source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, action):
return '%s.%s_%s' % (self.app_name.lower(), self.model_name.lower(), action
)
|
permission_for_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n return '%s.%s_%s' % (self.app_name.lower(), self.model_name.lower(), action\n )\n",
"role": "user"
},
{
"content": "permission_for_action",
"role": "assistant"
}
] |
def x(self, action):
return '%s/%s_%s.html' % (self.module_name.lower(), self.model_name.
lower(), action)
|
template_for_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n return '%s/%s_%s.html' % (self.module_name.lower(), self.model_name.\n lower(), action)\n",
"role": "user"
},
{
"content": "template_for_action",
"role": "assistant"
}
] |
def x(self, action):
return '%s.%s_%s' % (self.module_name.lower(), self.model_name.lower(),
action)
|
url_name_for_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n return '%s.%s_%s' % (self.module_name.lower(), self.model_name.lower(),\n action)\n",
"role": "user"
},
{
"content": "url_name_for_action",
"role": "assistant"
}
] |
def x(self, action):
class_name = ''.join([word.capitalize() for word in action.split('_')])
view = None
if hasattr(self, class_name):
view = getattr(self, class_name)
if not getattr(view, 'model', None):
view.model = self.model
if not hasattr(view, 'permission') and self.permissions:
view.permission = self.permission_for_action(action)
if not getattr(view, 'link_url', None):
if 'read' in self.actions:
view.link_url = 'id@%s' % self.url_name_for_action('read')
elif 'update' in self.actions:
view.link_url = 'id@%s' % self.url_name_for_action('update')
if not getattr(view, 'link_url', None
) and 'lookup_field_link' not in view.__dict__:
view.link_fields = ()
if action == 'list' and getattr(view, 'add_button', None) is None:
view.add_button = 'create' in self.actions
if action == 'read' and getattr(view, 'edit_button', None) is None:
view.edit_button = 'update' in self.actions
if not getattr(view, 'success_url', None) and (action == 'update' or
action == 'create'):
view.success_url = '@%s' % self.url_name_for_action('list')
else:
options = dict(model=self.model)
if action == 'update' or action == 'create' and 'list' in self.actions:
options['success_url'] = '@%s' % self.url_name_for_action('list')
if self.permissions:
options['permission'] = self.permission_for_action(action)
if action == 'create':
view = type(str('%sCreateView' % self.model_name), (
SmartCreateView,), options)
elif action == 'read':
if 'update' in self.actions:
options['edit_button'] = True
view = type(str('%sReadView' % self.model_name), (SmartReadView
,), options)
elif action == 'update':
if 'delete' in self.actions:
options['delete_url'] = 'id@%s' % self.url_name_for_action(
'delete')
view = type(str('%sUpdateView' % self.model_name), (
SmartUpdateView,), options)
elif action == 'delete':
if 'list' in self.actions:
options['cancel_url'] = '@%s' % self.url_name_for_action('list'
)
options['redirect_url'] = '@%s' % self.url_name_for_action(
'list')
elif 'update' in self.actions:
options['cancel_url'] = '@%s' % self.url_name_for_action(
'update')
view = type(str('%sDeleteView' % self.model_name), (
SmartDeleteView,), options)
elif action == 'list':
if 'read' in self.actions:
options['link_url'] = 'id@%s' % self.url_name_for_action('read'
)
elif 'update' in self.actions:
options['link_url'] = 'id@%s' % self.url_name_for_action(
'update')
else:
options['link_fields'] = ()
if 'create' in self.actions:
options['add_button'] = True
view = type(str('%sListView' % self.model_name), (SmartListView
,), options)
elif action == 'csv_import':
options['model'] = ImportTask
view = type(str('%sCSVImportView' % self.model_name), (
SmartCSVImportView,), options)
if not view:
raise Exception('No view found for action: %s' % action)
view.url_name = self.url_name_for_action(action)
if not getattr(view, 'template_name', None):
view.template_name = self.template_for_action(action)
view.crudl = self
return view
|
view_for_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, action):\n class_name = ''.join([word.capitalize() for word in action.split('_')])\n view = None\n if hasattr(self, class_name):\n view = getattr(self, class_name)\n if not getattr(view, 'model', None):\n view.model = self.model\n if not hasattr(view, 'permission') and self.permissions:\n view.permission = self.permission_for_action(action)\n if not getattr(view, 'link_url', None):\n if 'read' in self.actions:\n view.link_url = 'id@%s' % self.url_name_for_action('read')\n elif 'update' in self.actions:\n view.link_url = 'id@%s' % self.url_name_for_action('update')\n if not getattr(view, 'link_url', None\n ) and 'lookup_field_link' not in view.__dict__:\n view.link_fields = ()\n if action == 'list' and getattr(view, 'add_button', None) is None:\n view.add_button = 'create' in self.actions\n if action == 'read' and getattr(view, 'edit_button', None) is None:\n view.edit_button = 'update' in self.actions\n if not getattr(view, 'success_url', None) and (action == 'update' or\n action == 'create'):\n view.success_url = '@%s' % self.url_name_for_action('list')\n else:\n options = dict(model=self.model)\n if action == 'update' or action == 'create' and 'list' in self.actions:\n options['success_url'] = '@%s' % self.url_name_for_action('list')\n if self.permissions:\n options['permission'] = self.permission_for_action(action)\n if action == 'create':\n view = type(str('%sCreateView' % self.model_name), (\n SmartCreateView,), options)\n elif action == 'read':\n if 'update' in self.actions:\n options['edit_button'] = True\n view = type(str('%sReadView' % self.model_name), (SmartReadView\n ,), options)\n elif action == 'update':\n if 'delete' in self.actions:\n options['delete_url'] = 'id@%s' % self.url_name_for_action(\n 'delete')\n view = type(str('%sUpdateView' % self.model_name), (\n SmartUpdateView,), options)\n elif action == 'delete':\n if 'list' in self.actions:\n options['cancel_url'] = '@%s' % self.url_name_for_action('list'\n )\n options['redirect_url'] = '@%s' % self.url_name_for_action(\n 'list')\n elif 'update' in self.actions:\n options['cancel_url'] = '@%s' % self.url_name_for_action(\n 'update')\n view = type(str('%sDeleteView' % self.model_name), (\n SmartDeleteView,), options)\n elif action == 'list':\n if 'read' in self.actions:\n options['link_url'] = 'id@%s' % self.url_name_for_action('read'\n )\n elif 'update' in self.actions:\n options['link_url'] = 'id@%s' % self.url_name_for_action(\n 'update')\n else:\n options['link_fields'] = ()\n if 'create' in self.actions:\n options['add_button'] = True\n view = type(str('%sListView' % self.model_name), (SmartListView\n ,), options)\n elif action == 'csv_import':\n options['model'] = ImportTask\n view = type(str('%sCSVImportView' % self.model_name), (\n SmartCSVImportView,), options)\n if not view:\n raise Exception('No view found for action: %s' % action)\n view.url_name = self.url_name_for_action(action)\n if not getattr(view, 'template_name', None):\n view.template_name = self.template_for_action(action)\n view.crudl = self\n return view\n",
"role": "user"
},
{
"content": "view_for_action",
"role": "assistant"
}
] |
def x(self, view, action):
if getattr(view, 'derive_url_pattern', None):
return view.derive_url_pattern(self.path, action)
else:
return '^%s/%s/$' % (self.path, action)
|
pattern_for_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, view, action):\n if getattr(view, 'derive_url_pattern', None):\n return view.derive_url_pattern(self.path, action)\n else:\n return '^%s/%s/$' % (self.path, action)\n",
"role": "user"
},
{
"content": "pattern_for_view",
"role": "assistant"
}
] |
def x(self):
urls = []
for action in self.actions:
view_class = self.view_for_action(action)
view_pattern = self.pattern_for_view(view_class, action)
name = self.url_name_for_action(action)
urls.append(url(view_pattern, view_class.as_view(), name=name))
return urls
|
as_urlpatterns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n urls = []\n for action in self.actions:\n view_class = self.view_for_action(action)\n view_pattern = self.pattern_for_view(view_class, action)\n name = self.url_name_for_action(action)\n urls.append(url(view_pattern, view_class.as_view(), name=name))\n return urls\n",
"role": "user"
},
{
"content": "as_urlpatterns",
"role": "assistant"
}
] |
def x(self):
executor = MigrationExecutor(connection=None)
plan = executor.migration_plan(executor.loader.graph.leaf_nodes(),
clean_start=True)
if self.verbosity >= 2:
for migration, _ in plan:
self.stdout.write(' > %s' % migration)
return [m[0] for m in plan]
|
load_migrations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n executor = MigrationExecutor(connection=None)\n plan = executor.migration_plan(executor.loader.graph.leaf_nodes(),\n clean_start=True)\n if self.verbosity >= 2:\n for migration, _ in plan:\n self.stdout.write(' > %s' % migration)\n return [m[0] for m in plan]\n",
"role": "user"
},
{
"content": "load_migrations",
"role": "assistant"
}
] |
def x(self, migrations):
operations = []
for migration in migrations:
for operation in migration.operations:
if isinstance(operation, RunSQL):
statements = sqlparse.parse(dedent(operation.sql))
for statement in statements:
operation = SqlObjectOperation.parse(statement)
if operation:
operations.append(operation)
if self.verbosity >= 2:
self.stdout.write(' > % -100s (%s)' % (
operation, migration))
return operations
|
extract_operations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, migrations):\n operations = []\n for migration in migrations:\n for operation in migration.operations:\n if isinstance(operation, RunSQL):\n statements = sqlparse.parse(dedent(operation.sql))\n for statement in statements:\n operation = SqlObjectOperation.parse(statement)\n if operation:\n operations.append(operation)\n if self.verbosity >= 2:\n self.stdout.write(' > % -100s (%s)' % (\n operation, migration))\n return operations\n",
"role": "user"
},
{
"content": "extract_operations",
"role": "assistant"
}
] |
def x(self, operations):
normalized = OrderedDict()
for operation in operations:
op_key = operation.sql_type, operation.obj_name
if op_key in normalized:
if self.verbosity >= 2:
self.stdout.write(' < %s' % normalized[op_key])
del normalized[op_key]
if operation.is_create:
normalized[op_key] = operation
elif self.verbosity >= 2:
self.stdout.write(' < %s' % operation)
return normalized.values()
|
normalize_operations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, operations):\n normalized = OrderedDict()\n for operation in operations:\n op_key = operation.sql_type, operation.obj_name\n if op_key in normalized:\n if self.verbosity >= 2:\n self.stdout.write(' < %s' % normalized[op_key])\n del normalized[op_key]\n if operation.is_create:\n normalized[op_key] = operation\n elif self.verbosity >= 2:\n self.stdout.write(' < %s' % operation)\n return normalized.values()\n",
"role": "user"
},
{
"content": "normalize_operations",
"role": "assistant"
}
] |
def x(self, operations, preserve_order, output_dir):
by_type = {SqlType.INDEX: [], SqlType.FUNCTION: [], SqlType.TRIGGER: []}
for operation in operations:
by_type[operation.sql_type].append(operation)
if not preserve_order:
for obj_type, ops in by_type.items():
by_type[obj_type] = sorted(ops, key=lambda o: o.obj_name)
if by_type[SqlType.INDEX]:
self.write_dump('indexes', by_type[SqlType.INDEX], output_dir)
if by_type[SqlType.FUNCTION]:
self.write_dump('functions', by_type[SqlType.FUNCTION], output_dir)
if by_type[SqlType.TRIGGER]:
self.write_dump('triggers', by_type[SqlType.TRIGGER], output_dir)
|
write_type_dumps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, operations, preserve_order, output_dir):\n by_type = {SqlType.INDEX: [], SqlType.FUNCTION: [], SqlType.TRIGGER: []}\n for operation in operations:\n by_type[operation.sql_type].append(operation)\n if not preserve_order:\n for obj_type, ops in by_type.items():\n by_type[obj_type] = sorted(ops, key=lambda o: o.obj_name)\n if by_type[SqlType.INDEX]:\n self.write_dump('indexes', by_type[SqlType.INDEX], output_dir)\n if by_type[SqlType.FUNCTION]:\n self.write_dump('functions', by_type[SqlType.FUNCTION], output_dir)\n if by_type[SqlType.TRIGGER]:\n self.write_dump('triggers', by_type[SqlType.TRIGGER], output_dir)\n",
"role": "user"
},
{
"content": "write_type_dumps",
"role": "assistant"
}
] |
def x(self, name, value, attrs=None, renderer=None):
html = ''
html += '%s' % value
html += '<input type="hidden" name="%s" value="%s">' % (escape(name),
escape(value))
return mark_safe(html)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, value, attrs=None, renderer=None):\n html = ''\n html += '%s' % value\n html += '<input type=\"hidden\" name=\"%s\" value=\"%s\">' % (escape(name),\n escape(value))\n return mark_safe(html)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(data_api, data_setters, atom_names, element_names, atom_charges,
group_atom_ind):
atom_name = atom_names[group_atom_ind]
element = element_names[group_atom_ind]
charge = atom_charges[group_atom_ind]
alternative_location_id = data_api.alt_loc_list[data_api.atom_counter]
serial_number = data_api.atom_id_list[data_api.atom_counter]
x = data_api.x_coord_list[data_api.atom_counter]
y = data_api.y_coord_list[data_api.atom_counter]
z = data_api.z_coord_list[data_api.atom_counter]
occupancy = data_api.occupancy_list[data_api.atom_counter]
temperature_factor = data_api.b_factor_list[data_api.atom_counter]
data_setters.set_atom_info(atom_name, serial_number,
alternative_location_id, x, y, z, occupancy, temperature_factor,
element, charge)
|
add_atom_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, data_setters, atom_names, element_names, atom_charges,\n group_atom_ind):\n atom_name = atom_names[group_atom_ind]\n element = element_names[group_atom_ind]\n charge = atom_charges[group_atom_ind]\n alternative_location_id = data_api.alt_loc_list[data_api.atom_counter]\n serial_number = data_api.atom_id_list[data_api.atom_counter]\n x = data_api.x_coord_list[data_api.atom_counter]\n y = data_api.y_coord_list[data_api.atom_counter]\n z = data_api.z_coord_list[data_api.atom_counter]\n occupancy = data_api.occupancy_list[data_api.atom_counter]\n temperature_factor = data_api.b_factor_list[data_api.atom_counter]\n data_setters.set_atom_info(atom_name, serial_number,\n alternative_location_id, x, y, z, occupancy, temperature_factor,\n element, charge)\n",
"role": "user"
},
{
"content": "add_atom_data",
"role": "assistant"
}
] |
def x(data_setters, bond_indices, bond_orders):
for bond_index in range(len(bond_orders)):
data_setters.set_group_bond(bond_indices[bond_index * 2],
bond_indices[bond_index * 2 + 1], bond_orders[bond_index])
|
add_group_bonds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_setters, bond_indices, bond_orders):\n for bond_index in range(len(bond_orders)):\n data_setters.set_group_bond(bond_indices[bond_index * 2],\n bond_indices[bond_index * 2 + 1], bond_orders[bond_index])\n",
"role": "user"
},
{
"content": "add_group_bonds",
"role": "assistant"
}
] |
def x(data_api, data_setters, group_index):
group_type_ind = data_api.group_type_list[group_index]
atom_count = len(data_api.group_list[group_type_ind]['atomNameList'])
insertion_code = data_api.ins_code_list[group_index]
data_setters.set_group_info(data_api.group_list[group_type_ind][
'groupName'], data_api.group_id_list[group_index], insertion_code,
data_api.group_list[group_type_ind]['chemCompType'], atom_count,
data_api.num_bonds, data_api.group_list[group_type_ind][
'singleLetterCode'], data_api.sequence_index_list[group_index],
data_api.sec_struct_list[group_index])
for group_atom_ind in range(atom_count):
add_atom_data(data_api, data_setters, data_api.group_list[
group_type_ind]['atomNameList'], data_api.group_list[
group_type_ind]['elementList'], data_api.group_list[
group_type_ind]['formalChargeList'], group_atom_ind)
data_api.atom_counter += 1
add_group_bonds(data_setters, data_api.group_list[group_type_ind][
'bondAtomList'], data_api.group_list[group_type_ind]['bondOrderList'])
return atom_count
|
add_group
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, data_setters, group_index):\n group_type_ind = data_api.group_type_list[group_index]\n atom_count = len(data_api.group_list[group_type_ind]['atomNameList'])\n insertion_code = data_api.ins_code_list[group_index]\n data_setters.set_group_info(data_api.group_list[group_type_ind][\n 'groupName'], data_api.group_id_list[group_index], insertion_code,\n data_api.group_list[group_type_ind]['chemCompType'], atom_count,\n data_api.num_bonds, data_api.group_list[group_type_ind][\n 'singleLetterCode'], data_api.sequence_index_list[group_index],\n data_api.sec_struct_list[group_index])\n for group_atom_ind in range(atom_count):\n add_atom_data(data_api, data_setters, data_api.group_list[\n group_type_ind]['atomNameList'], data_api.group_list[\n group_type_ind]['elementList'], data_api.group_list[\n group_type_ind]['formalChargeList'], group_atom_ind)\n data_api.atom_counter += 1\n add_group_bonds(data_setters, data_api.group_list[group_type_ind][\n 'bondAtomList'], data_api.group_list[group_type_ind]['bondOrderList'])\n return atom_count\n",
"role": "user"
},
{
"content": "add_group",
"role": "assistant"
}
] |
def x(data_api, data_setters, chain_index):
chain_id = data_api.chain_id_list[chain_index]
chain_name = data_api.chain_name_list[chain_index]
num_groups = data_api.groups_per_chain[chain_index]
data_setters.set_chain_info(chain_id, chain_name, num_groups)
next_ind = data_api.group_counter + num_groups
last_ind = data_api.group_counter
for group_ind in range(last_ind, next_ind):
add_group(data_api, data_setters, group_ind)
data_api.group_counter += 1
data_api.chain_counter += 1
|
add_chain_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, data_setters, chain_index):\n chain_id = data_api.chain_id_list[chain_index]\n chain_name = data_api.chain_name_list[chain_index]\n num_groups = data_api.groups_per_chain[chain_index]\n data_setters.set_chain_info(chain_id, chain_name, num_groups)\n next_ind = data_api.group_counter + num_groups\n last_ind = data_api.group_counter\n for group_ind in range(last_ind, next_ind):\n add_group(data_api, data_setters, group_ind)\n data_api.group_counter += 1\n data_api.chain_counter += 1\n",
"role": "user"
},
{
"content": "add_chain_info",
"role": "assistant"
}
] |
def x(data_api, data_setters):
for model_chains in data_api.chains_per_model:
data_setters.set_model_info(data_api.model_counter, model_chains)
tot_chains_this_model = data_api.chain_counter + model_chains
last_chain_counter = data_api.chain_counter
for chain_index in range(last_chain_counter, tot_chains_this_model):
add_chain_info(data_api, data_setters, chain_index)
data_api.model_counter += 1
|
add_atomic_information
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, data_setters):\n for model_chains in data_api.chains_per_model:\n data_setters.set_model_info(data_api.model_counter, model_chains)\n tot_chains_this_model = data_api.chain_counter + model_chains\n last_chain_counter = data_api.chain_counter\n for chain_index in range(last_chain_counter, tot_chains_this_model):\n add_chain_info(data_api, data_setters, chain_index)\n data_api.model_counter += 1\n",
"role": "user"
},
{
"content": "add_atomic_information",
"role": "assistant"
}
] |
def x(data_api, struct_inflator):
bioassembly_count = 0
for bioassembly in data_api.bio_assembly:
bioassembly_count += 1
for transform in bioassembly['transformList']:
struct_inflator.set_bio_assembly_trans(bioassembly_count,
transform['chainIndexList'], transform['matrix'])
|
generate_bio_assembly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, struct_inflator):\n bioassembly_count = 0\n for bioassembly in data_api.bio_assembly:\n bioassembly_count += 1\n for transform in bioassembly['transformList']:\n struct_inflator.set_bio_assembly_trans(bioassembly_count,\n transform['chainIndexList'], transform['matrix'])\n",
"role": "user"
},
{
"content": "generate_bio_assembly",
"role": "assistant"
}
] |
def x(data_api, struct_inflator):
for i in range(len(data_api.bond_order_list)):
struct_inflator.set_inter_group_bond(data_api.bond_atom_list[i * 2],
data_api.bond_atom_list[i * 2 + 1], data_api.bond_order_list[i])
|
add_inter_group_bonds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, struct_inflator):\n for i in range(len(data_api.bond_order_list)):\n struct_inflator.set_inter_group_bond(data_api.bond_atom_list[i * 2],\n data_api.bond_atom_list[i * 2 + 1], data_api.bond_order_list[i])\n",
"role": "user"
},
{
"content": "add_inter_group_bonds",
"role": "assistant"
}
] |
def x(data_api, struct_inflator):
struct_inflator.set_header_info(data_api.r_free, data_api.r_work,
data_api.resolution, data_api.title, data_api.deposition_date,
data_api.release_date, data_api.experimental_methods)
|
add_header_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, struct_inflator):\n struct_inflator.set_header_info(data_api.r_free, data_api.r_work,\n data_api.resolution, data_api.title, data_api.deposition_date,\n data_api.release_date, data_api.experimental_methods)\n",
"role": "user"
},
{
"content": "add_header_info",
"role": "assistant"
}
] |
def x(data_api, struct_inflator):
if data_api.unit_cell == None and data_api.space_group is not None:
struct_inflator.set_xtal_info(data_api.space_group, constants.
UNKNOWN_UNIT_CELL)
elif data_api.unit_cell is not None and data_api.space_group is None:
struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,
data_api.unit_cell)
elif data_api.unit_cell is None and data_api.space_group is None:
struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,
constants.UNKNOWN_UNIT_CELL)
else:
struct_inflator.set_xtal_info(data_api.space_group, data_api.unit_cell)
|
add_xtalographic_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, struct_inflator):\n if data_api.unit_cell == None and data_api.space_group is not None:\n struct_inflator.set_xtal_info(data_api.space_group, constants.\n UNKNOWN_UNIT_CELL)\n elif data_api.unit_cell is not None and data_api.space_group is None:\n struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,\n data_api.unit_cell)\n elif data_api.unit_cell is None and data_api.space_group is None:\n struct_inflator.set_xtal_info(constants.UNKNOWN_SPACE_GROUP,\n constants.UNKNOWN_UNIT_CELL)\n else:\n struct_inflator.set_xtal_info(data_api.space_group, data_api.unit_cell)\n",
"role": "user"
},
{
"content": "add_xtalographic_info",
"role": "assistant"
}
] |
def x(data_api, struct_inflator):
for entity in data_api.entity_list:
struct_inflator.set_entity_info(entity['chainIndexList'], entity[
'sequence'], entity['description'], entity['type'])
|
add_entity_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_api, struct_inflator):\n for entity in data_api.entity_list:\n struct_inflator.set_entity_info(entity['chainIndexList'], entity[\n 'sequence'], entity['description'], entity['type'])\n",
"role": "user"
},
{
"content": "add_entity_info",
"role": "assistant"
}
] |
def x(input_group):
out_list = []
for i in range(len(input_group.bond_order_list)):
out_list.append((input_group.bond_atom_list[i * 2], input_group.
bond_atom_list[i * 2 + 1]))
return out_list
|
get_bonds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_group):\n out_list = []\n for i in range(len(input_group.bond_order_list)):\n out_list.append((input_group.bond_atom_list[i * 2], input_group.\n bond_atom_list[i * 2 + 1]))\n return out_list\n",
"role": "user"
},
{
"content": "get_bonds",
"role": "assistant"
}
] |
def x(input_list):
out_list = []
for item in input_list:
if item not in out_list:
out_list.append(item)
return out_list
|
get_unique_groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_list):\n out_list = []\n for item in input_list:\n if item not in out_list:\n out_list.append(item)\n return out_list\n",
"role": "user"
},
{
"content": "get_unique_groups",
"role": "assistant"
}
] |
def x(self):
out_dict = {}
out_dict['groupName'] = self.group_name
out_dict['atomNameList'] = self.atom_name_list
out_dict['elementList'] = self.element_list
out_dict['bondOrderList'] = self.bond_order_list
out_dict['bondAtomList'] = self.bond_atom_list
out_dict['formalChargeList'] = self.charge_list
out_dict['singleLetterCode'] = self.single_letter_code
out_dict['chemCompType'] = self.group_type
return out_dict
|
convert_to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n out_dict = {}\n out_dict['groupName'] = self.group_name\n out_dict['atomNameList'] = self.atom_name_list\n out_dict['elementList'] = self.element_list\n out_dict['bondOrderList'] = self.bond_order_list\n out_dict['bondAtomList'] = self.bond_atom_list\n out_dict['formalChargeList'] = self.charge_list\n out_dict['singleLetterCode'] = self.single_letter_code\n out_dict['chemCompType'] = self.group_type\n return out_dict\n",
"role": "user"
},
{
"content": "convert_to_dict",
"role": "assistant"
}
] |
def x(self, atom_name, serial_number, alternative_location_id, x, y, z,
occupancy, temperature_factor, element, charge):
raise NotImplementedError
|
set_atom_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atom_name, serial_number, alternative_location_id, x, y, z,\n occupancy, temperature_factor, element, charge):\n raise NotImplementedError\n",
"role": "user"
},
{
"content": "set_atom_info",
"role": "assistant"
}
] |
def x(self, group_name, group_number, insertion_code, group_type,
atom_count, bond_count, single_letter_code, sequence_index,
secondary_structure_type):
raise NotImplementedError
|
set_group_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, group_name, group_number, insertion_code, group_type,\n atom_count, bond_count, single_letter_code, sequence_index,\n secondary_structure_type):\n raise NotImplementedError\n",
"role": "user"
},
{
"content": "set_group_info",
"role": "assistant"
}
] |
def x(self, r_free, r_work, resolution, title, deposition_date,
release_date, experimental_methods):
raise NotImplementedError
|
set_header_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r_free, r_work, resolution, title, deposition_date,\n release_date, experimental_methods):\n raise NotImplementedError\n",
"role": "user"
},
{
"content": "set_header_info",
"role": "assistant"
}
] |
def x(self):
output_data = {}
output_data['groupTypeList'] = encode_array(self.group_type_list, 4, 0)
output_data['xCoordList'] = encode_array(self.x_coord_list, 10, 1000)
output_data['yCoordList'] = encode_array(self.y_coord_list, 10, 1000)
output_data['zCoordList'] = encode_array(self.z_coord_list, 10, 1000)
output_data['bFactorList'] = encode_array(self.b_factor_list, 10, 100)
output_data['occupancyList'] = encode_array(self.occupancy_list, 9, 100)
output_data['atomIdList'] = encode_array(self.atom_id_list, 8, 0)
output_data['altLocList'] = encode_array(self.alt_loc_list, 6, 0)
output_data['insCodeList'] = encode_array(self.ins_code_list, 6, 0)
output_data['groupIdList'] = encode_array(self.group_id_list, 8, 0)
output_data['groupList'] = self.group_list
output_data['sequenceIndexList'] = encode_array(self.
sequence_index_list, 8, 0)
output_data['chainNameList'] = encode_array(self.chain_name_list, 5, 4)
output_data['chainIdList'] = encode_array(self.chain_id_list, 5, 4)
output_data['bondAtomList'] = encode_array(self.bond_atom_list, 4, 0)
output_data['bondOrderList'] = encode_array(self.bond_order_list, 2, 0)
output_data['secStructList'] = encode_array(self.sec_struct_list, 2, 0)
output_data['chainsPerModel'] = self.chains_per_model
output_data['groupsPerChain'] = self.groups_per_chain
output_data['spaceGroup'] = self.space_group
output_data['mmtfVersion'] = self.mmtf_version
output_data['mmtfProducer'] = self.mmtf_producer
output_data['structureId'] = self.structure_id
output_data['entityList'] = self.entity_list
output_data['bioAssemblyList'] = self.bio_assembly
output_data['rFree'] = self.r_free
output_data['rWork'] = self.r_work
output_data['resolution'] = self.resolution
output_data['title'] = self.title
output_data['experimentalMethods'] = self.experimental_methods
output_data['depositionDate'] = self.deposition_date
output_data['releaseDate'] = self.release_date
output_data['unitCell'] = self.unit_cell
output_data['numBonds'] = self.num_bonds
output_data['numChains'] = self.num_chains
output_data['numModels'] = self.num_models
output_data['numAtoms'] = self.num_atoms
output_data['numGroups'] = self.num_groups
return output_data
|
encode_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n output_data = {}\n output_data['groupTypeList'] = encode_array(self.group_type_list, 4, 0)\n output_data['xCoordList'] = encode_array(self.x_coord_list, 10, 1000)\n output_data['yCoordList'] = encode_array(self.y_coord_list, 10, 1000)\n output_data['zCoordList'] = encode_array(self.z_coord_list, 10, 1000)\n output_data['bFactorList'] = encode_array(self.b_factor_list, 10, 100)\n output_data['occupancyList'] = encode_array(self.occupancy_list, 9, 100)\n output_data['atomIdList'] = encode_array(self.atom_id_list, 8, 0)\n output_data['altLocList'] = encode_array(self.alt_loc_list, 6, 0)\n output_data['insCodeList'] = encode_array(self.ins_code_list, 6, 0)\n output_data['groupIdList'] = encode_array(self.group_id_list, 8, 0)\n output_data['groupList'] = self.group_list\n output_data['sequenceIndexList'] = encode_array(self.\n sequence_index_list, 8, 0)\n output_data['chainNameList'] = encode_array(self.chain_name_list, 5, 4)\n output_data['chainIdList'] = encode_array(self.chain_id_list, 5, 4)\n output_data['bondAtomList'] = encode_array(self.bond_atom_list, 4, 0)\n output_data['bondOrderList'] = encode_array(self.bond_order_list, 2, 0)\n output_data['secStructList'] = encode_array(self.sec_struct_list, 2, 0)\n output_data['chainsPerModel'] = self.chains_per_model\n output_data['groupsPerChain'] = self.groups_per_chain\n output_data['spaceGroup'] = self.space_group\n output_data['mmtfVersion'] = self.mmtf_version\n output_data['mmtfProducer'] = self.mmtf_producer\n output_data['structureId'] = self.structure_id\n output_data['entityList'] = self.entity_list\n output_data['bioAssemblyList'] = self.bio_assembly\n output_data['rFree'] = self.r_free\n output_data['rWork'] = self.r_work\n output_data['resolution'] = self.resolution\n output_data['title'] = self.title\n output_data['experimentalMethods'] = self.experimental_methods\n output_data['depositionDate'] = self.deposition_date\n output_data['releaseDate'] = self.release_date\n output_data['unitCell'] = self.unit_cell\n output_data['numBonds'] = self.num_bonds\n output_data['numChains'] = self.num_chains\n output_data['numModels'] = self.num_models\n output_data['numAtoms'] = self.num_atoms\n output_data['numGroups'] = self.num_groups\n return output_data\n",
"role": "user"
},
{
"content": "encode_data",
"role": "assistant"
}
] |
def x(self, total_num_bonds, total_num_atoms, total_num_groups,
total_num_chains, total_num_models, structure_id):
self.mmtf_version = constants.MMTF_VERSION
self.mmtf_producer = constants.PRODUCER
self.num_atoms = total_num_atoms
self.num_bonds = total_num_bonds
self.num_groups = total_num_groups
self.num_chains = total_num_chains
self.num_models = total_num_models
self.structure_id = structure_id
self.x_coord_list = []
self.y_coord_list = []
self.z_coord_list = []
self.group_type_list = []
self.entity_list = []
self.b_factor_list = []
self.occupancy_list = []
self.atom_id_list = []
self.alt_loc_list = []
self.ins_code_list = []
self.group_id_list = []
self.sequence_index_list = []
self.group_list = []
self.chain_name_list = []
self.chain_id_list = []
self.bond_atom_list = []
self.bond_order_list = []
self.sec_struct_list = []
self.chains_per_model = []
self.groups_per_chain = []
self.current_group = None
self.bio_assembly = []
|
init_structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, total_num_bonds, total_num_atoms, total_num_groups,\n total_num_chains, total_num_models, structure_id):\n self.mmtf_version = constants.MMTF_VERSION\n self.mmtf_producer = constants.PRODUCER\n self.num_atoms = total_num_atoms\n self.num_bonds = total_num_bonds\n self.num_groups = total_num_groups\n self.num_chains = total_num_chains\n self.num_models = total_num_models\n self.structure_id = structure_id\n self.x_coord_list = []\n self.y_coord_list = []\n self.z_coord_list = []\n self.group_type_list = []\n self.entity_list = []\n self.b_factor_list = []\n self.occupancy_list = []\n self.atom_id_list = []\n self.alt_loc_list = []\n self.ins_code_list = []\n self.group_id_list = []\n self.sequence_index_list = []\n self.group_list = []\n self.chain_name_list = []\n self.chain_id_list = []\n self.bond_atom_list = []\n self.bond_order_list = []\n self.sec_struct_list = []\n self.chains_per_model = []\n self.groups_per_chain = []\n self.current_group = None\n self.bio_assembly = []\n",
"role": "user"
},
{
"content": "init_structure",
"role": "assistant"
}
] |
def x(self, atom_name, serial_number, alternative_location_id, x, y, z,
occupancy, temperature_factor, element, charge):
self.x_coord_list.append(x)
self.y_coord_list.append(y)
self.z_coord_list.append(z)
self.atom_id_list.append(serial_number)
self.alt_loc_list.append(alternative_location_id)
self.occupancy_list.append(occupancy)
self.b_factor_list.append(temperature_factor)
self.current_group.atom_name_list.append(atom_name)
self.current_group.charge_list.append(charge)
self.current_group.element_list.append(element)
|
set_atom_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atom_name, serial_number, alternative_location_id, x, y, z,\n occupancy, temperature_factor, element, charge):\n self.x_coord_list.append(x)\n self.y_coord_list.append(y)\n self.z_coord_list.append(z)\n self.atom_id_list.append(serial_number)\n self.alt_loc_list.append(alternative_location_id)\n self.occupancy_list.append(occupancy)\n self.b_factor_list.append(temperature_factor)\n self.current_group.atom_name_list.append(atom_name)\n self.current_group.charge_list.append(charge)\n self.current_group.element_list.append(element)\n",
"role": "user"
},
{
"content": "set_atom_info",
"role": "assistant"
}
] |
def x(self, chain_id, chain_name, num_groups):
self.chain_id_list.append(chain_id)
self.chain_name_list.append(chain_name)
self.groups_per_chain.append(num_groups)
|
set_chain_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain_id, chain_name, num_groups):\n self.chain_id_list.append(chain_id)\n self.chain_name_list.append(chain_name)\n self.groups_per_chain.append(num_groups)\n",
"role": "user"
},
{
"content": "set_chain_info",
"role": "assistant"
}
] |
def x(self, chain_indices, sequence, description, entity_type):
self.entity_list.append(make_entity_dict(chain_indices, sequence,
description, entity_type))
|
set_entity_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chain_indices, sequence, description, entity_type):\n self.entity_list.append(make_entity_dict(chain_indices, sequence,\n description, entity_type))\n",
"role": "user"
},
{
"content": "set_entity_info",
"role": "assistant"
}
] |
def x(self, group_name, group_number, insertion_code, group_type,
atom_count, bond_count, single_letter_code, sequence_index,
secondary_structure_type):
if self.current_group is not None:
self.group_list.append(self.current_group)
self.group_id_list.append(group_number)
self.ins_code_list.append(insertion_code)
self.sequence_index_list.append(sequence_index)
self.sec_struct_list.append(secondary_structure_type)
self.current_group = Group()
self.current_group.group_name = group_name
self.current_group.group_type = group_type
self.current_group.single_letter_code = single_letter_code
|
set_group_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, group_name, group_number, insertion_code, group_type,\n atom_count, bond_count, single_letter_code, sequence_index,\n secondary_structure_type):\n if self.current_group is not None:\n self.group_list.append(self.current_group)\n self.group_id_list.append(group_number)\n self.ins_code_list.append(insertion_code)\n self.sequence_index_list.append(sequence_index)\n self.sec_struct_list.append(secondary_structure_type)\n self.current_group = Group()\n self.current_group.group_name = group_name\n self.current_group.group_type = group_type\n self.current_group.single_letter_code = single_letter_code\n",
"role": "user"
},
{
"content": "set_group_info",
"role": "assistant"
}
] |
def x(self, space_group, unit_cell):
self.space_group = space_group
self.unit_cell = unit_cell
|
set_xtal_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, space_group, unit_cell):\n self.space_group = space_group\n self.unit_cell = unit_cell\n",
"role": "user"
},
{
"content": "set_xtal_info",
"role": "assistant"
}
] |
def x(self, r_free, r_work, resolution, title, deposition_date,
release_date, experimental_methods):
self.r_free = r_free
self.r_work = r_work
self.resolution = resolution
self.title = title
self.deposition_date = deposition_date
self.release_date = release_date
self.experimental_methods = experimental_methods
|
set_header_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, r_free, r_work, resolution, title, deposition_date,\n release_date, experimental_methods):\n self.r_free = r_free\n self.r_work = r_work\n self.resolution = resolution\n self.title = title\n self.deposition_date = deposition_date\n self.release_date = release_date\n self.experimental_methods = experimental_methods\n",
"role": "user"
},
{
"content": "set_header_info",
"role": "assistant"
}
] |
def x(self, bio_assembly_index, input_chain_indices, input_transform):
this_bioass = None
for bioass in self.bio_assembly:
if bioass['name'] == str(bio_assembly_index):
this_bioass = bioass
break
if not this_bioass:
this_bioass = {'name': str(bio_assembly_index), 'transformList': []}
else:
self.bio_assembly.remove(this_bioass)
this_bioass['transformList'].append({'chainIndexList':
input_chain_indices, 'matrix': input_transform})
self.bio_assembly.append(this_bioass)
|
set_bio_assembly_trans
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bio_assembly_index, input_chain_indices, input_transform):\n this_bioass = None\n for bioass in self.bio_assembly:\n if bioass['name'] == str(bio_assembly_index):\n this_bioass = bioass\n break\n if not this_bioass:\n this_bioass = {'name': str(bio_assembly_index), 'transformList': []}\n else:\n self.bio_assembly.remove(this_bioass)\n this_bioass['transformList'].append({'chainIndexList':\n input_chain_indices, 'matrix': input_transform})\n self.bio_assembly.append(this_bioass)\n",
"role": "user"
},
{
"content": "set_bio_assembly_trans",
"role": "assistant"
}
] |
def x(self):
self.group_list.append(self.current_group)
group_set = get_unique_groups(self.group_list)
for item in self.group_list:
self.group_type_list.append(group_set.index(item))
self.group_list = [x.convert_to_dict() for x in group_set]
|
finalize_structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.group_list.append(self.current_group)\n group_set = get_unique_groups(self.group_list)\n for item in self.group_list:\n self.group_type_list.append(group_set.index(item))\n self.group_list = [x.convert_to_dict() for x in group_set]\n",
"role": "user"
},
{
"content": "finalize_structure",
"role": "assistant"
}
] |
def x(self, atom_index_one, atom_index_two, bond_order):
self.current_group.bond_atom_list.append(atom_index_one)
self.current_group.bond_atom_list.append(atom_index_two)
self.current_group.bond_order_list.append(bond_order)
|
set_group_bond
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atom_index_one, atom_index_two, bond_order):\n self.current_group.bond_atom_list.append(atom_index_one)\n self.current_group.bond_atom_list.append(atom_index_two)\n self.current_group.bond_order_list.append(bond_order)\n",
"role": "user"
},
{
"content": "set_group_bond",
"role": "assistant"
}
] |
def x(self, atom_index_one, atom_index_two, bond_order):
self.bond_atom_list.append(atom_index_one)
self.bond_atom_list.append(atom_index_two)
self.bond_order_list.append(bond_order)
|
set_inter_group_bond
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atom_index_one, atom_index_two, bond_order):\n self.bond_atom_list.append(atom_index_one)\n self.bond_atom_list.append(atom_index_two)\n self.bond_order_list.append(bond_order)\n",
"role": "user"
},
{
"content": "set_inter_group_bond",
"role": "assistant"
}
] |
def x(in_array):
if len(in_array) == 0:
return []
curr_ans = in_array[0]
out_array = [curr_ans]
counter = 1
for in_int in in_array[1:]:
if in_int == curr_ans:
counter += 1
else:
out_array.append(counter)
out_array.append(in_int)
curr_ans = in_int
counter = 1
out_array.append(counter)
return out_array
|
run_length_encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_array):\n if len(in_array) == 0:\n return []\n curr_ans = in_array[0]\n out_array = [curr_ans]\n counter = 1\n for in_int in in_array[1:]:\n if in_int == curr_ans:\n counter += 1\n else:\n out_array.append(counter)\n out_array.append(in_int)\n curr_ans = in_int\n counter = 1\n out_array.append(counter)\n return out_array\n",
"role": "user"
},
{
"content": "run_length_encode",
"role": "assistant"
}
] |
def x(in_array):
if len(in_array) == 0:
return []
curr_ans = in_array[0]
out_array = [curr_ans]
for in_int in in_array[1:]:
out_array.append(in_int - curr_ans)
curr_ans = in_int
return out_array
|
delta_encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_array):\n if len(in_array) == 0:\n return []\n curr_ans = in_array[0]\n out_array = [curr_ans]\n for in_int in in_array[1:]:\n out_array.append(in_int - curr_ans)\n curr_ans = in_int\n return out_array\n",
"role": "user"
},
{
"content": "delta_encode",
"role": "assistant"
}
] |
def x(input_array):
codec, length, param, input_array = parse_header(input_array)
return codec_dict[codec].decode(input_array, param)
|
decode_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_array):\n codec, length, param, input_array = parse_header(input_array)\n return codec_dict[codec].decode(input_array, param)\n",
"role": "user"
},
{
"content": "decode_array",
"role": "assistant"
}
] |
def x(input_array, codec, param):
return add_header(codec_dict[codec].encode(input_array, param), codec,
len(input_array), param)
|
encode_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_array, codec, param):\n return add_header(codec_dict[codec].encode(input_array, param), codec,\n len(input_array), param)\n",
"role": "user"
},
{
"content": "encode_array",
"role": "assistant"
}
] |
def x(in_array):
switch = False
out_array = []
for item in in_array:
if switch == False:
this_item = item
switch = True
else:
switch = False
out_array.extend([this_item] * int(item))
return out_array
|
run_length_decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_array):\n switch = False\n out_array = []\n for item in in_array:\n if switch == False:\n this_item = item\n switch = True\n else:\n switch = False\n out_array.extend([this_item] * int(item))\n return out_array\n",
"role": "user"
},
{
"content": "run_length_decode",
"role": "assistant"
}
] |
def x(in_array):
if len(in_array) == 0:
return []
this_ans = in_array[0]
out_array = [this_ans]
for i in range(1, len(in_array)):
this_ans += in_array[i]
out_array.append(this_ans)
return out_array
|
delta_decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_array):\n if len(in_array) == 0:\n return []\n this_ans = in_array[0]\n out_array = [this_ans]\n for i in range(1, len(in_array)):\n this_ans += in_array[i]\n out_array.append(this_ans)\n return out_array\n",
"role": "user"
},
{
"content": "delta_decode",
"role": "assistant"
}
] |
def x(in_bytes, num):
dt = numpy.dtype('>i' + str(num))
return numpy.frombuffer(in_bytes, dt)
|
convert_bytes_to_ints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_bytes, num):\n dt = numpy.dtype('>i' + str(num))\n return numpy.frombuffer(in_bytes, dt)\n",
"role": "user"
},
{
"content": "convert_bytes_to_ints",
"role": "assistant"
}
] |
def x(in_bytes):
bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils.
constants.CHAIN_LEN)))
return [s.decode('ascii').strip(mmtf.utils.constants.NULL_BYTE) for s in
bstrings]
|
decode_chain_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_bytes):\n bstrings = numpy.frombuffer(in_bytes, numpy.dtype('S' + str(mmtf.utils.\n constants.CHAIN_LEN)))\n return [s.decode('ascii').strip(mmtf.utils.constants.NULL_BYTE) for s in\n bstrings]\n",
"role": "user"
},
{
"content": "decode_chain_list",
"role": "assistant"
}
] |
def x(int_array, max=32767, min=-32768):
out_arr = []
decoded_val = 0
for item in int_array.tolist():
if item == max or item == min:
decoded_val += item
else:
decoded_val += item
out_arr.append(decoded_val)
decoded_val = 0
return numpy.asarray(out_arr, dtype=numpy.int32)
|
recursive_index_decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n decoded_val = 0\n for item in int_array.tolist():\n if item == max or item == min:\n decoded_val += item\n else:\n decoded_val += item\n out_arr.append(decoded_val)\n decoded_val = 0\n return numpy.asarray(out_arr, dtype=numpy.int32)\n",
"role": "user"
},
{
"content": "recursive_index_decode",
"role": "assistant"
}
] |
def x(self):
out_list = []
for i in range(len(self.x_coord_list)):
out_list.append((self.x_coord_list[i], self.y_coord_list[i], self.
z_coord_list[i]))
return out_list
|
get_coords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n out_list = []\n for i in range(len(self.x_coord_list)):\n out_list.append((self.x_coord_list[i], self.y_coord_list[i], self.\n z_coord_list[i]))\n return out_list\n",
"role": "user"
},
{
"content": "get_coords",
"role": "assistant"
}
] |
def x(self, input_data):
self.group_type_list = decode_array(input_data['groupTypeList'])
self.x_coord_list = decode_array(input_data['xCoordList'])
self.y_coord_list = decode_array(input_data['yCoordList'])
self.z_coord_list = decode_array(input_data['zCoordList'])
if 'bFactorList' in input_data:
self.b_factor_list = decode_array(input_data['bFactorList'])
else:
self.b_factor_list = []
if 'occupancyList' in input_data:
self.occupancy_list = decode_array(input_data['occupancyList'])
else:
self.occupancy_list = []
if 'atomIdList' in input_data:
self.atom_id_list = decode_array(input_data['atomIdList'])
else:
self.atom_id_list = []
if 'altLocList' in input_data:
self.alt_loc_list = decode_array(input_data['altLocList'])
else:
self.alt_loc_list = []
if 'insCodeList' in input_data:
self.ins_code_list = decode_array(input_data['insCodeList'])
else:
self.ins_code_list = []
self.group_id_list = decode_array(input_data['groupIdList'])
self.group_list = input_data['groupList']
if 'sequenceIndexList' in input_data:
self.sequence_index_list = decode_array(input_data['sequenceIndexList']
)
else:
self.sequence_index_list = []
self.chains_per_model = input_data['chainsPerModel']
self.groups_per_chain = input_data['groupsPerChain']
if 'chainNameList' in input_data:
self.chain_name_list = decode_array(input_data['chainNameList'])
else:
self.chain_name_list = []
self.chain_id_list = decode_array(input_data['chainIdList'])
if 'spaceGroup' in input_data:
self.space_group = input_data['spaceGroup']
else:
self.space_group = None
if 'bondAtomList' in input_data:
self.bond_atom_list = decode_array(input_data['bondAtomList'])
else:
self.bond_atom_list = None
if 'bondOrderList' in input_data:
self.bond_order_list = decode_array(input_data['bondOrderList'])
else:
self.bond_order_list = None
if sys.version_info[0] < 3:
if 'mmtfVersion' in input_data:
self.mmtf_version = input_data['mmtfVersion']
else:
self.mmtf_version = None
if 'mmtfProducer' in input_data:
self.mmtf_producer = input_data['mmtfProducer']
else:
self.mmtf_producer = None
if 'structureId' in input_data:
self.structure_id = input_data['structureId']
else:
self.structure_id = None
else:
if 'mmtfVersion' in input_data:
self.mmtf_version = input_data['mmtfVersion']
else:
self.mmtf_version = None
if 'mmtfProducer' in input_data:
self.mmtf_producer = input_data['mmtfProducer']
else:
self.mmtf_producer = None
if 'structureId' in input_data:
self.structure_id = input_data['structureId']
else:
self.structure_id = None
if 'title' in input_data:
if sys.version_info[0] < 3:
self.title = input_data['title']
else:
self.title = input_data['title']
if 'experimentalMethods' in input_data:
self.experimental_methods = input_data['experimentalMethods']
else:
self.experimental_methods = None
if 'depositionDate' in input_data:
self.deposition_date = input_data['depositionDate']
else:
self.deposition_date = None
if 'releaseDate' in input_data:
self.release_date = input_data['releaseDate']
else:
self.release_date = None
if 'entityList' in input_data:
self.entity_list = input_data['entityList']
else:
self.entity_list = []
if 'bioAssemblyList' in input_data:
self.bio_assembly = input_data['bioAssemblyList']
else:
self.bio_assembly = []
if 'rFree' in input_data:
self.r_free = input_data['rFree']
else:
self.r_free = None
if 'rWork' in input_data:
self.r_work = input_data['rWork']
else:
self.r_work = None
if 'resolution' in input_data:
self.resolution = input_data['resolution']
else:
self.resolution = None
if 'unitCell' in input_data:
self.unit_cell = input_data['unitCell']
else:
self.unit_cell = None
if 'secStructList' in input_data:
self.sec_struct_list = decode_array(input_data['secStructList'])
self.num_bonds = int(input_data['numBonds'])
self.num_chains = int(input_data['numChains'])
self.num_models = int(input_data['numModels'])
self.num_atoms = int(input_data['numAtoms'])
self.num_groups = int(input_data['numGroups'])
|
decode_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, input_data):\n self.group_type_list = decode_array(input_data['groupTypeList'])\n self.x_coord_list = decode_array(input_data['xCoordList'])\n self.y_coord_list = decode_array(input_data['yCoordList'])\n self.z_coord_list = decode_array(input_data['zCoordList'])\n if 'bFactorList' in input_data:\n self.b_factor_list = decode_array(input_data['bFactorList'])\n else:\n self.b_factor_list = []\n if 'occupancyList' in input_data:\n self.occupancy_list = decode_array(input_data['occupancyList'])\n else:\n self.occupancy_list = []\n if 'atomIdList' in input_data:\n self.atom_id_list = decode_array(input_data['atomIdList'])\n else:\n self.atom_id_list = []\n if 'altLocList' in input_data:\n self.alt_loc_list = decode_array(input_data['altLocList'])\n else:\n self.alt_loc_list = []\n if 'insCodeList' in input_data:\n self.ins_code_list = decode_array(input_data['insCodeList'])\n else:\n self.ins_code_list = []\n self.group_id_list = decode_array(input_data['groupIdList'])\n self.group_list = input_data['groupList']\n if 'sequenceIndexList' in input_data:\n self.sequence_index_list = decode_array(input_data['sequenceIndexList']\n )\n else:\n self.sequence_index_list = []\n self.chains_per_model = input_data['chainsPerModel']\n self.groups_per_chain = input_data['groupsPerChain']\n if 'chainNameList' in input_data:\n self.chain_name_list = decode_array(input_data['chainNameList'])\n else:\n self.chain_name_list = []\n self.chain_id_list = decode_array(input_data['chainIdList'])\n if 'spaceGroup' in input_data:\n self.space_group = input_data['spaceGroup']\n else:\n self.space_group = None\n if 'bondAtomList' in input_data:\n self.bond_atom_list = decode_array(input_data['bondAtomList'])\n else:\n self.bond_atom_list = None\n if 'bondOrderList' in input_data:\n self.bond_order_list = decode_array(input_data['bondOrderList'])\n else:\n self.bond_order_list = None\n if sys.version_info[0] < 3:\n if 'mmtfVersion' in input_data:\n self.mmtf_version = input_data['mmtfVersion']\n else:\n self.mmtf_version = None\n if 'mmtfProducer' in input_data:\n self.mmtf_producer = input_data['mmtfProducer']\n else:\n self.mmtf_producer = None\n if 'structureId' in input_data:\n self.structure_id = input_data['structureId']\n else:\n self.structure_id = None\n else:\n if 'mmtfVersion' in input_data:\n self.mmtf_version = input_data['mmtfVersion']\n else:\n self.mmtf_version = None\n if 'mmtfProducer' in input_data:\n self.mmtf_producer = input_data['mmtfProducer']\n else:\n self.mmtf_producer = None\n if 'structureId' in input_data:\n self.structure_id = input_data['structureId']\n else:\n self.structure_id = None\n if 'title' in input_data:\n if sys.version_info[0] < 3:\n self.title = input_data['title']\n else:\n self.title = input_data['title']\n if 'experimentalMethods' in input_data:\n self.experimental_methods = input_data['experimentalMethods']\n else:\n self.experimental_methods = None\n if 'depositionDate' in input_data:\n self.deposition_date = input_data['depositionDate']\n else:\n self.deposition_date = None\n if 'releaseDate' in input_data:\n self.release_date = input_data['releaseDate']\n else:\n self.release_date = None\n if 'entityList' in input_data:\n self.entity_list = input_data['entityList']\n else:\n self.entity_list = []\n if 'bioAssemblyList' in input_data:\n self.bio_assembly = input_data['bioAssemblyList']\n else:\n self.bio_assembly = []\n if 'rFree' in input_data:\n self.r_free = input_data['rFree']\n else:\n self.r_free = None\n if 'rWork' in input_data:\n self.r_work = input_data['rWork']\n else:\n self.r_work = None\n if 'resolution' in input_data:\n self.resolution = input_data['resolution']\n else:\n self.resolution = None\n if 'unitCell' in input_data:\n self.unit_cell = input_data['unitCell']\n else:\n self.unit_cell = None\n if 'secStructList' in input_data:\n self.sec_struct_list = decode_array(input_data['secStructList'])\n self.num_bonds = int(input_data['numBonds'])\n self.num_chains = int(input_data['numChains'])\n self.num_models = int(input_data['numModels'])\n self.num_atoms = int(input_data['numAtoms'])\n self.num_groups = int(input_data['numGroups'])\n",
"role": "user"
},
{
"content": "decode_data",
"role": "assistant"
}
] |
def x(self, data_setters):
data_setters.init_structure(self.num_bonds, len(self.x_coord_list), len
(self.group_type_list), len(self.chain_id_list), len(self.
chains_per_model), self.structure_id)
decoder_utils.add_entity_info(self, data_setters)
decoder_utils.add_atomic_information(self, data_setters)
decoder_utils.add_header_info(self, data_setters)
decoder_utils.add_xtalographic_info(self, data_setters)
decoder_utils.generate_bio_assembly(self, data_setters)
decoder_utils.add_inter_group_bonds(self, data_setters)
data_setters.finalize_structure()
|
pass_data_on
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_setters):\n data_setters.init_structure(self.num_bonds, len(self.x_coord_list), len\n (self.group_type_list), len(self.chain_id_list), len(self.\n chains_per_model), self.structure_id)\n decoder_utils.add_entity_info(self, data_setters)\n decoder_utils.add_atomic_information(self, data_setters)\n decoder_utils.add_header_info(self, data_setters)\n decoder_utils.add_xtalographic_info(self, data_setters)\n decoder_utils.generate_bio_assembly(self, data_setters)\n decoder_utils.add_inter_group_bonds(self, data_setters)\n data_setters.finalize_structure()\n",
"role": "user"
},
{
"content": "pass_data_on",
"role": "assistant"
}
] |
def x(address):
try:
urllib2.urlopen(address, timeout=1)
return True
except urllib2.URLError as err:
return False
|
internet_on
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(address):\n try:\n urllib2.urlopen(address, timeout=1)\n return True\n except urllib2.URLError as err:\n return False\n",
"role": "user"
},
{
"content": "internet_on",
"role": "assistant"
}
] |
def x(file_path, input_data, input_function):
mmtf_encoder = MMTFEncoder()
pass_data_on(input_data, input_function, mmtf_encoder)
mmtf_encoder.write_file(file_path)
|
write_mmtf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path, input_data, input_function):\n mmtf_encoder = MMTFEncoder()\n pass_data_on(input_data, input_function, mmtf_encoder)\n mmtf_encoder.write_file(file_path)\n",
"role": "user"
},
{
"content": "write_mmtf",
"role": "assistant"
}
] |
def x(pdb_id, reduced=False):
url = get_url(pdb_id, reduced)
request = urllib2.Request(url)
request.add_header('Accept-encoding', 'gzip')
response = urllib2.urlopen(request)
if response.info().get('Content-Encoding') == 'gzip':
data = ungzip_data(response.read())
else:
data = response.read()
return _unpack(data)
|
get_raw_data_from_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pdb_id, reduced=False):\n url = get_url(pdb_id, reduced)\n request = urllib2.Request(url)\n request.add_header('Accept-encoding', 'gzip')\n response = urllib2.urlopen(request)\n if response.info().get('Content-Encoding') == 'gzip':\n data = ungzip_data(response.read())\n else:\n data = response.read()\n return _unpack(data)\n",
"role": "user"
},
{
"content": "get_raw_data_from_url",
"role": "assistant"
}
] |
def x(file_path):
newDecoder = MMTFDecoder()
with open(file_path, 'rb') as fh:
newDecoder.decode_data(_unpack(fh))
return newDecoder
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n newDecoder = MMTFDecoder()\n with open(file_path, 'rb') as fh:\n newDecoder.decode_data(_unpack(fh))\n return newDecoder\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(file_path):
newDecoder = MMTFDecoder()
newDecoder.decode_data(_unpack(gzip.open(file_path, 'rb')))
return newDecoder
|
parse_gzip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n newDecoder = MMTFDecoder()\n newDecoder.decode_data(_unpack(gzip.open(file_path, 'rb')))\n return newDecoder\n",
"role": "user"
},
{
"content": "parse_gzip",
"role": "assistant"
}
] |
def x(input_data):
buf = StringIO(input_data)
f = gzip.GzipFile(fileobj=buf)
return f
|
ungzip_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_data):\n buf = StringIO(input_data)\n f = gzip.GzipFile(fileobj=buf)\n return f\n",
"role": "user"
},
{
"content": "ungzip_data",
"role": "assistant"
}
] |
def x(input_array):
codec = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[0:4])[0
]
length = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[4:8])[
0]
param = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[8:12])[
0]
return codec, length, param, input_array[12:]
|
parse_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_array):\n codec = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[0:4])[0\n ]\n length = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[4:8])[\n 0]\n param = struct.unpack(mmtf.utils.constants.NUM_DICT[4], input_array[8:12])[\n 0]\n return codec, length, param, input_array[12:]\n",
"role": "user"
},
{
"content": "parse_header",
"role": "assistant"
}
] |
def x(input_array, codec, length, param):
return struct.pack(mmtf.utils.constants.NUM_DICT[4], codec) + struct.pack(
mmtf.utils.constants.NUM_DICT[4], length) + struct.pack(mmtf.utils.
constants.NUM_DICT[4], param) + input_array
|
add_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_array, codec, length, param):\n return struct.pack(mmtf.utils.constants.NUM_DICT[4], codec) + struct.pack(\n mmtf.utils.constants.NUM_DICT[4], length) + struct.pack(mmtf.utils.\n constants.NUM_DICT[4], param) + input_array\n",
"role": "user"
},
{
"content": "add_header",
"role": "assistant"
}
] |
def x(in_bytes, num):
out_arr = []
for i in range(len(in_bytes) // num):
val = in_bytes[i * num:i * num + num]
unpacked = struct.unpack(mmtf.utils.constants.NUM_DICT[num], val)
out_arr.append(unpacked[0])
return out_arr
|
convert_bytes_to_ints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_bytes, num):\n out_arr = []\n for i in range(len(in_bytes) // num):\n val = in_bytes[i * num:i * num + num]\n unpacked = struct.unpack(mmtf.utils.constants.NUM_DICT[num], val)\n out_arr.append(unpacked[0])\n return out_arr\n",
"role": "user"
},
{
"content": "convert_bytes_to_ints",
"role": "assistant"
}
] |
def x(in_ints, num):
out_bytes = b''
for val in in_ints:
out_bytes += struct.pack(mmtf.utils.constants.NUM_DICT[num], val)
return out_bytes
|
convert_ints_to_bytes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_ints, num):\n out_bytes = b''\n for val in in_ints:\n out_bytes += struct.pack(mmtf.utils.constants.NUM_DICT[num], val)\n return out_bytes\n",
"role": "user"
},
{
"content": "convert_ints_to_bytes",
"role": "assistant"
}
] |
def x(in_bytes):
tot_strings = len(in_bytes) // mmtf.utils.constants.CHAIN_LEN
out_strings = []
for i in range(tot_strings):
out_s = in_bytes[i * mmtf.utils.constants.CHAIN_LEN:i * mmtf.utils.
constants.CHAIN_LEN + mmtf.utils.constants.CHAIN_LEN]
out_strings.append(out_s.decode('ascii').strip(mmtf.utils.constants
.NULL_BYTE))
return out_strings
|
decode_chain_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_bytes):\n tot_strings = len(in_bytes) // mmtf.utils.constants.CHAIN_LEN\n out_strings = []\n for i in range(tot_strings):\n out_s = in_bytes[i * mmtf.utils.constants.CHAIN_LEN:i * mmtf.utils.\n constants.CHAIN_LEN + mmtf.utils.constants.CHAIN_LEN]\n out_strings.append(out_s.decode('ascii').strip(mmtf.utils.constants\n .NULL_BYTE))\n return out_strings\n",
"role": "user"
},
{
"content": "decode_chain_list",
"role": "assistant"
}
] |
def x(in_strings):
out_bytes = b''
for in_s in in_strings:
out_bytes += in_s.encode('ascii')
for i in range(mmtf.utils.constants.CHAIN_LEN - len(in_s)):
out_bytes += mmtf.utils.constants.NULL_BYTE.encode('ascii')
return out_bytes
|
encode_chain_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_strings):\n out_bytes = b''\n for in_s in in_strings:\n out_bytes += in_s.encode('ascii')\n for i in range(mmtf.utils.constants.CHAIN_LEN - len(in_s)):\n out_bytes += mmtf.utils.constants.NULL_BYTE.encode('ascii')\n return out_bytes\n",
"role": "user"
},
{
"content": "encode_chain_list",
"role": "assistant"
}
] |
def x(int_array, max=32767, min=-32768):
out_arr = []
for curr in int_array:
if curr >= 0:
while curr >= max:
out_arr.append(max)
curr -= max
else:
while curr <= min:
out_arr.append(min)
curr += int(math.fabs(min))
out_arr.append(curr)
return out_arr
|
recursive_index_encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n for curr in int_array:\n if curr >= 0:\n while curr >= max:\n out_arr.append(max)\n curr -= max\n else:\n while curr <= min:\n out_arr.append(min)\n curr += int(math.fabs(min))\n out_arr.append(curr)\n return out_arr\n",
"role": "user"
},
{
"content": "recursive_index_encode",
"role": "assistant"
}
] |
def x(int_array, max=32767, min=-32768):
out_arr = []
encoded_ind = 0
while encoded_ind < len(int_array):
decoded_val = 0
while int_array[encoded_ind] == max or int_array[encoded_ind] == min:
decoded_val += int_array[encoded_ind]
encoded_ind += 1
if int_array[encoded_ind] == 0:
break
decoded_val += int_array[encoded_ind]
encoded_ind += 1
out_arr.append(decoded_val)
return out_arr
|
recursive_index_decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(int_array, max=32767, min=-32768):\n out_arr = []\n encoded_ind = 0\n while encoded_ind < len(int_array):\n decoded_val = 0\n while int_array[encoded_ind] == max or int_array[encoded_ind] == min:\n decoded_val += int_array[encoded_ind]\n encoded_ind += 1\n if int_array[encoded_ind] == 0:\n break\n decoded_val += int_array[encoded_ind]\n encoded_ind += 1\n out_arr.append(decoded_val)\n return out_arr\n",
"role": "user"
},
{
"content": "recursive_index_decode",
"role": "assistant"
}
] |
def x(in_array):
switch = False
out_array = []
in_array = in_array.tolist()
for item in in_array:
if switch == False:
this_item = item
switch = True
else:
switch = False
out_array.extend([this_item] * int(item))
return numpy.asarray(out_array, dtype=numpy.int32)
|
run_length_decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_array):\n switch = False\n out_array = []\n in_array = in_array.tolist()\n for item in in_array:\n if switch == False:\n this_item = item\n switch = True\n else:\n switch = False\n out_array.extend([this_item] * int(item))\n return numpy.asarray(out_array, dtype=numpy.int32)\n",
"role": "user"
},
{
"content": "run_length_decode",
"role": "assistant"
}
] |
def x(algo, init):
x = theano.shared(np.array(init, FLOAT), name='x')
n = 0.1 * RandomStreams().normal((len(init) - 1,))
monitors = []
if len(init) == 2:
monitors.extend([('x', x[:-1].sum()), ('y', x[1:].sum())])
return downhill.build(algo, loss=(n + 100 * (x[1:] - x[:-1] ** 2) ** 2 +
(1 - x[:-1]) ** 2).sum(), params=[x], monitors=monitors,
monitor_gradients=True)
|
build
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(algo, init):\n x = theano.shared(np.array(init, FLOAT), name='x')\n n = 0.1 * RandomStreams().normal((len(init) - 1,))\n monitors = []\n if len(init) == 2:\n monitors.extend([('x', x[:-1].sum()), ('y', x[1:].sum())])\n return downhill.build(algo, loss=(n + 100 * (x[1:] - x[:-1] ** 2) ** 2 +\n (1 - x[:-1]) ** 2).sum(), params=[x], monitors=monitors,\n monitor_gradients=True)\n",
"role": "user"
},
{
"content": "build",
"role": "assistant"
}
] |
def x(algo, init, limit=100, **kwargs):
kw = dict(min_improvement=0, patience=0, max_gradient_norm=100)
kw.update(kwargs)
xs, ys, loss = [], [], []
for tm, _ in build(algo, init).iterate([[]], **kw):
if len(init) == 2:
xs.append(tm['x'])
ys.append(tm['y'])
loss.append(tm['loss'])
if len(loss) == limit:
break
return xs[:-9], ys[:-9], loss[-9]
|
build_and_trace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(algo, init, limit=100, **kwargs):\n kw = dict(min_improvement=0, patience=0, max_gradient_norm=100)\n kw.update(kwargs)\n xs, ys, loss = [], [], []\n for tm, _ in build(algo, init).iterate([[]], **kw):\n if len(init) == 2:\n xs.append(tm['x'])\n ys.append(tm['y'])\n loss.append(tm['loss'])\n if len(loss) == limit:\n break\n return xs[:-9], ys[:-9], loss[-9]\n",
"role": "user"
},
{
"content": "build_and_trace",
"role": "assistant"
}
] |
def x(loss, train, valid=None, params=None, inputs=None, algo='rmsprop',
updates=(), monitors=(), monitor_gradients=False, batch_size=32,
train_batches=None, valid_batches=None, **kwargs):
if not isinstance(train, Dataset):
train = Dataset(train, name='train', batch_size=batch_size,
iteration_size=train_batches)
if valid is not None and not isinstance(valid, Dataset):
valid = Dataset(valid, name='valid', batch_size=batch_size,
iteration_size=valid_batches)
return build(algo, loss=loss, params=params, inputs=inputs, updates=
updates, monitors=monitors, monitor_gradients=monitor_gradients
).minimize(train, valid, **kwargs)
|
minimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loss, train, valid=None, params=None, inputs=None, algo='rmsprop',\n updates=(), monitors=(), monitor_gradients=False, batch_size=32,\n train_batches=None, valid_batches=None, **kwargs):\n if not isinstance(train, Dataset):\n train = Dataset(train, name='train', batch_size=batch_size,\n iteration_size=train_batches)\n if valid is not None and not isinstance(valid, Dataset):\n valid = Dataset(valid, name='valid', batch_size=batch_size,\n iteration_size=valid_batches)\n return build(algo, loss=loss, params=params, inputs=inputs, updates=\n updates, monitors=monitors, monitor_gradients=monitor_gradients\n ).minimize(train, valid, **kwargs)\n",
"role": "user"
},
{
"content": "minimize",
"role": "assistant"
}
] |
def x(loss, key):
algo, rate, mu, half, reg = key
slots, args = ['{:.3f}', '{}', 'm={:.3f}'], [loss, algo, mu]
if algo in 'SGD NAG RMSProp Adam ESGD'.split():
slots.append('lr={:.2e}')
args.append(rate)
if algo in 'RMSProp ADADELTA ESGD'.split():
slots.append('rmsh={}')
args.append(half)
slots.append('rmsr={:.2e}')
args.append(reg)
return ' '.join(slots).format(*args)
|
make_label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(loss, key):\n algo, rate, mu, half, reg = key\n slots, args = ['{:.3f}', '{}', 'm={:.3f}'], [loss, algo, mu]\n if algo in 'SGD NAG RMSProp Adam ESGD'.split():\n slots.append('lr={:.2e}')\n args.append(rate)\n if algo in 'RMSProp ADADELTA ESGD'.split():\n slots.append('rmsh={}')\n args.append(half)\n slots.append('rmsr={:.2e}')\n args.append(reg)\n return ' '.join(slots).format(*args)\n",
"role": "user"
},
{
"content": "make_label",
"role": "assistant"
}
] |
def x(self, shuffle=True):
for _ in range(self.iteration_size):
if self._callable is not None:
yield self._callable()
else:
yield self._next_batch(shuffle)
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shuffle=True):\n for _ in range(self.iteration_size):\n if self._callable is not None:\n yield self._callable()\n else:\n yield self._next_batch(shuffle)\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(param, suffix, init=0):
return theano.shared(np.zeros_like(param.get_value()) + init, name=
'{}_{}'.format(param.name, suffix), broadcastable=param.broadcastable)
|
shared_like
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(param, suffix, init=0):\n return theano.shared(np.zeros_like(param.get_value()) + init, name=\n '{}_{}'.format(param.name, suffix), broadcastable=param.broadcastable)\n",
"role": "user"
},
{
"content": "shared_like",
"role": "assistant"
}
] |
def x(node):
queue, seen, inputs, params = [node], set(), set(), set()
while queue:
node = queue.pop()
seen.add(node)
queue.extend(p for p in node.get_parents() if p not in seen)
if not node.get_parents():
if isinstance(node, theano.compile.SharedVariable):
params.add(node)
elif not isinstance(node, TT.Constant):
inputs.add(node)
return list(inputs), list(params)
|
find_inputs_and_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(node):\n queue, seen, inputs, params = [node], set(), set(), set()\n while queue:\n node = queue.pop()\n seen.add(node)\n queue.extend(p for p in node.get_parents() if p not in seen)\n if not node.get_parents():\n if isinstance(node, theano.compile.SharedVariable):\n params.add(node)\n elif not isinstance(node, TT.Constant):\n inputs.add(node)\n return list(inputs), list(params)\n",
"role": "user"
},
{
"content": "find_inputs_and_params",
"role": "assistant"
}
] |
def x(msg, *args, **kwargs):
now = datetime.datetime.now()
module = 'downhill'
if _detailed_callsite:
caller = inspect.stack()[1]
parts = caller.filename.replace('.py', '').split('/')
module = '{}:{}'.format('.'.join(parts[parts.index('downhill') + 1:
]), caller.lineno)
click.echo(' '.join((click.style(now.strftime('%Y%m%d'), fg='blue'),
click.style(now.strftime('%H%M%S'), fg='cyan'), click.style(module,
fg='magenta'), msg.format(*args, **kwargs))))
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(msg, *args, **kwargs):\n now = datetime.datetime.now()\n module = 'downhill'\n if _detailed_callsite:\n caller = inspect.stack()[1]\n parts = caller.filename.replace('.py', '').split('/')\n module = '{}:{}'.format('.'.join(parts[parts.index('downhill') + 1:\n ]), caller.lineno)\n click.echo(' '.join((click.style(now.strftime('%Y%m%d'), fg='blue'),\n click.style(now.strftime('%H%M%S'), fg='cyan'), click.style(module,\n fg='magenta'), msg.format(*args, **kwargs))))\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(name, value):
log('setting {} = {}', click.style(str(name)), click.style(str(value),
fg='yellow'))
|
log_param
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, value):\n log('setting {} = {}', click.style(str(name)), click.style(str(value),\n fg='yellow'))\n",
"role": "user"
},
{
"content": "log_param",
"role": "assistant"
}
] |
def x():
mnist = skdata.mnist.dataset.MNIST()
mnist.meta
def x(n, dtype):
arr = mnist.arrays[n]
return arr.reshape((len(arr), -1)).astype(dtype)
train_images = arr('train_images', np.float32) / 128 - 1
train_labels = arr('train_labels', np.uint8)
return (train_images[:50000], train_labels[:50000, 0]), (train_images[
50000:], train_labels[50000:, 0])
|
load_mnist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n mnist = skdata.mnist.dataset.MNIST()\n mnist.meta\n\n def x(n, dtype):\n arr = mnist.arrays[n]\n return arr.reshape((len(arr), -1)).astype(dtype)\n train_images = arr('train_images', np.float32) / 128 - 1\n train_labels = arr('train_labels', np.uint8)\n return (train_images[:50000], train_labels[:50000, 0]), (train_images[\n 50000:], train_labels[50000:, 0])\n",
"role": "user"
},
{
"content": "load_mnist",
"role": "assistant"
}
] |
def x(algo, loss, params=None, inputs=None, updates=(), monitors=(),
monitor_gradients=False):
return Optimizer.build(algo, loss, params, inputs, updates=updates,
monitors=monitors, monitor_gradients=monitor_gradients)
|
build
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(algo, loss, params=None, inputs=None, updates=(), monitors=(),\n monitor_gradients=False):\n return Optimizer.build(algo, loss, params, inputs, updates=updates,\n monitors=monitors, monitor_gradients=monitor_gradients)\n",
"role": "user"
},
{
"content": "build",
"role": "assistant"
}
] |
def x(self, **kwargs):
util.log('compiling evaluation function')
self.f_eval = theano.function(self._inputs, self._monitor_exprs,
updates=self._updates, name='evaluation')
label = self.__class__.__name__
util.log('compiling {} optimizer'.format(click.style(label, fg='red')))
updates = list(self._updates) + list(self.get_updates(**kwargs))
self.f_step = theano.function(self._inputs, self._monitor_exprs,
updates=updates, name=label)
|
compile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n util.log('compiling evaluation function')\n self.f_eval = theano.function(self._inputs, self._monitor_exprs,\n updates=self._updates, name='evaluation')\n label = self.__class__.__name__\n util.log('compiling {} optimizer'.format(click.style(label, fg='red')))\n updates = list(self._updates) + list(self.get_updates(**kwargs))\n self.f_step = theano.function(self._inputs, self._monitor_exprs,\n updates=updates, name=label)\n",
"role": "user"
},
{
"content": "compile",
"role": "assistant"
}
] |
def x(self, **kwargs):
self._prepare(**kwargs)
for param, grad in self._differentiate():
for var, update in self._get_updates_for(param, grad):
if var != param:
yield var, update
continue
if self.momentum == 0:
yield var, param - update
continue
vel_tm1 = util.shared_like(param, 'vel')
vel_t = util.as_float(self.momentum) * vel_tm1 - update
if self.nesterov:
mom_sqr = util.as_float(self.momentum ** 2)
mom_inc = util.as_float(1 + self.momentum)
vel_t = mom_sqr * vel_tm1 - mom_inc * update
yield vel_tm1, vel_t
yield param, param + vel_t
|
get_updates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n self._prepare(**kwargs)\n for param, grad in self._differentiate():\n for var, update in self._get_updates_for(param, grad):\n if var != param:\n yield var, update\n continue\n if self.momentum == 0:\n yield var, param - update\n continue\n vel_tm1 = util.shared_like(param, 'vel')\n vel_t = util.as_float(self.momentum) * vel_tm1 - update\n if self.nesterov:\n mom_sqr = util.as_float(self.momentum ** 2)\n mom_inc = util.as_float(1 + self.momentum)\n vel_t = mom_sqr * vel_tm1 - mom_inc * update\n yield vel_tm1, vel_t\n yield param, param + vel_t\n",
"role": "user"
},
{
"content": "get_updates",
"role": "assistant"
}
] |
def x(self, params=None):
if params is None:
params = self._params
for param, grad in zip(params, TT.grad(self._loss, params)):
if self.max_gradient_elem > 0:
limit = util.as_float(self.max_gradient_elem)
yield param, TT.clip(grad, -limit, limit)
elif self.max_gradient_norm > 0:
norm = TT.sqrt((grad * grad).sum())
limit = util.as_float(self.max_gradient_norm)
yield param, grad * TT.minimum(1, limit / norm)
else:
yield param, grad
|
differentiate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None):\n if params is None:\n params = self._params\n for param, grad in zip(params, TT.grad(self._loss, params)):\n if self.max_gradient_elem > 0:\n limit = util.as_float(self.max_gradient_elem)\n yield param, TT.clip(grad, -limit, limit)\n elif self.max_gradient_norm > 0:\n norm = TT.sqrt((grad * grad).sum())\n limit = util.as_float(self.max_gradient_norm)\n yield param, grad * TT.minimum(1, limit / norm)\n else:\n yield param, grad\n",
"role": "user"
},
{
"content": "differentiate",
"role": "assistant"
}
] |
def x(self, targets=None):
if not isinstance(targets, (list, tuple)):
targets = self._best_params
for param, target in zip(self._params, targets):
param.set_value(target)
|
set_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, targets=None):\n if not isinstance(targets, (list, tuple)):\n targets = self._best_params\n for param, target in zip(self._params, targets):\n param.set_value(target)\n",
"role": "user"
},
{
"content": "set_params",
"role": "assistant"
}
] |
def x(self, monitors, iteration, label='', suffix=''):
label = label or self.__class__.__name__
fields = ('{}={:.6f}'.format(k, v) for k, v in monitors.items())
util.log('{} {} {}{}'.format(label, iteration, ' '.join(fields), suffix))
|
log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, monitors, iteration, label='', suffix=''):\n label = label or self.__class__.__name__\n fields = ('{}={:.6f}'.format(k, v) for k, v in monitors.items())\n util.log('{} {} {}{}'.format(label, iteration, ' '.join(fields), suffix))\n",
"role": "user"
},
{
"content": "log",
"role": "assistant"
}
] |
def x(self, dataset):
if dataset is None:
values = [self.f_eval()]
else:
values = [self.f_eval(*x) for x in dataset]
monitors = zip(self._monitor_names, np.mean(values, axis=0))
return collections.OrderedDict(monitors)
|
evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset):\n if dataset is None:\n values = [self.f_eval()]\n else:\n values = [self.f_eval(*x) for x in dataset]\n monitors = zip(self._monitor_names, np.mean(values, axis=0))\n return collections.OrderedDict(monitors)\n",
"role": "user"
},
{
"content": "evaluate",
"role": "assistant"
}
] |
def x(self, **kwargs):
self.learning_rate = util.as_float(kwargs.pop('learning_rate', 0.0001))
self.momentum = kwargs.pop('momentum', 0)
self.nesterov = kwargs.pop('nesterov', False)
self.patience = kwargs.get('patience', 5)
self.validate_every = kwargs.pop('validate_every', 10)
self.min_improvement = kwargs.pop('min_improvement', 0)
self.max_gradient_norm = kwargs.pop('max_gradient_norm', 0)
self.max_gradient_elem = kwargs.pop('max_gradient_elem', 0)
util.log_param('patience', self.patience)
util.log_param('validate_every', self.validate_every)
util.log_param('min_improvement', self.min_improvement)
util.log_param('max_gradient_norm', self.max_gradient_norm)
util.log_param('max_gradient_elem', self.max_gradient_elem)
util.log_param('learning_rate', self.learning_rate)
util.log_param('momentum', self.momentum)
util.log_param('nesterov', self.nesterov)
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n self.learning_rate = util.as_float(kwargs.pop('learning_rate', 0.0001))\n self.momentum = kwargs.pop('momentum', 0)\n self.nesterov = kwargs.pop('nesterov', False)\n self.patience = kwargs.get('patience', 5)\n self.validate_every = kwargs.pop('validate_every', 10)\n self.min_improvement = kwargs.pop('min_improvement', 0)\n self.max_gradient_norm = kwargs.pop('max_gradient_norm', 0)\n self.max_gradient_elem = kwargs.pop('max_gradient_elem', 0)\n util.log_param('patience', self.patience)\n util.log_param('validate_every', self.validate_every)\n util.log_param('min_improvement', self.min_improvement)\n util.log_param('max_gradient_norm', self.max_gradient_norm)\n util.log_param('max_gradient_elem', self.max_gradient_elem)\n util.log_param('learning_rate', self.learning_rate)\n util.log_param('momentum', self.momentum)\n util.log_param('nesterov', self.nesterov)\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(self, train=None, valid=None, max_updates=None, **kwargs):
self._compile(**kwargs)
if valid is None:
valid = train
iteration = 0
training = validation = None
while max_updates is None or iteration < max_updates:
if not iteration % self.validate_every:
try:
validation = self.evaluate(valid)
except KeyboardInterrupt:
util.log('interrupted!')
break
if self._test_patience(validation):
util.log('patience elapsed!')
break
try:
training = self._step(train)
except KeyboardInterrupt:
util.log('interrupted!')
break
iteration += 1
self._log(training, iteration)
yield training, validation
self.set_params('best')
|
iterate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, train=None, valid=None, max_updates=None, **kwargs):\n self._compile(**kwargs)\n if valid is None:\n valid = train\n iteration = 0\n training = validation = None\n while max_updates is None or iteration < max_updates:\n if not iteration % self.validate_every:\n try:\n validation = self.evaluate(valid)\n except KeyboardInterrupt:\n util.log('interrupted!')\n break\n if self._test_patience(validation):\n util.log('patience elapsed!')\n break\n try:\n training = self._step(train)\n except KeyboardInterrupt:\n util.log('interrupted!')\n break\n iteration += 1\n self._log(training, iteration)\n yield training, validation\n self.set_params('best')\n",
"role": "user"
},
{
"content": "iterate",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
monitors = None
for monitors in self.iterate(*args, **kwargs):
pass
return monitors
|
minimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n monitors = None\n for monitors in self.iterate(*args, **kwargs):\n pass\n return monitors\n",
"role": "user"
},
{
"content": "minimize",
"role": "assistant"
}
] |
def x(self, dataset):
if dataset is None:
values = [self.f_step()]
else:
values = [self.f_step(*x) for x in dataset]
return collections.OrderedDict(zip(self._monitor_names, np.mean(values,
axis=0)))
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dataset):\n if dataset is None:\n values = [self.f_step()]\n else:\n values = [self.f_step(*x) for x in dataset]\n return collections.OrderedDict(zip(self._monitor_names, np.mean(values,\n axis=0)))\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(method, number_of_arguments=1):
if 'method' in method.__class__.__name__:
number_of_arguments += 1
func = getattr(method, 'im_func', getattr(method, '__func__'))
func_defaults = getattr(func, 'func_defaults', getattr(func,
'__defaults__'))
number_of_defaults = func_defaults and len(func_defaults) or 0
elif method.__class__.__name__ == 'function':
func_defaults = getattr(method, 'func_defaults', getattr(method,
'__defaults__'))
number_of_defaults = func_defaults and len(func_defaults) or 0
coArgCount = getattr(method, 'func_code', getattr(method, '__code__')
).co_argcount
if (coArgCount >= number_of_arguments and coArgCount -
number_of_defaults <= number_of_arguments):
return True
return False
|
accept_arguments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method, number_of_arguments=1):\n if 'method' in method.__class__.__name__:\n number_of_arguments += 1\n func = getattr(method, 'im_func', getattr(method, '__func__'))\n func_defaults = getattr(func, 'func_defaults', getattr(func,\n '__defaults__'))\n number_of_defaults = func_defaults and len(func_defaults) or 0\n elif method.__class__.__name__ == 'function':\n func_defaults = getattr(method, 'func_defaults', getattr(method,\n '__defaults__'))\n number_of_defaults = func_defaults and len(func_defaults) or 0\n coArgCount = getattr(method, 'func_code', getattr(method, '__code__')\n ).co_argcount\n if (coArgCount >= number_of_arguments and coArgCount -\n number_of_defaults <= number_of_arguments):\n return True\n return False\n",
"role": "user"
},
{
"content": "accept_arguments",
"role": "assistant"
}
] |
def x(self, signal, value=None, gather=False):
results = [] if gather else True
if hasattr(self, 'connections') and signal in self.connections:
for condition, values in self.connections[signal].items():
if condition is None or condition == value or callable(condition
) and condition(value):
for slot, transform in values.items():
if transform is not None:
if callable(transform):
used_value = transform(value)
elif isinstance(transform, str):
used_value = transform.format(value=value)
else:
used_value = transform
else:
used_value = value
if used_value is not None:
if accept_arguments(slot, 1):
result = slot(used_value)
elif accept_arguments(slot, 0):
result = slot()
else:
result = ''
else:
result = slot()
if gather:
results.append(result)
return results
|
emit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, signal, value=None, gather=False):\n results = [] if gather else True\n if hasattr(self, 'connections') and signal in self.connections:\n for condition, values in self.connections[signal].items():\n if condition is None or condition == value or callable(condition\n ) and condition(value):\n for slot, transform in values.items():\n if transform is not None:\n if callable(transform):\n used_value = transform(value)\n elif isinstance(transform, str):\n used_value = transform.format(value=value)\n else:\n used_value = transform\n else:\n used_value = value\n if used_value is not None:\n if accept_arguments(slot, 1):\n result = slot(used_value)\n elif accept_arguments(slot, 0):\n result = slot()\n else:\n result = ''\n else:\n result = slot()\n if gather:\n results.append(result)\n return results\n",
"role": "user"
},
{
"content": "emit",
"role": "assistant"
}
] |
def x(self, signal, slot, transform=None, condition=None):
if not signal in self.signals:
print(
'WARNING: {0} is trying to connect a slot to an undefined signal: {1}'
.format(self.__class__.__name__, str(signal)))
return
if not hasattr(self, 'connections'):
self.connections = {}
connection = self.connections.setdefault(signal, {})
connection = connection.setdefault(condition, {})
connection[slot] = transform
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, signal, slot, transform=None, condition=None):\n if not signal in self.signals:\n print(\n 'WARNING: {0} is trying to connect a slot to an undefined signal: {1}'\n .format(self.__class__.__name__, str(signal)))\n return\n if not hasattr(self, 'connections'):\n self.connections = {}\n connection = self.connections.setdefault(signal, {})\n connection = connection.setdefault(condition, {})\n connection[slot] = transform\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self, signal=None, slot=None, transform=None, condition=None):
if slot:
self.connections[signal][condition].pop(slot, None)
elif condition is not None:
self.connections[signal].pop(condition, None)
elif signal:
self.connections.pop(signal, None)
else:
delattr(self, 'connections')
|
disconnect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, signal=None, slot=None, transform=None, condition=None):\n if slot:\n self.connections[signal][condition].pop(slot, None)\n elif condition is not None:\n self.connections[signal].pop(condition, None)\n elif signal:\n self.connections.pop(signal, None)\n else:\n delattr(self, 'connections')\n",
"role": "user"
},
{
"content": "disconnect",
"role": "assistant"
}
] |
def x(self, key):
keystr = str(key)
res = None
try:
res = self.ctx[keystr]
except KeyError:
for k, v in self.ctx.items():
if 'name' in v and v['name'].lower() == keystr.lower():
res = v
break
return res
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key):\n keystr = str(key)\n res = None\n try:\n res = self.ctx[keystr]\n except KeyError:\n for k, v in self.ctx.items():\n if 'name' in v and v['name'].lower() == keystr.lower():\n res = v\n break\n return res\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self):
name = self._item.get('market_hash_name')
if not name:
name = '{0.appid}-{0.name}'.format(self)
return name
|
hash_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name = self._item.get('market_hash_name')\n if not name:\n name = '{0.appid}-{0.name}'.format(self)\n return name\n",
"role": "user"
},
{
"content": "hash_name",
"role": "assistant"
}
] |
def x(self):
try:
qid = int((self.tool_metadata or {}).get('quality', 0))
except:
qid = 0
internal_name, name = 'normal', 'Normal'
if self.tags:
tags = {x.get('category'): x for x in self.tags}
if 'Quality' in tags:
internal_name, name = tags['Quality'].get('internal_name'), tags[
'Quality'].get('name')
return qid, internal_name, name
|
quality
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n qid = int((self.tool_metadata or {}).get('quality', 0))\n except:\n qid = 0\n internal_name, name = 'normal', 'Normal'\n if self.tags:\n tags = {x.get('category'): x for x in self.tags}\n if 'Quality' in tags:\n internal_name, name = tags['Quality'].get('internal_name'), tags[\n 'Quality'].get('name')\n return qid, internal_name, name\n",
"role": "user"
},
{
"content": "quality",
"role": "assistant"
}
] |
def x(cls):
apikey = cls.__api_key or cls.__api_key_env_var
if apikey:
return apikey
else:
raise APIKeyMissingError('API key not set')
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n apikey = cls.__api_key or cls.__api_key_env_var\n if apikey:\n return apikey\n else:\n raise APIKeyMissingError('API key not set')\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self):
data = self._downloader.download()
if sys.version >= '2.7':
data = data.decode('utf-8', errors='ignore')
else:
data = data.decode('utf-8')
self.update(json.loads(data))
self._fetched = True
|
call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = self._downloader.download()\n if sys.version >= '2.7':\n data = data.decode('utf-8', errors='ignore')\n else:\n data = data.decode('utf-8')\n self.update(json.loads(data))\n self._fetched = True\n",
"role": "user"
},
{
"content": "call",
"role": "assistant"
}
] |
def x(self, attrid):
attrs = self._schema['attributes']
try:
return dict(attrs[attrid])
except KeyError:
attr_names = self._schema['attribute_names']
attrdef = attrs.get(attr_names.get(str(attrid).lower()))
if not attrdef:
return None
else:
return dict(attrdef)
|
attribute_definition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attrid):\n attrs = self._schema['attributes']\n try:\n return dict(attrs[attrid])\n except KeyError:\n attr_names = self._schema['attribute_names']\n attrdef = attrs.get(attr_names.get(str(attrid).lower()))\n if not attrdef:\n return None\n else:\n return dict(attrdef)\n",
"role": "user"
},
{
"content": "attribute_definition",
"role": "assistant"
}
] |
def x(self, qid):
qualities = self._schema['qualities']
try:
return qualities[qid]
except KeyError:
qid = self._schema['quality_names'].get(str(qid).lower(), 0)
return qualities.get(qid, (qid, 'normal', 'Normal'))
|
quality_definition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, qid):\n qualities = self._schema['qualities']\n try:\n return qualities[qid]\n except KeyError:\n qid = self._schema['quality_names'].get(str(qid).lower(), 0)\n return qualities.get(qid, (qid, 'normal', 'Normal'))\n",
"role": "user"
},
{
"content": "quality_definition",
"role": "assistant"
}
] |
def x(self):
attrs = self._schema['attributes']
return [item_attribute(attr) for attr in sorted(attrs.values(), key=
operator.itemgetter('defindex'))]
|
attributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n attrs = self._schema['attributes']\n return [item_attribute(attr) for attr in sorted(attrs.values(), key=\n operator.itemgetter('defindex'))]\n",
"role": "user"
},
{
"content": "attributes",
"role": "assistant"
}
] |
def x(self, origin):
try:
oid = int(origin)
except (ValueError, TypeError):
return None
return self.origins.get(oid)
|
origin_id_to_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, origin):\n try:\n oid = int(origin)\n except (ValueError, TypeError):\n return None\n return self.origins.get(oid)\n",
"role": "user"
},
{
"content": "origin_id_to_name",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.