source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
for npc in self.npcs:
self.move_entity(npc, *npc.towards(self.player))
for entity1, entity2 in itertools.combinations(self.entities, 2):
if (entity1.x, entity1.y) == (entity2.x, entity2.y):
if self.player in (entity1, entity2):
return 'you lost on turn %d' % self.turn
entity1.die()
entity2.die()
if all(npc.speed == 0 for npc in self.npcs):
return 'you won on turn %d' % self.turn
self.turn += 1
if self.turn % 20 == 0:
self.player.speed = max(1, self.player.speed - 1)
self.player.display = on_blue(green(bold(unicode_str(self.player.
speed))))
|
tick
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for npc in self.npcs:\n self.move_entity(npc, *npc.towards(self.player))\n for entity1, entity2 in itertools.combinations(self.entities, 2):\n if (entity1.x, entity1.y) == (entity2.x, entity2.y):\n if self.player in (entity1, entity2):\n return 'you lost on turn %d' % self.turn\n entity1.die()\n entity2.die()\n if all(npc.speed == 0 for npc in self.npcs):\n return 'you won on turn %d' % self.turn\n self.turn += 1\n if self.turn % 20 == 0:\n self.player.speed = max(1, self.player.speed - 1)\n self.player.display = on_blue(green(bold(unicode_str(self.player.\n speed))))\n",
"role": "user"
},
{
"content": "tick",
"role": "assistant"
}
] |
def x(self, msg):
rows, columns = self.t.height, self.t.width
return self.array_from_text_rc(msg, rows, columns)
|
array_from_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, msg):\n rows, columns = self.t.height, self.t.width\n return self.array_from_text_rc(msg, rows, columns)\n",
"role": "user"
},
{
"content": "array_from_text",
"role": "assistant"
}
] |
def x(self, array, cursor_pos=(0, 0)):
height, width = self.height, self.width
for_stdout = self.fmtstr_to_stdout_xform()
if not self.hide_cursor:
self.write(self.t.hide_cursor)
if (height != self._last_rendered_height or width != self.
_last_rendered_width):
self.on_terminal_size_change(height, width)
current_lines_by_row = {}
rows = list(range(height))
rows_for_use = rows[:len(array)]
rest_of_rows = rows[len(array):]
for row, line in zip(rows_for_use, array):
current_lines_by_row[row] = line
if line == self._last_lines_by_row.get(row, None):
continue
self.write(self.t.move(row, 0))
self.write(for_stdout(line))
if len(line) < width:
self.write(self.t.clear_eol)
for row in rest_of_rows:
if self._last_lines_by_row and row not in self._last_lines_by_row:
continue
self.write(self.t.move(row, 0))
self.write(self.t.clear_eol)
self.write(self.t.clear_bol)
current_lines_by_row[row] = None
logger.debug('lines in last lines by row: %r' % self._last_lines_by_row
.keys())
logger.debug('lines in current lines by row: %r' % current_lines_by_row
.keys())
self.write(self.t.move(*cursor_pos))
self._last_lines_by_row = current_lines_by_row
if not self.hide_cursor:
self.write(self.t.normal_cursor)
|
render_to_terminal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, array, cursor_pos=(0, 0)):\n height, width = self.height, self.width\n for_stdout = self.fmtstr_to_stdout_xform()\n if not self.hide_cursor:\n self.write(self.t.hide_cursor)\n if (height != self._last_rendered_height or width != self.\n _last_rendered_width):\n self.on_terminal_size_change(height, width)\n current_lines_by_row = {}\n rows = list(range(height))\n rows_for_use = rows[:len(array)]\n rest_of_rows = rows[len(array):]\n for row, line in zip(rows_for_use, array):\n current_lines_by_row[row] = line\n if line == self._last_lines_by_row.get(row, None):\n continue\n self.write(self.t.move(row, 0))\n self.write(for_stdout(line))\n if len(line) < width:\n self.write(self.t.clear_eol)\n for row in rest_of_rows:\n if self._last_lines_by_row and row not in self._last_lines_by_row:\n continue\n self.write(self.t.move(row, 0))\n self.write(self.t.clear_eol)\n self.write(self.t.clear_bol)\n current_lines_by_row[row] = None\n logger.debug('lines in last lines by row: %r' % self._last_lines_by_row\n .keys())\n logger.debug('lines in current lines by row: %r' % current_lines_by_row\n .keys())\n self.write(self.t.move(*cursor_pos))\n self._last_lines_by_row = current_lines_by_row\n if not self.hide_cursor:\n self.write(self.t.normal_cursor)\n",
"role": "user"
},
{
"content": "render_to_terminal",
"role": "assistant"
}
] |
def x(self):
in_stream = self.in_stream
query_cursor_position = u'\x1b[6n'
self.write(query_cursor_position)
def x():
while True:
try:
c = in_stream.read(1)
if c == '':
raise ValueError(
"Stream should be blocking - should't return ''. Returned %r so far"
, (resp,))
return c
except IOError:
raise ValueError('cursor get pos response read interrupted')
resp = ''
while True:
c = retrying_read()
resp += c
m = re.search(
'(?P<extra>.*)(?P<CSI>\x1b\\[|\x9b)(?P<row>\\d+);(?P<column>\\d+)R'
, resp, re.DOTALL)
if m:
row = int(m.groupdict()['row'])
col = int(m.groupdict()['column'])
extra = m.groupdict()['extra']
if extra:
if self.extra_bytes_callback:
self.extra_bytes_callback(extra.encode(in_stream.encoding))
else:
raise ValueError(
"""Bytes preceding cursor position query response thrown out:
%r
Pass an extra_bytes_callback to CursorAwareWindow to prevent this"""
% (extra,))
return row - 1, col - 1
|
get_cursor_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n in_stream = self.in_stream\n query_cursor_position = u'\\x1b[6n'\n self.write(query_cursor_position)\n\n def x():\n while True:\n try:\n c = in_stream.read(1)\n if c == '':\n raise ValueError(\n \"Stream should be blocking - should't return ''. Returned %r so far\"\n , (resp,))\n return c\n except IOError:\n raise ValueError('cursor get pos response read interrupted')\n resp = ''\n while True:\n c = retrying_read()\n resp += c\n m = re.search(\n '(?P<extra>.*)(?P<CSI>\\x1b\\\\[|\\x9b)(?P<row>\\\\d+);(?P<column>\\\\d+)R'\n , resp, re.DOTALL)\n if m:\n row = int(m.groupdict()['row'])\n col = int(m.groupdict()['column'])\n extra = m.groupdict()['extra']\n if extra:\n if self.extra_bytes_callback:\n self.extra_bytes_callback(extra.encode(in_stream.encoding))\n else:\n raise ValueError(\n \"\"\"Bytes preceding cursor position query response thrown out:\n%r\nPass an extra_bytes_callback to CursorAwareWindow to prevent this\"\"\"\n % (extra,))\n return row - 1, col - 1\n",
"role": "user"
},
{
"content": "get_cursor_position",
"role": "assistant"
}
] |
def x(self):
if self.in_get_cursor_diff:
self.another_sigwinch = True
return 0
cursor_dy = 0
while True:
self.in_get_cursor_diff = True
self.another_sigwinch = False
cursor_dy += self._get_cursor_vertical_diff_once()
self.in_get_cursor_diff = False
if not self.another_sigwinch:
return cursor_dy
|
get_cursor_vertical_diff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.in_get_cursor_diff:\n self.another_sigwinch = True\n return 0\n cursor_dy = 0\n while True:\n self.in_get_cursor_diff = True\n self.another_sigwinch = False\n cursor_dy += self._get_cursor_vertical_diff_once()\n self.in_get_cursor_diff = False\n if not self.another_sigwinch:\n return cursor_dy\n",
"role": "user"
},
{
"content": "get_cursor_vertical_diff",
"role": "assistant"
}
] |
def x(self):
old_top_usable_row = self.top_usable_row
row, col = self.get_cursor_position()
if self._last_cursor_row is None:
cursor_dy = 0
else:
cursor_dy = row - self._last_cursor_row
logger.info('cursor moved %d lines down' % cursor_dy)
while self.top_usable_row > -1 and cursor_dy > 0:
self.top_usable_row += 1
cursor_dy -= 1
while self.top_usable_row > 1 and cursor_dy < 0:
self.top_usable_row -= 1
cursor_dy += 1
logger.info('top usable row changed from %d to %d', old_top_usable_row,
self.top_usable_row)
logger.info('returning cursor dy of %d from curtsies' % cursor_dy)
self._last_cursor_row = row
return cursor_dy
|
get_cursor_vertical_diff_once
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n old_top_usable_row = self.top_usable_row\n row, col = self.get_cursor_position()\n if self._last_cursor_row is None:\n cursor_dy = 0\n else:\n cursor_dy = row - self._last_cursor_row\n logger.info('cursor moved %d lines down' % cursor_dy)\n while self.top_usable_row > -1 and cursor_dy > 0:\n self.top_usable_row += 1\n cursor_dy -= 1\n while self.top_usable_row > 1 and cursor_dy < 0:\n self.top_usable_row -= 1\n cursor_dy += 1\n logger.info('top usable row changed from %d to %d', old_top_usable_row,\n self.top_usable_row)\n logger.info('returning cursor dy of %d from curtsies' % cursor_dy)\n self._last_cursor_row = row\n return cursor_dy\n",
"role": "user"
},
{
"content": "get_cursor_vertical_diff_once",
"role": "assistant"
}
] |
def x(self, array, cursor_pos=(0, 0)):
for_stdout = self.fmtstr_to_stdout_xform()
if not self.hide_cursor:
self.write(self.t.hide_cursor)
height, width = self.t.height, self.t.width
if (height != self._last_rendered_height or width != self.
_last_rendered_width):
self.on_terminal_size_change(height, width)
current_lines_by_row = {}
rows_for_use = list(range(self.top_usable_row, height))
shared = min(len(array), len(rows_for_use))
for row, line in zip(rows_for_use[:shared], array[:shared]):
current_lines_by_row[row] = line
if line == self._last_lines_by_row.get(row, None):
continue
self.write(self.t.move(row, 0))
self.write(for_stdout(line))
if len(line) < width:
self.write(self.t.clear_eol)
rest_of_lines = array[shared:]
rest_of_rows = rows_for_use[shared:]
for row in rest_of_rows:
if self._last_lines_by_row and row not in self._last_lines_by_row:
continue
self.write(self.t.move(row, 0))
self.write(self.t.clear_eol)
self.write(self.t.clear_bol)
current_lines_by_row[row] = None
offscreen_scrolls = 0
for line in rest_of_lines:
self.scroll_down()
if self.top_usable_row > 0:
self.top_usable_row -= 1
else:
offscreen_scrolls += 1
current_lines_by_row = dict((k - 1, v) for k, v in
current_lines_by_row.items())
logger.debug('new top_usable_row: %d' % self.top_usable_row)
self.write(self.t.move(height - 1, 0))
self.write(for_stdout(line))
current_lines_by_row[height - 1] = line
logger.debug('lines in last lines by row: %r' % self._last_lines_by_row
.keys())
logger.debug('lines in current lines by row: %r' % current_lines_by_row
.keys())
self._last_cursor_row = max(0, cursor_pos[0] - offscreen_scrolls + self
.top_usable_row)
self._last_cursor_column = cursor_pos[1]
self.write(self.t.move(self._last_cursor_row, self._last_cursor_column))
self._last_lines_by_row = current_lines_by_row
if not self.hide_cursor:
self.write(self.t.normal_cursor)
return offscreen_scrolls
|
render_to_terminal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, array, cursor_pos=(0, 0)):\n for_stdout = self.fmtstr_to_stdout_xform()\n if not self.hide_cursor:\n self.write(self.t.hide_cursor)\n height, width = self.t.height, self.t.width\n if (height != self._last_rendered_height or width != self.\n _last_rendered_width):\n self.on_terminal_size_change(height, width)\n current_lines_by_row = {}\n rows_for_use = list(range(self.top_usable_row, height))\n shared = min(len(array), len(rows_for_use))\n for row, line in zip(rows_for_use[:shared], array[:shared]):\n current_lines_by_row[row] = line\n if line == self._last_lines_by_row.get(row, None):\n continue\n self.write(self.t.move(row, 0))\n self.write(for_stdout(line))\n if len(line) < width:\n self.write(self.t.clear_eol)\n rest_of_lines = array[shared:]\n rest_of_rows = rows_for_use[shared:]\n for row in rest_of_rows:\n if self._last_lines_by_row and row not in self._last_lines_by_row:\n continue\n self.write(self.t.move(row, 0))\n self.write(self.t.clear_eol)\n self.write(self.t.clear_bol)\n current_lines_by_row[row] = None\n offscreen_scrolls = 0\n for line in rest_of_lines:\n self.scroll_down()\n if self.top_usable_row > 0:\n self.top_usable_row -= 1\n else:\n offscreen_scrolls += 1\n current_lines_by_row = dict((k - 1, v) for k, v in\n current_lines_by_row.items())\n logger.debug('new top_usable_row: %d' % self.top_usable_row)\n self.write(self.t.move(height - 1, 0))\n self.write(for_stdout(line))\n current_lines_by_row[height - 1] = line\n logger.debug('lines in last lines by row: %r' % self._last_lines_by_row\n .keys())\n logger.debug('lines in current lines by row: %r' % current_lines_by_row\n .keys())\n self._last_cursor_row = max(0, cursor_pos[0] - offscreen_scrolls + self\n .top_usable_row)\n self._last_cursor_column = cursor_pos[1]\n self.write(self.t.move(self._last_cursor_row, self._last_cursor_column))\n self._last_lines_by_row = current_lines_by_row\n if not self.hide_cursor:\n self.write(self.t.normal_cursor)\n return offscreen_scrolls\n",
"role": "user"
},
{
"content": "render_to_terminal",
"role": "assistant"
}
] |
def x(self, solver=None, solverparameters=None):
if self.F is None:
raise Exception(
"Relaxation is not generated yet. Call 'SdpRelaxation.get_relaxation' first"
)
solve_sdp(self, solver, solverparameters)
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, solver=None, solverparameters=None):\n if self.F is None:\n raise Exception(\n \"Relaxation is not generated yet. Call 'SdpRelaxation.get_relaxation' first\"\n )\n solve_sdp(self, solver, solverparameters)\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(self, monomial, n_vars):
processed_monomial, coeff = separate_scalar_factor(monomial)
try:
substitute = self.moment_substitutions[processed_monomial]
if not isinstance(substitute, (int, float, complex)):
result = []
if not isinstance(substitute, Add):
args = [substitute]
else:
args = substitute.args
for arg in args:
if is_number_type(arg):
if iscomplex(arg):
result.append((0, coeff * complex(arg)))
else:
result.append((0, coeff * float(arg)))
else:
result += [(k, coeff * c2) for k, c2 in self.
_process_monomial(arg, n_vars)]
else:
result = [(0, coeff * substitute)]
except KeyError:
try:
k = self.monomial_index[processed_monomial]
except KeyError:
if not self.complex_matrix:
try:
processed_monomial_adjoint = apply_substitutions(
processed_monomial.adjoint(), self.substitutions)
k = self.monomial_index[processed_monomial_adjoint]
except KeyError:
k = n_vars + 1
self.monomial_index[processed_monomial] = k
else:
k = n_vars + 1
self.monomial_index[processed_monomial] = k
result = [(k, coeff)]
return result
|
process_monomial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, monomial, n_vars):\n processed_monomial, coeff = separate_scalar_factor(monomial)\n try:\n substitute = self.moment_substitutions[processed_monomial]\n if not isinstance(substitute, (int, float, complex)):\n result = []\n if not isinstance(substitute, Add):\n args = [substitute]\n else:\n args = substitute.args\n for arg in args:\n if is_number_type(arg):\n if iscomplex(arg):\n result.append((0, coeff * complex(arg)))\n else:\n result.append((0, coeff * float(arg)))\n else:\n result += [(k, coeff * c2) for k, c2 in self.\n _process_monomial(arg, n_vars)]\n else:\n result = [(0, coeff * substitute)]\n except KeyError:\n try:\n k = self.monomial_index[processed_monomial]\n except KeyError:\n if not self.complex_matrix:\n try:\n processed_monomial_adjoint = apply_substitutions(\n processed_monomial.adjoint(), self.substitutions)\n k = self.monomial_index[processed_monomial_adjoint]\n except KeyError:\n k = n_vars + 1\n self.monomial_index[processed_monomial] = k\n else:\n k = n_vars + 1\n self.monomial_index[processed_monomial] = k\n result = [(k, coeff)]\n return result\n",
"role": "user"
},
{
"content": "process_monomial",
"role": "assistant"
}
] |
def x(self, n_vars, block_index, processed_entries, monomialsA, monomialsB,
ppt=False):
row_offset = 0
if block_index > 0:
for block_size in self.block_struct[0:block_index]:
row_offset += block_size ** 2
N = len(monomialsA) * len(monomialsB)
func = partial(assemble_monomial_and_do_substitutions, monomialsA=
monomialsA, monomialsB=monomialsB, ppt=ppt, substitutions=self.
substitutions, pure_substitution_rules=self.pure_substitution_rules)
if self._parallel:
pool = Pool()
chunksize = int(max(int(np.sqrt(len(monomialsA) * len(monomialsB) *
len(monomialsA) / 2) / cpu_count()), 1))
for rowA in range(len(monomialsA)):
if self._parallel:
iter_ = pool.map(func, [(rowA, columnA, rowB, columnB) for rowB in
range(len(monomialsB)) for columnA in range(rowA, len(
monomialsA)) for columnB in range((rowA == columnA) * rowB,
len(monomialsB))], chunksize)
print_criterion = processed_entries + len(iter_)
else:
iter_ = imap(func, [(rowA, columnA, rowB, columnB) for columnA in
range(rowA, len(monomialsA)) for rowB in range(len(
monomialsB)) for columnB in range((rowA == columnA) * rowB,
len(monomialsB))])
for columnA, rowB, columnB, monomial in iter_:
processed_entries += 1
n_vars = self._push_monomial(monomial, n_vars, row_offset, rowA,
columnA, N, rowB, columnB, len(monomialsB),
prevent_substitutions=True)
if self.verbose > 0 and (not self._parallel or
processed_entries == self.n_vars or processed_entries ==
print_criterion):
percentage = processed_entries / self.n_vars
time_used = time.time() - self._time0
eta = 1.0 / percentage * time_used - time_used
hours = int(eta / 3600)
minutes = int((eta - 3600 * hours) / 60)
seconds = eta - 3600 * hours - minutes * 60
msg = ''
if self.verbose > 1 and self._parallel:
msg = (
', working on block {:0} with {:0} processes with a chunksize of {:0d}'
.format(block_index, cpu_count(), chunksize))
msg = '{:0} (done: {:.2%}, ETA {:02d}:{:02d}:{:03.1f}'.format(
n_vars, percentage, hours, minutes, seconds) + msg
msg = '\r\x1b[KCurrent number of SDP variables: ' + msg + ')'
sys.stdout.write(msg)
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write('\r')
return n_vars, block_index + 1, processed_entries
|
generate_moment_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_vars, block_index, processed_entries, monomialsA, monomialsB,\n ppt=False):\n row_offset = 0\n if block_index > 0:\n for block_size in self.block_struct[0:block_index]:\n row_offset += block_size ** 2\n N = len(monomialsA) * len(monomialsB)\n func = partial(assemble_monomial_and_do_substitutions, monomialsA=\n monomialsA, monomialsB=monomialsB, ppt=ppt, substitutions=self.\n substitutions, pure_substitution_rules=self.pure_substitution_rules)\n if self._parallel:\n pool = Pool()\n chunksize = int(max(int(np.sqrt(len(monomialsA) * len(monomialsB) *\n len(monomialsA) / 2) / cpu_count()), 1))\n for rowA in range(len(monomialsA)):\n if self._parallel:\n iter_ = pool.map(func, [(rowA, columnA, rowB, columnB) for rowB in\n range(len(monomialsB)) for columnA in range(rowA, len(\n monomialsA)) for columnB in range((rowA == columnA) * rowB,\n len(monomialsB))], chunksize)\n print_criterion = processed_entries + len(iter_)\n else:\n iter_ = imap(func, [(rowA, columnA, rowB, columnB) for columnA in\n range(rowA, len(monomialsA)) for rowB in range(len(\n monomialsB)) for columnB in range((rowA == columnA) * rowB,\n len(monomialsB))])\n for columnA, rowB, columnB, monomial in iter_:\n processed_entries += 1\n n_vars = self._push_monomial(monomial, n_vars, row_offset, rowA,\n columnA, N, rowB, columnB, len(monomialsB),\n prevent_substitutions=True)\n if self.verbose > 0 and (not self._parallel or \n processed_entries == self.n_vars or processed_entries ==\n print_criterion):\n percentage = processed_entries / self.n_vars\n time_used = time.time() - self._time0\n eta = 1.0 / percentage * time_used - time_used\n hours = int(eta / 3600)\n minutes = int((eta - 3600 * hours) / 60)\n seconds = eta - 3600 * hours - minutes * 60\n msg = ''\n if self.verbose > 1 and self._parallel:\n msg = (\n ', working on block {:0} with {:0} processes with a chunksize of {:0d}'\n .format(block_index, cpu_count(), chunksize))\n msg = '{:0} (done: {:.2%}, ETA {:02d}:{:02d}:{:03.1f}'.format(\n n_vars, percentage, hours, minutes, seconds) + msg\n msg = '\\r\\x1b[KCurrent number of SDP variables: ' + msg + ')'\n sys.stdout.write(msg)\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\r')\n return n_vars, block_index + 1, processed_entries\n",
"role": "user"
},
{
"content": "generate_moment_matrix",
"role": "assistant"
}
] |
def x(self, element, enablesubstitution=True, daggered=False):
result = []
processed_element, coeff1 = separate_scalar_factor(element)
if processed_element in self.moment_substitutions:
r = self._get_index_of_monomial(self.moment_substitutions[
processed_element], enablesubstitution)
return [(k, coeff * coeff1) for k, coeff in r]
if enablesubstitution:
processed_element = apply_substitutions(processed_element, self.
substitutions, self.pure_substitution_rules)
if is_number_type(processed_element):
return [(0, coeff1)]
elif processed_element.is_Add:
monomials = processed_element.args
else:
monomials = [processed_element]
for monomial in monomials:
monomial, coeff2 = separate_scalar_factor(monomial)
coeff = coeff1 * coeff2
if is_number_type(monomial):
result.append((0, coeff))
continue
k = -1
if monomial != 0:
if monomial.as_coeff_Mul()[0] < 0:
monomial = -monomial
coeff = -1.0 * coeff
try:
new_element = self.moment_substitutions[monomial]
r = self._get_index_of_monomial(self.moment_substitutions[
new_element], enablesubstitution)
result += [(k, coeff * coeff3) for k, coeff3 in r]
except KeyError:
try:
k = self.monomial_index[monomial]
result.append((k, coeff))
except KeyError:
if not daggered:
dag_result = self._get_index_of_monomial(monomial.
adjoint(), daggered=True)
result += [(k, coeff0 * coeff) for k, coeff0 in dag_result]
else:
raise RuntimeError('The requested monomial ' + str(
monomial) + ' could not be found.')
return result
|
get_index_of_monomial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, element, enablesubstitution=True, daggered=False):\n result = []\n processed_element, coeff1 = separate_scalar_factor(element)\n if processed_element in self.moment_substitutions:\n r = self._get_index_of_monomial(self.moment_substitutions[\n processed_element], enablesubstitution)\n return [(k, coeff * coeff1) for k, coeff in r]\n if enablesubstitution:\n processed_element = apply_substitutions(processed_element, self.\n substitutions, self.pure_substitution_rules)\n if is_number_type(processed_element):\n return [(0, coeff1)]\n elif processed_element.is_Add:\n monomials = processed_element.args\n else:\n monomials = [processed_element]\n for monomial in monomials:\n monomial, coeff2 = separate_scalar_factor(monomial)\n coeff = coeff1 * coeff2\n if is_number_type(monomial):\n result.append((0, coeff))\n continue\n k = -1\n if monomial != 0:\n if monomial.as_coeff_Mul()[0] < 0:\n monomial = -monomial\n coeff = -1.0 * coeff\n try:\n new_element = self.moment_substitutions[monomial]\n r = self._get_index_of_monomial(self.moment_substitutions[\n new_element], enablesubstitution)\n result += [(k, coeff * coeff3) for k, coeff3 in r]\n except KeyError:\n try:\n k = self.monomial_index[monomial]\n result.append((k, coeff))\n except KeyError:\n if not daggered:\n dag_result = self._get_index_of_monomial(monomial.\n adjoint(), daggered=True)\n result += [(k, coeff0 * coeff) for k, coeff0 in dag_result]\n else:\n raise RuntimeError('The requested monomial ' + str(\n monomial) + ' could not be found.')\n return result\n",
"role": "user"
},
{
"content": "get_index_of_monomial",
"role": "assistant"
}
] |
def x(self, polynomial, block_index, row_offset, i, j):
width = self.block_struct[block_index - 1]
if is_number_type(polynomial) or polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
for element in elements:
results = self._get_index_of_monomial(element)
for k, coeff in results:
if k > -1 and coeff != 0:
self.F[row_offset + i * width + j, k] += coeff
|
push_facvar_sparse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polynomial, block_index, row_offset, i, j):\n width = self.block_struct[block_index - 1]\n if is_number_type(polynomial) or polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n for element in elements:\n results = self._get_index_of_monomial(element)\n for k, coeff in results:\n if k > -1 and coeff != 0:\n self.F[row_offset + i * width + j, k] += coeff\n",
"role": "user"
},
{
"content": "push_facvar_sparse",
"role": "assistant"
}
] |
def x(self, polynomial):
facvar = [0] * (self.n_vars + 1)
if is_number_type(polynomial):
facvar[0] = polynomial
return facvar
polynomial = polynomial.expand()
if polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
for element in elements:
results = self._get_index_of_monomial(element)
for k, coeff in results:
facvar[k] += coeff
return facvar
|
get_facvar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polynomial):\n facvar = [0] * (self.n_vars + 1)\n if is_number_type(polynomial):\n facvar[0] = polynomial\n return facvar\n polynomial = polynomial.expand()\n if polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n for element in elements:\n results = self._get_index_of_monomial(element)\n for k, coeff in results:\n facvar[k] += coeff\n return facvar\n",
"role": "user"
},
{
"content": "get_facvar",
"role": "assistant"
}
] |
def x(self, block_index):
initial_block_index = block_index
row_offsets = [0]
for block, block_size in enumerate(self.block_struct):
row_offsets.append(row_offsets[block] + block_size ** 2)
if self._parallel:
pool = Pool()
for k, ineq in enumerate(self.constraints):
block_index += 1
monomials = self.localizing_monomial_sets[block_index -
initial_block_index - 1]
lm = len(monomials)
if isinstance(ineq, str):
self.__parse_expression(ineq, row_offsets[block_index - 1])
continue
if ineq.is_Relational:
ineq = convert_relational(ineq)
func = partial(moment_of_entry, monomials=monomials, ineq=ineq,
substitutions=self.substitutions)
if self._parallel and lm > 1:
chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)
iter_ = pool.map(func, ([row, column] for row in range(lm) for
column in range(row, lm)), chunksize)
else:
iter_ = imap(func, ([row, column] for row in range(lm) for
column in range(row, lm)))
if (block_index > self.constraint_starting_block + self.
_n_inequalities and lm > 1):
is_equality = True
else:
is_equality = False
for row, column, polynomial in iter_:
if is_equality:
row, column = 0, 0
self.__push_facvar_sparse(polynomial, block_index, row_offsets[
block_index - 1], row, column)
if is_equality:
block_index += 1
if is_equality:
block_index -= 1
if self.verbose > 0:
sys.stdout.write('\r\x1b[KProcessing %d/%d constraints...' % (k +
1, len(self.constraints)))
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write('\n')
return block_index
|
process_inequalities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, block_index):\n initial_block_index = block_index\n row_offsets = [0]\n for block, block_size in enumerate(self.block_struct):\n row_offsets.append(row_offsets[block] + block_size ** 2)\n if self._parallel:\n pool = Pool()\n for k, ineq in enumerate(self.constraints):\n block_index += 1\n monomials = self.localizing_monomial_sets[block_index -\n initial_block_index - 1]\n lm = len(monomials)\n if isinstance(ineq, str):\n self.__parse_expression(ineq, row_offsets[block_index - 1])\n continue\n if ineq.is_Relational:\n ineq = convert_relational(ineq)\n func = partial(moment_of_entry, monomials=monomials, ineq=ineq,\n substitutions=self.substitutions)\n if self._parallel and lm > 1:\n chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)\n iter_ = pool.map(func, ([row, column] for row in range(lm) for\n column in range(row, lm)), chunksize)\n else:\n iter_ = imap(func, ([row, column] for row in range(lm) for\n column in range(row, lm)))\n if (block_index > self.constraint_starting_block + self.\n _n_inequalities and lm > 1):\n is_equality = True\n else:\n is_equality = False\n for row, column, polynomial in iter_:\n if is_equality:\n row, column = 0, 0\n self.__push_facvar_sparse(polynomial, block_index, row_offsets[\n block_index - 1], row, column)\n if is_equality:\n block_index += 1\n if is_equality:\n block_index -= 1\n if self.verbose > 0:\n sys.stdout.write('\\r\\x1b[KProcessing %d/%d constraints...' % (k +\n 1, len(self.constraints)))\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\n')\n return block_index\n",
"role": "user"
},
{
"content": "process_inequalities",
"role": "assistant"
}
] |
def x(self, equalities, momentequalities):
monomial_sets = []
n_rows = 0
le = 0
if equalities is not None:
for equality in equalities:
le += 1
if equality.is_Relational:
equality = convert_relational(equality)
eq_order = ncdegree(equality)
if eq_order > 2 * self.level:
raise Exception(
'An equality constraint has degree %d. Choose a higher level of relaxation.'
% eq_order)
localization_order = (2 * self.level - eq_order) // 2
index = find_variable_set(self.variables, equality)
localizing_monomials = pick_monomials_up_to_degree(self.
monomial_sets[index], localization_order)
if len(localizing_monomials) == 0:
localizing_monomials = [S.One]
localizing_monomials = unique(localizing_monomials)
monomial_sets.append(localizing_monomials)
n_rows += len(localizing_monomials) * (len(localizing_monomials
) + 1) // 2
if momentequalities is not None:
for _ in momentequalities:
le += 1
monomial_sets.append([S.One])
n_rows += 1
A = np.zeros((n_rows, self.n_vars + 1), dtype=self.F.dtype)
n_rows = 0
if self._parallel:
pool = Pool()
for i, equality in enumerate(flatten([equalities, momentequalities])):
func = partial(moment_of_entry, monomials=monomial_sets[i], ineq=
equality, substitutions=self.substitutions)
lm = len(monomial_sets[i])
if self._parallel and lm > 1:
chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)
iter_ = pool.map(func, ([row, column] for row in range(lm) for
column in range(row, lm)), chunksize)
else:
iter_ = imap(func, ([row, column] for row in range(lm) for
column in range(row, lm)))
for row, column, polynomial in iter_:
if isinstance(polynomial, str):
self.__parse_expression(equality, -1, A[n_rows])
else:
A[n_rows] = self._get_facvar(polynomial)
n_rows += 1
if self.verbose > 0:
sys.stdout.write('\r\x1b[KProcessing %d/%d equalities...' %
(i + 1, le))
sys.stdout.flush()
if self._parallel:
pool.close()
pool.join()
if self.verbose > 0:
sys.stdout.write('\n')
return A
|
process_equalities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, equalities, momentequalities):\n monomial_sets = []\n n_rows = 0\n le = 0\n if equalities is not None:\n for equality in equalities:\n le += 1\n if equality.is_Relational:\n equality = convert_relational(equality)\n eq_order = ncdegree(equality)\n if eq_order > 2 * self.level:\n raise Exception(\n 'An equality constraint has degree %d. Choose a higher level of relaxation.'\n % eq_order)\n localization_order = (2 * self.level - eq_order) // 2\n index = find_variable_set(self.variables, equality)\n localizing_monomials = pick_monomials_up_to_degree(self.\n monomial_sets[index], localization_order)\n if len(localizing_monomials) == 0:\n localizing_monomials = [S.One]\n localizing_monomials = unique(localizing_monomials)\n monomial_sets.append(localizing_monomials)\n n_rows += len(localizing_monomials) * (len(localizing_monomials\n ) + 1) // 2\n if momentequalities is not None:\n for _ in momentequalities:\n le += 1\n monomial_sets.append([S.One])\n n_rows += 1\n A = np.zeros((n_rows, self.n_vars + 1), dtype=self.F.dtype)\n n_rows = 0\n if self._parallel:\n pool = Pool()\n for i, equality in enumerate(flatten([equalities, momentequalities])):\n func = partial(moment_of_entry, monomials=monomial_sets[i], ineq=\n equality, substitutions=self.substitutions)\n lm = len(monomial_sets[i])\n if self._parallel and lm > 1:\n chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)\n iter_ = pool.map(func, ([row, column] for row in range(lm) for\n column in range(row, lm)), chunksize)\n else:\n iter_ = imap(func, ([row, column] for row in range(lm) for\n column in range(row, lm)))\n for row, column, polynomial in iter_:\n if isinstance(polynomial, str):\n self.__parse_expression(equality, -1, A[n_rows])\n else:\n A[n_rows] = self._get_facvar(polynomial)\n n_rows += 1\n if self.verbose > 0:\n sys.stdout.write('\\r\\x1b[KProcessing %d/%d equalities...' %\n (i + 1, le))\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\n')\n return A\n",
"role": "user"
},
{
"content": "process_equalities",
"role": "assistant"
}
] |
def x(self, equalities, momentequalities):
A = self.__process_equalities(equalities, momentequalities)
if min(A.shape != np.linalg.matrix_rank(A)):
print(
'Warning: equality constraints are linearly dependent! Results might be incorrect.'
, file=sys.stderr)
if A.shape[0] == 0:
return
c = np.array(self.obj_facvar)
if self.verbose > 0:
print('QR decomposition...')
Q, R = np.linalg.qr(A[:, 1:].T, mode='complete')
n = np.max(np.nonzero(np.sum(np.abs(R), axis=1) > 0)) + 1
x = np.dot(Q[:, :n], np.linalg.solve(np.transpose(R[:n, :]), -A[:, 0]))
self._new_basis = lil_matrix(Q[:, n:])
self._original_obj_facvar = self.obj_facvar
self._original_constant_term = self.constant_term
self.obj_facvar = self._new_basis.T.dot(c)
self.constant_term += c.dot(x)
x = np.append(1, x)
new_F = lil_matrix((self.F.shape[0], self._new_basis.shape[1] + 1))
new_F[:, 0] = self.F[:, :self.n_vars + 1].dot(x).reshape((new_F.shape[0
], 1))
new_F[:, 1:] = self.F[:, 1:self.n_vars + 1].dot(self._new_basis)
self._original_F = self.F
self.F = new_F
self.n_vars = self._new_basis.shape[1]
if self.verbose > 0:
print('Number of variables after solving the linear equations: %d' %
self.n_vars)
|
remove_equalities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, equalities, momentequalities):\n A = self.__process_equalities(equalities, momentequalities)\n if min(A.shape != np.linalg.matrix_rank(A)):\n print(\n 'Warning: equality constraints are linearly dependent! Results might be incorrect.'\n , file=sys.stderr)\n if A.shape[0] == 0:\n return\n c = np.array(self.obj_facvar)\n if self.verbose > 0:\n print('QR decomposition...')\n Q, R = np.linalg.qr(A[:, 1:].T, mode='complete')\n n = np.max(np.nonzero(np.sum(np.abs(R), axis=1) > 0)) + 1\n x = np.dot(Q[:, :n], np.linalg.solve(np.transpose(R[:n, :]), -A[:, 0]))\n self._new_basis = lil_matrix(Q[:, n:])\n self._original_obj_facvar = self.obj_facvar\n self._original_constant_term = self.constant_term\n self.obj_facvar = self._new_basis.T.dot(c)\n self.constant_term += c.dot(x)\n x = np.append(1, x)\n new_F = lil_matrix((self.F.shape[0], self._new_basis.shape[1] + 1))\n new_F[:, 0] = self.F[:, :self.n_vars + 1].dot(x).reshape((new_F.shape[0\n ], 1))\n new_F[:, 1:] = self.F[:, 1:self.n_vars + 1].dot(self._new_basis)\n self._original_F = self.F\n self.F = new_F\n self.n_vars = self._new_basis.shape[1]\n if self.verbose > 0:\n print('Number of variables after solving the linear equations: %d' %\n self.n_vars)\n",
"role": "user"
},
{
"content": "remove_equalities",
"role": "assistant"
}
] |
def x(self, inequalities, equalities, momentinequalities, momentequalities,
extramomentmatrix, removeequalities, block_struct=None):
if block_struct is None:
if self.verbose > 0:
print('Calculating block structure...')
self.block_struct = []
if self.parameters is not None:
self.block_struct += [(1) for _ in self.parameters]
for monomials in self.monomial_sets:
if len(monomials) > 0 and isinstance(monomials[0], list):
self.block_struct.append(len(monomials[0]))
else:
self.block_struct.append(len(monomials))
if extramomentmatrix is not None:
for _ in extramomentmatrix:
for monomials in self.monomial_sets:
if len(monomials) > 0 and isinstance(monomials[0], list):
self.block_struct.append(len(monomials[0]))
else:
self.block_struct.append(len(monomials))
else:
self.block_struct = block_struct
degree_warning = False
if inequalities is not None:
self._n_inequalities = len(inequalities)
n_tmp_inequalities = len(inequalities)
else:
self._n_inequalities = 0
n_tmp_inequalities = 0
constraints = flatten([inequalities])
if momentinequalities is not None:
self._n_inequalities += len(momentinequalities)
constraints += momentinequalities
if not removeequalities:
constraints += flatten([equalities])
monomial_sets = []
for k, constraint in enumerate(constraints):
if k < n_tmp_inequalities or k >= self._n_inequalities:
if isinstance(constraint, str):
ineq_order = 2 * self.level
else:
if constraint.is_Relational:
constraint = convert_relational(constraint)
ineq_order = ncdegree(constraint)
if iscomplex(constraint):
self.complex_matrix = True
if ineq_order > 2 * self.level:
degree_warning = True
localization_order = (2 * self.level - ineq_order) // 2
if self.level == -1:
localization_order = 0
if (self.localizing_monomial_sets is not None and self.
localizing_monomial_sets[k] is not None):
localizing_monomials = self.localizing_monomial_sets[k]
else:
index = find_variable_set(self.variables, constraint)
localizing_monomials = pick_monomials_up_to_degree(self.
monomial_sets[index], localization_order)
ln = len(localizing_monomials)
if ln == 0:
localizing_monomials = [S.One]
else:
localizing_monomials = [S.One]
ln = 1
localizing_monomials = unique(localizing_monomials)
monomial_sets.append(localizing_monomials)
if k < self._n_inequalities:
self.block_struct.append(ln)
else:
monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]
monomial_sets.append(localizing_monomials)
monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]
self.block_struct += [(1) for _ in range(ln * (ln + 1))]
if degree_warning and self.verbose > 0:
print(
'A constraint has degree %d. Either choose a higher level relaxation or ensure that a mixed-order relaxation has the necessary monomials'
% ineq_order, file=sys.stderr)
if momentequalities is not None:
for moment_eq in momentequalities:
self._moment_equalities.append(moment_eq)
if not removeequalities:
monomial_sets += [[S.One], [S.One]]
self.block_struct += [1, 1]
self.localizing_monomial_sets = monomial_sets
|
calculate_block_structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n if block_struct is None:\n if self.verbose > 0:\n print('Calculating block structure...')\n self.block_struct = []\n if self.parameters is not None:\n self.block_struct += [(1) for _ in self.parameters]\n for monomials in self.monomial_sets:\n if len(monomials) > 0 and isinstance(monomials[0], list):\n self.block_struct.append(len(monomials[0]))\n else:\n self.block_struct.append(len(monomials))\n if extramomentmatrix is not None:\n for _ in extramomentmatrix:\n for monomials in self.monomial_sets:\n if len(monomials) > 0 and isinstance(monomials[0], list):\n self.block_struct.append(len(monomials[0]))\n else:\n self.block_struct.append(len(monomials))\n else:\n self.block_struct = block_struct\n degree_warning = False\n if inequalities is not None:\n self._n_inequalities = len(inequalities)\n n_tmp_inequalities = len(inequalities)\n else:\n self._n_inequalities = 0\n n_tmp_inequalities = 0\n constraints = flatten([inequalities])\n if momentinequalities is not None:\n self._n_inequalities += len(momentinequalities)\n constraints += momentinequalities\n if not removeequalities:\n constraints += flatten([equalities])\n monomial_sets = []\n for k, constraint in enumerate(constraints):\n if k < n_tmp_inequalities or k >= self._n_inequalities:\n if isinstance(constraint, str):\n ineq_order = 2 * self.level\n else:\n if constraint.is_Relational:\n constraint = convert_relational(constraint)\n ineq_order = ncdegree(constraint)\n if iscomplex(constraint):\n self.complex_matrix = True\n if ineq_order > 2 * self.level:\n degree_warning = True\n localization_order = (2 * self.level - ineq_order) // 2\n if self.level == -1:\n localization_order = 0\n if (self.localizing_monomial_sets is not None and self.\n localizing_monomial_sets[k] is not None):\n localizing_monomials = self.localizing_monomial_sets[k]\n else:\n index = find_variable_set(self.variables, constraint)\n localizing_monomials = pick_monomials_up_to_degree(self.\n monomial_sets[index], localization_order)\n ln = len(localizing_monomials)\n if ln == 0:\n localizing_monomials = [S.One]\n else:\n localizing_monomials = [S.One]\n ln = 1\n localizing_monomials = unique(localizing_monomials)\n monomial_sets.append(localizing_monomials)\n if k < self._n_inequalities:\n self.block_struct.append(ln)\n else:\n monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]\n monomial_sets.append(localizing_monomials)\n monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]\n self.block_struct += [(1) for _ in range(ln * (ln + 1))]\n if degree_warning and self.verbose > 0:\n print(\n 'A constraint has degree %d. Either choose a higher level relaxation or ensure that a mixed-order relaxation has the necessary monomials'\n % ineq_order, file=sys.stderr)\n if momentequalities is not None:\n for moment_eq in momentequalities:\n self._moment_equalities.append(moment_eq)\n if not removeequalities:\n monomial_sets += [[S.One], [S.One]]\n self.block_struct += [1, 1]\n self.localizing_monomial_sets = monomial_sets\n",
"role": "user"
},
{
"content": "calculate_block_structure",
"role": "assistant"
}
] |
def x(self, inequalities=None, equalities=None, momentinequalities=None,
momentequalities=None, block_index=0, removeequalities=False):
self.status = 'unsolved'
if block_index == 0:
if self._original_F is not None:
self.F = self._original_F
self.obj_facvar = self._original_obj_facvar
self.constant_term = self._original_constant_term
self.n_vars = len(self.obj_facvar)
self._new_basis = None
block_index = self.constraint_starting_block
self.__wipe_F_from_constraints()
self.constraints = flatten([inequalities])
self._constraint_to_block_index = {}
for constraint in self.constraints:
self._constraint_to_block_index[constraint] = block_index,
block_index += 1
if momentinequalities is not None:
for mineq in momentinequalities:
self.constraints.append(mineq)
self._constraint_to_block_index[mineq] = block_index,
block_index += 1
if not (removeequalities or equalities is None):
for k, equality in enumerate(equalities):
if equality.is_Relational:
equality = convert_relational(equality)
self.constraints.append(equality)
self.constraints.append(-equality)
ln = len(self.localizing_monomial_sets[block_index - self.
constraint_starting_block])
self._constraint_to_block_index[equality
] = block_index, block_index + ln * (ln + 1) // 2
block_index += ln * (ln + 1)
if momentequalities is not None and not removeequalities:
for meq in momentequalities:
self.constraints += [meq, flip_sign(meq)]
self._constraint_to_block_index[meq] = block_index, block_index + 1
block_index += 2
block_index = self.constraint_starting_block
self.__process_inequalities(block_index)
if removeequalities:
self.__remove_equalities(equalities, momentequalities)
|
process_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inequalities=None, equalities=None, momentinequalities=None,\n momentequalities=None, block_index=0, removeequalities=False):\n self.status = 'unsolved'\n if block_index == 0:\n if self._original_F is not None:\n self.F = self._original_F\n self.obj_facvar = self._original_obj_facvar\n self.constant_term = self._original_constant_term\n self.n_vars = len(self.obj_facvar)\n self._new_basis = None\n block_index = self.constraint_starting_block\n self.__wipe_F_from_constraints()\n self.constraints = flatten([inequalities])\n self._constraint_to_block_index = {}\n for constraint in self.constraints:\n self._constraint_to_block_index[constraint] = block_index,\n block_index += 1\n if momentinequalities is not None:\n for mineq in momentinequalities:\n self.constraints.append(mineq)\n self._constraint_to_block_index[mineq] = block_index,\n block_index += 1\n if not (removeequalities or equalities is None):\n for k, equality in enumerate(equalities):\n if equality.is_Relational:\n equality = convert_relational(equality)\n self.constraints.append(equality)\n self.constraints.append(-equality)\n ln = len(self.localizing_monomial_sets[block_index - self.\n constraint_starting_block])\n self._constraint_to_block_index[equality\n ] = block_index, block_index + ln * (ln + 1) // 2\n block_index += ln * (ln + 1)\n if momentequalities is not None and not removeequalities:\n for meq in momentequalities:\n self.constraints += [meq, flip_sign(meq)]\n self._constraint_to_block_index[meq] = block_index, block_index + 1\n block_index += 2\n block_index = self.constraint_starting_block\n self.__process_inequalities(block_index)\n if removeequalities:\n self.__remove_equalities(equalities, momentequalities)\n",
"role": "user"
},
{
"content": "process_constraints",
"role": "assistant"
}
] |
def x(self, objective, extraobjexpr=None):
if objective is not None:
facvar = self._get_facvar(simplify_polynomial(objective, self.
substitutions))
self.obj_facvar = facvar[1:]
self.constant_term = facvar[0]
if self.verbose > 0 and facvar[0] != 0:
print(
'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'
% facvar[0], file=sys.stderr)
else:
self.obj_facvar = self._get_facvar(0)[1:]
if extraobjexpr is not None:
for sub_expr in extraobjexpr.split(']'):
startindex = 0
if sub_expr.startswith('-') or sub_expr.startswith('+'):
startindex = 1
ind = sub_expr.find('[')
if ind > -1:
idx = sub_expr[ind + 1:].split(',')
i, j = int(idx[0]), int(idx[1])
mm_ind = int(sub_expr[startindex:ind])
if sub_expr.find('*') > -1:
value = float(sub_expr[:sub_expr.find('*')])
elif sub_expr.startswith('-'):
value = -1.0
else:
value = 1.0
base_row_offset = sum([(bs ** 2) for bs in self.
block_struct[:mm_ind]])
width = self.block_struct[mm_ind]
for column in self.F[base_row_offset + i * width + j].rows[0]:
self.obj_facvar[column - 1] = value * self.F[
base_row_offset + i * width + j, column]
|
set_objective
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, objective, extraobjexpr=None):\n if objective is not None:\n facvar = self._get_facvar(simplify_polynomial(objective, self.\n substitutions))\n self.obj_facvar = facvar[1:]\n self.constant_term = facvar[0]\n if self.verbose > 0 and facvar[0] != 0:\n print(\n 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'\n % facvar[0], file=sys.stderr)\n else:\n self.obj_facvar = self._get_facvar(0)[1:]\n if extraobjexpr is not None:\n for sub_expr in extraobjexpr.split(']'):\n startindex = 0\n if sub_expr.startswith('-') or sub_expr.startswith('+'):\n startindex = 1\n ind = sub_expr.find('[')\n if ind > -1:\n idx = sub_expr[ind + 1:].split(',')\n i, j = int(idx[0]), int(idx[1])\n mm_ind = int(sub_expr[startindex:ind])\n if sub_expr.find('*') > -1:\n value = float(sub_expr[:sub_expr.find('*')])\n elif sub_expr.startswith('-'):\n value = -1.0\n else:\n value = 1.0\n base_row_offset = sum([(bs ** 2) for bs in self.\n block_struct[:mm_ind]])\n width = self.block_struct[mm_ind]\n for column in self.F[base_row_offset + i * width + j].rows[0]:\n self.obj_facvar[column - 1] = value * self.F[\n base_row_offset + i * width + j, column]\n",
"role": "user"
},
{
"content": "set_objective",
"role": "assistant"
}
] |
def x(self, xmat=None, baselevel=0):
return find_solution_ranks(self, xmat=xmat, baselevel=baselevel)
|
find_solution_ranks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xmat=None, baselevel=0):\n return find_solution_ranks(self, xmat=xmat, baselevel=baselevel)\n",
"role": "user"
},
{
"content": "find_solution_ranks",
"role": "assistant"
}
] |
def x(self, constraint, ymat=None):
if not isinstance(constraint, Expr):
raise Exception('Not a monomial or polynomial!')
elif self.status == 'unsolved' and ymat is None:
raise Exception('SDP relaxation is not solved yet!')
elif ymat is None:
ymat = self.y_mat
index = self._constraint_to_block_index.get(constraint)
if index is None:
raise Exception('Constraint is not in the dual!')
if len(index) == 2:
return ymat[index[0]], self.y_mat[index[1]]
else:
return ymat[index[0]]
|
get_dual
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, constraint, ymat=None):\n if not isinstance(constraint, Expr):\n raise Exception('Not a monomial or polynomial!')\n elif self.status == 'unsolved' and ymat is None:\n raise Exception('SDP relaxation is not solved yet!')\n elif ymat is None:\n ymat = self.y_mat\n index = self._constraint_to_block_index.get(constraint)\n if index is None:\n raise Exception('Constraint is not in the dual!')\n if len(index) == 2:\n return ymat[index[0]], self.y_mat[index[1]]\n else:\n return ymat[index[0]]\n",
"role": "user"
},
{
"content": "get_dual",
"role": "assistant"
}
] |
def x(self, filename, filetype=None):
if filetype == 'sdpa' and not filename.endswith('.dat-s'):
raise Exception('SDPA files must have .dat-s extension!')
if filetype == 'mosek' and not filename.endswith('.task'):
raise Exception('Mosek files must have .task extension!')
elif filetype is None and filename.endswith('.dat-s'):
filetype = 'sdpa'
elif filetype is None and filename.endswith('.csv'):
filetype = 'csv'
elif filetype is None and filename.endswith('.task'):
filetype = 'mosek'
elif filetype is None:
raise Exception('Cannot detect filetype from extension!')
if filetype == 'sdpa':
write_to_sdpa(self, filename)
elif filetype == 'mosek':
task = convert_to_mosek(self)
task.writedata(filename)
elif filetype == 'csv':
write_to_human_readable(self, filename)
else:
raise Exception('Unknown filetype')
|
write_to_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, filetype=None):\n if filetype == 'sdpa' and not filename.endswith('.dat-s'):\n raise Exception('SDPA files must have .dat-s extension!')\n if filetype == 'mosek' and not filename.endswith('.task'):\n raise Exception('Mosek files must have .task extension!')\n elif filetype is None and filename.endswith('.dat-s'):\n filetype = 'sdpa'\n elif filetype is None and filename.endswith('.csv'):\n filetype = 'csv'\n elif filetype is None and filename.endswith('.task'):\n filetype = 'mosek'\n elif filetype is None:\n raise Exception('Cannot detect filetype from extension!')\n if filetype == 'sdpa':\n write_to_sdpa(self, filename)\n elif filetype == 'mosek':\n task = convert_to_mosek(self)\n task.writedata(filename)\n elif filetype == 'csv':\n write_to_human_readable(self, filename)\n else:\n raise Exception('Unknown filetype')\n",
"role": "user"
},
{
"content": "write_to_file",
"role": "assistant"
}
] |
def x(self, level, objective=None, inequalities=None, equalities=None,
substitutions=None, momentinequalities=None, momentequalities=None,
momentsubstitutions=None, removeequalities=False, extramonomials=None,
extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None,
chordal_extension=False):
if self.level < -1:
raise Exception('Invalid level of relaxation')
self.level = level
if substitutions is None:
self.substitutions = {}
else:
self.substitutions = substitutions
for lhs, rhs in substitutions.items():
if not is_pure_substitution_rule(lhs, rhs):
self.pure_substitution_rules = False
if iscomplex(lhs) or iscomplex(rhs):
self.complex_matrix = True
if momentsubstitutions is not None:
self.moment_substitutions = momentsubstitutions.copy()
if not self.complex_matrix:
for key, val in self.moment_substitutions.copy().items():
adjoint_monomial = apply_substitutions(key.adjoint(), self.
substitutions)
self.moment_substitutions[adjoint_monomial] = val
if chordal_extension:
self.variables = find_variable_cliques(self.variables, objective,
inequalities, equalities, momentinequalities, momentequalities)
self.__generate_monomial_sets(extramonomials)
self.localizing_monomial_sets = localizing_monomials
self._calculate_block_structure(inequalities, equalities,
momentinequalities, momentequalities, extramomentmatrices,
removeequalities)
self._estimate_n_vars()
if extramomentmatrices is not None:
for parameters in extramomentmatrices:
copy = False
for parameter in parameters:
if parameter == 'copy':
copy = True
if copy:
self.n_vars += self.n_vars + 1
else:
self.n_vars += self.block_struct[0] ** 2 / 2
if self.complex_matrix:
dtype = np.complex128
else:
dtype = np.float64
self.F = lil_matrix((sum([(bs ** 2) for bs in self.block_struct]), self
.n_vars + 1), dtype=dtype)
if self.verbose > 0:
print('Estimated number of SDP variables: %d' % self.n_vars)
print('Generating moment matrix...')
new_n_vars, block_index = self.__add_parameters()
self._time0 = time.time()
new_n_vars, block_index = self._generate_all_moment_matrix_blocks(
new_n_vars, block_index)
if extramomentmatrices is not None:
new_n_vars, block_index = self.__add_extra_momentmatrices(
extramomentmatrices, new_n_vars, block_index)
self.n_vars = new_n_vars
if self.verbose > 0:
print('Reduced number of SDP variables: %d' % self.n_vars)
self.set_objective(objective, extraobjexpr)
self.constraint_starting_block = block_index
self.process_constraints(inequalities, equalities, momentinequalities,
momentequalities, block_index, removeequalities)
|
get_relaxation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, level, objective=None, inequalities=None, equalities=None,\n substitutions=None, momentinequalities=None, momentequalities=None,\n momentsubstitutions=None, removeequalities=False, extramonomials=None,\n extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None,\n chordal_extension=False):\n if self.level < -1:\n raise Exception('Invalid level of relaxation')\n self.level = level\n if substitutions is None:\n self.substitutions = {}\n else:\n self.substitutions = substitutions\n for lhs, rhs in substitutions.items():\n if not is_pure_substitution_rule(lhs, rhs):\n self.pure_substitution_rules = False\n if iscomplex(lhs) or iscomplex(rhs):\n self.complex_matrix = True\n if momentsubstitutions is not None:\n self.moment_substitutions = momentsubstitutions.copy()\n if not self.complex_matrix:\n for key, val in self.moment_substitutions.copy().items():\n adjoint_monomial = apply_substitutions(key.adjoint(), self.\n substitutions)\n self.moment_substitutions[adjoint_monomial] = val\n if chordal_extension:\n self.variables = find_variable_cliques(self.variables, objective,\n inequalities, equalities, momentinequalities, momentequalities)\n self.__generate_monomial_sets(extramonomials)\n self.localizing_monomial_sets = localizing_monomials\n self._calculate_block_structure(inequalities, equalities,\n momentinequalities, momentequalities, extramomentmatrices,\n removeequalities)\n self._estimate_n_vars()\n if extramomentmatrices is not None:\n for parameters in extramomentmatrices:\n copy = False\n for parameter in parameters:\n if parameter == 'copy':\n copy = True\n if copy:\n self.n_vars += self.n_vars + 1\n else:\n self.n_vars += self.block_struct[0] ** 2 / 2\n if self.complex_matrix:\n dtype = np.complex128\n else:\n dtype = np.float64\n self.F = lil_matrix((sum([(bs ** 2) for bs in self.block_struct]), self\n .n_vars + 1), dtype=dtype)\n if self.verbose > 0:\n print('Estimated number of SDP variables: %d' % self.n_vars)\n print('Generating moment matrix...')\n new_n_vars, block_index = self.__add_parameters()\n self._time0 = time.time()\n new_n_vars, block_index = self._generate_all_moment_matrix_blocks(\n new_n_vars, block_index)\n if extramomentmatrices is not None:\n new_n_vars, block_index = self.__add_extra_momentmatrices(\n extramomentmatrices, new_n_vars, block_index)\n self.n_vars = new_n_vars\n if self.verbose > 0:\n print('Reduced number of SDP variables: %d' % self.n_vars)\n self.set_objective(objective, extraobjexpr)\n self.constraint_starting_block = block_index\n self.process_constraints(inequalities, equalities, momentinequalities,\n momentequalities, block_index, removeequalities)\n",
"role": "user"
},
{
"content": "get_relaxation",
"role": "assistant"
}
] |
def x(lol):
new_list = []
for element in lol:
if element is None:
continue
elif not isinstance(element, list) and not isinstance(element, tuple):
new_list.append(element)
elif len(element) > 0:
new_list.extend(flatten(element))
return new_list
|
flatten
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lol):\n new_list = []\n for element in lol:\n if element is None:\n continue\n elif not isinstance(element, list) and not isinstance(element, tuple):\n new_list.append(element)\n elif len(element) > 0:\n new_list.extend(flatten(element))\n return new_list\n",
"role": "user"
},
{
"content": "flatten",
"role": "assistant"
}
] |
def x(polynomial, monomial_substitutions):
if isinstance(polynomial, (int, float, complex)):
return polynomial
polynomial = (1.0 * polynomial).expand(mul=True, multinomial=True)
if is_number_type(polynomial):
return polynomial
if polynomial.is_Mul:
elements = [polynomial]
else:
elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]
new_polynomial = 0
for element in elements:
monomial, coeff = separate_scalar_factor(element)
monomial = apply_substitutions(monomial, monomial_substitutions)
new_polynomial += coeff * monomial
return new_polynomial
|
simplify_polynomial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polynomial, monomial_substitutions):\n if isinstance(polynomial, (int, float, complex)):\n return polynomial\n polynomial = (1.0 * polynomial).expand(mul=True, multinomial=True)\n if is_number_type(polynomial):\n return polynomial\n if polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n new_polynomial = 0\n for element in elements:\n monomial, coeff = separate_scalar_factor(element)\n monomial = apply_substitutions(monomial, monomial_substitutions)\n new_polynomial += coeff * monomial\n return new_polynomial\n",
"role": "user"
},
{
"content": "simplify_polynomial",
"role": "assistant"
}
] |
def x(monomial):
scalar_factor = 1
if is_number_type(monomial):
return S.One, monomial
if monomial == 0:
return S.One, 0
comm_factors, _ = split_commutative_parts(monomial)
if len(comm_factors) > 0:
if isinstance(comm_factors[0], Number):
scalar_factor = comm_factors[0]
if scalar_factor != 1:
return monomial / scalar_factor, scalar_factor
else:
return monomial, scalar_factor
|
separate_scalar_factor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomial):\n scalar_factor = 1\n if is_number_type(monomial):\n return S.One, monomial\n if monomial == 0:\n return S.One, 0\n comm_factors, _ = split_commutative_parts(monomial)\n if len(comm_factors) > 0:\n if isinstance(comm_factors[0], Number):\n scalar_factor = comm_factors[0]\n if scalar_factor != 1:\n return monomial / scalar_factor, scalar_factor\n else:\n return monomial, scalar_factor\n",
"role": "user"
},
{
"content": "separate_scalar_factor",
"role": "assistant"
}
] |
def x(variables, polynomial):
support = []
if is_number_type(polynomial):
support.append([0] * len(variables))
return support
for monomial in polynomial.expand().as_coefficients_dict():
tmp_support = [0] * len(variables)
mon, _ = __separate_scalar_factor(monomial)
symbolic_support = flatten(split_commutative_parts(mon))
for s in symbolic_support:
if isinstance(s, Pow):
base = s.base
if is_adjoint(base):
base = base.adjoint()
tmp_support[variables.index(base)] = s.exp
elif is_adjoint(s):
tmp_support[variables.index(s.adjoint())] = 1
elif isinstance(s, (Operator, Symbol)):
tmp_support[variables.index(s)] = 1
support.append(tmp_support)
return support
|
get_support
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variables, polynomial):\n support = []\n if is_number_type(polynomial):\n support.append([0] * len(variables))\n return support\n for monomial in polynomial.expand().as_coefficients_dict():\n tmp_support = [0] * len(variables)\n mon, _ = __separate_scalar_factor(monomial)\n symbolic_support = flatten(split_commutative_parts(mon))\n for s in symbolic_support:\n if isinstance(s, Pow):\n base = s.base\n if is_adjoint(base):\n base = base.adjoint()\n tmp_support[variables.index(base)] = s.exp\n elif is_adjoint(s):\n tmp_support[variables.index(s.adjoint())] = 1\n elif isinstance(s, (Operator, Symbol)):\n tmp_support[variables.index(s)] = 1\n support.append(tmp_support)\n return support\n",
"role": "user"
},
{
"content": "get_support",
"role": "assistant"
}
] |
def x(polynomial):
support = []
if is_number_type(polynomial):
return support
for monomial in polynomial.expand().as_coefficients_dict():
mon, _ = __separate_scalar_factor(monomial)
symbolic_support = flatten(split_commutative_parts(mon))
for s in symbolic_support:
if isinstance(s, Pow):
base = s.base
if is_adjoint(base):
base = base.adjoint()
support.append(base)
elif is_adjoint(s):
support.append(s.adjoint())
elif isinstance(s, Operator):
support.append(s)
return support
|
get_support_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polynomial):\n support = []\n if is_number_type(polynomial):\n return support\n for monomial in polynomial.expand().as_coefficients_dict():\n mon, _ = __separate_scalar_factor(monomial)\n symbolic_support = flatten(split_commutative_parts(mon))\n for s in symbolic_support:\n if isinstance(s, Pow):\n base = s.base\n if is_adjoint(base):\n base = base.adjoint()\n support.append(base)\n elif is_adjoint(s):\n support.append(s.adjoint())\n elif isinstance(s, Operator):\n support.append(s)\n return support\n",
"role": "user"
},
{
"content": "get_support_variables",
"role": "assistant"
}
] |
def x(element):
coeff = 1.0
monomial = S.One
if isinstance(element, (int, float, complex)):
coeff *= element
return monomial, coeff
for var in element.as_coeff_mul()[1]:
if not (var.is_Number or var.is_imaginary):
monomial = monomial * var
elif var.is_Number:
coeff = float(var)
else:
coeff = 1.0j * coeff
coeff = float(element.as_coeff_mul()[0]) * coeff
return monomial, coeff
|
separate_scalar_factor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(element):\n coeff = 1.0\n monomial = S.One\n if isinstance(element, (int, float, complex)):\n coeff *= element\n return monomial, coeff\n for var in element.as_coeff_mul()[1]:\n if not (var.is_Number or var.is_imaginary):\n monomial = monomial * var\n elif var.is_Number:\n coeff = float(var)\n else:\n coeff = 1.0j * coeff\n coeff = float(element.as_coeff_mul()[0]) * coeff\n return monomial, coeff\n",
"role": "user"
},
{
"content": "separate_scalar_factor",
"role": "assistant"
}
] |
def x(monomials, degree):
ncmoncount = 0
for monomial in monomials:
if ncdegree(monomial) <= degree:
ncmoncount += 1
else:
break
return ncmoncount
|
count_ncmonomials
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomials, degree):\n ncmoncount = 0\n for monomial in monomials:\n if ncdegree(monomial) <= degree:\n ncmoncount += 1\n else:\n break\n return ncmoncount\n",
"role": "user"
},
{
"content": "count_ncmonomials",
"role": "assistant"
}
] |
def x(monomial, monomial_substitutions, pure=False):
if is_number_type(monomial):
return monomial
original_monomial = monomial
changed = True
if not pure:
substitutions = monomial_substitutions
else:
substitutions = {}
for lhs, rhs in monomial_substitutions.items():
irrelevant = False
for atom in lhs.atoms():
if atom.is_Number:
continue
if not monomial.has(atom):
irrelevant = True
break
if not irrelevant:
substitutions[lhs] = rhs
while changed:
for lhs, rhs in substitutions.items():
monomial = fast_substitute(monomial, lhs, rhs)
if original_monomial == monomial:
changed = False
original_monomial = monomial
return monomial
|
apply_substitutions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomial, monomial_substitutions, pure=False):\n if is_number_type(monomial):\n return monomial\n original_monomial = monomial\n changed = True\n if not pure:\n substitutions = monomial_substitutions\n else:\n substitutions = {}\n for lhs, rhs in monomial_substitutions.items():\n irrelevant = False\n for atom in lhs.atoms():\n if atom.is_Number:\n continue\n if not monomial.has(atom):\n irrelevant = True\n break\n if not irrelevant:\n substitutions[lhs] = rhs\n while changed:\n for lhs, rhs in substitutions.items():\n monomial = fast_substitute(monomial, lhs, rhs)\n if original_monomial == monomial:\n changed = False\n original_monomial = monomial\n return monomial\n",
"role": "user"
},
{
"content": "apply_substitutions",
"role": "assistant"
}
] |
def x(monomial, old_sub, new_sub):
if is_number_type(monomial):
return monomial
if monomial.is_Add:
return sum([fast_substitute(element, old_sub, new_sub) for element in
monomial.as_ordered_terms()])
comm_factors, ncomm_factors = split_commutative_parts(monomial)
old_comm_factors, old_ncomm_factors = split_commutative_parts(old_sub)
if not isinstance(new_sub, (int, float, complex)):
new_comm_factors, _ = split_commutative_parts(new_sub)
else:
new_comm_factors = [new_sub]
comm_monomial = 1
is_constant_term = False
if comm_factors != ():
if len(comm_factors) == 1 and is_number_type(comm_factors[0]):
is_constant_term = True
comm_monomial = comm_factors[0]
else:
for comm_factor in comm_factors:
comm_monomial *= comm_factor
if old_comm_factors != ():
comm_old_sub = 1
for comm_factor in old_comm_factors:
comm_old_sub *= comm_factor
comm_new_sub = 1
for comm_factor in new_comm_factors:
comm_new_sub *= comm_factor
if isinstance(comm_old_sub, Pow):
old_base = comm_old_sub.base
if comm_monomial.has(old_base):
old_degree = comm_old_sub.exp
new_monomial = 1
match = False
for factor in comm_monomial.as_ordered_factors():
if factor.has(old_base):
if isinstance(factor, Pow):
degree = factor.exp
if degree >= old_degree:
match = True
new_monomial *= old_base ** (degree -
old_degree) * comm_new_sub
else:
new_monomial *= factor
else:
new_monomial *= factor
if match:
comm_monomial = new_monomial
else:
comm_monomial = comm_monomial.subs(comm_old_sub,
comm_new_sub)
if ncomm_factors == () or old_ncomm_factors == ():
return comm_monomial
new_var_list = []
new_monomial = 1
left_remainder = 1
right_remainder = 1
for i in range(len(ncomm_factors) - len(old_ncomm_factors) + 1):
for j, old_ncomm_factor in enumerate(old_ncomm_factors):
ncomm_factor = ncomm_factors[i + j]
if isinstance(ncomm_factor, Symbol) and (isinstance(
old_ncomm_factor, Operator) or isinstance(old_ncomm_factor,
Symbol) and ncomm_factor != old_ncomm_factor):
break
if isinstance(ncomm_factor, Operator) and (isinstance(
old_ncomm_factor, Operator) and ncomm_factor !=
old_ncomm_factor or isinstance(old_ncomm_factor, Pow)):
break
if is_adjoint(ncomm_factor):
if not is_adjoint(old_ncomm_factor
) or ncomm_factor != old_ncomm_factor:
break
elif not isinstance(ncomm_factor, Pow):
if is_adjoint(old_ncomm_factor):
break
else:
if isinstance(old_ncomm_factor, Pow):
old_base = old_ncomm_factor.base
old_degree = old_ncomm_factor.exp
else:
old_base = old_ncomm_factor
old_degree = 1
if old_base != ncomm_factor.base:
break
if old_degree > ncomm_factor.exp:
break
if old_degree < ncomm_factor.exp:
if j != len(old_ncomm_factors) - 1:
if j != 0:
break
else:
left_remainder = old_base ** (ncomm_factor.exp -
old_degree)
else:
right_remainder = old_base ** (ncomm_factor.exp -
old_degree)
else:
new_monomial = 1
for var in new_var_list:
new_monomial *= var
new_monomial *= left_remainder * new_sub * right_remainder
for j in range(i + len(old_ncomm_factors), len(ncomm_factors)):
new_monomial *= ncomm_factors[j]
new_monomial *= comm_monomial
break
new_var_list.append(ncomm_factors[i])
else:
if not is_constant_term and comm_factors != ():
new_monomial = comm_monomial
for factor in ncomm_factors:
new_monomial *= factor
else:
return monomial
if not isinstance(new_sub, (float, int, complex)) and new_sub.is_Add:
return expand(new_monomial)
else:
return new_monomial
|
fast_substitute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomial, old_sub, new_sub):\n if is_number_type(monomial):\n return monomial\n if monomial.is_Add:\n return sum([fast_substitute(element, old_sub, new_sub) for element in\n monomial.as_ordered_terms()])\n comm_factors, ncomm_factors = split_commutative_parts(monomial)\n old_comm_factors, old_ncomm_factors = split_commutative_parts(old_sub)\n if not isinstance(new_sub, (int, float, complex)):\n new_comm_factors, _ = split_commutative_parts(new_sub)\n else:\n new_comm_factors = [new_sub]\n comm_monomial = 1\n is_constant_term = False\n if comm_factors != ():\n if len(comm_factors) == 1 and is_number_type(comm_factors[0]):\n is_constant_term = True\n comm_monomial = comm_factors[0]\n else:\n for comm_factor in comm_factors:\n comm_monomial *= comm_factor\n if old_comm_factors != ():\n comm_old_sub = 1\n for comm_factor in old_comm_factors:\n comm_old_sub *= comm_factor\n comm_new_sub = 1\n for comm_factor in new_comm_factors:\n comm_new_sub *= comm_factor\n if isinstance(comm_old_sub, Pow):\n old_base = comm_old_sub.base\n if comm_monomial.has(old_base):\n old_degree = comm_old_sub.exp\n new_monomial = 1\n match = False\n for factor in comm_monomial.as_ordered_factors():\n if factor.has(old_base):\n if isinstance(factor, Pow):\n degree = factor.exp\n if degree >= old_degree:\n match = True\n new_monomial *= old_base ** (degree -\n old_degree) * comm_new_sub\n else:\n new_monomial *= factor\n else:\n new_monomial *= factor\n if match:\n comm_monomial = new_monomial\n else:\n comm_monomial = comm_monomial.subs(comm_old_sub,\n comm_new_sub)\n if ncomm_factors == () or old_ncomm_factors == ():\n return comm_monomial\n new_var_list = []\n new_monomial = 1\n left_remainder = 1\n right_remainder = 1\n for i in range(len(ncomm_factors) - len(old_ncomm_factors) + 1):\n for j, old_ncomm_factor in enumerate(old_ncomm_factors):\n ncomm_factor = ncomm_factors[i + j]\n if isinstance(ncomm_factor, Symbol) and (isinstance(\n old_ncomm_factor, Operator) or isinstance(old_ncomm_factor,\n Symbol) and ncomm_factor != old_ncomm_factor):\n break\n if isinstance(ncomm_factor, Operator) and (isinstance(\n old_ncomm_factor, Operator) and ncomm_factor !=\n old_ncomm_factor or isinstance(old_ncomm_factor, Pow)):\n break\n if is_adjoint(ncomm_factor):\n if not is_adjoint(old_ncomm_factor\n ) or ncomm_factor != old_ncomm_factor:\n break\n elif not isinstance(ncomm_factor, Pow):\n if is_adjoint(old_ncomm_factor):\n break\n else:\n if isinstance(old_ncomm_factor, Pow):\n old_base = old_ncomm_factor.base\n old_degree = old_ncomm_factor.exp\n else:\n old_base = old_ncomm_factor\n old_degree = 1\n if old_base != ncomm_factor.base:\n break\n if old_degree > ncomm_factor.exp:\n break\n if old_degree < ncomm_factor.exp:\n if j != len(old_ncomm_factors) - 1:\n if j != 0:\n break\n else:\n left_remainder = old_base ** (ncomm_factor.exp -\n old_degree)\n else:\n right_remainder = old_base ** (ncomm_factor.exp -\n old_degree)\n else:\n new_monomial = 1\n for var in new_var_list:\n new_monomial *= var\n new_monomial *= left_remainder * new_sub * right_remainder\n for j in range(i + len(old_ncomm_factors), len(ncomm_factors)):\n new_monomial *= ncomm_factors[j]\n new_monomial *= comm_monomial\n break\n new_var_list.append(ncomm_factors[i])\n else:\n if not is_constant_term and comm_factors != ():\n new_monomial = comm_monomial\n for factor in ncomm_factors:\n new_monomial *= factor\n else:\n return monomial\n if not isinstance(new_sub, (float, int, complex)) and new_sub.is_Add:\n return expand(new_monomial)\n else:\n return new_monomial\n",
"role": "user"
},
{
"content": "fast_substitute",
"role": "assistant"
}
] |
def x(name, n_vars=1, hermitian=None, commutative=True):
variables = []
for i in range(n_vars):
if n_vars > 1:
var_name = '%s%s' % (name, i)
else:
var_name = '%s' % name
if commutative:
if hermitian is None or hermitian:
variables.append(Symbol(var_name, real=True))
else:
variables.append(Symbol(var_name, complex=True))
elif hermitian is not None and hermitian:
variables.append(HermitianOperator(var_name))
else:
variables.append(Operator(var_name))
return variables
|
generate_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, n_vars=1, hermitian=None, commutative=True):\n variables = []\n for i in range(n_vars):\n if n_vars > 1:\n var_name = '%s%s' % (name, i)\n else:\n var_name = '%s' % name\n if commutative:\n if hermitian is None or hermitian:\n variables.append(Symbol(var_name, real=True))\n else:\n variables.append(Symbol(var_name, complex=True))\n elif hermitian is not None and hermitian:\n variables.append(HermitianOperator(var_name))\n else:\n variables.append(Operator(var_name))\n return variables\n",
"role": "user"
},
{
"content": "generate_variables",
"role": "assistant"
}
] |
def x(name, n_vars=1, hermitian=None, commutative=False):
variables = []
for i in range(n_vars):
if n_vars > 1:
var_name = '%s%s' % (name, i)
else:
var_name = '%s' % name
if hermitian is not None and hermitian:
variables.append(HermitianOperator(var_name))
else:
variables.append(Operator(var_name))
variables[-1].is_commutative = commutative
return variables
|
generate_operators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, n_vars=1, hermitian=None, commutative=False):\n variables = []\n for i in range(n_vars):\n if n_vars > 1:\n var_name = '%s%s' % (name, i)\n else:\n var_name = '%s' % name\n if hermitian is not None and hermitian:\n variables.append(HermitianOperator(var_name))\n else:\n variables.append(Operator(var_name))\n variables[-1].is_commutative = commutative\n return variables\n",
"role": "user"
},
{
"content": "generate_operators",
"role": "assistant"
}
] |
def x(variables, degree):
if degree == -1:
return []
if not variables:
return [S.One]
else:
_variables = variables[:]
_variables.insert(0, 1)
ncmonomials = [S.One]
ncmonomials.extend(var for var in variables)
for var in variables:
if not is_hermitian(var):
ncmonomials.append(var.adjoint())
for _ in range(1, degree):
temp = []
for var in _variables:
for new_var in ncmonomials:
temp.append(var * new_var)
if var != 1 and not is_hermitian(var):
temp.append(var.adjoint() * new_var)
ncmonomials = unique(temp[:])
return ncmonomials
|
get_monomials
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variables, degree):\n if degree == -1:\n return []\n if not variables:\n return [S.One]\n else:\n _variables = variables[:]\n _variables.insert(0, 1)\n ncmonomials = [S.One]\n ncmonomials.extend(var for var in variables)\n for var in variables:\n if not is_hermitian(var):\n ncmonomials.append(var.adjoint())\n for _ in range(1, degree):\n temp = []\n for var in _variables:\n for new_var in ncmonomials:\n temp.append(var * new_var)\n if var != 1 and not is_hermitian(var):\n temp.append(var.adjoint() * new_var)\n ncmonomials = unique(temp[:])\n return ncmonomials\n",
"role": "user"
},
{
"content": "get_monomials",
"role": "assistant"
}
] |
def x(polynomial):
degree = 0
if is_number_type(polynomial):
return degree
polynomial = polynomial.expand()
for monomial in polynomial.as_coefficients_dict():
subdegree = 0
for variable in monomial.as_coeff_mul()[1]:
if isinstance(variable, Pow):
subdegree += variable.exp
elif not isinstance(variable, Number) and variable != I:
subdegree += 1
if subdegree > degree:
degree = subdegree
return degree
|
ncdegree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polynomial):\n degree = 0\n if is_number_type(polynomial):\n return degree\n polynomial = polynomial.expand()\n for monomial in polynomial.as_coefficients_dict():\n subdegree = 0\n for variable in monomial.as_coeff_mul()[1]:\n if isinstance(variable, Pow):\n subdegree += variable.exp\n elif not isinstance(variable, Number) and variable != I:\n subdegree += 1\n if subdegree > degree:\n degree = subdegree\n return degree\n",
"role": "user"
},
{
"content": "ncdegree",
"role": "assistant"
}
] |
def x(polynomial):
if isinstance(polynomial, (int, float)):
return False
if isinstance(polynomial, complex):
return True
polynomial = polynomial.expand()
for monomial in polynomial.as_coefficients_dict():
for variable in monomial.as_coeff_mul()[1]:
if isinstance(variable, complex) or variable == I:
return True
return False
|
iscomplex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(polynomial):\n if isinstance(polynomial, (int, float)):\n return False\n if isinstance(polynomial, complex):\n return True\n polynomial = polynomial.expand()\n for monomial in polynomial.as_coefficients_dict():\n for variable in monomial.as_coeff_mul()[1]:\n if isinstance(variable, complex) or variable == I:\n return True\n return False\n",
"role": "user"
},
{
"content": "iscomplex",
"role": "assistant"
}
] |
def x(variables, extramonomials, substitutions, degree, removesubstitutions
=True):
monomials = get_monomials(variables, degree)
if extramonomials is not None:
monomials.extend(extramonomials)
if removesubstitutions and substitutions is not None:
monomials = [monomial for monomial in monomials if monomial not in
substitutions]
monomials = [remove_scalar_factor(apply_substitutions(monomial,
substitutions)) for monomial in monomials]
monomials = unique(monomials)
return monomials
|
get_all_monomials
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(variables, extramonomials, substitutions, degree, removesubstitutions\n =True):\n monomials = get_monomials(variables, degree)\n if extramonomials is not None:\n monomials.extend(extramonomials)\n if removesubstitutions and substitutions is not None:\n monomials = [monomial for monomial in monomials if monomial not in\n substitutions]\n monomials = [remove_scalar_factor(apply_substitutions(monomial,\n substitutions)) for monomial in monomials]\n monomials = unique(monomials)\n return monomials\n",
"role": "user"
},
{
"content": "get_all_monomials",
"role": "assistant"
}
] |
def x(monomials, degree):
ordered_monomials = []
if degree >= 0:
ordered_monomials.append(S.One)
for deg in range(1, degree + 1):
ordered_monomials.extend(pick_monomials_of_degree(monomials, deg))
return ordered_monomials
|
pick_monomials_up_to_degree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomials, degree):\n ordered_monomials = []\n if degree >= 0:\n ordered_monomials.append(S.One)\n for deg in range(1, degree + 1):\n ordered_monomials.extend(pick_monomials_of_degree(monomials, deg))\n return ordered_monomials\n",
"role": "user"
},
{
"content": "pick_monomials_up_to_degree",
"role": "assistant"
}
] |
def x(monomials, degree):
selected_monomials = []
for monomial in monomials:
if ncdegree(monomial) == degree:
selected_monomials.append(monomial)
return selected_monomials
|
pick_monomials_of_degree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(monomials, degree):\n selected_monomials = []\n for monomial in monomials:\n if ncdegree(monomial) == degree:\n selected_monomials.append(monomial)\n return selected_monomials\n",
"role": "user"
},
{
"content": "pick_monomials_of_degree",
"role": "assistant"
}
] |
def x(filename, monomial_index):
monomial_translation = [''] * (len(monomial_index) + 1)
for key, k in monomial_index.items():
monomial_translation[k] = convert_monomial_to_string(key)
file_ = open(filename, 'w')
for k in range(len(monomial_translation)):
file_.write('%s %s\n' % (k, monomial_translation[k]))
file_.close()
|
save_monomial_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, monomial_index):\n monomial_translation = [''] * (len(monomial_index) + 1)\n for key, k in monomial_index.items():\n monomial_translation[k] = convert_monomial_to_string(key)\n file_ = open(filename, 'w')\n for k in range(len(monomial_translation)):\n file_.write('%s %s\\n' % (k, monomial_translation[k]))\n file_.close()\n",
"role": "user"
},
{
"content": "save_monomial_index",
"role": "assistant"
}
] |
def x(seq):
seen = {}
result = []
for item in seq:
marker = item
if marker in seen:
continue
seen[marker] = 1
result.append(item)
return result
|
unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(seq):\n seen = {}\n result = []\n for item in seq:\n marker = item\n if marker in seen:\n continue\n seen[marker] = 1\n result.append(item)\n return result\n",
"role": "user"
},
{
"content": "unique",
"role": "assistant"
}
] |
def x(permutation):
matrix = lil_matrix((len(permutation), len(permutation)))
column = 0
for row in permutation:
matrix[row, column] = 1
column += 1
return matrix
|
build_permutation_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(permutation):\n matrix = lil_matrix((len(permutation), len(permutation)))\n column = 0\n for row in permutation:\n matrix[row, column] = 1\n column += 1\n return matrix\n",
"role": "user"
},
{
"content": "build_permutation_matrix",
"role": "assistant"
}
] |
def x(relational):
rel = relational.rel_op
if rel in ['==', '>=', '>']:
return relational.lhs - relational.rhs
elif rel in ['<=', '<']:
return relational.rhs - relational.lhs
else:
raise Exception(
"The relational operation ' + rel + ' is not implemented!")
|
convert_relational
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(relational):\n rel = relational.rel_op\n if rel in ['==', '>=', '>']:\n return relational.lhs - relational.rhs\n elif rel in ['<=', '<']:\n return relational.rhs - relational.lhs\n else:\n raise Exception(\n \"The relational operation ' + rel + ' is not implemented!\")\n",
"role": "user"
},
{
"content": "convert_relational",
"role": "assistant"
}
] |
def x(board, who='x'):
w = board.winner()
if w == who:
return 1
if w == opp(who):
return -1
if board.turn == 9:
return 0
if who == board.whose_turn:
return max([value(b, who) for b in board.possible()])
else:
return min([value(b, who) for b in board.possible()])
|
value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(board, who='x'):\n w = board.winner()\n if w == who:\n return 1\n if w == opp(who):\n return -1\n if board.turn == 9:\n return 0\n if who == board.whose_turn:\n return max([value(b, who) for b in board.possible()])\n else:\n return min([value(b, who) for b in board.possible()])\n",
"role": "user"
},
{
"content": "value",
"role": "assistant"
}
] |
def x(board, who='x'):
return sorted(board.possible(), key=lambda b: value(b, who))[-1]
|
ai
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(board, who='x'):\n return sorted(board.possible(), key=lambda b: value(b, who))[-1]\n",
"role": "user"
},
{
"content": "ai",
"role": "assistant"
}
] |
def x(self):
for c in 'xo':
for comb in [(0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 1, 2), (3, 4, 5),
(6, 7, 8), (0, 4, 8), (2, 4, 6)]:
if all(self.spots[p] == c for p in comb):
return c
return None
|
winner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for c in 'xo':\n for comb in [(0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 1, 2), (3, 4, 5),\n (6, 7, 8), (0, 4, 8), (2, 4, 6)]:\n if all(self.spots[p] == c for p in comb):\n return c\n return None\n",
"role": "user"
},
{
"content": "winner",
"role": "assistant"
}
] |
def x(self, A_configuration, B_configuration, I):
coefficients = collinsgisin_to_faacets(I)
M, ncIndices = get_faacets_moment_matrix(A_configuration,
B_configuration, coefficients)
self.n_vars = M.max() - 1
bs = len(M)
self.block_struct = [bs]
self.F = lil_matrix((bs ** 2, self.n_vars + 1))
for i in range(bs):
for j in range(i, bs):
if M[i, j] != 0:
self.F[i * bs + j, abs(M[i, j]) - 1] = copysign(1, M[i, j])
self.obj_facvar = [(0) for _ in range(self.n_vars)]
for i in range(1, len(ncIndices)):
self.obj_facvar[abs(ncIndices[i]) - 2] += copysign(1, ncIndices[i]
) * coefficients[i]
|
get_relaxation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, A_configuration, B_configuration, I):\n coefficients = collinsgisin_to_faacets(I)\n M, ncIndices = get_faacets_moment_matrix(A_configuration,\n B_configuration, coefficients)\n self.n_vars = M.max() - 1\n bs = len(M)\n self.block_struct = [bs]\n self.F = lil_matrix((bs ** 2, self.n_vars + 1))\n for i in range(bs):\n for j in range(i, bs):\n if M[i, j] != 0:\n self.F[i * bs + j, abs(M[i, j]) - 1] = copysign(1, M[i, j])\n self.obj_facvar = [(0) for _ in range(self.n_vars)]\n for i in range(1, len(ncIndices)):\n self.obj_facvar[abs(ncIndices[i]) - 2] += copysign(1, ncIndices[i]\n ) * coefficients[i]\n",
"role": "user"
},
{
"content": "get_relaxation",
"role": "assistant"
}
] |
def x(track_id=None, url=None, users=None):
client = get_client()
if url:
track_id = client.get('/resolve', url=url).id
if not users:
return client.get('/tracks/%d/permissions' % track_id)
permissions = {'user_id': []}
for username in users:
user = settings.users.get(username, None)
if user:
permissions['user_id'].append(user['id'])
else:
user = client.get('/resolve', url='http://soundcloud.com/%s' %
username)
permissions['user_id'].append(user.id)
settings.users[username] = user.obj
settings.save()
return client.put('/tracks/%d/permissions' % track_id, permissions=
permissions)
|
share
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(track_id=None, url=None, users=None):\n client = get_client()\n if url:\n track_id = client.get('/resolve', url=url).id\n if not users:\n return client.get('/tracks/%d/permissions' % track_id)\n permissions = {'user_id': []}\n for username in users:\n user = settings.users.get(username, None)\n if user:\n permissions['user_id'].append(user['id'])\n else:\n user = client.get('/resolve', url='http://soundcloud.com/%s' %\n username)\n permissions['user_id'].append(user.id)\n settings.users[username] = user.obj\n settings.save()\n return client.put('/tracks/%d/permissions' % track_id, permissions=\n permissions)\n",
"role": "user"
},
{
"content": "share",
"role": "assistant"
}
] |
def x(sdp, solverparameters=None):
P = convert_to_picos(sdp)
P.set_option('solver', 'cvxopt')
P.set_option('verbose', sdp.verbose)
if solverparameters is not None:
for key, value in solverparameters.items():
P.set_option(key, value)
solution = P.solve()
x_mat = [np.array(P.get_valued_variable('X'))]
y_mat = [np.array(P.get_constraint(i).dual) for i in range(len(P.
constraints))]
return -solution['cvxopt_sol']['primal objective'
] + sdp.constant_term, -solution['cvxopt_sol']['dual objective'
] + sdp.constant_term, x_mat, y_mat, solution['status']
|
solve_with_cvxopt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sdp, solverparameters=None):\n P = convert_to_picos(sdp)\n P.set_option('solver', 'cvxopt')\n P.set_option('verbose', sdp.verbose)\n if solverparameters is not None:\n for key, value in solverparameters.items():\n P.set_option(key, value)\n solution = P.solve()\n x_mat = [np.array(P.get_valued_variable('X'))]\n y_mat = [np.array(P.get_constraint(i).dual) for i in range(len(P.\n constraints))]\n return -solution['cvxopt_sol']['primal objective'\n ] + sdp.constant_term, -solution['cvxopt_sol']['dual objective'\n ] + sdp.constant_term, x_mat, y_mat, solution['status']\n",
"role": "user"
},
{
"content": "solve_with_cvxopt",
"role": "assistant"
}
] |
def x(sdp, duplicate_moment_matrix=False):
import picos as pic
import cvxopt as cvx
P = pic.Problem(verbose=sdp.verbose)
block_size = sdp.block_struct[0]
if sdp.F.dtype == np.float64:
X = P.add_variable('X', (block_size, block_size), vtype='symmetric')
if duplicate_moment_matrix:
Y = P.add_variable('Y', (block_size, block_size), vtype='symmetric'
)
else:
X = P.add_variable('X', (block_size, block_size), vtype='hermitian')
if duplicate_moment_matrix:
Y = P.add_variable('X', (block_size, block_size), vtype='hermitian'
)
row_offset = 0
theoretical_n_vars = sdp.block_struct[0] ** 2
eq_block_start = sdp.constraint_starting_block + sdp._n_inequalities
block_idx = 0
while block_idx < len(sdp.block_struct):
block_size = sdp.block_struct[block_idx]
x, Ix, Jx = [], [], []
c, Ic, Jc = [], [], []
for i, row in enumerate(sdp.F.rows[row_offset:row_offset +
block_size ** 2]):
for j, column in enumerate(row):
if column > 0:
x.append(sdp.F.data[row_offset + i][j])
Ix.append(i)
Jx.append(column - 1)
i0 = i // block_size + i % block_size * block_size
if i != i0:
x.append(sdp.F.data[row_offset + i][j])
Ix.append(i0)
Jx.append(column - 1)
else:
c.append(sdp.F.data[row_offset + i][j])
Ic.append(i % block_size)
Jc.append(i // block_size)
permutation = cvx.spmatrix(x, Ix, Jx, (block_size ** 2,
theoretical_n_vars))
constant = cvx.spmatrix(c, Ic, Jc, (block_size, block_size))
if duplicate_moment_matrix:
constraint = X
else:
constraint = X.copy()
for k in constraint.factors:
constraint.factors[k] = permutation
constraint._size = block_size, block_size
if block_idx < eq_block_start:
P.add_constraint(constant + constraint >> 0)
else:
P.add_constraint(constant + constraint == 0)
row_offset += block_size ** 2
block_idx += 1
if duplicate_moment_matrix and block_size == sdp.block_struct[0]:
for k in Y.factors:
Y.factors[k] = permutation
row_offset += block_size ** 2
block_idx += 1
if len(np.nonzero(sdp.obj_facvar)[0]) > 0:
x, Ix, Jx = [], [], []
for k, val in enumerate(sdp.obj_facvar):
if val != 0:
x.append(val)
Ix.append(0)
Jx.append(k)
permutation = cvx.spmatrix(x, Ix, Jx)
objective = X.copy()
for k in objective.factors:
objective.factors[k] = permutation
objective._size = 1, 1
P.set_objective('min', objective)
return P
|
convert_to_picos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sdp, duplicate_moment_matrix=False):\n import picos as pic\n import cvxopt as cvx\n P = pic.Problem(verbose=sdp.verbose)\n block_size = sdp.block_struct[0]\n if sdp.F.dtype == np.float64:\n X = P.add_variable('X', (block_size, block_size), vtype='symmetric')\n if duplicate_moment_matrix:\n Y = P.add_variable('Y', (block_size, block_size), vtype='symmetric'\n )\n else:\n X = P.add_variable('X', (block_size, block_size), vtype='hermitian')\n if duplicate_moment_matrix:\n Y = P.add_variable('X', (block_size, block_size), vtype='hermitian'\n )\n row_offset = 0\n theoretical_n_vars = sdp.block_struct[0] ** 2\n eq_block_start = sdp.constraint_starting_block + sdp._n_inequalities\n block_idx = 0\n while block_idx < len(sdp.block_struct):\n block_size = sdp.block_struct[block_idx]\n x, Ix, Jx = [], [], []\n c, Ic, Jc = [], [], []\n for i, row in enumerate(sdp.F.rows[row_offset:row_offset + \n block_size ** 2]):\n for j, column in enumerate(row):\n if column > 0:\n x.append(sdp.F.data[row_offset + i][j])\n Ix.append(i)\n Jx.append(column - 1)\n i0 = i // block_size + i % block_size * block_size\n if i != i0:\n x.append(sdp.F.data[row_offset + i][j])\n Ix.append(i0)\n Jx.append(column - 1)\n else:\n c.append(sdp.F.data[row_offset + i][j])\n Ic.append(i % block_size)\n Jc.append(i // block_size)\n permutation = cvx.spmatrix(x, Ix, Jx, (block_size ** 2,\n theoretical_n_vars))\n constant = cvx.spmatrix(c, Ic, Jc, (block_size, block_size))\n if duplicate_moment_matrix:\n constraint = X\n else:\n constraint = X.copy()\n for k in constraint.factors:\n constraint.factors[k] = permutation\n constraint._size = block_size, block_size\n if block_idx < eq_block_start:\n P.add_constraint(constant + constraint >> 0)\n else:\n P.add_constraint(constant + constraint == 0)\n row_offset += block_size ** 2\n block_idx += 1\n if duplicate_moment_matrix and block_size == sdp.block_struct[0]:\n for k in Y.factors:\n Y.factors[k] = permutation\n row_offset += block_size ** 2\n block_idx += 1\n if len(np.nonzero(sdp.obj_facvar)[0]) > 0:\n x, Ix, Jx = [], [], []\n for k, val in enumerate(sdp.obj_facvar):\n if val != 0:\n x.append(val)\n Ix.append(0)\n Jx.append(k)\n permutation = cvx.spmatrix(x, Ix, Jx)\n objective = X.copy()\n for k in objective.factors:\n objective.factors[k] = permutation\n objective._size = 1, 1\n P.set_objective('min', objective)\n return P\n",
"role": "user"
},
{
"content": "convert_to_picos",
"role": "assistant"
}
] |
def x(sdp, solverparameters=None):
problem = convert_to_cvxpy(sdp)
if solverparameters is not None and 'solver' in solverparameters:
solver = solverparameters.pop('solver')
v = problem.solve(solver=solver, verbose=sdp.verbose > 0)
else:
v = problem.solve(verbose=sdp.verbose > 0)
if v is None:
status = 'infeasible'
x_mat, y_mat = [], []
elif v == float('inf') or v == -float('inf'):
status = 'unbounded'
x_mat, y_mat = [], []
else:
status = 'optimal'
x_pre = sdp.F[:, 1:sdp.n_vars + 1].dot(problem.variables()[0].value)
x_pre += sdp.F[:, 0]
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
x_mat = []
for bi, bs in enumerate(sdp.block_struct):
x = x_pre[row_offsets[bi]:row_offsets[bi + 1]].reshape((bs, bs))
x += x.T - np.diag(np.array(x.diagonal())[0])
x_mat.append(x)
y_mat = [constraint.dual_value for constraint in problem.constraints]
return v + sdp.constant_term, v + sdp.constant_term, x_mat, y_mat, status
|
solve_with_cvxpy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sdp, solverparameters=None):\n problem = convert_to_cvxpy(sdp)\n if solverparameters is not None and 'solver' in solverparameters:\n solver = solverparameters.pop('solver')\n v = problem.solve(solver=solver, verbose=sdp.verbose > 0)\n else:\n v = problem.solve(verbose=sdp.verbose > 0)\n if v is None:\n status = 'infeasible'\n x_mat, y_mat = [], []\n elif v == float('inf') or v == -float('inf'):\n status = 'unbounded'\n x_mat, y_mat = [], []\n else:\n status = 'optimal'\n x_pre = sdp.F[:, 1:sdp.n_vars + 1].dot(problem.variables()[0].value)\n x_pre += sdp.F[:, 0]\n row_offsets = [0]\n cumulative_sum = 0\n for block_size in sdp.block_struct:\n cumulative_sum += block_size ** 2\n row_offsets.append(cumulative_sum)\n x_mat = []\n for bi, bs in enumerate(sdp.block_struct):\n x = x_pre[row_offsets[bi]:row_offsets[bi + 1]].reshape((bs, bs))\n x += x.T - np.diag(np.array(x.diagonal())[0])\n x_mat.append(x)\n y_mat = [constraint.dual_value for constraint in problem.constraints]\n return v + sdp.constant_term, v + sdp.constant_term, x_mat, y_mat, status\n",
"role": "user"
},
{
"content": "solve_with_cvxpy",
"role": "assistant"
}
] |
def x(sdp):
from cvxpy import Minimize, Problem, Variable
row_offsets = [0]
cumulative_sum = 0
for block_size in sdp.block_struct:
cumulative_sum += block_size ** 2
row_offsets.append(cumulative_sum)
x = Variable(sdp.n_vars)
constraints = []
for idx, bs in enumerate(sdp.block_struct):
nonzero_set = set()
F = [lil_matrix((bs, bs)) for _ in range(sdp.n_vars + 1)]
for ri, row in enumerate(sdp.F.rows[row_offsets[idx]:row_offsets[
idx + 1]], row_offsets[idx]):
block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct,
row_offsets, ri)
for col_index, k in enumerate(row):
value = sdp.F.data[ri][col_index]
F[k][i, j] = value
F[k][j, i] = value
nonzero_set.add(k)
if bs > 1:
sum_ = sum(F[k] * x[k - 1] for k in nonzero_set if k > 0)
if not isinstance(sum_, (int, float)):
if F[0].getnnz() > 0:
sum_ += F[0]
constraints.append(sum_ >> 0)
else:
sum_ = sum(F[k][0, 0] * x[k - 1] for k in nonzero_set if k > 0)
if not isinstance(sum_, (int, float)):
sum_ += F[0][0, 0]
constraints.append(sum_ >= 0)
obj = sum(ci * xi for ci, xi in zip(sdp.obj_facvar, x) if ci != 0)
problem = Problem(Minimize(obj), constraints)
return problem
|
convert_to_cvxpy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sdp):\n from cvxpy import Minimize, Problem, Variable\n row_offsets = [0]\n cumulative_sum = 0\n for block_size in sdp.block_struct:\n cumulative_sum += block_size ** 2\n row_offsets.append(cumulative_sum)\n x = Variable(sdp.n_vars)\n constraints = []\n for idx, bs in enumerate(sdp.block_struct):\n nonzero_set = set()\n F = [lil_matrix((bs, bs)) for _ in range(sdp.n_vars + 1)]\n for ri, row in enumerate(sdp.F.rows[row_offsets[idx]:row_offsets[\n idx + 1]], row_offsets[idx]):\n block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct,\n row_offsets, ri)\n for col_index, k in enumerate(row):\n value = sdp.F.data[ri][col_index]\n F[k][i, j] = value\n F[k][j, i] = value\n nonzero_set.add(k)\n if bs > 1:\n sum_ = sum(F[k] * x[k - 1] for k in nonzero_set if k > 0)\n if not isinstance(sum_, (int, float)):\n if F[0].getnnz() > 0:\n sum_ += F[0]\n constraints.append(sum_ >> 0)\n else:\n sum_ = sum(F[k][0, 0] * x[k - 1] for k in nonzero_set if k > 0)\n if not isinstance(sum_, (int, float)):\n sum_ += F[0][0, 0]\n constraints.append(sum_ >= 0)\n obj = sum(ci * xi for ci, xi in zip(sdp.obj_facvar, x) if ci != 0)\n problem = Problem(Minimize(obj), constraints)\n return problem\n",
"role": "user"
},
{
"content": "convert_to_cvxpy",
"role": "assistant"
}
] |
def x(index, lattice_length, width=0, periodic=False):
if width == 0:
width = lattice_length
neighbors = []
coords = divmod(index, width)
if coords[1] < width - 1:
neighbors.append(index + 1)
elif periodic and width > 1:
neighbors.append(index - width + 1)
if coords[0] < lattice_length - 1:
neighbors.append(index + width)
elif periodic:
neighbors.append(index - (lattice_length - 1) * width)
return neighbors
|
get_neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index, lattice_length, width=0, periodic=False):\n if width == 0:\n width = lattice_length\n neighbors = []\n coords = divmod(index, width)\n if coords[1] < width - 1:\n neighbors.append(index + 1)\n elif periodic and width > 1:\n neighbors.append(index - width + 1)\n if coords[0] < lattice_length - 1:\n neighbors.append(index + width)\n elif periodic:\n neighbors.append(index - (lattice_length - 1) * width)\n return neighbors\n",
"role": "user"
},
{
"content": "get_neighbors",
"role": "assistant"
}
] |
def x(indices, lattice_length, width=0, distance=1, periodic=False):
if not isinstance(indices, list):
indices = [indices]
if distance == 1:
return flatten(get_neighbors(index, lattice_length, width, periodic
) for index in indices)
else:
s1 = set(flatten(get_next_neighbors(get_neighbors(index,
lattice_length, width, periodic), lattice_length, width,
distance - 1, periodic) for index in indices))
s2 = set(get_next_neighbors(indices, lattice_length, width,
distance - 1, periodic))
return list(s1 - s2)
|
get_next_neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(indices, lattice_length, width=0, distance=1, periodic=False):\n if not isinstance(indices, list):\n indices = [indices]\n if distance == 1:\n return flatten(get_neighbors(index, lattice_length, width, periodic\n ) for index in indices)\n else:\n s1 = set(flatten(get_next_neighbors(get_neighbors(index,\n lattice_length, width, periodic), lattice_length, width, \n distance - 1, periodic) for index in indices))\n s2 = set(get_next_neighbors(indices, lattice_length, width, \n distance - 1, periodic))\n return list(s1 - s2)\n",
"role": "user"
},
{
"content": "get_next_neighbors",
"role": "assistant"
}
] |
def x(a):
substitutions = {}
for i, ai in enumerate(a):
substitutions[ai * Dagger(ai)] = 1.0 + Dagger(ai) * ai
for aj in a[i + 1:]:
substitutions[ai * Dagger(aj)] = Dagger(aj) * ai
substitutions[Dagger(ai) * aj] = aj * Dagger(ai)
substitutions[ai * aj] = aj * ai
substitutions[Dagger(ai) * Dagger(aj)] = Dagger(aj) * Dagger(ai)
return substitutions
|
bosonic_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n substitutions = {}\n for i, ai in enumerate(a):\n substitutions[ai * Dagger(ai)] = 1.0 + Dagger(ai) * ai\n for aj in a[i + 1:]:\n substitutions[ai * Dagger(aj)] = Dagger(aj) * ai\n substitutions[Dagger(ai) * aj] = aj * Dagger(ai)\n substitutions[ai * aj] = aj * ai\n substitutions[Dagger(ai) * Dagger(aj)] = Dagger(aj) * Dagger(ai)\n return substitutions\n",
"role": "user"
},
{
"content": "bosonic_constraints",
"role": "assistant"
}
] |
def x(a):
substitutions = {}
for i, ai in enumerate(a):
substitutions[ai ** 2] = 0
substitutions[Dagger(ai) ** 2] = 0
substitutions[ai * Dagger(ai)] = 1.0 - Dagger(ai) * ai
for aj in a[i + 1:]:
substitutions[ai * Dagger(aj)] = -Dagger(aj) * ai
substitutions[Dagger(ai) * aj] = -aj * Dagger(ai)
substitutions[ai * aj] = -aj * ai
substitutions[Dagger(ai) * Dagger(aj)] = -Dagger(aj) * Dagger(ai)
return substitutions
|
fermionic_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n substitutions = {}\n for i, ai in enumerate(a):\n substitutions[ai ** 2] = 0\n substitutions[Dagger(ai) ** 2] = 0\n substitutions[ai * Dagger(ai)] = 1.0 - Dagger(ai) * ai\n for aj in a[i + 1:]:\n substitutions[ai * Dagger(aj)] = -Dagger(aj) * ai\n substitutions[Dagger(ai) * aj] = -aj * Dagger(ai)\n substitutions[ai * aj] = -aj * ai\n substitutions[Dagger(ai) * Dagger(aj)] = -Dagger(aj) * Dagger(ai)\n return substitutions\n",
"role": "user"
},
{
"content": "fermionic_constraints",
"role": "assistant"
}
] |
def x(X, Y, Z):
substitutions = {}
n_vars = len(X)
for i in range(n_vars):
substitutions[X[i] * X[i]] = 1
substitutions[Y[i] * Y[i]] = 1
substitutions[Z[i] * Z[i]] = 1
substitutions[Y[i] * X[i]] = -X[i] * Y[i]
substitutions[Z[i] * X[i]] = -X[i] * Z[i]
substitutions[Z[i] * Y[i]] = -Y[i] * Z[i]
for j in range(i + 1, n_vars):
substitutions[X[j] * X[i]] = X[i] * X[j]
substitutions[Y[j] * Y[i]] = Y[i] * Y[j]
substitutions[Y[j] * X[i]] = X[i] * Y[j]
substitutions[Y[i] * X[j]] = X[j] * Y[i]
substitutions[Z[j] * Z[i]] = Z[i] * Z[j]
substitutions[Z[j] * X[i]] = X[i] * Z[j]
substitutions[Z[i] * X[j]] = X[j] * Z[i]
substitutions[Z[j] * Y[i]] = Y[i] * Z[j]
substitutions[Z[i] * Y[j]] = Y[j] * Z[i]
return substitutions
|
pauli_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, Y, Z):\n substitutions = {}\n n_vars = len(X)\n for i in range(n_vars):\n substitutions[X[i] * X[i]] = 1\n substitutions[Y[i] * Y[i]] = 1\n substitutions[Z[i] * Z[i]] = 1\n substitutions[Y[i] * X[i]] = -X[i] * Y[i]\n substitutions[Z[i] * X[i]] = -X[i] * Z[i]\n substitutions[Z[i] * Y[i]] = -Y[i] * Z[i]\n for j in range(i + 1, n_vars):\n substitutions[X[j] * X[i]] = X[i] * X[j]\n substitutions[Y[j] * Y[i]] = Y[i] * Y[j]\n substitutions[Y[j] * X[i]] = X[i] * Y[j]\n substitutions[Y[i] * X[j]] = X[j] * Y[i]\n substitutions[Z[j] * Z[i]] = Z[i] * Z[j]\n substitutions[Z[j] * X[i]] = X[i] * Z[j]\n substitutions[Z[i] * X[j]] = X[j] * Z[i]\n substitutions[Z[j] * Y[i]] = Y[i] * Z[j]\n substitutions[Z[i] * Y[j]] = Y[j] * Z[i]\n return substitutions\n",
"role": "user"
},
{
"content": "pauli_constraints",
"role": "assistant"
}
] |
def x(party, label):
measurements = []
for i in range(len(party)):
measurements.append(generate_operators(label + '%s' % i, party[i] -
1, hermitian=True))
return measurements
|
generate_measurements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(party, label):\n measurements = []\n for i in range(len(party)):\n measurements.append(generate_operators(label + '%s' % i, party[i] -\n 1, hermitian=True))\n return measurements\n",
"role": "user"
},
{
"content": "generate_measurements",
"role": "assistant"
}
] |
def x(*parties):
substitutions = {}
if isinstance(parties[0][0][0], list):
parties = parties[0]
for party in parties:
for measurement in party:
for projector1 in measurement:
for projector2 in measurement:
if projector1 == projector2:
substitutions[projector1 ** 2] = projector1
else:
substitutions[projector1 * projector2] = 0
substitutions[projector2 * projector1] = 0
for n1 in range(len(parties)):
for n2 in range(n1 + 1, len(parties)):
for measurement1 in parties[n1]:
for measurement2 in parties[n2]:
for projector1 in measurement1:
for projector2 in measurement2:
substitutions[projector2 * projector1
] = projector1 * projector2
return substitutions
|
projective_measurement_constraints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*parties):\n substitutions = {}\n if isinstance(parties[0][0][0], list):\n parties = parties[0]\n for party in parties:\n for measurement in party:\n for projector1 in measurement:\n for projector2 in measurement:\n if projector1 == projector2:\n substitutions[projector1 ** 2] = projector1\n else:\n substitutions[projector1 * projector2] = 0\n substitutions[projector2 * projector1] = 0\n for n1 in range(len(parties)):\n for n2 in range(n1 + 1, len(parties)):\n for measurement1 in parties[n1]:\n for measurement2 in parties[n2]:\n for projector1 in measurement1:\n for projector2 in measurement2:\n substitutions[projector2 * projector1\n ] = projector1 * projector2\n return substitutions\n",
"role": "user"
},
{
"content": "projective_measurement_constraints",
"role": "assistant"
}
] |
def x(I, *args):
objective = I[0][0]
if len(args) > 2 or len(args) == 0:
raise Exception('Wrong number of arguments!')
elif len(args) == 1:
A = args[0].parties[0]
B = args[0].parties[1]
else:
A = args[0]
B = args[1]
i, j = 0, 1
for m_Bj in B:
for Bj in m_Bj:
objective += I[i][j] * Bj
j += 1
i += 1
for m_Ai in A:
for Ai in m_Ai:
objective += I[i][0] * Ai
j = 1
for m_Bj in B:
for Bj in m_Bj:
objective += I[i][j] * Ai * Bj
j += 1
i += 1
return -objective
|
define_objective_with_I
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(I, *args):\n objective = I[0][0]\n if len(args) > 2 or len(args) == 0:\n raise Exception('Wrong number of arguments!')\n elif len(args) == 1:\n A = args[0].parties[0]\n B = args[0].parties[1]\n else:\n A = args[0]\n B = args[1]\n i, j = 0, 1\n for m_Bj in B:\n for Bj in m_Bj:\n objective += I[i][j] * Bj\n j += 1\n i += 1\n for m_Ai in A:\n for Ai in m_Ai:\n objective += I[i][0] * Ai\n j = 1\n for m_Bj in B:\n for Bj in m_Bj:\n objective += I[i][j] * Ai * Bj\n j += 1\n i += 1\n return -objective\n",
"role": "user"
},
{
"content": "define_objective_with_I",
"role": "assistant"
}
] |
def x(A, B):
correlators = []
for i in range(len(A)):
correlator_row = []
for j in range(len(B)):
corr = 0
for k in range(len(A[i])):
for l in range(len(B[j])):
if k == l:
corr += A[i][k] * B[j][l]
else:
corr -= A[i][k] * B[j][l]
correlator_row.append(corr)
correlators.append(correlator_row)
return correlators
|
correlator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(A, B):\n correlators = []\n for i in range(len(A)):\n correlator_row = []\n for j in range(len(B)):\n corr = 0\n for k in range(len(A[i])):\n for l in range(len(B[j])):\n if k == l:\n corr += A[i][k] * B[j][l]\n else:\n corr -= A[i][k] * B[j][l]\n correlator_row.append(corr)\n correlators.append(correlator_row)\n return correlators\n",
"role": "user"
},
{
"content": "correlator",
"role": "assistant"
}
] |
def x(A_configuration, B_configuration, I, level, extra=None):
P = Probability(A_configuration, B_configuration)
objective = define_objective_with_I(I, P)
if extra is None:
extramonomials = []
else:
extramonomials = P.get_extra_monomials(extra)
sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0)
sdpRelaxation.get_relaxation(level, objective=objective, substitutions=
P.substitutions, extramonomials=extramonomials)
solve_sdp(sdpRelaxation)
return sdpRelaxation.primal, sdpRelaxation.dual
|
maximum_violation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(A_configuration, B_configuration, I, level, extra=None):\n P = Probability(A_configuration, B_configuration)\n objective = define_objective_with_I(I, P)\n if extra is None:\n extramonomials = []\n else:\n extramonomials = P.get_extra_monomials(extra)\n sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0)\n sdpRelaxation.get_relaxation(level, objective=objective, substitutions=\n P.substitutions, extramonomials=extramonomials)\n solve_sdp(sdpRelaxation)\n return sdpRelaxation.primal, sdpRelaxation.dual\n",
"role": "user"
},
{
"content": "maximum_violation",
"role": "assistant"
}
] |
def x(d):
inner = ', '.join('{}: {}'.format(repr(k)[1:] if repr(k).startswith(
u"u'") or repr(k).startswith(u'u"') else repr(k), v) for k, v in
sorted(d.items()))
return '{%s}' % inner
|
stable_format_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n inner = ', '.join('{}: {}'.format(repr(k)[1:] if repr(k).startswith(\n u\"u'\") or repr(k).startswith(u'u\"') else repr(k), v) for k, v in\n sorted(d.items()))\n return '{%s}' % inner\n",
"role": "user"
},
{
"content": "stable_format_dict",
"role": "assistant"
}
] |
def x(a, b, x, y):
if b <= x or a >= y:
return 0
elif x <= a <= y:
return min(b, y) - a
elif x <= b <= y:
return b - max(a, x)
elif a >= x and b <= y:
return b - a
else:
assert False
|
interval_overlap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, x, y):\n if b <= x or a >= y:\n return 0\n elif x <= a <= y:\n return min(b, y) - a\n elif x <= b <= y:\n return b - max(a, x)\n elif a >= x and b <= y:\n return b - a\n else:\n assert False\n",
"role": "user"
},
{
"content": "interval_overlap",
"role": "assistant"
}
] |
def x(s, start, end, replacement_char=u' '):
divides = [0]
for c in s:
divides.append(divides[-1] + wcswidth(c))
new_chunk_chars = []
for char, char_start, char_end in zip(s, divides[:-1], divides[1:]):
if char_start == start and char_end == start:
continue
elif char_start >= start and char_end <= end:
new_chunk_chars.append(char)
else:
new_chunk_chars.extend(replacement_char * interval_overlap(
char_start, char_end, start, end))
return ''.join(new_chunk_chars)
|
width_aware_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, start, end, replacement_char=u' '):\n divides = [0]\n for c in s:\n divides.append(divides[-1] + wcswidth(c))\n new_chunk_chars = []\n for char, char_start, char_end in zip(s, divides[:-1], divides[1:]):\n if char_start == start and char_end == start:\n continue\n elif char_start >= start and char_end <= end:\n new_chunk_chars.append(char)\n else:\n new_chunk_chars.extend(replacement_char * interval_overlap(\n char_start, char_end, start, end))\n return ''.join(new_chunk_chars)\n",
"role": "user"
},
{
"content": "width_aware_slice",
"role": "assistant"
}
] |
def x(string, columns):
if not isinstance(string, FmtStr):
string = fmtstr(string)
string_s = string.s
matches = list(re.finditer('\\s+', string_s))
spaces = [string[m.start():m.end()] for m in matches if m.start() != 0 and
m.end() != len(string_s)]
words = [string[start:end] for start, end in zip([0] + [m.end() for m in
matches], [m.start() for m in matches] + [len(string_s)]) if start !=
end]
word_to_lines = lambda word: [word[columns * i:columns * (i + 1)] for i in
range((len(word) - 1) // columns + 1)]
lines = word_to_lines(words[0])
for word, space in zip(words[1:], spaces):
if len(lines[-1]) + len(word) < columns:
lines[-1] += fmtstr(' ', **space.shared_atts)
lines[-1] += word
else:
lines.extend(word_to_lines(word))
return lines
|
linesplit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, columns):\n if not isinstance(string, FmtStr):\n string = fmtstr(string)\n string_s = string.s\n matches = list(re.finditer('\\\\s+', string_s))\n spaces = [string[m.start():m.end()] for m in matches if m.start() != 0 and\n m.end() != len(string_s)]\n words = [string[start:end] for start, end in zip([0] + [m.end() for m in\n matches], [m.start() for m in matches] + [len(string_s)]) if start !=\n end]\n word_to_lines = lambda word: [word[columns * i:columns * (i + 1)] for i in\n range((len(word) - 1) // columns + 1)]\n lines = word_to_lines(words[0])\n for word, space in zip(words[1:], spaces):\n if len(lines[-1]) + len(word) < columns:\n lines[-1] += fmtstr(' ', **space.shared_atts)\n lines[-1] += word\n else:\n lines.extend(word_to_lines(word))\n return lines\n",
"role": "user"
},
{
"content": "linesplit",
"role": "assistant"
}
] |
def x(length, index):
is_int = False
if isinstance(index, int):
is_int = True
index = slice(index, index + 1)
if index.start is None:
index = slice(0, index.stop, index.step)
if index.stop is None:
index = slice(index.start, length, index.step)
if index.start < -1:
index = slice(length - index.start, index.stop, index.step)
if index.stop < -1:
index = slice(index.start, length - index.stop, index.step)
if index.step is not None:
raise NotImplementedError("You can't use steps with slicing yet")
if is_int:
if index.start < 0 or index.start > length:
raise IndexError('index out of bounds: %r for length %s' % (
index, length))
return index
|
normalize_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(length, index):\n is_int = False\n if isinstance(index, int):\n is_int = True\n index = slice(index, index + 1)\n if index.start is None:\n index = slice(0, index.stop, index.step)\n if index.stop is None:\n index = slice(index.start, length, index.step)\n if index.start < -1:\n index = slice(length - index.start, index.stop, index.step)\n if index.stop < -1:\n index = slice(index.start, length - index.stop, index.step)\n if index.step is not None:\n raise NotImplementedError(\"You can't use steps with slicing yet\")\n if is_int:\n if index.start < 0 or index.start > length:\n raise IndexError('index out of bounds: %r for length %s' % (\n index, length))\n return index\n",
"role": "user"
},
{
"content": "normalize_slice",
"role": "assistant"
}
] |
def x(args, kwargs):
if 'style' in kwargs:
args += kwargs['style'],
del kwargs['style']
for arg in args:
if not isinstance(arg, (bytes, unicode)):
raise ValueError('args must be strings:' + repr(args))
if arg.lower() in FG_COLORS:
if 'fg' in kwargs:
raise ValueError('fg specified twice')
kwargs['fg'] = FG_COLORS[arg]
elif arg.lower().startswith('on_') and arg[3:].lower() in BG_COLORS:
if 'bg' in kwargs:
raise ValueError('fg specified twice')
kwargs['bg'] = BG_COLORS[arg[3:]]
elif arg.lower() in STYLES:
kwargs[arg] = True
else:
raise ValueError("couldn't process arg: " + repr(arg))
for k in kwargs:
if k not in ['fg', 'bg'] + list(STYLES.keys()):
raise ValueError("Can't apply that transformation")
if 'fg' in kwargs:
if kwargs['fg'] in FG_COLORS:
kwargs['fg'] = FG_COLORS[kwargs['fg']]
if kwargs['fg'] not in list(FG_COLORS.values()):
raise ValueError('Bad fg value: %r' % kwargs['fg'])
if 'bg' in kwargs:
if kwargs['bg'] in BG_COLORS:
kwargs['bg'] = BG_COLORS[kwargs['bg']]
if kwargs['bg'] not in list(BG_COLORS.values()):
raise ValueError('Bad bg value: %r' % kwargs['bg'])
return kwargs
|
parse_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args, kwargs):\n if 'style' in kwargs:\n args += kwargs['style'],\n del kwargs['style']\n for arg in args:\n if not isinstance(arg, (bytes, unicode)):\n raise ValueError('args must be strings:' + repr(args))\n if arg.lower() in FG_COLORS:\n if 'fg' in kwargs:\n raise ValueError('fg specified twice')\n kwargs['fg'] = FG_COLORS[arg]\n elif arg.lower().startswith('on_') and arg[3:].lower() in BG_COLORS:\n if 'bg' in kwargs:\n raise ValueError('fg specified twice')\n kwargs['bg'] = BG_COLORS[arg[3:]]\n elif arg.lower() in STYLES:\n kwargs[arg] = True\n else:\n raise ValueError(\"couldn't process arg: \" + repr(arg))\n for k in kwargs:\n if k not in ['fg', 'bg'] + list(STYLES.keys()):\n raise ValueError(\"Can't apply that transformation\")\n if 'fg' in kwargs:\n if kwargs['fg'] in FG_COLORS:\n kwargs['fg'] = FG_COLORS[kwargs['fg']]\n if kwargs['fg'] not in list(FG_COLORS.values()):\n raise ValueError('Bad fg value: %r' % kwargs['fg'])\n if 'bg' in kwargs:\n if kwargs['bg'] in BG_COLORS:\n kwargs['bg'] = BG_COLORS[kwargs['bg']]\n if kwargs['bg'] not in list(BG_COLORS.values()):\n raise ValueError('Bad bg value: %r' % kwargs['bg'])\n return kwargs\n",
"role": "user"
},
{
"content": "parse_args",
"role": "assistant"
}
] |
def x(string, *args, **kwargs):
atts = parse_args(args, kwargs)
if isinstance(string, FmtStr):
pass
elif isinstance(string, (bytes, unicode)):
string = FmtStr.from_str(string)
else:
raise ValueError('Bad Args: %r (of type %s), %r, %r' % (string,
type(string), args, kwargs))
return string.copy_with_new_atts(**atts)
|
fmtstr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, *args, **kwargs):\n atts = parse_args(args, kwargs)\n if isinstance(string, FmtStr):\n pass\n elif isinstance(string, (bytes, unicode)):\n string = FmtStr.from_str(string)\n else:\n raise ValueError('Bad Args: %r (of type %s), %r, %r' % (string,\n type(string), args, kwargs))\n return string.copy_with_new_atts(**atts)\n",
"role": "user"
},
{
"content": "fmtstr",
"role": "assistant"
}
] |
def x(self):
s = self.s
for k, v in sorted(self.atts.items()):
if k not in xforms:
continue
elif v is False:
continue
elif v is True:
s = xforms[k](s)
else:
s = xforms[k](s, v)
return s
|
color_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n s = self.s\n for k, v in sorted(self.atts.items()):\n if k not in xforms:\n continue\n elif v is False:\n continue\n elif v is True:\n s = xforms[k](s)\n else:\n s = xforms[k](s, v)\n return s\n",
"role": "user"
},
{
"content": "color_str",
"role": "assistant"
}
] |
def x(self):
def x(att):
if att == 'fg':
return FG_NUMBER_TO_COLOR[self.atts[att]]
elif att == 'bg':
return 'on_' + BG_NUMBER_TO_COLOR[self.atts[att]]
else:
return att
atts_out = dict((k, v) for k, v in self.atts.items() if v)
return ''.join(pp_att(att) + '(' for att in sorted(atts_out)) + (repr(
self.s) if PY3 else repr(self.s)[1:]) + ')' * len(atts_out)
|
repr_part
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(att):\n if att == 'fg':\n return FG_NUMBER_TO_COLOR[self.atts[att]]\n elif att == 'bg':\n return 'on_' + BG_NUMBER_TO_COLOR[self.atts[att]]\n else:\n return att\n atts_out = dict((k, v) for k, v in self.atts.items() if v)\n return ''.join(pp_att(att) + '(' for att in sorted(atts_out)) + (repr(\n self.s) if PY3 else repr(self.s)[1:]) + ')' * len(atts_out)\n",
"role": "user"
},
{
"content": "repr_part",
"role": "assistant"
}
] |
def x(self, max_width):
if max_width < 1:
raise ValueError('requires positive integer max_width')
s = self.chunk.s
length = len(s)
if self.internal_offset == len(s):
return None
width = 0
start_offset = i = self.internal_offset
replacement_char = u' '
while True:
w = wcswidth(s[i])
if width + w > max_width:
self.internal_offset = i
self.internal_width += width
if width < max_width:
assert width + 1 == max_width, 'unicode character width of more than 2!?!'
assert w == 2, 'unicode character of width other than 2?'
return width + 1, Chunk(s[start_offset:self.internal_offset
] + replacement_char, atts=self.chunk.atts)
return width, Chunk(s[start_offset:self.internal_offset], atts=
self.chunk.atts)
width += w
if i + 1 == length:
self.internal_offset = i + 1
self.internal_width += width
return width, Chunk(s[start_offset:self.internal_offset], atts=
self.chunk.atts)
i += 1
|
request
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_width):\n if max_width < 1:\n raise ValueError('requires positive integer max_width')\n s = self.chunk.s\n length = len(s)\n if self.internal_offset == len(s):\n return None\n width = 0\n start_offset = i = self.internal_offset\n replacement_char = u' '\n while True:\n w = wcswidth(s[i])\n if width + w > max_width:\n self.internal_offset = i\n self.internal_width += width\n if width < max_width:\n assert width + 1 == max_width, 'unicode character width of more than 2!?!'\n assert w == 2, 'unicode character of width other than 2?'\n return width + 1, Chunk(s[start_offset:self.internal_offset\n ] + replacement_char, atts=self.chunk.atts)\n return width, Chunk(s[start_offset:self.internal_offset], atts=\n self.chunk.atts)\n width += w\n if i + 1 == length:\n self.internal_offset = i + 1\n self.internal_width += width\n return width, Chunk(s[start_offset:self.internal_offset], atts=\n self.chunk.atts)\n i += 1\n",
"role": "user"
},
{
"content": "request",
"role": "assistant"
}
] |
def x(cls, s):
if '\x1b[' in s:
try:
tokens_and_strings = parse(s)
except ValueError:
return FmtStr(Chunk(remove_ansi(s)))
else:
chunks = []
cur_fmt = {}
for x in tokens_and_strings:
if isinstance(x, dict):
cur_fmt.update(x)
elif isinstance(x, (bytes, unicode)):
atts = parse_args('', dict((k, v) for k, v in cur_fmt.
items() if v is not None))
chunks.append(Chunk(x, atts=atts))
else:
raise Exception('logic error')
return FmtStr(*chunks)
else:
return FmtStr(Chunk(s))
|
from_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, s):\n if '\\x1b[' in s:\n try:\n tokens_and_strings = parse(s)\n except ValueError:\n return FmtStr(Chunk(remove_ansi(s)))\n else:\n chunks = []\n cur_fmt = {}\n for x in tokens_and_strings:\n if isinstance(x, dict):\n cur_fmt.update(x)\n elif isinstance(x, (bytes, unicode)):\n atts = parse_args('', dict((k, v) for k, v in cur_fmt.\n items() if v is not None))\n chunks.append(Chunk(x, atts=atts))\n else:\n raise Exception('logic error')\n return FmtStr(*chunks)\n else:\n return FmtStr(Chunk(s))\n",
"role": "user"
},
{
"content": "from_str",
"role": "assistant"
}
] |
def x(self, new_str):
old_atts = dict((att, value) for bfs in self.chunks for att, value in
bfs.atts.items())
return FmtStr(Chunk(new_str, old_atts))
|
copy_with_new_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_str):\n old_atts = dict((att, value) for bfs in self.chunks for att, value in\n bfs.atts.items())\n return FmtStr(Chunk(new_str, old_atts))\n",
"role": "user"
},
{
"content": "copy_with_new_str",
"role": "assistant"
}
] |
def x(self, startindex, fs):
return self.setslice_with_length(startindex, startindex + 1, fs, len(self))
|
setitem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startindex, fs):\n return self.setslice_with_length(startindex, startindex + 1, fs, len(self))\n",
"role": "user"
},
{
"content": "setitem",
"role": "assistant"
}
] |
def x(self, startindex, endindex, fs, length):
if len(self) < startindex:
fs = ' ' * (startindex - len(self)) + fs
if len(self) > endindex:
fs = fs + ' ' * (endindex - startindex - len(fs))
assert len(fs) == endindex - startindex, (len(fs), startindex, endindex
)
result = self.splice(fs, startindex, endindex)
assert len(result) <= length
return result
|
setslice_with_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startindex, endindex, fs, length):\n if len(self) < startindex:\n fs = ' ' * (startindex - len(self)) + fs\n if len(self) > endindex:\n fs = fs + ' ' * (endindex - startindex - len(fs))\n assert len(fs) == endindex - startindex, (len(fs), startindex, endindex\n )\n result = self.splice(fs, startindex, endindex)\n assert len(result) <= length\n return result\n",
"role": "user"
},
{
"content": "setslice_with_length",
"role": "assistant"
}
] |
def x(self, new_str, start, end=None):
if len(new_str) == 0:
return self
new_fs = new_str if isinstance(new_str, FmtStr) else fmtstr(new_str)
assert len(new_fs.chunks) > 0, (new_fs.chunks, new_fs)
new_components = []
inserted = False
if end is None:
end = start
tail = None
for bfs, bfs_start, bfs_end in zip(self.chunks, self.divides[:-1], self
.divides[1:]):
if end == bfs_start == 0:
new_components.extend(new_fs.chunks)
new_components.append(bfs)
inserted = True
elif bfs_start <= start < bfs_end:
divide = start - bfs_start
head = Chunk(bfs.s[:divide], atts=bfs.atts)
tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)
new_components.extend([head] + new_fs.chunks)
inserted = True
if bfs_start < end < bfs_end:
tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)
new_components.append(tail)
elif bfs_start < end < bfs_end:
divide = start - bfs_start
tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)
new_components.append(tail)
elif bfs_start >= end or bfs_end <= start:
new_components.append(bfs)
if not inserted:
new_components.extend(new_fs.chunks)
inserted = True
return FmtStr(*[s for s in new_components if s.s])
|
splice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_str, start, end=None):\n if len(new_str) == 0:\n return self\n new_fs = new_str if isinstance(new_str, FmtStr) else fmtstr(new_str)\n assert len(new_fs.chunks) > 0, (new_fs.chunks, new_fs)\n new_components = []\n inserted = False\n if end is None:\n end = start\n tail = None\n for bfs, bfs_start, bfs_end in zip(self.chunks, self.divides[:-1], self\n .divides[1:]):\n if end == bfs_start == 0:\n new_components.extend(new_fs.chunks)\n new_components.append(bfs)\n inserted = True\n elif bfs_start <= start < bfs_end:\n divide = start - bfs_start\n head = Chunk(bfs.s[:divide], atts=bfs.atts)\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.extend([head] + new_fs.chunks)\n inserted = True\n if bfs_start < end < bfs_end:\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.append(tail)\n elif bfs_start < end < bfs_end:\n divide = start - bfs_start\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.append(tail)\n elif bfs_start >= end or bfs_end <= start:\n new_components.append(bfs)\n if not inserted:\n new_components.extend(new_fs.chunks)\n inserted = True\n return FmtStr(*[s for s in new_components if s.s])\n",
"role": "user"
},
{
"content": "splice",
"role": "assistant"
}
] |
def x(self, **attributes):
return FmtStr(*[Chunk(bfs.s, bfs.atts.extend(attributes)) for bfs in
self.chunks])
|
copy_with_new_atts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **attributes):\n return FmtStr(*[Chunk(bfs.s, bfs.atts.extend(attributes)) for bfs in\n self.chunks])\n",
"role": "user"
},
{
"content": "copy_with_new_atts",
"role": "assistant"
}
] |
def x(self, iterable):
before = []
chunks = []
for i, s in enumerate(iterable):
chunks.extend(before)
before = self.chunks
if isinstance(s, FmtStr):
chunks.extend(s.chunks)
elif isinstance(s, (bytes, unicode)):
chunks.extend(fmtstr(s).chunks)
else:
raise TypeError('expected str or FmtStr, %r found' % type(s))
return FmtStr(*chunks)
|
join
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, iterable):\n before = []\n chunks = []\n for i, s in enumerate(iterable):\n chunks.extend(before)\n before = self.chunks\n if isinstance(s, FmtStr):\n chunks.extend(s.chunks)\n elif isinstance(s, (bytes, unicode)):\n chunks.extend(fmtstr(s).chunks)\n else:\n raise TypeError('expected str or FmtStr, %r found' % type(s))\n return FmtStr(*chunks)\n",
"role": "user"
},
{
"content": "join",
"role": "assistant"
}
] |
def x(self, sep=None, maxsplit=None, regex=False):
if maxsplit is not None:
raise NotImplementedError('no maxsplit yet')
s = self.s
if sep is None:
sep = '\\s+'
elif not regex:
sep = re.escape(sep)
matches = list(re.finditer(sep, s))
return [self[start:end] for start, end in zip([0] + [m.end() for m in
matches], [m.start() for m in matches] + [len(s)])]
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sep=None, maxsplit=None, regex=False):\n if maxsplit is not None:\n raise NotImplementedError('no maxsplit yet')\n s = self.s\n if sep is None:\n sep = '\\\\s+'\n elif not regex:\n sep = re.escape(sep)\n matches = list(re.finditer(sep, s))\n return [self[start:end] for start, end in zip([0] + [m.end() for m in\n matches], [m.start() for m in matches] + [len(s)])]\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(self, keepends=False):
lines = self.split('\n')
return [(line + '\n') for line in lines] if keepends else lines if lines[-1
] else lines[:-1]
|
splitlines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keepends=False):\n lines = self.split('\\n')\n return [(line + '\\n') for line in lines] if keepends else lines if lines[-1\n ] else lines[:-1]\n",
"role": "user"
},
{
"content": "splitlines",
"role": "assistant"
}
] |
def x(self, width, fillchar=None):
if fillchar is not None:
return fmtstr(self.s.ljust(width, fillchar), **self.shared_atts)
to_add = ' ' * (width - len(self.s))
shared = self.shared_atts
if 'bg' in shared:
return self + fmtstr(to_add, bg=shared[str('bg')]) if to_add else self
else:
uniform = self.new_with_atts_removed('bg')
return uniform + fmtstr(to_add, **self.shared_atts
) if to_add else uniform
|
ljust
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, width, fillchar=None):\n if fillchar is not None:\n return fmtstr(self.s.ljust(width, fillchar), **self.shared_atts)\n to_add = ' ' * (width - len(self.s))\n shared = self.shared_atts\n if 'bg' in shared:\n return self + fmtstr(to_add, bg=shared[str('bg')]) if to_add else self\n else:\n uniform = self.new_with_atts_removed('bg')\n return uniform + fmtstr(to_add, **self.shared_atts\n ) if to_add else uniform\n",
"role": "user"
},
{
"content": "ljust",
"role": "assistant"
}
] |
def x(self):
if self._width is not None:
return self._width
self._width = sum(fs.width for fs in self.chunks)
return self._width
|
width
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._width is not None:\n return self._width\n self._width = sum(fs.width for fs in self.chunks)\n return self._width\n",
"role": "user"
},
{
"content": "width",
"role": "assistant"
}
] |
def x(self, n):
width = wcswidth(self.s[:n])
assert width != -1
return width
|
width_at_offset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n width = wcswidth(self.s[:n])\n assert width != -1\n return width\n",
"role": "user"
},
{
"content": "width_at_offset",
"role": "assistant"
}
] |
def x(self):
atts = {}
first = self.chunks[0]
for att in sorted(first.atts):
if all(fs.atts.get(att, '???') == first.atts[att] for fs in self.
chunks if len(fs) > 0):
atts[att] = first.atts[att]
return atts
|
shared_atts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n atts = {}\n first = self.chunks[0]\n for att in sorted(first.atts):\n if all(fs.atts.get(att, '???') == first.atts[att] for fs in self.\n chunks if len(fs) > 0):\n atts[att] = first.atts[att]\n return atts\n",
"role": "user"
},
{
"content": "shared_atts",
"role": "assistant"
}
] |
def x(self, *attributes):
return FmtStr(*[Chunk(bfs.s, bfs.atts.remove(*attributes)) for bfs in
self.chunks])
|
new_with_atts_removed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *attributes):\n return FmtStr(*[Chunk(bfs.s, bfs.atts.remove(*attributes)) for bfs in\n self.chunks])\n",
"role": "user"
},
{
"content": "new_with_atts_removed",
"role": "assistant"
}
] |
def x(self):
acc = [0]
for s in self.chunks:
acc.append(acc[-1] + len(s))
return acc
|
divides
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n acc = [0]\n for s in self.chunks:\n acc.append(acc[-1] + len(s))\n return acc\n",
"role": "user"
},
{
"content": "divides",
"role": "assistant"
}
] |
def x(self, index):
if wcswidth(self.s) == -1:
raise ValueError('bad values for width aware slicing')
index = normalize_slice(self.width, index)
counter = 0
parts = []
for chunk in self.chunks:
if index.start < counter + chunk.width and index.stop > counter:
start = max(0, index.start - counter)
end = min(index.stop - counter, chunk.width)
if end - start == chunk.width:
parts.append(chunk)
else:
s_part = width_aware_slice(chunk.s, max(0, index.start -
counter), index.stop - counter)
parts.append(Chunk(s_part, chunk.atts))
counter += chunk.width
if index.stop < counter:
break
return FmtStr(*parts) if parts else fmtstr('')
|
width_aware_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n if wcswidth(self.s) == -1:\n raise ValueError('bad values for width aware slicing')\n index = normalize_slice(self.width, index)\n counter = 0\n parts = []\n for chunk in self.chunks:\n if index.start < counter + chunk.width and index.stop > counter:\n start = max(0, index.start - counter)\n end = min(index.stop - counter, chunk.width)\n if end - start == chunk.width:\n parts.append(chunk)\n else:\n s_part = width_aware_slice(chunk.s, max(0, index.start -\n counter), index.stop - counter)\n parts.append(Chunk(s_part, chunk.atts))\n counter += chunk.width\n if index.stop < counter:\n break\n return FmtStr(*parts) if parts else fmtstr('')\n",
"role": "user"
},
{
"content": "width_aware_slice",
"role": "assistant"
}
] |
def x(self, columns):
if columns < 2:
raise ValueError('Column width %s is too narrow.' % columns)
if wcswidth(self.s) == -1:
raise ValueError('bad values for width aware slicing')
return self._width_aware_splitlines(columns)
|
width_aware_splitlines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, columns):\n if columns < 2:\n raise ValueError('Column width %s is too narrow.' % columns)\n if wcswidth(self.s) == -1:\n raise ValueError('bad values for width aware slicing')\n return self._width_aware_splitlines(columns)\n",
"role": "user"
},
{
"content": "width_aware_splitlines",
"role": "assistant"
}
] |
def x(self, index):
index = normalize_slice(len(self), index)
counter = 0
output = ''
for fs in self.chunks:
if index.start < counter + len(fs) and index.stop > counter:
s_part = fs.s[max(0, index.start - counter):index.stop - counter]
piece = Chunk(s_part, fs.atts).color_str
output += piece
counter += len(fs)
if index.stop < counter:
break
return fmtstr(output)
|
getitem_normalized
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n index = normalize_slice(len(self), index)\n counter = 0\n output = ''\n for fs in self.chunks:\n if index.start < counter + len(fs) and index.stop > counter:\n s_part = fs.s[max(0, index.start - counter):index.stop - counter]\n piece = Chunk(s_part, fs.atts).color_str\n output += piece\n counter += len(fs)\n if index.stop < counter:\n break\n return fmtstr(output)\n",
"role": "user"
},
{
"content": "getitem_normalized",
"role": "assistant"
}
] |
def x(self, inequalities, equalities, momentinequalities, momentequalities,
extramomentmatrix, removeequalities, block_struct=None):
block_struct = []
if self.verbose > 0:
print('Calculating block structure...')
block_struct.append(len(self.monomial_sets[0]) * len(self.monomial_sets[1])
)
if extramomentmatrix is not None:
for _ in extramomentmatrix:
block_struct.append(len(self.monomial_sets[0]) * len(self.
monomial_sets[1]))
super(MoroderHierarchy, self)._calculate_block_structure(inequalities,
equalities, momentinequalities, momentequalities, extramomentmatrix,
removeequalities, block_struct=block_struct)
|
calculate_block_structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n block_struct = []\n if self.verbose > 0:\n print('Calculating block structure...')\n block_struct.append(len(self.monomial_sets[0]) * len(self.monomial_sets[1])\n )\n if extramomentmatrix is not None:\n for _ in extramomentmatrix:\n block_struct.append(len(self.monomial_sets[0]) * len(self.\n monomial_sets[1]))\n super(MoroderHierarchy, self)._calculate_block_structure(inequalities,\n equalities, momentinequalities, momentequalities, extramomentmatrix,\n removeequalities, block_struct=block_struct)\n",
"role": "user"
},
{
"content": "calculate_block_structure",
"role": "assistant"
}
] |
def x():
time.sleep(1)
with Input() as input_generator:
for e in input_generator:
print(repr(e))
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n time.sleep(1)\n with Input() as input_generator:\n for e in input_generator:\n print(repr(e))\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self, monomial, n_vars):
coeff, monomial = monomial.as_coeff_Mul()
k = 0
conjugate = False
try:
k = self.monomial_index[monomial]
except KeyError:
daggered_monomial = apply_substitutions(Dagger(monomial), self.
substitutions, self.pure_substitution_rules)
try:
k = self.monomial_index[daggered_monomial]
conjugate = True
except KeyError:
k = n_vars + 1
self.monomial_index[monomial] = k
if conjugate:
k = -k
return k, coeff
|
process_monomial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, monomial, n_vars):\n coeff, monomial = monomial.as_coeff_Mul()\n k = 0\n conjugate = False\n try:\n k = self.monomial_index[monomial]\n except KeyError:\n daggered_monomial = apply_substitutions(Dagger(monomial), self.\n substitutions, self.pure_substitution_rules)\n try:\n k = self.monomial_index[daggered_monomial]\n conjugate = True\n except KeyError:\n k = n_vars + 1\n self.monomial_index[monomial] = k\n if conjugate:\n k = -k\n return k, coeff\n",
"role": "user"
},
{
"content": "process_monomial",
"role": "assistant"
}
] |
def x(self, polynomial):
facvar = [0] * (self.n_vars + 1)
F = {}
for i in range(self.matrix_var_dim):
for j in range(self.matrix_var_dim):
for key, value in polynomial[i, j].as_coefficients_dict().items():
skey = apply_substitutions(key, self.substitutions, self.
pure_substitution_rules)
try:
Fk = F[skey]
except KeyError:
Fk = zeros(self.matrix_var_dim, self.matrix_var_dim)
Fk[i, j] += value
F[skey] = Fk
for key, Fk in F.items():
if key == S.One:
k = 1
else:
k = self.monomial_index[key]
for i in range(self.matrix_var_dim):
for j in range(self.matrix_var_dim):
sym_matrix = zeros(self.matrix_var_dim, self.matrix_var_dim)
sym_matrix[i, j] = 1
facvar[k + i * self.matrix_var_dim + j] = (sym_matrix * Fk
).trace()
facvar = [float(f) for f in facvar]
return facvar
|
get_trace_facvar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, polynomial):\n facvar = [0] * (self.n_vars + 1)\n F = {}\n for i in range(self.matrix_var_dim):\n for j in range(self.matrix_var_dim):\n for key, value in polynomial[i, j].as_coefficients_dict().items():\n skey = apply_substitutions(key, self.substitutions, self.\n pure_substitution_rules)\n try:\n Fk = F[skey]\n except KeyError:\n Fk = zeros(self.matrix_var_dim, self.matrix_var_dim)\n Fk[i, j] += value\n F[skey] = Fk\n for key, Fk in F.items():\n if key == S.One:\n k = 1\n else:\n k = self.monomial_index[key]\n for i in range(self.matrix_var_dim):\n for j in range(self.matrix_var_dim):\n sym_matrix = zeros(self.matrix_var_dim, self.matrix_var_dim)\n sym_matrix[i, j] = 1\n facvar[k + i * self.matrix_var_dim + j] = (sym_matrix * Fk\n ).trace()\n facvar = [float(f) for f in facvar]\n return facvar\n",
"role": "user"
},
{
"content": "get_trace_facvar",
"role": "assistant"
}
] |
def x(self, objective, extraobjexpr=None):
if objective is not None and self.matrix_var_dim is not None:
facvar = self.__get_trace_facvar(objective)
self.obj_facvar = facvar[1:]
self.constant_term = facvar[0]
if self.verbose > 0 and facvar[0] != 0:
print(
'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'
% facvar[0])
else:
super(SteeringHierarchy, self).set_objective(objective,
extraobjexpr=extraobjexpr)
|
set_objective
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, objective, extraobjexpr=None):\n if objective is not None and self.matrix_var_dim is not None:\n facvar = self.__get_trace_facvar(objective)\n self.obj_facvar = facvar[1:]\n self.constant_term = facvar[0]\n if self.verbose > 0 and facvar[0] != 0:\n print(\n 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'\n % facvar[0])\n else:\n super(SteeringHierarchy, self).set_objective(objective,\n extraobjexpr=extraobjexpr)\n",
"role": "user"
},
{
"content": "set_objective",
"role": "assistant"
}
] |
def x(self, inequalities, equalities, momentinequalities, momentequalities,
extramomentmatrix, removeequalities, block_struct=None):
super(SteeringHierarchy, self)._calculate_block_structure(inequalities,
equalities, momentinequalities, momentequalities, extramomentmatrix,
removeequalities)
if self.matrix_var_dim is not None:
self.block_struct = [(self.matrix_var_dim * bs) for bs in self.
block_struct]
|
calculate_block_structure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n super(SteeringHierarchy, self)._calculate_block_structure(inequalities,\n equalities, momentinequalities, momentequalities, extramomentmatrix,\n removeequalities)\n if self.matrix_var_dim is not None:\n self.block_struct = [(self.matrix_var_dim * bs) for bs in self.\n block_struct]\n",
"role": "user"
},
{
"content": "calculate_block_structure",
"role": "assistant"
}
] |
def x(self, filename, filetype=None):
if filetype == 'txt' and not filename.endswith('.txt'):
raise Exception('TXT files must have .txt extension!')
elif filetype is None and filename.endswith('.txt'):
filetype = 'txt'
else:
return super(SteeringHierarchy, self).write_to_file(filename,
filetype=filetype)
tempfile_ = tempfile.NamedTemporaryFile()
tmp_filename = tempfile_.name
tempfile_.close()
tmp_dats_filename = tmp_filename + '.dat-s'
write_to_sdpa(self, tmp_dats_filename)
f = open(tmp_dats_filename, 'r')
f.readline()
f.readline()
f.readline()
blocks = f.readline().strip().split(' = ')[0][1:-1].split(', ')
block_offset, matrix_size = [0], 0
for block in blocks:
matrix_size += abs(int(block))
block_offset.append(matrix_size)
f.readline()
matrix = [[(0) for _ in range(matrix_size)] for _ in range(matrix_size)]
for line in f:
entry = line.strip().split('\t')
var, block = int(entry[0]), int(entry[1]) - 1
row, column = int(entry[2]) - 1, int(entry[3]) - 1
value = float(entry[4])
offset = block_offset[block]
matrix[offset + row][offset + column] = int(value * var)
matrix[offset + column][offset + row] = int(value * var)
f.close()
f = open(filename, 'w')
for matrix_line in matrix:
f.write(str(matrix_line).replace('[', '').replace(']', '') + '\n')
f.close()
os.remove(tmp_dats_filename)
|
write_to_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, filetype=None):\n if filetype == 'txt' and not filename.endswith('.txt'):\n raise Exception('TXT files must have .txt extension!')\n elif filetype is None and filename.endswith('.txt'):\n filetype = 'txt'\n else:\n return super(SteeringHierarchy, self).write_to_file(filename,\n filetype=filetype)\n tempfile_ = tempfile.NamedTemporaryFile()\n tmp_filename = tempfile_.name\n tempfile_.close()\n tmp_dats_filename = tmp_filename + '.dat-s'\n write_to_sdpa(self, tmp_dats_filename)\n f = open(tmp_dats_filename, 'r')\n f.readline()\n f.readline()\n f.readline()\n blocks = f.readline().strip().split(' = ')[0][1:-1].split(', ')\n block_offset, matrix_size = [0], 0\n for block in blocks:\n matrix_size += abs(int(block))\n block_offset.append(matrix_size)\n f.readline()\n matrix = [[(0) for _ in range(matrix_size)] for _ in range(matrix_size)]\n for line in f:\n entry = line.strip().split('\\t')\n var, block = int(entry[0]), int(entry[1]) - 1\n row, column = int(entry[2]) - 1, int(entry[3]) - 1\n value = float(entry[4])\n offset = block_offset[block]\n matrix[offset + row][offset + column] = int(value * var)\n matrix[offset + column][offset + row] = int(value * var)\n f.close()\n f = open(filename, 'w')\n for matrix_line in matrix:\n f.write(str(matrix_line).replace('[', '').replace(']', '') + '\\n')\n f.close()\n os.remove(tmp_dats_filename)\n",
"role": "user"
},
{
"content": "write_to_file",
"role": "assistant"
}
] |
def x(level):
if sys.version_info < (3, 4):
return sys._getframe(level)
else:
currentframe = inspect.currentframe()
levelup = 0
while levelup < level:
currentframe = currentframe.f_back
if currentframe.f_globals['__name__'] == 'importlib._bootstrap':
continue
else:
levelup += 1
return currentframe
|
get_outerframe_skip_importlib_frame
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(level):\n if sys.version_info < (3, 4):\n return sys._getframe(level)\n else:\n currentframe = inspect.currentframe()\n levelup = 0\n while levelup < level:\n currentframe = currentframe.f_back\n if currentframe.f_globals['__name__'] == 'importlib._bootstrap':\n continue\n else:\n levelup += 1\n return currentframe\n",
"role": "user"
},
{
"content": "get_outerframe_skip_importlib_frame",
"role": "assistant"
}
] |
def x(self, url):
try:
url in api_urls
return ast.literal_eval(requests.get(base_url + api_urls.get(url)).text
)
except Exception as e:
print(e)
|
public_api
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url):\n try:\n url in api_urls\n return ast.literal_eval(requests.get(base_url + api_urls.get(url)).text\n )\n except Exception as e:\n print(e)\n",
"role": "user"
},
{
"content": "public_api",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.