source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, publish, names=False, name_only=False): if names: for name in names: if not name_only and isinstance(name, re._pattern_type): if re.match(name, publish.name): return True else: operand = name if name_only else [name, './%s' % name] if publish in operand: return True return False else: return True
publish_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, publish, names=False, name_only=False):\n if names:\n for name in names:\n if not name_only and isinstance(name, re._pattern_type):\n if re.match(name, publish.name):\n return True\n else:\n operand = name if name_only else [name, './%s' % name]\n if publish in operand:\n return True\n return False\n else:\n return True\n", "role": "user" }, { "content": "publish_match", "role": "assistant" } ]
def x(config, client, fill_repo=False, components=[]): repo_dict = {} publish_dict = {} for origin in ['repo', 'mirror']: for name, repo in config.get(origin, {}).items(): if components and repo.get('component') not in components: continue if fill_repo and origin == 'repo': packages = Publish._get_packages('repos', name) repo_dict[name] = packages for distribution in repo.get('distributions'): publish_name = str.join('/', distribution.split('/')[:-1]) publish_dict[publish_name, repo.get('component')] = name return repo_dict, publish_dict
get_repo_information
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config, client, fill_repo=False, components=[]):\n repo_dict = {}\n publish_dict = {}\n for origin in ['repo', 'mirror']:\n for name, repo in config.get(origin, {}).items():\n if components and repo.get('component') not in components:\n continue\n if fill_repo and origin == 'repo':\n packages = Publish._get_packages('repos', name)\n repo_dict[name] = packages\n for distribution in repo.get('distributions'):\n publish_name = str.join('/', distribution.split('/')[:-1])\n publish_dict[publish_name, repo.get('component')] = name\n return repo_dict, publish_dict\n", "role": "user" }, { "content": "get_repo_information", "role": "assistant" } ]
def x(self, other, components=[]): lg.debug('Comparing publish %s (%s) and %s (%s)' % (self.name, self. storage or 'local', other.name, other.storage or 'local')) diff, equal = {}, {} for component, snapshots in self.components.items(): if component not in list(other.components.keys()): diff[component] = snapshots continue equal_snapshots = list(set(snapshots).intersection(other.components [component])) if equal_snapshots: lg.debug('Equal snapshots for %s: %s' % (component, equal_snapshots)) equal[component] = equal_snapshots diff_snapshots = list(set(snapshots).difference(other.components[ component])) if diff_snapshots: lg.debug('Different snapshots for %s: %s' % (component, diff_snapshots)) diff[component] = diff_snapshots return diff, equal
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, components=[]):\n lg.debug('Comparing publish %s (%s) and %s (%s)' % (self.name, self.\n storage or 'local', other.name, other.storage or 'local'))\n diff, equal = {}, {}\n for component, snapshots in self.components.items():\n if component not in list(other.components.keys()):\n diff[component] = snapshots\n continue\n equal_snapshots = list(set(snapshots).intersection(other.components\n [component]))\n if equal_snapshots:\n lg.debug('Equal snapshots for %s: %s' % (component,\n equal_snapshots))\n equal[component] = equal_snapshots\n diff_snapshots = list(set(snapshots).difference(other.components[\n component]))\n if diff_snapshots:\n lg.debug('Different snapshots for %s: %s' % (component,\n diff_snapshots))\n diff[component] = diff_snapshots\n return diff, equal\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(self): publishes = self._get_publishes(self.client) for publish in publishes: if publish['Distribution'] == self.distribution and publish['Prefix' ].replace('/', '_') == (self.prefix or '.') and publish['Storage' ] == self.storage: return publish raise NoSuchPublish('Publish %s (%s) does not exist' % (self.name, self .storage or 'local'))
get_publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n publishes = self._get_publishes(self.client)\n for publish in publishes:\n if publish['Distribution'] == self.distribution and publish['Prefix'\n ].replace('/', '_') == (self.prefix or '.') and publish['Storage'\n ] == self.storage:\n return publish\n raise NoSuchPublish('Publish %s (%s) does not exist' % (self.name, self\n .storage or 'local'))\n", "role": "user" }, { "content": "get_publish", "role": "assistant" } ]
def x(self, save_path): timestamp = time.strftime('%Y%m%d%H%M%S') yaml_dict = {} yaml_dict['publish'] = self.name yaml_dict['name'] = timestamp yaml_dict['components'] = [] yaml_dict['storage'] = self.storage for component, snapshots in self.components.items(): packages = self.get_packages(component) package_dict = [] for package in packages: arch, name, version, ref = self.parse_package_ref(package) package_dict.append({'package': name, 'version': version, 'arch': arch, 'ref': ref}) snapshot = self._find_snapshot(snapshots[0]) yaml_dict['components'].append({'component': component, 'snapshot': snapshot['Name'], 'description': snapshot['Description'], 'packages': package_dict}) name = self.name.replace('/', '-') lg.info('Saving publish %s in %s' % (name, save_path)) with open(save_path, 'w') as save_file: yaml.dump(yaml_dict, save_file, default_flow_style=False)
save_publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, save_path):\n timestamp = time.strftime('%Y%m%d%H%M%S')\n yaml_dict = {}\n yaml_dict['publish'] = self.name\n yaml_dict['name'] = timestamp\n yaml_dict['components'] = []\n yaml_dict['storage'] = self.storage\n for component, snapshots in self.components.items():\n packages = self.get_packages(component)\n package_dict = []\n for package in packages:\n arch, name, version, ref = self.parse_package_ref(package)\n package_dict.append({'package': name, 'version': version,\n 'arch': arch, 'ref': ref})\n snapshot = self._find_snapshot(snapshots[0])\n yaml_dict['components'].append({'component': component, 'snapshot':\n snapshot['Name'], 'description': snapshot['Description'],\n 'packages': package_dict})\n name = self.name.replace('/', '-')\n lg.info('Saving publish %s in %s' % (name, save_path))\n with open(save_path, 'w') as save_file:\n yaml.dump(yaml_dict, save_file, default_flow_style=False)\n", "role": "user" }, { "content": "save_publish", "role": "assistant" } ]
def x(self, config, components, recreate=False): if 'all' in components: components = [] try: self.load() publish = True except NoSuchPublish: publish = False new_publish_snapshots = [] to_publish = [] created_snapshots = [] for saved_component in config.get('components', []): component_name = saved_component.get('component') if not component_name: raise Exception('Corrupted file') if components and component_name not in components: continue saved_packages = [] if not saved_component.get('packages'): raise Exception('Component %s is empty' % component_name) for package in saved_component.get('packages'): package_ref = '{} {} {} {}'.format(package.get('arch'), package .get('package'), package.get('version'), package.get('ref')) saved_packages.append(package_ref) to_publish.append(component_name) timestamp = time.strftime('%Y%m%d%H%M%S') snapshot_name = '{}-{}-{}'.format('restored', timestamp, saved_component.get('snapshot')) lg.debug('Creating snapshot %s for component %s of packages: %s' % (snapshot_name, component_name, saved_packages)) try: self.client.do_post('/snapshots', data={'Name': snapshot_name, 'SourceSnapshots': [], 'Description': saved_component.get( 'description'), 'PackageRefs': saved_packages}) created_snapshots.append(snapshot_name) except AptlyException as e: if e.res.status_code == 404: self._remove_snapshots(created_snapshots) raise Exception("Source snapshot or packages don't exist") else: raise new_publish_snapshots.append({'Component': component_name, 'Name': snapshot_name}) if components: self.publish_snapshots = [x for x in self.publish_snapshots if x[ 'Component'] not in components and x['Component'] not in to_publish ] check_components = [x for x in new_publish_snapshots if x[ 'Component'] in components] if len(check_components) != len(components): self._remove_snapshots(created_snapshots) raise Exception( 'Not possible to find all the components required in the backup file' ) self.publish_snapshots += new_publish_snapshots self.do_publish(recreate=recreate, merge_snapshots=False)
restore_publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, config, components, recreate=False):\n if 'all' in components:\n components = []\n try:\n self.load()\n publish = True\n except NoSuchPublish:\n publish = False\n new_publish_snapshots = []\n to_publish = []\n created_snapshots = []\n for saved_component in config.get('components', []):\n component_name = saved_component.get('component')\n if not component_name:\n raise Exception('Corrupted file')\n if components and component_name not in components:\n continue\n saved_packages = []\n if not saved_component.get('packages'):\n raise Exception('Component %s is empty' % component_name)\n for package in saved_component.get('packages'):\n package_ref = '{} {} {} {}'.format(package.get('arch'), package\n .get('package'), package.get('version'), package.get('ref'))\n saved_packages.append(package_ref)\n to_publish.append(component_name)\n timestamp = time.strftime('%Y%m%d%H%M%S')\n snapshot_name = '{}-{}-{}'.format('restored', timestamp,\n saved_component.get('snapshot'))\n lg.debug('Creating snapshot %s for component %s of packages: %s' %\n (snapshot_name, component_name, saved_packages))\n try:\n self.client.do_post('/snapshots', data={'Name': snapshot_name,\n 'SourceSnapshots': [], 'Description': saved_component.get(\n 'description'), 'PackageRefs': saved_packages})\n created_snapshots.append(snapshot_name)\n except AptlyException as e:\n if e.res.status_code == 404:\n self._remove_snapshots(created_snapshots)\n raise Exception(\"Source snapshot or packages don't exist\")\n else:\n raise\n new_publish_snapshots.append({'Component': component_name, 'Name':\n snapshot_name})\n if components:\n self.publish_snapshots = [x for x in self.publish_snapshots if x[\n 'Component'] not in components and x['Component'] not in to_publish\n ]\n check_components = [x for x in new_publish_snapshots if x[\n 'Component'] in components]\n if len(check_components) != len(components):\n self._remove_snapshots(created_snapshots)\n raise Exception(\n 'Not possible to find all the components required in the backup file'\n )\n self.publish_snapshots += new_publish_snapshots\n self.do_publish(recreate=recreate, merge_snapshots=False)\n", "role": "user" }, { "content": "restore_publish", "role": "assistant" } ]
def x(self): publish = self._get_publish() self.architectures = publish['Architectures'] for source in publish['Sources']: component = source['Component'] snapshot = source['Name'] self.publish_snapshots.append({'Component': component, 'Name': snapshot}) snapshot_remote = self._find_snapshot(snapshot) for source in self._get_source_snapshots(snapshot_remote, fallback_self=True): self.add(source, component)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n publish = self._get_publish()\n self.architectures = publish['Architectures']\n for source in publish['Sources']:\n component = source['Component']\n snapshot = source['Name']\n self.publish_snapshots.append({'Component': component, 'Name':\n snapshot})\n snapshot_remote = self._find_snapshot(snapshot)\n for source in self._get_source_snapshots(snapshot_remote,\n fallback_self=True):\n self.add(source, component)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, component=None, components=[], packages=None): if component: components = [component] package_refs = [] for snapshot in self.publish_snapshots: if component and snapshot['Component'] not in components: continue component_refs = self._get_packages(self.client, 'snapshots', snapshot['Name']) if packages: for ref in component_refs: if self.parse_package_ref(ref)[1] in packages: package_refs.append(ref) else: package_refs.extend(component_refs) return package_refs
get_packages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, component=None, components=[], packages=None):\n if component:\n components = [component]\n package_refs = []\n for snapshot in self.publish_snapshots:\n if component and snapshot['Component'] not in components:\n continue\n component_refs = self._get_packages(self.client, 'snapshots',\n snapshot['Name'])\n if packages:\n for ref in component_refs:\n if self.parse_package_ref(ref)[1] in packages:\n package_refs.append(ref)\n else:\n package_refs.extend(component_refs)\n return package_refs\n", "role": "user" }, { "content": "get_packages", "role": "assistant" } ]
def x(self, ref): if not ref: return None parsed = re.match('(.*)\\ (.*)\\ (.*)\\ (.*)', ref) return parsed.groups()
parse_package_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ref):\n if not ref:\n return None\n parsed = re.match('(.*)\\\\ (.*)\\\\ (.*)\\\\ (.*)', ref)\n return parsed.groups()\n", "role": "user" }, { "content": "parse_package_ref", "role": "assistant" } ]
def x(self, snapshot, component='main'): try: self.components[component].append(snapshot) except KeyError: self.components[component] = [snapshot]
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, snapshot, component='main'):\n try:\n self.components[component].append(snapshot)\n except KeyError:\n self.components[component] = [snapshot]\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, name): remote_snapshots = self._get_snapshots(self.client) for remote in reversed(remote_snapshots): if remote['Name'] == name or re.match(name, remote['Name']): return remote return None
find_snapshot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n remote_snapshots = self._get_snapshots(self.client)\n for remote in reversed(remote_snapshots):\n if remote['Name'] == name or re.match(name, remote['Name']):\n return remote\n return None\n", "role": "user" }, { "content": "find_snapshot", "role": "assistant" } ]
def x(self, snapshot, fallback_self=False): if not snapshot: return [] source_snapshots = re.findall("'([\\w\\d\\.-]+)'", snapshot['Description']) if not source_snapshots and fallback_self: source_snapshots = [snapshot['Name']] source_snapshots.sort() return source_snapshots
get_source_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, snapshot, fallback_self=False):\n if not snapshot:\n return []\n source_snapshots = re.findall(\"'([\\\\w\\\\d\\\\.-]+)'\", snapshot['Description'])\n if not source_snapshots and fallback_self:\n source_snapshots = [snapshot['Name']]\n source_snapshots.sort()\n return source_snapshots\n", "role": "user" }, { "content": "get_source_snapshots", "role": "assistant" } ]
def x(self): self.publish_snapshots = [] for component, snapshots in self.components.items(): if len(snapshots) <= 1: lg.debug( 'Component %s has only one snapshot %s, not creating merge snapshot' % (component, snapshots)) self.publish_snapshots.append({'Component': component, 'Name': snapshots[0]}) continue remote_snapshot = self._find_snapshot('^%s%s-%s-\\d+' % (self. merge_prefix, self.name.replace('./', '').replace('/', '-'), component)) if remote_snapshot: source_snapshots = self._get_source_snapshots(remote_snapshot) snapshots_want = list(snapshots) snapshots_want.sort() lg.debug( 'Comparing snapshots: snapshot_name=%s, snapshot_sources=%s, wanted_sources=%s' % (remote_snapshot['Name'], source_snapshots, snapshots_want)) if snapshots_want == source_snapshots: lg.info('Remote merge snapshot already exists: %s (%s)' % ( remote_snapshot['Name'], source_snapshots)) self.publish_snapshots.append({'Component': component, 'Name': remote_snapshot['Name']}) continue snapshot_name = '%s%s-%s-%s' % (self.merge_prefix, self.name. replace('./', '').replace('/', '-'), component, self.timestamp) lg.info( 'Creating merge snapshot %s for component %s of snapshots %s' % (snapshot_name, component, snapshots)) package_refs = [] for snapshot in snapshots: packages = self._get_packages(self.client, 'snapshots', snapshot) package_refs.extend(packages) try: self.client.do_post('/snapshots', data={'Name': snapshot_name, 'SourceSnapshots': snapshots, 'Description': 'Merged from sources: %s' % ', '.join("'%s'" % snap for snap in snapshots), 'PackageRefs': package_refs}) except AptlyException as e: if e.res.status_code == 400: lg.warning( 'Error creating snapshot %s, assuming it already exists' % snapshot_name) else: raise self.publish_snapshots.append({'Component': component, 'Name': snapshot_name})
merge_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.publish_snapshots = []\n for component, snapshots in self.components.items():\n if len(snapshots) <= 1:\n lg.debug(\n 'Component %s has only one snapshot %s, not creating merge snapshot'\n % (component, snapshots))\n self.publish_snapshots.append({'Component': component, 'Name':\n snapshots[0]})\n continue\n remote_snapshot = self._find_snapshot('^%s%s-%s-\\\\d+' % (self.\n merge_prefix, self.name.replace('./', '').replace('/', '-'),\n component))\n if remote_snapshot:\n source_snapshots = self._get_source_snapshots(remote_snapshot)\n snapshots_want = list(snapshots)\n snapshots_want.sort()\n lg.debug(\n 'Comparing snapshots: snapshot_name=%s, snapshot_sources=%s, wanted_sources=%s'\n % (remote_snapshot['Name'], source_snapshots, snapshots_want))\n if snapshots_want == source_snapshots:\n lg.info('Remote merge snapshot already exists: %s (%s)' % (\n remote_snapshot['Name'], source_snapshots))\n self.publish_snapshots.append({'Component': component,\n 'Name': remote_snapshot['Name']})\n continue\n snapshot_name = '%s%s-%s-%s' % (self.merge_prefix, self.name.\n replace('./', '').replace('/', '-'), component, self.timestamp)\n lg.info(\n 'Creating merge snapshot %s for component %s of snapshots %s' %\n (snapshot_name, component, snapshots))\n package_refs = []\n for snapshot in snapshots:\n packages = self._get_packages(self.client, 'snapshots', snapshot)\n package_refs.extend(packages)\n try:\n self.client.do_post('/snapshots', data={'Name': snapshot_name,\n 'SourceSnapshots': snapshots, 'Description': \n 'Merged from sources: %s' % ', '.join(\"'%s'\" % snap for\n snap in snapshots), 'PackageRefs': package_refs})\n except AptlyException as e:\n if e.res.status_code == 400:\n lg.warning(\n 'Error creating snapshot %s, assuming it already exists' %\n snapshot_name)\n else:\n raise\n self.publish_snapshots.append({'Component': component, 'Name':\n snapshot_name})\n", "role": "user" }, { "content": "merge_snapshots", "role": "assistant" } ]
def x(func): @functools.wraps(func) def x(*args, **kwargs): print_time = kwargs.pop('print_time', False) if not print_time: return func(*args, **kwargs) else: start_time = time.time() result = func(*args, **kwargs) end_time = time.time() print(func.__name__ + ' took %.3f seconds' % (end_time - start_time)) return result return wrapper
timing_decorator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @functools.wraps(func)\n def x(*args, **kwargs):\n print_time = kwargs.pop('print_time', False)\n if not print_time:\n return func(*args, **kwargs)\n else:\n start_time = time.time()\n result = func(*args, **kwargs)\n end_time = time.time()\n print(func.__name__ + ' took %.3f seconds' % (end_time -\n start_time))\n return result\n return wrapper\n", "role": "user" }, { "content": "timing_decorator", "role": "assistant" } ]
def x(func): @functools.wraps(func) def x(*args, **kwargs): save_name = kwargs.pop('save_name', None) save = kwargs.pop('save', save_name is not None) load = kwargs.pop('load', save_name is not None) overwrite_existing = kwargs.pop('overwrite_existing', True) warn_if_error = kwargs.pop('warn_if_error', False) if load: if save_name is None: warnings.warn( '{} has load=True but cannot load because save_name=None' .format(func.__name__), UserWarning) else: try: return pickle_load(save_name) except (OSError, IOError) as err: if warn_if_error: msg = '{} had {} loading file {}.'.format(func. __name__, type(err).__name__, save_name) msg = ' Continuing without loading.' warnings.warn(msg, UserWarning) result = func(*args, **kwargs) if save: if save_name is None: warnings.warn(func.__name__ + ' has save=True but cannot ' + 'save because save_name=None', UserWarning) else: pickle_save(result, save_name, overwrite_existing= overwrite_existing) return result return wrapper
save_load_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @functools.wraps(func)\n def x(*args, **kwargs):\n save_name = kwargs.pop('save_name', None)\n save = kwargs.pop('save', save_name is not None)\n load = kwargs.pop('load', save_name is not None)\n overwrite_existing = kwargs.pop('overwrite_existing', True)\n warn_if_error = kwargs.pop('warn_if_error', False)\n if load:\n if save_name is None:\n warnings.warn(\n '{} has load=True but cannot load because save_name=None'\n .format(func.__name__), UserWarning)\n else:\n try:\n return pickle_load(save_name)\n except (OSError, IOError) as err:\n if warn_if_error:\n msg = '{} had {} loading file {}.'.format(func.\n __name__, type(err).__name__, save_name)\n msg = ' Continuing without loading.'\n warnings.warn(msg, UserWarning)\n result = func(*args, **kwargs)\n if save:\n if save_name is None:\n warnings.warn(func.__name__ + ' has save=True but cannot ' +\n 'save because save_name=None', UserWarning)\n else:\n pickle_save(result, save_name, overwrite_existing=\n overwrite_existing)\n return result\n return wrapper\n", "role": "user" }, { "content": "save_load_result", "role": "assistant" } ]
def x(data, name, **kwargs): extension = kwargs.pop('extension', '.pkl') overwrite_existing = kwargs.pop('overwrite_existing', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) filename = name + extension dirname = os.path.dirname(filename) if not os.path.exists(dirname) and dirname != '': os.makedirs(dirname) if os.path.isfile(filename) and not overwrite_existing: print(filename + ' already exists! Saving with time appended') filename = name + '_' + time.asctime().replace(' ', '_') filename += extension try: PermissionError except NameError: PermissionError = IOError try: outfile = open(filename, 'wb') pickle.dump(data, outfile) outfile.close() except (MemoryError, PermissionError) as err: warnings.warn(type(err).__name__ + ' in pickle_save: continue without saving.', UserWarning)
pickle_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, name, **kwargs):\n extension = kwargs.pop('extension', '.pkl')\n overwrite_existing = kwargs.pop('overwrite_existing', True)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n filename = name + extension\n dirname = os.path.dirname(filename)\n if not os.path.exists(dirname) and dirname != '':\n os.makedirs(dirname)\n if os.path.isfile(filename) and not overwrite_existing:\n print(filename + ' already exists! Saving with time appended')\n filename = name + '_' + time.asctime().replace(' ', '_')\n filename += extension\n try:\n PermissionError\n except NameError:\n PermissionError = IOError\n try:\n outfile = open(filename, 'wb')\n pickle.dump(data, outfile)\n outfile.close()\n except (MemoryError, PermissionError) as err:\n warnings.warn(type(err).__name__ +\n ' in pickle_save: continue without saving.', UserWarning)\n", "role": "user" }, { "content": "pickle_save", "role": "assistant" } ]
def x(name, extension='.pkl'): filename = name + extension infile = open(filename, 'rb') data = pickle.load(infile) infile.close() return data
pickle_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, extension='.pkl'):\n filename = name + extension\n infile = open(filename, 'rb')\n data = pickle.load(infile)\n infile.close()\n return data\n", "role": "user" }, { "content": "pickle_load", "role": "assistant" } ]
def x(ns_run, threads=None, ninit_sep=False, random_seed=False): if random_seed is not False: state = np.random.get_state() np.random.seed(random_seed) if threads is None: threads = nestcheck.ns_run_utils.get_run_threads(ns_run) n_threads = len(threads) if ninit_sep: try: ninit = ns_run['settings']['ninit'] assert np.all(ns_run['thread_min_max'][:ninit, 0] == -np.inf ), 'ninit_sep assumes the initial threads are labeled (0,...,ninit-1), so these should start by sampling the whole prior.' inds = np.random.randint(0, ninit, ninit) inds = np.append(inds, np.random.randint(ninit, n_threads, n_threads - ninit)) except KeyError: warnings.warn( 'bootstrap_resample_run has kwarg ninit_sep=True but ns_run["settings"]["ninit"] does not exist. Doing bootstrap with ninit_sep=False' , UserWarning) ninit_sep = False if not ninit_sep: inds = np.random.randint(0, n_threads, n_threads) threads_temp = [threads[i] for i in inds] resampled_run = nestcheck.ns_run_utils.combine_threads(threads_temp) try: resampled_run['settings'] = ns_run['settings'] except KeyError: pass if random_seed is not False: np.random.set_state(state) return resampled_run
bootstrap_resample_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, threads=None, ninit_sep=False, random_seed=False):\n if random_seed is not False:\n state = np.random.get_state()\n np.random.seed(random_seed)\n if threads is None:\n threads = nestcheck.ns_run_utils.get_run_threads(ns_run)\n n_threads = len(threads)\n if ninit_sep:\n try:\n ninit = ns_run['settings']['ninit']\n assert np.all(ns_run['thread_min_max'][:ninit, 0] == -np.inf\n ), 'ninit_sep assumes the initial threads are labeled (0,...,ninit-1), so these should start by sampling the whole prior.'\n inds = np.random.randint(0, ninit, ninit)\n inds = np.append(inds, np.random.randint(ninit, n_threads, \n n_threads - ninit))\n except KeyError:\n warnings.warn(\n 'bootstrap_resample_run has kwarg ninit_sep=True but ns_run[\"settings\"][\"ninit\"] does not exist. Doing bootstrap with ninit_sep=False'\n , UserWarning)\n ninit_sep = False\n if not ninit_sep:\n inds = np.random.randint(0, n_threads, n_threads)\n threads_temp = [threads[i] for i in inds]\n resampled_run = nestcheck.ns_run_utils.combine_threads(threads_temp)\n try:\n resampled_run['settings'] = ns_run['settings']\n except KeyError:\n pass\n if random_seed is not False:\n np.random.set_state(state)\n return resampled_run\n", "role": "user" }, { "content": "bootstrap_resample_run", "role": "assistant" } ]
def x(ns_run, estimator_list, **kwargs): bs_values = run_bootstrap_values(ns_run, estimator_list, **kwargs) stds = np.zeros(bs_values.shape[0]) for j, _ in enumerate(stds): stds[j] = np.std(bs_values[j, :], ddof=1) return stds
run_std_bootstrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, estimator_list, **kwargs):\n bs_values = run_bootstrap_values(ns_run, estimator_list, **kwargs)\n stds = np.zeros(bs_values.shape[0])\n for j, _ in enumerate(stds):\n stds[j] = np.std(bs_values[j, :], ddof=1)\n return stds\n", "role": "user" }, { "content": "run_std_bootstrap", "role": "assistant" } ]
def x(ns_run, estimator_list, **kwargs): ninit_sep = kwargs.pop('ninit_sep', False) flip_skew = kwargs.pop('flip_skew', True) n_simulate = kwargs.pop('n_simulate') random_seeds = kwargs.pop('random_seeds', range(n_simulate)) assert len(random_seeds) == n_simulate if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) threads = nestcheck.ns_run_utils.get_run_threads(ns_run) bs_values = np.zeros((len(estimator_list), n_simulate)) for i, random_seed in enumerate(random_seeds): ns_run_temp = bootstrap_resample_run(ns_run, threads=threads, ninit_sep=ninit_sep, random_seed=random_seed) bs_values[:, i] = nestcheck.ns_run_utils.run_estimators(ns_run_temp, estimator_list) del ns_run_temp if flip_skew: estimator_means = np.mean(bs_values, axis=1) for i, mu in enumerate(estimator_means): bs_values[i, :] = 2 * mu - bs_values[i, :] return bs_values
run_bootstrap_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, estimator_list, **kwargs):\n ninit_sep = kwargs.pop('ninit_sep', False)\n flip_skew = kwargs.pop('flip_skew', True)\n n_simulate = kwargs.pop('n_simulate')\n random_seeds = kwargs.pop('random_seeds', range(n_simulate))\n assert len(random_seeds) == n_simulate\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n threads = nestcheck.ns_run_utils.get_run_threads(ns_run)\n bs_values = np.zeros((len(estimator_list), n_simulate))\n for i, random_seed in enumerate(random_seeds):\n ns_run_temp = bootstrap_resample_run(ns_run, threads=threads,\n ninit_sep=ninit_sep, random_seed=random_seed)\n bs_values[:, i] = nestcheck.ns_run_utils.run_estimators(ns_run_temp,\n estimator_list)\n del ns_run_temp\n if flip_skew:\n estimator_means = np.mean(bs_values, axis=1)\n for i, mu in enumerate(estimator_means):\n bs_values[i, :] = 2 * mu - bs_values[i, :]\n return bs_values\n", "role": "user" }, { "content": "run_bootstrap_values", "role": "assistant" } ]
def x(ns_run, estimator_list, **kwargs): cred_int = kwargs.pop('cred_int') bs_values = run_bootstrap_values(ns_run, estimator_list, **kwargs) expected_estimators = nestcheck.ns_run_utils.run_estimators(ns_run, estimator_list) cdf = (np.asarray(range(bs_values.shape[1])) + 0.5) / bs_values.shape[1] ci_output = expected_estimators * 2 for i, _ in enumerate(ci_output): ci_output[i] -= np.interp(1.0 - cred_int, cdf, np.sort(bs_values[i, :]) ) return ci_output
run_ci_bootstrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, estimator_list, **kwargs):\n cred_int = kwargs.pop('cred_int')\n bs_values = run_bootstrap_values(ns_run, estimator_list, **kwargs)\n expected_estimators = nestcheck.ns_run_utils.run_estimators(ns_run,\n estimator_list)\n cdf = (np.asarray(range(bs_values.shape[1])) + 0.5) / bs_values.shape[1]\n ci_output = expected_estimators * 2\n for i, _ in enumerate(ci_output):\n ci_output[i] -= np.interp(1.0 - cred_int, cdf, np.sort(bs_values[i, :])\n )\n return ci_output\n", "role": "user" }, { "content": "run_ci_bootstrap", "role": "assistant" } ]
def x(ns_run, estimator_list, n_simulate=None): assert n_simulate is not None, 'run_std_simulate: must specify n_simulate' all_values = np.zeros((len(estimator_list), n_simulate)) for i in range(n_simulate): all_values[:, i] = nestcheck.ns_run_utils.run_estimators(ns_run, estimator_list, simulate=True) stds = np.zeros(all_values.shape[0]) for i, _ in enumerate(stds): stds[i] = np.std(all_values[i, :], ddof=1) return stds
run_std_simulate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, estimator_list, n_simulate=None):\n assert n_simulate is not None, 'run_std_simulate: must specify n_simulate'\n all_values = np.zeros((len(estimator_list), n_simulate))\n for i in range(n_simulate):\n all_values[:, i] = nestcheck.ns_run_utils.run_estimators(ns_run,\n estimator_list, simulate=True)\n stds = np.zeros(all_values.shape[0])\n for i, _ in enumerate(stds):\n stds[i] = np.std(all_values[i, :], ddof=1)\n return stds\n", "role": "user" }, { "content": "run_std_simulate", "role": "assistant" } ]
def x(vals_std, vals_std_u, bs_std, bs_std_u, **kwargs): nsim = kwargs.pop('nsim', 1000000) random_seed = kwargs.pop('random_seed', 0) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) imp_var = vals_std ** 2 - bs_std ** 2 imp_std = np.sqrt(np.abs(imp_var)) * np.sign(imp_var) ind = np.where(imp_std <= 0)[0] imp_std[ind] = 0 imp_std_u = np.zeros(imp_std.shape) imp_frac = imp_std / vals_std imp_frac_u = np.zeros(imp_frac.shape) for i, _ in enumerate(imp_std_u): state = np.random.get_state() np.random.seed(random_seed) sim_vals_std = np.random.normal(vals_std[i], vals_std_u[i], size=nsim) sim_bs_std = np.random.normal(bs_std[i], bs_std_u[i], size=nsim) sim_imp_var = sim_vals_std ** 2 - sim_bs_std ** 2 sim_imp_std = np.sqrt(np.abs(sim_imp_var)) * np.sign(sim_imp_var) imp_std_u[i] = np.std(sim_imp_std, ddof=1) imp_frac_u[i] = np.std(sim_imp_std / sim_vals_std, ddof=1) np.random.set_state(state) return imp_std, imp_std_u, imp_frac, imp_frac_u
implementation_std
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vals_std, vals_std_u, bs_std, bs_std_u, **kwargs):\n nsim = kwargs.pop('nsim', 1000000)\n random_seed = kwargs.pop('random_seed', 0)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n imp_var = vals_std ** 2 - bs_std ** 2\n imp_std = np.sqrt(np.abs(imp_var)) * np.sign(imp_var)\n ind = np.where(imp_std <= 0)[0]\n imp_std[ind] = 0\n imp_std_u = np.zeros(imp_std.shape)\n imp_frac = imp_std / vals_std\n imp_frac_u = np.zeros(imp_frac.shape)\n for i, _ in enumerate(imp_std_u):\n state = np.random.get_state()\n np.random.seed(random_seed)\n sim_vals_std = np.random.normal(vals_std[i], vals_std_u[i], size=nsim)\n sim_bs_std = np.random.normal(bs_std[i], bs_std_u[i], size=nsim)\n sim_imp_var = sim_vals_std ** 2 - sim_bs_std ** 2\n sim_imp_std = np.sqrt(np.abs(sim_imp_var)) * np.sign(sim_imp_var)\n imp_std_u[i] = np.std(sim_imp_std, ddof=1)\n imp_frac_u[i] = np.std(sim_imp_std / sim_vals_std, ddof=1)\n np.random.set_state(state)\n return imp_std, imp_std_u, imp_frac, imp_frac_u\n", "role": "user" }, { "content": "implementation_std", "role": "assistant" } ]
def x(run, estimator_list): threads = nestcheck.ns_run_utils.get_run_threads(run) vals_list = [nestcheck.ns_run_utils.run_estimators(th, estimator_list) for th in threads] vals_array = np.stack(vals_list, axis=1) assert vals_array.shape == (len(estimator_list), len(threads)) return vals_array
run_thread_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, estimator_list):\n threads = nestcheck.ns_run_utils.get_run_threads(run)\n vals_list = [nestcheck.ns_run_utils.run_estimators(th, estimator_list) for\n th in threads]\n vals_array = np.stack(vals_list, axis=1)\n assert vals_array.shape == (len(estimator_list), len(threads))\n return vals_array\n", "role": "user" }, { "content": "run_thread_values", "role": "assistant" } ]
def x(dist_list, earth_mover_dist=True, energy_dist=True): out = [] index = [] for i, samp_i in enumerate(dist_list): for j, samp_j in enumerate(dist_list): if j < i: index.append(str((i, j))) out.append(statistical_distances(samp_i, samp_j, earth_mover_dist=earth_mover_dist, energy_dist=energy_dist) ) columns = ['ks pvalue', 'ks distance'] if earth_mover_dist: columns.append('earth mover distance') if energy_dist: columns.append('energy distance') ser = pd.DataFrame(out, index=index, columns=columns).unstack() ser.index.names = ['calculation type', 'run'] return ser
pairwise_distances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dist_list, earth_mover_dist=True, energy_dist=True):\n out = []\n index = []\n for i, samp_i in enumerate(dist_list):\n for j, samp_j in enumerate(dist_list):\n if j < i:\n index.append(str((i, j)))\n out.append(statistical_distances(samp_i, samp_j,\n earth_mover_dist=earth_mover_dist, energy_dist=energy_dist)\n )\n columns = ['ks pvalue', 'ks distance']\n if earth_mover_dist:\n columns.append('earth mover distance')\n if energy_dist:\n columns.append('energy distance')\n ser = pd.DataFrame(out, index=index, columns=columns).unstack()\n ser.index.names = ['calculation type', 'run']\n return ser\n", "role": "user" }, { "content": "pairwise_distances", "role": "assistant" } ]
def x(samples1, samples2, earth_mover_dist=True, energy_dist=True): out = [] temp = scipy.stats.ks_2samp(samples1, samples2) out.append(temp.pvalue) out.append(temp.statistic) if earth_mover_dist: out.append(scipy.stats.wasserstein_distance(samples1, samples2)) if energy_dist: out.append(scipy.stats.energy_distance(samples1, samples2)) return np.asarray(out)
statistical_distances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples1, samples2, earth_mover_dist=True, energy_dist=True):\n out = []\n temp = scipy.stats.ks_2samp(samples1, samples2)\n out.append(temp.pvalue)\n out.append(temp.statistic)\n if earth_mover_dist:\n out.append(scipy.stats.wasserstein_distance(samples1, samples2))\n if energy_dist:\n out.append(scipy.stats.energy_distance(samples1, samples2))\n return np.asarray(out)\n", "role": "user" }, { "content": "statistical_distances", "role": "assistant" } ]
def x(nsamples, **kwargs): seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) logl_start = kwargs.pop('logl_start', -np.inf) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if seed is not False: np.random.seed(seed) thread = {'logl': np.sort(np.random.random(nsamples)) * logl_range, 'nlive_array': np.full(nsamples, 1.0), 'theta': np.random.random(( nsamples, ndim)), 'thread_labels': np.zeros(nsamples).astype(int)} if logl_start != -np.inf: thread['logl'] += logl_start thread['thread_min_max'] = np.asarray([[logl_start, thread['logl'][-1]]]) return thread
get_dummy_thread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nsamples, **kwargs):\n seed = kwargs.pop('seed', False)\n ndim = kwargs.pop('ndim', 2)\n logl_start = kwargs.pop('logl_start', -np.inf)\n logl_range = kwargs.pop('logl_range', 1)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n if seed is not False:\n np.random.seed(seed)\n thread = {'logl': np.sort(np.random.random(nsamples)) * logl_range,\n 'nlive_array': np.full(nsamples, 1.0), 'theta': np.random.random((\n nsamples, ndim)), 'thread_labels': np.zeros(nsamples).astype(int)}\n if logl_start != -np.inf:\n thread['logl'] += logl_start\n thread['thread_min_max'] = np.asarray([[logl_start, thread['logl'][-1]]])\n return thread\n", "role": "user" }, { "content": "get_dummy_thread", "role": "assistant" } ]
def x(nthread, nsamples, **kwargs): seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) logl_start = kwargs.pop('logl_start', -np.inf) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) threads = [] if seed is not False: np.random.seed(seed) threads = [] for _ in range(nthread): threads.append(get_dummy_thread(nsamples, ndim=ndim, seed=False, logl_start=logl_start, logl_range=logl_range)) threads = sorted(threads, key=lambda th: th['logl'][0]) for i, _ in enumerate(threads): threads[i]['thread_labels'] = np.full(nsamples, i) return nestcheck.ns_run_utils.combine_threads(threads)
get_dummy_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nthread, nsamples, **kwargs):\n seed = kwargs.pop('seed', False)\n ndim = kwargs.pop('ndim', 2)\n logl_start = kwargs.pop('logl_start', -np.inf)\n logl_range = kwargs.pop('logl_range', 1)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n threads = []\n if seed is not False:\n np.random.seed(seed)\n threads = []\n for _ in range(nthread):\n threads.append(get_dummy_thread(nsamples, ndim=ndim, seed=False,\n logl_start=logl_start, logl_range=logl_range))\n threads = sorted(threads, key=lambda th: th['logl'][0])\n for i, _ in enumerate(threads):\n threads[i]['thread_labels'] = np.full(nsamples, i)\n return nestcheck.ns_run_utils.combine_threads(threads)\n", "role": "user" }, { "content": "get_dummy_run", "role": "assistant" } ]
def x(nsamples, **kwargs): seed = kwargs.pop('seed', False) ndim = kwargs.pop('ndim', 2) nthread_init = kwargs.pop('nthread_init', 2) nthread_dyn = kwargs.pop('nthread_dyn', 3) logl_range = kwargs.pop('logl_range', 1) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) init = get_dummy_run(nthread_init, nsamples, ndim=ndim, seed=seed, logl_start=-np.inf, logl_range=logl_range) dyn_starts = list(np.random.choice(init['logl'], nthread_dyn, replace=True) ) threads = nestcheck.ns_run_utils.get_run_threads(init) threads += [get_dummy_thread(nsamples, ndim=ndim, seed=False, logl_start=start, logl_range=logl_range) for start in dyn_starts] for i, _ in enumerate(threads): threads[i]['thread_labels'] = np.full(nsamples, i) run = nestcheck.ns_run_utils.combine_threads(threads) samples = nestcheck.write_polychord_output.run_dead_birth_array(run) return nestcheck.data_processing.process_samples_array(samples)
get_dummy_dynamic_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nsamples, **kwargs):\n seed = kwargs.pop('seed', False)\n ndim = kwargs.pop('ndim', 2)\n nthread_init = kwargs.pop('nthread_init', 2)\n nthread_dyn = kwargs.pop('nthread_dyn', 3)\n logl_range = kwargs.pop('logl_range', 1)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n init = get_dummy_run(nthread_init, nsamples, ndim=ndim, seed=seed,\n logl_start=-np.inf, logl_range=logl_range)\n dyn_starts = list(np.random.choice(init['logl'], nthread_dyn, replace=True)\n )\n threads = nestcheck.ns_run_utils.get_run_threads(init)\n threads += [get_dummy_thread(nsamples, ndim=ndim, seed=False,\n logl_start=start, logl_range=logl_range) for start in dyn_starts]\n for i, _ in enumerate(threads):\n threads[i]['thread_labels'] = np.full(nsamples, i)\n run = nestcheck.ns_run_utils.combine_threads(threads)\n samples = nestcheck.write_polychord_output.run_dead_birth_array(run)\n return nestcheck.data_processing.process_samples_array(samples)\n", "role": "user" }, { "content": "get_dummy_dynamic_run", "role": "assistant" } ]
def x(): pkg_dir = get_package_dir() with open(os.path.join(pkg_dir, '.pypi_long_desc.rst')) as readme_file: long_description = readme_file.read() return long_description
get_long_description
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n pkg_dir = get_package_dir()\n with open(os.path.join(pkg_dir, '.pypi_long_desc.rst')) as readme_file:\n long_description = readme_file.read()\n return long_description\n", "role": "user" }, { "content": "get_long_description", "role": "assistant" } ]
def x(): pkg_dir = get_package_dir() with open(os.path.join(pkg_dir, 'nestcheck/_version.py')) as ver_file: string = ver_file.read() return string.strip().replace('__version__ = ', '').replace("'", '')
get_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n pkg_dir = get_package_dir()\n with open(os.path.join(pkg_dir, 'nestcheck/_version.py')) as ver_file:\n string = ver_file.read()\n return string.strip().replace('__version__ = ', '').replace(\"'\", '')\n", "role": "user" }, { "content": "get_version", "role": "assistant" } ]
def x(method_names, run_dict, **kwargs): logx_given_logl = kwargs.pop('logx_given_logl', None) logl_given_logx = kwargs.pop('logl_given_logx', None) logx_min = kwargs.pop('logx_min', None) ymax = kwargs.pop('ymax', None) npoints = kwargs.pop('npoints', 100) figsize = kwargs.pop('figsize', (6.4, 2)) post_mass_norm = kwargs.pop('post_mass_norm', None) cum_post_mass_norm = kwargs.pop('cum_post_mass_norm', None) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) assert set(method_names) == set(run_dict.keys() ), 'input method names=' + str(method_names ) + ' do not match run_dict keys=' + str(run_dict.keys()) fig = plt.figure(figsize=figsize) ax = plt.gca() colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] linecolor_dict = {'standard': colors[2], 'dynamic $G=0$': colors[8], 'dynamic $G=1$': colors[9]} ax.set_prop_cycle('color', [colors[i] for i in [4, 1, 6, 0, 3, 5, 7]]) integrals_dict = {} logx_min_list = [] for method_name in method_names: integrals = np.zeros(len(run_dict[method_name])) for nr, run in enumerate(run_dict[method_name]): if 'logx' in run: logx = run['logx'] elif logx_given_logl is not None: logx = logx_given_logl(run['logl']) else: logx = nestcheck.ns_run_utils.get_logx(run['nlive_array'], simulate=False) logx_min_list.append(logx[-1]) logx[0] = 0 if nr == 0: try: line, = ax.plot(logx, run['nlive_array'], linewidth=1, label=method_name, color=linecolor_dict[method_name]) except KeyError: line, = ax.plot(logx, run['nlive_array'], linewidth=1, label=method_name) else: ax.plot(logx, run['nlive_array'], linewidth=1, color=line. get_color()) integrals[nr] = -np.trapz(run['nlive_array'], x=logx) integrals_dict[method_name] = integrals[np.isfinite(integrals)] if logx_min is None: logx_min = np.asarray(logx_min_list).min() if logl_given_logx is not None: logx_plot = np.linspace(logx_min, 0, npoints) logl = logl_given_logx(logx_plot) logx_plot = logx_plot[np.where(~np.isnan(logl))[0]] logl = logl[np.where(~np.isnan(logl))[0]] w_an = rel_posterior_mass(logx_plot, logl) w_an *= average_by_key(integrals_dict, post_mass_norm) ax.plot(logx_plot, w_an, linewidth=2, label= 'relative posterior mass', linestyle=':', color='k') w_an_c = np.cumsum(w_an) w_an_c /= np.trapz(w_an_c, x=logx_plot) w_an_c *= average_by_key(integrals_dict, cum_post_mass_norm) ax.plot(logx_plot, w_an_c, linewidth=2, linestyle='--', dashes=(2, 3), label='posterior mass remaining', color='darkblue') ax.set_ylabel('number of live points') ax.set_xlabel('$\\log X $') if ymax is not None: ax.set_ylim([0, ymax]) else: ax.set_ylim(bottom=0) ax.set_xlim([logx_min, 0]) ax.legend() return fig
plot_run_nlive
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method_names, run_dict, **kwargs):\n logx_given_logl = kwargs.pop('logx_given_logl', None)\n logl_given_logx = kwargs.pop('logl_given_logx', None)\n logx_min = kwargs.pop('logx_min', None)\n ymax = kwargs.pop('ymax', None)\n npoints = kwargs.pop('npoints', 100)\n figsize = kwargs.pop('figsize', (6.4, 2))\n post_mass_norm = kwargs.pop('post_mass_norm', None)\n cum_post_mass_norm = kwargs.pop('cum_post_mass_norm', None)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n assert set(method_names) == set(run_dict.keys()\n ), 'input method names=' + str(method_names\n ) + ' do not match run_dict keys=' + str(run_dict.keys())\n fig = plt.figure(figsize=figsize)\n ax = plt.gca()\n colors = plt.rcParams['axes.prop_cycle'].by_key()['color']\n linecolor_dict = {'standard': colors[2], 'dynamic $G=0$': colors[8],\n 'dynamic $G=1$': colors[9]}\n ax.set_prop_cycle('color', [colors[i] for i in [4, 1, 6, 0, 3, 5, 7]])\n integrals_dict = {}\n logx_min_list = []\n for method_name in method_names:\n integrals = np.zeros(len(run_dict[method_name]))\n for nr, run in enumerate(run_dict[method_name]):\n if 'logx' in run:\n logx = run['logx']\n elif logx_given_logl is not None:\n logx = logx_given_logl(run['logl'])\n else:\n logx = nestcheck.ns_run_utils.get_logx(run['nlive_array'],\n simulate=False)\n logx_min_list.append(logx[-1])\n logx[0] = 0\n if nr == 0:\n try:\n line, = ax.plot(logx, run['nlive_array'], linewidth=1,\n label=method_name, color=linecolor_dict[method_name])\n except KeyError:\n line, = ax.plot(logx, run['nlive_array'], linewidth=1,\n label=method_name)\n else:\n ax.plot(logx, run['nlive_array'], linewidth=1, color=line.\n get_color())\n integrals[nr] = -np.trapz(run['nlive_array'], x=logx)\n integrals_dict[method_name] = integrals[np.isfinite(integrals)]\n if logx_min is None:\n logx_min = np.asarray(logx_min_list).min()\n if logl_given_logx is not None:\n logx_plot = np.linspace(logx_min, 0, npoints)\n logl = logl_given_logx(logx_plot)\n logx_plot = logx_plot[np.where(~np.isnan(logl))[0]]\n logl = logl[np.where(~np.isnan(logl))[0]]\n w_an = rel_posterior_mass(logx_plot, logl)\n w_an *= average_by_key(integrals_dict, post_mass_norm)\n ax.plot(logx_plot, w_an, linewidth=2, label=\n 'relative posterior mass', linestyle=':', color='k')\n w_an_c = np.cumsum(w_an)\n w_an_c /= np.trapz(w_an_c, x=logx_plot)\n w_an_c *= average_by_key(integrals_dict, cum_post_mass_norm)\n ax.plot(logx_plot, w_an_c, linewidth=2, linestyle='--', dashes=(2, \n 3), label='posterior mass remaining', color='darkblue')\n ax.set_ylabel('number of live points')\n ax.set_xlabel('$\\\\log X $')\n if ymax is not None:\n ax.set_ylim([0, ymax])\n else:\n ax.set_ylim(bottom=0)\n ax.set_xlim([logx_min, 0])\n ax.legend()\n return fig\n", "role": "user" }, { "content": "plot_run_nlive", "role": "assistant" } ]
def x(df, xlims=None, **kwargs): assert xlims is None or isinstance(xlims, dict) figsize = kwargs.pop('figsize', (6.4, 1.5)) num_xticks = kwargs.pop('num_xticks', None) nrows = kwargs.pop('nrows', 1) ncols = kwargs.pop('ncols', int(np.ceil(len(df.columns) / nrows))) normalize = kwargs.pop('normalize', True) legend = kwargs.pop('legend', False) legend_kwargs = kwargs.pop('legend_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize) for nax, col in enumerate(df): if nrows == 1: ax = axes[nax] else: ax = axes[nax // ncols, nax % ncols] supmin = df[col].apply(np.min).min() supmax = df[col].apply(np.max).max() support = np.linspace(supmin - 0.1 * (supmax - supmin), supmax + 0.1 * (supmax - supmin), 200) handles = [] labels = [] for name, samps in df[col].iteritems(): pdf = scipy.stats.gaussian_kde(samps)(support) if not normalize: pdf /= pdf.max() handles.append(ax.plot(support, pdf, label=name)[0]) labels.append(name) ax.set_ylim(bottom=0) ax.set_yticks([]) if xlims is not None: try: ax.set_xlim(xlims[col]) except KeyError: pass ax.set_xlabel(col) if num_xticks is not None: ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins= num_xticks)) if legend: fig.legend(handles, labels, **legend_kwargs) return fig
kde_plot_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, xlims=None, **kwargs):\n assert xlims is None or isinstance(xlims, dict)\n figsize = kwargs.pop('figsize', (6.4, 1.5))\n num_xticks = kwargs.pop('num_xticks', None)\n nrows = kwargs.pop('nrows', 1)\n ncols = kwargs.pop('ncols', int(np.ceil(len(df.columns) / nrows)))\n normalize = kwargs.pop('normalize', True)\n legend = kwargs.pop('legend', False)\n legend_kwargs = kwargs.pop('legend_kwargs', {})\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize)\n for nax, col in enumerate(df):\n if nrows == 1:\n ax = axes[nax]\n else:\n ax = axes[nax // ncols, nax % ncols]\n supmin = df[col].apply(np.min).min()\n supmax = df[col].apply(np.max).max()\n support = np.linspace(supmin - 0.1 * (supmax - supmin), supmax + \n 0.1 * (supmax - supmin), 200)\n handles = []\n labels = []\n for name, samps in df[col].iteritems():\n pdf = scipy.stats.gaussian_kde(samps)(support)\n if not normalize:\n pdf /= pdf.max()\n handles.append(ax.plot(support, pdf, label=name)[0])\n labels.append(name)\n ax.set_ylim(bottom=0)\n ax.set_yticks([])\n if xlims is not None:\n try:\n ax.set_xlim(xlims[col])\n except KeyError:\n pass\n ax.set_xlabel(col)\n if num_xticks is not None:\n ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=\n num_xticks))\n if legend:\n fig.legend(handles, labels, **legend_kwargs)\n return fig\n", "role": "user" }, { "content": "kde_plot_df", "role": "assistant" } ]
def x(run_list, **kwargs): fthetas = kwargs.pop('fthetas', [lambda theta: theta[:, 0], lambda theta: theta[:, 1]]) labels = kwargs.pop('labels', [('$\\theta_' + str(i + 1) + '$') for i in range(len(fthetas))]) ftheta_lims = kwargs.pop('ftheta_lims', [[-1, 1]] * len(fthetas)) n_simulate = kwargs.pop('n_simulate', 100) random_seed = kwargs.pop('random_seed', 0) figsize = kwargs.pop('figsize', (6.4, 2)) nx = kwargs.pop('nx', 100) ny = kwargs.pop('ny', nx) cache_in = kwargs.pop('cache', None) parallel = kwargs.pop('parallel', True) rasterize_contours = kwargs.pop('rasterize_contours', True) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'disable': True}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) state = np.random.get_state() np.random.seed(random_seed) if not isinstance(run_list, list): run_list = [run_list] assert len(labels) == len(fthetas ), 'There should be the same number of axes and labels' width_ratios = [40] * len(fthetas) + [1] * len(run_list) fig, axes = plt.subplots(nrows=1, ncols=len(run_list) + len(fthetas), gridspec_kw={'wspace': 0.1, 'width_ratios': width_ratios}, figsize= figsize) colormaps = ['Reds_r', 'Blues_r', 'Greys_r', 'Greens_r', 'Oranges_r'] mean_colors = ['darkred', 'darkblue', 'darkgrey', 'darkgreen', 'darkorange' ] for nrun, run in reversed(list(enumerate(run_list))): try: cache = cache_in + '_' + str(nrun) except TypeError: cache = None cbar = plot_bs_dists(run, fthetas, axes[:len(fthetas)], parallel= parallel, ftheta_lims=ftheta_lims, cache=cache, n_simulate= n_simulate, nx=nx, ny=ny, rasterize_contours=rasterize_contours, mean_color=mean_colors[nrun], colormap=colormaps[nrun], tqdm_kwargs=tqdm_kwargs) colorbar_plot = plt.colorbar(cbar, cax=axes[len(fthetas) + nrun], ticks=[1, 2, 3]) colorbar_plot.solids.set_edgecolor('face') colorbar_plot.ax.set_yticklabels([]) if nrun == len(run_list) - 1: colorbar_plot.ax.set_yticklabels(['$1\\sigma$', '$2\\sigma$', '$3\\sigma$']) for nax, ax in enumerate(axes[:len(fthetas)]): ax.set_yticks([]) ax.set_xlabel(labels[nax]) if ax.is_first_col(): ax.set_ylabel('probability') prune = 'upper' if nax != len(fthetas) - 1 else None ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=5, prune=prune)) np.random.set_state(state) return fig
bs_param_dists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, **kwargs):\n fthetas = kwargs.pop('fthetas', [lambda theta: theta[:, 0], lambda\n theta: theta[:, 1]])\n labels = kwargs.pop('labels', [('$\\\\theta_' + str(i + 1) + '$') for i in\n range(len(fthetas))])\n ftheta_lims = kwargs.pop('ftheta_lims', [[-1, 1]] * len(fthetas))\n n_simulate = kwargs.pop('n_simulate', 100)\n random_seed = kwargs.pop('random_seed', 0)\n figsize = kwargs.pop('figsize', (6.4, 2))\n nx = kwargs.pop('nx', 100)\n ny = kwargs.pop('ny', nx)\n cache_in = kwargs.pop('cache', None)\n parallel = kwargs.pop('parallel', True)\n rasterize_contours = kwargs.pop('rasterize_contours', True)\n tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'disable': True})\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n state = np.random.get_state()\n np.random.seed(random_seed)\n if not isinstance(run_list, list):\n run_list = [run_list]\n assert len(labels) == len(fthetas\n ), 'There should be the same number of axes and labels'\n width_ratios = [40] * len(fthetas) + [1] * len(run_list)\n fig, axes = plt.subplots(nrows=1, ncols=len(run_list) + len(fthetas),\n gridspec_kw={'wspace': 0.1, 'width_ratios': width_ratios}, figsize=\n figsize)\n colormaps = ['Reds_r', 'Blues_r', 'Greys_r', 'Greens_r', 'Oranges_r']\n mean_colors = ['darkred', 'darkblue', 'darkgrey', 'darkgreen', 'darkorange'\n ]\n for nrun, run in reversed(list(enumerate(run_list))):\n try:\n cache = cache_in + '_' + str(nrun)\n except TypeError:\n cache = None\n cbar = plot_bs_dists(run, fthetas, axes[:len(fthetas)], parallel=\n parallel, ftheta_lims=ftheta_lims, cache=cache, n_simulate=\n n_simulate, nx=nx, ny=ny, rasterize_contours=rasterize_contours,\n mean_color=mean_colors[nrun], colormap=colormaps[nrun],\n tqdm_kwargs=tqdm_kwargs)\n colorbar_plot = plt.colorbar(cbar, cax=axes[len(fthetas) + nrun],\n ticks=[1, 2, 3])\n colorbar_plot.solids.set_edgecolor('face')\n colorbar_plot.ax.set_yticklabels([])\n if nrun == len(run_list) - 1:\n colorbar_plot.ax.set_yticklabels(['$1\\\\sigma$', '$2\\\\sigma$',\n '$3\\\\sigma$'])\n for nax, ax in enumerate(axes[:len(fthetas)]):\n ax.set_yticks([])\n ax.set_xlabel(labels[nax])\n if ax.is_first_col():\n ax.set_ylabel('probability')\n prune = 'upper' if nax != len(fthetas) - 1 else None\n ax.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=5,\n prune=prune))\n np.random.set_state(state)\n return fig\n", "role": "user" }, { "content": "bs_param_dists", "role": "assistant" } ]
def x(run, fthetas, axes, **kwargs): ftheta_lims = kwargs.pop('ftheta_lims', [[-1, 1]] * len(fthetas)) n_simulate = kwargs.pop('n_simulate', 100) colormap = kwargs.pop('colormap', plt.get_cmap('Reds_r')) mean_color = kwargs.pop('mean_color', None) nx = kwargs.pop('nx', 100) ny = kwargs.pop('ny', nx) cache_in = kwargs.pop('cache', None) parallel = kwargs.pop('parallel', True) rasterize_contours = kwargs.pop('rasterize_contours', True) smooth = kwargs.pop('smooth', False) flip_axes = kwargs.pop('flip_axes', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'leave': False}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) assert len(fthetas) == len(axes ), 'There should be the same number of axes and functions to plot' assert len(fthetas) == len(ftheta_lims ), 'There should be the same number of axes and functions to plot' threads = nestcheck.ns_run_utils.get_run_threads(run) bs_samps = [] for i in range(n_simulate): run_temp = nestcheck.error_analysis.bootstrap_resample_run(run, threads=threads) w_temp = nestcheck.ns_run_utils.get_w_rel(run_temp, simulate=False) bs_samps.append((run_temp['theta'], w_temp)) for nf, ftheta in enumerate(fthetas): max_samps = 2 * max([bs_samp[0].shape[0] for bs_samp in bs_samps]) samples_array = np.full((n_simulate, max_samps), np.nan) for i, (theta, weights) in enumerate(bs_samps): nsamp = 2 * theta.shape[0] samples_array[i, :nsamp:2] = ftheta(theta) samples_array[i, 1:nsamp:2] = weights ftheta_vals = np.linspace(ftheta_lims[nf][0], ftheta_lims[nf][1], nx) try: cache = cache_in + '_' + str(nf) except TypeError: cache = None samp_kde = functools.partial(alternate_helper, func= weighted_1d_gaussian_kde) y, pmf = fgivenx.drivers.compute_pmf(samp_kde, ftheta_vals, samples_array, ny=ny, cache=cache, parallel=parallel, tqdm_kwargs=tqdm_kwargs) if flip_axes: cbar = fgivenx.plot.plot(y, ftheta_vals, np.swapaxes(pmf, 0, 1), axes[nf], colors=colormap, rasterize_contours= rasterize_contours, smooth=smooth) else: cbar = fgivenx.plot.plot(ftheta_vals, y, pmf, axes[nf], colors= colormap, rasterize_contours=rasterize_contours, smooth=smooth) if mean_color is not None: w_rel = nestcheck.ns_run_utils.get_w_rel(run, simulate=False) w_rel /= np.sum(w_rel) means = [np.sum(w_rel * f(run['theta'])) for f in fthetas] for nf, mean in enumerate(means): if flip_axes: axes[nf].axhline(y=mean, lw=1, linestyle='--', color=mean_color ) else: axes[nf].axvline(x=mean, lw=1, linestyle='--', color=mean_color ) return cbar
plot_bs_dists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, fthetas, axes, **kwargs):\n ftheta_lims = kwargs.pop('ftheta_lims', [[-1, 1]] * len(fthetas))\n n_simulate = kwargs.pop('n_simulate', 100)\n colormap = kwargs.pop('colormap', plt.get_cmap('Reds_r'))\n mean_color = kwargs.pop('mean_color', None)\n nx = kwargs.pop('nx', 100)\n ny = kwargs.pop('ny', nx)\n cache_in = kwargs.pop('cache', None)\n parallel = kwargs.pop('parallel', True)\n rasterize_contours = kwargs.pop('rasterize_contours', True)\n smooth = kwargs.pop('smooth', False)\n flip_axes = kwargs.pop('flip_axes', False)\n tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'leave': False})\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n assert len(fthetas) == len(axes\n ), 'There should be the same number of axes and functions to plot'\n assert len(fthetas) == len(ftheta_lims\n ), 'There should be the same number of axes and functions to plot'\n threads = nestcheck.ns_run_utils.get_run_threads(run)\n bs_samps = []\n for i in range(n_simulate):\n run_temp = nestcheck.error_analysis.bootstrap_resample_run(run,\n threads=threads)\n w_temp = nestcheck.ns_run_utils.get_w_rel(run_temp, simulate=False)\n bs_samps.append((run_temp['theta'], w_temp))\n for nf, ftheta in enumerate(fthetas):\n max_samps = 2 * max([bs_samp[0].shape[0] for bs_samp in bs_samps])\n samples_array = np.full((n_simulate, max_samps), np.nan)\n for i, (theta, weights) in enumerate(bs_samps):\n nsamp = 2 * theta.shape[0]\n samples_array[i, :nsamp:2] = ftheta(theta)\n samples_array[i, 1:nsamp:2] = weights\n ftheta_vals = np.linspace(ftheta_lims[nf][0], ftheta_lims[nf][1], nx)\n try:\n cache = cache_in + '_' + str(nf)\n except TypeError:\n cache = None\n samp_kde = functools.partial(alternate_helper, func=\n weighted_1d_gaussian_kde)\n y, pmf = fgivenx.drivers.compute_pmf(samp_kde, ftheta_vals,\n samples_array, ny=ny, cache=cache, parallel=parallel,\n tqdm_kwargs=tqdm_kwargs)\n if flip_axes:\n cbar = fgivenx.plot.plot(y, ftheta_vals, np.swapaxes(pmf, 0, 1),\n axes[nf], colors=colormap, rasterize_contours=\n rasterize_contours, smooth=smooth)\n else:\n cbar = fgivenx.plot.plot(ftheta_vals, y, pmf, axes[nf], colors=\n colormap, rasterize_contours=rasterize_contours, smooth=smooth)\n if mean_color is not None:\n w_rel = nestcheck.ns_run_utils.get_w_rel(run, simulate=False)\n w_rel /= np.sum(w_rel)\n means = [np.sum(w_rel * f(run['theta'])) for f in fthetas]\n for nf, mean in enumerate(means):\n if flip_axes:\n axes[nf].axhline(y=mean, lw=1, linestyle='--', color=mean_color\n )\n else:\n axes[nf].axvline(x=mean, lw=1, linestyle='--', color=mean_color\n )\n return cbar\n", "role": "user" }, { "content": "plot_bs_dists", "role": "assistant" } ]
def x(x, alt_samps, func=None): alt_samps = alt_samps[~np.isnan(alt_samps)] arg1 = alt_samps[::2] arg2 = alt_samps[1::2] return func(x, arg1, arg2)
alternate_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, alt_samps, func=None):\n alt_samps = alt_samps[~np.isnan(alt_samps)]\n arg1 = alt_samps[::2]\n arg2 = alt_samps[1::2]\n return func(x, arg1, arg2)\n", "role": "user" }, { "content": "alternate_helper", "role": "assistant" } ]
def x(x, samples, weights): assert x.ndim == 1 assert samples.ndim == 1 assert samples.shape == weights.shape weights /= np.sum(weights) nz_weights = weights[np.nonzero(weights)] nsamp_eff = np.exp(-1.0 * np.sum(nz_weights * np.log(nz_weights))) mu = np.sum(weights * samples) var = np.sum(weights * (samples - mu) ** 2) var *= nsamp_eff / (nsamp_eff - 1) scott_factor = np.power(nsamp_eff, -1.0 / 5) sig = np.sqrt(var) * scott_factor xx, ss = np.meshgrid(x, samples) chisquared = ((xx - ss) / sig) ** 2 energy = np.exp(-0.5 * chisquared) / np.sqrt(2 * np.pi * sig ** 2) result = np.sum(energy * weights[:, np.newaxis], axis=0) return result
weighted_1d_gaussian_kde
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, samples, weights):\n assert x.ndim == 1\n assert samples.ndim == 1\n assert samples.shape == weights.shape\n weights /= np.sum(weights)\n nz_weights = weights[np.nonzero(weights)]\n nsamp_eff = np.exp(-1.0 * np.sum(nz_weights * np.log(nz_weights)))\n mu = np.sum(weights * samples)\n var = np.sum(weights * (samples - mu) ** 2)\n var *= nsamp_eff / (nsamp_eff - 1)\n scott_factor = np.power(nsamp_eff, -1.0 / 5)\n sig = np.sqrt(var) * scott_factor\n xx, ss = np.meshgrid(x, samples)\n chisquared = ((xx - ss) / sig) ** 2\n energy = np.exp(-0.5 * chisquared) / np.sqrt(2 * np.pi * sig ** 2)\n result = np.sum(energy * weights[:, np.newaxis], axis=0)\n return result\n", "role": "user" }, { "content": "weighted_1d_gaussian_kde", "role": "assistant" } ]
def x(logx, logl): logw = logx + logl w_rel = np.exp(logw - logw.max()) w_rel /= np.abs(np.trapz(w_rel, x=logx)) return w_rel
rel_posterior_mass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(logx, logl):\n logw = logx + logl\n w_rel = np.exp(logw - logw.max())\n w_rel /= np.abs(np.trapz(w_rel, x=logx))\n return w_rel\n", "role": "user" }, { "content": "rel_posterior_mass", "role": "assistant" } ]
def x(dict_in, key): if key is None: return np.mean(np.concatenate(list(dict_in.values()))) else: try: return np.mean(dict_in[key]) except KeyError: print('method name "' + key + '" not found, so ' + 'normalise area under the analytic relative posterior ' + 'mass curve using the mean of all methods.') return np.mean(np.concatenate(list(dict_in.values())))
average_by_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dict_in, key):\n if key is None:\n return np.mean(np.concatenate(list(dict_in.values())))\n else:\n try:\n return np.mean(dict_in[key])\n except KeyError:\n print('method name \"' + key + '\" not found, so ' +\n 'normalise area under the analytic relative posterior ' +\n 'mass curve using the mean of all methods.')\n return np.mean(np.concatenate(list(dict_in.values())))\n", "role": "user" }, { "content": "average_by_key", "role": "assistant" } ]
def x(file_roots, **kwargs): base_dir = kwargs.pop('base_dir', 'chains') process_func = kwargs.pop('process_func', process_polychord_run) func_kwargs = kwargs.pop('func_kwargs', {}) func_kwargs['errors_to_handle'] = kwargs.pop('errors_to_handle', ()) data = nestcheck.parallel_utils.parallel_apply(process_error_helper, file_roots, func_args=(base_dir, process_func), func_kwargs= func_kwargs, **kwargs) data = sorted(data, key=lambda x: file_roots.index(x['output'][ 'file_root'])) errors = {} for i, run in enumerate(data): if 'error' in run: try: errors[run['error']].append(i) except KeyError: errors[run['error']] = [i] for error_name, index_list in errors.items(): message = error_name + ' processing ' + str(len(index_list) ) + ' / ' + str(len(file_roots)) + ' files' if len(index_list) != len(file_roots): message += '. Roots with errors have (zero based) indexes: ' + str( index_list) print(message) return [run for run in data if 'error' not in run]
batch_process_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_roots, **kwargs):\n base_dir = kwargs.pop('base_dir', 'chains')\n process_func = kwargs.pop('process_func', process_polychord_run)\n func_kwargs = kwargs.pop('func_kwargs', {})\n func_kwargs['errors_to_handle'] = kwargs.pop('errors_to_handle', ())\n data = nestcheck.parallel_utils.parallel_apply(process_error_helper,\n file_roots, func_args=(base_dir, process_func), func_kwargs=\n func_kwargs, **kwargs)\n data = sorted(data, key=lambda x: file_roots.index(x['output'][\n 'file_root']))\n errors = {}\n for i, run in enumerate(data):\n if 'error' in run:\n try:\n errors[run['error']].append(i)\n except KeyError:\n errors[run['error']] = [i]\n for error_name, index_list in errors.items():\n message = error_name + ' processing ' + str(len(index_list)\n ) + ' / ' + str(len(file_roots)) + ' files'\n if len(index_list) != len(file_roots):\n message += '. Roots with errors have (zero based) indexes: ' + str(\n index_list)\n print(message)\n return [run for run in data if 'error' not in run]\n", "role": "user" }, { "content": "batch_process_data", "role": "assistant" } ]
def x(root, base_dir, process_func, errors_to_handle=(), **func_kwargs): try: return process_func(root, base_dir, **func_kwargs) except errors_to_handle as err: run = {'error': type(err).__name__, 'output': {'file_root': root}} return run
process_error_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root, base_dir, process_func, errors_to_handle=(), **func_kwargs):\n try:\n return process_func(root, base_dir, **func_kwargs)\n except errors_to_handle as err:\n run = {'error': type(err).__name__, 'output': {'file_root': root}}\n return run\n", "role": "user" }, { "content": "process_error_helper", "role": "assistant" } ]
def x(file_root, base_dir, process_stats_file=True, **kwargs): samples = np.loadtxt(os.path.join(base_dir, file_root) + '_dead-birth.txt') ns_run = process_samples_array(samples, **kwargs) ns_run['output'] = {'base_dir': base_dir, 'file_root': file_root} if process_stats_file: try: ns_run['output'] = process_polychord_stats(file_root, base_dir) except (OSError, IOError, ValueError) as err: warnings.warn( 'process_polychord_stats raised {} processing {}.stats file. Proceeding without stats.' .format(type(err).__name__, os.path.join(base_dir, file_root)), UserWarning) return ns_run
process_polychord_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_root, base_dir, process_stats_file=True, **kwargs):\n samples = np.loadtxt(os.path.join(base_dir, file_root) + '_dead-birth.txt')\n ns_run = process_samples_array(samples, **kwargs)\n ns_run['output'] = {'base_dir': base_dir, 'file_root': file_root}\n if process_stats_file:\n try:\n ns_run['output'] = process_polychord_stats(file_root, base_dir)\n except (OSError, IOError, ValueError) as err:\n warnings.warn(\n 'process_polychord_stats raised {} processing {}.stats file. Proceeding without stats.'\n .format(type(err).__name__, os.path.join(base_dir,\n file_root)), UserWarning)\n return ns_run\n", "role": "user" }, { "content": "process_polychord_run", "role": "assistant" } ]
def x(file_root, base_dir, **kwargs): dead = np.loadtxt(os.path.join(base_dir, file_root) + '-dead-birth.txt') live = np.loadtxt(os.path.join(base_dir, file_root) + '-phys_live-birth.txt') dead = dead[:, :-2] live = live[:, :-1] assert dead[:, -2].max() < live[:, -2].min(), ( 'final live points should have greater logls than any dead point!', dead, live) ns_run = process_samples_array(np.vstack((dead, live)), **kwargs) assert np.all(ns_run['thread_min_max'][:, 0] == -np.inf ), 'As MultiNest does not currently perform dynamic nested sampling, all threads should start by sampling the whole prior.' ns_run['output'] = {} ns_run['output']['file_root'] = file_root ns_run['output']['base_dir'] = base_dir return ns_run
process_multinest_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_root, base_dir, **kwargs):\n dead = np.loadtxt(os.path.join(base_dir, file_root) + '-dead-birth.txt')\n live = np.loadtxt(os.path.join(base_dir, file_root) +\n '-phys_live-birth.txt')\n dead = dead[:, :-2]\n live = live[:, :-1]\n assert dead[:, -2].max() < live[:, -2].min(), (\n 'final live points should have greater logls than any dead point!',\n dead, live)\n ns_run = process_samples_array(np.vstack((dead, live)), **kwargs)\n assert np.all(ns_run['thread_min_max'][:, 0] == -np.inf\n ), 'As MultiNest does not currently perform dynamic nested sampling, all threads should start by sampling the whole prior.'\n ns_run['output'] = {}\n ns_run['output']['file_root'] = file_root\n ns_run['output']['base_dir'] = base_dir\n return ns_run\n", "role": "user" }, { "content": "process_multinest_run", "role": "assistant" } ]
def x(results): samples = np.zeros((results.samples.shape[0], results.samples.shape[1] + 3) ) samples[:, 0] = results.logl samples[:, 1] = results.samples_id samples[:, 3:] = results.samples unique_th, first_inds = np.unique(results.samples_id, return_index=True) assert np.array_equal(unique_th, np.asarray(range(unique_th.shape[0]))) thread_min_max = np.full((unique_th.shape[0], 2), np.nan) try: assert unique_th.shape[0] == results.nlive assert np.array_equal(np.unique(results.samples_id[-results.nlive:] ), np.asarray(range(results.nlive)) ), 'perhaps the final live points are not included?' thread_min_max[:, 0] = -np.inf except AttributeError: assert unique_th.shape[0] == sum(results.batch_nlive) for th_lab, ind in zip(unique_th, first_inds): thread_min_max[th_lab, 0] = results.batch_bounds[results. samples_batch[ind], 0] for th_lab in unique_th: final_ind = np.where(results.samples_id == th_lab)[0][-1] thread_min_max[th_lab, 1] = results.logl[final_ind] samples[final_ind, 2] = -1 assert np.all(~np.isnan(thread_min_max)) run = nestcheck.ns_run_utils.dict_given_run_array(samples, thread_min_max) nestcheck.ns_run_utils.check_ns_run(run) return run
process_dynesty_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results):\n samples = np.zeros((results.samples.shape[0], results.samples.shape[1] + 3)\n )\n samples[:, 0] = results.logl\n samples[:, 1] = results.samples_id\n samples[:, 3:] = results.samples\n unique_th, first_inds = np.unique(results.samples_id, return_index=True)\n assert np.array_equal(unique_th, np.asarray(range(unique_th.shape[0])))\n thread_min_max = np.full((unique_th.shape[0], 2), np.nan)\n try:\n assert unique_th.shape[0] == results.nlive\n assert np.array_equal(np.unique(results.samples_id[-results.nlive:]\n ), np.asarray(range(results.nlive))\n ), 'perhaps the final live points are not included?'\n thread_min_max[:, 0] = -np.inf\n except AttributeError:\n assert unique_th.shape[0] == sum(results.batch_nlive)\n for th_lab, ind in zip(unique_th, first_inds):\n thread_min_max[th_lab, 0] = results.batch_bounds[results.\n samples_batch[ind], 0]\n for th_lab in unique_th:\n final_ind = np.where(results.samples_id == th_lab)[0][-1]\n thread_min_max[th_lab, 1] = results.logl[final_ind]\n samples[final_ind, 2] = -1\n assert np.all(~np.isnan(thread_min_max))\n run = nestcheck.ns_run_utils.dict_given_run_array(samples, thread_min_max)\n nestcheck.ns_run_utils.check_ns_run(run)\n return run\n", "role": "user" }, { "content": "process_dynesty_run", "role": "assistant" } ]
def x(file_root, base_dir): filename = os.path.join(base_dir, file_root) + '.stats' output = {'base_dir': base_dir, 'file_root': file_root} with open(filename, 'r') as stats_file: lines = stats_file.readlines() output['logZ'] = float(lines[8].split()[2]) output['logZerr'] = float(lines[8].split()[4]) output['logZs'] = [] output['logZerrs'] = [] for line in lines[14:]: if line[:5] != 'log(Z': break output['logZs'].append(float(re.findall('=(.*)', line)[0].split()[0])) output['logZerrs'].append(float(re.findall('=(.*)', line)[0].split( )[2])) nclust = len(output['logZs']) output['ncluster'] = nclust output['nposterior'] = int(lines[20 + nclust].split()[1]) output['nequals'] = int(lines[21 + nclust].split()[1]) output['ndead'] = int(lines[22 + nclust].split()[1]) output['nlive'] = int(lines[23 + nclust].split()[1]) try: output['nlike'] = int(lines[24 + nclust].split()[1]) except ValueError: output['nlike'] = np.nan output['avnlike'] = float(lines[25 + nclust].split()[1]) output['avnlikeslice'] = float(lines[25 + nclust].split()[3]) if len(lines) > 29 + nclust: output['param_means'] = [] output['param_mean_errs'] = [] for line in lines[29 + nclust:]: output['param_means'].append(float(line.split()[1])) output['param_mean_errs'].append(float(line.split()[3])) return output
process_polychord_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_root, base_dir):\n filename = os.path.join(base_dir, file_root) + '.stats'\n output = {'base_dir': base_dir, 'file_root': file_root}\n with open(filename, 'r') as stats_file:\n lines = stats_file.readlines()\n output['logZ'] = float(lines[8].split()[2])\n output['logZerr'] = float(lines[8].split()[4])\n output['logZs'] = []\n output['logZerrs'] = []\n for line in lines[14:]:\n if line[:5] != 'log(Z':\n break\n output['logZs'].append(float(re.findall('=(.*)', line)[0].split()[0]))\n output['logZerrs'].append(float(re.findall('=(.*)', line)[0].split(\n )[2]))\n nclust = len(output['logZs'])\n output['ncluster'] = nclust\n output['nposterior'] = int(lines[20 + nclust].split()[1])\n output['nequals'] = int(lines[21 + nclust].split()[1])\n output['ndead'] = int(lines[22 + nclust].split()[1])\n output['nlive'] = int(lines[23 + nclust].split()[1])\n try:\n output['nlike'] = int(lines[24 + nclust].split()[1])\n except ValueError:\n output['nlike'] = np.nan\n output['avnlike'] = float(lines[25 + nclust].split()[1])\n output['avnlikeslice'] = float(lines[25 + nclust].split()[3])\n if len(lines) > 29 + nclust:\n output['param_means'] = []\n output['param_mean_errs'] = []\n for line in lines[29 + nclust:]:\n output['param_means'].append(float(line.split()[1]))\n output['param_mean_errs'].append(float(line.split()[3]))\n return output\n", "role": "user" }, { "content": "process_polychord_stats", "role": "assistant" } ]
def x(samples, **kwargs): samples = samples[np.argsort(samples[:, -2])] ns_run = {} ns_run['logl'] = samples[:, -2] ns_run['theta'] = samples[:, :-2] birth_contours = samples[:, -1] birth_inds = birth_inds_given_contours(birth_contours, ns_run['logl'], **kwargs) ns_run['thread_labels'] = threads_given_birth_inds(birth_inds) unique_threads = np.unique(ns_run['thread_labels']) assert np.array_equal(unique_threads, np.asarray(range(unique_threads. shape[0]))) thread_min_max = np.zeros((unique_threads.shape[0], 2)) delta_nlive = np.zeros(samples.shape[0] + 1) for label in unique_threads: thread_inds = np.where(ns_run['thread_labels'] == label)[0] thread_min_max[label, 1] = ns_run['logl'][thread_inds[-1]] thread_start_birth_ind = birth_inds[thread_inds[0]] delta_nlive[thread_inds[-1] + 1] -= 1 if thread_start_birth_ind == birth_inds[0]: thread_min_max[label, 0] = -np.inf delta_nlive[0] += 1 else: assert thread_start_birth_ind >= 0 thread_min_max[label, 0] = ns_run['logl'][thread_start_birth_ind] delta_nlive[thread_start_birth_ind + 1] += 1 ns_run['thread_min_max'] = thread_min_max ns_run['nlive_array'] = np.cumsum(delta_nlive)[:-1] return ns_run
process_samples_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, **kwargs):\n samples = samples[np.argsort(samples[:, -2])]\n ns_run = {}\n ns_run['logl'] = samples[:, -2]\n ns_run['theta'] = samples[:, :-2]\n birth_contours = samples[:, -1]\n birth_inds = birth_inds_given_contours(birth_contours, ns_run['logl'],\n **kwargs)\n ns_run['thread_labels'] = threads_given_birth_inds(birth_inds)\n unique_threads = np.unique(ns_run['thread_labels'])\n assert np.array_equal(unique_threads, np.asarray(range(unique_threads.\n shape[0])))\n thread_min_max = np.zeros((unique_threads.shape[0], 2))\n delta_nlive = np.zeros(samples.shape[0] + 1)\n for label in unique_threads:\n thread_inds = np.where(ns_run['thread_labels'] == label)[0]\n thread_min_max[label, 1] = ns_run['logl'][thread_inds[-1]]\n thread_start_birth_ind = birth_inds[thread_inds[0]]\n delta_nlive[thread_inds[-1] + 1] -= 1\n if thread_start_birth_ind == birth_inds[0]:\n thread_min_max[label, 0] = -np.inf\n delta_nlive[0] += 1\n else:\n assert thread_start_birth_ind >= 0\n thread_min_max[label, 0] = ns_run['logl'][thread_start_birth_ind]\n delta_nlive[thread_start_birth_ind + 1] += 1\n ns_run['thread_min_max'] = thread_min_max\n ns_run['nlive_array'] = np.cumsum(delta_nlive)[:-1]\n return ns_run\n", "role": "user" }, { "content": "process_samples_array", "role": "assistant" } ]
def x(birth_logl_arr, logl_arr, **kwargs): dup_assert = kwargs.pop('dup_assert', False) dup_warn = kwargs.pop('dup_warn', False) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) assert logl_arr.ndim == 1, logl_arr.ndim assert birth_logl_arr.ndim == 1, birth_logl_arr.ndim nestcheck.ns_run_utils.check_ns_run_logls({'logl': logl_arr}, dup_assert=dup_assert, dup_warn=dup_warn) state = np.random.get_state() np.random.seed(0) init_birth = birth_logl_arr[0] assert np.all(birth_logl_arr <= logl_arr), logl_arr[birth_logl_arr > logl_arr] birth_inds = np.full(birth_logl_arr.shape, np.nan) birth_inds[birth_logl_arr == init_birth] = -1 for i, birth_logl in enumerate(birth_logl_arr): if not np.isnan(birth_inds[i]): continue dup_deaths = np.where(logl_arr == birth_logl)[0] if dup_deaths.shape == (1,): birth_inds[i] = dup_deaths[0] continue dup_births = np.where(birth_logl_arr == birth_logl)[0] assert dup_deaths.shape[0] > 1, dup_deaths if np.all(birth_logl_arr[dup_deaths] != birth_logl): np.random.shuffle(dup_deaths) inds_to_use = dup_deaths else: try: inds_to_use = sample_less_than_condition(dup_deaths, dup_births ) except ValueError: raise ValueError( 'There is no way to allocate indexes dup_deaths={} such that each is less than dup_births={}.' .format(dup_deaths, dup_births)) try: birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]] except ValueError: warnings.warn( 'for logl={}, the number of points born (indexes={}) is bigger than the number of points dying (indexes={}). This indicates a problem with your nested sampling software - it may be caused by a bug in PolyChord which was fixed in PolyChord v1.14, so try upgrading. I will try to give an approximate allocation of threads but this may fail.' .format(birth_logl, dup_births, inds_to_use), UserWarning) extra_inds = np.random.choice(inds_to_use, size=dup_births. shape[0] - inds_to_use.shape[0]) inds_to_use = np.concatenate((inds_to_use, extra_inds)) np.random.shuffle(inds_to_use) birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]] assert np.all(~np.isnan(birth_inds)), np.isnan(birth_inds).sum() np.random.set_state(state) return birth_inds.astype(int)
birth_inds_given_contours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(birth_logl_arr, logl_arr, **kwargs):\n dup_assert = kwargs.pop('dup_assert', False)\n dup_warn = kwargs.pop('dup_warn', False)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n assert logl_arr.ndim == 1, logl_arr.ndim\n assert birth_logl_arr.ndim == 1, birth_logl_arr.ndim\n nestcheck.ns_run_utils.check_ns_run_logls({'logl': logl_arr},\n dup_assert=dup_assert, dup_warn=dup_warn)\n state = np.random.get_state()\n np.random.seed(0)\n init_birth = birth_logl_arr[0]\n assert np.all(birth_logl_arr <= logl_arr), logl_arr[birth_logl_arr >\n logl_arr]\n birth_inds = np.full(birth_logl_arr.shape, np.nan)\n birth_inds[birth_logl_arr == init_birth] = -1\n for i, birth_logl in enumerate(birth_logl_arr):\n if not np.isnan(birth_inds[i]):\n continue\n dup_deaths = np.where(logl_arr == birth_logl)[0]\n if dup_deaths.shape == (1,):\n birth_inds[i] = dup_deaths[0]\n continue\n dup_births = np.where(birth_logl_arr == birth_logl)[0]\n assert dup_deaths.shape[0] > 1, dup_deaths\n if np.all(birth_logl_arr[dup_deaths] != birth_logl):\n np.random.shuffle(dup_deaths)\n inds_to_use = dup_deaths\n else:\n try:\n inds_to_use = sample_less_than_condition(dup_deaths, dup_births\n )\n except ValueError:\n raise ValueError(\n 'There is no way to allocate indexes dup_deaths={} such that each is less than dup_births={}.'\n .format(dup_deaths, dup_births))\n try:\n birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]]\n except ValueError:\n warnings.warn(\n 'for logl={}, the number of points born (indexes={}) is bigger than the number of points dying (indexes={}). This indicates a problem with your nested sampling software - it may be caused by a bug in PolyChord which was fixed in PolyChord v1.14, so try upgrading. I will try to give an approximate allocation of threads but this may fail.'\n .format(birth_logl, dup_births, inds_to_use), UserWarning)\n extra_inds = np.random.choice(inds_to_use, size=dup_births.\n shape[0] - inds_to_use.shape[0])\n inds_to_use = np.concatenate((inds_to_use, extra_inds))\n np.random.shuffle(inds_to_use)\n birth_inds[dup_births] = inds_to_use[:dup_births.shape[0]]\n assert np.all(~np.isnan(birth_inds)), np.isnan(birth_inds).sum()\n np.random.set_state(state)\n return birth_inds.astype(int)\n", "role": "user" }, { "content": "birth_inds_given_contours", "role": "assistant" } ]
def x(choices_in, condition): output = np.zeros(min(condition.shape[0], choices_in.shape[0])) choices = copy.deepcopy(choices_in) for i, _ in enumerate(output): avail_inds = np.where(choices < condition[i])[0] selected_ind = np.random.choice(avail_inds) output[i] = choices[selected_ind] choices = np.delete(choices, selected_ind) return output
sample_less_than_condition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(choices_in, condition):\n output = np.zeros(min(condition.shape[0], choices_in.shape[0]))\n choices = copy.deepcopy(choices_in)\n for i, _ in enumerate(output):\n avail_inds = np.where(choices < condition[i])[0]\n selected_ind = np.random.choice(avail_inds)\n output[i] = choices[selected_ind]\n choices = np.delete(choices, selected_ind)\n return output\n", "role": "user" }, { "content": "sample_less_than_condition", "role": "assistant" } ]
def x(birth_inds): unique, counts = np.unique(birth_inds, return_counts=True) thread_start_inds = np.concatenate((unique[:1], unique[1:][counts[1:] > 1]) ) thread_start_counts = np.concatenate((counts[:1], counts[1:][counts[1:] > 1] - 1)) thread_labels = np.full(birth_inds.shape, np.nan) thread_num = 0 for nmulti, multi in enumerate(thread_start_inds): for i, start_ind in enumerate(np.where(birth_inds == multi)[0]): if i != 0 or nmulti == 0: assert np.isnan(thread_labels[start_ind]) thread_labels[start_ind] = thread_num next_ind = np.where(birth_inds == start_ind)[0] while next_ind.shape != (0,): assert np.isnan(thread_labels[next_ind[0]]) thread_labels[next_ind[0]] = thread_num next_ind = np.where(birth_inds == next_ind[0])[0] thread_num += 1 if not np.all(~np.isnan(thread_labels)): warnings.warn( """{} points (out of a total of {}) were not given a thread label! This is likely due to small numerical errors in your nested sampling software while running the calculation or writing the input files. I will try to give an approximate answer by randomly assigning these points to threads. Indexes without labels are {} Indexes on which threads start are {} with {} threads starting on each.""" .format(np.isnan(thread_labels).sum(), birth_inds.shape[0], np. where(np.isnan(thread_labels))[0], thread_start_inds, thread_start_counts)) inds = np.where(np.isnan(thread_labels))[0] state = np.random.get_state() np.random.seed(0) for ind in inds: labels_to_choose = np.intersect1d(thread_labels[:ind], thread_labels[ind + 1:]) if labels_to_choose.shape[0] == 0: labels_to_choose = np.unique(thread_labels[~np.isnan( thread_labels)]) thread_labels[ind] = np.random.choice(labels_to_choose) np.random.set_state(state) assert np.all(~np.isnan(thread_labels) ), '{} points still do not have thread labels'.format(np.isnan( thread_labels).sum()) assert np.array_equal(thread_labels, thread_labels.astype(int) ), 'Thread labels should all be ints!' thread_labels = thread_labels.astype(int) assert np.array_equal(np.unique(thread_labels), np.asarray(range(sum( thread_start_counts)))), str(np.unique(thread_labels) ) + ' is not equal to range(' + str(sum(thread_start_counts)) + ')' return thread_labels
threads_given_birth_inds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(birth_inds):\n unique, counts = np.unique(birth_inds, return_counts=True)\n thread_start_inds = np.concatenate((unique[:1], unique[1:][counts[1:] > 1])\n )\n thread_start_counts = np.concatenate((counts[:1], counts[1:][counts[1:] >\n 1] - 1))\n thread_labels = np.full(birth_inds.shape, np.nan)\n thread_num = 0\n for nmulti, multi in enumerate(thread_start_inds):\n for i, start_ind in enumerate(np.where(birth_inds == multi)[0]):\n if i != 0 or nmulti == 0:\n assert np.isnan(thread_labels[start_ind])\n thread_labels[start_ind] = thread_num\n next_ind = np.where(birth_inds == start_ind)[0]\n while next_ind.shape != (0,):\n assert np.isnan(thread_labels[next_ind[0]])\n thread_labels[next_ind[0]] = thread_num\n next_ind = np.where(birth_inds == next_ind[0])[0]\n thread_num += 1\n if not np.all(~np.isnan(thread_labels)):\n warnings.warn(\n \"\"\"{} points (out of a total of {}) were not given a thread label! This is likely due to small numerical errors in your nested sampling software while running the calculation or writing the input files. I will try to give an approximate answer by randomly assigning these points to threads.\nIndexes without labels are {}\nIndexes on which threads start are {} with {} threads starting on each.\"\"\"\n .format(np.isnan(thread_labels).sum(), birth_inds.shape[0], np.\n where(np.isnan(thread_labels))[0], thread_start_inds,\n thread_start_counts))\n inds = np.where(np.isnan(thread_labels))[0]\n state = np.random.get_state()\n np.random.seed(0)\n for ind in inds:\n labels_to_choose = np.intersect1d(thread_labels[:ind],\n thread_labels[ind + 1:])\n if labels_to_choose.shape[0] == 0:\n labels_to_choose = np.unique(thread_labels[~np.isnan(\n thread_labels)])\n thread_labels[ind] = np.random.choice(labels_to_choose)\n np.random.set_state(state)\n assert np.all(~np.isnan(thread_labels)\n ), '{} points still do not have thread labels'.format(np.isnan(\n thread_labels).sum())\n assert np.array_equal(thread_labels, thread_labels.astype(int)\n ), 'Thread labels should all be ints!'\n thread_labels = thread_labels.astype(int)\n assert np.array_equal(np.unique(thread_labels), np.asarray(range(sum(\n thread_start_counts)))), str(np.unique(thread_labels)\n ) + ' is not equal to range(' + str(sum(thread_start_counts)) + ')'\n return thread_labels\n", "role": "user" }, { "content": "threads_given_birth_inds", "role": "assistant" } ]
def x(func, *arg_iterable, **kwargs): chunksize = kwargs.pop('chunksize', 1) func_pre_args = kwargs.pop('func_pre_args', ()) func_kwargs = kwargs.pop('func_kwargs', {}) max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) parallel_warning = kwargs.pop('parallel_warning', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) func_to_map = functools.partial(func, *func_pre_args, **func_kwargs) if parallel: pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) return list(pool.map(func_to_map, *arg_iterable, chunksize=chunksize)) else: if parallel_warning: warnings.warn( 'parallel_map has parallel=False - turn on parallelisation for faster processing' , UserWarning) return list(map(func_to_map, *arg_iterable))
parallel_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, *arg_iterable, **kwargs):\n chunksize = kwargs.pop('chunksize', 1)\n func_pre_args = kwargs.pop('func_pre_args', ())\n func_kwargs = kwargs.pop('func_kwargs', {})\n max_workers = kwargs.pop('max_workers', None)\n parallel = kwargs.pop('parallel', True)\n parallel_warning = kwargs.pop('parallel_warning', True)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n func_to_map = functools.partial(func, *func_pre_args, **func_kwargs)\n if parallel:\n pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)\n return list(pool.map(func_to_map, *arg_iterable, chunksize=chunksize))\n else:\n if parallel_warning:\n warnings.warn(\n 'parallel_map has parallel=False - turn on parallelisation for faster processing'\n , UserWarning)\n return list(map(func_to_map, *arg_iterable))\n", "role": "user" }, { "content": "parallel_map", "role": "assistant" } ]
def x(func, arg_iterable, **kwargs): max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) parallel_warning = kwargs.pop('parallel_warning', True) func_args = kwargs.pop('func_args', ()) func_pre_args = kwargs.pop('func_pre_args', ()) func_kwargs = kwargs.pop('func_kwargs', {}) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if 'leave' not in tqdm_kwargs: tqdm_kwargs['leave'] = False assert isinstance(func_args, tuple), str(func_args) + ' is type ' + str( type(func_args)) assert isinstance(func_pre_args, tuple), str(func_pre_args ) + ' is type ' + str(type(func_pre_args)) progress = select_tqdm() if not parallel: if parallel_warning: warnings.warn( 'parallel_map has parallel=False - turn on parallelisation for faster processing' , UserWarning) return [func(*(func_pre_args + (x,) + func_args), **func_kwargs) for x in progress(arg_iterable, **tqdm_kwargs)] else: pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) futures = [] for element in arg_iterable: futures.append(pool.submit(func, *(func_pre_args + (element,) + func_args), **func_kwargs)) results = [] for fut in progress(concurrent.futures.as_completed(futures), total =len(arg_iterable), **tqdm_kwargs): results.append(fut.result()) return results
parallel_apply
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, arg_iterable, **kwargs):\n max_workers = kwargs.pop('max_workers', None)\n parallel = kwargs.pop('parallel', True)\n parallel_warning = kwargs.pop('parallel_warning', True)\n func_args = kwargs.pop('func_args', ())\n func_pre_args = kwargs.pop('func_pre_args', ())\n func_kwargs = kwargs.pop('func_kwargs', {})\n tqdm_kwargs = kwargs.pop('tqdm_kwargs', {})\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n if 'leave' not in tqdm_kwargs:\n tqdm_kwargs['leave'] = False\n assert isinstance(func_args, tuple), str(func_args) + ' is type ' + str(\n type(func_args))\n assert isinstance(func_pre_args, tuple), str(func_pre_args\n ) + ' is type ' + str(type(func_pre_args))\n progress = select_tqdm()\n if not parallel:\n if parallel_warning:\n warnings.warn(\n 'parallel_map has parallel=False - turn on parallelisation for faster processing'\n , UserWarning)\n return [func(*(func_pre_args + (x,) + func_args), **func_kwargs) for\n x in progress(arg_iterable, **tqdm_kwargs)]\n else:\n pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)\n futures = []\n for element in arg_iterable:\n futures.append(pool.submit(func, *(func_pre_args + (element,) +\n func_args), **func_kwargs))\n results = []\n for fut in progress(concurrent.futures.as_completed(futures), total\n =len(arg_iterable), **tqdm_kwargs):\n results.append(fut.result())\n return results\n", "role": "user" }, { "content": "parallel_apply", "role": "assistant" } ]
def x(): try: progress = tqdm.tqdm_notebook assert get_ipython().has_trait('kernel') except (NameError, AssertionError): progress = tqdm.tqdm return progress
select_tqdm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n try:\n progress = tqdm.tqdm_notebook\n assert get_ipython().has_trait('kernel')\n except (NameError, AssertionError):\n progress = tqdm.tqdm\n return progress\n", "role": "user" }, { "content": "select_tqdm", "role": "assistant" } ]
def x(results_array, names, axis=0, **kwargs): assert axis == 0 or axis == 1 df = pd.DataFrame(results_array) if axis == 1: df = df.T df.columns = names return summary_df(df, **kwargs)
summary_df_from_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results_array, names, axis=0, **kwargs):\n assert axis == 0 or axis == 1\n df = pd.DataFrame(results_array)\n if axis == 1:\n df = df.T\n df.columns = names\n return summary_df(df, **kwargs)\n", "role": "user" }, { "content": "summary_df_from_array", "role": "assistant" } ]
def x(results_list, names, **kwargs): for arr in results_list: assert arr.shape == (len(names),) df = pd.DataFrame(np.stack(results_list, axis=0)) df.columns = names return summary_df(df, **kwargs)
summary_df_from_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results_list, names, **kwargs):\n for arr in results_list:\n assert arr.shape == (len(names),)\n df = pd.DataFrame(np.stack(results_list, axis=0))\n df.columns = names\n return summary_df(df, **kwargs)\n", "role": "user" }, { "content": "summary_df_from_list", "role": "assistant" } ]
def x(multi_in, inds_to_keep=None, **kwargs): include_true_values = kwargs.pop('include_true_values', False) true_values = kwargs.get('true_values', None) if inds_to_keep is None: inds_to_keep = list(multi_in.index.names)[:-1] if 'calculation type' not in inds_to_keep: df = multi_in.groupby(inds_to_keep).apply(summary_df, include_true_values=False, **kwargs) else: inds_to_keep = [(lev if lev != 'calculation type' else 'calculation type temp') for lev in inds_to_keep] multi_temp = copy.deepcopy(multi_in) multi_temp.index.set_names([(lev if lev != 'calculation type' else 'calculation type temp') for lev in list(multi_temp.index.names )], inplace=True) df = multi_temp.groupby(inds_to_keep).apply(summary_df, include_true_values=False, **kwargs) ind = df.index.get_level_values('calculation type temp' ) + ' ' + df.index.get_level_values('calculation type') order = list(df.index.names) order.remove('calculation type temp') df.index = df.index.droplevel(['calculation type', 'calculation type temp']) df['calculation type'] = list(ind) df.set_index('calculation type', append=True, inplace=True) df = df.reorder_levels(order) if include_true_values: assert true_values is not None tv_ind = [('true values' if name == 'calculation type' else '') for name in df.index.names[:-1]] + ['value'] df.loc[tuple(tv_ind), :] = true_values return df
summary_df_from_multi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(multi_in, inds_to_keep=None, **kwargs):\n include_true_values = kwargs.pop('include_true_values', False)\n true_values = kwargs.get('true_values', None)\n if inds_to_keep is None:\n inds_to_keep = list(multi_in.index.names)[:-1]\n if 'calculation type' not in inds_to_keep:\n df = multi_in.groupby(inds_to_keep).apply(summary_df,\n include_true_values=False, **kwargs)\n else:\n inds_to_keep = [(lev if lev != 'calculation type' else\n 'calculation type temp') for lev in inds_to_keep]\n multi_temp = copy.deepcopy(multi_in)\n multi_temp.index.set_names([(lev if lev != 'calculation type' else\n 'calculation type temp') for lev in list(multi_temp.index.names\n )], inplace=True)\n df = multi_temp.groupby(inds_to_keep).apply(summary_df,\n include_true_values=False, **kwargs)\n ind = df.index.get_level_values('calculation type temp'\n ) + ' ' + df.index.get_level_values('calculation type')\n order = list(df.index.names)\n order.remove('calculation type temp')\n df.index = df.index.droplevel(['calculation type',\n 'calculation type temp'])\n df['calculation type'] = list(ind)\n df.set_index('calculation type', append=True, inplace=True)\n df = df.reorder_levels(order)\n if include_true_values:\n assert true_values is not None\n tv_ind = [('true values' if name == 'calculation type' else '') for\n name in df.index.names[:-1]] + ['value']\n df.loc[tuple(tv_ind), :] = true_values\n return df\n", "role": "user" }, { "content": "summary_df_from_multi", "role": "assistant" } ]
def x(df_in, **kwargs): true_values = kwargs.pop('true_values', None) include_true_values = kwargs.pop('include_true_values', False) include_rmse = kwargs.pop('include_rmse', False) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if true_values is not None: assert true_values.shape[0] == df_in.shape[1 ], 'There should be one true value for every column! true_values.shape=' + str( true_values.shape) + ', df_in.shape=' + str(df_in.shape) df = pd.DataFrame([df_in.mean(axis=0), df_in.std(axis=0, ddof=1)], index=['mean', 'std']) if include_true_values: assert true_values is not None df.loc['true values'] = true_values df.index = pd.CategoricalIndex(df.index.values, ordered=True, categories=['true values', 'mean', 'std', 'rmse'], name= 'calculation type') num_cals = df_in.shape[0] mean_unc = df.loc['std'] / np.sqrt(num_cals) std_unc = df.loc['std'] * np.sqrt(1 / (2 * (num_cals - 1))) df['result type'] = pd.Categorical(['value'] * df.shape[0], ordered= True, categories=['value', 'uncertainty']) df.set_index(['result type'], drop=True, append=True, inplace=True) df.loc[('mean', 'uncertainty'), :] = mean_unc.values df.loc[('std', 'uncertainty'), :] = std_unc.values if include_rmse: assert true_values is not None, 'Need to input true values for RMSE!' rmse, rmse_unc = rmse_and_unc(df_in.values, true_values) df.loc[('rmse', 'value'), :] = rmse df.loc[('rmse', 'uncertainty'), :] = rmse_unc df.sort_index(inplace=True) df.set_index([df.index.get_level_values('calculation type').astype(str), df.index.get_level_values('result type')], inplace=True) return df
summary_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df_in, **kwargs):\n true_values = kwargs.pop('true_values', None)\n include_true_values = kwargs.pop('include_true_values', False)\n include_rmse = kwargs.pop('include_rmse', False)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n if true_values is not None:\n assert true_values.shape[0] == df_in.shape[1\n ], 'There should be one true value for every column! true_values.shape=' + str(\n true_values.shape) + ', df_in.shape=' + str(df_in.shape)\n df = pd.DataFrame([df_in.mean(axis=0), df_in.std(axis=0, ddof=1)],\n index=['mean', 'std'])\n if include_true_values:\n assert true_values is not None\n df.loc['true values'] = true_values\n df.index = pd.CategoricalIndex(df.index.values, ordered=True,\n categories=['true values', 'mean', 'std', 'rmse'], name=\n 'calculation type')\n num_cals = df_in.shape[0]\n mean_unc = df.loc['std'] / np.sqrt(num_cals)\n std_unc = df.loc['std'] * np.sqrt(1 / (2 * (num_cals - 1)))\n df['result type'] = pd.Categorical(['value'] * df.shape[0], ordered=\n True, categories=['value', 'uncertainty'])\n df.set_index(['result type'], drop=True, append=True, inplace=True)\n df.loc[('mean', 'uncertainty'), :] = mean_unc.values\n df.loc[('std', 'uncertainty'), :] = std_unc.values\n if include_rmse:\n assert true_values is not None, 'Need to input true values for RMSE!'\n rmse, rmse_unc = rmse_and_unc(df_in.values, true_values)\n df.loc[('rmse', 'value'), :] = rmse\n df.loc[('rmse', 'uncertainty'), :] = rmse_unc\n df.sort_index(inplace=True)\n df.set_index([df.index.get_level_values('calculation type').astype(str),\n df.index.get_level_values('result type')], inplace=True)\n return df\n", "role": "user" }, { "content": "summary_df", "role": "assistant" } ]
def x(method_names, method_values, est_names, **kwargs): true_values = kwargs.pop('true_values', None) include_true_values = kwargs.pop('include_true_values', False) include_rmse = kwargs.pop('include_rmse', False) adjust_nsamp = kwargs.pop('adjust_nsamp', None) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) if adjust_nsamp is not None: assert adjust_nsamp.shape == (len(method_names),) assert len(method_names) == len(method_values) df_dict = {} for i, method_name in enumerate(method_names): df = summary_df_from_list(method_values[i], est_names, true_values= true_values, include_true_values=False, include_rmse=include_rmse) if i != 0: stats = ['std'] if include_rmse: stats.append('rmse') if adjust_nsamp is not None: adjust = adjust_nsamp[0] / adjust_nsamp[i] else: adjust = 1 for stat in stats: gain, gain_unc = get_eff_gain(df_dict[method_names[0]].loc[ stat, 'value'], df_dict[method_names[0]].loc[stat, 'uncertainty'], df.loc[stat, 'value'], df.loc[stat, 'uncertainty'], adjust=adjust) key = stat + ' efficiency gain' df.loc[(key, 'value'), :] = gain df.loc[(key, 'uncertainty'), :] = gain_unc df_dict[method_name] = df results = pd.concat(df_dict) results.index.rename('dynamic settings', level=0, inplace=True) new_ind = [] new_ind.append(pd.CategoricalIndex(results.index.get_level_values( 'calculation type'), ordered=True, categories=['true values', 'mean', 'std', 'rmse', 'std efficiency gain', 'rmse efficiency gain'])) new_ind.append(pd.CategoricalIndex(results.index.get_level_values( 'dynamic settings'), ordered=True, categories=[''] + method_names)) new_ind.append(results.index.get_level_values('result type')) results.set_index(new_ind, inplace=True) if include_true_values: with warnings.catch_warnings(): warnings.filterwarnings('ignore', message= 'indexing past lexsort depth may impact performance.') results.loc[('true values', '', 'value'), :] = true_values results.sort_index(inplace=True) return results
efficiency_gain_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method_names, method_values, est_names, **kwargs):\n true_values = kwargs.pop('true_values', None)\n include_true_values = kwargs.pop('include_true_values', False)\n include_rmse = kwargs.pop('include_rmse', False)\n adjust_nsamp = kwargs.pop('adjust_nsamp', None)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n if adjust_nsamp is not None:\n assert adjust_nsamp.shape == (len(method_names),)\n assert len(method_names) == len(method_values)\n df_dict = {}\n for i, method_name in enumerate(method_names):\n df = summary_df_from_list(method_values[i], est_names, true_values=\n true_values, include_true_values=False, include_rmse=include_rmse)\n if i != 0:\n stats = ['std']\n if include_rmse:\n stats.append('rmse')\n if adjust_nsamp is not None:\n adjust = adjust_nsamp[0] / adjust_nsamp[i]\n else:\n adjust = 1\n for stat in stats:\n gain, gain_unc = get_eff_gain(df_dict[method_names[0]].loc[\n stat, 'value'], df_dict[method_names[0]].loc[stat,\n 'uncertainty'], df.loc[stat, 'value'], df.loc[stat,\n 'uncertainty'], adjust=adjust)\n key = stat + ' efficiency gain'\n df.loc[(key, 'value'), :] = gain\n df.loc[(key, 'uncertainty'), :] = gain_unc\n df_dict[method_name] = df\n results = pd.concat(df_dict)\n results.index.rename('dynamic settings', level=0, inplace=True)\n new_ind = []\n new_ind.append(pd.CategoricalIndex(results.index.get_level_values(\n 'calculation type'), ordered=True, categories=['true values',\n 'mean', 'std', 'rmse', 'std efficiency gain', 'rmse efficiency gain']))\n new_ind.append(pd.CategoricalIndex(results.index.get_level_values(\n 'dynamic settings'), ordered=True, categories=[''] + method_names))\n new_ind.append(results.index.get_level_values('result type'))\n results.set_index(new_ind, inplace=True)\n if include_true_values:\n with warnings.catch_warnings():\n warnings.filterwarnings('ignore', message=\n 'indexing past lexsort depth may impact performance.')\n results.loc[('true values', '', 'value'), :] = true_values\n results.sort_index(inplace=True)\n return results\n", "role": "user" }, { "content": "efficiency_gain_df", "role": "assistant" } ]
def x(eff_gain_df): idxs = pd.IndexSlice[['std', 'std efficiency gain'], :, :] paper_df = copy.deepcopy(eff_gain_df.loc[idxs, :]) means = eff_gain_df.xs('mean', level='calculation type').xs('value', level='result type') for col in ['samples', 'likelihood calls']: try: col_vals = [] for val in means[col].values: col_vals += [int(np.rint(val)), np.nan] col_vals += [np.nan] * (paper_df.shape[0] - len(col_vals)) paper_df[col] = col_vals except KeyError: pass row_name_map = {'std efficiency gain': 'Efficiency gain', 'St.Dev. efficiency gain': 'Efficiency gain', 'dynamic ': '', 'std': 'St.Dev.'} row_names = paper_df.index.get_level_values(0).astype(str ) + ' ' + paper_df.index.get_level_values(1).astype(str) for key, value in row_name_map.items(): row_names = row_names.str.replace(key, value) paper_df.index = [row_names, paper_df.index.get_level_values(2)] return paper_df
paper_format_efficiency_gain_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(eff_gain_df):\n idxs = pd.IndexSlice[['std', 'std efficiency gain'], :, :]\n paper_df = copy.deepcopy(eff_gain_df.loc[idxs, :])\n means = eff_gain_df.xs('mean', level='calculation type').xs('value',\n level='result type')\n for col in ['samples', 'likelihood calls']:\n try:\n col_vals = []\n for val in means[col].values:\n col_vals += [int(np.rint(val)), np.nan]\n col_vals += [np.nan] * (paper_df.shape[0] - len(col_vals))\n paper_df[col] = col_vals\n except KeyError:\n pass\n row_name_map = {'std efficiency gain': 'Efficiency gain',\n 'St.Dev. efficiency gain': 'Efficiency gain', 'dynamic ': '', 'std':\n 'St.Dev.'}\n row_names = paper_df.index.get_level_values(0).astype(str\n ) + ' ' + paper_df.index.get_level_values(1).astype(str)\n for key, value in row_name_map.items():\n row_names = row_names.str.replace(key, value)\n paper_df.index = [row_names, paper_df.index.get_level_values(2)]\n return paper_df\n", "role": "user" }, { "content": "paper_format_efficiency_gain_df", "role": "assistant" } ]
def x(base_std, base_std_unc, meth_std, meth_std_unc, adjust=1): ratio = base_std / meth_std ratio_unc = array_ratio_std(base_std, base_std_unc, meth_std, meth_std_unc) gain = ratio ** 2 gain_unc = 2 * ratio * ratio_unc gain *= adjust gain_unc *= adjust return gain, gain_unc
get_eff_gain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(base_std, base_std_unc, meth_std, meth_std_unc, adjust=1):\n ratio = base_std / meth_std\n ratio_unc = array_ratio_std(base_std, base_std_unc, meth_std, meth_std_unc)\n gain = ratio ** 2\n gain_unc = 2 * ratio * ratio_unc\n gain *= adjust\n gain_unc *= adjust\n return gain, gain_unc\n", "role": "user" }, { "content": "get_eff_gain", "role": "assistant" } ]
def x(values_array, true_values): assert true_values.shape == (values_array.shape[1],) errors = values_array - true_values[np.newaxis, :] sq_errors = errors ** 2 sq_errors_mean = np.mean(sq_errors, axis=0) sq_errors_mean_unc = np.std(sq_errors, axis=0, ddof=1) / np.sqrt(sq_errors .shape[0]) rmse = np.sqrt(sq_errors_mean) rmse_unc = 0.5 * (1 / rmse) * sq_errors_mean_unc return rmse, rmse_unc
rmse_and_unc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values_array, true_values):\n assert true_values.shape == (values_array.shape[1],)\n errors = values_array - true_values[np.newaxis, :]\n sq_errors = errors ** 2\n sq_errors_mean = np.mean(sq_errors, axis=0)\n sq_errors_mean_unc = np.std(sq_errors, axis=0, ddof=1) / np.sqrt(sq_errors\n .shape[0])\n rmse = np.sqrt(sq_errors_mean)\n rmse_unc = 0.5 * (1 / rmse) * sq_errors_mean_unc\n return rmse, rmse_unc\n", "role": "user" }, { "content": "rmse_and_unc", "role": "assistant" } ]
def x(values_n, sigmas_n, values_d, sigmas_d): std = np.sqrt((sigmas_n / values_n) ** 2 + (sigmas_d / values_d) ** 2) std *= values_n / values_d return std
array_ratio_std
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values_n, sigmas_n, values_d, sigmas_d):\n std = np.sqrt((sigmas_n / values_n) ** 2 + (sigmas_d / values_d) ** 2)\n std *= values_n / values_d\n return std\n", "role": "user" }, { "content": "array_ratio_std", "role": "assistant" } ]
def x(ns_run, estimator_list, simulate=False): logw = get_logw(ns_run, simulate=simulate) output = np.zeros(len(estimator_list)) for i, est in enumerate(estimator_list): output[i] = est(ns_run, logw=logw) return output
run_estimators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, estimator_list, simulate=False):\n logw = get_logw(ns_run, simulate=simulate)\n output = np.zeros(len(estimator_list))\n for i, est in enumerate(estimator_list):\n output[i] = est(ns_run, logw=logw)\n return output\n", "role": "user" }, { "content": "run_estimators", "role": "assistant" } ]
def x(ns_run): samples = np.zeros((ns_run['logl'].shape[0], 3 + ns_run['theta'].shape[1])) samples[:, 0] = ns_run['logl'] samples[:, 1] = ns_run['thread_labels'] samples[:-1, 2] = np.diff(ns_run['nlive_array']) samples[-1, 2] = -1 samples[:, 3:] = ns_run['theta'] return samples
array_given_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run):\n samples = np.zeros((ns_run['logl'].shape[0], 3 + ns_run['theta'].shape[1]))\n samples[:, 0] = ns_run['logl']\n samples[:, 1] = ns_run['thread_labels']\n samples[:-1, 2] = np.diff(ns_run['nlive_array'])\n samples[-1, 2] = -1\n samples[:, 3:] = ns_run['theta']\n return samples\n", "role": "user" }, { "content": "array_given_run", "role": "assistant" } ]
def x(samples, thread_min_max): ns_run = {'logl': samples[:, 0], 'thread_labels': samples[:, 1], 'thread_min_max': thread_min_max, 'theta': samples[:, 3:]} if np.all(~np.isnan(ns_run['thread_labels'])): ns_run['thread_labels'] = ns_run['thread_labels'].astype(int) assert np.array_equal(samples[:, 1], ns_run['thread_labels'] ), """Casting thread labels from samples array to int has changed their values! samples[:, 1]={} thread_labels={}""".format( samples[:, 1], ns_run['thread_labels']) nlive_0 = (thread_min_max[:, 0] <= ns_run['logl'].min()).sum() assert nlive_0 > 0, 'nlive_0={}'.format(nlive_0) nlive_array = np.zeros(samples.shape[0]) + nlive_0 nlive_array[1:] += np.cumsum(samples[:-1, 2]) dup_th_starts = (thread_min_max[:, 0] == ns_run['logl'].min()).sum() if dup_th_starts > 1: nlive_array += 1 - nlive_array[-1] n_logl_min = (ns_run['logl'] == ns_run['logl'].min()).sum() nlive_array[:n_logl_min] = nlive_0 warnings.warn( 'duplicate starting logls: {} threads start at logl.min()={}, and {} points have logl=logl.min(). nlive_array may only be approximately correct.' .format(dup_th_starts, ns_run['logl'].min(), n_logl_min), UserWarning) assert nlive_array.min( ) > 0, """nlive contains 0s or negative values. nlive_0={} nlive_array = {} thread_min_max={}""".format( nlive_0, nlive_array, thread_min_max) assert nlive_array[-1 ] == 1, 'final point in nlive_array != 1.\nnlive_array = ' + str( nlive_array) ns_run['nlive_array'] = nlive_array return ns_run
dict_given_run_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, thread_min_max):\n ns_run = {'logl': samples[:, 0], 'thread_labels': samples[:, 1],\n 'thread_min_max': thread_min_max, 'theta': samples[:, 3:]}\n if np.all(~np.isnan(ns_run['thread_labels'])):\n ns_run['thread_labels'] = ns_run['thread_labels'].astype(int)\n assert np.array_equal(samples[:, 1], ns_run['thread_labels']\n ), \"\"\"Casting thread labels from samples array to int has changed their values!\nsamples[:, 1]={}\nthread_labels={}\"\"\".format(\n samples[:, 1], ns_run['thread_labels'])\n nlive_0 = (thread_min_max[:, 0] <= ns_run['logl'].min()).sum()\n assert nlive_0 > 0, 'nlive_0={}'.format(nlive_0)\n nlive_array = np.zeros(samples.shape[0]) + nlive_0\n nlive_array[1:] += np.cumsum(samples[:-1, 2])\n dup_th_starts = (thread_min_max[:, 0] == ns_run['logl'].min()).sum()\n if dup_th_starts > 1:\n nlive_array += 1 - nlive_array[-1]\n n_logl_min = (ns_run['logl'] == ns_run['logl'].min()).sum()\n nlive_array[:n_logl_min] = nlive_0\n warnings.warn(\n 'duplicate starting logls: {} threads start at logl.min()={}, and {} points have logl=logl.min(). nlive_array may only be approximately correct.'\n .format(dup_th_starts, ns_run['logl'].min(), n_logl_min),\n UserWarning)\n assert nlive_array.min(\n ) > 0, \"\"\"nlive contains 0s or negative values. nlive_0={}\nnlive_array = {}\nthread_min_max={}\"\"\".format(\n nlive_0, nlive_array, thread_min_max)\n assert nlive_array[-1\n ] == 1, 'final point in nlive_array != 1.\\nnlive_array = ' + str(\n nlive_array)\n ns_run['nlive_array'] = nlive_array\n return ns_run\n", "role": "user" }, { "content": "dict_given_run_array", "role": "assistant" } ]
def x(ns_run): samples = array_given_run(ns_run) unique_threads = np.unique(ns_run['thread_labels']) assert ns_run['thread_min_max'].shape[0] == unique_threads.shape[0 ], 'some threads have no points! {0} != {1}'.format(unique_threads. shape[0], ns_run['thread_min_max'].shape[0]) threads = [] for i, th_lab in enumerate(unique_threads): thread_array = samples[np.where(samples[:, 1] == th_lab)] thread_array[:, 2] = 0 thread_array[-1, 2] = -1 min_max = np.reshape(ns_run['thread_min_max'][i, :], (1, 2)) assert min_max[0, 1] == thread_array[-1, 0 ], 'thread max logl should equal logl of its final point!' threads.append(dict_given_run_array(thread_array, min_max)) return threads
get_run_threads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run):\n samples = array_given_run(ns_run)\n unique_threads = np.unique(ns_run['thread_labels'])\n assert ns_run['thread_min_max'].shape[0] == unique_threads.shape[0\n ], 'some threads have no points! {0} != {1}'.format(unique_threads.\n shape[0], ns_run['thread_min_max'].shape[0])\n threads = []\n for i, th_lab in enumerate(unique_threads):\n thread_array = samples[np.where(samples[:, 1] == th_lab)]\n thread_array[:, 2] = 0\n thread_array[-1, 2] = -1\n min_max = np.reshape(ns_run['thread_min_max'][i, :], (1, 2))\n assert min_max[0, 1] == thread_array[-1, 0\n ], 'thread max logl should equal logl of its final point!'\n threads.append(dict_given_run_array(thread_array, min_max))\n return threads\n", "role": "user" }, { "content": "get_run_threads", "role": "assistant" } ]
def x(run_list_in, **kwargs): run_list = copy.deepcopy(run_list_in) if len(run_list) == 1: run = run_list[0] else: nthread_tot = 0 for i, _ in enumerate(run_list): check_ns_run(run_list[i], **kwargs) run_list[i]['thread_labels'] += nthread_tot nthread_tot += run_list[i]['thread_min_max'].shape[0] thread_min_max = np.vstack([run['thread_min_max'] for run in run_list]) samples_temp = np.vstack([array_given_run(run) for run in run_list]) samples_temp = samples_temp[np.argsort(samples_temp[:, 0])] run = dict_given_run_array(samples_temp, thread_min_max) run['output'] = {} for key in ['nlike', 'ndead']: try: run['output'][key] = sum([temp['output'][key] for temp in run_list_in]) except KeyError: pass check_ns_run(run, **kwargs) return run
combine_ns_runs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list_in, **kwargs):\n run_list = copy.deepcopy(run_list_in)\n if len(run_list) == 1:\n run = run_list[0]\n else:\n nthread_tot = 0\n for i, _ in enumerate(run_list):\n check_ns_run(run_list[i], **kwargs)\n run_list[i]['thread_labels'] += nthread_tot\n nthread_tot += run_list[i]['thread_min_max'].shape[0]\n thread_min_max = np.vstack([run['thread_min_max'] for run in run_list])\n samples_temp = np.vstack([array_given_run(run) for run in run_list])\n samples_temp = samples_temp[np.argsort(samples_temp[:, 0])]\n run = dict_given_run_array(samples_temp, thread_min_max)\n run['output'] = {}\n for key in ['nlike', 'ndead']:\n try:\n run['output'][key] = sum([temp['output'][key] for temp in\n run_list_in])\n except KeyError:\n pass\n check_ns_run(run, **kwargs)\n return run\n", "role": "user" }, { "content": "combine_ns_runs", "role": "assistant" } ]
def x(threads, assert_birth_point=False): thread_min_max = np.vstack([td['thread_min_max'] for td in threads]) assert len(threads) == thread_min_max.shape[0] samples_temp = np.vstack([array_given_run(thread) for thread in threads]) samples_temp = samples_temp[np.argsort(samples_temp[:, 0])] logl_starts = thread_min_max[:, 0] state = np.random.get_state() np.random.seed(0) for logl_start in logl_starts[logl_starts != -np.inf]: ind = np.where(samples_temp[:, 0] == logl_start)[0] if assert_birth_point: assert ind.shape == (1,), 'No unique birth point! ' + str(ind.shape ) if ind.shape == (1,): samples_temp[ind[0], 2] += 1 elif ind.shape == (0,): ind_closest = np.argmin(np.abs(samples_temp[:, 0] - logl_start)) samples_temp[ind_closest, 2] += 1 else: samples_temp[np.random.choice(ind), 2] += 1 np.random.set_state(state) ns_run = dict_given_run_array(samples_temp, thread_min_max) try: check_ns_run_threads(ns_run) except AssertionError: ns_run['thread_labels'] = None ns_run['thread_min_max'] = None return ns_run
combine_threads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(threads, assert_birth_point=False):\n thread_min_max = np.vstack([td['thread_min_max'] for td in threads])\n assert len(threads) == thread_min_max.shape[0]\n samples_temp = np.vstack([array_given_run(thread) for thread in threads])\n samples_temp = samples_temp[np.argsort(samples_temp[:, 0])]\n logl_starts = thread_min_max[:, 0]\n state = np.random.get_state()\n np.random.seed(0)\n for logl_start in logl_starts[logl_starts != -np.inf]:\n ind = np.where(samples_temp[:, 0] == logl_start)[0]\n if assert_birth_point:\n assert ind.shape == (1,), 'No unique birth point! ' + str(ind.shape\n )\n if ind.shape == (1,):\n samples_temp[ind[0], 2] += 1\n elif ind.shape == (0,):\n ind_closest = np.argmin(np.abs(samples_temp[:, 0] - logl_start))\n samples_temp[ind_closest, 2] += 1\n else:\n samples_temp[np.random.choice(ind), 2] += 1\n np.random.set_state(state)\n ns_run = dict_given_run_array(samples_temp, thread_min_max)\n try:\n check_ns_run_threads(ns_run)\n except AssertionError:\n ns_run['thread_labels'] = None\n ns_run['thread_min_max'] = None\n return ns_run\n", "role": "user" }, { "content": "combine_threads", "role": "assistant" } ]
def x(ns_run, simulate=False): try: logx = get_logx(ns_run['nlive_array'], simulate=simulate) logw = np.zeros(ns_run['logl'].shape[0]) logw[1:-1] = log_subtract(logx[:-2], logx[2:]) - np.log(2) logw[0] = log_subtract(0, scipy.special.logsumexp([logx[0], logx[1] ]) - np.log(2)) logw[-1] = scipy.special.logsumexp([logx[-2], logx[-1]]) - np.log(2) logw += ns_run['logl'] return logw except IndexError: if ns_run['logl'].shape[0] == 1: return copy.deepcopy(ns_run['logl']) else: raise
get_logw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, simulate=False):\n try:\n logx = get_logx(ns_run['nlive_array'], simulate=simulate)\n logw = np.zeros(ns_run['logl'].shape[0])\n logw[1:-1] = log_subtract(logx[:-2], logx[2:]) - np.log(2)\n logw[0] = log_subtract(0, scipy.special.logsumexp([logx[0], logx[1]\n ]) - np.log(2))\n logw[-1] = scipy.special.logsumexp([logx[-2], logx[-1]]) - np.log(2)\n logw += ns_run['logl']\n return logw\n except IndexError:\n if ns_run['logl'].shape[0] == 1:\n return copy.deepcopy(ns_run['logl'])\n else:\n raise\n", "role": "user" }, { "content": "get_logw", "role": "assistant" } ]
def x(ns_run, simulate=False): logw = get_logw(ns_run, simulate=simulate) return np.exp(logw - logw.max())
get_w_rel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, simulate=False):\n logw = get_logw(ns_run, simulate=simulate)\n return np.exp(logw - logw.max())\n", "role": "user" }, { "content": "get_w_rel", "role": "assistant" } ]
def x(nlive, simulate=False): assert nlive.min( ) > 0, 'nlive contains zeros or negative values! nlive = ' + str(nlive) if simulate: logx_steps = np.log(np.random.random(nlive.shape)) / nlive else: logx_steps = -1 * nlive.astype(float) ** -1 return np.cumsum(logx_steps)
get_logx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nlive, simulate=False):\n assert nlive.min(\n ) > 0, 'nlive contains zeros or negative values! nlive = ' + str(nlive)\n if simulate:\n logx_steps = np.log(np.random.random(nlive.shape)) / nlive\n else:\n logx_steps = -1 * nlive.astype(float) ** -1\n return np.cumsum(logx_steps)\n", "role": "user" }, { "content": "get_logx", "role": "assistant" } ]
def x(loga, logb): return loga + np.log(1 - np.exp(logb - loga))
log_subtract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loga, logb):\n return loga + np.log(1 - np.exp(logb - loga))\n", "role": "user" }, { "content": "log_subtract", "role": "assistant" } ]
def x(run, dup_assert=False, dup_warn=False): assert isinstance(run, dict) check_ns_run_members(run) check_ns_run_logls(run, dup_assert=dup_assert, dup_warn=dup_warn) check_ns_run_threads(run)
check_ns_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, dup_assert=False, dup_warn=False):\n assert isinstance(run, dict)\n check_ns_run_members(run)\n check_ns_run_logls(run, dup_assert=dup_assert, dup_warn=dup_warn)\n check_ns_run_threads(run)\n", "role": "user" }, { "content": "check_ns_run", "role": "assistant" } ]
def x(run): run_keys = list(run.keys()) for key in ['logl', 'nlive_array', 'theta', 'thread_labels', 'thread_min_max']: assert key in run_keys run_keys.remove(key) for key in ['output']: try: run_keys.remove(key) except ValueError: pass assert not run_keys, 'Unexpected keys in ns_run: ' + str(run_keys) for key in ['logl', 'nlive_array', 'theta', 'thread_labels', 'thread_min_max']: assert isinstance(run[key], np.ndarray), key + ' is type ' + type(run [key]).__name__ assert run['logl'].ndim == 1 assert run['logl'].shape == run['nlive_array'].shape assert run['logl'].shape == run['thread_labels'].shape assert run['theta'].ndim == 2 assert run['logl'].shape[0] == run['theta'].shape[0]
check_ns_run_members
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run):\n run_keys = list(run.keys())\n for key in ['logl', 'nlive_array', 'theta', 'thread_labels',\n 'thread_min_max']:\n assert key in run_keys\n run_keys.remove(key)\n for key in ['output']:\n try:\n run_keys.remove(key)\n except ValueError:\n pass\n assert not run_keys, 'Unexpected keys in ns_run: ' + str(run_keys)\n for key in ['logl', 'nlive_array', 'theta', 'thread_labels',\n 'thread_min_max']:\n assert isinstance(run[key], np.ndarray), key + ' is type ' + type(run\n [key]).__name__\n assert run['logl'].ndim == 1\n assert run['logl'].shape == run['nlive_array'].shape\n assert run['logl'].shape == run['thread_labels'].shape\n assert run['theta'].ndim == 2\n assert run['logl'].shape[0] == run['theta'].shape[0]\n", "role": "user" }, { "content": "check_ns_run_members", "role": "assistant" } ]
def x(run, dup_assert=False, dup_warn=False): assert np.array_equal(run['logl'], run['logl'][np.argsort(run['logl'])]) if dup_assert or dup_warn: unique_logls, counts = np.unique(run['logl'], return_counts=True) repeat_logls = run['logl'].shape[0] - unique_logls.shape[0] msg = ( """{} duplicate logl values (out of a total of {}). This may be caused by limited numerical precision in the output files. repeated logls = {} counts = {} positions in list of {} unique logls = {}""" .format(repeat_logls, run['logl'].shape[0], unique_logls[counts != 1], counts[counts != 1], unique_logls.shape[0], np.where(counts != 1)[0])) if dup_assert: assert repeat_logls == 0, msg elif dup_warn: if repeat_logls != 0: warnings.warn(msg, UserWarning)
check_ns_run_logls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, dup_assert=False, dup_warn=False):\n assert np.array_equal(run['logl'], run['logl'][np.argsort(run['logl'])])\n if dup_assert or dup_warn:\n unique_logls, counts = np.unique(run['logl'], return_counts=True)\n repeat_logls = run['logl'].shape[0] - unique_logls.shape[0]\n msg = (\n \"\"\"{} duplicate logl values (out of a total of {}). This may be caused by limited numerical precision in the output files.\nrepeated logls = {}\ncounts = {}\npositions in list of {} unique logls = {}\"\"\"\n .format(repeat_logls, run['logl'].shape[0], unique_logls[counts !=\n 1], counts[counts != 1], unique_logls.shape[0], np.where(counts !=\n 1)[0]))\n if dup_assert:\n assert repeat_logls == 0, msg\n elif dup_warn:\n if repeat_logls != 0:\n warnings.warn(msg, UserWarning)\n", "role": "user" }, { "content": "check_ns_run_logls", "role": "assistant" } ]
def x(run): assert run['thread_labels'].dtype == int uniq_th = np.unique(run['thread_labels']) assert np.array_equal(np.asarray(range(run['thread_min_max'].shape[0])), uniq_th), str(uniq_th) assert np.any(run['thread_min_max'][:, 0] == -np.inf ), 'Run should have at least one thread which starts by sampling the ' + 'whole prior' for th_lab in uniq_th: inds = np.where(run['thread_labels'] == th_lab)[0] th_info = 'thread label={}, first_logl={}, thread_min_max={}'.format( th_lab, run['logl'][inds[0]], run['thread_min_max'][th_lab, :]) assert run['thread_min_max'][th_lab, 0] <= run['logl'][inds[0] ], 'First point in thread has logl less than thread min logl! ' + th_info + ', difference={}'.format( run['logl'][inds[0]] - run['thread_min_max'][th_lab, 0]) assert run['thread_min_max'][th_lab, 1] == run['logl'][inds[-1] ], 'Last point in thread logl != thread end logl! ' + th_info
check_ns_run_threads
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run):\n assert run['thread_labels'].dtype == int\n uniq_th = np.unique(run['thread_labels'])\n assert np.array_equal(np.asarray(range(run['thread_min_max'].shape[0])),\n uniq_th), str(uniq_th)\n assert np.any(run['thread_min_max'][:, 0] == -np.inf\n ), 'Run should have at least one thread which starts by sampling the ' + 'whole prior'\n for th_lab in uniq_th:\n inds = np.where(run['thread_labels'] == th_lab)[0]\n th_info = 'thread label={}, first_logl={}, thread_min_max={}'.format(\n th_lab, run['logl'][inds[0]], run['thread_min_max'][th_lab, :])\n assert run['thread_min_max'][th_lab, 0] <= run['logl'][inds[0]\n ], 'First point in thread has logl less than thread min logl! ' + th_info + ', difference={}'.format(\n run['logl'][inds[0]] - run['thread_min_max'][th_lab, 0])\n assert run['thread_min_max'][th_lab, 1] == run['logl'][inds[-1]\n ], 'Last point in thread logl != thread end logl! ' + th_info\n", "role": "user" }, { "content": "check_ns_run_threads", "role": "assistant" } ]
def x(ns_run, **kwargs): kwargs.pop('logw', None) kwargs.pop('simulate', None) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) return ns_run['logl'].shape[0]
count_samples
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, **kwargs):\n kwargs.pop('logw', None)\n kwargs.pop('simulate', None)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n return ns_run['logl'].shape[0]\n", "role": "user" }, { "content": "count_samples", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) return scipy.special.logsumexp(logw)
logz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n return scipy.special.logsumexp(logw)\n", "role": "user" }, { "content": "logz", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) return np.exp(scipy.special.logsumexp(logw))
evidence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n return np.exp(scipy.special.logsumexp(logw))\n", "role": "user" }, { "content": "evidence", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False, param_ind=0, handle_indexerror=False): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) w_relative = np.exp(logw - logw.max()) try: return np.sum(w_relative * ns_run['theta'][:, param_ind]) / np.sum( w_relative) except IndexError: if handle_indexerror: return np.nan else: raise
param_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False, param_ind=0, handle_indexerror=False):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n w_relative = np.exp(logw - logw.max())\n try:\n return np.sum(w_relative * ns_run['theta'][:, param_ind]) / np.sum(\n w_relative)\n except IndexError:\n if handle_indexerror:\n return np.nan\n else:\n raise\n", "role": "user" }, { "content": "param_mean", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False, probability=0.5, param_ind=0): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) w_relative = np.exp(logw - logw.max()) return weighted_quantile(probability, ns_run['theta'][:, param_ind], w_relative)
param_cred
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False, probability=0.5, param_ind=0):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n w_relative = np.exp(logw - logw.max())\n return weighted_quantile(probability, ns_run['theta'][:, param_ind],\n w_relative)\n", "role": "user" }, { "content": "param_cred", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False, param_ind=0): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) w_relative = np.exp(logw - logw.max()) w_relative /= np.sum(w_relative) return np.sum(w_relative * ns_run['theta'][:, param_ind] ** 2)
param_squared_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False, param_ind=0):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n w_relative = np.exp(logw - logw.max())\n w_relative /= np.sum(w_relative)\n return np.sum(w_relative * ns_run['theta'][:, param_ind] ** 2)\n", "role": "user" }, { "content": "param_squared_mean", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) w_relative = np.exp(logw - logw.max()) r = np.sqrt(np.sum(ns_run['theta'] ** 2, axis=1)) return np.sum(w_relative * r) / np.sum(w_relative)
r_mean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n w_relative = np.exp(logw - logw.max())\n r = np.sqrt(np.sum(ns_run['theta'] ** 2, axis=1))\n return np.sum(w_relative * r) / np.sum(w_relative)\n", "role": "user" }, { "content": "r_mean", "role": "assistant" } ]
def x(ns_run, logw=None, simulate=False, probability=0.5): if logw is None: logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate) w_relative = np.exp(logw - logw.max()) r = np.sqrt(np.sum(ns_run['theta'] ** 2, axis=1)) return weighted_quantile(probability, r, w_relative)
r_cred
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_run, logw=None, simulate=False, probability=0.5):\n if logw is None:\n logw = nestcheck.ns_run_utils.get_logw(ns_run, simulate=simulate)\n w_relative = np.exp(logw - logw.max())\n r = np.sqrt(np.sum(ns_run['theta'] ** 2, axis=1))\n return weighted_quantile(probability, r, w_relative)\n", "role": "user" }, { "content": "r_cred", "role": "assistant" } ]
def x(func_in, **kwargs): if isinstance(func_in, functools.partial): func = func_in.func assert not set(func_in.keywords) & set(kwargs ), 'kwargs={0} and func_in.keywords={1} contain repeated keys'.format( kwargs, func_in.keywords) kwargs.update(func_in.keywords) else: func = func_in param_ind = kwargs.pop('param_ind', 0) probability = kwargs.pop('probability', 0.5) kwargs.pop('handle_indexerror', None) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) ind_str = '{\\hat{' + str(param_ind + 1) + '}}' latex_name_dict = {'count_samples': 'samples', 'logz': '$\\mathrm{log} \\mathcal{Z}$', 'evidence': '$\\mathcal{Z}$', 'r_mean': '$\\overline{|\\theta|}$', 'param_mean': '$\\overline{\\theta_' + ind_str + '}$', 'param_squared_mean': '$\\overline{\\theta^2_' + ind_str + '}$'} if probability == 0.5: cred_str = '$\\mathrm{median}(' else: percent_str = ('%f' % (probability * 100)).rstrip('0').rstrip('.') cred_str = '$\\mathrm{C.I.}_{' + percent_str + '\\%}(' latex_name_dict['param_cred'] = cred_str + '\\theta_' + ind_str + ')$' latex_name_dict['r_cred'] = cred_str + '|\\theta|)$' try: return latex_name_dict[func.__name__] except KeyError as err: err.args = err.args + ('get_latex_name not yet set up for ' + func. __name__,) raise
get_latex_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func_in, **kwargs):\n if isinstance(func_in, functools.partial):\n func = func_in.func\n assert not set(func_in.keywords) & set(kwargs\n ), 'kwargs={0} and func_in.keywords={1} contain repeated keys'.format(\n kwargs, func_in.keywords)\n kwargs.update(func_in.keywords)\n else:\n func = func_in\n param_ind = kwargs.pop('param_ind', 0)\n probability = kwargs.pop('probability', 0.5)\n kwargs.pop('handle_indexerror', None)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n ind_str = '{\\\\hat{' + str(param_ind + 1) + '}}'\n latex_name_dict = {'count_samples': 'samples', 'logz':\n '$\\\\mathrm{log} \\\\mathcal{Z}$', 'evidence': '$\\\\mathcal{Z}$',\n 'r_mean': '$\\\\overline{|\\\\theta|}$', 'param_mean': \n '$\\\\overline{\\\\theta_' + ind_str + '}$', 'param_squared_mean': \n '$\\\\overline{\\\\theta^2_' + ind_str + '}$'}\n if probability == 0.5:\n cred_str = '$\\\\mathrm{median}('\n else:\n percent_str = ('%f' % (probability * 100)).rstrip('0').rstrip('.')\n cred_str = '$\\\\mathrm{C.I.}_{' + percent_str + '\\\\%}('\n latex_name_dict['param_cred'] = cred_str + '\\\\theta_' + ind_str + ')$'\n latex_name_dict['r_cred'] = cred_str + '|\\\\theta|)$'\n try:\n return latex_name_dict[func.__name__]\n except KeyError as err:\n err.args = err.args + ('get_latex_name not yet set up for ' + func.\n __name__,)\n raise\n", "role": "user" }, { "content": "get_latex_name", "role": "assistant" } ]
def x(probability, values, weights): assert 1 > probability > 0, 'credible interval prob= ' + str(probability ) + ' not in (0, 1)' assert values.shape == weights.shape assert values.ndim == 1 assert weights.ndim == 1 sorted_inds = np.argsort(values) quantiles = np.cumsum(weights[sorted_inds]) - 0.5 * weights[sorted_inds] quantiles /= np.sum(weights) return np.interp(probability, quantiles, values[sorted_inds])
weighted_quantile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(probability, values, weights):\n assert 1 > probability > 0, 'credible interval prob= ' + str(probability\n ) + ' not in (0, 1)'\n assert values.shape == weights.shape\n assert values.ndim == 1\n assert weights.ndim == 1\n sorted_inds = np.argsort(values)\n quantiles = np.cumsum(weights[sorted_inds]) - 0.5 * weights[sorted_inds]\n quantiles /= np.sum(weights)\n return np.interp(probability, quantiles, values[sorted_inds])\n", "role": "user" }, { "content": "weighted_quantile", "role": "assistant" } ]
def x(run, **kwargs): write_dead = kwargs.pop('write_dead', True) write_stats = kwargs.pop('write_stats', True) posteriors = kwargs.pop('posteriors', False) equals = kwargs.pop('equals', False) stats_means_errs = kwargs.pop('stats_means_errs', True) fmt = kwargs.pop('fmt', '% .14E') n_simulate = kwargs.pop('n_simulate', 100) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) mandatory_keys = ['file_root', 'base_dir'] for key in mandatory_keys: assert key in run['output'], key + ' not in run["output"]' root = os.path.join(run['output']['base_dir'], run['output']['file_root']) if write_dead: samples = run_dead_birth_array(run) np.savetxt(root + '_dead-birth.txt', samples, fmt=fmt) np.savetxt(root + '_dead.txt', samples[:, :-1], fmt=fmt) if equals or posteriors: w_rel = nestcheck.ns_run_utils.get_w_rel(run) post_arr = np.zeros((run['theta'].shape[0], run['theta'].shape[1] + 2)) post_arr[:, 0] = w_rel post_arr[:, 1] = -2 * run['logl'] post_arr[:, 2:] = run['theta'] if posteriors: np.savetxt(root + '.txt', post_arr, fmt=fmt) run['output']['nposterior'] = post_arr.shape[0] else: run['output']['nposterior'] = 0 if equals: inds = np.where(w_rel > np.random.random(w_rel.shape[0]))[0] np.savetxt(root + '_equal_weights.txt', post_arr[inds, 1:], fmt=fmt) run['output']['nequals'] = inds.shape[0] else: run['output']['nequals'] = 0 if write_stats: run['output']['ndead'] = run['logl'].shape[0] if stats_means_errs: estimators = [e.logz] for i in range(run['theta'].shape[1]): estimators.append(functools.partial(e.param_mean, param_ind=i)) values = nestcheck.ns_run_utils.run_estimators(run, estimators) stds = nestcheck.error_analysis.run_std_bootstrap(run, estimators, n_simulate=n_simulate) run['output']['logZ'] = values[0] run['output']['logZerr'] = stds[0] run['output']['param_means'] = list(values[1:]) run['output']['param_mean_errs'] = list(stds[1:]) write_stats_file(run['output'])
write_run_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, **kwargs):\n write_dead = kwargs.pop('write_dead', True)\n write_stats = kwargs.pop('write_stats', True)\n posteriors = kwargs.pop('posteriors', False)\n equals = kwargs.pop('equals', False)\n stats_means_errs = kwargs.pop('stats_means_errs', True)\n fmt = kwargs.pop('fmt', '% .14E')\n n_simulate = kwargs.pop('n_simulate', 100)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n mandatory_keys = ['file_root', 'base_dir']\n for key in mandatory_keys:\n assert key in run['output'], key + ' not in run[\"output\"]'\n root = os.path.join(run['output']['base_dir'], run['output']['file_root'])\n if write_dead:\n samples = run_dead_birth_array(run)\n np.savetxt(root + '_dead-birth.txt', samples, fmt=fmt)\n np.savetxt(root + '_dead.txt', samples[:, :-1], fmt=fmt)\n if equals or posteriors:\n w_rel = nestcheck.ns_run_utils.get_w_rel(run)\n post_arr = np.zeros((run['theta'].shape[0], run['theta'].shape[1] + 2))\n post_arr[:, 0] = w_rel\n post_arr[:, 1] = -2 * run['logl']\n post_arr[:, 2:] = run['theta']\n if posteriors:\n np.savetxt(root + '.txt', post_arr, fmt=fmt)\n run['output']['nposterior'] = post_arr.shape[0]\n else:\n run['output']['nposterior'] = 0\n if equals:\n inds = np.where(w_rel > np.random.random(w_rel.shape[0]))[0]\n np.savetxt(root + '_equal_weights.txt', post_arr[inds, 1:], fmt=fmt)\n run['output']['nequals'] = inds.shape[0]\n else:\n run['output']['nequals'] = 0\n if write_stats:\n run['output']['ndead'] = run['logl'].shape[0]\n if stats_means_errs:\n estimators = [e.logz]\n for i in range(run['theta'].shape[1]):\n estimators.append(functools.partial(e.param_mean, param_ind=i))\n values = nestcheck.ns_run_utils.run_estimators(run, estimators)\n stds = nestcheck.error_analysis.run_std_bootstrap(run,\n estimators, n_simulate=n_simulate)\n run['output']['logZ'] = values[0]\n run['output']['logZerr'] = stds[0]\n run['output']['param_means'] = list(values[1:])\n run['output']['param_mean_errs'] = list(stds[1:])\n write_stats_file(run['output'])\n", "role": "user" }, { "content": "write_run_output", "role": "assistant" } ]
def x(run, **kwargs): nestcheck.ns_run_utils.check_ns_run(run, **kwargs) threads = nestcheck.ns_run_utils.get_run_threads(run) samp_arrays = [] ndim = run['theta'].shape[1] for th in threads: samp_arr = np.zeros((th['theta'].shape[0], ndim + 2)) samp_arr[:, :ndim] = th['theta'] samp_arr[:, ndim] = th['logl'] samp_arr[1:, ndim + 1] = th['logl'][:-1] if th['thread_min_max'][0, 0] == -np.inf: samp_arr[0, ndim + 1] = -1e+30 else: samp_arr[0, ndim + 1] = th['thread_min_max'][0, 0] samp_arrays.append(samp_arr) samples = np.vstack(samp_arrays) samples = samples[np.argsort(samples[:, ndim]), :] return samples
run_dead_birth_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run, **kwargs):\n nestcheck.ns_run_utils.check_ns_run(run, **kwargs)\n threads = nestcheck.ns_run_utils.get_run_threads(run)\n samp_arrays = []\n ndim = run['theta'].shape[1]\n for th in threads:\n samp_arr = np.zeros((th['theta'].shape[0], ndim + 2))\n samp_arr[:, :ndim] = th['theta']\n samp_arr[:, ndim] = th['logl']\n samp_arr[1:, ndim + 1] = th['logl'][:-1]\n if th['thread_min_max'][0, 0] == -np.inf:\n samp_arr[0, ndim + 1] = -1e+30\n else:\n samp_arr[0, ndim + 1] = th['thread_min_max'][0, 0]\n samp_arrays.append(samp_arr)\n samples = np.vstack(samp_arrays)\n samples = samples[np.argsort(samples[:, ndim]), :]\n return samples\n", "role": "user" }, { "content": "run_dead_birth_array", "role": "assistant" } ]
def x(run_output_dict): mandatory_keys = ['file_root', 'base_dir'] for key in mandatory_keys: assert key in run_output_dict, key + ' not in run_output_dict' default_output = {'logZ': 0.0, 'logZerr': 0.0, 'logZs': [0.0], 'logZerrs': [0.0], 'ncluster': 1, 'nposterior': 0, 'nequals': 0, 'ndead': 0, 'nlike': 0, 'nlive': 0, 'avnlike': 0.0, 'avnlikeslice': 0.0, 'param_means': [0.0, 0.0, 0.0], 'param_mean_errs': [0.0, 0.0, 0.0] } allowed_keys = set(mandatory_keys) | set(default_output.keys()) assert set(run_output_dict.keys()).issubset(allowed_keys ), 'Input dict contains unexpected keys: {}'.format(set( run_output_dict.keys()) - allowed_keys) output = copy.deepcopy(run_output_dict) for key, value in default_output.items(): if key not in output: output[key] = value file_lines = ['Evidence estimates:', '===================', ' - The evidence Z is a log-normally distributed, with location and scale parameters mu and sigma.' , ' - We denote this as log(Z) = mu +/- sigma.', '', 'Global evidence:', '----------------', '', 'log(Z) = {0} +/- {1}'.format(output['logZ'], output[ 'logZerr']), '', '', 'Local evidences:', '----------------', ''] for i, (lz, lzerr) in enumerate(zip(output['logZs'], output['logZerrs'])): file_lines.append('log(Z_ {0}) = {1} +/- {2}'.format(str(i + 1) .rjust(2), lz, lzerr)) file_lines += ['', '', 'Run-time information:', '---------------------', '', ' ncluster: 0 / 1', ' nposterior: {0}'. format(output['nposterior']), ' nequals: {0}'.format( output['nequals']), ' ndead: {0}'.format(output['ndead']), ' nlive: {0}'.format(output['nlive']), ' nlike: {0}'.format(output['nlike']), ' <nlike>: {0} ( {1} per slice )'.format(output[ 'avnlike'], output['avnlikeslice']), '', '', 'Dim No. Mean Sigma'] for i, (mean, meanerr) in enumerate(zip(output['param_means'], output[ 'param_mean_errs'])): file_lines.append('{0} {1} +/- {2}'.format(str(i + 1).ljust(3), mean, meanerr)) file_path = os.path.join(output['base_dir'], output['file_root'] + '.stats' ) with open(file_path, 'w') as stats_file: stats_file.writelines('{}\n'.format(line) for line in file_lines) return output
write_stats_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_output_dict):\n mandatory_keys = ['file_root', 'base_dir']\n for key in mandatory_keys:\n assert key in run_output_dict, key + ' not in run_output_dict'\n default_output = {'logZ': 0.0, 'logZerr': 0.0, 'logZs': [0.0],\n 'logZerrs': [0.0], 'ncluster': 1, 'nposterior': 0, 'nequals': 0,\n 'ndead': 0, 'nlike': 0, 'nlive': 0, 'avnlike': 0.0, 'avnlikeslice':\n 0.0, 'param_means': [0.0, 0.0, 0.0], 'param_mean_errs': [0.0, 0.0, 0.0]\n }\n allowed_keys = set(mandatory_keys) | set(default_output.keys())\n assert set(run_output_dict.keys()).issubset(allowed_keys\n ), 'Input dict contains unexpected keys: {}'.format(set(\n run_output_dict.keys()) - allowed_keys)\n output = copy.deepcopy(run_output_dict)\n for key, value in default_output.items():\n if key not in output:\n output[key] = value\n file_lines = ['Evidence estimates:', '===================',\n ' - The evidence Z is a log-normally distributed, with location and scale parameters mu and sigma.'\n , ' - We denote this as log(Z) = mu +/- sigma.', '',\n 'Global evidence:', '----------------', '',\n 'log(Z) = {0} +/- {1}'.format(output['logZ'], output[\n 'logZerr']), '', '', 'Local evidences:', '----------------', '']\n for i, (lz, lzerr) in enumerate(zip(output['logZs'], output['logZerrs'])):\n file_lines.append('log(Z_ {0}) = {1} +/- {2}'.format(str(i + 1)\n .rjust(2), lz, lzerr))\n file_lines += ['', '', 'Run-time information:', '---------------------',\n '', ' ncluster: 0 / 1', ' nposterior: {0}'.\n format(output['nposterior']), ' nequals: {0}'.format(\n output['nequals']), ' ndead: {0}'.format(output['ndead']),\n ' nlive: {0}'.format(output['nlive']),\n ' nlike: {0}'.format(output['nlike']),\n ' <nlike>: {0} ( {1} per slice )'.format(output[\n 'avnlike'], output['avnlikeslice']), '', '',\n 'Dim No. Mean Sigma']\n for i, (mean, meanerr) in enumerate(zip(output['param_means'], output[\n 'param_mean_errs'])):\n file_lines.append('{0} {1} +/- {2}'.format(str(i + 1).ljust(3),\n mean, meanerr))\n file_path = os.path.join(output['base_dir'], output['file_root'] + '.stats'\n )\n with open(file_path, 'w') as stats_file:\n stats_file.writelines('{}\\n'.format(line) for line in file_lines)\n return output\n", "role": "user" }, { "content": "write_stats_file", "role": "assistant" } ]
def x(run_list, estimator_list, estimator_names, n_simulate=100, **kwargs): thread_pvalue = kwargs.pop('thread_pvalue', False) bs_stat_dist = kwargs.pop('bs_stat_dist', False) parallel = kwargs.pop('parallel', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) assert len(estimator_list) == len(estimator_names ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len (estimator_list), len(estimator_names)) df = estimator_values_df(run_list, estimator_list, parallel=parallel, estimator_names=estimator_names) df.index = df.index.map(str) df['calculation type'] = 'values' df.set_index('calculation type', drop=True, append=True, inplace=True) df = df.reorder_levels(['calculation type', 'run']) bs_vals_df = bs_values_df(run_list, estimator_list, estimator_names, n_simulate, parallel=parallel) bs_std_df = bs_vals_df.applymap(lambda x: np.std(x, ddof=1)) bs_std_df.index.name = 'run' bs_std_df['calculation type'] = 'bootstrap std' bs_std_df.set_index('calculation type', drop=True, append=True, inplace =True) bs_std_df = bs_std_df.reorder_levels(['calculation type', 'run']) df = pd.concat([df, bs_std_df]) if thread_pvalue: t_vals_df = thread_values_df(run_list, estimator_list, estimator_names, parallel=parallel) t_d_df = pairwise_dists_on_cols(t_vals_df, earth_mover_dist=False, energy_dist=False) t_d_df = t_d_df.xs('ks pvalue', level='calculation type', drop_level=False) t_d_df.index.set_levels(['thread ks pvalue'], level= 'calculation type', inplace=True) df = pd.concat([df, t_d_df]) if bs_stat_dist: b_d_df = pairwise_dists_on_cols(bs_vals_df) dists = ['ks distance', 'earth mover distance', 'energy distance'] b_d_df = b_d_df.loc[pd.IndexSlice[dists, :], :] new_ind = ['bootstrap ' + b_d_df.index.get_level_values( 'calculation type'), b_d_df.index.get_level_values('run')] b_d_df.set_index(new_ind, inplace=True) df = pd.concat([df, b_d_df]) return df
run_list_error_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, estimator_list, estimator_names, n_simulate=100, **kwargs):\n thread_pvalue = kwargs.pop('thread_pvalue', False)\n bs_stat_dist = kwargs.pop('bs_stat_dist', False)\n parallel = kwargs.pop('parallel', True)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n assert len(estimator_list) == len(estimator_names\n ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len\n (estimator_list), len(estimator_names))\n df = estimator_values_df(run_list, estimator_list, parallel=parallel,\n estimator_names=estimator_names)\n df.index = df.index.map(str)\n df['calculation type'] = 'values'\n df.set_index('calculation type', drop=True, append=True, inplace=True)\n df = df.reorder_levels(['calculation type', 'run'])\n bs_vals_df = bs_values_df(run_list, estimator_list, estimator_names,\n n_simulate, parallel=parallel)\n bs_std_df = bs_vals_df.applymap(lambda x: np.std(x, ddof=1))\n bs_std_df.index.name = 'run'\n bs_std_df['calculation type'] = 'bootstrap std'\n bs_std_df.set_index('calculation type', drop=True, append=True, inplace\n =True)\n bs_std_df = bs_std_df.reorder_levels(['calculation type', 'run'])\n df = pd.concat([df, bs_std_df])\n if thread_pvalue:\n t_vals_df = thread_values_df(run_list, estimator_list,\n estimator_names, parallel=parallel)\n t_d_df = pairwise_dists_on_cols(t_vals_df, earth_mover_dist=False,\n energy_dist=False)\n t_d_df = t_d_df.xs('ks pvalue', level='calculation type',\n drop_level=False)\n t_d_df.index.set_levels(['thread ks pvalue'], level=\n 'calculation type', inplace=True)\n df = pd.concat([df, t_d_df])\n if bs_stat_dist:\n b_d_df = pairwise_dists_on_cols(bs_vals_df)\n dists = ['ks distance', 'earth mover distance', 'energy distance']\n b_d_df = b_d_df.loc[pd.IndexSlice[dists, :], :]\n new_ind = ['bootstrap ' + b_d_df.index.get_level_values(\n 'calculation type'), b_d_df.index.get_level_values('run')]\n b_d_df.set_index(new_ind, inplace=True)\n df = pd.concat([df, b_d_df])\n return df\n", "role": "user" }, { "content": "run_list_error_values", "role": "assistant" } ]
def x(run_list, estimator_list, **kwargs): estimator_names = kwargs.pop('estimator_names', [('est_' + str(i)) for i in range(len(estimator_list))]) parallel = kwargs.pop('parallel', True) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) values_list = pu.parallel_apply(nestcheck.ns_run_utils.run_estimators, run_list, func_args=(estimator_list,), parallel=parallel) df = pd.DataFrame(np.stack(values_list, axis=0)) df.columns = estimator_names df.index.name = 'run' return df
estimator_values_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, estimator_list, **kwargs):\n estimator_names = kwargs.pop('estimator_names', [('est_' + str(i)) for\n i in range(len(estimator_list))])\n parallel = kwargs.pop('parallel', True)\n if kwargs:\n raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))\n values_list = pu.parallel_apply(nestcheck.ns_run_utils.run_estimators,\n run_list, func_args=(estimator_list,), parallel=parallel)\n df = pd.DataFrame(np.stack(values_list, axis=0))\n df.columns = estimator_names\n df.index.name = 'run'\n return df\n", "role": "user" }, { "content": "estimator_values_df", "role": "assistant" } ]
def x(error_values, **summary_df_kwargs): df = pf.summary_df_from_multi(error_values, **summary_df_kwargs) imp_std, imp_std_unc, imp_frac, imp_frac_unc = (nestcheck. error_analysis.implementation_std(df.loc['values std', 'value'], df .loc['values std', 'uncertainty'], df.loc['bootstrap std mean', 'value'], df.loc['bootstrap std mean', 'uncertainty'])) df.loc[('implementation std', 'value'), df.columns] = imp_std df.loc[('implementation std', 'uncertainty'), df.columns] = imp_std_unc df.loc[('implementation std frac', 'value'), :] = imp_frac df.loc[('implementation std frac', 'uncertainty'), :] = imp_frac_unc if 'values rmse' in set(df.index.get_level_values('calculation type')): imp_rmse, imp_rmse_unc, imp_frac, imp_frac_unc = (nestcheck. error_analysis.implementation_std(df.loc['values rmse', 'value' ], df.loc['values rmse', 'uncertainty'], df.loc[ 'bootstrap std mean', 'value'], df.loc['bootstrap std mean', 'uncertainty'])) df.loc[('implementation rmse', 'value'), df.columns] = imp_rmse df.loc[('implementation rmse', 'uncertainty'), df.columns ] = imp_rmse_unc df.loc[('implementation rmse frac', 'value'), :] = imp_frac df.loc[('implementation rmse frac', 'uncertainty'), :] = imp_frac_unc calcs_to_keep = ['true values', 'values mean', 'values std', 'values rmse', 'bootstrap std mean', 'implementation std', 'implementation std frac', 'implementation rmse', 'implementation rmse frac', 'thread ks pvalue mean', 'bootstrap ks distance mean', 'bootstrap energy distance mean', 'bootstrap earth mover distance mean'] df = pd.concat([df.xs(calc, level='calculation type', drop_level=False) for calc in calcs_to_keep if calc in df.index.get_level_values( 'calculation type')]) return df
error_values_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(error_values, **summary_df_kwargs):\n df = pf.summary_df_from_multi(error_values, **summary_df_kwargs)\n imp_std, imp_std_unc, imp_frac, imp_frac_unc = (nestcheck.\n error_analysis.implementation_std(df.loc['values std', 'value'], df\n .loc['values std', 'uncertainty'], df.loc['bootstrap std mean',\n 'value'], df.loc['bootstrap std mean', 'uncertainty']))\n df.loc[('implementation std', 'value'), df.columns] = imp_std\n df.loc[('implementation std', 'uncertainty'), df.columns] = imp_std_unc\n df.loc[('implementation std frac', 'value'), :] = imp_frac\n df.loc[('implementation std frac', 'uncertainty'), :] = imp_frac_unc\n if 'values rmse' in set(df.index.get_level_values('calculation type')):\n imp_rmse, imp_rmse_unc, imp_frac, imp_frac_unc = (nestcheck.\n error_analysis.implementation_std(df.loc['values rmse', 'value'\n ], df.loc['values rmse', 'uncertainty'], df.loc[\n 'bootstrap std mean', 'value'], df.loc['bootstrap std mean',\n 'uncertainty']))\n df.loc[('implementation rmse', 'value'), df.columns] = imp_rmse\n df.loc[('implementation rmse', 'uncertainty'), df.columns\n ] = imp_rmse_unc\n df.loc[('implementation rmse frac', 'value'), :] = imp_frac\n df.loc[('implementation rmse frac', 'uncertainty'), :] = imp_frac_unc\n calcs_to_keep = ['true values', 'values mean', 'values std',\n 'values rmse', 'bootstrap std mean', 'implementation std',\n 'implementation std frac', 'implementation rmse',\n 'implementation rmse frac', 'thread ks pvalue mean',\n 'bootstrap ks distance mean', 'bootstrap energy distance mean',\n 'bootstrap earth mover distance mean']\n df = pd.concat([df.xs(calc, level='calculation type', drop_level=False) for\n calc in calcs_to_keep if calc in df.index.get_level_values(\n 'calculation type')])\n return df\n", "role": "user" }, { "content": "error_values_summary", "role": "assistant" } ]
def x(run_list, estimator_list, estimator_names, n_simulate, **kwargs): true_values = kwargs.pop('true_values', None) include_true_values = kwargs.pop('include_true_values', False) include_rmse = kwargs.pop('include_rmse', False) error_values = run_list_error_values(run_list, estimator_list, estimator_names, n_simulate, **kwargs) return error_values_summary(error_values, true_values=true_values, include_true_values=include_true_values, include_rmse=include_rmse)
run_list_error_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, estimator_list, estimator_names, n_simulate, **kwargs):\n true_values = kwargs.pop('true_values', None)\n include_true_values = kwargs.pop('include_true_values', False)\n include_rmse = kwargs.pop('include_rmse', False)\n error_values = run_list_error_values(run_list, estimator_list,\n estimator_names, n_simulate, **kwargs)\n return error_values_summary(error_values, true_values=true_values,\n include_true_values=include_true_values, include_rmse=include_rmse)\n", "role": "user" }, { "content": "run_list_error_summary", "role": "assistant" } ]
def x(run_list, estimator_list, estimator_names, n_simulate, **kwargs): tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'desc': 'bs values'}) assert len(estimator_list) == len(estimator_names ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len (estimator_list), len(estimator_names)) bs_values_list = pu.parallel_apply(nestcheck.error_analysis. run_bootstrap_values, run_list, func_args=(estimator_list,), func_kwargs={'n_simulate': n_simulate}, tqdm_kwargs=tqdm_kwargs, ** kwargs) df = pd.DataFrame() for i, name in enumerate(estimator_names): df[name] = [arr[i, :] for arr in bs_values_list] for vals_shape in df.loc[0].apply(lambda x: x.shape).values: assert vals_shape == (n_simulate,), 'Should be n_simulate=' + str( n_simulate ) + ' values in ' + 'each cell. The cell contains array with shape ' + str( vals_shape) return df
bs_values_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, estimator_list, estimator_names, n_simulate, **kwargs):\n tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'desc': 'bs values'})\n assert len(estimator_list) == len(estimator_names\n ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len\n (estimator_list), len(estimator_names))\n bs_values_list = pu.parallel_apply(nestcheck.error_analysis.\n run_bootstrap_values, run_list, func_args=(estimator_list,),\n func_kwargs={'n_simulate': n_simulate}, tqdm_kwargs=tqdm_kwargs, **\n kwargs)\n df = pd.DataFrame()\n for i, name in enumerate(estimator_names):\n df[name] = [arr[i, :] for arr in bs_values_list]\n for vals_shape in df.loc[0].apply(lambda x: x.shape).values:\n assert vals_shape == (n_simulate,), 'Should be n_simulate=' + str(\n n_simulate\n ) + ' values in ' + 'each cell. The cell contains array with shape ' + str(\n vals_shape)\n return df\n", "role": "user" }, { "content": "bs_values_df", "role": "assistant" } ]
def x(run_list, estimator_list, estimator_names, **kwargs): tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'desc': 'thread values'}) assert len(estimator_list) == len(estimator_names ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len (estimator_list), len(estimator_names)) thread_vals_arrays = pu.parallel_apply(nestcheck.error_analysis. run_thread_values, run_list, func_args=(estimator_list,), tqdm_kwargs=tqdm_kwargs, **kwargs) df = pd.DataFrame() for i, name in enumerate(estimator_names): df[name] = [arr[i, :] for arr in thread_vals_arrays] for vals_shape in df.loc[0].apply(lambda x: x.shape).values: assert vals_shape == (run_list[0]['thread_min_max'].shape[0], ), 'Should be nlive=' + str(run_list[0]['thread_min_max'].shape[0] ) + ' values in each cell. The cell contains array with shape ' + str( vals_shape) return df
thread_values_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(run_list, estimator_list, estimator_names, **kwargs):\n tqdm_kwargs = kwargs.pop('tqdm_kwargs', {'desc': 'thread values'})\n assert len(estimator_list) == len(estimator_names\n ), 'len(estimator_list) = {0} != len(estimator_names = {1}'.format(len\n (estimator_list), len(estimator_names))\n thread_vals_arrays = pu.parallel_apply(nestcheck.error_analysis.\n run_thread_values, run_list, func_args=(estimator_list,),\n tqdm_kwargs=tqdm_kwargs, **kwargs)\n df = pd.DataFrame()\n for i, name in enumerate(estimator_names):\n df[name] = [arr[i, :] for arr in thread_vals_arrays]\n for vals_shape in df.loc[0].apply(lambda x: x.shape).values:\n assert vals_shape == (run_list[0]['thread_min_max'].shape[0],\n ), 'Should be nlive=' + str(run_list[0]['thread_min_max'].shape[0]\n ) + ' values in each cell. The cell contains array with shape ' + str(\n vals_shape)\n return df\n", "role": "user" }, { "content": "thread_values_df", "role": "assistant" } ]
def x(df_in, earth_mover_dist=True, energy_dist=True): df = pd.DataFrame() for col in df_in.columns: df[col] = nestcheck.error_analysis.pairwise_distances(df_in[col]. values, earth_mover_dist=earth_mover_dist, energy_dist=energy_dist) return df
pairwise_dists_on_cols
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df_in, earth_mover_dist=True, energy_dist=True):\n df = pd.DataFrame()\n for col in df_in.columns:\n df[col] = nestcheck.error_analysis.pairwise_distances(df_in[col].\n values, earth_mover_dist=earth_mover_dist, energy_dist=energy_dist)\n return df\n", "role": "user" }, { "content": "pairwise_dists_on_cols", "role": "assistant" } ]
def x(cols): def x(s): b = '' if s == '*' or not s else '`' return [_ for _ in [b + (s or '') + b] if _] formatted = [] for c in cols: if c[0] == '#': formatted.append(c[1:]) elif c.startswith('(') and c.endswith(')'): formatted.append(c) else: formatted.append('.'.join(bt(c.split('.')[0]) + bt('.'.join(c. split('.')[1:])))) return ', '.join(formatted)
backtick_columns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cols):\n\n def x(s):\n b = '' if s == '*' or not s else '`'\n return [_ for _ in [b + (s or '') + b] if _]\n formatted = []\n for c in cols:\n if c[0] == '#':\n formatted.append(c[1:])\n elif c.startswith('(') and c.endswith(')'):\n formatted.append(c)\n else:\n formatted.append('.'.join(bt(c.split('.')[0]) + bt('.'.join(c.\n split('.')[1:]))))\n return ', '.join(formatted)\n", "role": "user" }, { "content": "backtick_columns", "role": "assistant" } ]
def x(self, value, columnname=False, placeholder='%s'): if not isinstance(value, dict): raise TypeError('Input value should be a dictionary') q = [] a = [] for k, v in value.items(): if k[0] == '#': q.append(' = '.join([self._backtick(k[1:]), str(v)]) if columnname else v) else: q.append(' = '.join([self._backtick(k), placeholder]) if columnname else placeholder) a.append(v) return ', '.join(q), tuple(a)
value_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, columnname=False, placeholder='%s'):\n if not isinstance(value, dict):\n raise TypeError('Input value should be a dictionary')\n q = []\n a = []\n for k, v in value.items():\n if k[0] == '#':\n q.append(' = '.join([self._backtick(k[1:]), str(v)]) if\n columnname else v)\n else:\n q.append(' = '.join([self._backtick(k), placeholder]) if\n columnname else placeholder)\n a.append(v)\n return ', '.join(q), tuple(a)\n", "role": "user" }, { "content": "value_parser", "role": "assistant" } ]
def x(self, columns): return columns if self.isstr(columns) else self._backtick_columns(columns)
by_columns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, columns):\n return columns if self.isstr(columns) else self._backtick_columns(columns)\n", "role": "user" }, { "content": "by_columns", "role": "assistant" } ]
def x(self, table, columns=None, join=None, where=None, group=None, having= None, order=None, limit=None, iterator=False, fetch=True): if not columns: columns = ['*'] where_q, _args = self._where_parser(where) _sql = ''.join(['SELECT ', self._backtick_columns(columns), ' FROM ', self._tablename_parser(table)['formatted_tablename'], self. _join_parser(join), where_q, ' GROUP BY ' + self._by_columns(group) if group else '', ' HAVING ' + having if having else '', ' ORDER BY ' + self._by_columns(order) if order else '', self._limit_parser(limit), ';']) if self.debug: return self.cur.mogrify(_sql, _args) execute_result = self.cur.execute(_sql, _args) if not fetch: return execute_result if self.cursorclass in (pymysql.cursors.SSCursor, pymysql.cursors. SSDictCursor): return self.cur if iterator: return self._yield_result() return self.cur.fetchall()
select
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, table, columns=None, join=None, where=None, group=None, having=\n None, order=None, limit=None, iterator=False, fetch=True):\n if not columns:\n columns = ['*']\n where_q, _args = self._where_parser(where)\n _sql = ''.join(['SELECT ', self._backtick_columns(columns), ' FROM ',\n self._tablename_parser(table)['formatted_tablename'], self.\n _join_parser(join), where_q, ' GROUP BY ' + self._by_columns(group) if\n group else '', ' HAVING ' + having if having else '', ' ORDER BY ' +\n self._by_columns(order) if order else '', self._limit_parser(limit),\n ';'])\n if self.debug:\n return self.cur.mogrify(_sql, _args)\n execute_result = self.cur.execute(_sql, _args)\n if not fetch:\n return execute_result\n if self.cursorclass in (pymysql.cursors.SSCursor, pymysql.cursors.\n SSDictCursor):\n return self.cur\n if iterator:\n return self._yield_result()\n return self.cur.fetchall()\n", "role": "user" }, { "content": "select", "role": "assistant" } ]
def x(self, limit, offset=0, **kwargs): start = offset while True: result = self.select(limit=[start, limit], **kwargs) start += limit if result: yield result else: break if self.debug: break
select_page
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, limit, offset=0, **kwargs):\n start = offset\n while True:\n result = self.select(limit=[start, limit], **kwargs)\n start += limit\n if result:\n yield result\n else:\n break\n if self.debug:\n break\n", "role": "user" }, { "content": "select_page", "role": "assistant" } ]