source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(fm, category, filenumber, n_train, n_predict, controls=True, scale_factor=1): subjects = np.unique(fm.SUBJECTINDEX) if len(subjects) < n_train + n_predict: raise ValueError('Not enough subjects in fixmat') np.random.shuffle(subjects) predicted_subjects = subjects[0:n_predict] predicting_subjects = subjects[n_predict:n_predict + n_train] assert len(predicting_subjects) == n_train assert len(predicted_subjects) == n_predict assert [(x not in predicting_subjects) for x in predicted_subjects] return intersubject_scores(fm, category, [filenumber], predicting_subjects, [filenumber], predicted_subjects, controls, scale_factor)
intersubject_scores_random_subjects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, category, filenumber, n_train, n_predict, controls=True,\n scale_factor=1):\n subjects = np.unique(fm.SUBJECTINDEX)\n if len(subjects) < n_train + n_predict:\n raise ValueError('Not enough subjects in fixmat')\n np.random.shuffle(subjects)\n predicted_subjects = subjects[0:n_predict]\n predicting_subjects = subjects[n_predict:n_predict + n_train]\n assert len(predicting_subjects) == n_train\n assert len(predicted_subjects) == n_predict\n assert [(x not in predicting_subjects) for x in predicted_subjects]\n return intersubject_scores(fm, category, [filenumber],\n predicting_subjects, [filenumber], predicted_subjects, controls,\n scale_factor)\n", "role": "user" }, { "content": "intersubject_scores_random_subjects", "role": "assistant" } ]
def x(fm, nr_subs=None, scale_factor=1): nr_subs_total = len(np.unique(fm.SUBJECTINDEX)) if not nr_subs: nr_subs = nr_subs_total - 1 assert nr_subs < nr_subs_total intersub_scores = [] for measure in range(len(measures.scores)): res_dict = {} result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np. unique(fm.category)] res_dict.update(list(zip(np.unique(fm.category), result_vectors))) intersub_scores.append(res_dict) for fm_cat in fm.by_field('category'): cat = fm_cat.category[0] for sub_counter, sub in enumerate(np.unique(fm_cat.SUBJECTINDEX)): image_scores = [] for fm_single in fm_cat.by_field('filenumber'): predicting_subs = np.setdiff1d(np.unique(fm_single. SUBJECTINDEX), [sub]) np.random.shuffle(predicting_subs) predicting_subs = predicting_subs[0:nr_subs] predicting_fm = fm_single[ismember(fm_single.SUBJECTINDEX, predicting_subs)] predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub] try: predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor) except RuntimeError: predicting_fdm = None image_scores.append(measures.prediction_scores( predicting_fdm, predicted_fm)) for measure, score in enumerate(nanmean(image_scores, 0)): intersub_scores[measure][cat][sub_counter] = score return intersub_scores
upper_bound
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, nr_subs=None, scale_factor=1):\n nr_subs_total = len(np.unique(fm.SUBJECTINDEX))\n if not nr_subs:\n nr_subs = nr_subs_total - 1\n assert nr_subs < nr_subs_total\n intersub_scores = []\n for measure in range(len(measures.scores)):\n res_dict = {}\n result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.\n unique(fm.category)]\n res_dict.update(list(zip(np.unique(fm.category), result_vectors)))\n intersub_scores.append(res_dict)\n for fm_cat in fm.by_field('category'):\n cat = fm_cat.category[0]\n for sub_counter, sub in enumerate(np.unique(fm_cat.SUBJECTINDEX)):\n image_scores = []\n for fm_single in fm_cat.by_field('filenumber'):\n predicting_subs = np.setdiff1d(np.unique(fm_single.\n SUBJECTINDEX), [sub])\n np.random.shuffle(predicting_subs)\n predicting_subs = predicting_subs[0:nr_subs]\n predicting_fm = fm_single[ismember(fm_single.SUBJECTINDEX,\n predicting_subs)]\n predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]\n try:\n predicting_fdm = compute_fdm(predicting_fm,\n scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n image_scores.append(measures.prediction_scores(\n predicting_fdm, predicted_fm))\n for measure, score in enumerate(nanmean(image_scores, 0)):\n intersub_scores[measure][cat][sub_counter] = score\n return intersub_scores\n", "role": "user" }, { "content": "upper_bound", "role": "assistant" } ]
def x(fm, nr_subs=None, nr_imgs=None, scale_factor=1): nr_subs_total = len(np.unique(fm.SUBJECTINDEX)) if nr_subs is None: nr_subs = nr_subs_total - 1 assert nr_subs < nr_subs_total sb_scores = [] for measure in range(len(measures.scores)): res_dict = {} result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np. unique(fm.category)] res_dict.update(list(zip(np.unique(fm.category), result_vectors))) sb_scores.append(res_dict) for fm_cat in fm.by_field('category'): cat = fm_cat.category[0] nr_imgs_cat = len(np.unique(fm_cat.filenumber)) if not nr_imgs: nr_imgs_current = nr_imgs_cat - 1 else: nr_imgs_current = nr_imgs assert nr_imgs_current < nr_imgs_cat for sub_counter, sub in enumerate(np.unique(fm.SUBJECTINDEX)): image_scores = [] for fm_single in fm_cat.by_field('filenumber'): fn = fm_single.filenumber[0] predicting_subs = np.setdiff1d(np.unique(fm_cat. SUBJECTINDEX), [sub]) np.random.shuffle(predicting_subs) predicting_subs = predicting_subs[0:nr_subs] predicting_fns = np.setdiff1d(np.unique(fm_cat.filenumber), [fn]) np.random.shuffle(predicting_fns) predicting_fns = predicting_fns[0:nr_imgs_current] predicting_fm = fm_cat[ismember(fm_cat.SUBJECTINDEX, predicting_subs) & ismember(fm_cat.filenumber, predicting_fns)] predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub] try: predicting_fdm = compute_fdm(predicting_fm, scale_factor=scale_factor) except RuntimeError: predicting_fdm = None image_scores.append(measures.prediction_scores( predicting_fdm, predicted_fm)) for measure, score in enumerate(nanmean(image_scores, 0)): sb_scores[measure][cat][sub_counter] = score return sb_scores
lower_bound
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fm, nr_subs=None, nr_imgs=None, scale_factor=1):\n nr_subs_total = len(np.unique(fm.SUBJECTINDEX))\n if nr_subs is None:\n nr_subs = nr_subs_total - 1\n assert nr_subs < nr_subs_total\n sb_scores = []\n for measure in range(len(measures.scores)):\n res_dict = {}\n result_vectors = [(np.empty(nr_subs_total) + np.nan) for _ in np.\n unique(fm.category)]\n res_dict.update(list(zip(np.unique(fm.category), result_vectors)))\n sb_scores.append(res_dict)\n for fm_cat in fm.by_field('category'):\n cat = fm_cat.category[0]\n nr_imgs_cat = len(np.unique(fm_cat.filenumber))\n if not nr_imgs:\n nr_imgs_current = nr_imgs_cat - 1\n else:\n nr_imgs_current = nr_imgs\n assert nr_imgs_current < nr_imgs_cat\n for sub_counter, sub in enumerate(np.unique(fm.SUBJECTINDEX)):\n image_scores = []\n for fm_single in fm_cat.by_field('filenumber'):\n fn = fm_single.filenumber[0]\n predicting_subs = np.setdiff1d(np.unique(fm_cat.\n SUBJECTINDEX), [sub])\n np.random.shuffle(predicting_subs)\n predicting_subs = predicting_subs[0:nr_subs]\n predicting_fns = np.setdiff1d(np.unique(fm_cat.filenumber),\n [fn])\n np.random.shuffle(predicting_fns)\n predicting_fns = predicting_fns[0:nr_imgs_current]\n predicting_fm = fm_cat[ismember(fm_cat.SUBJECTINDEX,\n predicting_subs) & ismember(fm_cat.filenumber,\n predicting_fns)]\n predicted_fm = fm_single[fm_single.SUBJECTINDEX == sub]\n try:\n predicting_fdm = compute_fdm(predicting_fm,\n scale_factor=scale_factor)\n except RuntimeError:\n predicting_fdm = None\n image_scores.append(measures.prediction_scores(\n predicting_fdm, predicted_fm))\n for measure, score in enumerate(nanmean(image_scores, 0)):\n sb_scores[measure][cat][sub_counter] = score\n return sb_scores\n", "role": "user" }, { "content": "lower_bound", "role": "assistant" } ]
def x(ind, dimensions): if ind >= np.prod(dimensions): raise RuntimeError('ind2sub: index exceeds array size') cum_dims = list(dimensions) cum_dims.reverse() m = 1 mult = [] for d in cum_dims: m = m * d mult.append(m) mult.pop() mult.reverse() mult.append(1) indices = [] for d in mult: indices.append(ind / d + 1) ind = ind - ind / d * d return indices
ind2sub
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ind, dimensions):\n if ind >= np.prod(dimensions):\n raise RuntimeError('ind2sub: index exceeds array size')\n cum_dims = list(dimensions)\n cum_dims.reverse()\n m = 1\n mult = []\n for d in cum_dims:\n m = m * d\n mult.append(m)\n mult.pop()\n mult.reverse()\n mult.append(1)\n indices = []\n for d in mult:\n indices.append(ind / d + 1)\n ind = ind - ind / d * d\n return indices\n", "role": "user" }, { "content": "ind2sub", "role": "assistant" } ]
def x(indices, dimensions): if any([(i > j) for i, j in zip(indices, dimensions)]): raise RuntimeError("sub2ind:an index exceeds its dimension's size") dims = list(dimensions) dims.append(1) dims.remove(dims[0]) dims.reverse() ind = list(indices) ind.reverse() idx = 0 mult = 1 for cnt, dim in zip(ind, dims): mult = dim * mult idx = idx + (cnt - 1) * mult return idx
sub2ind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(indices, dimensions):\n if any([(i > j) for i, j in zip(indices, dimensions)]):\n raise RuntimeError(\"sub2ind:an index exceeds its dimension's size\")\n dims = list(dimensions)\n dims.append(1)\n dims.remove(dims[0])\n dims.reverse()\n ind = list(indices)\n ind.reverse()\n idx = 0\n mult = 1\n for cnt, dim in zip(ind, dims):\n mult = dim * mult\n idx = idx + (cnt - 1) * mult\n return idx\n", "role": "user" }, { "content": "sub2ind", "role": "assistant" } ]
def x(store_class, chunk_size, restore_file, save_file): intm_results = np.load(restore_file) intm = intm_results[intm_results.files[0]] idx = np.isnan(intm).flatten().nonzero()[0] partitions = math.ceil(len(idx) / float(chunk_size)) task_store = store_class(partitions, idx.tolist(), save_file) task_store.num_tasks = len(idx) for f in intm_results.files: task_store.__dict__[f] = intm_results[f] return task_store
RestoreTaskStoreFactory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(store_class, chunk_size, restore_file, save_file):\n intm_results = np.load(restore_file)\n intm = intm_results[intm_results.files[0]]\n idx = np.isnan(intm).flatten().nonzero()[0]\n partitions = math.ceil(len(idx) / float(chunk_size))\n task_store = store_class(partitions, idx.tolist(), save_file)\n task_store.num_tasks = len(idx)\n for f in intm_results.files:\n task_store.__dict__[f] = intm_results[f]\n return task_store\n", "role": "user" }, { "content": "RestoreTaskStoreFactory", "role": "assistant" } ]
def x(self): if not len(self.scheduled_tasks) == 0: self.reschedule = list(self.scheduled_tasks.items()) self.scheduled_tasks = {} return True
xmlrpc_reschedule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not len(self.scheduled_tasks) == 0:\n self.reschedule = list(self.scheduled_tasks.items())\n self.scheduled_tasks = {}\n return True\n", "role": "user" }, { "content": "xmlrpc_reschedule", "role": "assistant" } ]
def x(self): try: if len(self.reschedule) == 0: task_id, cur_task = next(self.task_iterator) else: task_id, cur_task = self.reschedule.pop() self.scheduled_tasks.update({task_id: cur_task}) return task_id, cur_task.to_dict() except StopIteration: print('StopIteration: No more tasks') return False except Exception as err: print('Some other error') print(err) return False
xmlrpc_get_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n if len(self.reschedule) == 0:\n task_id, cur_task = next(self.task_iterator)\n else:\n task_id, cur_task = self.reschedule.pop()\n self.scheduled_tasks.update({task_id: cur_task})\n return task_id, cur_task.to_dict()\n except StopIteration:\n print('StopIteration: No more tasks')\n return False\n except Exception as err:\n print('Some other error')\n print(err)\n return False\n", "role": "user" }, { "content": "xmlrpc_get_task", "role": "assistant" } ]
def x(self, result): task_id, task_results = result del self.scheduled_tasks[task_id] self.task_store.update_results(task_id, task_results) self.results += 1 return True
xmlrpc_task_done
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result):\n task_id, task_results = result\n del self.scheduled_tasks[task_id]\n self.task_store.update_results(task_id, task_results)\n self.results += 1\n return True\n", "role": "user" }, { "content": "xmlrpc_task_done", "role": "assistant" } ]
def x(self): return ( """ %i Jobs are still wating for execution %i Jobs are being processed %i Jobs are done """ % (self.task_store.partitions - self.results - len(self. scheduled_tasks), len(self.scheduled_tasks), self.results))
xmlrpc_status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (\n \"\"\"\n %i Jobs are still wating for execution\n %i Jobs are being processed\n %i Jobs are done\n \"\"\"\n % (self.task_store.partitions - self.results - len(self.\n scheduled_tasks), len(self.scheduled_tasks), self.results))\n", "role": "user" }, { "content": "xmlrpc_status", "role": "assistant" } ]
def x(self, filename): savefile = open(filename, 'wb') try: pickle.dump({'scheduled': self.scheduled_tasks, 'reschedule': self. reschedule}, savefile) except pickle.PicklingError: return -1 savefile.close() return 1
xmlrpc_save2file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n savefile = open(filename, 'wb')\n try:\n pickle.dump({'scheduled': self.scheduled_tasks, 'reschedule': self.\n reschedule}, savefile)\n except pickle.PicklingError:\n return -1\n savefile.close()\n return 1\n", "role": "user" }, { "content": "xmlrpc_save2file", "role": "assistant" } ]
def x(self): task_id, tasks = self.server.get_task() self.task_store.from_dict(tasks) for index, task in self.task_store: result = self.compute(index, task) self.results.append(result) self.server.task_done((task_id, self.results))
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n task_id, tasks = self.server.get_task()\n self.task_store.from_dict(tasks)\n for index, task in self.task_store:\n result = self.compute(index, task)\n self.results.append(result)\n self.server.task_done((task_id, self.results))\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, description): assert self.ident == description['ident'] self.partitions = description['partitions'] self.indices = description['indices']
from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, description):\n assert self.ident == description['ident']\n self.partitions = description['partitions']\n self.indices = description['indices']\n", "role": "user" }, { "content": "from_dict", "role": "assistant" } ]
def x(self): step = int(math.ceil(self.num_tasks / float(self.partitions))) if self.indices == None: slice_ind = list(range(0, self.num_tasks, step)) for start in slice_ind: yield self.__class__(self.partitions, list(range(start, start + step))) else: slice_ind = list(range(0, len(self.indices), step)) for start in slice_ind: if start + step <= len(self.indices): yield self.__class__(self.partitions, self.indices[start: start + step]) else: yield self.__class__(self.partitions, self.indices[start:])
partition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n step = int(math.ceil(self.num_tasks / float(self.partitions)))\n if self.indices == None:\n slice_ind = list(range(0, self.num_tasks, step))\n for start in slice_ind:\n yield self.__class__(self.partitions, list(range(start, start +\n step)))\n else:\n slice_ind = list(range(0, len(self.indices), step))\n for start in slice_ind:\n if start + step <= len(self.indices):\n yield self.__class__(self.partitions, self.indices[start:\n start + step])\n else:\n yield self.__class__(self.partitions, self.indices[start:])\n", "role": "user" }, { "content": "partition", "role": "assistant" } ]
def x(samples, e_x, e_y, e_z, remove_zeros=False, **kw): height, width, depth = len(e_y) - 1, len(e_x) - 1, len(e_z) - 1 p_est, _ = np.histogramdd(samples, (e_x, e_y, e_z)) p_est = p_est / sum(p_est.flat) p_est = p_est.flatten() if remove_zeros: non_zero = ~(p_est == 0) else: non_zero = p_est >= 0 basis = spline_base3d(width, height, depth, **kw) model = linear_model.BayesianRidge() model.fit(basis[:, non_zero].T, p_est[:, np.newaxis][non_zero, :]) return model.predict(basis.T).reshape((width, height, depth) ), p_est.reshape((width, height, depth))
fit3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, e_x, e_y, e_z, remove_zeros=False, **kw):\n height, width, depth = len(e_y) - 1, len(e_x) - 1, len(e_z) - 1\n p_est, _ = np.histogramdd(samples, (e_x, e_y, e_z))\n p_est = p_est / sum(p_est.flat)\n p_est = p_est.flatten()\n if remove_zeros:\n non_zero = ~(p_est == 0)\n else:\n non_zero = p_est >= 0\n basis = spline_base3d(width, height, depth, **kw)\n model = linear_model.BayesianRidge()\n model.fit(basis[:, non_zero].T, p_est[:, np.newaxis][non_zero, :])\n return model.predict(basis.T).reshape((width, height, depth)\n ), p_est.reshape((width, height, depth))\n", "role": "user" }, { "content": "fit3d", "role": "assistant" } ]
def x(samples, e_x, e_y, remove_zeros=False, p_est=None, **kw): if p_est is None: height = len(e_y) - 1 width = len(e_x) - 1 p_est, _ = np.histogramdd(samples, (e_x, e_y)) else: p_est = p_est.T width, height = p_est.shape shape = p_est.shape p_est = (p_est / sum(p_est.flat)).reshape(shape) mx = p_est.sum(1) my = p_est.sum(0) p_est = p_est.T.flatten() basis, knots = spline_base2d(width, height, marginal_x=mx, marginal_y= my, **kw) model = linear_model.BayesianRidge() if remove_zeros: non_zero = ~(p_est == 0) model.fit(basis[:, non_zero].T, p_est[non_zero]) else: non_zero = p_est >= 0 p_est[~non_zero, :] = np.finfo(float).eps model.fit(basis.T, p_est) return model.predict(basis.T).reshape((height, width)), p_est.reshape(( height, width)), knots
fit2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, e_x, e_y, remove_zeros=False, p_est=None, **kw):\n if p_est is None:\n height = len(e_y) - 1\n width = len(e_x) - 1\n p_est, _ = np.histogramdd(samples, (e_x, e_y))\n else:\n p_est = p_est.T\n width, height = p_est.shape\n shape = p_est.shape\n p_est = (p_est / sum(p_est.flat)).reshape(shape)\n mx = p_est.sum(1)\n my = p_est.sum(0)\n p_est = p_est.T.flatten()\n basis, knots = spline_base2d(width, height, marginal_x=mx, marginal_y=\n my, **kw)\n model = linear_model.BayesianRidge()\n if remove_zeros:\n non_zero = ~(p_est == 0)\n model.fit(basis[:, non_zero].T, p_est[non_zero])\n else:\n non_zero = p_est >= 0\n p_est[~non_zero, :] = np.finfo(float).eps\n model.fit(basis.T, p_est)\n return model.predict(basis.T).reshape((height, width)), p_est.reshape((\n height, width)), knots\n", "role": "user" }, { "content": "fit2d", "role": "assistant" } ]
def x(samples, e, remove_zeros=False, **kw): samples = samples[~np.isnan(samples)] length = len(e) - 1 hist, _ = np.histogramdd(samples, (e,)) hist = hist / sum(hist) basis, knots = spline_base1d(length, marginal=hist, **kw) non_zero = hist > 0 model = linear_model.BayesianRidge() if remove_zeros: model.fit(basis[non_zero, :], hist[:, np.newaxis][non_zero, :]) else: hist[~non_zero] = np.finfo(float).eps model.fit(basis, hist[:, np.newaxis]) return model.predict(basis), hist, knots
fit1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, e, remove_zeros=False, **kw):\n samples = samples[~np.isnan(samples)]\n length = len(e) - 1\n hist, _ = np.histogramdd(samples, (e,))\n hist = hist / sum(hist)\n basis, knots = spline_base1d(length, marginal=hist, **kw)\n non_zero = hist > 0\n model = linear_model.BayesianRidge()\n if remove_zeros:\n model.fit(basis[non_zero, :], hist[:, np.newaxis][non_zero, :])\n else:\n hist[~non_zero] = np.finfo(float).eps\n model.fit(basis, hist[:, np.newaxis])\n return model.predict(basis), hist, knots\n", "role": "user" }, { "content": "fit1d", "role": "assistant" } ]
def x(marginal, nr_knots, spline_order): cumsum = np.cumsum(marginal) cumsum = cumsum / cumsum.max() borders = np.linspace(0, 1, nr_knots) knot_placement = [0] + np.unique([np.where(cumsum >= b)[0][0] for b in borders[1:-1]]).tolist() + [len(marginal) - 1] knots = augknt(knot_placement, spline_order) return knots
knots_from_marginal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(marginal, nr_knots, spline_order):\n cumsum = np.cumsum(marginal)\n cumsum = cumsum / cumsum.max()\n borders = np.linspace(0, 1, nr_knots)\n knot_placement = [0] + np.unique([np.where(cumsum >= b)[0][0] for b in\n borders[1:-1]]).tolist() + [len(marginal) - 1]\n knots = augknt(knot_placement, spline_order)\n return knots\n", "role": "user" }, { "content": "knots_from_marginal", "role": "assistant" } ]
def x(length, nr_knots=20, spline_order=5, marginal=None): if marginal is None: knots = augknt(np.linspace(0, length + 1, nr_knots), spline_order) else: knots = knots_from_marginal(marginal, nr_knots, spline_order) x_eval = np.arange(1, length + 1).astype(float) Bsplines = spcol(x_eval, knots, spline_order) return Bsplines, knots
spline_base1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(length, nr_knots=20, spline_order=5, marginal=None):\n if marginal is None:\n knots = augknt(np.linspace(0, length + 1, nr_knots), spline_order)\n else:\n knots = knots_from_marginal(marginal, nr_knots, spline_order)\n x_eval = np.arange(1, length + 1).astype(float)\n Bsplines = spcol(x_eval, knots, spline_order)\n return Bsplines, knots\n", "role": "user" }, { "content": "spline_base1d", "role": "assistant" } ]
def x(width, height, nr_knots_x=20.0, nr_knots_y=20.0, spline_order=5, marginal_x=None, marginal_y=None): if not (nr_knots_x < width and nr_knots_y < height): raise RuntimeError('Too many knots for size of the base') if marginal_x is None: knots_x = augknt(np.linspace(0, width + 1, nr_knots_x), spline_order) else: knots_x = knots_from_marginal(marginal_x, nr_knots_x, spline_order) if marginal_y is None: knots_y = augknt(np.linspace(0, height + 1, nr_knots_y), spline_order) else: knots_y = knots_from_marginal(marginal_y, nr_knots_y, spline_order) x_eval = np.arange(1, width + 1).astype(float) y_eval = np.arange(1, height + 1).astype(float) spline_setx = spcol(x_eval, knots_x, spline_order) spline_sety = spcol(y_eval, knots_y, spline_order) nr_coeff = [spline_sety.shape[1], spline_setx.shape[1]] dim_bspline = [nr_coeff[0] * nr_coeff[1], len(x_eval) * len(y_eval)] nr_basis = 0 bspline = np.zeros(dim_bspline) for IDX1 in range(0, nr_coeff[0]): for IDX2 in range(0, nr_coeff[1]): rand_coeff = np.zeros((nr_coeff[0], nr_coeff[1])) rand_coeff[IDX1, IDX2] = 1 tmp = np.dot(spline_sety, rand_coeff) bspline[nr_basis, :] = np.dot(tmp, spline_setx.T).reshape((1, -1)) nr_basis = nr_basis + 1 return bspline, (knots_x, knots_y)
spline_base2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(width, height, nr_knots_x=20.0, nr_knots_y=20.0, spline_order=5,\n marginal_x=None, marginal_y=None):\n if not (nr_knots_x < width and nr_knots_y < height):\n raise RuntimeError('Too many knots for size of the base')\n if marginal_x is None:\n knots_x = augknt(np.linspace(0, width + 1, nr_knots_x), spline_order)\n else:\n knots_x = knots_from_marginal(marginal_x, nr_knots_x, spline_order)\n if marginal_y is None:\n knots_y = augknt(np.linspace(0, height + 1, nr_knots_y), spline_order)\n else:\n knots_y = knots_from_marginal(marginal_y, nr_knots_y, spline_order)\n x_eval = np.arange(1, width + 1).astype(float)\n y_eval = np.arange(1, height + 1).astype(float)\n spline_setx = spcol(x_eval, knots_x, spline_order)\n spline_sety = spcol(y_eval, knots_y, spline_order)\n nr_coeff = [spline_sety.shape[1], spline_setx.shape[1]]\n dim_bspline = [nr_coeff[0] * nr_coeff[1], len(x_eval) * len(y_eval)]\n nr_basis = 0\n bspline = np.zeros(dim_bspline)\n for IDX1 in range(0, nr_coeff[0]):\n for IDX2 in range(0, nr_coeff[1]):\n rand_coeff = np.zeros((nr_coeff[0], nr_coeff[1]))\n rand_coeff[IDX1, IDX2] = 1\n tmp = np.dot(spline_sety, rand_coeff)\n bspline[nr_basis, :] = np.dot(tmp, spline_setx.T).reshape((1, -1))\n nr_basis = nr_basis + 1\n return bspline, (knots_x, knots_y)\n", "role": "user" }, { "content": "spline_base2d", "role": "assistant" } ]
def x(width, height, depth, nr_knots_x=10.0, nr_knots_y=10.0, nr_knots_z=10, spline_order=3, marginal_x=None, marginal_y=None, marginal_z=None): if not nr_knots_z < depth: raise RuntimeError('Too many knots for size of the base') basis2d, (knots_x, knots_y) = spline_base2d(height, width, nr_knots_x, nr_knots_y, spline_order, marginal_x, marginal_y) if marginal_z is not None: knots_z = knots_from_marginal(marginal_z, nr_knots_z, spline_order) else: knots_z = augknt(np.linspace(0, depth + 1, nr_knots_z), spline_order) z_eval = np.arange(1, depth + 1).astype(float) spline_setz = spcol(z_eval, knots_z, spline_order) bspline = np.zeros((basis2d.shape[0] * len(z_eval), height * width * depth) ) basis_nr = 0 for spline_a in spline_setz.T: for spline_b in basis2d: spline_b = spline_b.reshape((height, width)) bspline[basis_nr, :] = (spline_b[:, :, np.newaxis] * spline_a[:] ).flat basis_nr += 1 return bspline, (knots_x, knots_y, knots_z)
spline_base3d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(width, height, depth, nr_knots_x=10.0, nr_knots_y=10.0, nr_knots_z=10,\n spline_order=3, marginal_x=None, marginal_y=None, marginal_z=None):\n if not nr_knots_z < depth:\n raise RuntimeError('Too many knots for size of the base')\n basis2d, (knots_x, knots_y) = spline_base2d(height, width, nr_knots_x,\n nr_knots_y, spline_order, marginal_x, marginal_y)\n if marginal_z is not None:\n knots_z = knots_from_marginal(marginal_z, nr_knots_z, spline_order)\n else:\n knots_z = augknt(np.linspace(0, depth + 1, nr_knots_z), spline_order)\n z_eval = np.arange(1, depth + 1).astype(float)\n spline_setz = spcol(z_eval, knots_z, spline_order)\n bspline = np.zeros((basis2d.shape[0] * len(z_eval), height * width * depth)\n )\n basis_nr = 0\n for spline_a in spline_setz.T:\n for spline_b in basis2d:\n spline_b = spline_b.reshape((height, width))\n bspline[basis_nr, :] = (spline_b[:, :, np.newaxis] * spline_a[:]\n ).flat\n basis_nr += 1\n return bspline, (knots_x, knots_y, knots_z)\n", "role": "user" }, { "content": "spline_base3d", "role": "assistant" } ]
def x(x, knots, p, i=0.0): assert p + 1 < len(knots) return np.array([N(float(u), float(i), float(p), knots) for u in x])
spline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, knots, p, i=0.0):\n assert p + 1 < len(knots)\n return np.array([N(float(u), float(i), float(p), knots) for u in x])\n", "role": "user" }, { "content": "spline", "role": "assistant" } ]
def x(x, knots, spline_order): colmat = np.nan * np.ones((len(x), len(knots) - spline_order - 1)) for i in range(0, len(knots) - spline_order - 1): colmat[:, i] = spline(x, knots, spline_order, i) return colmat
spcol
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, knots, spline_order):\n colmat = np.nan * np.ones((len(x), len(knots) - spline_order - 1))\n for i in range(0, len(knots) - spline_order - 1):\n colmat[:, i] = spline(x, knots, spline_order, i)\n return colmat\n", "role": "user" }, { "content": "spcol", "role": "assistant" } ]
def x(knots, order): a = [] [a.append(knots[0]) for t in range(0, order)] [a.append(k) for k in knots] [a.append(knots[-1]) for t in range(0, order)] return np.array(a)
augknt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(knots, order):\n a = []\n [a.append(knots[0]) for t in range(0, order)]\n [a.append(k) for k in knots]\n [a.append(knots[-1]) for t in range(0, order)]\n return np.array(a)\n", "role": "user" }, { "content": "augknt", "role": "assistant" } ]
def x(u, i, p, knots): if p == 0: if knots[i] < u and u <= knots[i + 1]: return 1.0 else: return 0.0 else: try: k = float(u - knots[i]) / float(knots[i + p] - knots[i]) * N(u, i, p - 1, knots) except ZeroDivisionError: k = 0.0 try: q = float(knots[i + p + 1] - u) / float(knots[i + p + 1] - knots[i + 1]) * N(u, i + 1, p - 1, knots) except ZeroDivisionError: q = 0.0 return float(k + q)
N
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(u, i, p, knots):\n if p == 0:\n if knots[i] < u and u <= knots[i + 1]:\n return 1.0\n else:\n return 0.0\n else:\n try:\n k = float(u - knots[i]) / float(knots[i + p] - knots[i]) * N(u,\n i, p - 1, knots)\n except ZeroDivisionError:\n k = 0.0\n try:\n q = float(knots[i + p + 1] - u) / float(knots[i + p + 1] -\n knots[i + 1]) * N(u, i + 1, p - 1, knots)\n except ZeroDivisionError:\n q = 0.0\n return float(k + q)\n", "role": "user" }, { "content": "N", "role": "assistant" } ]
def x(prediction, fm, **kw): if prediction == None: return [np.NaN for measure in scores] results = [] for measure in scores: args, _, _, _ = inspect.getargspec(measure) if len(args) > 2: mdict = {} [mdict.update({key: value}) for key, value in list(kw.items()) if key in args] score = measure(prediction, fm, **mdict) else: score = measure(prediction, fm) results.append(score) return results
prediction_scores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm, **kw):\n if prediction == None:\n return [np.NaN for measure in scores]\n results = []\n for measure in scores:\n args, _, _, _ = inspect.getargspec(measure)\n if len(args) > 2:\n mdict = {}\n [mdict.update({key: value}) for key, value in list(kw.items()) if\n key in args]\n score = measure(prediction, fm, **mdict)\n else:\n score = measure(prediction, fm)\n results.append(score)\n return results\n", "role": "user" }, { "content": "prediction_scores", "role": "assistant" } ]
def x(prediction, fm): _, r_x = calc_resize_factor(prediction, fm.image_size) q = np.array(prediction, copy=True) q -= np.min(q.flatten()) q /= np.sum(q.flatten()) return kldiv(None, q, distp=fm, scale_factor=r_x)
kldiv_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n q = np.array(prediction, copy=True)\n q -= np.min(q.flatten())\n q /= np.sum(q.flatten())\n return kldiv(None, q, distp=fm, scale_factor=r_x)\n", "role": "user" }, { "content": "kldiv_model", "role": "assistant" } ]
def x(p, q, distp=None, distq=None, scale_factor=1): assert q != None or distq != None, 'Either q or distq have to be given' assert p != None or distp != None, 'Either p or distp have to be given' try: if p == None: p = compute_fdm(distp, scale_factor=scale_factor) if q == None: q = compute_fdm(distq, scale_factor=scale_factor) except RuntimeError: return np.NaN q += np.finfo(q.dtype).eps p += np.finfo(p.dtype).eps kl = np.sum(p * np.log2(p / q)) return kl
kldiv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, q, distp=None, distq=None, scale_factor=1):\n assert q != None or distq != None, 'Either q or distq have to be given'\n assert p != None or distp != None, 'Either p or distp have to be given'\n try:\n if p == None:\n p = compute_fdm(distp, scale_factor=scale_factor)\n if q == None:\n q = compute_fdm(distq, scale_factor=scale_factor)\n except RuntimeError:\n return np.NaN\n q += np.finfo(q.dtype).eps\n p += np.finfo(p.dtype).eps\n kl = np.sum(p * np.log2(p / q))\n return kl\n", "role": "user" }, { "content": "kldiv", "role": "assistant" } ]
def x(prediction, fm): assert len(fm.image_size) == 2 and fm.image_size[0] > 0 and fm.image_size[1 ] > 0 assert -1 not in fm.category if len(fm.x) == 0: return np.NaN scale_factor, _ = calc_resize_factor(prediction, fm.image_size) e_y = np.arange(0, np.round(scale_factor * fm.image_size[0] + 1)) e_x = np.arange(0, np.round(scale_factor * fm.image_size[1] + 1)) samples = np.array(list(zip(scale_factor * fm.y, scale_factor * fm.x))) fdm, _ = np.histogramdd(samples, (e_y, e_x)) q = np.array(prediction, copy=True) q[q == 0] = np.finfo(q.dtype).eps q /= np.sum(q) H, pa, la = chao_shen(fdm) q = q[fdm > 0] cross_entropy = -np.sum(pa * np.log2(q) / la) return cross_entropy - H
kldiv_cs_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm):\n assert len(fm.image_size) == 2 and fm.image_size[0] > 0 and fm.image_size[1\n ] > 0\n assert -1 not in fm.category\n if len(fm.x) == 0:\n return np.NaN\n scale_factor, _ = calc_resize_factor(prediction, fm.image_size)\n e_y = np.arange(0, np.round(scale_factor * fm.image_size[0] + 1))\n e_x = np.arange(0, np.round(scale_factor * fm.image_size[1] + 1))\n samples = np.array(list(zip(scale_factor * fm.y, scale_factor * fm.x)))\n fdm, _ = np.histogramdd(samples, (e_y, e_x))\n q = np.array(prediction, copy=True)\n q[q == 0] = np.finfo(q.dtype).eps\n q /= np.sum(q)\n H, pa, la = chao_shen(fdm)\n q = q[fdm > 0]\n cross_entropy = -np.sum(pa * np.log2(q) / la)\n return cross_entropy - H\n", "role": "user" }, { "content": "kldiv_cs_model", "role": "assistant" } ]
def x(q): yx = q[q > 0] n = np.sum(yx) p = yx.astype(float) / n f1 = np.sum(yx == 1) if f1 == n: f1 -= 1 C = 1 - f1 / n pa = C * p la = 1 - (1 - pa) ** n H = -np.sum(pa * np.log2(pa) / la) return H, pa, la
chao_shen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(q):\n yx = q[q > 0]\n n = np.sum(yx)\n p = yx.astype(float) / n\n f1 = np.sum(yx == 1)\n if f1 == n:\n f1 -= 1\n C = 1 - f1 / n\n pa = C * p\n la = 1 - (1 - pa) ** n\n H = -np.sum(pa * np.log2(pa) / la)\n return H, pa, la\n", "role": "user" }, { "content": "chao_shen", "role": "assistant" } ]
def x(prediction, fm): _, r_x = calc_resize_factor(prediction, fm.image_size) fdm = compute_fdm(fm, scale_factor=r_x) return np.corrcoef(fdm.flatten(), prediction.flatten())[0, 1]
correlation_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n fdm = compute_fdm(fm, scale_factor=r_x)\n return np.corrcoef(fdm.flatten(), prediction.flatten())[0, 1]\n", "role": "user" }, { "content": "correlation_model", "role": "assistant" } ]
def x(prediction, fm): r_y, r_x = calc_resize_factor(prediction, fm.image_size) fix = (np.array(fm.y - 1) * r_y).astype(int), (np.array(fm.x - 1) * r_x ).astype(int) return nss(prediction, fix)
nss_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm):\n r_y, r_x = calc_resize_factor(prediction, fm.image_size)\n fix = (np.array(fm.y - 1) * r_y).astype(int), (np.array(fm.x - 1) * r_x\n ).astype(int)\n return nss(prediction, fix)\n", "role": "user" }, { "content": "nss_model", "role": "assistant" } ]
def x(prediction, fix): prediction = prediction - np.mean(prediction) prediction = prediction / np.std(prediction) return np.mean(prediction[fix[0], fix[1]])
nss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fix):\n prediction = prediction - np.mean(prediction)\n prediction = prediction / np.std(prediction)\n return np.mean(prediction[fix[0], fix[1]])\n", "role": "user" }, { "content": "nss", "role": "assistant" } ]
def x(prediction, fm, ctr_loc=None, ctr_size=None): assert type(prediction) == np.ndarray r_y, r_x = calc_resize_factor(prediction, fm.image_size) y_index = (r_y * np.array(fm.y - 1)).astype(int) x_index = (r_x * np.array(fm.x - 1)).astype(int) actuals = prediction[y_index, x_index] if not ctr_loc: xc = np.random.randint(0, prediction.shape[1], 1000) yc = np.random.randint(0, prediction.shape[0], 1000) ctr_loc = yc.astype(int), xc.astype(int) else: if not ctr_size: ctr_size = fm.image_size else: r_y, r_x = calc_resize_factor(prediction, ctr_size) ctr_loc = (r_y * np.array(ctr_loc[0])).astype(int), (r_x * np.array (ctr_loc[1])).astype(int) controls = prediction[ctr_loc[0], ctr_loc[1]] return fast_roc(actuals, controls)[0]
roc_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm, ctr_loc=None, ctr_size=None):\n assert type(prediction) == np.ndarray\n r_y, r_x = calc_resize_factor(prediction, fm.image_size)\n y_index = (r_y * np.array(fm.y - 1)).astype(int)\n x_index = (r_x * np.array(fm.x - 1)).astype(int)\n actuals = prediction[y_index, x_index]\n if not ctr_loc:\n xc = np.random.randint(0, prediction.shape[1], 1000)\n yc = np.random.randint(0, prediction.shape[0], 1000)\n ctr_loc = yc.astype(int), xc.astype(int)\n else:\n if not ctr_size:\n ctr_size = fm.image_size\n else:\n r_y, r_x = calc_resize_factor(prediction, ctr_size)\n ctr_loc = (r_y * np.array(ctr_loc[0])).astype(int), (r_x * np.array\n (ctr_loc[1])).astype(int)\n controls = prediction[ctr_loc[0], ctr_loc[1]]\n return fast_roc(actuals, controls)[0]\n", "role": "user" }, { "content": "roc_model", "role": "assistant" } ]
def x(actuals, controls): assert type(actuals) is np.ndarray assert type(controls) is np.ndarray actuals = np.ravel(actuals) controls = np.ravel(controls) if np.isnan(actuals).any(): raise RuntimeError('NaN found in actuals') if np.isnan(controls).any(): raise RuntimeError('NaN found in controls') thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf])[::-1] true_pos_rate = np.empty(thresholds.size) false_pos_rate = np.empty(thresholds.size) num_act = float(len(actuals)) num_ctr = float(len(controls)) for i, value in enumerate(thresholds): true_pos_rate[i] = (actuals >= value).sum() / num_act false_pos_rate[i] = (controls >= value).sum() / num_ctr auc = np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1]) if false_pos_rate[-2] == 1: auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3]) return auc, true_pos_rate, false_pos_rate
fast_roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(actuals, controls):\n assert type(actuals) is np.ndarray\n assert type(controls) is np.ndarray\n actuals = np.ravel(actuals)\n controls = np.ravel(controls)\n if np.isnan(actuals).any():\n raise RuntimeError('NaN found in actuals')\n if np.isnan(controls).any():\n raise RuntimeError('NaN found in controls')\n thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf])[::-1]\n true_pos_rate = np.empty(thresholds.size)\n false_pos_rate = np.empty(thresholds.size)\n num_act = float(len(actuals))\n num_ctr = float(len(controls))\n for i, value in enumerate(thresholds):\n true_pos_rate[i] = (actuals >= value).sum() / num_act\n false_pos_rate[i] = (controls >= value).sum() / num_ctr\n auc = np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])\n if false_pos_rate[-2] == 1:\n auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])\n return auc, true_pos_rate, false_pos_rate\n", "role": "user" }, { "content": "fast_roc", "role": "assistant" } ]
def x(actuals, controls): assert type(actuals) is np.ndarray assert type(controls) is np.ndarray if len(actuals) < 500: raise RuntimeError('This method might be incorrect when ' + 'not enough actuals are present. Needs to be checked before ' + 'proceeding. Stopping here for you to do so.') actuals = np.ravel(actuals) controls = np.ravel(controls) if np.isnan(actuals).any(): raise RuntimeError('NaN found in actuals') if np.isnan(controls).any(): raise RuntimeError('NaN found in controls') thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf]) + np.finfo( float).eps true_pos_rate = np.nan * np.empty(thresholds.size - 1) false_pos_rate = np.nan * np.empty(thresholds.size - 1) num_act = float(len(actuals)) num_ctr = float(len(controls)) actuals = 1 - np.cumsum(np.histogram(actuals, thresholds)[0]) / num_act controls = 1 - np.cumsum(np.histogram(controls, thresholds)[0]) / num_ctr true_pos_rate = actuals false_pos_rate = controls false_pos_rate = false_pos_rate auc = -1 * np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1]) if false_pos_rate[-2] == 1: auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3]) return auc, true_pos_rate, false_pos_rate
faster_roc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(actuals, controls):\n assert type(actuals) is np.ndarray\n assert type(controls) is np.ndarray\n if len(actuals) < 500:\n raise RuntimeError('This method might be incorrect when ' +\n 'not enough actuals are present. Needs to be checked before ' +\n 'proceeding. Stopping here for you to do so.')\n actuals = np.ravel(actuals)\n controls = np.ravel(controls)\n if np.isnan(actuals).any():\n raise RuntimeError('NaN found in actuals')\n if np.isnan(controls).any():\n raise RuntimeError('NaN found in controls')\n thresholds = np.hstack([-np.inf, np.unique(actuals), np.inf]) + np.finfo(\n float).eps\n true_pos_rate = np.nan * np.empty(thresholds.size - 1)\n false_pos_rate = np.nan * np.empty(thresholds.size - 1)\n num_act = float(len(actuals))\n num_ctr = float(len(controls))\n actuals = 1 - np.cumsum(np.histogram(actuals, thresholds)[0]) / num_act\n controls = 1 - np.cumsum(np.histogram(controls, thresholds)[0]) / num_ctr\n true_pos_rate = actuals\n false_pos_rate = controls\n false_pos_rate = false_pos_rate\n auc = -1 * np.dot(np.diff(false_pos_rate), true_pos_rate[0:-1])\n if false_pos_rate[-2] == 1:\n auc += (1 - true_pos_rate[-3]) * 0.5 * (1 - false_pos_rate[-3])\n return auc, true_pos_rate, false_pos_rate\n", "role": "user" }, { "content": "faster_roc", "role": "assistant" } ]
def x(prediction, fm): _, r_x = calc_resize_factor(prediction, fm.image_size) gt = fixmat.compute_fdm(fm, scale_factor=r_x) return emd(prediction, gt)
emd_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, fm):\n _, r_x = calc_resize_factor(prediction, fm.image_size)\n gt = fixmat.compute_fdm(fm, scale_factor=r_x)\n return emd(prediction, gt)\n", "role": "user" }, { "content": "emd_model", "role": "assistant" } ]
def x(prediction, ground_truth): import opencv if not prediction.shape == ground_truth.shape: raise RuntimeError('Shapes of prediction and ground truth have' + ' to be equal. They are: %s, %s' % (str(prediction.shape), str( ground_truth.shape))) x, y = np.meshgrid(list(range(0, prediction.shape[1])), list(range(0, prediction.shape[0]))) s1 = np.array([x.flatten(), y.flatten(), prediction.flatten()]).T s2 = np.array([x.flatten(), y.flatten(), ground_truth.flatten()]).T s1m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1) s2m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1) for r in range(0, s1.shape[0]): for c in range(0, s1.shape[1]): s1m[r, c] = float(s1[r, c]) s2m[r, c] = float(s2[r, c]) d = opencv.cvCalcEMD2(s1m, s2m, opencv.CV_DIST_L2) return d
emd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(prediction, ground_truth):\n import opencv\n if not prediction.shape == ground_truth.shape:\n raise RuntimeError('Shapes of prediction and ground truth have' + \n ' to be equal. They are: %s, %s' % (str(prediction.shape), str(\n ground_truth.shape)))\n x, y = np.meshgrid(list(range(0, prediction.shape[1])), list(range(0,\n prediction.shape[0])))\n s1 = np.array([x.flatten(), y.flatten(), prediction.flatten()]).T\n s2 = np.array([x.flatten(), y.flatten(), ground_truth.flatten()]).T\n s1m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)\n s2m = opencv.cvCreateMat(s1.shape[0], s2.shape[1], opencv.CV_32FC1)\n for r in range(0, s1.shape[0]):\n for c in range(0, s1.shape[1]):\n s1m[r, c] = float(s1[r, c])\n s2m[r, c] = float(s2[r, c])\n d = opencv.cvCalcEMD2(s1m, s2m, opencv.CV_DIST_L2)\n return d\n", "role": "user" }, { "content": "emd", "role": "assistant" } ]
def x(date): daynames = set(['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun']) months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4, 'may': 5, 'jun': 6, 'jul': 7, 'aug': 8, 'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12} timezonenames = {'ut': 0, 'gmt': 0, 'z': 0, 'adt': -3, 'ast': -4, 'at': -4, 'edt': -4, 'est': -5, 'et': -5, 'cdt': -5, 'cst': -6, 'ct': -6, 'mdt': -6, 'mst': -7, 'mt': -7, 'pdt': -7, 'pst': -8, 'pt': -8, 'a': -1, 'n': 1, 'm': -12, 'y': 12} parts = date.lower().split() if len(parts) < 5: parts.extend(('00:00:00', '0000')) if parts[0][:3] in daynames: parts = parts[1:] if len(parts) < 5: return None try: day = int(parts[0]) except ValueError: if months.get(parts[0][:3]): try: day = int(parts[1]) except ValueError: return None else: parts[1] = parts[0] else: return None month = months.get(parts[1][:3]) if not month: return None try: year = int(parts[2]) except ValueError: return None if len(parts[2]) <= 2: year += (1900, 2000)[year < 90] timeparts = parts[3].split(':') timeparts = timeparts + [0] * (3 - len(timeparts)) try: hour, minute, second = map(int, timeparts) except ValueError: return None tzhour = 0 tzmin = 0 if parts[4].startswith('etc/'): parts[4] = parts[4][4:] if parts[4].startswith('gmt'): parts[4] = ''.join(parts[4][3:].split(':')) or 'gmt' if parts[4] and parts[4][0] in ('-', '+'): try: tzhour = int(parts[4][1:3]) tzmin = int(parts[4][3:]) except ValueError: return None if parts[4].startswith('-'): tzhour = tzhour * -1 tzmin = tzmin * -1 else: tzhour = timezonenames.get(parts[4], 0) try: stamp = datetime.datetime(year, month, day, hour, minute, second) except ValueError: return None delta = datetime.timedelta(0, 0, 0, 0, tzmin, tzhour) try: return stamp - delta except OverflowError: return None
rfc822
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n daynames = set(['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'])\n months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4, 'may': 5, 'jun': 6,\n 'jul': 7, 'aug': 8, 'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}\n timezonenames = {'ut': 0, 'gmt': 0, 'z': 0, 'adt': -3, 'ast': -4, 'at':\n -4, 'edt': -4, 'est': -5, 'et': -5, 'cdt': -5, 'cst': -6, 'ct': -6,\n 'mdt': -6, 'mst': -7, 'mt': -7, 'pdt': -7, 'pst': -8, 'pt': -8, 'a':\n -1, 'n': 1, 'm': -12, 'y': 12}\n parts = date.lower().split()\n if len(parts) < 5:\n parts.extend(('00:00:00', '0000'))\n if parts[0][:3] in daynames:\n parts = parts[1:]\n if len(parts) < 5:\n return None\n try:\n day = int(parts[0])\n except ValueError:\n if months.get(parts[0][:3]):\n try:\n day = int(parts[1])\n except ValueError:\n return None\n else:\n parts[1] = parts[0]\n else:\n return None\n month = months.get(parts[1][:3])\n if not month:\n return None\n try:\n year = int(parts[2])\n except ValueError:\n return None\n if len(parts[2]) <= 2:\n year += (1900, 2000)[year < 90]\n timeparts = parts[3].split(':')\n timeparts = timeparts + [0] * (3 - len(timeparts))\n try:\n hour, minute, second = map(int, timeparts)\n except ValueError:\n return None\n tzhour = 0\n tzmin = 0\n if parts[4].startswith('etc/'):\n parts[4] = parts[4][4:]\n if parts[4].startswith('gmt'):\n parts[4] = ''.join(parts[4][3:].split(':')) or 'gmt'\n if parts[4] and parts[4][0] in ('-', '+'):\n try:\n tzhour = int(parts[4][1:3])\n tzmin = int(parts[4][3:])\n except ValueError:\n return None\n if parts[4].startswith('-'):\n tzhour = tzhour * -1\n tzmin = tzmin * -1\n else:\n tzhour = timezonenames.get(parts[4], 0)\n try:\n stamp = datetime.datetime(year, month, day, hour, minute, second)\n except ValueError:\n return None\n delta = datetime.timedelta(0, 0, 0, 0, tzmin, tzhour)\n try:\n return stamp - delta\n except OverflowError:\n return None\n", "role": "user" }, { "content": "rfc822", "role": "assistant" } ]
def x(date): months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] fmt = '{day}, {d:02} {month} {y:04} {h:02}:{m:02}:{s:02} GMT' return fmt.format(day=days[date.weekday()], d=date.day, month=months[ date.month - 1], y=date.year, h=date.hour, m=date.minute, s=date.second )
to_rfc822
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',\n 'Oct', 'Nov', 'Dec']\n days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']\n fmt = '{day}, {d:02} {month} {y:04} {h:02}:{m:02}:{s:02} GMT'\n return fmt.format(day=days[date.weekday()], d=date.day, month=months[\n date.month - 1], y=date.year, h=date.hour, m=date.minute, s=date.second\n )\n", "role": "user" }, { "content": "to_rfc822", "role": "assistant" } ]
def x(self, sql, params): if isinstance(sql, unicode): string_type = unicode elif isinstance(sql, bytes): string_type = bytes sql = sql.decode(_BYTES_ENCODING) else: raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql) ) if self.named == 'numeric': if isinstance(params, collections.Mapping): params = {string_type(idx): val for idx, val in iteritems(params)} elif isinstance(params, collections.Sequence) and not isinstance(params , (unicode, bytes)): params = {string_type(idx): val for idx, val in enumerate( params, 1)} if not isinstance(params, collections.Mapping): raise TypeError('params:{!r} is not a dict.'.format(params)) names = self.match.findall(sql) ord_params = [] name_to_ords = {} for name in names: value = params[name] if isinstance(value, tuple): ord_params.extend(value) if name not in name_to_ords: name_to_ords[name] = '(' + ','.join((self.replace,) * len( value)) + ')' else: ord_params.append(value) if name not in name_to_ords: name_to_ords[name] = self.replace sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql) if string_type is bytes: sql = sql.encode(_BYTES_ENCODING) return sql, ord_params
format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sql, params):\n if isinstance(sql, unicode):\n string_type = unicode\n elif isinstance(sql, bytes):\n string_type = bytes\n sql = sql.decode(_BYTES_ENCODING)\n else:\n raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)\n )\n if self.named == 'numeric':\n if isinstance(params, collections.Mapping):\n params = {string_type(idx): val for idx, val in iteritems(params)}\n elif isinstance(params, collections.Sequence) and not isinstance(params\n , (unicode, bytes)):\n params = {string_type(idx): val for idx, val in enumerate(\n params, 1)}\n if not isinstance(params, collections.Mapping):\n raise TypeError('params:{!r} is not a dict.'.format(params))\n names = self.match.findall(sql)\n ord_params = []\n name_to_ords = {}\n for name in names:\n value = params[name]\n if isinstance(value, tuple):\n ord_params.extend(value)\n if name not in name_to_ords:\n name_to_ords[name] = '(' + ','.join((self.replace,) * len(\n value)) + ')'\n else:\n ord_params.append(value)\n if name not in name_to_ords:\n name_to_ords[name] = self.replace\n sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)\n if string_type is bytes:\n sql = sql.encode(_BYTES_ENCODING)\n return sql, ord_params\n", "role": "user" }, { "content": "format", "role": "assistant" } ]
def x(self, sql, many_params): if isinstance(sql, unicode): string_type = unicode elif isinstance(sql, bytes): string_type = bytes sql = sql.decode(_BYTES_ENCODING) else: raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql) ) if not isinstance(many_params, collections.Iterable) or isinstance( many_params, (unicode, bytes)): raise TypeError('many_params:{!r} is not iterable.'.format(many_params) ) names = self.match.findall(sql) name_set = set(names) many_ord_params = [] name_to_ords = {} name_to_len = {} repl_str = self.replace repl_tuple = repl_str, for i, params in enumerate(many_params): if self.named == 'numeric': if isinstance(params, collections.Mapping): params = {string_type(idx): val for idx, val in iteritems( params)} elif isinstance(params, collections.Sequence) and not isinstance( params, (unicode, bytes)): params = {string_type(idx): val for idx, val in enumerate( params, 1)} if not isinstance(params, collections.Mapping): raise TypeError('many_params[{}]:{!r} is not a dict.'.format(i, params)) if not i: for name in name_set: value = params[name] if isinstance(value, tuple): tuple_len = len(value) name_to_ords[name] = '(' + ','.join(repl_tuple * tuple_len ) + ')' name_to_len[name] = tuple_len else: name_to_ords[name] = repl_str name_to_len[name] = None ord_params = [] for name in names: value = params[name] tuple_len = name_to_len[name] if tuple_len is not None: if not isinstance(value, tuple): raise TypeError( 'many_params[{}][{!r}]:{!r} was expected to be a tuple.' .format(i, name, value)) elif len(value) != tuple_len: raise ValueError( 'many_params[{}][{!r}]:{!r} length was expected to be {}.' .format(i, name, value, tuple_len)) ord_params.extend(value) else: ord_params.append(value) many_ord_params.append(ord_params) sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql) if string_type is bytes: sql = sql.encode(_BYTES_ENCODING) return sql, many_ord_params
formatmany
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sql, many_params):\n if isinstance(sql, unicode):\n string_type = unicode\n elif isinstance(sql, bytes):\n string_type = bytes\n sql = sql.decode(_BYTES_ENCODING)\n else:\n raise TypeError('sql:{!r} is not a unicode or byte string.'.format(sql)\n )\n if not isinstance(many_params, collections.Iterable) or isinstance(\n many_params, (unicode, bytes)):\n raise TypeError('many_params:{!r} is not iterable.'.format(many_params)\n )\n names = self.match.findall(sql)\n name_set = set(names)\n many_ord_params = []\n name_to_ords = {}\n name_to_len = {}\n repl_str = self.replace\n repl_tuple = repl_str,\n for i, params in enumerate(many_params):\n if self.named == 'numeric':\n if isinstance(params, collections.Mapping):\n params = {string_type(idx): val for idx, val in iteritems(\n params)}\n elif isinstance(params, collections.Sequence) and not isinstance(\n params, (unicode, bytes)):\n params = {string_type(idx): val for idx, val in enumerate(\n params, 1)}\n if not isinstance(params, collections.Mapping):\n raise TypeError('many_params[{}]:{!r} is not a dict.'.format(i,\n params))\n if not i:\n for name in name_set:\n value = params[name]\n if isinstance(value, tuple):\n tuple_len = len(value)\n name_to_ords[name] = '(' + ','.join(repl_tuple * tuple_len\n ) + ')'\n name_to_len[name] = tuple_len\n else:\n name_to_ords[name] = repl_str\n name_to_len[name] = None\n ord_params = []\n for name in names:\n value = params[name]\n tuple_len = name_to_len[name]\n if tuple_len is not None:\n if not isinstance(value, tuple):\n raise TypeError(\n 'many_params[{}][{!r}]:{!r} was expected to be a tuple.'\n .format(i, name, value))\n elif len(value) != tuple_len:\n raise ValueError(\n 'many_params[{}][{!r}]:{!r} length was expected to be {}.'\n .format(i, name, value, tuple_len))\n ord_params.extend(value)\n else:\n ord_params.append(value)\n many_ord_params.append(ord_params)\n sql = self.match.sub(lambda m: name_to_ords[m.group(1)], sql)\n if string_type is bytes:\n sql = sql.encode(_BYTES_ENCODING)\n return sql, many_ord_params\n", "role": "user" }, { "content": "formatmany", "role": "assistant" } ]
def x(f): _COMMAND_GROUPS[f.__module__].load() if f.__name__ not in _COMMAND_GROUPS[f.__module__].parsers: parser = _COMMAND_GROUPS[f.__module__].parser_generator.add_parser(f .__name__, help=f.__doc__, description=f.__doc__) parser.set_defaults(func=f) _COMMAND_GROUPS[f.__module__].parsers[f.__name__] = parser return _COMMAND_GROUPS[f.__module__].parsers[f.__name__]
get_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n _COMMAND_GROUPS[f.__module__].load()\n if f.__name__ not in _COMMAND_GROUPS[f.__module__].parsers:\n parser = _COMMAND_GROUPS[f.__module__].parser_generator.add_parser(f\n .__name__, help=f.__doc__, description=f.__doc__)\n parser.set_defaults(func=f)\n _COMMAND_GROUPS[f.__module__].parsers[f.__name__] = parser\n return _COMMAND_GROUPS[f.__module__].parsers[f.__name__]\n", "role": "user" }, { "content": "get_parser", "role": "assistant" } ]
def x(sourceURL, targetURL=None, exclude_domains=[], content=None, test_urls=True, headers={}, timeout=None): __doc__ = None if test_urls: URLValidator(message='invalid source URL')(sourceURL) if content: result = {'status': requests.codes.ok, 'headers': None} else: r = requests.get(sourceURL, verify=True, headers=headers, timeout= timeout) result = {'status': r.status_code, 'headers': r.headers} if 'charset' in r.headers.get('content-type', ''): content = r.text else: content = r.content result.update({'refs': set(), 'post-url': sourceURL}) if result['status'] == requests.codes.ok: if isinstance(content, BeautifulSoup): __doc__ = content result.update({'content': str(__doc__)}) else: __doc__ = BeautifulSoup(content, _html_parser) result.update({'content': content}) entry = __doc__.find(class_='h-entry') or __doc__ if targetURL: all_links = entry.find_all('a', href=targetURL) else: all_links = entry.find_all('a', href=True) for link in all_links: href = link.get('href', None) if href: url = urlparse(href) if url.scheme in ('http', 'https'): if url.hostname and url.hostname not in exclude_domains: result['refs'].add(href) return result
findMentions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sourceURL, targetURL=None, exclude_domains=[], content=None,\n test_urls=True, headers={}, timeout=None):\n __doc__ = None\n if test_urls:\n URLValidator(message='invalid source URL')(sourceURL)\n if content:\n result = {'status': requests.codes.ok, 'headers': None}\n else:\n r = requests.get(sourceURL, verify=True, headers=headers, timeout=\n timeout)\n result = {'status': r.status_code, 'headers': r.headers}\n if 'charset' in r.headers.get('content-type', ''):\n content = r.text\n else:\n content = r.content\n result.update({'refs': set(), 'post-url': sourceURL})\n if result['status'] == requests.codes.ok:\n if isinstance(content, BeautifulSoup):\n __doc__ = content\n result.update({'content': str(__doc__)})\n else:\n __doc__ = BeautifulSoup(content, _html_parser)\n result.update({'content': content})\n entry = __doc__.find(class_='h-entry') or __doc__\n if targetURL:\n all_links = entry.find_all('a', href=targetURL)\n else:\n all_links = entry.find_all('a', href=True)\n for link in all_links:\n href = link.get('href', None)\n if href:\n url = urlparse(href)\n if url.scheme in ('http', 'https'):\n if url.hostname and url.hostname not in exclude_domains:\n result['refs'].add(href)\n return result\n", "role": "user" }, { "content": "findMentions", "role": "assistant" } ]
def x(html): poss_rels = ['webmention', 'http://webmention.org', 'http://webmention.org/', 'https://webmention.org', 'https://webmention.org/'] all_links = BeautifulSoup(html, _html_parser).find_all(rel=poss_rels, href=True) for link in all_links: s = link.get('href', None) if s is not None: return s return None
findEndpoint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(html):\n poss_rels = ['webmention', 'http://webmention.org',\n 'http://webmention.org/', 'https://webmention.org',\n 'https://webmention.org/']\n all_links = BeautifulSoup(html, _html_parser).find_all(rel=poss_rels,\n href=True)\n for link in all_links:\n s = link.get('href', None)\n if s is not None:\n return s\n return None\n", "role": "user" }, { "content": "findEndpoint", "role": "assistant" } ]
def x(url, test_urls=True, headers={}, timeout=None, request=None, debug=False ): if test_urls: URLValidator(message='invalid URL')(url) endpointURL = None debugOutput = [] try: if request is not None: targetRequest = request else: targetRequest = requests.get(url, verify=False, headers=headers, timeout=timeout) returnCode = targetRequest.status_code debugOutput.append('%s %s' % (returnCode, url)) if returnCode == requests.codes.ok: try: linkHeader = parse_link_header(targetRequest.headers['link']) endpointURL = linkHeader.get('webmention', '' ) or linkHeader.get('http://webmention.org', '' ) or linkHeader.get('http://webmention.org/', '' ) or linkHeader.get('https://webmention.org', '' ) or linkHeader.get('https://webmention.org/', '') if not endpointURL: raise AttributeError debugOutput.append('found in link headers') except (KeyError, AttributeError): endpointURL = findEndpoint(targetRequest.text) debugOutput.append('found in body') if endpointURL is not None: endpointURL = urljoin(url, endpointURL) except (requests.exceptions.RequestException, requests.exceptions. ConnectionError, requests.exceptions.HTTPError, requests.exceptions .URLRequired, requests.exceptions.TooManyRedirects, requests. exceptions.Timeout): debugOutput.append('exception during GET request') returnCode = 500 debugOutput.append('endpointURL: %s %s' % (returnCode, endpointURL)) if debug: return returnCode, endpointURL, debugOutput else: return returnCode, endpointURL
discoverEndpoint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(url, test_urls=True, headers={}, timeout=None, request=None, debug=False\n ):\n if test_urls:\n URLValidator(message='invalid URL')(url)\n endpointURL = None\n debugOutput = []\n try:\n if request is not None:\n targetRequest = request\n else:\n targetRequest = requests.get(url, verify=False, headers=headers,\n timeout=timeout)\n returnCode = targetRequest.status_code\n debugOutput.append('%s %s' % (returnCode, url))\n if returnCode == requests.codes.ok:\n try:\n linkHeader = parse_link_header(targetRequest.headers['link'])\n endpointURL = linkHeader.get('webmention', ''\n ) or linkHeader.get('http://webmention.org', ''\n ) or linkHeader.get('http://webmention.org/', ''\n ) or linkHeader.get('https://webmention.org', ''\n ) or linkHeader.get('https://webmention.org/', '')\n if not endpointURL:\n raise AttributeError\n debugOutput.append('found in link headers')\n except (KeyError, AttributeError):\n endpointURL = findEndpoint(targetRequest.text)\n debugOutput.append('found in body')\n if endpointURL is not None:\n endpointURL = urljoin(url, endpointURL)\n except (requests.exceptions.RequestException, requests.exceptions.\n ConnectionError, requests.exceptions.HTTPError, requests.exceptions\n .URLRequired, requests.exceptions.TooManyRedirects, requests.\n exceptions.Timeout):\n debugOutput.append('exception during GET request')\n returnCode = 500\n debugOutput.append('endpointURL: %s %s' % (returnCode, endpointURL))\n if debug:\n return returnCode, endpointURL, debugOutput\n else:\n return returnCode, endpointURL\n", "role": "user" }, { "content": "discoverEndpoint", "role": "assistant" } ]
def x(sourceURL, targetURL, webmention=None, test_urls=True, vouchDomain= None, headers={}, timeout=None, debug=False): if test_urls: v = URLValidator() v(sourceURL) v(targetURL) debugOutput = [] originalURL = targetURL try: targetRequest = requests.get(targetURL) if targetRequest.status_code == requests.codes.ok: if len(targetRequest.history) > 0: redirect = targetRequest.history[-1] if (redirect.status_code == 301 or redirect.status_code == 302 ) and 'Location' in redirect.headers: targetURL = urljoin(targetURL, redirect.headers['Location'] ) debugOutput.append('targetURL redirected: %s' % targetURL) if webmention is None: wStatus, wUrl = discoverEndpoint(targetURL, headers=headers, timeout=timeout, request=targetRequest) else: wStatus = 200 wUrl = webmention debugOutput.append('endpointURL: %s %s' % (wStatus, wUrl)) if wStatus == requests.codes.ok and wUrl is not None: if test_urls: v(wUrl) payload = {'source': sourceURL, 'target': originalURL} if vouchDomain is not None: payload['vouch'] = vouchDomain try: result = requests.post(wUrl, data=payload, headers=headers, timeout=timeout) debugOutput.append('POST %s -- %s' % (wUrl, result.status_code) ) if result.status_code == 405 and len(result.history) > 0: redirect = result.history[-1] if (redirect.status_code == 301 and 'Location' in redirect.headers): result = requests.post(redirect.headers['Location'], data=payload, headers=headers, timeout=timeout) debugOutput.append('redirected POST %s -- %s' % ( redirect.headers['Location'], result.status_code)) except Exception as e: result = None except (requests.exceptions.RequestException, requests.exceptions. ConnectionError, requests.exceptions.HTTPError, requests.exceptions .URLRequired, requests.exceptions.TooManyRedirects, requests. exceptions.Timeout): debugOutput.append('exception during GET request') result = None return result
sendWebmention
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sourceURL, targetURL, webmention=None, test_urls=True, vouchDomain=\n None, headers={}, timeout=None, debug=False):\n if test_urls:\n v = URLValidator()\n v(sourceURL)\n v(targetURL)\n debugOutput = []\n originalURL = targetURL\n try:\n targetRequest = requests.get(targetURL)\n if targetRequest.status_code == requests.codes.ok:\n if len(targetRequest.history) > 0:\n redirect = targetRequest.history[-1]\n if (redirect.status_code == 301 or redirect.status_code == 302\n ) and 'Location' in redirect.headers:\n targetURL = urljoin(targetURL, redirect.headers['Location']\n )\n debugOutput.append('targetURL redirected: %s' % targetURL)\n if webmention is None:\n wStatus, wUrl = discoverEndpoint(targetURL, headers=headers,\n timeout=timeout, request=targetRequest)\n else:\n wStatus = 200\n wUrl = webmention\n debugOutput.append('endpointURL: %s %s' % (wStatus, wUrl))\n if wStatus == requests.codes.ok and wUrl is not None:\n if test_urls:\n v(wUrl)\n payload = {'source': sourceURL, 'target': originalURL}\n if vouchDomain is not None:\n payload['vouch'] = vouchDomain\n try:\n result = requests.post(wUrl, data=payload, headers=headers,\n timeout=timeout)\n debugOutput.append('POST %s -- %s' % (wUrl, result.status_code)\n )\n if result.status_code == 405 and len(result.history) > 0:\n redirect = result.history[-1]\n if (redirect.status_code == 301 and 'Location' in\n redirect.headers):\n result = requests.post(redirect.headers['Location'],\n data=payload, headers=headers, timeout=timeout)\n debugOutput.append('redirected POST %s -- %s' % (\n redirect.headers['Location'], result.status_code))\n except Exception as e:\n result = None\n except (requests.exceptions.RequestException, requests.exceptions.\n ConnectionError, requests.exceptions.HTTPError, requests.exceptions\n .URLRequired, requests.exceptions.TooManyRedirects, requests.\n exceptions.Timeout):\n debugOutput.append('exception during GET request')\n result = None\n return result\n", "role": "user" }, { "content": "sendWebmention", "role": "assistant" } ]
def x(link): rel_dict = {} for rels in link.split(','): rel_break = quoted_split(rels, ';') try: rel_url = re.search('<(.+?)>', rel_break[0]).group(1) rel_names = quoted_split(rel_break[1], '=')[-1] if rel_names.startswith('"') and rel_names.endswith('"'): rel_names = rel_names[1:-1] for name in rel_names.split(): rel_dict[name] = rel_url except (AttributeError, IndexError): pass return rel_dict
parse_link_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(link):\n rel_dict = {}\n for rels in link.split(','):\n rel_break = quoted_split(rels, ';')\n try:\n rel_url = re.search('<(.+?)>', rel_break[0]).group(1)\n rel_names = quoted_split(rel_break[1], '=')[-1]\n if rel_names.startswith('\"') and rel_names.endswith('\"'):\n rel_names = rel_names[1:-1]\n for name in rel_names.split():\n rel_dict[name] = rel_url\n except (AttributeError, IndexError):\n pass\n return rel_dict\n", "role": "user" }, { "content": "parse_link_header", "role": "assistant" } ]
def x(sourceURL): r = requests.get(sourceURL) result = {'status': r.status_code, 'headers': r.headers, 'history': r. history, 'content': r.text, 'relme': [], 'url': sourceURL} if r.status_code == requests.codes.ok: dom = BeautifulSoup(r.text, _html_parser) for link in dom.find_all('a', rel='me'): rel = link.get('rel') href = link.get('href') if rel is not None and href is not None: url = urlparse(href) if url is not None and url.scheme in ('http', 'https'): result['relme'].append(cleanURL(href)) return result
findRelMe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sourceURL):\n r = requests.get(sourceURL)\n result = {'status': r.status_code, 'headers': r.headers, 'history': r.\n history, 'content': r.text, 'relme': [], 'url': sourceURL}\n if r.status_code == requests.codes.ok:\n dom = BeautifulSoup(r.text, _html_parser)\n for link in dom.find_all('a', rel='me'):\n rel = link.get('rel')\n href = link.get('href')\n if rel is not None and href is not None:\n url = urlparse(href)\n if url is not None and url.scheme in ('http', 'https'):\n result['relme'].append(cleanURL(href))\n return result\n", "role": "user" }, { "content": "findRelMe", "role": "assistant" } ]
def x(profileURL, resourceURL, profileRelMes=None, resourceRelMes=None): result = False profile = normalizeURL(profileURL) if profileRelMes is None: profileRelMe = findRelMe(profileURL) profileRelMes = profileRelMe['relme'] if resourceRelMes is None: resourceRelMe = findRelMe(resourceURL) resourceRelMes = resourceRelMe['relme'] for url in resourceRelMes: if profile in (url, normalizeURL(url)): result = True break return result
confirmRelMe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(profileURL, resourceURL, profileRelMes=None, resourceRelMes=None):\n result = False\n profile = normalizeURL(profileURL)\n if profileRelMes is None:\n profileRelMe = findRelMe(profileURL)\n profileRelMes = profileRelMe['relme']\n if resourceRelMes is None:\n resourceRelMe = findRelMe(resourceURL)\n resourceRelMes = resourceRelMe['relme']\n for url in resourceRelMes:\n if profile in (url, normalizeURL(url)):\n result = True\n break\n return result\n", "role": "user" }, { "content": "confirmRelMe", "role": "assistant" } ]
def x(string, indent_level=2): indented_lines = [] indent_spaces = ' ' * indent_level for line in string.split('\n'): indented_lines.append(indent_spaces + line) return '\n'.join(indented_lines)
indent_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, indent_level=2):\n indented_lines = []\n indent_spaces = ' ' * indent_level\n for line in string.split('\\n'):\n indented_lines.append(indent_spaces + line)\n return '\\n'.join(indented_lines)\n", "role": "user" }, { "content": "indent_text", "role": "assistant" } ]
def x(url, target, headers=None, trackers=()): if headers is None: headers = {} headers.setdefault('user-agent', 'requests_download/' + __version__) r = requests.get(url, headers=headers, stream=True) r.raise_for_status() for t in trackers: t.on_start(r) with open(target, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): if chunk: f.write(chunk) for t in trackers: t.on_chunk(chunk) for t in trackers: t.on_finish()
download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(url, target, headers=None, trackers=()):\n if headers is None:\n headers = {}\n headers.setdefault('user-agent', 'requests_download/' + __version__)\n r = requests.get(url, headers=headers, stream=True)\n r.raise_for_status()\n for t in trackers:\n t.on_start(r)\n with open(target, 'wb') as f:\n for chunk in r.iter_content(chunk_size=8192):\n if chunk:\n f.write(chunk)\n for t in trackers:\n t.on_chunk(chunk)\n for t in trackers:\n t.on_finish()\n", "role": "user" }, { "content": "download", "role": "assistant" } ]
def x(parsed_obj, spec=None, filename=None): if not isinstance(parsed_obj, BreadStruct): raise ValueError( 'Object to write must be a structure created by bread.parse') if filename is not None: with open(filename, 'wb') as fp: parsed_obj._data_bits[:parsed_obj._length].tofile(fp) else: return bytearray(parsed_obj._data_bits[:parsed_obj._length].tobytes())
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parsed_obj, spec=None, filename=None):\n if not isinstance(parsed_obj, BreadStruct):\n raise ValueError(\n 'Object to write must be a structure created by bread.parse')\n if filename is not None:\n with open(filename, 'wb') as fp:\n parsed_obj._data_bits[:parsed_obj._length].tofile(fp)\n else:\n return bytearray(parsed_obj._data_bits[:parsed_obj._length].tobytes())\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(file_path, bucket): logger.info('Deploying {0}'.format(file_path)) k = Key(bucket) k.key = file_path try: k.set_contents_from_filename(file_path) k.set_acl('public-read') except socket.error: logger.warning('Caught socket.error while trying to upload {0}'. format(file_path)) msg = 'Please file an issue with alotofeffort if you see this,' logger.warning(msg) logger.warning('providing as much info as you can.')
deploy_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, bucket):\n logger.info('Deploying {0}'.format(file_path))\n k = Key(bucket)\n k.key = file_path\n try:\n k.set_contents_from_filename(file_path)\n k.set_acl('public-read')\n except socket.error:\n logger.warning('Caught socket.error while trying to upload {0}'.\n format(file_path))\n msg = 'Please file an issue with alotofeffort if you see this,'\n logger.warning(msg)\n logger.warning('providing as much info as you can.')\n", "role": "user" }, { "content": "deploy_file", "role": "assistant" } ]
def x(www_dir, bucket_name): conn = boto.connect_s3() bucket = conn.get_bucket(bucket_name) os.chdir(www_dir) for root, dirs, files in os.walk('.'): for f in files: file_path = os.path.normpath(os.path.join(root, f)) if has_changed_since_last_deploy(file_path, bucket): deploy_file(file_path, bucket) else: logger.info('Skipping {0}'.format(file_path)) bucket.set_acl('public-read') bucket.configure_website('index.html', 'error.html') msg = 'Your website is now live at {0}'.format(bucket. get_website_endpoint()) logger.info(msg) logger.info("If you haven't done so yet, point your domain name there!")
deploy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(www_dir, bucket_name):\n conn = boto.connect_s3()\n bucket = conn.get_bucket(bucket_name)\n os.chdir(www_dir)\n for root, dirs, files in os.walk('.'):\n for f in files:\n file_path = os.path.normpath(os.path.join(root, f))\n if has_changed_since_last_deploy(file_path, bucket):\n deploy_file(file_path, bucket)\n else:\n logger.info('Skipping {0}'.format(file_path))\n bucket.set_acl('public-read')\n bucket.configure_website('index.html', 'error.html')\n msg = 'Your website is now live at {0}'.format(bucket.\n get_website_endpoint())\n logger.info(msg)\n logger.info(\"If you haven't done so yet, point your domain name there!\")\n", "role": "user" }, { "content": "deploy", "role": "assistant" } ]
def x(file_path, bucket): msg = 'Checking if {0} has changed since last deploy.'.format(file_path) logger.debug(msg) with open(file_path) as f: data = f.read() file_md5 = hashlib.md5(data.encode('utf-8')).hexdigest() logger.debug('file_md5 is {0}'.format(file_md5)) key = bucket.get_key(file_path) if key: key_md5 = key.etag.replace('"', '').strip() logger.debug('key_md5 is {0}'.format(key_md5)) else: logger.debug('File does not exist in bucket') return True if file_md5 == key_md5: logger.debug('File has not changed.') return False logger.debug('File has changed.') return True
has_changed_since_last_deploy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, bucket):\n msg = 'Checking if {0} has changed since last deploy.'.format(file_path)\n logger.debug(msg)\n with open(file_path) as f:\n data = f.read()\n file_md5 = hashlib.md5(data.encode('utf-8')).hexdigest()\n logger.debug('file_md5 is {0}'.format(file_md5))\n key = bucket.get_key(file_path)\n if key:\n key_md5 = key.etag.replace('\"', '').strip()\n logger.debug('key_md5 is {0}'.format(key_md5))\n else:\n logger.debug('File does not exist in bucket')\n return True\n if file_md5 == key_md5:\n logger.debug('File has not changed.')\n return False\n logger.debug('File has changed.')\n return True\n", "role": "user" }, { "content": "has_changed_since_last_deploy", "role": "assistant" } ]
def x(): logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO ) msg = 'Instantly deploy static HTML sites to S3 at the command line.' parser = argparse.ArgumentParser(description=msg) parser.add_argument('www_dir', help= 'Directory containing the HTML files for your website.') parser.add_argument('bucket_name', help= 'Name of S3 bucket to deploy to, e.g. mybucket.') args = parser.parse_args() deploy(args.www_dir, args.bucket_name)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO\n )\n msg = 'Instantly deploy static HTML sites to S3 at the command line.'\n parser = argparse.ArgumentParser(description=msg)\n parser.add_argument('www_dir', help=\n 'Directory containing the HTML files for your website.')\n parser.add_argument('bucket_name', help=\n 'Name of S3 bucket to deploy to, e.g. mybucket.')\n args = parser.parse_args()\n deploy(args.www_dir, args.bucket_name)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, port=None): if port is None or int(port) == 0: port = self._get_free_tcp_port() self.port = port start_retries = 0 started = False while start_retries < 5: try: self._start_sikuli_java_process() except RuntimeError as err: print('error........%s' % err) if self.process: self.process.terminate_process() self.port = self._get_free_tcp_port() start_retries += 1 continue started = True break if not started: raise RuntimeError('Start sikuli java process failed!') self.remote = self._connect_remote_library()
start_sikuli_process
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, port=None):\n if port is None or int(port) == 0:\n port = self._get_free_tcp_port()\n self.port = port\n start_retries = 0\n started = False\n while start_retries < 5:\n try:\n self._start_sikuli_java_process()\n except RuntimeError as err:\n print('error........%s' % err)\n if self.process:\n self.process.terminate_process()\n self.port = self._get_free_tcp_port()\n start_retries += 1\n continue\n started = True\n break\n if not started:\n raise RuntimeError('Start sikuli java process failed!')\n self.remote = self._connect_remote_library()\n", "role": "user" }, { "content": "start_sikuli_process", "role": "assistant" } ]
def x(self, request): serializer = AuthTokenSerializer(data=request.data) if serializer.is_valid(): token, _ = ExpiringToken.objects.get_or_create(user=serializer. validated_data['user']) if token.expired(): token.delete() token = ExpiringToken.objects.create(user=serializer. validated_data['user']) data = {'token': token.key} return Response(data) return Response(serializer.errors, status=HTTP_400_BAD_REQUEST)
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request):\n serializer = AuthTokenSerializer(data=request.data)\n if serializer.is_valid():\n token, _ = ExpiringToken.objects.get_or_create(user=serializer.\n validated_data['user'])\n if token.expired():\n token.delete()\n token = ExpiringToken.objects.create(user=serializer.\n validated_data['user'])\n data = {'token': token.key}\n return Response(data)\n return Response(serializer.errors, status=HTTP_400_BAD_REQUEST)\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self): try: val = settings.EXPIRING_TOKEN_LIFESPAN except AttributeError: val = timedelta(days=30) return val
EXPIRING_TOKEN_LIFESPAN
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n val = settings.EXPIRING_TOKEN_LIFESPAN\n except AttributeError:\n val = timedelta(days=30)\n return val\n", "role": "user" }, { "content": "EXPIRING_TOKEN_LIFESPAN", "role": "assistant" } ]
def x(self): now = timezone.now() if self.created < now - token_settings.EXPIRING_TOKEN_LIFESPAN: return True return False
expired
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n now = timezone.now()\n if self.created < now - token_settings.EXPIRING_TOKEN_LIFESPAN:\n return True\n return False\n", "role": "user" }, { "content": "expired", "role": "assistant" } ]
def x(text): for char in str_func(text): category = unicodedata.category(char)[0] if category not in 'PSZMC': return False return True
unicode_is_punctuation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n for char in str_func(text):\n category = unicodedata.category(char)[0]\n if category not in 'PSZMC':\n return False\n return True\n", "role": "user" }, { "content": "unicode_is_punctuation", "role": "assistant" } ]
def x(self): if hasattr(self, '_process'): return self._process else: self._process = self._get_process() return self._process
process
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if hasattr(self, '_process'):\n return self._process\n else:\n self._process = self._get_process()\n return self._process\n", "role": "user" }, { "content": "process", "role": "assistant" } ]
def x(self): command = self._get_command() return subprocess.Popen(command, bufsize=-1, close_fds=True, stdout= subprocess.PIPE, stdin=subprocess.PIPE)
get_process
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n command = self._get_command()\n return subprocess.Popen(command, bufsize=-1, close_fds=True, stdout=\n subprocess.PIPE, stdin=subprocess.PIPE)\n", "role": "user" }, { "content": "get_process", "role": "assistant" } ]
def x(self, text): return [self.get_record_token(record) for record in self.analyze(text)]
tokenize_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n return [self.get_record_token(record) for record in self.analyze(text)]\n", "role": "user" }, { "content": "tokenize_list", "role": "assistant" } ]
def x(self, text): found_content_word = False for record in self.analyze(text): if not self.is_stopword_record(record): found_content_word = True break return not found_content_word
is_stopword
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n found_content_word = False\n for record in self.analyze(text):\n if not self.is_stopword_record(record):\n found_content_word = True\n break\n return not found_content_word\n", "role": "user" }, { "content": "is_stopword", "role": "assistant" } ]
def x(self, text, cache=None): words = [] analysis = self.analyze(text) for record in analysis: if not self.is_stopword_record(record): words.append(self.get_record_root(record)) if not words: words = [self.get_record_token(record) for record in analysis] return words
normalize_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, cache=None):\n words = []\n analysis = self.analyze(text)\n for record in analysis:\n if not self.is_stopword_record(record):\n words.append(self.get_record_root(record))\n if not words:\n words = [self.get_record_token(record) for record in analysis]\n return words\n", "role": "user" }, { "content": "normalize_list", "role": "assistant" } ]
def x(self, text, cache=None): analysis = self.analyze(text) triples = [] for record in analysis: root = self.get_record_root(record) token = self.get_record_token(record) if token: if unicode_is_punctuation(token): triples.append((token, '.', token)) else: pos = self.get_record_pos(record) triples.append((root, pos, token)) return triples
tag_and_stem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, cache=None):\n analysis = self.analyze(text)\n triples = []\n for record in analysis:\n root = self.get_record_root(record)\n token = self.get_record_token(record)\n if token:\n if unicode_is_punctuation(token):\n triples.append((token, '.', token))\n else:\n pos = self.get_record_pos(record)\n triples.append((root, pos, token))\n return triples\n", "role": "user" }, { "content": "tag_and_stem", "role": "assistant" } ]
def x(self, text): analysis = self.analyze(text) for pos1 in range(len(analysis)): rec1 = analysis[pos1] if not self.is_stopword_record(rec1): yield self.get_record_root(rec1), rec1[0] for pos2 in range(pos1 + 1, len(analysis)): rec2 = analysis[pos2] if not self.is_stopword_record(rec2): roots = [self.get_record_root(rec1), self. get_record_root(rec2)] pieces = [analysis[i][0] for i in range(pos1, pos2 + 1)] term = ' '.join(roots) phrase = ''.join(pieces) yield term, phrase break
extract_phrases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n analysis = self.analyze(text)\n for pos1 in range(len(analysis)):\n rec1 = analysis[pos1]\n if not self.is_stopword_record(rec1):\n yield self.get_record_root(rec1), rec1[0]\n for pos2 in range(pos1 + 1, len(analysis)):\n rec2 = analysis[pos2]\n if not self.is_stopword_record(rec2):\n roots = [self.get_record_root(rec1), self.\n get_record_root(rec2)]\n pieces = [analysis[i][0] for i in range(pos1, pos2 + 1)]\n term = ' '.join(roots)\n phrase = ''.join(pieces)\n yield term, phrase\n break\n", "role": "user" }, { "content": "extract_phrases", "role": "assistant" } ]
def x(text): records = MECAB.analyze(text) kana = [] for record in records: if record.pronunciation: kana.append(record.pronunciation) elif record.reading: kana.append(record.reading) else: kana.append(record.surface) return ' '.join(k for k in kana if k)
to_kana
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n records = MECAB.analyze(text)\n kana = []\n for record in records:\n if record.pronunciation:\n kana.append(record.pronunciation)\n elif record.reading:\n kana.append(record.reading)\n else:\n kana.append(record.surface)\n return ' '.join(k for k in kana if k)\n", "role": "user" }, { "content": "to_kana", "role": "assistant" } ]
def x(char): try: name = unicodedata.name(char) except ValueError: return char, NOT_KANA if name.startswith('HIRAGANA LETTER') or name.startswith('KATAKANA LETTER' ) or name.startswith('KATAKANA-HIRAGANA'): names = name.split() syllable = str_func(names[-1].lower()) if name.endswith('SMALL TU'): return 't', SMALL_TSU elif names[-1] == 'N': return 'n', NN elif names[1] == 'PROLONGED': return '_', PROLONG elif names[-2] == 'SMALL': if syllable.startswith('y'): return 'x' + syllable, SMALL_Y else: return 'x' + syllable, SMALL return syllable, KANA else: if char in ROMAN_PUNCTUATION_TABLE: char = ROMAN_PUNCTUATION_TABLE[char] return char, NOT_KANA
get_kana_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(char):\n try:\n name = unicodedata.name(char)\n except ValueError:\n return char, NOT_KANA\n if name.startswith('HIRAGANA LETTER') or name.startswith('KATAKANA LETTER'\n ) or name.startswith('KATAKANA-HIRAGANA'):\n names = name.split()\n syllable = str_func(names[-1].lower())\n if name.endswith('SMALL TU'):\n return 't', SMALL_TSU\n elif names[-1] == 'N':\n return 'n', NN\n elif names[1] == 'PROLONGED':\n return '_', PROLONG\n elif names[-2] == 'SMALL':\n if syllable.startswith('y'):\n return 'x' + syllable, SMALL_Y\n else:\n return 'x' + syllable, SMALL\n return syllable, KANA\n else:\n if char in ROMAN_PUNCTUATION_TABLE:\n char = ROMAN_PUNCTUATION_TABLE[char]\n return char, NOT_KANA\n", "role": "user" }, { "content": "get_kana_info", "role": "assistant" } ]
def x(self, text): try: self.process text = render_safe(text).replace('\n', ' ').lower() results = [] for chunk in string_pieces(text): self.send_input((chunk + '\n').encode('utf-8')) while True: out_line = self.receive_output_line().decode('utf-8') if out_line == 'EOS\n': break word, info = out_line.strip('\n').split('\t') record_parts = [word] + info.split(',') record_parts += [None] * (10 - len(record_parts)) record = MeCabRecord(*record_parts) if record.surface == 'ん' and record.conjugation == '不変化型': record_parts[MeCabRecord._fields.index('root')] = 'ない' record = MeCabRecord(*record_parts) results.append(record) return results except ProcessError: self.restart_process() return self.analyze(text)
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n try:\n self.process\n text = render_safe(text).replace('\\n', ' ').lower()\n results = []\n for chunk in string_pieces(text):\n self.send_input((chunk + '\\n').encode('utf-8'))\n while True:\n out_line = self.receive_output_line().decode('utf-8')\n if out_line == 'EOS\\n':\n break\n word, info = out_line.strip('\\n').split('\\t')\n record_parts = [word] + info.split(',')\n record_parts += [None] * (10 - len(record_parts))\n record = MeCabRecord(*record_parts)\n if record.surface == 'ん' and record.conjugation == '不変化型':\n record_parts[MeCabRecord._fields.index('root')] = 'ない'\n record = MeCabRecord(*record_parts)\n results.append(record)\n return results\n except ProcessError:\n self.restart_process()\n return self.analyze(text)\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(self, record): if record.root == 'ない': return False return (record.pos in STOPWORD_CATEGORIES or record.subclass1 in STOPWORD_CATEGORIES or record.root in STOPWORD_ROOTS)
is_stopword_record
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, record):\n if record.root == 'ない':\n return False\n return (record.pos in STOPWORD_CATEGORIES or record.subclass1 in\n STOPWORD_CATEGORIES or record.root in STOPWORD_ROOTS)\n", "role": "user" }, { "content": "is_stopword_record", "role": "assistant" } ]
def x(self, record): if self.is_stopword_record(record): return '~' + record.pos else: return record.pos
get_record_pos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, record):\n if self.is_stopword_record(record):\n return '~' + record.pos\n else:\n return record.pos\n", "role": "user" }, { "content": "get_record_pos", "role": "assistant" } ]
def x(self, text): try: text = render_safe(text).strip() if not text: return [] chunks = text.split('\n') results = [] for chunk_text in chunks: if chunk_text.strip(): textbytes = (chunk_text + '\n').encode('utf-8') self.send_input(textbytes) out_line = '' while True: out_line = self.receive_output_line() out_line = out_line.decode('utf-8') if out_line == '\n': break record = out_line.strip('\n').split(' ') results.append(record) return results except ProcessError: self.restart_process() return self.analyze(text)
analyze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n try:\n text = render_safe(text).strip()\n if not text:\n return []\n chunks = text.split('\\n')\n results = []\n for chunk_text in chunks:\n if chunk_text.strip():\n textbytes = (chunk_text + '\\n').encode('utf-8')\n self.send_input(textbytes)\n out_line = ''\n while True:\n out_line = self.receive_output_line()\n out_line = out_line.decode('utf-8')\n if out_line == '\\n':\n break\n record = out_line.strip('\\n').split(' ')\n results.append(record)\n return results\n except ProcessError:\n self.restart_process()\n return self.analyze(text)\n", "role": "user" }, { "content": "analyze", "role": "assistant" } ]
def x(words): text = ' '.join(words) step1 = text.replace('`` ', '"').replace(" ''", '"').replace('. . .', '...' ) step2 = step1.replace(' ( ', ' (').replace(' ) ', ') ') step3 = re.sub(' ([.,:;?!%]+)([ \\\'"`])', '\\1\\2', step2) step4 = re.sub(' ([.,:;?!%]+)$', '\\1', step3) step5 = step4.replace(" '", "'").replace(" n't", "n't").replace('can not', 'cannot') step6 = step5.replace(' ` ', " '") return step6.strip()
untokenize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(words):\n text = ' '.join(words)\n step1 = text.replace('`` ', '\"').replace(\" ''\", '\"').replace('. . .', '...'\n )\n step2 = step1.replace(' ( ', ' (').replace(' ) ', ') ')\n step3 = re.sub(' ([.,:;?!%]+)([ \\\\\\'\"`])', '\\\\1\\\\2', step2)\n step4 = re.sub(' ([.,:;?!%]+)$', '\\\\1', step3)\n step5 = step4.replace(\" '\", \"'\").replace(\" n't\", \"n't\").replace('can not',\n 'cannot')\n step6 = step5.replace(' ` ', \" '\")\n return step6.strip()\n", "role": "user" }, { "content": "untokenize", "role": "assistant" } ]
def x(text): revtext = text[::-1] pieces = [] while revtext: match = CAMEL_RE.match(revtext) if match: pieces.append(match.group(1)) revtext = revtext[match.end():] else: pieces.append(revtext) revtext = '' revstr = ' '.join(piece.strip(' _') for piece in pieces if piece.strip( ' _')) return revstr[::-1].replace('- ', '-')
un_camel_case
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n revtext = text[::-1]\n pieces = []\n while revtext:\n match = CAMEL_RE.match(revtext)\n if match:\n pieces.append(match.group(1))\n revtext = revtext[match.end():]\n else:\n pieces.append(revtext)\n revtext = ''\n revstr = ' '.join(piece.strip(' _') for piece in pieces if piece.strip(\n ' _'))\n return revstr[::-1].replace('- ', '-')\n", "role": "user" }, { "content": "un_camel_case", "role": "assistant" } ]
def x(s, maxlen=1024): if not s: return i = 0 while True: j = i + maxlen if j >= len(s): yield s[i:] return while unicodedata.category(s[j - 1]) not in BOUNDARY_CATEGORIES: j -= 1 if j == i: j = i + maxlen break yield s[i:j] i = j
string_pieces
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, maxlen=1024):\n if not s:\n return\n i = 0\n while True:\n j = i + maxlen\n if j >= len(s):\n yield s[i:]\n return\n while unicodedata.category(s[j - 1]) not in BOUNDARY_CATEGORIES:\n j -= 1\n if j == i:\n j = i + maxlen\n break\n yield s[i:j]\n i = j\n", "role": "user" }, { "content": "string_pieces", "role": "assistant" } ]
def x(word): if word.endswith('e'): return len(word) - 2 elif word.endswith('ess'): return len(word) - 10 elif word.endswith('ss'): return len(word) - 4 else: return len(word)
word_badness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(word):\n if word.endswith('e'):\n return len(word) - 2\n elif word.endswith('ess'):\n return len(word) - 10\n elif word.endswith('ss'):\n return len(word) - 4\n else:\n return len(word)\n", "role": "user" }, { "content": "word_badness", "role": "assistant" } ]
def x(word, pos=None): results = [] if pos is None: pos = 'nvar' for pos_item in pos: results.extend(morphy(word, pos_item)) if not results: return None results.sort(key=lambda x: _word_badness(x)) return results[0]
morphy_best
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(word, pos=None):\n results = []\n if pos is None:\n pos = 'nvar'\n for pos_item in pos:\n results.extend(morphy(word, pos_item))\n if not results:\n return None\n results.sort(key=lambda x: _word_badness(x))\n return results[0]\n", "role": "user" }, { "content": "morphy_best", "role": "assistant" } ]
def x(word, pos=None): word = word.lower() if pos is not None: if pos.startswith('NN'): pos = 'n' elif pos.startswith('VB'): pos = 'v' elif pos.startswith('JJ'): pos = 'a' elif pos.startswith('RB'): pos = 'r' if pos is None and word.endswith('ing') or word.endswith('ed'): pos = 'v' if pos is not None and pos not in 'nvar': pos = None if word in EXCEPTIONS: return EXCEPTIONS[word] if pos is None: if word in AMBIGUOUS_EXCEPTIONS: return AMBIGUOUS_EXCEPTIONS[word] return _morphy_best(word, pos) or word
morphy_stem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(word, pos=None):\n word = word.lower()\n if pos is not None:\n if pos.startswith('NN'):\n pos = 'n'\n elif pos.startswith('VB'):\n pos = 'v'\n elif pos.startswith('JJ'):\n pos = 'a'\n elif pos.startswith('RB'):\n pos = 'r'\n if pos is None and word.endswith('ing') or word.endswith('ed'):\n pos = 'v'\n if pos is not None and pos not in 'nvar':\n pos = None\n if word in EXCEPTIONS:\n return EXCEPTIONS[word]\n if pos is None:\n if word in AMBIGUOUS_EXCEPTIONS:\n return AMBIGUOUS_EXCEPTIONS[word]\n return _morphy_best(word, pos) or word\n", "role": "user" }, { "content": "morphy_stem", "role": "assistant" } ]
def x(text): tokens = tokenize(text) tagged = nltk.pos_tag(tokens) out = [] for token, tag in tagged: stem = morphy_stem(token, tag) out.append((stem, tag, token)) return out
tag_and_stem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n tokens = tokenize(text)\n tagged = nltk.pos_tag(tokens)\n out = []\n for token, tag in tagged:\n stem = morphy_stem(token, tag)\n out.append((stem, tag, token))\n return out\n", "role": "user" }, { "content": "tag_and_stem", "role": "assistant" } ]
def x(text): pieces = [morphy_stem(word) for word in tokenize(text)] pieces = [piece for piece in pieces if good_lemma(piece)] if not pieces: return [text] if pieces[0] == 'to': pieces = pieces[1:] return pieces
normalize_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n pieces = [morphy_stem(word) for word in tokenize(text)]\n pieces = [piece for piece in pieces if good_lemma(piece)]\n if not pieces:\n return [text]\n if pieces[0] == 'to':\n pieces = pieces[1:]\n return pieces\n", "role": "user" }, { "content": "normalize_list", "role": "assistant" } ]
def x(topic): topic = topic.replace('_', ' ') match = re.match('([^(]+) \\(([^)]+)\\)', topic) if not match: return normalize(topic), None else: return normalize(match.group(1)), 'n/' + match.group(2).strip(' _')
normalize_topic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(topic):\n topic = topic.replace('_', ' ')\n match = re.match('([^(]+) \\\\(([^)]+)\\\\)', topic)\n if not match:\n return normalize(topic), None\n else:\n return normalize(match.group(1)), 'n/' + match.group(2).strip(' _')\n", "role": "user" }, { "content": "normalize_topic", "role": "assistant" } ]
def x(key): words = key.split('.') first2words = words[:2] lastword = words[-1] namewords = words[2:-1] namephrase = '.'.join(namewords) if namephrase.startswith("'") and namephrase.endswith("'"): namephrase = namephrase[1:-1] return first2words + [namephrase] + [lastword]
key2elements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key):\n words = key.split('.')\n first2words = words[:2]\n lastword = words[-1]\n namewords = words[2:-1]\n namephrase = '.'.join(namewords)\n if namephrase.startswith(\"'\") and namephrase.endswith(\"'\"):\n namephrase = namephrase[1:-1]\n return first2words + [namephrase] + [lastword]\n", "role": "user" }, { "content": "key2elements", "role": "assistant" } ]
def x(idf, dct): for key in list(dct.keys()): if key.startswith('idf.'): idftag, objkey, objname, field = key2elements(key) if objname == '': try: idfobj = idf.idfobjects[objkey.upper()][0] except IndexError as e: idfobj = idf.newidfobject(objkey.upper()) else: idfobj = idf.getobject(objkey.upper(), objname) if idfobj == None: idfobj = idf.newidfobject(objkey.upper(), Name=objname) idfobj[field] = dct[key]
updateidf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(idf, dct):\n for key in list(dct.keys()):\n if key.startswith('idf.'):\n idftag, objkey, objname, field = key2elements(key)\n if objname == '':\n try:\n idfobj = idf.idfobjects[objkey.upper()][0]\n except IndexError as e:\n idfobj = idf.newidfobject(objkey.upper())\n else:\n idfobj = idf.getobject(objkey.upper(), objname)\n if idfobj == None:\n idfobj = idf.newidfobject(objkey.upper(), Name=objname)\n idfobj[field] = dct[key]\n", "role": "user" }, { "content": "updateidf", "role": "assistant" } ]
def x(fan_tot_eff, pascal, m3s): inh2o = pascal2inh2o(pascal) cfm = m3s2cfm(m3s) return cfm * inh2o * 1.0 / (6356.0 * fan_tot_eff)
fan_bhp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fan_tot_eff, pascal, m3s):\n inh2o = pascal2inh2o(pascal)\n cfm = m3s2cfm(m3s)\n return cfm * inh2o * 1.0 / (6356.0 * fan_tot_eff)\n", "role": "user" }, { "content": "fan_bhp", "role": "assistant" } ]
def x(bhp, cfm, fan_tot_eff): inh2o = bhp * 6356.0 * fan_tot_eff / cfm pascal = inh2o2pascal(inh2o) m3s = cfm2m3s(cfm) return pascal, m3s
bhp2pascal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bhp, cfm, fan_tot_eff):\n inh2o = bhp * 6356.0 * fan_tot_eff / cfm\n pascal = inh2o2pascal(inh2o)\n m3s = cfm2m3s(cfm)\n return pascal, m3s\n", "role": "user" }, { "content": "bhp2pascal", "role": "assistant" } ]
def x(fan_tot_eff, pascal, m3s): bhp = fan_bhp(fan_tot_eff, pascal, m3s) return bhp2watts(bhp)
fan_watts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fan_tot_eff, pascal, m3s):\n bhp = fan_bhp(fan_tot_eff, pascal, m3s)\n return bhp2watts(bhp)\n", "role": "user" }, { "content": "fan_watts", "role": "assistant" } ]
def x(watts, cfm, fan_tot_eff): bhp = watts2bhp(watts) return bhp2pascal(bhp, cfm, fan_tot_eff)
watts2pascal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(watts, cfm, fan_tot_eff):\n bhp = watts2bhp(watts)\n return bhp2pascal(bhp, cfm, fan_tot_eff)\n", "role": "user" }, { "content": "watts2pascal", "role": "assistant" } ]
def x(ddtt): from eppy.bunch_subclass import BadEPFieldError try: fan_tot_eff = ddtt.Fan_Total_Efficiency except BadEPFieldError as e: fan_tot_eff = ddtt.Fan_Efficiency pascal = float(ddtt.Pressure_Rise) if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize': return 'autosize' else: m3s = float(ddtt.Maximum_Flow_Rate) return fan_bhp(fan_tot_eff, pascal, m3s)
fanpower_bhp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ddtt):\n from eppy.bunch_subclass import BadEPFieldError\n try:\n fan_tot_eff = ddtt.Fan_Total_Efficiency\n except BadEPFieldError as e:\n fan_tot_eff = ddtt.Fan_Efficiency\n pascal = float(ddtt.Pressure_Rise)\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return fan_bhp(fan_tot_eff, pascal, m3s)\n", "role": "user" }, { "content": "fanpower_bhp", "role": "assistant" } ]
def x(ddtt): from eppy.bunch_subclass import BadEPFieldError try: fan_tot_eff = ddtt.Fan_Total_Efficiency except BadEPFieldError as e: fan_tot_eff = ddtt.Fan_Efficiency pascal = float(ddtt.Pressure_Rise) if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize': return 'autosize' else: m3s = float(ddtt.Maximum_Flow_Rate) return fan_watts(fan_tot_eff, pascal, m3s)
fanpower_watts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ddtt):\n from eppy.bunch_subclass import BadEPFieldError\n try:\n fan_tot_eff = ddtt.Fan_Total_Efficiency\n except BadEPFieldError as e:\n fan_tot_eff = ddtt.Fan_Efficiency\n pascal = float(ddtt.Pressure_Rise)\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return fan_watts(fan_tot_eff, pascal, m3s)\n", "role": "user" }, { "content": "fanpower_watts", "role": "assistant" } ]
def x(ddtt): if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize': return 'autosize' else: m3s = float(ddtt.Maximum_Flow_Rate) return m3s2cfm(m3s)
fan_maxcfm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ddtt):\n if str(ddtt.Maximum_Flow_Rate).lower() == 'autosize':\n return 'autosize'\n else:\n m3s = float(ddtt.Maximum_Flow_Rate)\n return m3s2cfm(m3s)\n", "role": "user" }, { "content": "fan_maxcfm", "role": "assistant" } ]
def x(version=None, iddname=None): try: eplus_exe, eplus_home = paths_from_iddname(iddname) except (AttributeError, TypeError, ValueError): eplus_exe, eplus_home = paths_from_version(version) eplus_weather = os.path.join(eplus_home, 'WeatherData') return eplus_exe, eplus_weather
install_paths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version=None, iddname=None):\n try:\n eplus_exe, eplus_home = paths_from_iddname(iddname)\n except (AttributeError, TypeError, ValueError):\n eplus_exe, eplus_home = paths_from_version(version)\n eplus_weather = os.path.join(eplus_home, 'WeatherData')\n return eplus_exe, eplus_weather\n", "role": "user" }, { "content": "install_paths", "role": "assistant" } ]
def x(iddname): eplus_home = os.path.abspath(os.path.dirname(iddname)) if platform.system() == 'Windows': eplus_exe = os.path.join(eplus_home, 'energyplus.exe') elif platform.system() == 'Linux': eplus_exe = os.path.join(eplus_home, 'energyplus') else: eplus_exe = os.path.join(eplus_home, 'energyplus') if not os.path.isfile(eplus_exe): raise ValueError return eplus_exe, eplus_home
paths_from_iddname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(iddname):\n eplus_home = os.path.abspath(os.path.dirname(iddname))\n if platform.system() == 'Windows':\n eplus_exe = os.path.join(eplus_home, 'energyplus.exe')\n elif platform.system() == 'Linux':\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n else:\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n if not os.path.isfile(eplus_exe):\n raise ValueError\n return eplus_exe, eplus_home\n", "role": "user" }, { "content": "paths_from_iddname", "role": "assistant" } ]
def x(version): if platform.system() == 'Windows': eplus_home = 'C:/EnergyPlusV{version}'.format(version=version) eplus_exe = os.path.join(eplus_home, 'energyplus.exe') elif platform.system() == 'Linux': eplus_home = '/usr/local/EnergyPlus-{version}'.format(version=version) eplus_exe = os.path.join(eplus_home, 'energyplus') else: eplus_home = '/Applications/EnergyPlus-{version}'.format(version= version) eplus_exe = os.path.join(eplus_home, 'energyplus') return eplus_exe, eplus_home
paths_from_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version):\n if platform.system() == 'Windows':\n eplus_home = 'C:/EnergyPlusV{version}'.format(version=version)\n eplus_exe = os.path.join(eplus_home, 'energyplus.exe')\n elif platform.system() == 'Linux':\n eplus_home = '/usr/local/EnergyPlus-{version}'.format(version=version)\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n else:\n eplus_home = '/Applications/EnergyPlus-{version}'.format(version=\n version)\n eplus_exe = os.path.join(eplus_home, 'energyplus')\n return eplus_exe, eplus_home\n", "role": "user" }, { "content": "paths_from_version", "role": "assistant" } ]
def x(wrapped_func): def x(wrapper_func): wrapper_func.__doc__ = ( 'This method wraps the following method:\n\n' + pydoc.text. document(wrapped_func)) return wrapper_func return decorator
wrapped_help_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wrapped_func):\n\n def x(wrapper_func):\n wrapper_func.__doc__ = (\n 'This method wraps the following method:\\n\\n' + pydoc.text.\n document(wrapped_func))\n return wrapper_func\n return decorator\n", "role": "user" }, { "content": "wrapped_help_text", "role": "assistant" } ]
def x(jobs, processors=1): if processors <= 0: processors = max(1, mp.cpu_count() - processors) shutil.rmtree('multi_runs', ignore_errors=True) os.mkdir('multi_runs') prepared_runs = (prepare_run(run_id, run_data) for run_id, run_data in enumerate(jobs)) try: pool = mp.Pool(processors) pool.map(multirunner, prepared_runs) pool.close() except NameError: for job in prepared_runs: multirunner([job]) shutil.rmtree('multi_runs', ignore_errors=True)
runIDFs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(jobs, processors=1):\n if processors <= 0:\n processors = max(1, mp.cpu_count() - processors)\n shutil.rmtree('multi_runs', ignore_errors=True)\n os.mkdir('multi_runs')\n prepared_runs = (prepare_run(run_id, run_data) for run_id, run_data in\n enumerate(jobs))\n try:\n pool = mp.Pool(processors)\n pool.map(multirunner, prepared_runs)\n pool.close()\n except NameError:\n for job in prepared_runs:\n multirunner([job])\n shutil.rmtree('multi_runs', ignore_errors=True)\n", "role": "user" }, { "content": "runIDFs", "role": "assistant" } ]
def x(run_id, run_data): idf, kwargs = run_data epw = idf.epw idf_dir = os.path.join('multi_runs', 'idf_%i' % run_id) os.mkdir(idf_dir) idf_path = os.path.join(idf_dir, 'in.idf') idf.saveas(idf_path) return (idf_path, epw), kwargs
prepare_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_id, run_data):\n idf, kwargs = run_data\n epw = idf.epw\n idf_dir = os.path.join('multi_runs', 'idf_%i' % run_id)\n os.mkdir(idf_dir)\n idf_path = os.path.join(idf_dir, 'in.idf')\n idf.saveas(idf_path)\n return (idf_path, epw), kwargs\n", "role": "user" }, { "content": "prepare_run", "role": "assistant" } ]
def x(idf=None, weather=None, output_directory='', annual=False, design_day =False, idd=None, epmacro=False, expandobjects=False, readvars=False, output_prefix=None, output_suffix=None, version=False, verbose='v', ep_version=None): args = locals().copy() verbose = args.pop('verbose') idf = args.pop('idf') iddname = args.get('idd') if not isinstance(iddname, str): args.pop('idd') try: idf_path = os.path.abspath(idf.idfname) except AttributeError: idf_path = os.path.abspath(idf) ep_version = args.pop('ep_version') if not ep_version: try: ep_version = '-'.join(str(x) for x in idf.idd_version[:3]) except AttributeError: raise AttributeError( 'The ep_version must be set when passing an IDF path. Alternatively, use IDF.run()' ) eplus_exe_path, eplus_weather_path = install_paths(ep_version, iddname) if version: cmd = [eplus_exe_path, '--version'] check_call(cmd) return if os.path.isfile(args['weather']): args['weather'] = os.path.abspath(args['weather']) else: args['weather'] = os.path.join(eplus_weather_path, args['weather']) output_dir = os.path.abspath(args['output_directory']) args['output_directory'] = output_dir cwd = os.getcwd() run_dir = os.path.abspath(tempfile.mkdtemp()) os.chdir(run_dir) cmd = [eplus_exe_path] for arg in args: if args[arg]: if isinstance(args[arg], bool): args[arg] = '' cmd.extend(['--{}'.format(arg.replace('_', '-'))]) if args[arg] != '': cmd.extend([args[arg]]) cmd.extend([idf_path]) try: if verbose == 'v': print('\r\n' + ' '.join(cmd) + '\r\n') check_call(cmd) elif verbose == 'q': check_call(cmd, stdout=open(os.devnull, 'w')) except CalledProcessError: message = parse_error(output_dir) raise EnergyPlusRunError(message) finally: os.chdir(cwd) return 'OK'
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(idf=None, weather=None, output_directory='', annual=False, design_day\n =False, idd=None, epmacro=False, expandobjects=False, readvars=False,\n output_prefix=None, output_suffix=None, version=False, verbose='v',\n ep_version=None):\n args = locals().copy()\n verbose = args.pop('verbose')\n idf = args.pop('idf')\n iddname = args.get('idd')\n if not isinstance(iddname, str):\n args.pop('idd')\n try:\n idf_path = os.path.abspath(idf.idfname)\n except AttributeError:\n idf_path = os.path.abspath(idf)\n ep_version = args.pop('ep_version')\n if not ep_version:\n try:\n ep_version = '-'.join(str(x) for x in idf.idd_version[:3])\n except AttributeError:\n raise AttributeError(\n 'The ep_version must be set when passing an IDF path. Alternatively, use IDF.run()'\n )\n eplus_exe_path, eplus_weather_path = install_paths(ep_version, iddname)\n if version:\n cmd = [eplus_exe_path, '--version']\n check_call(cmd)\n return\n if os.path.isfile(args['weather']):\n args['weather'] = os.path.abspath(args['weather'])\n else:\n args['weather'] = os.path.join(eplus_weather_path, args['weather'])\n output_dir = os.path.abspath(args['output_directory'])\n args['output_directory'] = output_dir\n cwd = os.getcwd()\n run_dir = os.path.abspath(tempfile.mkdtemp())\n os.chdir(run_dir)\n cmd = [eplus_exe_path]\n for arg in args:\n if args[arg]:\n if isinstance(args[arg], bool):\n args[arg] = ''\n cmd.extend(['--{}'.format(arg.replace('_', '-'))])\n if args[arg] != '':\n cmd.extend([args[arg]])\n cmd.extend([idf_path])\n try:\n if verbose == 'v':\n print('\\r\\n' + ' '.join(cmd) + '\\r\\n')\n check_call(cmd)\n elif verbose == 'q':\n check_call(cmd, stdout=open(os.devnull, 'w'))\n except CalledProcessError:\n message = parse_error(output_dir)\n raise EnergyPlusRunError(message)\n finally:\n os.chdir(cwd)\n return 'OK'\n", "role": "user" }, { "content": "run", "role": "assistant" } ]