source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, action): return '%s.%s_%s' % (self.app_name.lower(), self.model_name.lower(), action )
permission_for_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n return '%s.%s_%s' % (self.app_name.lower(), self.model_name.lower(), action\n )\n", "role": "user" }, { "content": "permission_for_action", "role": "assistant" } ]
def x(self, action): return '%s/%s_%s.html' % (self.module_name.lower(), self.model_name. lower(), action)
template_for_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n return '%s/%s_%s.html' % (self.module_name.lower(), self.model_name.\n lower(), action)\n", "role": "user" }, { "content": "template_for_action", "role": "assistant" } ]
def x(self, action): return '%s.%s_%s' % (self.module_name.lower(), self.model_name.lower(), action)
url_name_for_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n return '%s.%s_%s' % (self.module_name.lower(), self.model_name.lower(),\n action)\n", "role": "user" }, { "content": "url_name_for_action", "role": "assistant" } ]
def x(self, action): class_name = ''.join([word.capitalize() for word in action.split('_')]) view = None if hasattr(self, class_name): view = getattr(self, class_name) if not getattr(view, 'model', None): view.model = self.model if not hasattr(view, 'permission') and self.permissions: view.permission = self.permission_for_action(action) if not getattr(view, 'link_url', None): if 'read' in self.actions: view.link_url = 'id@%s' % self.url_name_for_action('read') elif 'update' in self.actions: view.link_url = 'id@%s' % self.url_name_for_action('update') if not getattr(view, 'link_url', None ) and 'lookup_field_link' not in view.__dict__: view.link_fields = () if action == 'list' and getattr(view, 'add_button', None) is None: view.add_button = 'create' in self.actions if action == 'read' and getattr(view, 'edit_button', None) is None: view.edit_button = 'update' in self.actions if not getattr(view, 'success_url', None) and (action == 'update' or action == 'create'): view.success_url = '@%s' % self.url_name_for_action('list') else: options = dict(model=self.model) if action == 'update' or action == 'create' and 'list' in self.actions: options['success_url'] = '@%s' % self.url_name_for_action('list') if self.permissions: options['permission'] = self.permission_for_action(action) if action == 'create': view = type(str('%sCreateView' % self.model_name), ( SmartCreateView,), options) elif action == 'read': if 'update' in self.actions: options['edit_button'] = True view = type(str('%sReadView' % self.model_name), (SmartReadView ,), options) elif action == 'update': if 'delete' in self.actions: options['delete_url'] = 'id@%s' % self.url_name_for_action( 'delete') view = type(str('%sUpdateView' % self.model_name), ( SmartUpdateView,), options) elif action == 'delete': if 'list' in self.actions: options['cancel_url'] = '@%s' % self.url_name_for_action('list' ) options['redirect_url'] = '@%s' % self.url_name_for_action( 'list') elif 'update' in self.actions: options['cancel_url'] = '@%s' % self.url_name_for_action( 'update') view = type(str('%sDeleteView' % self.model_name), ( SmartDeleteView,), options) elif action == 'list': if 'read' in self.actions: options['link_url'] = 'id@%s' % self.url_name_for_action('read' ) elif 'update' in self.actions: options['link_url'] = 'id@%s' % self.url_name_for_action( 'update') else: options['link_fields'] = () if 'create' in self.actions: options['add_button'] = True view = type(str('%sListView' % self.model_name), (SmartListView ,), options) elif action == 'csv_import': options['model'] = ImportTask view = type(str('%sCSVImportView' % self.model_name), ( SmartCSVImportView,), options) if not view: raise Exception('No view found for action: %s' % action) view.url_name = self.url_name_for_action(action) if not getattr(view, 'template_name', None): view.template_name = self.template_for_action(action) view.crudl = self return view
view_for_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, action):\n class_name = ''.join([word.capitalize() for word in action.split('_')])\n view = None\n if hasattr(self, class_name):\n view = getattr(self, class_name)\n if not getattr(view, 'model', None):\n view.model = self.model\n if not hasattr(view, 'permission') and self.permissions:\n view.permission = self.permission_for_action(action)\n if not getattr(view, 'link_url', None):\n if 'read' in self.actions:\n view.link_url = 'id@%s' % self.url_name_for_action('read')\n elif 'update' in self.actions:\n view.link_url = 'id@%s' % self.url_name_for_action('update')\n if not getattr(view, 'link_url', None\n ) and 'lookup_field_link' not in view.__dict__:\n view.link_fields = ()\n if action == 'list' and getattr(view, 'add_button', None) is None:\n view.add_button = 'create' in self.actions\n if action == 'read' and getattr(view, 'edit_button', None) is None:\n view.edit_button = 'update' in self.actions\n if not getattr(view, 'success_url', None) and (action == 'update' or\n action == 'create'):\n view.success_url = '@%s' % self.url_name_for_action('list')\n else:\n options = dict(model=self.model)\n if action == 'update' or action == 'create' and 'list' in self.actions:\n options['success_url'] = '@%s' % self.url_name_for_action('list')\n if self.permissions:\n options['permission'] = self.permission_for_action(action)\n if action == 'create':\n view = type(str('%sCreateView' % self.model_name), (\n SmartCreateView,), options)\n elif action == 'read':\n if 'update' in self.actions:\n options['edit_button'] = True\n view = type(str('%sReadView' % self.model_name), (SmartReadView\n ,), options)\n elif action == 'update':\n if 'delete' in self.actions:\n options['delete_url'] = 'id@%s' % self.url_name_for_action(\n 'delete')\n view = type(str('%sUpdateView' % self.model_name), (\n SmartUpdateView,), options)\n elif action == 'delete':\n if 'list' in self.actions:\n options['cancel_url'] = '@%s' % self.url_name_for_action('list'\n )\n options['redirect_url'] = '@%s' % self.url_name_for_action(\n 'list')\n elif 'update' in self.actions:\n options['cancel_url'] = '@%s' % self.url_name_for_action(\n 'update')\n view = type(str('%sDeleteView' % self.model_name), (\n SmartDeleteView,), options)\n elif action == 'list':\n if 'read' in self.actions:\n options['link_url'] = 'id@%s' % self.url_name_for_action('read'\n )\n elif 'update' in self.actions:\n options['link_url'] = 'id@%s' % self.url_name_for_action(\n 'update')\n else:\n options['link_fields'] = ()\n if 'create' in self.actions:\n options['add_button'] = True\n view = type(str('%sListView' % self.model_name), (SmartListView\n ,), options)\n elif action == 'csv_import':\n options['model'] = ImportTask\n view = type(str('%sCSVImportView' % self.model_name), (\n SmartCSVImportView,), options)\n if not view:\n raise Exception('No view found for action: %s' % action)\n view.url_name = self.url_name_for_action(action)\n if not getattr(view, 'template_name', None):\n view.template_name = self.template_for_action(action)\n view.crudl = self\n return view\n", "role": "user" }, { "content": "view_for_action", "role": "assistant" } ]
def x(self, view, action): if getattr(view, 'derive_url_pattern', None): return view.derive_url_pattern(self.path, action) else: return '^%s/%s/$' % (self.path, action)
pattern_for_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, view, action):\n if getattr(view, 'derive_url_pattern', None):\n return view.derive_url_pattern(self.path, action)\n else:\n return '^%s/%s/$' % (self.path, action)\n", "role": "user" }, { "content": "pattern_for_view", "role": "assistant" } ]
def x(self): urls = [] for action in self.actions: view_class = self.view_for_action(action) view_pattern = self.pattern_for_view(view_class, action) name = self.url_name_for_action(action) urls.append(url(view_pattern, view_class.as_view(), name=name)) return urls
as_urlpatterns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n urls = []\n for action in self.actions:\n view_class = self.view_for_action(action)\n view_pattern = self.pattern_for_view(view_class, action)\n name = self.url_name_for_action(action)\n urls.append(url(view_pattern, view_class.as_view(), name=name))\n return urls\n", "role": "user" }, { "content": "as_urlpatterns", "role": "assistant" } ]
def x(self): executor = MigrationExecutor(connection=None) plan = executor.migration_plan(executor.loader.graph.leaf_nodes(), clean_start=True) if self.verbosity >= 2: for migration, _ in plan: self.stdout.write(' > %s' % migration) return [m[0] for m in plan]
load_migrations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n executor = MigrationExecutor(connection=None)\n plan = executor.migration_plan(executor.loader.graph.leaf_nodes(),\n clean_start=True)\n if self.verbosity >= 2:\n for migration, _ in plan:\n self.stdout.write(' > %s' % migration)\n return [m[0] for m in plan]\n", "role": "user" }, { "content": "load_migrations", "role": "assistant" } ]
def x(self, migrations): operations = [] for migration in migrations: for operation in migration.operations: if isinstance(operation, RunSQL): statements = sqlparse.parse(dedent(operation.sql)) for statement in statements: operation = SqlObjectOperation.parse(statement) if operation: operations.append(operation) if self.verbosity >= 2: self.stdout.write(' > % -100s (%s)' % ( operation, migration)) return operations
extract_operations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, migrations):\n operations = []\n for migration in migrations:\n for operation in migration.operations:\n if isinstance(operation, RunSQL):\n statements = sqlparse.parse(dedent(operation.sql))\n for statement in statements:\n operation = SqlObjectOperation.parse(statement)\n if operation:\n operations.append(operation)\n if self.verbosity >= 2:\n self.stdout.write(' > % -100s (%s)' % (\n operation, migration))\n return operations\n", "role": "user" }, { "content": "extract_operations", "role": "assistant" } ]
def x(self, operations): normalized = OrderedDict() for operation in operations: op_key = operation.sql_type, operation.obj_name if op_key in normalized: if self.verbosity >= 2: self.stdout.write(' < %s' % normalized[op_key]) del normalized[op_key] if operation.is_create: normalized[op_key] = operation elif self.verbosity >= 2: self.stdout.write(' < %s' % operation) return normalized.values()
normalize_operations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, operations):\n normalized = OrderedDict()\n for operation in operations:\n op_key = operation.sql_type, operation.obj_name\n if op_key in normalized:\n if self.verbosity >= 2:\n self.stdout.write(' < %s' % normalized[op_key])\n del normalized[op_key]\n if operation.is_create:\n normalized[op_key] = operation\n elif self.verbosity >= 2:\n self.stdout.write(' < %s' % operation)\n return normalized.values()\n", "role": "user" }, { "content": "normalize_operations", "role": "assistant" } ]
def x(self, operations, preserve_order, output_dir): by_type = {SqlType.INDEX: [], SqlType.FUNCTION: [], SqlType.TRIGGER: []} for operation in operations: by_type[operation.sql_type].append(operation) if not preserve_order: for obj_type, ops in by_type.items(): by_type[obj_type] = sorted(ops, key=lambda o: o.obj_name) if by_type[SqlType.INDEX]: self.write_dump('indexes', by_type[SqlType.INDEX], output_dir) if by_type[SqlType.FUNCTION]: self.write_dump('functions', by_type[SqlType.FUNCTION], output_dir) if by_type[SqlType.TRIGGER]: self.write_dump('triggers', by_type[SqlType.TRIGGER], output_dir)
write_type_dumps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, operations, preserve_order, output_dir):\n by_type = {SqlType.INDEX: [], SqlType.FUNCTION: [], SqlType.TRIGGER: []}\n for operation in operations:\n by_type[operation.sql_type].append(operation)\n if not preserve_order:\n for obj_type, ops in by_type.items():\n by_type[obj_type] = sorted(ops, key=lambda o: o.obj_name)\n if by_type[SqlType.INDEX]:\n self.write_dump('indexes', by_type[SqlType.INDEX], output_dir)\n if by_type[SqlType.FUNCTION]:\n self.write_dump('functions', by_type[SqlType.FUNCTION], output_dir)\n if by_type[SqlType.TRIGGER]:\n self.write_dump('triggers', by_type[SqlType.TRIGGER], output_dir)\n", "role": "user" }, { "content": "write_type_dumps", "role": "assistant" } ]
def x(self, name, value, attrs=None, renderer=None): html = '' html += '%s' % value html += '<input type="hidden" name="%s" value="%s">' % (escape(name), escape(value)) return mark_safe(html)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, value, attrs=None, renderer=None):\n html = ''\n html += '%s' % value\n html += '<input type=\"hidden\" name=\"%s\" value=\"%s\">' % (escape(name),\n escape(value))\n return mark_safe(html)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(data_api, data_setters, atom_names, element_names, atom_charges, group_atom_ind): atom_name = atom_names[group_atom_ind] element = element_names[group_atom_ind] charge = atom_charges[group_atom_ind] alternative_location_id = data_api.alt_loc_list[data_api.atom_counter] serial_number = data_api.atom_id_list[data_api.atom_counter] x = data_api.x_coord_list[data_api.atom_counter] y = data_api.y_coord_list[data_api.atom_counter] z = data_api.z_coord_list[data_api.atom_counter] occupancy = data_api.occupancy_list[data_api.atom_counter] temperature_factor = data_api.b_factor_list[data_api.atom_counter] data_setters.set_atom_info(atom_name, serial_number, alternative_location_id, x, y, z, occupancy, temperature_factor, element, charge)
add_atom_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, data_setters, atom_names, element_names, atom_charges,\n group_atom_ind):\n atom_name = atom_names[group_atom_ind]\n element = element_names[group_atom_ind]\n charge = atom_charges[group_atom_ind]\n alternative_location_id = data_api.alt_loc_list[data_api.atom_counter]\n serial_number = data_api.atom_id_list[data_api.atom_counter]\n x = data_api.x_coord_list[data_api.atom_counter]\n y = data_api.y_coord_list[data_api.atom_counter]\n z = data_api.z_coord_list[data_api.atom_counter]\n occupancy = data_api.occupancy_list[data_api.atom_counter]\n temperature_factor = data_api.b_factor_list[data_api.atom_counter]\n data_setters.set_atom_info(atom_name, serial_number,\n alternative_location_id, x, y, z, occupancy, temperature_factor,\n element, charge)\n", "role": "user" }, { "content": "add_atom_data", "role": "assistant" } ]
def x(data_setters, bond_indices, bond_orders): for bond_index in range(len(bond_orders)): data_setters.set_group_bond(bond_indices[bond_index * 2], bond_indices[bond_index * 2 + 1], bond_orders[bond_index])
add_group_bonds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_setters, bond_indices, bond_orders):\n for bond_index in range(len(bond_orders)):\n data_setters.set_group_bond(bond_indices[bond_index * 2],\n bond_indices[bond_index * 2 + 1], bond_orders[bond_index])\n", "role": "user" }, { "content": "add_group_bonds", "role": "assistant" } ]
def x(data_api, data_setters, group_index): group_type_ind = data_api.group_type_list[group_index] atom_count = len(data_api.group_list[group_type_ind]['atomNameList']) insertion_code = data_api.ins_code_list[group_index] data_setters.set_group_info(data_api.group_list[group_type_ind][ 'groupName'], data_api.group_id_list[group_index], insertion_code, data_api.group_list[group_type_ind]['chemCompType'], atom_count, data_api.num_bonds, data_api.group_list[group_type_ind][ 'singleLetterCode'], data_api.sequence_index_list[group_index], data_api.sec_struct_list[group_index]) for group_atom_ind in range(atom_count): add_atom_data(data_api, data_setters, data_api.group_list[ group_type_ind]['atomNameList'], data_api.group_list[ group_type_ind]['elementList'], data_api.group_list[ group_type_ind]['formalChargeList'], group_atom_ind) data_api.atom_counter += 1 add_group_bonds(data_setters, data_api.group_list[group_type_ind][ 'bondAtomList'], data_api.group_list[group_type_ind]['bondOrderList']) return atom_count
add_group
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, data_setters, group_index):\n group_type_ind = data_api.group_type_list[group_index]\n atom_count = len(data_api.group_list[group_type_ind]['atomNameList'])\n insertion_code = data_api.ins_code_list[group_index]\n data_setters.set_group_info(data_api.group_list[group_type_ind][\n 'groupName'], data_api.group_id_list[group_index], insertion_code,\n data_api.group_list[group_type_ind]['chemCompType'], atom_count,\n data_api.num_bonds, data_api.group_list[group_type_ind][\n 'singleLetterCode'], data_api.sequence_index_list[group_index],\n data_api.sec_struct_list[group_index])\n for group_atom_ind in range(atom_count):\n add_atom_data(data_api, data_setters, data_api.group_list[\n group_type_ind]['atomNameList'], data_api.group_list[\n group_type_ind]['elementList'], data_api.group_list[\n group_type_ind]['formalChargeList'], group_atom_ind)\n data_api.atom_counter += 1\n add_group_bonds(data_setters, data_api.group_list[group_type_ind][\n 'bondAtomList'], data_api.group_list[group_type_ind]['bondOrderList'])\n return atom_count\n", "role": "user" }, { "content": "add_group", "role": "assistant" } ]
def x(data_api, data_setters, chain_index): chain_id = data_api.chain_id_list[chain_index] chain_name = data_api.chain_name_list[chain_index] num_groups = data_api.groups_per_chain[chain_index] data_setters.set_chain_info(chain_id, chain_name, num_groups) next_ind = data_api.group_counter + num_groups last_ind = data_api.group_counter for group_ind in range(last_ind, next_ind): add_group(data_api, data_setters, group_ind) data_api.group_counter += 1 data_api.chain_counter += 1
add_chain_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, data_setters, chain_index):\n chain_id = data_api.chain_id_list[chain_index]\n chain_name = data_api.chain_name_list[chain_index]\n num_groups = data_api.groups_per_chain[chain_index]\n data_setters.set_chain_info(chain_id, chain_name, num_groups)\n next_ind = data_api.group_counter + num_groups\n last_ind = data_api.group_counter\n for group_ind in range(last_ind, next_ind):\n add_group(data_api, data_setters, group_ind)\n data_api.group_counter += 1\n data_api.chain_counter += 1\n", "role": "user" }, { "content": "add_chain_info", "role": "assistant" } ]
def x(data_api, data_setters): for model_chains in data_api.chains_per_model: data_setters.set_model_info(data_api.model_counter, model_chains) tot_chains_this_model = data_api.chain_counter + model_chains last_chain_counter = data_api.chain_counter for chain_index in range(last_chain_counter, tot_chains_this_model): add_chain_info(data_api, data_setters, chain_index) data_api.model_counter += 1
add_atomic_information
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, data_setters):\n for model_chains in data_api.chains_per_model:\n data_setters.set_model_info(data_api.model_counter, model_chains)\n tot_chains_this_model = data_api.chain_counter + model_chains\n last_chain_counter = data_api.chain_counter\n for chain_index in range(last_chain_counter, tot_chains_this_model):\n add_chain_info(data_api, data_setters, chain_index)\n data_api.model_counter += 1\n", "role": "user" }, { "content": "add_atomic_information", "role": "assistant" } ]
def x(data_api, struct_inflator): bioassembly_count = 0 for bioassembly in data_api.bio_assembly: bioassembly_count += 1 for transform in bioassembly['transformList']: struct_inflator.set_bio_assembly_trans(bioassembly_count, transform['chainIndexList'], transform['matrix'])
generate_bio_assembly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, struct_inflator):\n bioassembly_count = 0\n for bioassembly in data_api.bio_assembly:\n bioassembly_count += 1\n for transform in bioassembly['transformList']:\n struct_inflator.set_bio_assembly_trans(bioassembly_count,\n transform['chainIndexList'], transform['matrix'])\n", "role": "user" }, { "content": "generate_bio_assembly", "role": "assistant" } ]
def x(data_api, struct_inflator): for i in range(len(data_api.bond_order_list)): struct_inflator.set_inter_group_bond(data_api.bond_atom_list[i * 2], data_api.bond_atom_list[i * 2 + 1], data_api.bond_order_list[i])
add_inter_group_bonds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, struct_inflator):\n for i in range(len(data_api.bond_order_list)):\n struct_inflator.set_inter_group_bond(data_api.bond_atom_list[i * 2],\n data_api.bond_atom_list[i * 2 + 1], data_api.bond_order_list[i])\n", "role": "user" }, { "content": "add_inter_group_bonds", "role": "assistant" } ]
def x(data_api, struct_inflator): struct_inflator.set_header_info(data_api.r_free, data_api.r_work, data_api.resolution, data_api.title, data_api.deposition_date, data_api.release_date, data_api.experimental_methods)
add_header_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, struct_inflator):\n struct_inflator.set_header_info(data_api.r_free, data_api.r_work,\n data_api.resolution, data_api.title, data_api.deposition_date,\n data_api.release_date, data_api.experimental_methods)\n", "role": "user" }, { "content": "add_header_info", "role": "assistant" } ]
def x(data_api, struct_inflator): if data_api.unit_cell == None and data_api.space_group is not None: struct_inflator.set_xtal_info(data_api.space_group, constants. UNKNOWN_UNIT_CELL) elif data_api.unit_cell is not None and data_api.space_group is None: struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP, data_api.unit_cell) elif data_api.unit_cell is None and data_api.space_group is None: struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP, constants.UNKNOWN_UNIT_CELL) else: struct_inflator.set_xtal_info(data_api.space_group, data_api.unit_cell)
add_xtalographic_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, struct_inflator):\n if data_api.unit_cell == None and data_api.space_group is not None:\n struct_inflator.set_xtal_info(data_api.space_group, constants.\n UNKNOWN_UNIT_CELL)\n elif data_api.unit_cell is not None and data_api.space_group is None:\n struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,\n data_api.unit_cell)\n elif data_api.unit_cell is None and data_api.space_group is None:\n struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,\n constants.UNKNOWN_UNIT_CELL)\n else:\n struct_inflator.set_xtal_info(data_api.space_group, data_api.unit_cell)\n", "role": "user" }, { "content": "add_xtalographic_info", "role": "assistant" } ]
def x(data_api, struct_inflator): for entity in data_api.entity_list: struct_inflator.set_entity_info(entity['chainIndexList'], entity[ 'sequence'], entity['description'], entity['type'])
add_entity_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_api, struct_inflator):\n for entity in data_api.entity_list:\n struct_inflator.set_entity_info(entity['chainIndexList'], entity[\n 'sequence'], entity['description'], entity['type'])\n", "role": "user" }, { "content": "add_entity_info", "role": "assistant" } ]
def x(input_group): out_list = [] for i in range(len(input_group.bond_order_list)): out_list.append((input_group.bond_atom_list[i * 2], input_group. bond_atom_list[i * 2 + 1])) return out_list
get_bonds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_group):\n out_list = []\n for i in range(len(input_group.bond_order_list)):\n out_list.append((input_group.bond_atom_list[i * 2], input_group.\n bond_atom_list[i * 2 + 1]))\n return out_list\n", "role": "user" }, { "content": "get_bonds", "role": "assistant" } ]
def x(input_list): out_list = [] for item in input_list: if item not in out_list: out_list.append(item) return out_list
get_unique_groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_list):\n out_list = []\n for item in input_list:\n if item not in out_list:\n out_list.append(item)\n return out_list\n", "role": "user" }, { "content": "get_unique_groups", "role": "assistant" } ]
def x(self): out_dict = {} out_dict['groupName'] = self.group_name out_dict['atomNameList'] = self.atom_name_list out_dict['elementList'] = self.element_list out_dict['bondOrderList'] = self.bond_order_list out_dict['bondAtomList'] = self.bond_atom_list out_dict['formalChargeList'] = self.charge_list out_dict['singleLetterCode'] = self.single_letter_code out_dict['chemCompType'] = self.group_type return out_dict
convert_to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n out_dict = {}\n out_dict['groupName'] = self.group_name\n out_dict['atomNameList'] = self.atom_name_list\n out_dict['elementList'] = self.element_list\n out_dict['bondOrderList'] = self.bond_order_list\n out_dict['bondAtomList'] = self.bond_atom_list\n out_dict['formalChargeList'] = self.charge_list\n out_dict['singleLetterCode'] = self.single_letter_code\n out_dict['chemCompType'] = self.group_type\n return out_dict\n", "role": "user" }, { "content": "convert_to_dict", "role": "assistant" } ]
def x(self, atom_name, serial_number, alternative_location_id, x, y, z, occupancy, temperature_factor, element, charge): raise NotImplementedError
set_atom_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atom_name, serial_number, alternative_location_id, x, y, z,\n occupancy, temperature_factor, element, charge):\n raise NotImplementedError\n", "role": "user" }, { "content": "set_atom_info", "role": "assistant" } ]
def x(self, group_name, group_number, insertion_code, group_type, atom_count, bond_count, single_letter_code, sequence_index, secondary_structure_type): raise NotImplementedError
set_group_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, group_name, group_number, insertion_code, group_type,\n atom_count, bond_count, single_letter_code, sequence_index,\n secondary_structure_type):\n raise NotImplementedError\n", "role": "user" }, { "content": "set_group_info", "role": "assistant" } ]
def x(self, r_free, r_work, resolution, title, deposition_date, release_date, experimental_methods): raise NotImplementedError
set_header_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r_free, r_work, resolution, title, deposition_date,\n release_date, experimental_methods):\n raise NotImplementedError\n", "role": "user" }, { "content": "set_header_info", "role": "assistant" } ]
def x(self): output_data = {} output_data['groupTypeList'] = encode_array(self.group_type_list, 4, 0) output_data['xCoordList'] = encode_array(self.x_coord_list, 10, 1000) output_data['yCoordList'] = encode_array(self.y_coord_list, 10, 1000) output_data['zCoordList'] = encode_array(self.z_coord_list, 10, 1000) output_data['bFactorList'] = encode_array(self.b_factor_list, 10, 100) output_data['occupancyList'] = encode_array(self.occupancy_list, 9, 100) output_data['atomIdList'] = encode_array(self.atom_id_list, 8, 0) output_data['altLocList'] = encode_array(self.alt_loc_list, 6, 0) output_data['insCodeList'] = encode_array(self.ins_code_list, 6, 0) output_data['groupIdList'] = encode_array(self.group_id_list, 8, 0) output_data['groupList'] = self.group_list output_data['sequenceIndexList'] = encode_array(self. sequence_index_list, 8, 0) output_data['chainNameList'] = encode_array(self.chain_name_list, 5, 4) output_data['chainIdList'] = encode_array(self.chain_id_list, 5, 4) output_data['bondAtomList'] = encode_array(self.bond_atom_list, 4, 0) output_data['bondOrderList'] = encode_array(self.bond_order_list, 2, 0) output_data['secStructList'] = encode_array(self.sec_struct_list, 2, 0) output_data['chainsPerModel'] = self.chains_per_model output_data['groupsPerChain'] = self.groups_per_chain output_data['spaceGroup'] = self.space_group output_data['mmtfVersion'] = self.mmtf_version output_data['mmtfProducer'] = self.mmtf_producer output_data['structureId'] = self.structure_id output_data['entityList'] = self.entity_list output_data['bioAssemblyList'] = self.bio_assembly output_data['rFree'] = self.r_free output_data['rWork'] = self.r_work output_data['resolution'] = self.resolution output_data['title'] = self.title output_data['experimentalMethods'] = self.experimental_methods output_data['depositionDate'] = self.deposition_date output_data['releaseDate'] = self.release_date output_data['unitCell'] = self.unit_cell output_data['numBonds'] = self.num_bonds output_data['numChains'] = self.num_chains output_data['numModels'] = self.num_models output_data['numAtoms'] = self.num_atoms output_data['numGroups'] = self.num_groups return output_data
encode_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n output_data = {}\n output_data['groupTypeList'] = encode_array(self.group_type_list, 4, 0)\n output_data['xCoordList'] = encode_array(self.x_coord_list, 10, 1000)\n output_data['yCoordList'] = encode_array(self.y_coord_list, 10, 1000)\n output_data['zCoordList'] = encode_array(self.z_coord_list, 10, 1000)\n output_data['bFactorList'] = encode_array(self.b_factor_list, 10, 100)\n output_data['occupancyList'] = encode_array(self.occupancy_list, 9, 100)\n output_data['atomIdList'] = encode_array(self.atom_id_list, 8, 0)\n output_data['altLocList'] = encode_array(self.alt_loc_list, 6, 0)\n output_data['insCodeList'] = encode_array(self.ins_code_list, 6, 0)\n output_data['groupIdList'] = encode_array(self.group_id_list, 8, 0)\n output_data['groupList'] = self.group_list\n output_data['sequenceIndexList'] = encode_array(self.\n sequence_index_list, 8, 0)\n output_data['chainNameList'] = encode_array(self.chain_name_list, 5, 4)\n output_data['chainIdList'] = encode_array(self.chain_id_list, 5, 4)\n output_data['bondAtomList'] = encode_array(self.bond_atom_list, 4, 0)\n output_data['bondOrderList'] = encode_array(self.bond_order_list, 2, 0)\n output_data['secStructList'] = encode_array(self.sec_struct_list, 2, 0)\n output_data['chainsPerModel'] = self.chains_per_model\n output_data['groupsPerChain'] = self.groups_per_chain\n output_data['spaceGroup'] = self.space_group\n output_data['mmtfVersion'] = self.mmtf_version\n output_data['mmtfProducer'] = self.mmtf_producer\n output_data['structureId'] = self.structure_id\n output_data['entityList'] = self.entity_list\n output_data['bioAssemblyList'] = self.bio_assembly\n output_data['rFree'] = self.r_free\n output_data['rWork'] = self.r_work\n output_data['resolution'] = self.resolution\n output_data['title'] = self.title\n output_data['experimentalMethods'] = self.experimental_methods\n output_data['depositionDate'] = self.deposition_date\n output_data['releaseDate'] = self.release_date\n output_data['unitCell'] = self.unit_cell\n output_data['numBonds'] = self.num_bonds\n output_data['numChains'] = self.num_chains\n output_data['numModels'] = self.num_models\n output_data['numAtoms'] = self.num_atoms\n output_data['numGroups'] = self.num_groups\n return output_data\n", "role": "user" }, { "content": "encode_data", "role": "assistant" } ]
def x(self, total_num_bonds, total_num_atoms, total_num_groups, total_num_chains, total_num_models, structure_id): self.mmtf_version = constants.MMTF_VERSION self.mmtf_producer = constants.PRODUCER self.num_atoms = total_num_atoms self.num_bonds = total_num_bonds self.num_groups = total_num_groups self.num_chains = total_num_chains self.num_models = total_num_models self.structure_id = structure_id self.x_coord_list = [] self.y_coord_list = [] self.z_coord_list = [] self.group_type_list = [] self.entity_list = [] self.b_factor_list = [] self.occupancy_list = [] self.atom_id_list = [] self.alt_loc_list = [] self.ins_code_list = [] self.group_id_list = [] self.sequence_index_list = [] self.group_list = [] self.chain_name_list = [] self.chain_id_list = [] self.bond_atom_list = [] self.bond_order_list = [] self.sec_struct_list = [] self.chains_per_model = [] self.groups_per_chain = [] self.current_group = None self.bio_assembly = []
init_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, total_num_bonds, total_num_atoms, total_num_groups,\n total_num_chains, total_num_models, structure_id):\n self.mmtf_version = constants.MMTF_VERSION\n self.mmtf_producer = constants.PRODUCER\n self.num_atoms = total_num_atoms\n self.num_bonds = total_num_bonds\n self.num_groups = total_num_groups\n self.num_chains = total_num_chains\n self.num_models = total_num_models\n self.structure_id = structure_id\n self.x_coord_list = []\n self.y_coord_list = []\n self.z_coord_list = []\n self.group_type_list = []\n self.entity_list = []\n self.b_factor_list = []\n self.occupancy_list = []\n self.atom_id_list = []\n self.alt_loc_list = []\n self.ins_code_list = []\n self.group_id_list = []\n self.sequence_index_list = []\n self.group_list = []\n self.chain_name_list = []\n self.chain_id_list = []\n self.bond_atom_list = []\n self.bond_order_list = []\n self.sec_struct_list = []\n self.chains_per_model = []\n self.groups_per_chain = []\n self.current_group = None\n self.bio_assembly = []\n", "role": "user" }, { "content": "init_structure", "role": "assistant" } ]
def x(self, atom_name, serial_number, alternative_location_id, x, y, z, occupancy, temperature_factor, element, charge): self.x_coord_list.append(x) self.y_coord_list.append(y) self.z_coord_list.append(z) self.atom_id_list.append(serial_number) self.alt_loc_list.append(alternative_location_id) self.occupancy_list.append(occupancy) self.b_factor_list.append(temperature_factor) self.current_group.atom_name_list.append(atom_name) self.current_group.charge_list.append(charge) self.current_group.element_list.append(element)
set_atom_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atom_name, serial_number, alternative_location_id, x, y, z,\n occupancy, temperature_factor, element, charge):\n self.x_coord_list.append(x)\n self.y_coord_list.append(y)\n self.z_coord_list.append(z)\n self.atom_id_list.append(serial_number)\n self.alt_loc_list.append(alternative_location_id)\n self.occupancy_list.append(occupancy)\n self.b_factor_list.append(temperature_factor)\n self.current_group.atom_name_list.append(atom_name)\n self.current_group.charge_list.append(charge)\n self.current_group.element_list.append(element)\n", "role": "user" }, { "content": "set_atom_info", "role": "assistant" } ]
def x(self, chain_id, chain_name, num_groups): self.chain_id_list.append(chain_id) self.chain_name_list.append(chain_name) self.groups_per_chain.append(num_groups)
set_chain_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain_id, chain_name, num_groups):\n self.chain_id_list.append(chain_id)\n self.chain_name_list.append(chain_name)\n self.groups_per_chain.append(num_groups)\n", "role": "user" }, { "content": "set_chain_info", "role": "assistant" } ]
def x(self, chain_indices, sequence, description, entity_type): self.entity_list.append(make_entity_dict(chain_indices, sequence, description, entity_type))
set_entity_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chain_indices, sequence, description, entity_type):\n self.entity_list.append(make_entity_dict(chain_indices, sequence,\n description, entity_type))\n", "role": "user" }, { "content": "set_entity_info", "role": "assistant" } ]
def x(self, group_name, group_number, insertion_code, group_type, atom_count, bond_count, single_letter_code, sequence_index, secondary_structure_type): if self.current_group is not None: self.group_list.append(self.current_group) self.group_id_list.append(group_number) self.ins_code_list.append(insertion_code) self.sequence_index_list.append(sequence_index) self.sec_struct_list.append(secondary_structure_type) self.current_group = Group() self.current_group.group_name = group_name self.current_group.group_type = group_type self.current_group.single_letter_code = single_letter_code
set_group_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, group_name, group_number, insertion_code, group_type,\n atom_count, bond_count, single_letter_code, sequence_index,\n secondary_structure_type):\n if self.current_group is not None:\n self.group_list.append(self.current_group)\n self.group_id_list.append(group_number)\n self.ins_code_list.append(insertion_code)\n self.sequence_index_list.append(sequence_index)\n self.sec_struct_list.append(secondary_structure_type)\n self.current_group = Group()\n self.current_group.group_name = group_name\n self.current_group.group_type = group_type\n self.current_group.single_letter_code = single_letter_code\n", "role": "user" }, { "content": "set_group_info", "role": "assistant" } ]
def x(self, space_group, unit_cell): self.space_group = space_group self.unit_cell = unit_cell
set_xtal_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, space_group, unit_cell):\n self.space_group = space_group\n self.unit_cell = unit_cell\n", "role": "user" }, { "content": "set_xtal_info", "role": "assistant" } ]
def x(self, r_free, r_work, resolution, title, deposition_date, release_date, experimental_methods): self.r_free = r_free self.r_work = r_work self.resolution = resolution self.title = title self.deposition_date = deposition_date self.release_date = release_date self.experimental_methods = experimental_methods
set_header_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, r_free, r_work, resolution, title, deposition_date,\n release_date, experimental_methods):\n self.r_free = r_free\n self.r_work = r_work\n self.resolution = resolution\n self.title = title\n self.deposition_date = deposition_date\n self.release_date = release_date\n self.experimental_methods = experimental_methods\n", "role": "user" }, { "content": "set_header_info", "role": "assistant" } ]
def x(self, bio_assembly_index, input_chain_indices, input_transform): this_bioass = None for bioass in self.bio_assembly: if bioass['name'] == str(bio_assembly_index): this_bioass = bioass break if not this_bioass: this_bioass = {'name': str(bio_assembly_index), 'transformList': []} else: self.bio_assembly.remove(this_bioass) this_bioass['transformList'].append({'chainIndexList': input_chain_indices, 'matrix': input_transform}) self.bio_assembly.append(this_bioass)
set_bio_assembly_trans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bio_assembly_index, input_chain_indices, input_transform):\n this_bioass = None\n for bioass in self.bio_assembly:\n if bioass['name'] == str(bio_assembly_index):\n this_bioass = bioass\n break\n if not this_bioass:\n this_bioass = {'name': str(bio_assembly_index), 'transformList': []}\n else:\n self.bio_assembly.remove(this_bioass)\n this_bioass['transformList'].append({'chainIndexList':\n input_chain_indices, 'matrix': input_transform})\n self.bio_assembly.append(this_bioass)\n", "role": "user" }, { "content": "set_bio_assembly_trans", "role": "assistant" } ]
def x(self): self.group_list.append(self.current_group) group_set = get_unique_groups(self.group_list) for item in self.group_list: self.group_type_list.append(group_set.index(item)) self.group_list = [x.convert_to_dict() for x in group_set]
finalize_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.group_list.append(self.current_group)\n group_set = get_unique_groups(self.group_list)\n for item in self.group_list:\n self.group_type_list.append(group_set.index(item))\n self.group_list = [x.convert_to_dict() for x in group_set]\n", "role": "user" }, { "content": "finalize_structure", "role": "assistant" } ]
def x(self, atom_index_one, atom_index_two, bond_order): self.current_group.bond_atom_list.append(atom_index_one) self.current_group.bond_atom_list.append(atom_index_two) self.current_group.bond_order_list.append(bond_order)
set_group_bond
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atom_index_one, atom_index_two, bond_order):\n self.current_group.bond_atom_list.append(atom_index_one)\n self.current_group.bond_atom_list.append(atom_index_two)\n self.current_group.bond_order_list.append(bond_order)\n", "role": "user" }, { "content": "set_group_bond", "role": "assistant" } ]
def x(self, atom_index_one, atom_index_two, bond_order): self.bond_atom_list.append(atom_index_one) self.bond_atom_list.append(atom_index_two) self.bond_order_list.append(bond_order)
set_inter_group_bond
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atom_index_one, atom_index_two, bond_order):\n self.bond_atom_list.append(atom_index_one)\n self.bond_atom_list.append(atom_index_two)\n self.bond_order_list.append(bond_order)\n", "role": "user" }, { "content": "set_inter_group_bond", "role": "assistant" } ]
def x(in_array): if len(in_array) == 0: return [] curr_ans = in_array[0] out_array = [curr_ans] counter = 1 for in_int in in_array[1:]: if in_int == curr_ans: counter += 1 else: out_array.append(counter) out_array.append(in_int) curr_ans = in_int counter = 1 out_array.append(counter) return out_array
run_length_encode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_array):\n if len(in_array) == 0:\n return []\n curr_ans = in_array[0]\n out_array = [curr_ans]\n counter = 1\n for in_int in in_array[1:]:\n if in_int == curr_ans:\n counter += 1\n else:\n out_array.append(counter)\n out_array.append(in_int)\n curr_ans = in_int\n counter = 1\n out_array.append(counter)\n return out_array\n", "role": "user" }, { "content": "run_length_encode", "role": "assistant" } ]
def x(in_array): if len(in_array) == 0: return [] curr_ans = in_array[0] out_array = [curr_ans] for in_int in in_array[1:]: out_array.append(in_int - curr_ans) curr_ans = in_int return out_array
delta_encode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_array):\n if len(in_array) == 0:\n return []\n curr_ans = in_array[0]\n out_array = [curr_ans]\n for in_int in in_array[1:]:\n out_array.append(in_int - curr_ans)\n curr_ans = in_int\n return out_array\n", "role": "user" }, { "content": "delta_encode", "role": "assistant" } ]
def x(input_array): codec, length, param, input_array = parse_header(input_array) return codec_dict[codec].decode(input_array, param)
decode_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_array):\n codec, length, param, input_array = parse_header(input_array)\n return codec_dict[codec].decode(input_array, param)\n", "role": "user" }, { "content": "decode_array", "role": "assistant" } ]
def x(input_array, codec, param): return add_header(codec_dict[codec].encode(input_array, param), codec, len(input_array), param)
encode_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_array, codec, param):\n return add_header(codec_dict[codec].encode(input_array, param), codec,\n len(input_array), param)\n", "role": "user" }, { "content": "encode_array", "role": "assistant" } ]
def x(in_array): switch = False out_array = [] for item in in_array: if switch == False: this_item = item switch = True else: switch = False out_array.extend([this_item] * int(item)) return out_array
run_length_decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_array):\n switch = False\n out_array = []\n for item in in_array:\n if switch == False:\n this_item = item\n switch = True\n else:\n switch = False\n out_array.extend([this_item] * int(item))\n return out_array\n", "role": "user" }, { "content": "run_length_decode", "role": "assistant" } ]
def x(in_array): if len(in_array) == 0: return [] this_ans = in_array[0] out_array = [this_ans] for i in range(1, len(in_array)): this_ans += in_array[i] out_array.append(this_ans) return out_array
delta_decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_array):\n if len(in_array) == 0:\n return []\n this_ans = in_array[0]\n out_array = [this_ans]\n for i in range(1, len(in_array)):\n this_ans += in_array[i]\n out_array.append(this_ans)\n return out_array\n", "role": "user" }, { "content": "delta_decode", "role": "assistant" } ]
def x(in_bytes, num): dt = numpy.dtype('>i' + str(num)) return numpy.frombuffer(in_bytes, dt)
convert_bytes_to_ints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_bytes, num):\n dt = numpy.dtype('>i' + str(num))\n return numpy.frombuffer(in_bytes, dt)\n", "role": "user" }, { "content": "convert_bytes_to_ints", "role": "assistant" } ]
def x(in_bytes): bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils. constants.CHAIN_LEN))) return [s.decode('ascii').strip(mmtf.utils.constants.NULL_BYTE) for s in bstrings]
decode_chain_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_bytes):\n bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils.\n constants.CHAIN_LEN)))\n return [s.decode('ascii').strip(mmtf.utils.constants.NULL_BYTE) for s in\n bstrings]\n", "role": "user" }, { "content": "decode_chain_list", "role": "assistant" } ]
def x(int_array, max=32767, min=-32768): out_arr = [] decoded_val = 0 for item in int_array.tolist(): if item == max or item == min: decoded_val += item else: decoded_val += item out_arr.append(decoded_val) decoded_val = 0 return numpy.asarray(out_arr, dtype=numpy.int32)
recursive_index_decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n decoded_val = 0\n for item in int_array.tolist():\n if item == max or item == min:\n decoded_val += item\n else:\n decoded_val += item\n out_arr.append(decoded_val)\n decoded_val = 0\n return numpy.asarray(out_arr, dtype=numpy.int32)\n", "role": "user" }, { "content": "recursive_index_decode", "role": "assistant" } ]
def x(self): out_list = [] for i in range(len(self.x_coord_list)): out_list.append((self.x_coord_list[i], self.y_coord_list[i], self. z_coord_list[i])) return out_list
get_coords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n out_list = []\n for i in range(len(self.x_coord_list)):\n out_list.append((self.x_coord_list[i], self.y_coord_list[i], self.\n z_coord_list[i]))\n return out_list\n", "role": "user" }, { "content": "get_coords", "role": "assistant" } ]
def x(self, input_data): self.group_type_list = decode_array(input_data['groupTypeList']) self.x_coord_list = decode_array(input_data['xCoordList']) self.y_coord_list = decode_array(input_data['yCoordList']) self.z_coord_list = decode_array(input_data['zCoordList']) if 'bFactorList' in input_data: self.b_factor_list = decode_array(input_data['bFactorList']) else: self.b_factor_list = [] if 'occupancyList' in input_data: self.occupancy_list = decode_array(input_data['occupancyList']) else: self.occupancy_list = [] if 'atomIdList' in input_data: self.atom_id_list = decode_array(input_data['atomIdList']) else: self.atom_id_list = [] if 'altLocList' in input_data: self.alt_loc_list = decode_array(input_data['altLocList']) else: self.alt_loc_list = [] if 'insCodeList' in input_data: self.ins_code_list = decode_array(input_data['insCodeList']) else: self.ins_code_list = [] self.group_id_list = decode_array(input_data['groupIdList']) self.group_list = input_data['groupList'] if 'sequenceIndexList' in input_data: self.sequence_index_list = decode_array(input_data['sequenceIndexList'] ) else: self.sequence_index_list = [] self.chains_per_model = input_data['chainsPerModel'] self.groups_per_chain = input_data['groupsPerChain'] if 'chainNameList' in input_data: self.chain_name_list = decode_array(input_data['chainNameList']) else: self.chain_name_list = [] self.chain_id_list = decode_array(input_data['chainIdList']) if 'spaceGroup' in input_data: self.space_group = input_data['spaceGroup'] else: self.space_group = None if 'bondAtomList' in input_data: self.bond_atom_list = decode_array(input_data['bondAtomList']) else: self.bond_atom_list = None if 'bondOrderList' in input_data: self.bond_order_list = decode_array(input_data['bondOrderList']) else: self.bond_order_list = None if sys.version_info[0] < 3: if 'mmtfVersion' in input_data: self.mmtf_version = input_data['mmtfVersion'] else: self.mmtf_version = None if 'mmtfProducer' in input_data: self.mmtf_producer = input_data['mmtfProducer'] else: self.mmtf_producer = None if 'structureId' in input_data: self.structure_id = input_data['structureId'] else: self.structure_id = None else: if 'mmtfVersion' in input_data: self.mmtf_version = input_data['mmtfVersion'] else: self.mmtf_version = None if 'mmtfProducer' in input_data: self.mmtf_producer = input_data['mmtfProducer'] else: self.mmtf_producer = None if 'structureId' in input_data: self.structure_id = input_data['structureId'] else: self.structure_id = None if 'title' in input_data: if sys.version_info[0] < 3: self.title = input_data['title'] else: self.title = input_data['title'] if 'experimentalMethods' in input_data: self.experimental_methods = input_data['experimentalMethods'] else: self.experimental_methods = None if 'depositionDate' in input_data: self.deposition_date = input_data['depositionDate'] else: self.deposition_date = None if 'releaseDate' in input_data: self.release_date = input_data['releaseDate'] else: self.release_date = None if 'entityList' in input_data: self.entity_list = input_data['entityList'] else: self.entity_list = [] if 'bioAssemblyList' in input_data: self.bio_assembly = input_data['bioAssemblyList'] else: self.bio_assembly = [] if 'rFree' in input_data: self.r_free = input_data['rFree'] else: self.r_free = None if 'rWork' in input_data: self.r_work = input_data['rWork'] else: self.r_work = None if 'resolution' in input_data: self.resolution = input_data['resolution'] else: self.resolution = None if 'unitCell' in input_data: self.unit_cell = input_data['unitCell'] else: self.unit_cell = None if 'secStructList' in input_data: self.sec_struct_list = decode_array(input_data['secStructList']) self.num_bonds = int(input_data['numBonds']) self.num_chains = int(input_data['numChains']) self.num_models = int(input_data['numModels']) self.num_atoms = int(input_data['numAtoms']) self.num_groups = int(input_data['numGroups'])
decode_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, input_data):\n self.group_type_list = decode_array(input_data['groupTypeList'])\n self.x_coord_list = decode_array(input_data['xCoordList'])\n self.y_coord_list = decode_array(input_data['yCoordList'])\n self.z_coord_list = decode_array(input_data['zCoordList'])\n if 'bFactorList' in input_data:\n self.b_factor_list = decode_array(input_data['bFactorList'])\n else:\n self.b_factor_list = []\n if 'occupancyList' in input_data:\n self.occupancy_list = decode_array(input_data['occupancyList'])\n else:\n self.occupancy_list = []\n if 'atomIdList' in input_data:\n self.atom_id_list = decode_array(input_data['atomIdList'])\n else:\n self.atom_id_list = []\n if 'altLocList' in input_data:\n self.alt_loc_list = decode_array(input_data['altLocList'])\n else:\n self.alt_loc_list = []\n if 'insCodeList' in input_data:\n self.ins_code_list = decode_array(input_data['insCodeList'])\n else:\n self.ins_code_list = []\n self.group_id_list = decode_array(input_data['groupIdList'])\n self.group_list = input_data['groupList']\n if 'sequenceIndexList' in input_data:\n self.sequence_index_list = decode_array(input_data['sequenceIndexList']\n )\n else:\n self.sequence_index_list = []\n self.chains_per_model = input_data['chainsPerModel']\n self.groups_per_chain = input_data['groupsPerChain']\n if 'chainNameList' in input_data:\n self.chain_name_list = decode_array(input_data['chainNameList'])\n else:\n self.chain_name_list = []\n self.chain_id_list = decode_array(input_data['chainIdList'])\n if 'spaceGroup' in input_data:\n self.space_group = input_data['spaceGroup']\n else:\n self.space_group = None\n if 'bondAtomList' in input_data:\n self.bond_atom_list = decode_array(input_data['bondAtomList'])\n else:\n self.bond_atom_list = None\n if 'bondOrderList' in input_data:\n self.bond_order_list = decode_array(input_data['bondOrderList'])\n else:\n self.bond_order_list = None\n if sys.version_info[0] < 3:\n if 'mmtfVersion' in input_data:\n self.mmtf_version = input_data['mmtfVersion']\n else:\n self.mmtf_version = None\n if 'mmtfProducer' in input_data:\n self.mmtf_producer = input_data['mmtfProducer']\n else:\n self.mmtf_producer = None\n if 'structureId' in input_data:\n self.structure_id = input_data['structureId']\n else:\n self.structure_id = None\n else:\n if 'mmtfVersion' in input_data:\n self.mmtf_version = input_data['mmtfVersion']\n else:\n self.mmtf_version = None\n if 'mmtfProducer' in input_data:\n self.mmtf_producer = input_data['mmtfProducer']\n else:\n self.mmtf_producer = None\n if 'structureId' in input_data:\n self.structure_id = input_data['structureId']\n else:\n self.structure_id = None\n if 'title' in input_data:\n if sys.version_info[0] < 3:\n self.title = input_data['title']\n else:\n self.title = input_data['title']\n if 'experimentalMethods' in input_data:\n self.experimental_methods = input_data['experimentalMethods']\n else:\n self.experimental_methods = None\n if 'depositionDate' in input_data:\n self.deposition_date = input_data['depositionDate']\n else:\n self.deposition_date = None\n if 'releaseDate' in input_data:\n self.release_date = input_data['releaseDate']\n else:\n self.release_date = None\n if 'entityList' in input_data:\n self.entity_list = input_data['entityList']\n else:\n self.entity_list = []\n if 'bioAssemblyList' in input_data:\n self.bio_assembly = input_data['bioAssemblyList']\n else:\n self.bio_assembly = []\n if 'rFree' in input_data:\n self.r_free = input_data['rFree']\n else:\n self.r_free = None\n if 'rWork' in input_data:\n self.r_work = input_data['rWork']\n else:\n self.r_work = None\n if 'resolution' in input_data:\n self.resolution = input_data['resolution']\n else:\n self.resolution = None\n if 'unitCell' in input_data:\n self.unit_cell = input_data['unitCell']\n else:\n self.unit_cell = None\n if 'secStructList' in input_data:\n self.sec_struct_list = decode_array(input_data['secStructList'])\n self.num_bonds = int(input_data['numBonds'])\n self.num_chains = int(input_data['numChains'])\n self.num_models = int(input_data['numModels'])\n self.num_atoms = int(input_data['numAtoms'])\n self.num_groups = int(input_data['numGroups'])\n", "role": "user" }, { "content": "decode_data", "role": "assistant" } ]
def x(self, data_setters): data_setters.init_structure(self.num_bonds, len(self.x_coord_list), len (self.group_type_list), len(self.chain_id_list), len(self. chains_per_model), self.structure_id) decoder_utils.add_entity_info(self, data_setters) decoder_utils.add_atomic_information(self, data_setters) decoder_utils.add_header_info(self, data_setters) decoder_utils.add_xtalographic_info(self, data_setters) decoder_utils.generate_bio_assembly(self, data_setters) decoder_utils.add_inter_group_bonds(self, data_setters) data_setters.finalize_structure()
pass_data_on
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_setters):\n data_setters.init_structure(self.num_bonds, len(self.x_coord_list), len\n (self.group_type_list), len(self.chain_id_list), len(self.\n chains_per_model), self.structure_id)\n decoder_utils.add_entity_info(self, data_setters)\n decoder_utils.add_atomic_information(self, data_setters)\n decoder_utils.add_header_info(self, data_setters)\n decoder_utils.add_xtalographic_info(self, data_setters)\n decoder_utils.generate_bio_assembly(self, data_setters)\n decoder_utils.add_inter_group_bonds(self, data_setters)\n data_setters.finalize_structure()\n", "role": "user" }, { "content": "pass_data_on", "role": "assistant" } ]
def x(address): try: urllib2.urlopen(address, timeout=1) return True except urllib2.URLError as err: return False
internet_on
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(address):\n try:\n urllib2.urlopen(address, timeout=1)\n return True\n except urllib2.URLError as err:\n return False\n", "role": "user" }, { "content": "internet_on", "role": "assistant" } ]
def x(file_path, input_data, input_function): mmtf_encoder = MMTFEncoder() pass_data_on(input_data, input_function, mmtf_encoder) mmtf_encoder.write_file(file_path)
write_mmtf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path, input_data, input_function):\n mmtf_encoder = MMTFEncoder()\n pass_data_on(input_data, input_function, mmtf_encoder)\n mmtf_encoder.write_file(file_path)\n", "role": "user" }, { "content": "write_mmtf", "role": "assistant" } ]
def x(pdb_id, reduced=False): url = get_url(pdb_id, reduced) request = urllib2.Request(url) request.add_header('Accept-encoding', 'gzip') response = urllib2.urlopen(request) if response.info().get('Content-Encoding') == 'gzip': data = ungzip_data(response.read()) else: data = response.read() return _unpack(data)
get_raw_data_from_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pdb_id, reduced=False):\n url = get_url(pdb_id, reduced)\n request = urllib2.Request(url)\n request.add_header('Accept-encoding', 'gzip')\n response = urllib2.urlopen(request)\n if response.info().get('Content-Encoding') == 'gzip':\n data = ungzip_data(response.read())\n else:\n data = response.read()\n return _unpack(data)\n", "role": "user" }, { "content": "get_raw_data_from_url", "role": "assistant" } ]
def x(file_path): newDecoder = MMTFDecoder() with open(file_path, 'rb') as fh: newDecoder.decode_data(_unpack(fh)) return newDecoder
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n newDecoder = MMTFDecoder()\n with open(file_path, 'rb') as fh:\n newDecoder.decode_data(_unpack(fh))\n return newDecoder\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(file_path): newDecoder = MMTFDecoder() newDecoder.decode_data(_unpack(gzip.open(file_path, 'rb'))) return newDecoder
parse_gzip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n newDecoder = MMTFDecoder()\n newDecoder.decode_data(_unpack(gzip.open(file_path, 'rb')))\n return newDecoder\n", "role": "user" }, { "content": "parse_gzip", "role": "assistant" } ]
def x(input_data): buf = StringIO(input_data) f = gzip.GzipFile(fileobj=buf) return f
ungzip_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_data):\n buf = StringIO(input_data)\n f = gzip.GzipFile(fileobj=buf)\n return f\n", "role": "user" }, { "content": "ungzip_data", "role": "assistant" } ]
def x(input_array): codec = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[0:4])[0 ] length = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[4:8])[ 0] param = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[8:12])[ 0] return codec, length, param, input_array[12:]
parse_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_array):\n codec = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[0:4])[0\n ]\n length = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[4:8])[\n 0]\n param = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[8:12])[\n 0]\n return codec, length, param, input_array[12:]\n", "role": "user" }, { "content": "parse_header", "role": "assistant" } ]
def x(input_array, codec, length, param): return struct.pack(mmtf.utils.constants.NUM_DICT[4], codec) + struct.pack( mmtf.utils.constants.NUM_DICT[4], length) + struct.pack(mmtf.utils. constants.NUM_DICT[4], param) + input_array
add_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(input_array, codec, length, param):\n return struct.pack(mmtf.utils.constants.NUM_DICT[4], codec) + struct.pack(\n mmtf.utils.constants.NUM_DICT[4], length) + struct.pack(mmtf.utils.\n constants.NUM_DICT[4], param) + input_array\n", "role": "user" }, { "content": "add_header", "role": "assistant" } ]
def x(in_bytes, num): out_arr = [] for i in range(len(in_bytes) // num): val = in_bytes[i * num:i * num + num] unpacked = struct.unpack(mmtf.utils.constants.NUM_DICT[num], val) out_arr.append(unpacked[0]) return out_arr
convert_bytes_to_ints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_bytes, num):\n out_arr = []\n for i in range(len(in_bytes) // num):\n val = in_bytes[i * num:i * num + num]\n unpacked = struct.unpack(mmtf.utils.constants.NUM_DICT[num], val)\n out_arr.append(unpacked[0])\n return out_arr\n", "role": "user" }, { "content": "convert_bytes_to_ints", "role": "assistant" } ]
def x(in_ints, num): out_bytes = b'' for val in in_ints: out_bytes += struct.pack(mmtf.utils.constants.NUM_DICT[num], val) return out_bytes
convert_ints_to_bytes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_ints, num):\n out_bytes = b''\n for val in in_ints:\n out_bytes += struct.pack(mmtf.utils.constants.NUM_DICT[num], val)\n return out_bytes\n", "role": "user" }, { "content": "convert_ints_to_bytes", "role": "assistant" } ]
def x(in_bytes): tot_strings = len(in_bytes) // mmtf.utils.constants.CHAIN_LEN out_strings = [] for i in range(tot_strings): out_s = in_bytes[i * mmtf.utils.constants.CHAIN_LEN:i * mmtf.utils. constants.CHAIN_LEN + mmtf.utils.constants.CHAIN_LEN] out_strings.append(out_s.decode('ascii').strip(mmtf.utils.constants .NULL_BYTE)) return out_strings
decode_chain_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_bytes):\n tot_strings = len(in_bytes) // mmtf.utils.constants.CHAIN_LEN\n out_strings = []\n for i in range(tot_strings):\n out_s = in_bytes[i * mmtf.utils.constants.CHAIN_LEN:i * mmtf.utils.\n constants.CHAIN_LEN + mmtf.utils.constants.CHAIN_LEN]\n out_strings.append(out_s.decode('ascii').strip(mmtf.utils.constants\n .NULL_BYTE))\n return out_strings\n", "role": "user" }, { "content": "decode_chain_list", "role": "assistant" } ]
def x(in_strings): out_bytes = b'' for in_s in in_strings: out_bytes += in_s.encode('ascii') for i in range(mmtf.utils.constants.CHAIN_LEN - len(in_s)): out_bytes += mmtf.utils.constants.NULL_BYTE.encode('ascii') return out_bytes
encode_chain_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_strings):\n out_bytes = b''\n for in_s in in_strings:\n out_bytes += in_s.encode('ascii')\n for i in range(mmtf.utils.constants.CHAIN_LEN - len(in_s)):\n out_bytes += mmtf.utils.constants.NULL_BYTE.encode('ascii')\n return out_bytes\n", "role": "user" }, { "content": "encode_chain_list", "role": "assistant" } ]
def x(int_array, max=32767, min=-32768): out_arr = [] for curr in int_array: if curr >= 0: while curr >= max: out_arr.append(max) curr -= max else: while curr <= min: out_arr.append(min) curr += int(math.fabs(min)) out_arr.append(curr) return out_arr
recursive_index_encode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n for curr in int_array:\n if curr >= 0:\n while curr >= max:\n out_arr.append(max)\n curr -= max\n else:\n while curr <= min:\n out_arr.append(min)\n curr += int(math.fabs(min))\n out_arr.append(curr)\n return out_arr\n", "role": "user" }, { "content": "recursive_index_encode", "role": "assistant" } ]
def x(int_array, max=32767, min=-32768): out_arr = [] encoded_ind = 0 while encoded_ind < len(int_array): decoded_val = 0 while int_array[encoded_ind] == max or int_array[encoded_ind] == min: decoded_val += int_array[encoded_ind] encoded_ind += 1 if int_array[encoded_ind] == 0: break decoded_val += int_array[encoded_ind] encoded_ind += 1 out_arr.append(decoded_val) return out_arr
recursive_index_decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n encoded_ind = 0\n while encoded_ind < len(int_array):\n decoded_val = 0\n while int_array[encoded_ind] == max or int_array[encoded_ind] == min:\n decoded_val += int_array[encoded_ind]\n encoded_ind += 1\n if int_array[encoded_ind] == 0:\n break\n decoded_val += int_array[encoded_ind]\n encoded_ind += 1\n out_arr.append(decoded_val)\n return out_arr\n", "role": "user" }, { "content": "recursive_index_decode", "role": "assistant" } ]
def x(in_array): switch = False out_array = [] in_array = in_array.tolist() for item in in_array: if switch == False: this_item = item switch = True else: switch = False out_array.extend([this_item] * int(item)) return numpy.asarray(out_array, dtype=numpy.int32)
run_length_decode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(in_array):\n switch = False\n out_array = []\n in_array = in_array.tolist()\n for item in in_array:\n if switch == False:\n this_item = item\n switch = True\n else:\n switch = False\n out_array.extend([this_item] * int(item))\n return numpy.asarray(out_array, dtype=numpy.int32)\n", "role": "user" }, { "content": "run_length_decode", "role": "assistant" } ]
def x(algo, init): x = theano.shared(np.array(init, FLOAT), name='x') n = 0.1 * RandomStreams().normal((len(init) - 1,)) monitors = [] if len(init) == 2: monitors.extend([('x', x[:-1].sum()), ('y', x[1:].sum())]) return downhill.build(algo, loss=(n + 100 * (x[1:] - x[:-1] ** 2) ** 2 + (1 - x[:-1]) ** 2).sum(), params=[x], monitors=monitors, monitor_gradients=True)
build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(algo, init):\n x = theano.shared(np.array(init, FLOAT), name='x')\n n = 0.1 * RandomStreams().normal((len(init) - 1,))\n monitors = []\n if len(init) == 2:\n monitors.extend([('x', x[:-1].sum()), ('y', x[1:].sum())])\n return downhill.build(algo, loss=(n + 100 * (x[1:] - x[:-1] ** 2) ** 2 +\n (1 - x[:-1]) ** 2).sum(), params=[x], monitors=monitors,\n monitor_gradients=True)\n", "role": "user" }, { "content": "build", "role": "assistant" } ]
def x(algo, init, limit=100, **kwargs): kw = dict(min_improvement=0, patience=0, max_gradient_norm=100) kw.update(kwargs) xs, ys, loss = [], [], [] for tm, _ in build(algo, init).iterate([[]], **kw): if len(init) == 2: xs.append(tm['x']) ys.append(tm['y']) loss.append(tm['loss']) if len(loss) == limit: break return xs[:-9], ys[:-9], loss[-9]
build_and_trace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(algo, init, limit=100, **kwargs):\n kw = dict(min_improvement=0, patience=0, max_gradient_norm=100)\n kw.update(kwargs)\n xs, ys, loss = [], [], []\n for tm, _ in build(algo, init).iterate([[]], **kw):\n if len(init) == 2:\n xs.append(tm['x'])\n ys.append(tm['y'])\n loss.append(tm['loss'])\n if len(loss) == limit:\n break\n return xs[:-9], ys[:-9], loss[-9]\n", "role": "user" }, { "content": "build_and_trace", "role": "assistant" } ]
def x(loss, train, valid=None, params=None, inputs=None, algo='rmsprop', updates=(), monitors=(), monitor_gradients=False, batch_size=32, train_batches=None, valid_batches=None, **kwargs): if not isinstance(train, Dataset): train = Dataset(train, name='train', batch_size=batch_size, iteration_size=train_batches) if valid is not None and not isinstance(valid, Dataset): valid = Dataset(valid, name='valid', batch_size=batch_size, iteration_size=valid_batches) return build(algo, loss=loss, params=params, inputs=inputs, updates= updates, monitors=monitors, monitor_gradients=monitor_gradients ).minimize(train, valid, **kwargs)
minimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loss, train, valid=None, params=None, inputs=None, algo='rmsprop',\n updates=(), monitors=(), monitor_gradients=False, batch_size=32,\n train_batches=None, valid_batches=None, **kwargs):\n if not isinstance(train, Dataset):\n train = Dataset(train, name='train', batch_size=batch_size,\n iteration_size=train_batches)\n if valid is not None and not isinstance(valid, Dataset):\n valid = Dataset(valid, name='valid', batch_size=batch_size,\n iteration_size=valid_batches)\n return build(algo, loss=loss, params=params, inputs=inputs, updates=\n updates, monitors=monitors, monitor_gradients=monitor_gradients\n ).minimize(train, valid, **kwargs)\n", "role": "user" }, { "content": "minimize", "role": "assistant" } ]
def x(loss, key): algo, rate, mu, half, reg = key slots, args = ['{:.3f}', '{}', 'm={:.3f}'], [loss, algo, mu] if algo in 'SGD NAG RMSProp Adam ESGD'.split(): slots.append('lr={:.2e}') args.append(rate) if algo in 'RMSProp ADADELTA ESGD'.split(): slots.append('rmsh={}') args.append(half) slots.append('rmsr={:.2e}') args.append(reg) return ' '.join(slots).format(*args)
make_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(loss, key):\n algo, rate, mu, half, reg = key\n slots, args = ['{:.3f}', '{}', 'm={:.3f}'], [loss, algo, mu]\n if algo in 'SGD NAG RMSProp Adam ESGD'.split():\n slots.append('lr={:.2e}')\n args.append(rate)\n if algo in 'RMSProp ADADELTA ESGD'.split():\n slots.append('rmsh={}')\n args.append(half)\n slots.append('rmsr={:.2e}')\n args.append(reg)\n return ' '.join(slots).format(*args)\n", "role": "user" }, { "content": "make_label", "role": "assistant" } ]
def x(self, shuffle=True): for _ in range(self.iteration_size): if self._callable is not None: yield self._callable() else: yield self._next_batch(shuffle)
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shuffle=True):\n for _ in range(self.iteration_size):\n if self._callable is not None:\n yield self._callable()\n else:\n yield self._next_batch(shuffle)\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(param, suffix, init=0): return theano.shared(np.zeros_like(param.get_value()) + init, name= '{}_{}'.format(param.name, suffix), broadcastable=param.broadcastable)
shared_like
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(param, suffix, init=0):\n return theano.shared(np.zeros_like(param.get_value()) + init, name=\n '{}_{}'.format(param.name, suffix), broadcastable=param.broadcastable)\n", "role": "user" }, { "content": "shared_like", "role": "assistant" } ]
def x(node): queue, seen, inputs, params = [node], set(), set(), set() while queue: node = queue.pop() seen.add(node) queue.extend(p for p in node.get_parents() if p not in seen) if not node.get_parents(): if isinstance(node, theano.compile.SharedVariable): params.add(node) elif not isinstance(node, TT.Constant): inputs.add(node) return list(inputs), list(params)
find_inputs_and_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(node):\n queue, seen, inputs, params = [node], set(), set(), set()\n while queue:\n node = queue.pop()\n seen.add(node)\n queue.extend(p for p in node.get_parents() if p not in seen)\n if not node.get_parents():\n if isinstance(node, theano.compile.SharedVariable):\n params.add(node)\n elif not isinstance(node, TT.Constant):\n inputs.add(node)\n return list(inputs), list(params)\n", "role": "user" }, { "content": "find_inputs_and_params", "role": "assistant" } ]
def x(msg, *args, **kwargs): now = datetime.datetime.now() module = 'downhill' if _detailed_callsite: caller = inspect.stack()[1] parts = caller.filename.replace('.py', '').split('/') module = '{}:{}'.format('.'.join(parts[parts.index('downhill') + 1: ]), caller.lineno) click.echo(' '.join((click.style(now.strftime('%Y%m%d'), fg='blue'), click.style(now.strftime('%H%M%S'), fg='cyan'), click.style(module, fg='magenta'), msg.format(*args, **kwargs))))
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(msg, *args, **kwargs):\n now = datetime.datetime.now()\n module = 'downhill'\n if _detailed_callsite:\n caller = inspect.stack()[1]\n parts = caller.filename.replace('.py', '').split('/')\n module = '{}:{}'.format('.'.join(parts[parts.index('downhill') + 1:\n ]), caller.lineno)\n click.echo(' '.join((click.style(now.strftime('%Y%m%d'), fg='blue'),\n click.style(now.strftime('%H%M%S'), fg='cyan'), click.style(module,\n fg='magenta'), msg.format(*args, **kwargs))))\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(name, value): log('setting {} = {}', click.style(str(name)), click.style(str(value), fg='yellow'))
log_param
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, value):\n log('setting {} = {}', click.style(str(name)), click.style(str(value),\n fg='yellow'))\n", "role": "user" }, { "content": "log_param", "role": "assistant" } ]
def x(): mnist = skdata.mnist.dataset.MNIST() mnist.meta def x(n, dtype): arr = mnist.arrays[n] return arr.reshape((len(arr), -1)).astype(dtype) train_images = arr('train_images', np.float32) / 128 - 1 train_labels = arr('train_labels', np.uint8) return (train_images[:50000], train_labels[:50000, 0]), (train_images[ 50000:], train_labels[50000:, 0])
load_mnist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n mnist = skdata.mnist.dataset.MNIST()\n mnist.meta\n\n def x(n, dtype):\n arr = mnist.arrays[n]\n return arr.reshape((len(arr), -1)).astype(dtype)\n train_images = arr('train_images', np.float32) / 128 - 1\n train_labels = arr('train_labels', np.uint8)\n return (train_images[:50000], train_labels[:50000, 0]), (train_images[\n 50000:], train_labels[50000:, 0])\n", "role": "user" }, { "content": "load_mnist", "role": "assistant" } ]
def x(algo, loss, params=None, inputs=None, updates=(), monitors=(), monitor_gradients=False): return Optimizer.build(algo, loss, params, inputs, updates=updates, monitors=monitors, monitor_gradients=monitor_gradients)
build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(algo, loss, params=None, inputs=None, updates=(), monitors=(),\n monitor_gradients=False):\n return Optimizer.build(algo, loss, params, inputs, updates=updates,\n monitors=monitors, monitor_gradients=monitor_gradients)\n", "role": "user" }, { "content": "build", "role": "assistant" } ]
def x(self, **kwargs): util.log('compiling evaluation function') self.f_eval = theano.function(self._inputs, self._monitor_exprs, updates=self._updates, name='evaluation') label = self.__class__.__name__ util.log('compiling {} optimizer'.format(click.style(label, fg='red'))) updates = list(self._updates) + list(self.get_updates(**kwargs)) self.f_step = theano.function(self._inputs, self._monitor_exprs, updates=updates, name=label)
compile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n util.log('compiling evaluation function')\n self.f_eval = theano.function(self._inputs, self._monitor_exprs,\n updates=self._updates, name='evaluation')\n label = self.__class__.__name__\n util.log('compiling {} optimizer'.format(click.style(label, fg='red')))\n updates = list(self._updates) + list(self.get_updates(**kwargs))\n self.f_step = theano.function(self._inputs, self._monitor_exprs,\n updates=updates, name=label)\n", "role": "user" }, { "content": "compile", "role": "assistant" } ]
def x(self, **kwargs): self._prepare(**kwargs) for param, grad in self._differentiate(): for var, update in self._get_updates_for(param, grad): if var != param: yield var, update continue if self.momentum == 0: yield var, param - update continue vel_tm1 = util.shared_like(param, 'vel') vel_t = util.as_float(self.momentum) * vel_tm1 - update if self.nesterov: mom_sqr = util.as_float(self.momentum ** 2) mom_inc = util.as_float(1 + self.momentum) vel_t = mom_sqr * vel_tm1 - mom_inc * update yield vel_tm1, vel_t yield param, param + vel_t
get_updates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n self._prepare(**kwargs)\n for param, grad in self._differentiate():\n for var, update in self._get_updates_for(param, grad):\n if var != param:\n yield var, update\n continue\n if self.momentum == 0:\n yield var, param - update\n continue\n vel_tm1 = util.shared_like(param, 'vel')\n vel_t = util.as_float(self.momentum) * vel_tm1 - update\n if self.nesterov:\n mom_sqr = util.as_float(self.momentum ** 2)\n mom_inc = util.as_float(1 + self.momentum)\n vel_t = mom_sqr * vel_tm1 - mom_inc * update\n yield vel_tm1, vel_t\n yield param, param + vel_t\n", "role": "user" }, { "content": "get_updates", "role": "assistant" } ]
def x(self, params=None): if params is None: params = self._params for param, grad in zip(params, TT.grad(self._loss, params)): if self.max_gradient_elem > 0: limit = util.as_float(self.max_gradient_elem) yield param, TT.clip(grad, -limit, limit) elif self.max_gradient_norm > 0: norm = TT.sqrt((grad * grad).sum()) limit = util.as_float(self.max_gradient_norm) yield param, grad * TT.minimum(1, limit / norm) else: yield param, grad
differentiate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None):\n if params is None:\n params = self._params\n for param, grad in zip(params, TT.grad(self._loss, params)):\n if self.max_gradient_elem > 0:\n limit = util.as_float(self.max_gradient_elem)\n yield param, TT.clip(grad, -limit, limit)\n elif self.max_gradient_norm > 0:\n norm = TT.sqrt((grad * grad).sum())\n limit = util.as_float(self.max_gradient_norm)\n yield param, grad * TT.minimum(1, limit / norm)\n else:\n yield param, grad\n", "role": "user" }, { "content": "differentiate", "role": "assistant" } ]
def x(self, targets=None): if not isinstance(targets, (list, tuple)): targets = self._best_params for param, target in zip(self._params, targets): param.set_value(target)
set_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, targets=None):\n if not isinstance(targets, (list, tuple)):\n targets = self._best_params\n for param, target in zip(self._params, targets):\n param.set_value(target)\n", "role": "user" }, { "content": "set_params", "role": "assistant" } ]
def x(self, monitors, iteration, label='', suffix=''): label = label or self.__class__.__name__ fields = ('{}={:.6f}'.format(k, v) for k, v in monitors.items()) util.log('{} {} {}{}'.format(label, iteration, ' '.join(fields), suffix))
log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, monitors, iteration, label='', suffix=''):\n label = label or self.__class__.__name__\n fields = ('{}={:.6f}'.format(k, v) for k, v in monitors.items())\n util.log('{} {} {}{}'.format(label, iteration, ' '.join(fields), suffix))\n", "role": "user" }, { "content": "log", "role": "assistant" } ]
def x(self, dataset): if dataset is None: values = [self.f_eval()] else: values = [self.f_eval(*x) for x in dataset] monitors = zip(self._monitor_names, np.mean(values, axis=0)) return collections.OrderedDict(monitors)
evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dataset):\n if dataset is None:\n values = [self.f_eval()]\n else:\n values = [self.f_eval(*x) for x in dataset]\n monitors = zip(self._monitor_names, np.mean(values, axis=0))\n return collections.OrderedDict(monitors)\n", "role": "user" }, { "content": "evaluate", "role": "assistant" } ]
def x(self, **kwargs): self.learning_rate = util.as_float(kwargs.pop('learning_rate', 0.0001)) self.momentum = kwargs.pop('momentum', 0) self.nesterov = kwargs.pop('nesterov', False) self.patience = kwargs.get('patience', 5) self.validate_every = kwargs.pop('validate_every', 10) self.min_improvement = kwargs.pop('min_improvement', 0) self.max_gradient_norm = kwargs.pop('max_gradient_norm', 0) self.max_gradient_elem = kwargs.pop('max_gradient_elem', 0) util.log_param('patience', self.patience) util.log_param('validate_every', self.validate_every) util.log_param('min_improvement', self.min_improvement) util.log_param('max_gradient_norm', self.max_gradient_norm) util.log_param('max_gradient_elem', self.max_gradient_elem) util.log_param('learning_rate', self.learning_rate) util.log_param('momentum', self.momentum) util.log_param('nesterov', self.nesterov)
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n self.learning_rate = util.as_float(kwargs.pop('learning_rate', 0.0001))\n self.momentum = kwargs.pop('momentum', 0)\n self.nesterov = kwargs.pop('nesterov', False)\n self.patience = kwargs.get('patience', 5)\n self.validate_every = kwargs.pop('validate_every', 10)\n self.min_improvement = kwargs.pop('min_improvement', 0)\n self.max_gradient_norm = kwargs.pop('max_gradient_norm', 0)\n self.max_gradient_elem = kwargs.pop('max_gradient_elem', 0)\n util.log_param('patience', self.patience)\n util.log_param('validate_every', self.validate_every)\n util.log_param('min_improvement', self.min_improvement)\n util.log_param('max_gradient_norm', self.max_gradient_norm)\n util.log_param('max_gradient_elem', self.max_gradient_elem)\n util.log_param('learning_rate', self.learning_rate)\n util.log_param('momentum', self.momentum)\n util.log_param('nesterov', self.nesterov)\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(self, train=None, valid=None, max_updates=None, **kwargs): self._compile(**kwargs) if valid is None: valid = train iteration = 0 training = validation = None while max_updates is None or iteration < max_updates: if not iteration % self.validate_every: try: validation = self.evaluate(valid) except KeyboardInterrupt: util.log('interrupted!') break if self._test_patience(validation): util.log('patience elapsed!') break try: training = self._step(train) except KeyboardInterrupt: util.log('interrupted!') break iteration += 1 self._log(training, iteration) yield training, validation self.set_params('best')
iterate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, train=None, valid=None, max_updates=None, **kwargs):\n self._compile(**kwargs)\n if valid is None:\n valid = train\n iteration = 0\n training = validation = None\n while max_updates is None or iteration < max_updates:\n if not iteration % self.validate_every:\n try:\n validation = self.evaluate(valid)\n except KeyboardInterrupt:\n util.log('interrupted!')\n break\n if self._test_patience(validation):\n util.log('patience elapsed!')\n break\n try:\n training = self._step(train)\n except KeyboardInterrupt:\n util.log('interrupted!')\n break\n iteration += 1\n self._log(training, iteration)\n yield training, validation\n self.set_params('best')\n", "role": "user" }, { "content": "iterate", "role": "assistant" } ]
def x(self, *args, **kwargs): monitors = None for monitors in self.iterate(*args, **kwargs): pass return monitors
minimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n monitors = None\n for monitors in self.iterate(*args, **kwargs):\n pass\n return monitors\n", "role": "user" }, { "content": "minimize", "role": "assistant" } ]
def x(self, dataset): if dataset is None: values = [self.f_step()] else: values = [self.f_step(*x) for x in dataset] return collections.OrderedDict(zip(self._monitor_names, np.mean(values, axis=0)))
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dataset):\n if dataset is None:\n values = [self.f_step()]\n else:\n values = [self.f_step(*x) for x in dataset]\n return collections.OrderedDict(zip(self._monitor_names, np.mean(values,\n axis=0)))\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(method, number_of_arguments=1): if 'method' in method.__class__.__name__: number_of_arguments += 1 func = getattr(method, 'im_func', getattr(method, '__func__')) func_defaults = getattr(func, 'func_defaults', getattr(func, '__defaults__')) number_of_defaults = func_defaults and len(func_defaults) or 0 elif method.__class__.__name__ == 'function': func_defaults = getattr(method, 'func_defaults', getattr(method, '__defaults__')) number_of_defaults = func_defaults and len(func_defaults) or 0 coArgCount = getattr(method, 'func_code', getattr(method, '__code__') ).co_argcount if (coArgCount >= number_of_arguments and coArgCount - number_of_defaults <= number_of_arguments): return True return False
accept_arguments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method, number_of_arguments=1):\n if 'method' in method.__class__.__name__:\n number_of_arguments += 1\n func = getattr(method, 'im_func', getattr(method, '__func__'))\n func_defaults = getattr(func, 'func_defaults', getattr(func,\n '__defaults__'))\n number_of_defaults = func_defaults and len(func_defaults) or 0\n elif method.__class__.__name__ == 'function':\n func_defaults = getattr(method, 'func_defaults', getattr(method,\n '__defaults__'))\n number_of_defaults = func_defaults and len(func_defaults) or 0\n coArgCount = getattr(method, 'func_code', getattr(method, '__code__')\n ).co_argcount\n if (coArgCount >= number_of_arguments and coArgCount -\n number_of_defaults <= number_of_arguments):\n return True\n return False\n", "role": "user" }, { "content": "accept_arguments", "role": "assistant" } ]
def x(self, signal, value=None, gather=False): results = [] if gather else True if hasattr(self, 'connections') and signal in self.connections: for condition, values in self.connections[signal].items(): if condition is None or condition == value or callable(condition ) and condition(value): for slot, transform in values.items(): if transform is not None: if callable(transform): used_value = transform(value) elif isinstance(transform, str): used_value = transform.format(value=value) else: used_value = transform else: used_value = value if used_value is not None: if accept_arguments(slot, 1): result = slot(used_value) elif accept_arguments(slot, 0): result = slot() else: result = '' else: result = slot() if gather: results.append(result) return results
emit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, signal, value=None, gather=False):\n results = [] if gather else True\n if hasattr(self, 'connections') and signal in self.connections:\n for condition, values in self.connections[signal].items():\n if condition is None or condition == value or callable(condition\n ) and condition(value):\n for slot, transform in values.items():\n if transform is not None:\n if callable(transform):\n used_value = transform(value)\n elif isinstance(transform, str):\n used_value = transform.format(value=value)\n else:\n used_value = transform\n else:\n used_value = value\n if used_value is not None:\n if accept_arguments(slot, 1):\n result = slot(used_value)\n elif accept_arguments(slot, 0):\n result = slot()\n else:\n result = ''\n else:\n result = slot()\n if gather:\n results.append(result)\n return results\n", "role": "user" }, { "content": "emit", "role": "assistant" } ]
def x(self, signal, slot, transform=None, condition=None): if not signal in self.signals: print( 'WARNING: {0} is trying to connect a slot to an undefined signal: {1}' .format(self.__class__.__name__, str(signal))) return if not hasattr(self, 'connections'): self.connections = {} connection = self.connections.setdefault(signal, {}) connection = connection.setdefault(condition, {}) connection[slot] = transform
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, signal, slot, transform=None, condition=None):\n if not signal in self.signals:\n print(\n 'WARNING: {0} is trying to connect a slot to an undefined signal: {1}'\n .format(self.__class__.__name__, str(signal)))\n return\n if not hasattr(self, 'connections'):\n self.connections = {}\n connection = self.connections.setdefault(signal, {})\n connection = connection.setdefault(condition, {})\n connection[slot] = transform\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self, signal=None, slot=None, transform=None, condition=None): if slot: self.connections[signal][condition].pop(slot, None) elif condition is not None: self.connections[signal].pop(condition, None) elif signal: self.connections.pop(signal, None) else: delattr(self, 'connections')
disconnect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, signal=None, slot=None, transform=None, condition=None):\n if slot:\n self.connections[signal][condition].pop(slot, None)\n elif condition is not None:\n self.connections[signal].pop(condition, None)\n elif signal:\n self.connections.pop(signal, None)\n else:\n delattr(self, 'connections')\n", "role": "user" }, { "content": "disconnect", "role": "assistant" } ]
def x(self, key): keystr = str(key) res = None try: res = self.ctx[keystr] except KeyError: for k, v in self.ctx.items(): if 'name' in v and v['name'].lower() == keystr.lower(): res = v break return res
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key):\n keystr = str(key)\n res = None\n try:\n res = self.ctx[keystr]\n except KeyError:\n for k, v in self.ctx.items():\n if 'name' in v and v['name'].lower() == keystr.lower():\n res = v\n break\n return res\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self): name = self._item.get('market_hash_name') if not name: name = '{0.appid}-{0.name}'.format(self) return name
hash_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name = self._item.get('market_hash_name')\n if not name:\n name = '{0.appid}-{0.name}'.format(self)\n return name\n", "role": "user" }, { "content": "hash_name", "role": "assistant" } ]
def x(self): try: qid = int((self.tool_metadata or {}).get('quality', 0)) except: qid = 0 internal_name, name = 'normal', 'Normal' if self.tags: tags = {x.get('category'): x for x in self.tags} if 'Quality' in tags: internal_name, name = tags['Quality'].get('internal_name'), tags[ 'Quality'].get('name') return qid, internal_name, name
quality
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n qid = int((self.tool_metadata or {}).get('quality', 0))\n except:\n qid = 0\n internal_name, name = 'normal', 'Normal'\n if self.tags:\n tags = {x.get('category'): x for x in self.tags}\n if 'Quality' in tags:\n internal_name, name = tags['Quality'].get('internal_name'), tags[\n 'Quality'].get('name')\n return qid, internal_name, name\n", "role": "user" }, { "content": "quality", "role": "assistant" } ]
def x(cls): apikey = cls.__api_key or cls.__api_key_env_var if apikey: return apikey else: raise APIKeyMissingError('API key not set')
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n apikey = cls.__api_key or cls.__api_key_env_var\n if apikey:\n return apikey\n else:\n raise APIKeyMissingError('API key not set')\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self): data = self._downloader.download() if sys.version >= '2.7': data = data.decode('utf-8', errors='ignore') else: data = data.decode('utf-8') self.update(json.loads(data)) self._fetched = True
call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = self._downloader.download()\n if sys.version >= '2.7':\n data = data.decode('utf-8', errors='ignore')\n else:\n data = data.decode('utf-8')\n self.update(json.loads(data))\n self._fetched = True\n", "role": "user" }, { "content": "call", "role": "assistant" } ]
def x(self, attrid): attrs = self._schema['attributes'] try: return dict(attrs[attrid]) except KeyError: attr_names = self._schema['attribute_names'] attrdef = attrs.get(attr_names.get(str(attrid).lower())) if not attrdef: return None else: return dict(attrdef)
attribute_definition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attrid):\n attrs = self._schema['attributes']\n try:\n return dict(attrs[attrid])\n except KeyError:\n attr_names = self._schema['attribute_names']\n attrdef = attrs.get(attr_names.get(str(attrid).lower()))\n if not attrdef:\n return None\n else:\n return dict(attrdef)\n", "role": "user" }, { "content": "attribute_definition", "role": "assistant" } ]
def x(self, qid): qualities = self._schema['qualities'] try: return qualities[qid] except KeyError: qid = self._schema['quality_names'].get(str(qid).lower(), 0) return qualities.get(qid, (qid, 'normal', 'Normal'))
quality_definition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, qid):\n qualities = self._schema['qualities']\n try:\n return qualities[qid]\n except KeyError:\n qid = self._schema['quality_names'].get(str(qid).lower(), 0)\n return qualities.get(qid, (qid, 'normal', 'Normal'))\n", "role": "user" }, { "content": "quality_definition", "role": "assistant" } ]
def x(self): attrs = self._schema['attributes'] return [item_attribute(attr) for attr in sorted(attrs.values(), key= operator.itemgetter('defindex'))]
attributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n attrs = self._schema['attributes']\n return [item_attribute(attr) for attr in sorted(attrs.values(), key=\n operator.itemgetter('defindex'))]\n", "role": "user" }, { "content": "attributes", "role": "assistant" } ]
def x(self, origin): try: oid = int(origin) except (ValueError, TypeError): return None return self.origins.get(oid)
origin_id_to_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, origin):\n try:\n oid = int(origin)\n except (ValueError, TypeError):\n return None\n return self.origins.get(oid)\n", "role": "user" }, { "content": "origin_id_to_name", "role": "assistant" } ]