\n except AttributeError:\n raise AttributeError(\n 'The ep_version must be set when passing an IDF path. Alternatively, use IDF.run()'\n )\n eplus_exe_path, eplus_weather_path = install_paths(ep_version, iddname)\n if version:\n cmd = [eplus_exe_path, '--version']\n check_call(cmd)\n return\n if os.path.isfile(args['weather']):\n args['weather'] = os.path.abspath(args['weather'])\n else:\n args['weather'] = os.path.join(eplus_weather_path, args['weather'])\n output_dir = os.path.abspath(args['output_directory'])\n args['output_directory'] = output_dir\n cwd = os.getcwd()\n run_dir = os.path.abspath(tempfile.mkdtemp())\n os.chdir(run_dir)\n cmd = [eplus_exe_path]\n for arg in args:\n if args[arg]:\n if isinstance(args[arg], bool):\n args[arg] = ''\n cmd.extend(['--{}'.format(arg.replace('_', '-'))])\n if args[arg] != '':\n cmd.extend([args[arg]])\n cmd.extend([idf_path])\n try:\n if verbose == 'v':\n print('\\r\\n' + ' '.join(cmd) + '\\r\\n')\n check_call(cmd)\n elif verbose == 'q':\n check_call(cmd, stdout=open(os.devnull, 'w'))\n except CalledProcessError:\n message = parse_error(output_dir)\n raise EnergyPlusRunError(message)\n finally:\n os.chdir(cwd)\n return 'OK'\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.