source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): for npc in self.npcs: self.move_entity(npc, *npc.towards(self.player)) for entity1, entity2 in itertools.combinations(self.entities, 2): if (entity1.x, entity1.y) == (entity2.x, entity2.y): if self.player in (entity1, entity2): return 'you lost on turn %d' % self.turn entity1.die() entity2.die() if all(npc.speed == 0 for npc in self.npcs): return 'you won on turn %d' % self.turn self.turn += 1 if self.turn % 20 == 0: self.player.speed = max(1, self.player.speed - 1) self.player.display = on_blue(green(bold(unicode_str(self.player. speed))))
tick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for npc in self.npcs:\n self.move_entity(npc, *npc.towards(self.player))\n for entity1, entity2 in itertools.combinations(self.entities, 2):\n if (entity1.x, entity1.y) == (entity2.x, entity2.y):\n if self.player in (entity1, entity2):\n return 'you lost on turn %d' % self.turn\n entity1.die()\n entity2.die()\n if all(npc.speed == 0 for npc in self.npcs):\n return 'you won on turn %d' % self.turn\n self.turn += 1\n if self.turn % 20 == 0:\n self.player.speed = max(1, self.player.speed - 1)\n self.player.display = on_blue(green(bold(unicode_str(self.player.\n speed))))\n", "role": "user" }, { "content": "tick", "role": "assistant" } ]
def x(self, msg): rows, columns = self.t.height, self.t.width return self.array_from_text_rc(msg, rows, columns)
array_from_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, msg):\n rows, columns = self.t.height, self.t.width\n return self.array_from_text_rc(msg, rows, columns)\n", "role": "user" }, { "content": "array_from_text", "role": "assistant" } ]
def x(self, array, cursor_pos=(0, 0)): height, width = self.height, self.width for_stdout = self.fmtstr_to_stdout_xform() if not self.hide_cursor: self.write(self.t.hide_cursor) if (height != self._last_rendered_height or width != self. _last_rendered_width): self.on_terminal_size_change(height, width) current_lines_by_row = {} rows = list(range(height)) rows_for_use = rows[:len(array)] rest_of_rows = rows[len(array):] for row, line in zip(rows_for_use, array): current_lines_by_row[row] = line if line == self._last_lines_by_row.get(row, None): continue self.write(self.t.move(row, 0)) self.write(for_stdout(line)) if len(line) < width: self.write(self.t.clear_eol) for row in rest_of_rows: if self._last_lines_by_row and row not in self._last_lines_by_row: continue self.write(self.t.move(row, 0)) self.write(self.t.clear_eol) self.write(self.t.clear_bol) current_lines_by_row[row] = None logger.debug('lines in last lines by row: %r' % self._last_lines_by_row .keys()) logger.debug('lines in current lines by row: %r' % current_lines_by_row .keys()) self.write(self.t.move(*cursor_pos)) self._last_lines_by_row = current_lines_by_row if not self.hide_cursor: self.write(self.t.normal_cursor)
render_to_terminal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, array, cursor_pos=(0, 0)):\n height, width = self.height, self.width\n for_stdout = self.fmtstr_to_stdout_xform()\n if not self.hide_cursor:\n self.write(self.t.hide_cursor)\n if (height != self._last_rendered_height or width != self.\n _last_rendered_width):\n self.on_terminal_size_change(height, width)\n current_lines_by_row = {}\n rows = list(range(height))\n rows_for_use = rows[:len(array)]\n rest_of_rows = rows[len(array):]\n for row, line in zip(rows_for_use, array):\n current_lines_by_row[row] = line\n if line == self._last_lines_by_row.get(row, None):\n continue\n self.write(self.t.move(row, 0))\n self.write(for_stdout(line))\n if len(line) < width:\n self.write(self.t.clear_eol)\n for row in rest_of_rows:\n if self._last_lines_by_row and row not in self._last_lines_by_row:\n continue\n self.write(self.t.move(row, 0))\n self.write(self.t.clear_eol)\n self.write(self.t.clear_bol)\n current_lines_by_row[row] = None\n logger.debug('lines in last lines by row: %r' % self._last_lines_by_row\n .keys())\n logger.debug('lines in current lines by row: %r' % current_lines_by_row\n .keys())\n self.write(self.t.move(*cursor_pos))\n self._last_lines_by_row = current_lines_by_row\n if not self.hide_cursor:\n self.write(self.t.normal_cursor)\n", "role": "user" }, { "content": "render_to_terminal", "role": "assistant" } ]
def x(self): in_stream = self.in_stream query_cursor_position = u'\x1b[6n' self.write(query_cursor_position) def x(): while True: try: c = in_stream.read(1) if c == '': raise ValueError( "Stream should be blocking - should't return ''. Returned %r so far" , (resp,)) return c except IOError: raise ValueError('cursor get pos response read interrupted') resp = '' while True: c = retrying_read() resp += c m = re.search( '(?P<extra>.*)(?P<CSI>\x1b\\[|\x9b)(?P<row>\\d+);(?P<column>\\d+)R' , resp, re.DOTALL) if m: row = int(m.groupdict()['row']) col = int(m.groupdict()['column']) extra = m.groupdict()['extra'] if extra: if self.extra_bytes_callback: self.extra_bytes_callback(extra.encode(in_stream.encoding)) else: raise ValueError( """Bytes preceding cursor position query response thrown out: %r Pass an extra_bytes_callback to CursorAwareWindow to prevent this""" % (extra,)) return row - 1, col - 1
get_cursor_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n in_stream = self.in_stream\n query_cursor_position = u'\\x1b[6n'\n self.write(query_cursor_position)\n\n def x():\n while True:\n try:\n c = in_stream.read(1)\n if c == '':\n raise ValueError(\n \"Stream should be blocking - should't return ''. Returned %r so far\"\n , (resp,))\n return c\n except IOError:\n raise ValueError('cursor get pos response read interrupted')\n resp = ''\n while True:\n c = retrying_read()\n resp += c\n m = re.search(\n '(?P<extra>.*)(?P<CSI>\\x1b\\\\[|\\x9b)(?P<row>\\\\d+);(?P<column>\\\\d+)R'\n , resp, re.DOTALL)\n if m:\n row = int(m.groupdict()['row'])\n col = int(m.groupdict()['column'])\n extra = m.groupdict()['extra']\n if extra:\n if self.extra_bytes_callback:\n self.extra_bytes_callback(extra.encode(in_stream.encoding))\n else:\n raise ValueError(\n \"\"\"Bytes preceding cursor position query response thrown out:\n%r\nPass an extra_bytes_callback to CursorAwareWindow to prevent this\"\"\"\n % (extra,))\n return row - 1, col - 1\n", "role": "user" }, { "content": "get_cursor_position", "role": "assistant" } ]
def x(self): if self.in_get_cursor_diff: self.another_sigwinch = True return 0 cursor_dy = 0 while True: self.in_get_cursor_diff = True self.another_sigwinch = False cursor_dy += self._get_cursor_vertical_diff_once() self.in_get_cursor_diff = False if not self.another_sigwinch: return cursor_dy
get_cursor_vertical_diff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.in_get_cursor_diff:\n self.another_sigwinch = True\n return 0\n cursor_dy = 0\n while True:\n self.in_get_cursor_diff = True\n self.another_sigwinch = False\n cursor_dy += self._get_cursor_vertical_diff_once()\n self.in_get_cursor_diff = False\n if not self.another_sigwinch:\n return cursor_dy\n", "role": "user" }, { "content": "get_cursor_vertical_diff", "role": "assistant" } ]
def x(self): old_top_usable_row = self.top_usable_row row, col = self.get_cursor_position() if self._last_cursor_row is None: cursor_dy = 0 else: cursor_dy = row - self._last_cursor_row logger.info('cursor moved %d lines down' % cursor_dy) while self.top_usable_row > -1 and cursor_dy > 0: self.top_usable_row += 1 cursor_dy -= 1 while self.top_usable_row > 1 and cursor_dy < 0: self.top_usable_row -= 1 cursor_dy += 1 logger.info('top usable row changed from %d to %d', old_top_usable_row, self.top_usable_row) logger.info('returning cursor dy of %d from curtsies' % cursor_dy) self._last_cursor_row = row return cursor_dy
get_cursor_vertical_diff_once
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n old_top_usable_row = self.top_usable_row\n row, col = self.get_cursor_position()\n if self._last_cursor_row is None:\n cursor_dy = 0\n else:\n cursor_dy = row - self._last_cursor_row\n logger.info('cursor moved %d lines down' % cursor_dy)\n while self.top_usable_row > -1 and cursor_dy > 0:\n self.top_usable_row += 1\n cursor_dy -= 1\n while self.top_usable_row > 1 and cursor_dy < 0:\n self.top_usable_row -= 1\n cursor_dy += 1\n logger.info('top usable row changed from %d to %d', old_top_usable_row,\n self.top_usable_row)\n logger.info('returning cursor dy of %d from curtsies' % cursor_dy)\n self._last_cursor_row = row\n return cursor_dy\n", "role": "user" }, { "content": "get_cursor_vertical_diff_once", "role": "assistant" } ]
def x(self, array, cursor_pos=(0, 0)): for_stdout = self.fmtstr_to_stdout_xform() if not self.hide_cursor: self.write(self.t.hide_cursor) height, width = self.t.height, self.t.width if (height != self._last_rendered_height or width != self. _last_rendered_width): self.on_terminal_size_change(height, width) current_lines_by_row = {} rows_for_use = list(range(self.top_usable_row, height)) shared = min(len(array), len(rows_for_use)) for row, line in zip(rows_for_use[:shared], array[:shared]): current_lines_by_row[row] = line if line == self._last_lines_by_row.get(row, None): continue self.write(self.t.move(row, 0)) self.write(for_stdout(line)) if len(line) < width: self.write(self.t.clear_eol) rest_of_lines = array[shared:] rest_of_rows = rows_for_use[shared:] for row in rest_of_rows: if self._last_lines_by_row and row not in self._last_lines_by_row: continue self.write(self.t.move(row, 0)) self.write(self.t.clear_eol) self.write(self.t.clear_bol) current_lines_by_row[row] = None offscreen_scrolls = 0 for line in rest_of_lines: self.scroll_down() if self.top_usable_row > 0: self.top_usable_row -= 1 else: offscreen_scrolls += 1 current_lines_by_row = dict((k - 1, v) for k, v in current_lines_by_row.items()) logger.debug('new top_usable_row: %d' % self.top_usable_row) self.write(self.t.move(height - 1, 0)) self.write(for_stdout(line)) current_lines_by_row[height - 1] = line logger.debug('lines in last lines by row: %r' % self._last_lines_by_row .keys()) logger.debug('lines in current lines by row: %r' % current_lines_by_row .keys()) self._last_cursor_row = max(0, cursor_pos[0] - offscreen_scrolls + self .top_usable_row) self._last_cursor_column = cursor_pos[1] self.write(self.t.move(self._last_cursor_row, self._last_cursor_column)) self._last_lines_by_row = current_lines_by_row if not self.hide_cursor: self.write(self.t.normal_cursor) return offscreen_scrolls
render_to_terminal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, array, cursor_pos=(0, 0)):\n for_stdout = self.fmtstr_to_stdout_xform()\n if not self.hide_cursor:\n self.write(self.t.hide_cursor)\n height, width = self.t.height, self.t.width\n if (height != self._last_rendered_height or width != self.\n _last_rendered_width):\n self.on_terminal_size_change(height, width)\n current_lines_by_row = {}\n rows_for_use = list(range(self.top_usable_row, height))\n shared = min(len(array), len(rows_for_use))\n for row, line in zip(rows_for_use[:shared], array[:shared]):\n current_lines_by_row[row] = line\n if line == self._last_lines_by_row.get(row, None):\n continue\n self.write(self.t.move(row, 0))\n self.write(for_stdout(line))\n if len(line) < width:\n self.write(self.t.clear_eol)\n rest_of_lines = array[shared:]\n rest_of_rows = rows_for_use[shared:]\n for row in rest_of_rows:\n if self._last_lines_by_row and row not in self._last_lines_by_row:\n continue\n self.write(self.t.move(row, 0))\n self.write(self.t.clear_eol)\n self.write(self.t.clear_bol)\n current_lines_by_row[row] = None\n offscreen_scrolls = 0\n for line in rest_of_lines:\n self.scroll_down()\n if self.top_usable_row > 0:\n self.top_usable_row -= 1\n else:\n offscreen_scrolls += 1\n current_lines_by_row = dict((k - 1, v) for k, v in\n current_lines_by_row.items())\n logger.debug('new top_usable_row: %d' % self.top_usable_row)\n self.write(self.t.move(height - 1, 0))\n self.write(for_stdout(line))\n current_lines_by_row[height - 1] = line\n logger.debug('lines in last lines by row: %r' % self._last_lines_by_row\n .keys())\n logger.debug('lines in current lines by row: %r' % current_lines_by_row\n .keys())\n self._last_cursor_row = max(0, cursor_pos[0] - offscreen_scrolls + self\n .top_usable_row)\n self._last_cursor_column = cursor_pos[1]\n self.write(self.t.move(self._last_cursor_row, self._last_cursor_column))\n self._last_lines_by_row = current_lines_by_row\n if not self.hide_cursor:\n self.write(self.t.normal_cursor)\n return offscreen_scrolls\n", "role": "user" }, { "content": "render_to_terminal", "role": "assistant" } ]
def x(self, solver=None, solverparameters=None): if self.F is None: raise Exception( "Relaxation is not generated yet. Call 'SdpRelaxation.get_relaxation' first" ) solve_sdp(self, solver, solverparameters)
solve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, solver=None, solverparameters=None):\n if self.F is None:\n raise Exception(\n \"Relaxation is not generated yet. Call 'SdpRelaxation.get_relaxation' first\"\n )\n solve_sdp(self, solver, solverparameters)\n", "role": "user" }, { "content": "solve", "role": "assistant" } ]
def x(self, monomial, n_vars): processed_monomial, coeff = separate_scalar_factor(monomial) try: substitute = self.moment_substitutions[processed_monomial] if not isinstance(substitute, (int, float, complex)): result = [] if not isinstance(substitute, Add): args = [substitute] else: args = substitute.args for arg in args: if is_number_type(arg): if iscomplex(arg): result.append((0, coeff * complex(arg))) else: result.append((0, coeff * float(arg))) else: result += [(k, coeff * c2) for k, c2 in self. _process_monomial(arg, n_vars)] else: result = [(0, coeff * substitute)] except KeyError: try: k = self.monomial_index[processed_monomial] except KeyError: if not self.complex_matrix: try: processed_monomial_adjoint = apply_substitutions( processed_monomial.adjoint(), self.substitutions) k = self.monomial_index[processed_monomial_adjoint] except KeyError: k = n_vars + 1 self.monomial_index[processed_monomial] = k else: k = n_vars + 1 self.monomial_index[processed_monomial] = k result = [(k, coeff)] return result
process_monomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, monomial, n_vars):\n processed_monomial, coeff = separate_scalar_factor(monomial)\n try:\n substitute = self.moment_substitutions[processed_monomial]\n if not isinstance(substitute, (int, float, complex)):\n result = []\n if not isinstance(substitute, Add):\n args = [substitute]\n else:\n args = substitute.args\n for arg in args:\n if is_number_type(arg):\n if iscomplex(arg):\n result.append((0, coeff * complex(arg)))\n else:\n result.append((0, coeff * float(arg)))\n else:\n result += [(k, coeff * c2) for k, c2 in self.\n _process_monomial(arg, n_vars)]\n else:\n result = [(0, coeff * substitute)]\n except KeyError:\n try:\n k = self.monomial_index[processed_monomial]\n except KeyError:\n if not self.complex_matrix:\n try:\n processed_monomial_adjoint = apply_substitutions(\n processed_monomial.adjoint(), self.substitutions)\n k = self.monomial_index[processed_monomial_adjoint]\n except KeyError:\n k = n_vars + 1\n self.monomial_index[processed_monomial] = k\n else:\n k = n_vars + 1\n self.monomial_index[processed_monomial] = k\n result = [(k, coeff)]\n return result\n", "role": "user" }, { "content": "process_monomial", "role": "assistant" } ]
def x(self, n_vars, block_index, processed_entries, monomialsA, monomialsB, ppt=False): row_offset = 0 if block_index > 0: for block_size in self.block_struct[0:block_index]: row_offset += block_size ** 2 N = len(monomialsA) * len(monomialsB) func = partial(assemble_monomial_and_do_substitutions, monomialsA= monomialsA, monomialsB=monomialsB, ppt=ppt, substitutions=self. substitutions, pure_substitution_rules=self.pure_substitution_rules) if self._parallel: pool = Pool() chunksize = int(max(int(np.sqrt(len(monomialsA) * len(monomialsB) * len(monomialsA) / 2) / cpu_count()), 1)) for rowA in range(len(monomialsA)): if self._parallel: iter_ = pool.map(func, [(rowA, columnA, rowB, columnB) for rowB in range(len(monomialsB)) for columnA in range(rowA, len( monomialsA)) for columnB in range((rowA == columnA) * rowB, len(monomialsB))], chunksize) print_criterion = processed_entries + len(iter_) else: iter_ = imap(func, [(rowA, columnA, rowB, columnB) for columnA in range(rowA, len(monomialsA)) for rowB in range(len( monomialsB)) for columnB in range((rowA == columnA) * rowB, len(monomialsB))]) for columnA, rowB, columnB, monomial in iter_: processed_entries += 1 n_vars = self._push_monomial(monomial, n_vars, row_offset, rowA, columnA, N, rowB, columnB, len(monomialsB), prevent_substitutions=True) if self.verbose > 0 and (not self._parallel or processed_entries == self.n_vars or processed_entries == print_criterion): percentage = processed_entries / self.n_vars time_used = time.time() - self._time0 eta = 1.0 / percentage * time_used - time_used hours = int(eta / 3600) minutes = int((eta - 3600 * hours) / 60) seconds = eta - 3600 * hours - minutes * 60 msg = '' if self.verbose > 1 and self._parallel: msg = ( ', working on block {:0} with {:0} processes with a chunksize of {:0d}' .format(block_index, cpu_count(), chunksize)) msg = '{:0} (done: {:.2%}, ETA {:02d}:{:02d}:{:03.1f}'.format( n_vars, percentage, hours, minutes, seconds) + msg msg = '\r\x1b[KCurrent number of SDP variables: ' + msg + ')' sys.stdout.write(msg) sys.stdout.flush() if self._parallel: pool.close() pool.join() if self.verbose > 0: sys.stdout.write('\r') return n_vars, block_index + 1, processed_entries
generate_moment_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_vars, block_index, processed_entries, monomialsA, monomialsB,\n ppt=False):\n row_offset = 0\n if block_index > 0:\n for block_size in self.block_struct[0:block_index]:\n row_offset += block_size ** 2\n N = len(monomialsA) * len(monomialsB)\n func = partial(assemble_monomial_and_do_substitutions, monomialsA=\n monomialsA, monomialsB=monomialsB, ppt=ppt, substitutions=self.\n substitutions, pure_substitution_rules=self.pure_substitution_rules)\n if self._parallel:\n pool = Pool()\n chunksize = int(max(int(np.sqrt(len(monomialsA) * len(monomialsB) *\n len(monomialsA) / 2) / cpu_count()), 1))\n for rowA in range(len(monomialsA)):\n if self._parallel:\n iter_ = pool.map(func, [(rowA, columnA, rowB, columnB) for rowB in\n range(len(monomialsB)) for columnA in range(rowA, len(\n monomialsA)) for columnB in range((rowA == columnA) * rowB,\n len(monomialsB))], chunksize)\n print_criterion = processed_entries + len(iter_)\n else:\n iter_ = imap(func, [(rowA, columnA, rowB, columnB) for columnA in\n range(rowA, len(monomialsA)) for rowB in range(len(\n monomialsB)) for columnB in range((rowA == columnA) * rowB,\n len(monomialsB))])\n for columnA, rowB, columnB, monomial in iter_:\n processed_entries += 1\n n_vars = self._push_monomial(monomial, n_vars, row_offset, rowA,\n columnA, N, rowB, columnB, len(monomialsB),\n prevent_substitutions=True)\n if self.verbose > 0 and (not self._parallel or \n processed_entries == self.n_vars or processed_entries ==\n print_criterion):\n percentage = processed_entries / self.n_vars\n time_used = time.time() - self._time0\n eta = 1.0 / percentage * time_used - time_used\n hours = int(eta / 3600)\n minutes = int((eta - 3600 * hours) / 60)\n seconds = eta - 3600 * hours - minutes * 60\n msg = ''\n if self.verbose > 1 and self._parallel:\n msg = (\n ', working on block {:0} with {:0} processes with a chunksize of {:0d}'\n .format(block_index, cpu_count(), chunksize))\n msg = '{:0} (done: {:.2%}, ETA {:02d}:{:02d}:{:03.1f}'.format(\n n_vars, percentage, hours, minutes, seconds) + msg\n msg = '\\r\\x1b[KCurrent number of SDP variables: ' + msg + ')'\n sys.stdout.write(msg)\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\r')\n return n_vars, block_index + 1, processed_entries\n", "role": "user" }, { "content": "generate_moment_matrix", "role": "assistant" } ]
def x(self, element, enablesubstitution=True, daggered=False): result = [] processed_element, coeff1 = separate_scalar_factor(element) if processed_element in self.moment_substitutions: r = self._get_index_of_monomial(self.moment_substitutions[ processed_element], enablesubstitution) return [(k, coeff * coeff1) for k, coeff in r] if enablesubstitution: processed_element = apply_substitutions(processed_element, self. substitutions, self.pure_substitution_rules) if is_number_type(processed_element): return [(0, coeff1)] elif processed_element.is_Add: monomials = processed_element.args else: monomials = [processed_element] for monomial in monomials: monomial, coeff2 = separate_scalar_factor(monomial) coeff = coeff1 * coeff2 if is_number_type(monomial): result.append((0, coeff)) continue k = -1 if monomial != 0: if monomial.as_coeff_Mul()[0] < 0: monomial = -monomial coeff = -1.0 * coeff try: new_element = self.moment_substitutions[monomial] r = self._get_index_of_monomial(self.moment_substitutions[ new_element], enablesubstitution) result += [(k, coeff * coeff3) for k, coeff3 in r] except KeyError: try: k = self.monomial_index[monomial] result.append((k, coeff)) except KeyError: if not daggered: dag_result = self._get_index_of_monomial(monomial. adjoint(), daggered=True) result += [(k, coeff0 * coeff) for k, coeff0 in dag_result] else: raise RuntimeError('The requested monomial ' + str( monomial) + ' could not be found.') return result
get_index_of_monomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, element, enablesubstitution=True, daggered=False):\n result = []\n processed_element, coeff1 = separate_scalar_factor(element)\n if processed_element in self.moment_substitutions:\n r = self._get_index_of_monomial(self.moment_substitutions[\n processed_element], enablesubstitution)\n return [(k, coeff * coeff1) for k, coeff in r]\n if enablesubstitution:\n processed_element = apply_substitutions(processed_element, self.\n substitutions, self.pure_substitution_rules)\n if is_number_type(processed_element):\n return [(0, coeff1)]\n elif processed_element.is_Add:\n monomials = processed_element.args\n else:\n monomials = [processed_element]\n for monomial in monomials:\n monomial, coeff2 = separate_scalar_factor(monomial)\n coeff = coeff1 * coeff2\n if is_number_type(monomial):\n result.append((0, coeff))\n continue\n k = -1\n if monomial != 0:\n if monomial.as_coeff_Mul()[0] < 0:\n monomial = -monomial\n coeff = -1.0 * coeff\n try:\n new_element = self.moment_substitutions[monomial]\n r = self._get_index_of_monomial(self.moment_substitutions[\n new_element], enablesubstitution)\n result += [(k, coeff * coeff3) for k, coeff3 in r]\n except KeyError:\n try:\n k = self.monomial_index[monomial]\n result.append((k, coeff))\n except KeyError:\n if not daggered:\n dag_result = self._get_index_of_monomial(monomial.\n adjoint(), daggered=True)\n result += [(k, coeff0 * coeff) for k, coeff0 in dag_result]\n else:\n raise RuntimeError('The requested monomial ' + str(\n monomial) + ' could not be found.')\n return result\n", "role": "user" }, { "content": "get_index_of_monomial", "role": "assistant" } ]
def x(self, polynomial, block_index, row_offset, i, j): width = self.block_struct[block_index - 1] if is_number_type(polynomial) or polynomial.is_Mul: elements = [polynomial] else: elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1] for element in elements: results = self._get_index_of_monomial(element) for k, coeff in results: if k > -1 and coeff != 0: self.F[row_offset + i * width + j, k] += coeff
push_facvar_sparse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polynomial, block_index, row_offset, i, j):\n width = self.block_struct[block_index - 1]\n if is_number_type(polynomial) or polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n for element in elements:\n results = self._get_index_of_monomial(element)\n for k, coeff in results:\n if k > -1 and coeff != 0:\n self.F[row_offset + i * width + j, k] += coeff\n", "role": "user" }, { "content": "push_facvar_sparse", "role": "assistant" } ]
def x(self, polynomial): facvar = [0] * (self.n_vars + 1) if is_number_type(polynomial): facvar[0] = polynomial return facvar polynomial = polynomial.expand() if polynomial.is_Mul: elements = [polynomial] else: elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1] for element in elements: results = self._get_index_of_monomial(element) for k, coeff in results: facvar[k] += coeff return facvar
get_facvar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polynomial):\n facvar = [0] * (self.n_vars + 1)\n if is_number_type(polynomial):\n facvar[0] = polynomial\n return facvar\n polynomial = polynomial.expand()\n if polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n for element in elements:\n results = self._get_index_of_monomial(element)\n for k, coeff in results:\n facvar[k] += coeff\n return facvar\n", "role": "user" }, { "content": "get_facvar", "role": "assistant" } ]
def x(self, block_index): initial_block_index = block_index row_offsets = [0] for block, block_size in enumerate(self.block_struct): row_offsets.append(row_offsets[block] + block_size ** 2) if self._parallel: pool = Pool() for k, ineq in enumerate(self.constraints): block_index += 1 monomials = self.localizing_monomial_sets[block_index - initial_block_index - 1] lm = len(monomials) if isinstance(ineq, str): self.__parse_expression(ineq, row_offsets[block_index - 1]) continue if ineq.is_Relational: ineq = convert_relational(ineq) func = partial(moment_of_entry, monomials=monomials, ineq=ineq, substitutions=self.substitutions) if self._parallel and lm > 1: chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1) iter_ = pool.map(func, ([row, column] for row in range(lm) for column in range(row, lm)), chunksize) else: iter_ = imap(func, ([row, column] for row in range(lm) for column in range(row, lm))) if (block_index > self.constraint_starting_block + self. _n_inequalities and lm > 1): is_equality = True else: is_equality = False for row, column, polynomial in iter_: if is_equality: row, column = 0, 0 self.__push_facvar_sparse(polynomial, block_index, row_offsets[ block_index - 1], row, column) if is_equality: block_index += 1 if is_equality: block_index -= 1 if self.verbose > 0: sys.stdout.write('\r\x1b[KProcessing %d/%d constraints...' % (k + 1, len(self.constraints))) sys.stdout.flush() if self._parallel: pool.close() pool.join() if self.verbose > 0: sys.stdout.write('\n') return block_index
process_inequalities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, block_index):\n initial_block_index = block_index\n row_offsets = [0]\n for block, block_size in enumerate(self.block_struct):\n row_offsets.append(row_offsets[block] + block_size ** 2)\n if self._parallel:\n pool = Pool()\n for k, ineq in enumerate(self.constraints):\n block_index += 1\n monomials = self.localizing_monomial_sets[block_index -\n initial_block_index - 1]\n lm = len(monomials)\n if isinstance(ineq, str):\n self.__parse_expression(ineq, row_offsets[block_index - 1])\n continue\n if ineq.is_Relational:\n ineq = convert_relational(ineq)\n func = partial(moment_of_entry, monomials=monomials, ineq=ineq,\n substitutions=self.substitutions)\n if self._parallel and lm > 1:\n chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)\n iter_ = pool.map(func, ([row, column] for row in range(lm) for\n column in range(row, lm)), chunksize)\n else:\n iter_ = imap(func, ([row, column] for row in range(lm) for\n column in range(row, lm)))\n if (block_index > self.constraint_starting_block + self.\n _n_inequalities and lm > 1):\n is_equality = True\n else:\n is_equality = False\n for row, column, polynomial in iter_:\n if is_equality:\n row, column = 0, 0\n self.__push_facvar_sparse(polynomial, block_index, row_offsets[\n block_index - 1], row, column)\n if is_equality:\n block_index += 1\n if is_equality:\n block_index -= 1\n if self.verbose > 0:\n sys.stdout.write('\\r\\x1b[KProcessing %d/%d constraints...' % (k +\n 1, len(self.constraints)))\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\n')\n return block_index\n", "role": "user" }, { "content": "process_inequalities", "role": "assistant" } ]
def x(self, equalities, momentequalities): monomial_sets = [] n_rows = 0 le = 0 if equalities is not None: for equality in equalities: le += 1 if equality.is_Relational: equality = convert_relational(equality) eq_order = ncdegree(equality) if eq_order > 2 * self.level: raise Exception( 'An equality constraint has degree %d. Choose a higher level of relaxation.' % eq_order) localization_order = (2 * self.level - eq_order) // 2 index = find_variable_set(self.variables, equality) localizing_monomials = pick_monomials_up_to_degree(self. monomial_sets[index], localization_order) if len(localizing_monomials) == 0: localizing_monomials = [S.One] localizing_monomials = unique(localizing_monomials) monomial_sets.append(localizing_monomials) n_rows += len(localizing_monomials) * (len(localizing_monomials ) + 1) // 2 if momentequalities is not None: for _ in momentequalities: le += 1 monomial_sets.append([S.One]) n_rows += 1 A = np.zeros((n_rows, self.n_vars + 1), dtype=self.F.dtype) n_rows = 0 if self._parallel: pool = Pool() for i, equality in enumerate(flatten([equalities, momentequalities])): func = partial(moment_of_entry, monomials=monomial_sets[i], ineq= equality, substitutions=self.substitutions) lm = len(monomial_sets[i]) if self._parallel and lm > 1: chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1) iter_ = pool.map(func, ([row, column] for row in range(lm) for column in range(row, lm)), chunksize) else: iter_ = imap(func, ([row, column] for row in range(lm) for column in range(row, lm))) for row, column, polynomial in iter_: if isinstance(polynomial, str): self.__parse_expression(equality, -1, A[n_rows]) else: A[n_rows] = self._get_facvar(polynomial) n_rows += 1 if self.verbose > 0: sys.stdout.write('\r\x1b[KProcessing %d/%d equalities...' % (i + 1, le)) sys.stdout.flush() if self._parallel: pool.close() pool.join() if self.verbose > 0: sys.stdout.write('\n') return A
process_equalities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, equalities, momentequalities):\n monomial_sets = []\n n_rows = 0\n le = 0\n if equalities is not None:\n for equality in equalities:\n le += 1\n if equality.is_Relational:\n equality = convert_relational(equality)\n eq_order = ncdegree(equality)\n if eq_order > 2 * self.level:\n raise Exception(\n 'An equality constraint has degree %d. Choose a higher level of relaxation.'\n % eq_order)\n localization_order = (2 * self.level - eq_order) // 2\n index = find_variable_set(self.variables, equality)\n localizing_monomials = pick_monomials_up_to_degree(self.\n monomial_sets[index], localization_order)\n if len(localizing_monomials) == 0:\n localizing_monomials = [S.One]\n localizing_monomials = unique(localizing_monomials)\n monomial_sets.append(localizing_monomials)\n n_rows += len(localizing_monomials) * (len(localizing_monomials\n ) + 1) // 2\n if momentequalities is not None:\n for _ in momentequalities:\n le += 1\n monomial_sets.append([S.One])\n n_rows += 1\n A = np.zeros((n_rows, self.n_vars + 1), dtype=self.F.dtype)\n n_rows = 0\n if self._parallel:\n pool = Pool()\n for i, equality in enumerate(flatten([equalities, momentequalities])):\n func = partial(moment_of_entry, monomials=monomial_sets[i], ineq=\n equality, substitutions=self.substitutions)\n lm = len(monomial_sets[i])\n if self._parallel and lm > 1:\n chunksize = max(int(np.sqrt(lm * lm / 2) / cpu_count()), 1)\n iter_ = pool.map(func, ([row, column] for row in range(lm) for\n column in range(row, lm)), chunksize)\n else:\n iter_ = imap(func, ([row, column] for row in range(lm) for\n column in range(row, lm)))\n for row, column, polynomial in iter_:\n if isinstance(polynomial, str):\n self.__parse_expression(equality, -1, A[n_rows])\n else:\n A[n_rows] = self._get_facvar(polynomial)\n n_rows += 1\n if self.verbose > 0:\n sys.stdout.write('\\r\\x1b[KProcessing %d/%d equalities...' %\n (i + 1, le))\n sys.stdout.flush()\n if self._parallel:\n pool.close()\n pool.join()\n if self.verbose > 0:\n sys.stdout.write('\\n')\n return A\n", "role": "user" }, { "content": "process_equalities", "role": "assistant" } ]
def x(self, equalities, momentequalities): A = self.__process_equalities(equalities, momentequalities) if min(A.shape != np.linalg.matrix_rank(A)): print( 'Warning: equality constraints are linearly dependent! Results might be incorrect.' , file=sys.stderr) if A.shape[0] == 0: return c = np.array(self.obj_facvar) if self.verbose > 0: print('QR decomposition...') Q, R = np.linalg.qr(A[:, 1:].T, mode='complete') n = np.max(np.nonzero(np.sum(np.abs(R), axis=1) > 0)) + 1 x = np.dot(Q[:, :n], np.linalg.solve(np.transpose(R[:n, :]), -A[:, 0])) self._new_basis = lil_matrix(Q[:, n:]) self._original_obj_facvar = self.obj_facvar self._original_constant_term = self.constant_term self.obj_facvar = self._new_basis.T.dot(c) self.constant_term += c.dot(x) x = np.append(1, x) new_F = lil_matrix((self.F.shape[0], self._new_basis.shape[1] + 1)) new_F[:, 0] = self.F[:, :self.n_vars + 1].dot(x).reshape((new_F.shape[0 ], 1)) new_F[:, 1:] = self.F[:, 1:self.n_vars + 1].dot(self._new_basis) self._original_F = self.F self.F = new_F self.n_vars = self._new_basis.shape[1] if self.verbose > 0: print('Number of variables after solving the linear equations: %d' % self.n_vars)
remove_equalities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, equalities, momentequalities):\n A = self.__process_equalities(equalities, momentequalities)\n if min(A.shape != np.linalg.matrix_rank(A)):\n print(\n 'Warning: equality constraints are linearly dependent! Results might be incorrect.'\n , file=sys.stderr)\n if A.shape[0] == 0:\n return\n c = np.array(self.obj_facvar)\n if self.verbose > 0:\n print('QR decomposition...')\n Q, R = np.linalg.qr(A[:, 1:].T, mode='complete')\n n = np.max(np.nonzero(np.sum(np.abs(R), axis=1) > 0)) + 1\n x = np.dot(Q[:, :n], np.linalg.solve(np.transpose(R[:n, :]), -A[:, 0]))\n self._new_basis = lil_matrix(Q[:, n:])\n self._original_obj_facvar = self.obj_facvar\n self._original_constant_term = self.constant_term\n self.obj_facvar = self._new_basis.T.dot(c)\n self.constant_term += c.dot(x)\n x = np.append(1, x)\n new_F = lil_matrix((self.F.shape[0], self._new_basis.shape[1] + 1))\n new_F[:, 0] = self.F[:, :self.n_vars + 1].dot(x).reshape((new_F.shape[0\n ], 1))\n new_F[:, 1:] = self.F[:, 1:self.n_vars + 1].dot(self._new_basis)\n self._original_F = self.F\n self.F = new_F\n self.n_vars = self._new_basis.shape[1]\n if self.verbose > 0:\n print('Number of variables after solving the linear equations: %d' %\n self.n_vars)\n", "role": "user" }, { "content": "remove_equalities", "role": "assistant" } ]
def x(self, inequalities, equalities, momentinequalities, momentequalities, extramomentmatrix, removeequalities, block_struct=None): if block_struct is None: if self.verbose > 0: print('Calculating block structure...') self.block_struct = [] if self.parameters is not None: self.block_struct += [(1) for _ in self.parameters] for monomials in self.monomial_sets: if len(monomials) > 0 and isinstance(monomials[0], list): self.block_struct.append(len(monomials[0])) else: self.block_struct.append(len(monomials)) if extramomentmatrix is not None: for _ in extramomentmatrix: for monomials in self.monomial_sets: if len(monomials) > 0 and isinstance(monomials[0], list): self.block_struct.append(len(monomials[0])) else: self.block_struct.append(len(monomials)) else: self.block_struct = block_struct degree_warning = False if inequalities is not None: self._n_inequalities = len(inequalities) n_tmp_inequalities = len(inequalities) else: self._n_inequalities = 0 n_tmp_inequalities = 0 constraints = flatten([inequalities]) if momentinequalities is not None: self._n_inequalities += len(momentinequalities) constraints += momentinequalities if not removeequalities: constraints += flatten([equalities]) monomial_sets = [] for k, constraint in enumerate(constraints): if k < n_tmp_inequalities or k >= self._n_inequalities: if isinstance(constraint, str): ineq_order = 2 * self.level else: if constraint.is_Relational: constraint = convert_relational(constraint) ineq_order = ncdegree(constraint) if iscomplex(constraint): self.complex_matrix = True if ineq_order > 2 * self.level: degree_warning = True localization_order = (2 * self.level - ineq_order) // 2 if self.level == -1: localization_order = 0 if (self.localizing_monomial_sets is not None and self. localizing_monomial_sets[k] is not None): localizing_monomials = self.localizing_monomial_sets[k] else: index = find_variable_set(self.variables, constraint) localizing_monomials = pick_monomials_up_to_degree(self. monomial_sets[index], localization_order) ln = len(localizing_monomials) if ln == 0: localizing_monomials = [S.One] else: localizing_monomials = [S.One] ln = 1 localizing_monomials = unique(localizing_monomials) monomial_sets.append(localizing_monomials) if k < self._n_inequalities: self.block_struct.append(ln) else: monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)] monomial_sets.append(localizing_monomials) monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)] self.block_struct += [(1) for _ in range(ln * (ln + 1))] if degree_warning and self.verbose > 0: print( 'A constraint has degree %d. Either choose a higher level relaxation or ensure that a mixed-order relaxation has the necessary monomials' % ineq_order, file=sys.stderr) if momentequalities is not None: for moment_eq in momentequalities: self._moment_equalities.append(moment_eq) if not removeequalities: monomial_sets += [[S.One], [S.One]] self.block_struct += [1, 1] self.localizing_monomial_sets = monomial_sets
calculate_block_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n if block_struct is None:\n if self.verbose > 0:\n print('Calculating block structure...')\n self.block_struct = []\n if self.parameters is not None:\n self.block_struct += [(1) for _ in self.parameters]\n for monomials in self.monomial_sets:\n if len(monomials) > 0 and isinstance(monomials[0], list):\n self.block_struct.append(len(monomials[0]))\n else:\n self.block_struct.append(len(monomials))\n if extramomentmatrix is not None:\n for _ in extramomentmatrix:\n for monomials in self.monomial_sets:\n if len(monomials) > 0 and isinstance(monomials[0], list):\n self.block_struct.append(len(monomials[0]))\n else:\n self.block_struct.append(len(monomials))\n else:\n self.block_struct = block_struct\n degree_warning = False\n if inequalities is not None:\n self._n_inequalities = len(inequalities)\n n_tmp_inequalities = len(inequalities)\n else:\n self._n_inequalities = 0\n n_tmp_inequalities = 0\n constraints = flatten([inequalities])\n if momentinequalities is not None:\n self._n_inequalities += len(momentinequalities)\n constraints += momentinequalities\n if not removeequalities:\n constraints += flatten([equalities])\n monomial_sets = []\n for k, constraint in enumerate(constraints):\n if k < n_tmp_inequalities or k >= self._n_inequalities:\n if isinstance(constraint, str):\n ineq_order = 2 * self.level\n else:\n if constraint.is_Relational:\n constraint = convert_relational(constraint)\n ineq_order = ncdegree(constraint)\n if iscomplex(constraint):\n self.complex_matrix = True\n if ineq_order > 2 * self.level:\n degree_warning = True\n localization_order = (2 * self.level - ineq_order) // 2\n if self.level == -1:\n localization_order = 0\n if (self.localizing_monomial_sets is not None and self.\n localizing_monomial_sets[k] is not None):\n localizing_monomials = self.localizing_monomial_sets[k]\n else:\n index = find_variable_set(self.variables, constraint)\n localizing_monomials = pick_monomials_up_to_degree(self.\n monomial_sets[index], localization_order)\n ln = len(localizing_monomials)\n if ln == 0:\n localizing_monomials = [S.One]\n else:\n localizing_monomials = [S.One]\n ln = 1\n localizing_monomials = unique(localizing_monomials)\n monomial_sets.append(localizing_monomials)\n if k < self._n_inequalities:\n self.block_struct.append(ln)\n else:\n monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]\n monomial_sets.append(localizing_monomials)\n monomial_sets += [None for _ in range(ln * (ln + 1) // 2 - 1)]\n self.block_struct += [(1) for _ in range(ln * (ln + 1))]\n if degree_warning and self.verbose > 0:\n print(\n 'A constraint has degree %d. Either choose a higher level relaxation or ensure that a mixed-order relaxation has the necessary monomials'\n % ineq_order, file=sys.stderr)\n if momentequalities is not None:\n for moment_eq in momentequalities:\n self._moment_equalities.append(moment_eq)\n if not removeequalities:\n monomial_sets += [[S.One], [S.One]]\n self.block_struct += [1, 1]\n self.localizing_monomial_sets = monomial_sets\n", "role": "user" }, { "content": "calculate_block_structure", "role": "assistant" } ]
def x(self, inequalities=None, equalities=None, momentinequalities=None, momentequalities=None, block_index=0, removeequalities=False): self.status = 'unsolved' if block_index == 0: if self._original_F is not None: self.F = self._original_F self.obj_facvar = self._original_obj_facvar self.constant_term = self._original_constant_term self.n_vars = len(self.obj_facvar) self._new_basis = None block_index = self.constraint_starting_block self.__wipe_F_from_constraints() self.constraints = flatten([inequalities]) self._constraint_to_block_index = {} for constraint in self.constraints: self._constraint_to_block_index[constraint] = block_index, block_index += 1 if momentinequalities is not None: for mineq in momentinequalities: self.constraints.append(mineq) self._constraint_to_block_index[mineq] = block_index, block_index += 1 if not (removeequalities or equalities is None): for k, equality in enumerate(equalities): if equality.is_Relational: equality = convert_relational(equality) self.constraints.append(equality) self.constraints.append(-equality) ln = len(self.localizing_monomial_sets[block_index - self. constraint_starting_block]) self._constraint_to_block_index[equality ] = block_index, block_index + ln * (ln + 1) // 2 block_index += ln * (ln + 1) if momentequalities is not None and not removeequalities: for meq in momentequalities: self.constraints += [meq, flip_sign(meq)] self._constraint_to_block_index[meq] = block_index, block_index + 1 block_index += 2 block_index = self.constraint_starting_block self.__process_inequalities(block_index) if removeequalities: self.__remove_equalities(equalities, momentequalities)
process_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inequalities=None, equalities=None, momentinequalities=None,\n momentequalities=None, block_index=0, removeequalities=False):\n self.status = 'unsolved'\n if block_index == 0:\n if self._original_F is not None:\n self.F = self._original_F\n self.obj_facvar = self._original_obj_facvar\n self.constant_term = self._original_constant_term\n self.n_vars = len(self.obj_facvar)\n self._new_basis = None\n block_index = self.constraint_starting_block\n self.__wipe_F_from_constraints()\n self.constraints = flatten([inequalities])\n self._constraint_to_block_index = {}\n for constraint in self.constraints:\n self._constraint_to_block_index[constraint] = block_index,\n block_index += 1\n if momentinequalities is not None:\n for mineq in momentinequalities:\n self.constraints.append(mineq)\n self._constraint_to_block_index[mineq] = block_index,\n block_index += 1\n if not (removeequalities or equalities is None):\n for k, equality in enumerate(equalities):\n if equality.is_Relational:\n equality = convert_relational(equality)\n self.constraints.append(equality)\n self.constraints.append(-equality)\n ln = len(self.localizing_monomial_sets[block_index - self.\n constraint_starting_block])\n self._constraint_to_block_index[equality\n ] = block_index, block_index + ln * (ln + 1) // 2\n block_index += ln * (ln + 1)\n if momentequalities is not None and not removeequalities:\n for meq in momentequalities:\n self.constraints += [meq, flip_sign(meq)]\n self._constraint_to_block_index[meq] = block_index, block_index + 1\n block_index += 2\n block_index = self.constraint_starting_block\n self.__process_inequalities(block_index)\n if removeequalities:\n self.__remove_equalities(equalities, momentequalities)\n", "role": "user" }, { "content": "process_constraints", "role": "assistant" } ]
def x(self, objective, extraobjexpr=None): if objective is not None: facvar = self._get_facvar(simplify_polynomial(objective, self. substitutions)) self.obj_facvar = facvar[1:] self.constant_term = facvar[0] if self.verbose > 0 and facvar[0] != 0: print( 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.' % facvar[0], file=sys.stderr) else: self.obj_facvar = self._get_facvar(0)[1:] if extraobjexpr is not None: for sub_expr in extraobjexpr.split(']'): startindex = 0 if sub_expr.startswith('-') or sub_expr.startswith('+'): startindex = 1 ind = sub_expr.find('[') if ind > -1: idx = sub_expr[ind + 1:].split(',') i, j = int(idx[0]), int(idx[1]) mm_ind = int(sub_expr[startindex:ind]) if sub_expr.find('*') > -1: value = float(sub_expr[:sub_expr.find('*')]) elif sub_expr.startswith('-'): value = -1.0 else: value = 1.0 base_row_offset = sum([(bs ** 2) for bs in self. block_struct[:mm_ind]]) width = self.block_struct[mm_ind] for column in self.F[base_row_offset + i * width + j].rows[0]: self.obj_facvar[column - 1] = value * self.F[ base_row_offset + i * width + j, column]
set_objective
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, objective, extraobjexpr=None):\n if objective is not None:\n facvar = self._get_facvar(simplify_polynomial(objective, self.\n substitutions))\n self.obj_facvar = facvar[1:]\n self.constant_term = facvar[0]\n if self.verbose > 0 and facvar[0] != 0:\n print(\n 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'\n % facvar[0], file=sys.stderr)\n else:\n self.obj_facvar = self._get_facvar(0)[1:]\n if extraobjexpr is not None:\n for sub_expr in extraobjexpr.split(']'):\n startindex = 0\n if sub_expr.startswith('-') or sub_expr.startswith('+'):\n startindex = 1\n ind = sub_expr.find('[')\n if ind > -1:\n idx = sub_expr[ind + 1:].split(',')\n i, j = int(idx[0]), int(idx[1])\n mm_ind = int(sub_expr[startindex:ind])\n if sub_expr.find('*') > -1:\n value = float(sub_expr[:sub_expr.find('*')])\n elif sub_expr.startswith('-'):\n value = -1.0\n else:\n value = 1.0\n base_row_offset = sum([(bs ** 2) for bs in self.\n block_struct[:mm_ind]])\n width = self.block_struct[mm_ind]\n for column in self.F[base_row_offset + i * width + j].rows[0]:\n self.obj_facvar[column - 1] = value * self.F[\n base_row_offset + i * width + j, column]\n", "role": "user" }, { "content": "set_objective", "role": "assistant" } ]
def x(self, xmat=None, baselevel=0): return find_solution_ranks(self, xmat=xmat, baselevel=baselevel)
find_solution_ranks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xmat=None, baselevel=0):\n return find_solution_ranks(self, xmat=xmat, baselevel=baselevel)\n", "role": "user" }, { "content": "find_solution_ranks", "role": "assistant" } ]
def x(self, constraint, ymat=None): if not isinstance(constraint, Expr): raise Exception('Not a monomial or polynomial!') elif self.status == 'unsolved' and ymat is None: raise Exception('SDP relaxation is not solved yet!') elif ymat is None: ymat = self.y_mat index = self._constraint_to_block_index.get(constraint) if index is None: raise Exception('Constraint is not in the dual!') if len(index) == 2: return ymat[index[0]], self.y_mat[index[1]] else: return ymat[index[0]]
get_dual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, constraint, ymat=None):\n if not isinstance(constraint, Expr):\n raise Exception('Not a monomial or polynomial!')\n elif self.status == 'unsolved' and ymat is None:\n raise Exception('SDP relaxation is not solved yet!')\n elif ymat is None:\n ymat = self.y_mat\n index = self._constraint_to_block_index.get(constraint)\n if index is None:\n raise Exception('Constraint is not in the dual!')\n if len(index) == 2:\n return ymat[index[0]], self.y_mat[index[1]]\n else:\n return ymat[index[0]]\n", "role": "user" }, { "content": "get_dual", "role": "assistant" } ]
def x(self, filename, filetype=None): if filetype == 'sdpa' and not filename.endswith('.dat-s'): raise Exception('SDPA files must have .dat-s extension!') if filetype == 'mosek' and not filename.endswith('.task'): raise Exception('Mosek files must have .task extension!') elif filetype is None and filename.endswith('.dat-s'): filetype = 'sdpa' elif filetype is None and filename.endswith('.csv'): filetype = 'csv' elif filetype is None and filename.endswith('.task'): filetype = 'mosek' elif filetype is None: raise Exception('Cannot detect filetype from extension!') if filetype == 'sdpa': write_to_sdpa(self, filename) elif filetype == 'mosek': task = convert_to_mosek(self) task.writedata(filename) elif filetype == 'csv': write_to_human_readable(self, filename) else: raise Exception('Unknown filetype')
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, filetype=None):\n if filetype == 'sdpa' and not filename.endswith('.dat-s'):\n raise Exception('SDPA files must have .dat-s extension!')\n if filetype == 'mosek' and not filename.endswith('.task'):\n raise Exception('Mosek files must have .task extension!')\n elif filetype is None and filename.endswith('.dat-s'):\n filetype = 'sdpa'\n elif filetype is None and filename.endswith('.csv'):\n filetype = 'csv'\n elif filetype is None and filename.endswith('.task'):\n filetype = 'mosek'\n elif filetype is None:\n raise Exception('Cannot detect filetype from extension!')\n if filetype == 'sdpa':\n write_to_sdpa(self, filename)\n elif filetype == 'mosek':\n task = convert_to_mosek(self)\n task.writedata(filename)\n elif filetype == 'csv':\n write_to_human_readable(self, filename)\n else:\n raise Exception('Unknown filetype')\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(self, level, objective=None, inequalities=None, equalities=None, substitutions=None, momentinequalities=None, momentequalities=None, momentsubstitutions=None, removeequalities=False, extramonomials=None, extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None, chordal_extension=False): if self.level < -1: raise Exception('Invalid level of relaxation') self.level = level if substitutions is None: self.substitutions = {} else: self.substitutions = substitutions for lhs, rhs in substitutions.items(): if not is_pure_substitution_rule(lhs, rhs): self.pure_substitution_rules = False if iscomplex(lhs) or iscomplex(rhs): self.complex_matrix = True if momentsubstitutions is not None: self.moment_substitutions = momentsubstitutions.copy() if not self.complex_matrix: for key, val in self.moment_substitutions.copy().items(): adjoint_monomial = apply_substitutions(key.adjoint(), self. substitutions) self.moment_substitutions[adjoint_monomial] = val if chordal_extension: self.variables = find_variable_cliques(self.variables, objective, inequalities, equalities, momentinequalities, momentequalities) self.__generate_monomial_sets(extramonomials) self.localizing_monomial_sets = localizing_monomials self._calculate_block_structure(inequalities, equalities, momentinequalities, momentequalities, extramomentmatrices, removeequalities) self._estimate_n_vars() if extramomentmatrices is not None: for parameters in extramomentmatrices: copy = False for parameter in parameters: if parameter == 'copy': copy = True if copy: self.n_vars += self.n_vars + 1 else: self.n_vars += self.block_struct[0] ** 2 / 2 if self.complex_matrix: dtype = np.complex128 else: dtype = np.float64 self.F = lil_matrix((sum([(bs ** 2) for bs in self.block_struct]), self .n_vars + 1), dtype=dtype) if self.verbose > 0: print('Estimated number of SDP variables: %d' % self.n_vars) print('Generating moment matrix...') new_n_vars, block_index = self.__add_parameters() self._time0 = time.time() new_n_vars, block_index = self._generate_all_moment_matrix_blocks( new_n_vars, block_index) if extramomentmatrices is not None: new_n_vars, block_index = self.__add_extra_momentmatrices( extramomentmatrices, new_n_vars, block_index) self.n_vars = new_n_vars if self.verbose > 0: print('Reduced number of SDP variables: %d' % self.n_vars) self.set_objective(objective, extraobjexpr) self.constraint_starting_block = block_index self.process_constraints(inequalities, equalities, momentinequalities, momentequalities, block_index, removeequalities)
get_relaxation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, level, objective=None, inequalities=None, equalities=None,\n substitutions=None, momentinequalities=None, momentequalities=None,\n momentsubstitutions=None, removeequalities=False, extramonomials=None,\n extramomentmatrices=None, extraobjexpr=None, localizing_monomials=None,\n chordal_extension=False):\n if self.level < -1:\n raise Exception('Invalid level of relaxation')\n self.level = level\n if substitutions is None:\n self.substitutions = {}\n else:\n self.substitutions = substitutions\n for lhs, rhs in substitutions.items():\n if not is_pure_substitution_rule(lhs, rhs):\n self.pure_substitution_rules = False\n if iscomplex(lhs) or iscomplex(rhs):\n self.complex_matrix = True\n if momentsubstitutions is not None:\n self.moment_substitutions = momentsubstitutions.copy()\n if not self.complex_matrix:\n for key, val in self.moment_substitutions.copy().items():\n adjoint_monomial = apply_substitutions(key.adjoint(), self.\n substitutions)\n self.moment_substitutions[adjoint_monomial] = val\n if chordal_extension:\n self.variables = find_variable_cliques(self.variables, objective,\n inequalities, equalities, momentinequalities, momentequalities)\n self.__generate_monomial_sets(extramonomials)\n self.localizing_monomial_sets = localizing_monomials\n self._calculate_block_structure(inequalities, equalities,\n momentinequalities, momentequalities, extramomentmatrices,\n removeequalities)\n self._estimate_n_vars()\n if extramomentmatrices is not None:\n for parameters in extramomentmatrices:\n copy = False\n for parameter in parameters:\n if parameter == 'copy':\n copy = True\n if copy:\n self.n_vars += self.n_vars + 1\n else:\n self.n_vars += self.block_struct[0] ** 2 / 2\n if self.complex_matrix:\n dtype = np.complex128\n else:\n dtype = np.float64\n self.F = lil_matrix((sum([(bs ** 2) for bs in self.block_struct]), self\n .n_vars + 1), dtype=dtype)\n if self.verbose > 0:\n print('Estimated number of SDP variables: %d' % self.n_vars)\n print('Generating moment matrix...')\n new_n_vars, block_index = self.__add_parameters()\n self._time0 = time.time()\n new_n_vars, block_index = self._generate_all_moment_matrix_blocks(\n new_n_vars, block_index)\n if extramomentmatrices is not None:\n new_n_vars, block_index = self.__add_extra_momentmatrices(\n extramomentmatrices, new_n_vars, block_index)\n self.n_vars = new_n_vars\n if self.verbose > 0:\n print('Reduced number of SDP variables: %d' % self.n_vars)\n self.set_objective(objective, extraobjexpr)\n self.constraint_starting_block = block_index\n self.process_constraints(inequalities, equalities, momentinequalities,\n momentequalities, block_index, removeequalities)\n", "role": "user" }, { "content": "get_relaxation", "role": "assistant" } ]
def x(lol): new_list = [] for element in lol: if element is None: continue elif not isinstance(element, list) and not isinstance(element, tuple): new_list.append(element) elif len(element) > 0: new_list.extend(flatten(element)) return new_list
flatten
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lol):\n new_list = []\n for element in lol:\n if element is None:\n continue\n elif not isinstance(element, list) and not isinstance(element, tuple):\n new_list.append(element)\n elif len(element) > 0:\n new_list.extend(flatten(element))\n return new_list\n", "role": "user" }, { "content": "flatten", "role": "assistant" } ]
def x(polynomial, monomial_substitutions): if isinstance(polynomial, (int, float, complex)): return polynomial polynomial = (1.0 * polynomial).expand(mul=True, multinomial=True) if is_number_type(polynomial): return polynomial if polynomial.is_Mul: elements = [polynomial] else: elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1] new_polynomial = 0 for element in elements: monomial, coeff = separate_scalar_factor(element) monomial = apply_substitutions(monomial, monomial_substitutions) new_polynomial += coeff * monomial return new_polynomial
simplify_polynomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polynomial, monomial_substitutions):\n if isinstance(polynomial, (int, float, complex)):\n return polynomial\n polynomial = (1.0 * polynomial).expand(mul=True, multinomial=True)\n if is_number_type(polynomial):\n return polynomial\n if polynomial.is_Mul:\n elements = [polynomial]\n else:\n elements = polynomial.as_coeff_mul()[1][0].as_coeff_add()[1]\n new_polynomial = 0\n for element in elements:\n monomial, coeff = separate_scalar_factor(element)\n monomial = apply_substitutions(monomial, monomial_substitutions)\n new_polynomial += coeff * monomial\n return new_polynomial\n", "role": "user" }, { "content": "simplify_polynomial", "role": "assistant" } ]
def x(monomial): scalar_factor = 1 if is_number_type(monomial): return S.One, monomial if monomial == 0: return S.One, 0 comm_factors, _ = split_commutative_parts(monomial) if len(comm_factors) > 0: if isinstance(comm_factors[0], Number): scalar_factor = comm_factors[0] if scalar_factor != 1: return monomial / scalar_factor, scalar_factor else: return monomial, scalar_factor
separate_scalar_factor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomial):\n scalar_factor = 1\n if is_number_type(monomial):\n return S.One, monomial\n if monomial == 0:\n return S.One, 0\n comm_factors, _ = split_commutative_parts(monomial)\n if len(comm_factors) > 0:\n if isinstance(comm_factors[0], Number):\n scalar_factor = comm_factors[0]\n if scalar_factor != 1:\n return monomial / scalar_factor, scalar_factor\n else:\n return monomial, scalar_factor\n", "role": "user" }, { "content": "separate_scalar_factor", "role": "assistant" } ]
def x(variables, polynomial): support = [] if is_number_type(polynomial): support.append([0] * len(variables)) return support for monomial in polynomial.expand().as_coefficients_dict(): tmp_support = [0] * len(variables) mon, _ = __separate_scalar_factor(monomial) symbolic_support = flatten(split_commutative_parts(mon)) for s in symbolic_support: if isinstance(s, Pow): base = s.base if is_adjoint(base): base = base.adjoint() tmp_support[variables.index(base)] = s.exp elif is_adjoint(s): tmp_support[variables.index(s.adjoint())] = 1 elif isinstance(s, (Operator, Symbol)): tmp_support[variables.index(s)] = 1 support.append(tmp_support) return support
get_support
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variables, polynomial):\n support = []\n if is_number_type(polynomial):\n support.append([0] * len(variables))\n return support\n for monomial in polynomial.expand().as_coefficients_dict():\n tmp_support = [0] * len(variables)\n mon, _ = __separate_scalar_factor(monomial)\n symbolic_support = flatten(split_commutative_parts(mon))\n for s in symbolic_support:\n if isinstance(s, Pow):\n base = s.base\n if is_adjoint(base):\n base = base.adjoint()\n tmp_support[variables.index(base)] = s.exp\n elif is_adjoint(s):\n tmp_support[variables.index(s.adjoint())] = 1\n elif isinstance(s, (Operator, Symbol)):\n tmp_support[variables.index(s)] = 1\n support.append(tmp_support)\n return support\n", "role": "user" }, { "content": "get_support", "role": "assistant" } ]
def x(polynomial): support = [] if is_number_type(polynomial): return support for monomial in polynomial.expand().as_coefficients_dict(): mon, _ = __separate_scalar_factor(monomial) symbolic_support = flatten(split_commutative_parts(mon)) for s in symbolic_support: if isinstance(s, Pow): base = s.base if is_adjoint(base): base = base.adjoint() support.append(base) elif is_adjoint(s): support.append(s.adjoint()) elif isinstance(s, Operator): support.append(s) return support
get_support_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polynomial):\n support = []\n if is_number_type(polynomial):\n return support\n for monomial in polynomial.expand().as_coefficients_dict():\n mon, _ = __separate_scalar_factor(monomial)\n symbolic_support = flatten(split_commutative_parts(mon))\n for s in symbolic_support:\n if isinstance(s, Pow):\n base = s.base\n if is_adjoint(base):\n base = base.adjoint()\n support.append(base)\n elif is_adjoint(s):\n support.append(s.adjoint())\n elif isinstance(s, Operator):\n support.append(s)\n return support\n", "role": "user" }, { "content": "get_support_variables", "role": "assistant" } ]
def x(element): coeff = 1.0 monomial = S.One if isinstance(element, (int, float, complex)): coeff *= element return monomial, coeff for var in element.as_coeff_mul()[1]: if not (var.is_Number or var.is_imaginary): monomial = monomial * var elif var.is_Number: coeff = float(var) else: coeff = 1.0j * coeff coeff = float(element.as_coeff_mul()[0]) * coeff return monomial, coeff
separate_scalar_factor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(element):\n coeff = 1.0\n monomial = S.One\n if isinstance(element, (int, float, complex)):\n coeff *= element\n return monomial, coeff\n for var in element.as_coeff_mul()[1]:\n if not (var.is_Number or var.is_imaginary):\n monomial = monomial * var\n elif var.is_Number:\n coeff = float(var)\n else:\n coeff = 1.0j * coeff\n coeff = float(element.as_coeff_mul()[0]) * coeff\n return monomial, coeff\n", "role": "user" }, { "content": "separate_scalar_factor", "role": "assistant" } ]
def x(monomials, degree): ncmoncount = 0 for monomial in monomials: if ncdegree(monomial) <= degree: ncmoncount += 1 else: break return ncmoncount
count_ncmonomials
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomials, degree):\n ncmoncount = 0\n for monomial in monomials:\n if ncdegree(monomial) <= degree:\n ncmoncount += 1\n else:\n break\n return ncmoncount\n", "role": "user" }, { "content": "count_ncmonomials", "role": "assistant" } ]
def x(monomial, monomial_substitutions, pure=False): if is_number_type(monomial): return monomial original_monomial = monomial changed = True if not pure: substitutions = monomial_substitutions else: substitutions = {} for lhs, rhs in monomial_substitutions.items(): irrelevant = False for atom in lhs.atoms(): if atom.is_Number: continue if not monomial.has(atom): irrelevant = True break if not irrelevant: substitutions[lhs] = rhs while changed: for lhs, rhs in substitutions.items(): monomial = fast_substitute(monomial, lhs, rhs) if original_monomial == monomial: changed = False original_monomial = monomial return monomial
apply_substitutions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomial, monomial_substitutions, pure=False):\n if is_number_type(monomial):\n return monomial\n original_monomial = monomial\n changed = True\n if not pure:\n substitutions = monomial_substitutions\n else:\n substitutions = {}\n for lhs, rhs in monomial_substitutions.items():\n irrelevant = False\n for atom in lhs.atoms():\n if atom.is_Number:\n continue\n if not monomial.has(atom):\n irrelevant = True\n break\n if not irrelevant:\n substitutions[lhs] = rhs\n while changed:\n for lhs, rhs in substitutions.items():\n monomial = fast_substitute(monomial, lhs, rhs)\n if original_monomial == monomial:\n changed = False\n original_monomial = monomial\n return monomial\n", "role": "user" }, { "content": "apply_substitutions", "role": "assistant" } ]
def x(monomial, old_sub, new_sub): if is_number_type(monomial): return monomial if monomial.is_Add: return sum([fast_substitute(element, old_sub, new_sub) for element in monomial.as_ordered_terms()]) comm_factors, ncomm_factors = split_commutative_parts(monomial) old_comm_factors, old_ncomm_factors = split_commutative_parts(old_sub) if not isinstance(new_sub, (int, float, complex)): new_comm_factors, _ = split_commutative_parts(new_sub) else: new_comm_factors = [new_sub] comm_monomial = 1 is_constant_term = False if comm_factors != (): if len(comm_factors) == 1 and is_number_type(comm_factors[0]): is_constant_term = True comm_monomial = comm_factors[0] else: for comm_factor in comm_factors: comm_monomial *= comm_factor if old_comm_factors != (): comm_old_sub = 1 for comm_factor in old_comm_factors: comm_old_sub *= comm_factor comm_new_sub = 1 for comm_factor in new_comm_factors: comm_new_sub *= comm_factor if isinstance(comm_old_sub, Pow): old_base = comm_old_sub.base if comm_monomial.has(old_base): old_degree = comm_old_sub.exp new_monomial = 1 match = False for factor in comm_monomial.as_ordered_factors(): if factor.has(old_base): if isinstance(factor, Pow): degree = factor.exp if degree >= old_degree: match = True new_monomial *= old_base ** (degree - old_degree) * comm_new_sub else: new_monomial *= factor else: new_monomial *= factor if match: comm_monomial = new_monomial else: comm_monomial = comm_monomial.subs(comm_old_sub, comm_new_sub) if ncomm_factors == () or old_ncomm_factors == (): return comm_monomial new_var_list = [] new_monomial = 1 left_remainder = 1 right_remainder = 1 for i in range(len(ncomm_factors) - len(old_ncomm_factors) + 1): for j, old_ncomm_factor in enumerate(old_ncomm_factors): ncomm_factor = ncomm_factors[i + j] if isinstance(ncomm_factor, Symbol) and (isinstance( old_ncomm_factor, Operator) or isinstance(old_ncomm_factor, Symbol) and ncomm_factor != old_ncomm_factor): break if isinstance(ncomm_factor, Operator) and (isinstance( old_ncomm_factor, Operator) and ncomm_factor != old_ncomm_factor or isinstance(old_ncomm_factor, Pow)): break if is_adjoint(ncomm_factor): if not is_adjoint(old_ncomm_factor ) or ncomm_factor != old_ncomm_factor: break elif not isinstance(ncomm_factor, Pow): if is_adjoint(old_ncomm_factor): break else: if isinstance(old_ncomm_factor, Pow): old_base = old_ncomm_factor.base old_degree = old_ncomm_factor.exp else: old_base = old_ncomm_factor old_degree = 1 if old_base != ncomm_factor.base: break if old_degree > ncomm_factor.exp: break if old_degree < ncomm_factor.exp: if j != len(old_ncomm_factors) - 1: if j != 0: break else: left_remainder = old_base ** (ncomm_factor.exp - old_degree) else: right_remainder = old_base ** (ncomm_factor.exp - old_degree) else: new_monomial = 1 for var in new_var_list: new_monomial *= var new_monomial *= left_remainder * new_sub * right_remainder for j in range(i + len(old_ncomm_factors), len(ncomm_factors)): new_monomial *= ncomm_factors[j] new_monomial *= comm_monomial break new_var_list.append(ncomm_factors[i]) else: if not is_constant_term and comm_factors != (): new_monomial = comm_monomial for factor in ncomm_factors: new_monomial *= factor else: return monomial if not isinstance(new_sub, (float, int, complex)) and new_sub.is_Add: return expand(new_monomial) else: return new_monomial
fast_substitute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomial, old_sub, new_sub):\n if is_number_type(monomial):\n return monomial\n if monomial.is_Add:\n return sum([fast_substitute(element, old_sub, new_sub) for element in\n monomial.as_ordered_terms()])\n comm_factors, ncomm_factors = split_commutative_parts(monomial)\n old_comm_factors, old_ncomm_factors = split_commutative_parts(old_sub)\n if not isinstance(new_sub, (int, float, complex)):\n new_comm_factors, _ = split_commutative_parts(new_sub)\n else:\n new_comm_factors = [new_sub]\n comm_monomial = 1\n is_constant_term = False\n if comm_factors != ():\n if len(comm_factors) == 1 and is_number_type(comm_factors[0]):\n is_constant_term = True\n comm_monomial = comm_factors[0]\n else:\n for comm_factor in comm_factors:\n comm_monomial *= comm_factor\n if old_comm_factors != ():\n comm_old_sub = 1\n for comm_factor in old_comm_factors:\n comm_old_sub *= comm_factor\n comm_new_sub = 1\n for comm_factor in new_comm_factors:\n comm_new_sub *= comm_factor\n if isinstance(comm_old_sub, Pow):\n old_base = comm_old_sub.base\n if comm_monomial.has(old_base):\n old_degree = comm_old_sub.exp\n new_monomial = 1\n match = False\n for factor in comm_monomial.as_ordered_factors():\n if factor.has(old_base):\n if isinstance(factor, Pow):\n degree = factor.exp\n if degree >= old_degree:\n match = True\n new_monomial *= old_base ** (degree -\n old_degree) * comm_new_sub\n else:\n new_monomial *= factor\n else:\n new_monomial *= factor\n if match:\n comm_monomial = new_monomial\n else:\n comm_monomial = comm_monomial.subs(comm_old_sub,\n comm_new_sub)\n if ncomm_factors == () or old_ncomm_factors == ():\n return comm_monomial\n new_var_list = []\n new_monomial = 1\n left_remainder = 1\n right_remainder = 1\n for i in range(len(ncomm_factors) - len(old_ncomm_factors) + 1):\n for j, old_ncomm_factor in enumerate(old_ncomm_factors):\n ncomm_factor = ncomm_factors[i + j]\n if isinstance(ncomm_factor, Symbol) and (isinstance(\n old_ncomm_factor, Operator) or isinstance(old_ncomm_factor,\n Symbol) and ncomm_factor != old_ncomm_factor):\n break\n if isinstance(ncomm_factor, Operator) and (isinstance(\n old_ncomm_factor, Operator) and ncomm_factor !=\n old_ncomm_factor or isinstance(old_ncomm_factor, Pow)):\n break\n if is_adjoint(ncomm_factor):\n if not is_adjoint(old_ncomm_factor\n ) or ncomm_factor != old_ncomm_factor:\n break\n elif not isinstance(ncomm_factor, Pow):\n if is_adjoint(old_ncomm_factor):\n break\n else:\n if isinstance(old_ncomm_factor, Pow):\n old_base = old_ncomm_factor.base\n old_degree = old_ncomm_factor.exp\n else:\n old_base = old_ncomm_factor\n old_degree = 1\n if old_base != ncomm_factor.base:\n break\n if old_degree > ncomm_factor.exp:\n break\n if old_degree < ncomm_factor.exp:\n if j != len(old_ncomm_factors) - 1:\n if j != 0:\n break\n else:\n left_remainder = old_base ** (ncomm_factor.exp -\n old_degree)\n else:\n right_remainder = old_base ** (ncomm_factor.exp -\n old_degree)\n else:\n new_monomial = 1\n for var in new_var_list:\n new_monomial *= var\n new_monomial *= left_remainder * new_sub * right_remainder\n for j in range(i + len(old_ncomm_factors), len(ncomm_factors)):\n new_monomial *= ncomm_factors[j]\n new_monomial *= comm_monomial\n break\n new_var_list.append(ncomm_factors[i])\n else:\n if not is_constant_term and comm_factors != ():\n new_monomial = comm_monomial\n for factor in ncomm_factors:\n new_monomial *= factor\n else:\n return monomial\n if not isinstance(new_sub, (float, int, complex)) and new_sub.is_Add:\n return expand(new_monomial)\n else:\n return new_monomial\n", "role": "user" }, { "content": "fast_substitute", "role": "assistant" } ]
def x(name, n_vars=1, hermitian=None, commutative=True): variables = [] for i in range(n_vars): if n_vars > 1: var_name = '%s%s' % (name, i) else: var_name = '%s' % name if commutative: if hermitian is None or hermitian: variables.append(Symbol(var_name, real=True)) else: variables.append(Symbol(var_name, complex=True)) elif hermitian is not None and hermitian: variables.append(HermitianOperator(var_name)) else: variables.append(Operator(var_name)) return variables
generate_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, n_vars=1, hermitian=None, commutative=True):\n variables = []\n for i in range(n_vars):\n if n_vars > 1:\n var_name = '%s%s' % (name, i)\n else:\n var_name = '%s' % name\n if commutative:\n if hermitian is None or hermitian:\n variables.append(Symbol(var_name, real=True))\n else:\n variables.append(Symbol(var_name, complex=True))\n elif hermitian is not None and hermitian:\n variables.append(HermitianOperator(var_name))\n else:\n variables.append(Operator(var_name))\n return variables\n", "role": "user" }, { "content": "generate_variables", "role": "assistant" } ]
def x(name, n_vars=1, hermitian=None, commutative=False): variables = [] for i in range(n_vars): if n_vars > 1: var_name = '%s%s' % (name, i) else: var_name = '%s' % name if hermitian is not None and hermitian: variables.append(HermitianOperator(var_name)) else: variables.append(Operator(var_name)) variables[-1].is_commutative = commutative return variables
generate_operators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, n_vars=1, hermitian=None, commutative=False):\n variables = []\n for i in range(n_vars):\n if n_vars > 1:\n var_name = '%s%s' % (name, i)\n else:\n var_name = '%s' % name\n if hermitian is not None and hermitian:\n variables.append(HermitianOperator(var_name))\n else:\n variables.append(Operator(var_name))\n variables[-1].is_commutative = commutative\n return variables\n", "role": "user" }, { "content": "generate_operators", "role": "assistant" } ]
def x(variables, degree): if degree == -1: return [] if not variables: return [S.One] else: _variables = variables[:] _variables.insert(0, 1) ncmonomials = [S.One] ncmonomials.extend(var for var in variables) for var in variables: if not is_hermitian(var): ncmonomials.append(var.adjoint()) for _ in range(1, degree): temp = [] for var in _variables: for new_var in ncmonomials: temp.append(var * new_var) if var != 1 and not is_hermitian(var): temp.append(var.adjoint() * new_var) ncmonomials = unique(temp[:]) return ncmonomials
get_monomials
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variables, degree):\n if degree == -1:\n return []\n if not variables:\n return [S.One]\n else:\n _variables = variables[:]\n _variables.insert(0, 1)\n ncmonomials = [S.One]\n ncmonomials.extend(var for var in variables)\n for var in variables:\n if not is_hermitian(var):\n ncmonomials.append(var.adjoint())\n for _ in range(1, degree):\n temp = []\n for var in _variables:\n for new_var in ncmonomials:\n temp.append(var * new_var)\n if var != 1 and not is_hermitian(var):\n temp.append(var.adjoint() * new_var)\n ncmonomials = unique(temp[:])\n return ncmonomials\n", "role": "user" }, { "content": "get_monomials", "role": "assistant" } ]
def x(polynomial): degree = 0 if is_number_type(polynomial): return degree polynomial = polynomial.expand() for monomial in polynomial.as_coefficients_dict(): subdegree = 0 for variable in monomial.as_coeff_mul()[1]: if isinstance(variable, Pow): subdegree += variable.exp elif not isinstance(variable, Number) and variable != I: subdegree += 1 if subdegree > degree: degree = subdegree return degree
ncdegree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polynomial):\n degree = 0\n if is_number_type(polynomial):\n return degree\n polynomial = polynomial.expand()\n for monomial in polynomial.as_coefficients_dict():\n subdegree = 0\n for variable in monomial.as_coeff_mul()[1]:\n if isinstance(variable, Pow):\n subdegree += variable.exp\n elif not isinstance(variable, Number) and variable != I:\n subdegree += 1\n if subdegree > degree:\n degree = subdegree\n return degree\n", "role": "user" }, { "content": "ncdegree", "role": "assistant" } ]
def x(polynomial): if isinstance(polynomial, (int, float)): return False if isinstance(polynomial, complex): return True polynomial = polynomial.expand() for monomial in polynomial.as_coefficients_dict(): for variable in monomial.as_coeff_mul()[1]: if isinstance(variable, complex) or variable == I: return True return False
iscomplex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(polynomial):\n if isinstance(polynomial, (int, float)):\n return False\n if isinstance(polynomial, complex):\n return True\n polynomial = polynomial.expand()\n for monomial in polynomial.as_coefficients_dict():\n for variable in monomial.as_coeff_mul()[1]:\n if isinstance(variable, complex) or variable == I:\n return True\n return False\n", "role": "user" }, { "content": "iscomplex", "role": "assistant" } ]
def x(variables, extramonomials, substitutions, degree, removesubstitutions =True): monomials = get_monomials(variables, degree) if extramonomials is not None: monomials.extend(extramonomials) if removesubstitutions and substitutions is not None: monomials = [monomial for monomial in monomials if monomial not in substitutions] monomials = [remove_scalar_factor(apply_substitutions(monomial, substitutions)) for monomial in monomials] monomials = unique(monomials) return monomials
get_all_monomials
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(variables, extramonomials, substitutions, degree, removesubstitutions\n =True):\n monomials = get_monomials(variables, degree)\n if extramonomials is not None:\n monomials.extend(extramonomials)\n if removesubstitutions and substitutions is not None:\n monomials = [monomial for monomial in monomials if monomial not in\n substitutions]\n monomials = [remove_scalar_factor(apply_substitutions(monomial,\n substitutions)) for monomial in monomials]\n monomials = unique(monomials)\n return monomials\n", "role": "user" }, { "content": "get_all_monomials", "role": "assistant" } ]
def x(monomials, degree): ordered_monomials = [] if degree >= 0: ordered_monomials.append(S.One) for deg in range(1, degree + 1): ordered_monomials.extend(pick_monomials_of_degree(monomials, deg)) return ordered_monomials
pick_monomials_up_to_degree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomials, degree):\n ordered_monomials = []\n if degree >= 0:\n ordered_monomials.append(S.One)\n for deg in range(1, degree + 1):\n ordered_monomials.extend(pick_monomials_of_degree(monomials, deg))\n return ordered_monomials\n", "role": "user" }, { "content": "pick_monomials_up_to_degree", "role": "assistant" } ]
def x(monomials, degree): selected_monomials = [] for monomial in monomials: if ncdegree(monomial) == degree: selected_monomials.append(monomial) return selected_monomials
pick_monomials_of_degree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(monomials, degree):\n selected_monomials = []\n for monomial in monomials:\n if ncdegree(monomial) == degree:\n selected_monomials.append(monomial)\n return selected_monomials\n", "role": "user" }, { "content": "pick_monomials_of_degree", "role": "assistant" } ]
def x(filename, monomial_index): monomial_translation = [''] * (len(monomial_index) + 1) for key, k in monomial_index.items(): monomial_translation[k] = convert_monomial_to_string(key) file_ = open(filename, 'w') for k in range(len(monomial_translation)): file_.write('%s %s\n' % (k, monomial_translation[k])) file_.close()
save_monomial_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, monomial_index):\n monomial_translation = [''] * (len(monomial_index) + 1)\n for key, k in monomial_index.items():\n monomial_translation[k] = convert_monomial_to_string(key)\n file_ = open(filename, 'w')\n for k in range(len(monomial_translation)):\n file_.write('%s %s\\n' % (k, monomial_translation[k]))\n file_.close()\n", "role": "user" }, { "content": "save_monomial_index", "role": "assistant" } ]
def x(seq): seen = {} result = [] for item in seq: marker = item if marker in seen: continue seen[marker] = 1 result.append(item) return result
unique
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(seq):\n seen = {}\n result = []\n for item in seq:\n marker = item\n if marker in seen:\n continue\n seen[marker] = 1\n result.append(item)\n return result\n", "role": "user" }, { "content": "unique", "role": "assistant" } ]
def x(permutation): matrix = lil_matrix((len(permutation), len(permutation))) column = 0 for row in permutation: matrix[row, column] = 1 column += 1 return matrix
build_permutation_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(permutation):\n matrix = lil_matrix((len(permutation), len(permutation)))\n column = 0\n for row in permutation:\n matrix[row, column] = 1\n column += 1\n return matrix\n", "role": "user" }, { "content": "build_permutation_matrix", "role": "assistant" } ]
def x(relational): rel = relational.rel_op if rel in ['==', '>=', '>']: return relational.lhs - relational.rhs elif rel in ['<=', '<']: return relational.rhs - relational.lhs else: raise Exception( "The relational operation ' + rel + ' is not implemented!")
convert_relational
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(relational):\n rel = relational.rel_op\n if rel in ['==', '>=', '>']:\n return relational.lhs - relational.rhs\n elif rel in ['<=', '<']:\n return relational.rhs - relational.lhs\n else:\n raise Exception(\n \"The relational operation ' + rel + ' is not implemented!\")\n", "role": "user" }, { "content": "convert_relational", "role": "assistant" } ]
def x(board, who='x'): w = board.winner() if w == who: return 1 if w == opp(who): return -1 if board.turn == 9: return 0 if who == board.whose_turn: return max([value(b, who) for b in board.possible()]) else: return min([value(b, who) for b in board.possible()])
value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(board, who='x'):\n w = board.winner()\n if w == who:\n return 1\n if w == opp(who):\n return -1\n if board.turn == 9:\n return 0\n if who == board.whose_turn:\n return max([value(b, who) for b in board.possible()])\n else:\n return min([value(b, who) for b in board.possible()])\n", "role": "user" }, { "content": "value", "role": "assistant" } ]
def x(board, who='x'): return sorted(board.possible(), key=lambda b: value(b, who))[-1]
ai
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(board, who='x'):\n return sorted(board.possible(), key=lambda b: value(b, who))[-1]\n", "role": "user" }, { "content": "ai", "role": "assistant" } ]
def x(self): for c in 'xo': for comb in [(0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 4, 8), (2, 4, 6)]: if all(self.spots[p] == c for p in comb): return c return None
winner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for c in 'xo':\n for comb in [(0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 1, 2), (3, 4, 5),\n (6, 7, 8), (0, 4, 8), (2, 4, 6)]:\n if all(self.spots[p] == c for p in comb):\n return c\n return None\n", "role": "user" }, { "content": "winner", "role": "assistant" } ]
def x(self, A_configuration, B_configuration, I): coefficients = collinsgisin_to_faacets(I) M, ncIndices = get_faacets_moment_matrix(A_configuration, B_configuration, coefficients) self.n_vars = M.max() - 1 bs = len(M) self.block_struct = [bs] self.F = lil_matrix((bs ** 2, self.n_vars + 1)) for i in range(bs): for j in range(i, bs): if M[i, j] != 0: self.F[i * bs + j, abs(M[i, j]) - 1] = copysign(1, M[i, j]) self.obj_facvar = [(0) for _ in range(self.n_vars)] for i in range(1, len(ncIndices)): self.obj_facvar[abs(ncIndices[i]) - 2] += copysign(1, ncIndices[i] ) * coefficients[i]
get_relaxation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, A_configuration, B_configuration, I):\n coefficients = collinsgisin_to_faacets(I)\n M, ncIndices = get_faacets_moment_matrix(A_configuration,\n B_configuration, coefficients)\n self.n_vars = M.max() - 1\n bs = len(M)\n self.block_struct = [bs]\n self.F = lil_matrix((bs ** 2, self.n_vars + 1))\n for i in range(bs):\n for j in range(i, bs):\n if M[i, j] != 0:\n self.F[i * bs + j, abs(M[i, j]) - 1] = copysign(1, M[i, j])\n self.obj_facvar = [(0) for _ in range(self.n_vars)]\n for i in range(1, len(ncIndices)):\n self.obj_facvar[abs(ncIndices[i]) - 2] += copysign(1, ncIndices[i]\n ) * coefficients[i]\n", "role": "user" }, { "content": "get_relaxation", "role": "assistant" } ]
def x(track_id=None, url=None, users=None): client = get_client() if url: track_id = client.get('/resolve', url=url).id if not users: return client.get('/tracks/%d/permissions' % track_id) permissions = {'user_id': []} for username in users: user = settings.users.get(username, None) if user: permissions['user_id'].append(user['id']) else: user = client.get('/resolve', url='http://soundcloud.com/%s' % username) permissions['user_id'].append(user.id) settings.users[username] = user.obj settings.save() return client.put('/tracks/%d/permissions' % track_id, permissions= permissions)
share
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(track_id=None, url=None, users=None):\n client = get_client()\n if url:\n track_id = client.get('/resolve', url=url).id\n if not users:\n return client.get('/tracks/%d/permissions' % track_id)\n permissions = {'user_id': []}\n for username in users:\n user = settings.users.get(username, None)\n if user:\n permissions['user_id'].append(user['id'])\n else:\n user = client.get('/resolve', url='http://soundcloud.com/%s' %\n username)\n permissions['user_id'].append(user.id)\n settings.users[username] = user.obj\n settings.save()\n return client.put('/tracks/%d/permissions' % track_id, permissions=\n permissions)\n", "role": "user" }, { "content": "share", "role": "assistant" } ]
def x(sdp, solverparameters=None): P = convert_to_picos(sdp) P.set_option('solver', 'cvxopt') P.set_option('verbose', sdp.verbose) if solverparameters is not None: for key, value in solverparameters.items(): P.set_option(key, value) solution = P.solve() x_mat = [np.array(P.get_valued_variable('X'))] y_mat = [np.array(P.get_constraint(i).dual) for i in range(len(P. constraints))] return -solution['cvxopt_sol']['primal objective' ] + sdp.constant_term, -solution['cvxopt_sol']['dual objective' ] + sdp.constant_term, x_mat, y_mat, solution['status']
solve_with_cvxopt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sdp, solverparameters=None):\n P = convert_to_picos(sdp)\n P.set_option('solver', 'cvxopt')\n P.set_option('verbose', sdp.verbose)\n if solverparameters is not None:\n for key, value in solverparameters.items():\n P.set_option(key, value)\n solution = P.solve()\n x_mat = [np.array(P.get_valued_variable('X'))]\n y_mat = [np.array(P.get_constraint(i).dual) for i in range(len(P.\n constraints))]\n return -solution['cvxopt_sol']['primal objective'\n ] + sdp.constant_term, -solution['cvxopt_sol']['dual objective'\n ] + sdp.constant_term, x_mat, y_mat, solution['status']\n", "role": "user" }, { "content": "solve_with_cvxopt", "role": "assistant" } ]
def x(sdp, duplicate_moment_matrix=False): import picos as pic import cvxopt as cvx P = pic.Problem(verbose=sdp.verbose) block_size = sdp.block_struct[0] if sdp.F.dtype == np.float64: X = P.add_variable('X', (block_size, block_size), vtype='symmetric') if duplicate_moment_matrix: Y = P.add_variable('Y', (block_size, block_size), vtype='symmetric' ) else: X = P.add_variable('X', (block_size, block_size), vtype='hermitian') if duplicate_moment_matrix: Y = P.add_variable('X', (block_size, block_size), vtype='hermitian' ) row_offset = 0 theoretical_n_vars = sdp.block_struct[0] ** 2 eq_block_start = sdp.constraint_starting_block + sdp._n_inequalities block_idx = 0 while block_idx < len(sdp.block_struct): block_size = sdp.block_struct[block_idx] x, Ix, Jx = [], [], [] c, Ic, Jc = [], [], [] for i, row in enumerate(sdp.F.rows[row_offset:row_offset + block_size ** 2]): for j, column in enumerate(row): if column > 0: x.append(sdp.F.data[row_offset + i][j]) Ix.append(i) Jx.append(column - 1) i0 = i // block_size + i % block_size * block_size if i != i0: x.append(sdp.F.data[row_offset + i][j]) Ix.append(i0) Jx.append(column - 1) else: c.append(sdp.F.data[row_offset + i][j]) Ic.append(i % block_size) Jc.append(i // block_size) permutation = cvx.spmatrix(x, Ix, Jx, (block_size ** 2, theoretical_n_vars)) constant = cvx.spmatrix(c, Ic, Jc, (block_size, block_size)) if duplicate_moment_matrix: constraint = X else: constraint = X.copy() for k in constraint.factors: constraint.factors[k] = permutation constraint._size = block_size, block_size if block_idx < eq_block_start: P.add_constraint(constant + constraint >> 0) else: P.add_constraint(constant + constraint == 0) row_offset += block_size ** 2 block_idx += 1 if duplicate_moment_matrix and block_size == sdp.block_struct[0]: for k in Y.factors: Y.factors[k] = permutation row_offset += block_size ** 2 block_idx += 1 if len(np.nonzero(sdp.obj_facvar)[0]) > 0: x, Ix, Jx = [], [], [] for k, val in enumerate(sdp.obj_facvar): if val != 0: x.append(val) Ix.append(0) Jx.append(k) permutation = cvx.spmatrix(x, Ix, Jx) objective = X.copy() for k in objective.factors: objective.factors[k] = permutation objective._size = 1, 1 P.set_objective('min', objective) return P
convert_to_picos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sdp, duplicate_moment_matrix=False):\n import picos as pic\n import cvxopt as cvx\n P = pic.Problem(verbose=sdp.verbose)\n block_size = sdp.block_struct[0]\n if sdp.F.dtype == np.float64:\n X = P.add_variable('X', (block_size, block_size), vtype='symmetric')\n if duplicate_moment_matrix:\n Y = P.add_variable('Y', (block_size, block_size), vtype='symmetric'\n )\n else:\n X = P.add_variable('X', (block_size, block_size), vtype='hermitian')\n if duplicate_moment_matrix:\n Y = P.add_variable('X', (block_size, block_size), vtype='hermitian'\n )\n row_offset = 0\n theoretical_n_vars = sdp.block_struct[0] ** 2\n eq_block_start = sdp.constraint_starting_block + sdp._n_inequalities\n block_idx = 0\n while block_idx < len(sdp.block_struct):\n block_size = sdp.block_struct[block_idx]\n x, Ix, Jx = [], [], []\n c, Ic, Jc = [], [], []\n for i, row in enumerate(sdp.F.rows[row_offset:row_offset + \n block_size ** 2]):\n for j, column in enumerate(row):\n if column > 0:\n x.append(sdp.F.data[row_offset + i][j])\n Ix.append(i)\n Jx.append(column - 1)\n i0 = i // block_size + i % block_size * block_size\n if i != i0:\n x.append(sdp.F.data[row_offset + i][j])\n Ix.append(i0)\n Jx.append(column - 1)\n else:\n c.append(sdp.F.data[row_offset + i][j])\n Ic.append(i % block_size)\n Jc.append(i // block_size)\n permutation = cvx.spmatrix(x, Ix, Jx, (block_size ** 2,\n theoretical_n_vars))\n constant = cvx.spmatrix(c, Ic, Jc, (block_size, block_size))\n if duplicate_moment_matrix:\n constraint = X\n else:\n constraint = X.copy()\n for k in constraint.factors:\n constraint.factors[k] = permutation\n constraint._size = block_size, block_size\n if block_idx < eq_block_start:\n P.add_constraint(constant + constraint >> 0)\n else:\n P.add_constraint(constant + constraint == 0)\n row_offset += block_size ** 2\n block_idx += 1\n if duplicate_moment_matrix and block_size == sdp.block_struct[0]:\n for k in Y.factors:\n Y.factors[k] = permutation\n row_offset += block_size ** 2\n block_idx += 1\n if len(np.nonzero(sdp.obj_facvar)[0]) > 0:\n x, Ix, Jx = [], [], []\n for k, val in enumerate(sdp.obj_facvar):\n if val != 0:\n x.append(val)\n Ix.append(0)\n Jx.append(k)\n permutation = cvx.spmatrix(x, Ix, Jx)\n objective = X.copy()\n for k in objective.factors:\n objective.factors[k] = permutation\n objective._size = 1, 1\n P.set_objective('min', objective)\n return P\n", "role": "user" }, { "content": "convert_to_picos", "role": "assistant" } ]
def x(sdp, solverparameters=None): problem = convert_to_cvxpy(sdp) if solverparameters is not None and 'solver' in solverparameters: solver = solverparameters.pop('solver') v = problem.solve(solver=solver, verbose=sdp.verbose > 0) else: v = problem.solve(verbose=sdp.verbose > 0) if v is None: status = 'infeasible' x_mat, y_mat = [], [] elif v == float('inf') or v == -float('inf'): status = 'unbounded' x_mat, y_mat = [], [] else: status = 'optimal' x_pre = sdp.F[:, 1:sdp.n_vars + 1].dot(problem.variables()[0].value) x_pre += sdp.F[:, 0] row_offsets = [0] cumulative_sum = 0 for block_size in sdp.block_struct: cumulative_sum += block_size ** 2 row_offsets.append(cumulative_sum) x_mat = [] for bi, bs in enumerate(sdp.block_struct): x = x_pre[row_offsets[bi]:row_offsets[bi + 1]].reshape((bs, bs)) x += x.T - np.diag(np.array(x.diagonal())[0]) x_mat.append(x) y_mat = [constraint.dual_value for constraint in problem.constraints] return v + sdp.constant_term, v + sdp.constant_term, x_mat, y_mat, status
solve_with_cvxpy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sdp, solverparameters=None):\n problem = convert_to_cvxpy(sdp)\n if solverparameters is not None and 'solver' in solverparameters:\n solver = solverparameters.pop('solver')\n v = problem.solve(solver=solver, verbose=sdp.verbose > 0)\n else:\n v = problem.solve(verbose=sdp.verbose > 0)\n if v is None:\n status = 'infeasible'\n x_mat, y_mat = [], []\n elif v == float('inf') or v == -float('inf'):\n status = 'unbounded'\n x_mat, y_mat = [], []\n else:\n status = 'optimal'\n x_pre = sdp.F[:, 1:sdp.n_vars + 1].dot(problem.variables()[0].value)\n x_pre += sdp.F[:, 0]\n row_offsets = [0]\n cumulative_sum = 0\n for block_size in sdp.block_struct:\n cumulative_sum += block_size ** 2\n row_offsets.append(cumulative_sum)\n x_mat = []\n for bi, bs in enumerate(sdp.block_struct):\n x = x_pre[row_offsets[bi]:row_offsets[bi + 1]].reshape((bs, bs))\n x += x.T - np.diag(np.array(x.diagonal())[0])\n x_mat.append(x)\n y_mat = [constraint.dual_value for constraint in problem.constraints]\n return v + sdp.constant_term, v + sdp.constant_term, x_mat, y_mat, status\n", "role": "user" }, { "content": "solve_with_cvxpy", "role": "assistant" } ]
def x(sdp): from cvxpy import Minimize, Problem, Variable row_offsets = [0] cumulative_sum = 0 for block_size in sdp.block_struct: cumulative_sum += block_size ** 2 row_offsets.append(cumulative_sum) x = Variable(sdp.n_vars) constraints = [] for idx, bs in enumerate(sdp.block_struct): nonzero_set = set() F = [lil_matrix((bs, bs)) for _ in range(sdp.n_vars + 1)] for ri, row in enumerate(sdp.F.rows[row_offsets[idx]:row_offsets[ idx + 1]], row_offsets[idx]): block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct, row_offsets, ri) for col_index, k in enumerate(row): value = sdp.F.data[ri][col_index] F[k][i, j] = value F[k][j, i] = value nonzero_set.add(k) if bs > 1: sum_ = sum(F[k] * x[k - 1] for k in nonzero_set if k > 0) if not isinstance(sum_, (int, float)): if F[0].getnnz() > 0: sum_ += F[0] constraints.append(sum_ >> 0) else: sum_ = sum(F[k][0, 0] * x[k - 1] for k in nonzero_set if k > 0) if not isinstance(sum_, (int, float)): sum_ += F[0][0, 0] constraints.append(sum_ >= 0) obj = sum(ci * xi for ci, xi in zip(sdp.obj_facvar, x) if ci != 0) problem = Problem(Minimize(obj), constraints) return problem
convert_to_cvxpy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sdp):\n from cvxpy import Minimize, Problem, Variable\n row_offsets = [0]\n cumulative_sum = 0\n for block_size in sdp.block_struct:\n cumulative_sum += block_size ** 2\n row_offsets.append(cumulative_sum)\n x = Variable(sdp.n_vars)\n constraints = []\n for idx, bs in enumerate(sdp.block_struct):\n nonzero_set = set()\n F = [lil_matrix((bs, bs)) for _ in range(sdp.n_vars + 1)]\n for ri, row in enumerate(sdp.F.rows[row_offsets[idx]:row_offsets[\n idx + 1]], row_offsets[idx]):\n block_index, i, j = convert_row_to_sdpa_index(sdp.block_struct,\n row_offsets, ri)\n for col_index, k in enumerate(row):\n value = sdp.F.data[ri][col_index]\n F[k][i, j] = value\n F[k][j, i] = value\n nonzero_set.add(k)\n if bs > 1:\n sum_ = sum(F[k] * x[k - 1] for k in nonzero_set if k > 0)\n if not isinstance(sum_, (int, float)):\n if F[0].getnnz() > 0:\n sum_ += F[0]\n constraints.append(sum_ >> 0)\n else:\n sum_ = sum(F[k][0, 0] * x[k - 1] for k in nonzero_set if k > 0)\n if not isinstance(sum_, (int, float)):\n sum_ += F[0][0, 0]\n constraints.append(sum_ >= 0)\n obj = sum(ci * xi for ci, xi in zip(sdp.obj_facvar, x) if ci != 0)\n problem = Problem(Minimize(obj), constraints)\n return problem\n", "role": "user" }, { "content": "convert_to_cvxpy", "role": "assistant" } ]
def x(index, lattice_length, width=0, periodic=False): if width == 0: width = lattice_length neighbors = [] coords = divmod(index, width) if coords[1] < width - 1: neighbors.append(index + 1) elif periodic and width > 1: neighbors.append(index - width + 1) if coords[0] < lattice_length - 1: neighbors.append(index + width) elif periodic: neighbors.append(index - (lattice_length - 1) * width) return neighbors
get_neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(index, lattice_length, width=0, periodic=False):\n if width == 0:\n width = lattice_length\n neighbors = []\n coords = divmod(index, width)\n if coords[1] < width - 1:\n neighbors.append(index + 1)\n elif periodic and width > 1:\n neighbors.append(index - width + 1)\n if coords[0] < lattice_length - 1:\n neighbors.append(index + width)\n elif periodic:\n neighbors.append(index - (lattice_length - 1) * width)\n return neighbors\n", "role": "user" }, { "content": "get_neighbors", "role": "assistant" } ]
def x(indices, lattice_length, width=0, distance=1, periodic=False): if not isinstance(indices, list): indices = [indices] if distance == 1: return flatten(get_neighbors(index, lattice_length, width, periodic ) for index in indices) else: s1 = set(flatten(get_next_neighbors(get_neighbors(index, lattice_length, width, periodic), lattice_length, width, distance - 1, periodic) for index in indices)) s2 = set(get_next_neighbors(indices, lattice_length, width, distance - 1, periodic)) return list(s1 - s2)
get_next_neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(indices, lattice_length, width=0, distance=1, periodic=False):\n if not isinstance(indices, list):\n indices = [indices]\n if distance == 1:\n return flatten(get_neighbors(index, lattice_length, width, periodic\n ) for index in indices)\n else:\n s1 = set(flatten(get_next_neighbors(get_neighbors(index,\n lattice_length, width, periodic), lattice_length, width, \n distance - 1, periodic) for index in indices))\n s2 = set(get_next_neighbors(indices, lattice_length, width, \n distance - 1, periodic))\n return list(s1 - s2)\n", "role": "user" }, { "content": "get_next_neighbors", "role": "assistant" } ]
def x(a): substitutions = {} for i, ai in enumerate(a): substitutions[ai * Dagger(ai)] = 1.0 + Dagger(ai) * ai for aj in a[i + 1:]: substitutions[ai * Dagger(aj)] = Dagger(aj) * ai substitutions[Dagger(ai) * aj] = aj * Dagger(ai) substitutions[ai * aj] = aj * ai substitutions[Dagger(ai) * Dagger(aj)] = Dagger(aj) * Dagger(ai) return substitutions
bosonic_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a):\n substitutions = {}\n for i, ai in enumerate(a):\n substitutions[ai * Dagger(ai)] = 1.0 + Dagger(ai) * ai\n for aj in a[i + 1:]:\n substitutions[ai * Dagger(aj)] = Dagger(aj) * ai\n substitutions[Dagger(ai) * aj] = aj * Dagger(ai)\n substitutions[ai * aj] = aj * ai\n substitutions[Dagger(ai) * Dagger(aj)] = Dagger(aj) * Dagger(ai)\n return substitutions\n", "role": "user" }, { "content": "bosonic_constraints", "role": "assistant" } ]
def x(a): substitutions = {} for i, ai in enumerate(a): substitutions[ai ** 2] = 0 substitutions[Dagger(ai) ** 2] = 0 substitutions[ai * Dagger(ai)] = 1.0 - Dagger(ai) * ai for aj in a[i + 1:]: substitutions[ai * Dagger(aj)] = -Dagger(aj) * ai substitutions[Dagger(ai) * aj] = -aj * Dagger(ai) substitutions[ai * aj] = -aj * ai substitutions[Dagger(ai) * Dagger(aj)] = -Dagger(aj) * Dagger(ai) return substitutions
fermionic_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a):\n substitutions = {}\n for i, ai in enumerate(a):\n substitutions[ai ** 2] = 0\n substitutions[Dagger(ai) ** 2] = 0\n substitutions[ai * Dagger(ai)] = 1.0 - Dagger(ai) * ai\n for aj in a[i + 1:]:\n substitutions[ai * Dagger(aj)] = -Dagger(aj) * ai\n substitutions[Dagger(ai) * aj] = -aj * Dagger(ai)\n substitutions[ai * aj] = -aj * ai\n substitutions[Dagger(ai) * Dagger(aj)] = -Dagger(aj) * Dagger(ai)\n return substitutions\n", "role": "user" }, { "content": "fermionic_constraints", "role": "assistant" } ]
def x(X, Y, Z): substitutions = {} n_vars = len(X) for i in range(n_vars): substitutions[X[i] * X[i]] = 1 substitutions[Y[i] * Y[i]] = 1 substitutions[Z[i] * Z[i]] = 1 substitutions[Y[i] * X[i]] = -X[i] * Y[i] substitutions[Z[i] * X[i]] = -X[i] * Z[i] substitutions[Z[i] * Y[i]] = -Y[i] * Z[i] for j in range(i + 1, n_vars): substitutions[X[j] * X[i]] = X[i] * X[j] substitutions[Y[j] * Y[i]] = Y[i] * Y[j] substitutions[Y[j] * X[i]] = X[i] * Y[j] substitutions[Y[i] * X[j]] = X[j] * Y[i] substitutions[Z[j] * Z[i]] = Z[i] * Z[j] substitutions[Z[j] * X[i]] = X[i] * Z[j] substitutions[Z[i] * X[j]] = X[j] * Z[i] substitutions[Z[j] * Y[i]] = Y[i] * Z[j] substitutions[Z[i] * Y[j]] = Y[j] * Z[i] return substitutions
pauli_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, Y, Z):\n substitutions = {}\n n_vars = len(X)\n for i in range(n_vars):\n substitutions[X[i] * X[i]] = 1\n substitutions[Y[i] * Y[i]] = 1\n substitutions[Z[i] * Z[i]] = 1\n substitutions[Y[i] * X[i]] = -X[i] * Y[i]\n substitutions[Z[i] * X[i]] = -X[i] * Z[i]\n substitutions[Z[i] * Y[i]] = -Y[i] * Z[i]\n for j in range(i + 1, n_vars):\n substitutions[X[j] * X[i]] = X[i] * X[j]\n substitutions[Y[j] * Y[i]] = Y[i] * Y[j]\n substitutions[Y[j] * X[i]] = X[i] * Y[j]\n substitutions[Y[i] * X[j]] = X[j] * Y[i]\n substitutions[Z[j] * Z[i]] = Z[i] * Z[j]\n substitutions[Z[j] * X[i]] = X[i] * Z[j]\n substitutions[Z[i] * X[j]] = X[j] * Z[i]\n substitutions[Z[j] * Y[i]] = Y[i] * Z[j]\n substitutions[Z[i] * Y[j]] = Y[j] * Z[i]\n return substitutions\n", "role": "user" }, { "content": "pauli_constraints", "role": "assistant" } ]
def x(party, label): measurements = [] for i in range(len(party)): measurements.append(generate_operators(label + '%s' % i, party[i] - 1, hermitian=True)) return measurements
generate_measurements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(party, label):\n measurements = []\n for i in range(len(party)):\n measurements.append(generate_operators(label + '%s' % i, party[i] -\n 1, hermitian=True))\n return measurements\n", "role": "user" }, { "content": "generate_measurements", "role": "assistant" } ]
def x(*parties): substitutions = {} if isinstance(parties[0][0][0], list): parties = parties[0] for party in parties: for measurement in party: for projector1 in measurement: for projector2 in measurement: if projector1 == projector2: substitutions[projector1 ** 2] = projector1 else: substitutions[projector1 * projector2] = 0 substitutions[projector2 * projector1] = 0 for n1 in range(len(parties)): for n2 in range(n1 + 1, len(parties)): for measurement1 in parties[n1]: for measurement2 in parties[n2]: for projector1 in measurement1: for projector2 in measurement2: substitutions[projector2 * projector1 ] = projector1 * projector2 return substitutions
projective_measurement_constraints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*parties):\n substitutions = {}\n if isinstance(parties[0][0][0], list):\n parties = parties[0]\n for party in parties:\n for measurement in party:\n for projector1 in measurement:\n for projector2 in measurement:\n if projector1 == projector2:\n substitutions[projector1 ** 2] = projector1\n else:\n substitutions[projector1 * projector2] = 0\n substitutions[projector2 * projector1] = 0\n for n1 in range(len(parties)):\n for n2 in range(n1 + 1, len(parties)):\n for measurement1 in parties[n1]:\n for measurement2 in parties[n2]:\n for projector1 in measurement1:\n for projector2 in measurement2:\n substitutions[projector2 * projector1\n ] = projector1 * projector2\n return substitutions\n", "role": "user" }, { "content": "projective_measurement_constraints", "role": "assistant" } ]
def x(I, *args): objective = I[0][0] if len(args) > 2 or len(args) == 0: raise Exception('Wrong number of arguments!') elif len(args) == 1: A = args[0].parties[0] B = args[0].parties[1] else: A = args[0] B = args[1] i, j = 0, 1 for m_Bj in B: for Bj in m_Bj: objective += I[i][j] * Bj j += 1 i += 1 for m_Ai in A: for Ai in m_Ai: objective += I[i][0] * Ai j = 1 for m_Bj in B: for Bj in m_Bj: objective += I[i][j] * Ai * Bj j += 1 i += 1 return -objective
define_objective_with_I
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(I, *args):\n objective = I[0][0]\n if len(args) > 2 or len(args) == 0:\n raise Exception('Wrong number of arguments!')\n elif len(args) == 1:\n A = args[0].parties[0]\n B = args[0].parties[1]\n else:\n A = args[0]\n B = args[1]\n i, j = 0, 1\n for m_Bj in B:\n for Bj in m_Bj:\n objective += I[i][j] * Bj\n j += 1\n i += 1\n for m_Ai in A:\n for Ai in m_Ai:\n objective += I[i][0] * Ai\n j = 1\n for m_Bj in B:\n for Bj in m_Bj:\n objective += I[i][j] * Ai * Bj\n j += 1\n i += 1\n return -objective\n", "role": "user" }, { "content": "define_objective_with_I", "role": "assistant" } ]
def x(A, B): correlators = [] for i in range(len(A)): correlator_row = [] for j in range(len(B)): corr = 0 for k in range(len(A[i])): for l in range(len(B[j])): if k == l: corr += A[i][k] * B[j][l] else: corr -= A[i][k] * B[j][l] correlator_row.append(corr) correlators.append(correlator_row) return correlators
correlator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A, B):\n correlators = []\n for i in range(len(A)):\n correlator_row = []\n for j in range(len(B)):\n corr = 0\n for k in range(len(A[i])):\n for l in range(len(B[j])):\n if k == l:\n corr += A[i][k] * B[j][l]\n else:\n corr -= A[i][k] * B[j][l]\n correlator_row.append(corr)\n correlators.append(correlator_row)\n return correlators\n", "role": "user" }, { "content": "correlator", "role": "assistant" } ]
def x(A_configuration, B_configuration, I, level, extra=None): P = Probability(A_configuration, B_configuration) objective = define_objective_with_I(I, P) if extra is None: extramonomials = [] else: extramonomials = P.get_extra_monomials(extra) sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0) sdpRelaxation.get_relaxation(level, objective=objective, substitutions= P.substitutions, extramonomials=extramonomials) solve_sdp(sdpRelaxation) return sdpRelaxation.primal, sdpRelaxation.dual
maximum_violation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(A_configuration, B_configuration, I, level, extra=None):\n P = Probability(A_configuration, B_configuration)\n objective = define_objective_with_I(I, P)\n if extra is None:\n extramonomials = []\n else:\n extramonomials = P.get_extra_monomials(extra)\n sdpRelaxation = SdpRelaxation(P.get_all_operators(), verbose=0)\n sdpRelaxation.get_relaxation(level, objective=objective, substitutions=\n P.substitutions, extramonomials=extramonomials)\n solve_sdp(sdpRelaxation)\n return sdpRelaxation.primal, sdpRelaxation.dual\n", "role": "user" }, { "content": "maximum_violation", "role": "assistant" } ]
def x(d): inner = ', '.join('{}: {}'.format(repr(k)[1:] if repr(k).startswith( u"u'") or repr(k).startswith(u'u"') else repr(k), v) for k, v in sorted(d.items())) return '{%s}' % inner
stable_format_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n inner = ', '.join('{}: {}'.format(repr(k)[1:] if repr(k).startswith(\n u\"u'\") or repr(k).startswith(u'u\"') else repr(k), v) for k, v in\n sorted(d.items()))\n return '{%s}' % inner\n", "role": "user" }, { "content": "stable_format_dict", "role": "assistant" } ]
def x(a, b, x, y): if b <= x or a >= y: return 0 elif x <= a <= y: return min(b, y) - a elif x <= b <= y: return b - max(a, x) elif a >= x and b <= y: return b - a else: assert False
interval_overlap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, x, y):\n if b <= x or a >= y:\n return 0\n elif x <= a <= y:\n return min(b, y) - a\n elif x <= b <= y:\n return b - max(a, x)\n elif a >= x and b <= y:\n return b - a\n else:\n assert False\n", "role": "user" }, { "content": "interval_overlap", "role": "assistant" } ]
def x(s, start, end, replacement_char=u' '): divides = [0] for c in s: divides.append(divides[-1] + wcswidth(c)) new_chunk_chars = [] for char, char_start, char_end in zip(s, divides[:-1], divides[1:]): if char_start == start and char_end == start: continue elif char_start >= start and char_end <= end: new_chunk_chars.append(char) else: new_chunk_chars.extend(replacement_char * interval_overlap( char_start, char_end, start, end)) return ''.join(new_chunk_chars)
width_aware_slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, start, end, replacement_char=u' '):\n divides = [0]\n for c in s:\n divides.append(divides[-1] + wcswidth(c))\n new_chunk_chars = []\n for char, char_start, char_end in zip(s, divides[:-1], divides[1:]):\n if char_start == start and char_end == start:\n continue\n elif char_start >= start and char_end <= end:\n new_chunk_chars.append(char)\n else:\n new_chunk_chars.extend(replacement_char * interval_overlap(\n char_start, char_end, start, end))\n return ''.join(new_chunk_chars)\n", "role": "user" }, { "content": "width_aware_slice", "role": "assistant" } ]
def x(string, columns): if not isinstance(string, FmtStr): string = fmtstr(string) string_s = string.s matches = list(re.finditer('\\s+', string_s)) spaces = [string[m.start():m.end()] for m in matches if m.start() != 0 and m.end() != len(string_s)] words = [string[start:end] for start, end in zip([0] + [m.end() for m in matches], [m.start() for m in matches] + [len(string_s)]) if start != end] word_to_lines = lambda word: [word[columns * i:columns * (i + 1)] for i in range((len(word) - 1) // columns + 1)] lines = word_to_lines(words[0]) for word, space in zip(words[1:], spaces): if len(lines[-1]) + len(word) < columns: lines[-1] += fmtstr(' ', **space.shared_atts) lines[-1] += word else: lines.extend(word_to_lines(word)) return lines
linesplit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, columns):\n if not isinstance(string, FmtStr):\n string = fmtstr(string)\n string_s = string.s\n matches = list(re.finditer('\\\\s+', string_s))\n spaces = [string[m.start():m.end()] for m in matches if m.start() != 0 and\n m.end() != len(string_s)]\n words = [string[start:end] for start, end in zip([0] + [m.end() for m in\n matches], [m.start() for m in matches] + [len(string_s)]) if start !=\n end]\n word_to_lines = lambda word: [word[columns * i:columns * (i + 1)] for i in\n range((len(word) - 1) // columns + 1)]\n lines = word_to_lines(words[0])\n for word, space in zip(words[1:], spaces):\n if len(lines[-1]) + len(word) < columns:\n lines[-1] += fmtstr(' ', **space.shared_atts)\n lines[-1] += word\n else:\n lines.extend(word_to_lines(word))\n return lines\n", "role": "user" }, { "content": "linesplit", "role": "assistant" } ]
def x(length, index): is_int = False if isinstance(index, int): is_int = True index = slice(index, index + 1) if index.start is None: index = slice(0, index.stop, index.step) if index.stop is None: index = slice(index.start, length, index.step) if index.start < -1: index = slice(length - index.start, index.stop, index.step) if index.stop < -1: index = slice(index.start, length - index.stop, index.step) if index.step is not None: raise NotImplementedError("You can't use steps with slicing yet") if is_int: if index.start < 0 or index.start > length: raise IndexError('index out of bounds: %r for length %s' % ( index, length)) return index
normalize_slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(length, index):\n is_int = False\n if isinstance(index, int):\n is_int = True\n index = slice(index, index + 1)\n if index.start is None:\n index = slice(0, index.stop, index.step)\n if index.stop is None:\n index = slice(index.start, length, index.step)\n if index.start < -1:\n index = slice(length - index.start, index.stop, index.step)\n if index.stop < -1:\n index = slice(index.start, length - index.stop, index.step)\n if index.step is not None:\n raise NotImplementedError(\"You can't use steps with slicing yet\")\n if is_int:\n if index.start < 0 or index.start > length:\n raise IndexError('index out of bounds: %r for length %s' % (\n index, length))\n return index\n", "role": "user" }, { "content": "normalize_slice", "role": "assistant" } ]
def x(args, kwargs): if 'style' in kwargs: args += kwargs['style'], del kwargs['style'] for arg in args: if not isinstance(arg, (bytes, unicode)): raise ValueError('args must be strings:' + repr(args)) if arg.lower() in FG_COLORS: if 'fg' in kwargs: raise ValueError('fg specified twice') kwargs['fg'] = FG_COLORS[arg] elif arg.lower().startswith('on_') and arg[3:].lower() in BG_COLORS: if 'bg' in kwargs: raise ValueError('fg specified twice') kwargs['bg'] = BG_COLORS[arg[3:]] elif arg.lower() in STYLES: kwargs[arg] = True else: raise ValueError("couldn't process arg: " + repr(arg)) for k in kwargs: if k not in ['fg', 'bg'] + list(STYLES.keys()): raise ValueError("Can't apply that transformation") if 'fg' in kwargs: if kwargs['fg'] in FG_COLORS: kwargs['fg'] = FG_COLORS[kwargs['fg']] if kwargs['fg'] not in list(FG_COLORS.values()): raise ValueError('Bad fg value: %r' % kwargs['fg']) if 'bg' in kwargs: if kwargs['bg'] in BG_COLORS: kwargs['bg'] = BG_COLORS[kwargs['bg']] if kwargs['bg'] not in list(BG_COLORS.values()): raise ValueError('Bad bg value: %r' % kwargs['bg']) return kwargs
parse_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args, kwargs):\n if 'style' in kwargs:\n args += kwargs['style'],\n del kwargs['style']\n for arg in args:\n if not isinstance(arg, (bytes, unicode)):\n raise ValueError('args must be strings:' + repr(args))\n if arg.lower() in FG_COLORS:\n if 'fg' in kwargs:\n raise ValueError('fg specified twice')\n kwargs['fg'] = FG_COLORS[arg]\n elif arg.lower().startswith('on_') and arg[3:].lower() in BG_COLORS:\n if 'bg' in kwargs:\n raise ValueError('fg specified twice')\n kwargs['bg'] = BG_COLORS[arg[3:]]\n elif arg.lower() in STYLES:\n kwargs[arg] = True\n else:\n raise ValueError(\"couldn't process arg: \" + repr(arg))\n for k in kwargs:\n if k not in ['fg', 'bg'] + list(STYLES.keys()):\n raise ValueError(\"Can't apply that transformation\")\n if 'fg' in kwargs:\n if kwargs['fg'] in FG_COLORS:\n kwargs['fg'] = FG_COLORS[kwargs['fg']]\n if kwargs['fg'] not in list(FG_COLORS.values()):\n raise ValueError('Bad fg value: %r' % kwargs['fg'])\n if 'bg' in kwargs:\n if kwargs['bg'] in BG_COLORS:\n kwargs['bg'] = BG_COLORS[kwargs['bg']]\n if kwargs['bg'] not in list(BG_COLORS.values()):\n raise ValueError('Bad bg value: %r' % kwargs['bg'])\n return kwargs\n", "role": "user" }, { "content": "parse_args", "role": "assistant" } ]
def x(string, *args, **kwargs): atts = parse_args(args, kwargs) if isinstance(string, FmtStr): pass elif isinstance(string, (bytes, unicode)): string = FmtStr.from_str(string) else: raise ValueError('Bad Args: %r (of type %s), %r, %r' % (string, type(string), args, kwargs)) return string.copy_with_new_atts(**atts)
fmtstr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, *args, **kwargs):\n atts = parse_args(args, kwargs)\n if isinstance(string, FmtStr):\n pass\n elif isinstance(string, (bytes, unicode)):\n string = FmtStr.from_str(string)\n else:\n raise ValueError('Bad Args: %r (of type %s), %r, %r' % (string,\n type(string), args, kwargs))\n return string.copy_with_new_atts(**atts)\n", "role": "user" }, { "content": "fmtstr", "role": "assistant" } ]
def x(self): s = self.s for k, v in sorted(self.atts.items()): if k not in xforms: continue elif v is False: continue elif v is True: s = xforms[k](s) else: s = xforms[k](s, v) return s
color_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n s = self.s\n for k, v in sorted(self.atts.items()):\n if k not in xforms:\n continue\n elif v is False:\n continue\n elif v is True:\n s = xforms[k](s)\n else:\n s = xforms[k](s, v)\n return s\n", "role": "user" }, { "content": "color_str", "role": "assistant" } ]
def x(self): def x(att): if att == 'fg': return FG_NUMBER_TO_COLOR[self.atts[att]] elif att == 'bg': return 'on_' + BG_NUMBER_TO_COLOR[self.atts[att]] else: return att atts_out = dict((k, v) for k, v in self.atts.items() if v) return ''.join(pp_att(att) + '(' for att in sorted(atts_out)) + (repr( self.s) if PY3 else repr(self.s)[1:]) + ')' * len(atts_out)
repr_part
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(att):\n if att == 'fg':\n return FG_NUMBER_TO_COLOR[self.atts[att]]\n elif att == 'bg':\n return 'on_' + BG_NUMBER_TO_COLOR[self.atts[att]]\n else:\n return att\n atts_out = dict((k, v) for k, v in self.atts.items() if v)\n return ''.join(pp_att(att) + '(' for att in sorted(atts_out)) + (repr(\n self.s) if PY3 else repr(self.s)[1:]) + ')' * len(atts_out)\n", "role": "user" }, { "content": "repr_part", "role": "assistant" } ]
def x(self, max_width): if max_width < 1: raise ValueError('requires positive integer max_width') s = self.chunk.s length = len(s) if self.internal_offset == len(s): return None width = 0 start_offset = i = self.internal_offset replacement_char = u' ' while True: w = wcswidth(s[i]) if width + w > max_width: self.internal_offset = i self.internal_width += width if width < max_width: assert width + 1 == max_width, 'unicode character width of more than 2!?!' assert w == 2, 'unicode character of width other than 2?' return width + 1, Chunk(s[start_offset:self.internal_offset ] + replacement_char, atts=self.chunk.atts) return width, Chunk(s[start_offset:self.internal_offset], atts= self.chunk.atts) width += w if i + 1 == length: self.internal_offset = i + 1 self.internal_width += width return width, Chunk(s[start_offset:self.internal_offset], atts= self.chunk.atts) i += 1
request
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, max_width):\n if max_width < 1:\n raise ValueError('requires positive integer max_width')\n s = self.chunk.s\n length = len(s)\n if self.internal_offset == len(s):\n return None\n width = 0\n start_offset = i = self.internal_offset\n replacement_char = u' '\n while True:\n w = wcswidth(s[i])\n if width + w > max_width:\n self.internal_offset = i\n self.internal_width += width\n if width < max_width:\n assert width + 1 == max_width, 'unicode character width of more than 2!?!'\n assert w == 2, 'unicode character of width other than 2?'\n return width + 1, Chunk(s[start_offset:self.internal_offset\n ] + replacement_char, atts=self.chunk.atts)\n return width, Chunk(s[start_offset:self.internal_offset], atts=\n self.chunk.atts)\n width += w\n if i + 1 == length:\n self.internal_offset = i + 1\n self.internal_width += width\n return width, Chunk(s[start_offset:self.internal_offset], atts=\n self.chunk.atts)\n i += 1\n", "role": "user" }, { "content": "request", "role": "assistant" } ]
def x(cls, s): if '\x1b[' in s: try: tokens_and_strings = parse(s) except ValueError: return FmtStr(Chunk(remove_ansi(s))) else: chunks = [] cur_fmt = {} for x in tokens_and_strings: if isinstance(x, dict): cur_fmt.update(x) elif isinstance(x, (bytes, unicode)): atts = parse_args('', dict((k, v) for k, v in cur_fmt. items() if v is not None)) chunks.append(Chunk(x, atts=atts)) else: raise Exception('logic error') return FmtStr(*chunks) else: return FmtStr(Chunk(s))
from_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, s):\n if '\\x1b[' in s:\n try:\n tokens_and_strings = parse(s)\n except ValueError:\n return FmtStr(Chunk(remove_ansi(s)))\n else:\n chunks = []\n cur_fmt = {}\n for x in tokens_and_strings:\n if isinstance(x, dict):\n cur_fmt.update(x)\n elif isinstance(x, (bytes, unicode)):\n atts = parse_args('', dict((k, v) for k, v in cur_fmt.\n items() if v is not None))\n chunks.append(Chunk(x, atts=atts))\n else:\n raise Exception('logic error')\n return FmtStr(*chunks)\n else:\n return FmtStr(Chunk(s))\n", "role": "user" }, { "content": "from_str", "role": "assistant" } ]
def x(self, new_str): old_atts = dict((att, value) for bfs in self.chunks for att, value in bfs.atts.items()) return FmtStr(Chunk(new_str, old_atts))
copy_with_new_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_str):\n old_atts = dict((att, value) for bfs in self.chunks for att, value in\n bfs.atts.items())\n return FmtStr(Chunk(new_str, old_atts))\n", "role": "user" }, { "content": "copy_with_new_str", "role": "assistant" } ]
def x(self, startindex, fs): return self.setslice_with_length(startindex, startindex + 1, fs, len(self))
setitem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startindex, fs):\n return self.setslice_with_length(startindex, startindex + 1, fs, len(self))\n", "role": "user" }, { "content": "setitem", "role": "assistant" } ]
def x(self, startindex, endindex, fs, length): if len(self) < startindex: fs = ' ' * (startindex - len(self)) + fs if len(self) > endindex: fs = fs + ' ' * (endindex - startindex - len(fs)) assert len(fs) == endindex - startindex, (len(fs), startindex, endindex ) result = self.splice(fs, startindex, endindex) assert len(result) <= length return result
setslice_with_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startindex, endindex, fs, length):\n if len(self) < startindex:\n fs = ' ' * (startindex - len(self)) + fs\n if len(self) > endindex:\n fs = fs + ' ' * (endindex - startindex - len(fs))\n assert len(fs) == endindex - startindex, (len(fs), startindex, endindex\n )\n result = self.splice(fs, startindex, endindex)\n assert len(result) <= length\n return result\n", "role": "user" }, { "content": "setslice_with_length", "role": "assistant" } ]
def x(self, new_str, start, end=None): if len(new_str) == 0: return self new_fs = new_str if isinstance(new_str, FmtStr) else fmtstr(new_str) assert len(new_fs.chunks) > 0, (new_fs.chunks, new_fs) new_components = [] inserted = False if end is None: end = start tail = None for bfs, bfs_start, bfs_end in zip(self.chunks, self.divides[:-1], self .divides[1:]): if end == bfs_start == 0: new_components.extend(new_fs.chunks) new_components.append(bfs) inserted = True elif bfs_start <= start < bfs_end: divide = start - bfs_start head = Chunk(bfs.s[:divide], atts=bfs.atts) tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts) new_components.extend([head] + new_fs.chunks) inserted = True if bfs_start < end < bfs_end: tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts) new_components.append(tail) elif bfs_start < end < bfs_end: divide = start - bfs_start tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts) new_components.append(tail) elif bfs_start >= end or bfs_end <= start: new_components.append(bfs) if not inserted: new_components.extend(new_fs.chunks) inserted = True return FmtStr(*[s for s in new_components if s.s])
splice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_str, start, end=None):\n if len(new_str) == 0:\n return self\n new_fs = new_str if isinstance(new_str, FmtStr) else fmtstr(new_str)\n assert len(new_fs.chunks) > 0, (new_fs.chunks, new_fs)\n new_components = []\n inserted = False\n if end is None:\n end = start\n tail = None\n for bfs, bfs_start, bfs_end in zip(self.chunks, self.divides[:-1], self\n .divides[1:]):\n if end == bfs_start == 0:\n new_components.extend(new_fs.chunks)\n new_components.append(bfs)\n inserted = True\n elif bfs_start <= start < bfs_end:\n divide = start - bfs_start\n head = Chunk(bfs.s[:divide], atts=bfs.atts)\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.extend([head] + new_fs.chunks)\n inserted = True\n if bfs_start < end < bfs_end:\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.append(tail)\n elif bfs_start < end < bfs_end:\n divide = start - bfs_start\n tail = Chunk(bfs.s[end - bfs_start:], atts=bfs.atts)\n new_components.append(tail)\n elif bfs_start >= end or bfs_end <= start:\n new_components.append(bfs)\n if not inserted:\n new_components.extend(new_fs.chunks)\n inserted = True\n return FmtStr(*[s for s in new_components if s.s])\n", "role": "user" }, { "content": "splice", "role": "assistant" } ]
def x(self, **attributes): return FmtStr(*[Chunk(bfs.s, bfs.atts.extend(attributes)) for bfs in self.chunks])
copy_with_new_atts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **attributes):\n return FmtStr(*[Chunk(bfs.s, bfs.atts.extend(attributes)) for bfs in\n self.chunks])\n", "role": "user" }, { "content": "copy_with_new_atts", "role": "assistant" } ]
def x(self, iterable): before = [] chunks = [] for i, s in enumerate(iterable): chunks.extend(before) before = self.chunks if isinstance(s, FmtStr): chunks.extend(s.chunks) elif isinstance(s, (bytes, unicode)): chunks.extend(fmtstr(s).chunks) else: raise TypeError('expected str or FmtStr, %r found' % type(s)) return FmtStr(*chunks)
join
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, iterable):\n before = []\n chunks = []\n for i, s in enumerate(iterable):\n chunks.extend(before)\n before = self.chunks\n if isinstance(s, FmtStr):\n chunks.extend(s.chunks)\n elif isinstance(s, (bytes, unicode)):\n chunks.extend(fmtstr(s).chunks)\n else:\n raise TypeError('expected str or FmtStr, %r found' % type(s))\n return FmtStr(*chunks)\n", "role": "user" }, { "content": "join", "role": "assistant" } ]
def x(self, sep=None, maxsplit=None, regex=False): if maxsplit is not None: raise NotImplementedError('no maxsplit yet') s = self.s if sep is None: sep = '\\s+' elif not regex: sep = re.escape(sep) matches = list(re.finditer(sep, s)) return [self[start:end] for start, end in zip([0] + [m.end() for m in matches], [m.start() for m in matches] + [len(s)])]
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sep=None, maxsplit=None, regex=False):\n if maxsplit is not None:\n raise NotImplementedError('no maxsplit yet')\n s = self.s\n if sep is None:\n sep = '\\\\s+'\n elif not regex:\n sep = re.escape(sep)\n matches = list(re.finditer(sep, s))\n return [self[start:end] for start, end in zip([0] + [m.end() for m in\n matches], [m.start() for m in matches] + [len(s)])]\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(self, keepends=False): lines = self.split('\n') return [(line + '\n') for line in lines] if keepends else lines if lines[-1 ] else lines[:-1]
splitlines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keepends=False):\n lines = self.split('\\n')\n return [(line + '\\n') for line in lines] if keepends else lines if lines[-1\n ] else lines[:-1]\n", "role": "user" }, { "content": "splitlines", "role": "assistant" } ]
def x(self, width, fillchar=None): if fillchar is not None: return fmtstr(self.s.ljust(width, fillchar), **self.shared_atts) to_add = ' ' * (width - len(self.s)) shared = self.shared_atts if 'bg' in shared: return self + fmtstr(to_add, bg=shared[str('bg')]) if to_add else self else: uniform = self.new_with_atts_removed('bg') return uniform + fmtstr(to_add, **self.shared_atts ) if to_add else uniform
ljust
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, width, fillchar=None):\n if fillchar is not None:\n return fmtstr(self.s.ljust(width, fillchar), **self.shared_atts)\n to_add = ' ' * (width - len(self.s))\n shared = self.shared_atts\n if 'bg' in shared:\n return self + fmtstr(to_add, bg=shared[str('bg')]) if to_add else self\n else:\n uniform = self.new_with_atts_removed('bg')\n return uniform + fmtstr(to_add, **self.shared_atts\n ) if to_add else uniform\n", "role": "user" }, { "content": "ljust", "role": "assistant" } ]
def x(self): if self._width is not None: return self._width self._width = sum(fs.width for fs in self.chunks) return self._width
width
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._width is not None:\n return self._width\n self._width = sum(fs.width for fs in self.chunks)\n return self._width\n", "role": "user" }, { "content": "width", "role": "assistant" } ]
def x(self, n): width = wcswidth(self.s[:n]) assert width != -1 return width
width_at_offset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n):\n width = wcswidth(self.s[:n])\n assert width != -1\n return width\n", "role": "user" }, { "content": "width_at_offset", "role": "assistant" } ]
def x(self): atts = {} first = self.chunks[0] for att in sorted(first.atts): if all(fs.atts.get(att, '???') == first.atts[att] for fs in self. chunks if len(fs) > 0): atts[att] = first.atts[att] return atts
shared_atts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n atts = {}\n first = self.chunks[0]\n for att in sorted(first.atts):\n if all(fs.atts.get(att, '???') == first.atts[att] for fs in self.\n chunks if len(fs) > 0):\n atts[att] = first.atts[att]\n return atts\n", "role": "user" }, { "content": "shared_atts", "role": "assistant" } ]
def x(self, *attributes): return FmtStr(*[Chunk(bfs.s, bfs.atts.remove(*attributes)) for bfs in self.chunks])
new_with_atts_removed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *attributes):\n return FmtStr(*[Chunk(bfs.s, bfs.atts.remove(*attributes)) for bfs in\n self.chunks])\n", "role": "user" }, { "content": "new_with_atts_removed", "role": "assistant" } ]
def x(self): acc = [0] for s in self.chunks: acc.append(acc[-1] + len(s)) return acc
divides
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n acc = [0]\n for s in self.chunks:\n acc.append(acc[-1] + len(s))\n return acc\n", "role": "user" }, { "content": "divides", "role": "assistant" } ]
def x(self, index): if wcswidth(self.s) == -1: raise ValueError('bad values for width aware slicing') index = normalize_slice(self.width, index) counter = 0 parts = [] for chunk in self.chunks: if index.start < counter + chunk.width and index.stop > counter: start = max(0, index.start - counter) end = min(index.stop - counter, chunk.width) if end - start == chunk.width: parts.append(chunk) else: s_part = width_aware_slice(chunk.s, max(0, index.start - counter), index.stop - counter) parts.append(Chunk(s_part, chunk.atts)) counter += chunk.width if index.stop < counter: break return FmtStr(*parts) if parts else fmtstr('')
width_aware_slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n if wcswidth(self.s) == -1:\n raise ValueError('bad values for width aware slicing')\n index = normalize_slice(self.width, index)\n counter = 0\n parts = []\n for chunk in self.chunks:\n if index.start < counter + chunk.width and index.stop > counter:\n start = max(0, index.start - counter)\n end = min(index.stop - counter, chunk.width)\n if end - start == chunk.width:\n parts.append(chunk)\n else:\n s_part = width_aware_slice(chunk.s, max(0, index.start -\n counter), index.stop - counter)\n parts.append(Chunk(s_part, chunk.atts))\n counter += chunk.width\n if index.stop < counter:\n break\n return FmtStr(*parts) if parts else fmtstr('')\n", "role": "user" }, { "content": "width_aware_slice", "role": "assistant" } ]
def x(self, columns): if columns < 2: raise ValueError('Column width %s is too narrow.' % columns) if wcswidth(self.s) == -1: raise ValueError('bad values for width aware slicing') return self._width_aware_splitlines(columns)
width_aware_splitlines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, columns):\n if columns < 2:\n raise ValueError('Column width %s is too narrow.' % columns)\n if wcswidth(self.s) == -1:\n raise ValueError('bad values for width aware slicing')\n return self._width_aware_splitlines(columns)\n", "role": "user" }, { "content": "width_aware_splitlines", "role": "assistant" } ]
def x(self, index): index = normalize_slice(len(self), index) counter = 0 output = '' for fs in self.chunks: if index.start < counter + len(fs) and index.stop > counter: s_part = fs.s[max(0, index.start - counter):index.stop - counter] piece = Chunk(s_part, fs.atts).color_str output += piece counter += len(fs) if index.stop < counter: break return fmtstr(output)
getitem_normalized
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n index = normalize_slice(len(self), index)\n counter = 0\n output = ''\n for fs in self.chunks:\n if index.start < counter + len(fs) and index.stop > counter:\n s_part = fs.s[max(0, index.start - counter):index.stop - counter]\n piece = Chunk(s_part, fs.atts).color_str\n output += piece\n counter += len(fs)\n if index.stop < counter:\n break\n return fmtstr(output)\n", "role": "user" }, { "content": "getitem_normalized", "role": "assistant" } ]
def x(self, inequalities, equalities, momentinequalities, momentequalities, extramomentmatrix, removeequalities, block_struct=None): block_struct = [] if self.verbose > 0: print('Calculating block structure...') block_struct.append(len(self.monomial_sets[0]) * len(self.monomial_sets[1]) ) if extramomentmatrix is not None: for _ in extramomentmatrix: block_struct.append(len(self.monomial_sets[0]) * len(self. monomial_sets[1])) super(MoroderHierarchy, self)._calculate_block_structure(inequalities, equalities, momentinequalities, momentequalities, extramomentmatrix, removeequalities, block_struct=block_struct)
calculate_block_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n block_struct = []\n if self.verbose > 0:\n print('Calculating block structure...')\n block_struct.append(len(self.monomial_sets[0]) * len(self.monomial_sets[1])\n )\n if extramomentmatrix is not None:\n for _ in extramomentmatrix:\n block_struct.append(len(self.monomial_sets[0]) * len(self.\n monomial_sets[1]))\n super(MoroderHierarchy, self)._calculate_block_structure(inequalities,\n equalities, momentinequalities, momentequalities, extramomentmatrix,\n removeequalities, block_struct=block_struct)\n", "role": "user" }, { "content": "calculate_block_structure", "role": "assistant" } ]
def x(): time.sleep(1) with Input() as input_generator: for e in input_generator: print(repr(e))
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n time.sleep(1)\n with Input() as input_generator:\n for e in input_generator:\n print(repr(e))\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self, monomial, n_vars): coeff, monomial = monomial.as_coeff_Mul() k = 0 conjugate = False try: k = self.monomial_index[monomial] except KeyError: daggered_monomial = apply_substitutions(Dagger(monomial), self. substitutions, self.pure_substitution_rules) try: k = self.monomial_index[daggered_monomial] conjugate = True except KeyError: k = n_vars + 1 self.monomial_index[monomial] = k if conjugate: k = -k return k, coeff
process_monomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, monomial, n_vars):\n coeff, monomial = monomial.as_coeff_Mul()\n k = 0\n conjugate = False\n try:\n k = self.monomial_index[monomial]\n except KeyError:\n daggered_monomial = apply_substitutions(Dagger(monomial), self.\n substitutions, self.pure_substitution_rules)\n try:\n k = self.monomial_index[daggered_monomial]\n conjugate = True\n except KeyError:\n k = n_vars + 1\n self.monomial_index[monomial] = k\n if conjugate:\n k = -k\n return k, coeff\n", "role": "user" }, { "content": "process_monomial", "role": "assistant" } ]
def x(self, polynomial): facvar = [0] * (self.n_vars + 1) F = {} for i in range(self.matrix_var_dim): for j in range(self.matrix_var_dim): for key, value in polynomial[i, j].as_coefficients_dict().items(): skey = apply_substitutions(key, self.substitutions, self. pure_substitution_rules) try: Fk = F[skey] except KeyError: Fk = zeros(self.matrix_var_dim, self.matrix_var_dim) Fk[i, j] += value F[skey] = Fk for key, Fk in F.items(): if key == S.One: k = 1 else: k = self.monomial_index[key] for i in range(self.matrix_var_dim): for j in range(self.matrix_var_dim): sym_matrix = zeros(self.matrix_var_dim, self.matrix_var_dim) sym_matrix[i, j] = 1 facvar[k + i * self.matrix_var_dim + j] = (sym_matrix * Fk ).trace() facvar = [float(f) for f in facvar] return facvar
get_trace_facvar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, polynomial):\n facvar = [0] * (self.n_vars + 1)\n F = {}\n for i in range(self.matrix_var_dim):\n for j in range(self.matrix_var_dim):\n for key, value in polynomial[i, j].as_coefficients_dict().items():\n skey = apply_substitutions(key, self.substitutions, self.\n pure_substitution_rules)\n try:\n Fk = F[skey]\n except KeyError:\n Fk = zeros(self.matrix_var_dim, self.matrix_var_dim)\n Fk[i, j] += value\n F[skey] = Fk\n for key, Fk in F.items():\n if key == S.One:\n k = 1\n else:\n k = self.monomial_index[key]\n for i in range(self.matrix_var_dim):\n for j in range(self.matrix_var_dim):\n sym_matrix = zeros(self.matrix_var_dim, self.matrix_var_dim)\n sym_matrix[i, j] = 1\n facvar[k + i * self.matrix_var_dim + j] = (sym_matrix * Fk\n ).trace()\n facvar = [float(f) for f in facvar]\n return facvar\n", "role": "user" }, { "content": "get_trace_facvar", "role": "assistant" } ]
def x(self, objective, extraobjexpr=None): if objective is not None and self.matrix_var_dim is not None: facvar = self.__get_trace_facvar(objective) self.obj_facvar = facvar[1:] self.constant_term = facvar[0] if self.verbose > 0 and facvar[0] != 0: print( 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.' % facvar[0]) else: super(SteeringHierarchy, self).set_objective(objective, extraobjexpr=extraobjexpr)
set_objective
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, objective, extraobjexpr=None):\n if objective is not None and self.matrix_var_dim is not None:\n facvar = self.__get_trace_facvar(objective)\n self.obj_facvar = facvar[1:]\n self.constant_term = facvar[0]\n if self.verbose > 0 and facvar[0] != 0:\n print(\n 'Warning: The objective function has a non-zero %s constant term. It is not included in the SDP objective.'\n % facvar[0])\n else:\n super(SteeringHierarchy, self).set_objective(objective,\n extraobjexpr=extraobjexpr)\n", "role": "user" }, { "content": "set_objective", "role": "assistant" } ]
def x(self, inequalities, equalities, momentinequalities, momentequalities, extramomentmatrix, removeequalities, block_struct=None): super(SteeringHierarchy, self)._calculate_block_structure(inequalities, equalities, momentinequalities, momentequalities, extramomentmatrix, removeequalities) if self.matrix_var_dim is not None: self.block_struct = [(self.matrix_var_dim * bs) for bs in self. block_struct]
calculate_block_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inequalities, equalities, momentinequalities, momentequalities,\n extramomentmatrix, removeequalities, block_struct=None):\n super(SteeringHierarchy, self)._calculate_block_structure(inequalities,\n equalities, momentinequalities, momentequalities, extramomentmatrix,\n removeequalities)\n if self.matrix_var_dim is not None:\n self.block_struct = [(self.matrix_var_dim * bs) for bs in self.\n block_struct]\n", "role": "user" }, { "content": "calculate_block_structure", "role": "assistant" } ]
def x(self, filename, filetype=None): if filetype == 'txt' and not filename.endswith('.txt'): raise Exception('TXT files must have .txt extension!') elif filetype is None and filename.endswith('.txt'): filetype = 'txt' else: return super(SteeringHierarchy, self).write_to_file(filename, filetype=filetype) tempfile_ = tempfile.NamedTemporaryFile() tmp_filename = tempfile_.name tempfile_.close() tmp_dats_filename = tmp_filename + '.dat-s' write_to_sdpa(self, tmp_dats_filename) f = open(tmp_dats_filename, 'r') f.readline() f.readline() f.readline() blocks = f.readline().strip().split(' = ')[0][1:-1].split(', ') block_offset, matrix_size = [0], 0 for block in blocks: matrix_size += abs(int(block)) block_offset.append(matrix_size) f.readline() matrix = [[(0) for _ in range(matrix_size)] for _ in range(matrix_size)] for line in f: entry = line.strip().split('\t') var, block = int(entry[0]), int(entry[1]) - 1 row, column = int(entry[2]) - 1, int(entry[3]) - 1 value = float(entry[4]) offset = block_offset[block] matrix[offset + row][offset + column] = int(value * var) matrix[offset + column][offset + row] = int(value * var) f.close() f = open(filename, 'w') for matrix_line in matrix: f.write(str(matrix_line).replace('[', '').replace(']', '') + '\n') f.close() os.remove(tmp_dats_filename)
write_to_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, filetype=None):\n if filetype == 'txt' and not filename.endswith('.txt'):\n raise Exception('TXT files must have .txt extension!')\n elif filetype is None and filename.endswith('.txt'):\n filetype = 'txt'\n else:\n return super(SteeringHierarchy, self).write_to_file(filename,\n filetype=filetype)\n tempfile_ = tempfile.NamedTemporaryFile()\n tmp_filename = tempfile_.name\n tempfile_.close()\n tmp_dats_filename = tmp_filename + '.dat-s'\n write_to_sdpa(self, tmp_dats_filename)\n f = open(tmp_dats_filename, 'r')\n f.readline()\n f.readline()\n f.readline()\n blocks = f.readline().strip().split(' = ')[0][1:-1].split(', ')\n block_offset, matrix_size = [0], 0\n for block in blocks:\n matrix_size += abs(int(block))\n block_offset.append(matrix_size)\n f.readline()\n matrix = [[(0) for _ in range(matrix_size)] for _ in range(matrix_size)]\n for line in f:\n entry = line.strip().split('\\t')\n var, block = int(entry[0]), int(entry[1]) - 1\n row, column = int(entry[2]) - 1, int(entry[3]) - 1\n value = float(entry[4])\n offset = block_offset[block]\n matrix[offset + row][offset + column] = int(value * var)\n matrix[offset + column][offset + row] = int(value * var)\n f.close()\n f = open(filename, 'w')\n for matrix_line in matrix:\n f.write(str(matrix_line).replace('[', '').replace(']', '') + '\\n')\n f.close()\n os.remove(tmp_dats_filename)\n", "role": "user" }, { "content": "write_to_file", "role": "assistant" } ]
def x(level): if sys.version_info < (3, 4): return sys._getframe(level) else: currentframe = inspect.currentframe() levelup = 0 while levelup < level: currentframe = currentframe.f_back if currentframe.f_globals['__name__'] == 'importlib._bootstrap': continue else: levelup += 1 return currentframe
get_outerframe_skip_importlib_frame
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(level):\n if sys.version_info < (3, 4):\n return sys._getframe(level)\n else:\n currentframe = inspect.currentframe()\n levelup = 0\n while levelup < level:\n currentframe = currentframe.f_back\n if currentframe.f_globals['__name__'] == 'importlib._bootstrap':\n continue\n else:\n levelup += 1\n return currentframe\n", "role": "user" }, { "content": "get_outerframe_skip_importlib_frame", "role": "assistant" } ]
def x(self, url): try: url in api_urls return ast.literal_eval(requests.get(base_url + api_urls.get(url)).text ) except Exception as e: print(e)
public_api
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, url):\n try:\n url in api_urls\n return ast.literal_eval(requests.get(base_url + api_urls.get(url)).text\n )\n except Exception as e:\n print(e)\n", "role": "user" }, { "content": "public_api", "role": "assistant" } ]