source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(name): def x(class_): if name in known_resolvers: raise ValueError('duplicate resolver name "%s"' % name) known_resolvers[name] = class_ return decorator
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n\n def x(class_):\n if name in known_resolvers:\n raise ValueError('duplicate resolver name \"%s\"' % name)\n known_resolvers[name] = class_\n return decorator\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(order=None, options=None, modules=None): if not known_resolvers: from . import resolvers as carmen_resolvers modules = [carmen_resolvers] + (modules or []) for module in modules: for loader, name, _ in pkgutil.iter_modules(module.__path__): full_name = module.__name__ + '.' + name loader.find_module(full_name).load_module(full_name) if order is None: order = 'place', 'geocode', 'profile' else: order = tuple(order) if options is None: options = {} resolvers = [] for resolver_name in order: if resolver_name not in known_resolvers: raise ValueError('unknown resolver name "%s"' % resolver_name) resolvers.append((resolver_name, known_resolvers[resolver_name](** options.get(resolver_name, {})))) return ResolverCollection(resolvers)
get_resolver
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(order=None, options=None, modules=None):\n if not known_resolvers:\n from . import resolvers as carmen_resolvers\n modules = [carmen_resolvers] + (modules or [])\n for module in modules:\n for loader, name, _ in pkgutil.iter_modules(module.__path__):\n full_name = module.__name__ + '.' + name\n loader.find_module(full_name).load_module(full_name)\n if order is None:\n order = 'place', 'geocode', 'profile'\n else:\n order = tuple(order)\n if options is None:\n options = {}\n resolvers = []\n for resolver_name in order:\n if resolver_name not in known_resolvers:\n raise ValueError('unknown resolver name \"%s\"' % resolver_name)\n resolvers.append((resolver_name, known_resolvers[resolver_name](**\n options.get(resolver_name, {}))))\n return ResolverCollection(resolvers)\n", "role": "user" }, { "content": "get_resolver", "role": "assistant" } ]
def x(self, location_file=None): if location_file is None: contents = pkgutil.get_data(__package__, 'data/locations.json') contents_string = contents.decode('ascii') locations = contents_string.split('\n') else: from .cli import open_file with open_file(location_file, 'rb') as input: locations = input.readlines() for location_string in locations: if location_string.strip(): location = Location(known=True, **json.loads(location_string)) self.location_id_to_location[location.id] = location self.add_location(location)
load_locations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, location_file=None):\n if location_file is None:\n contents = pkgutil.get_data(__package__, 'data/locations.json')\n contents_string = contents.decode('ascii')\n locations = contents_string.split('\\n')\n else:\n from .cli import open_file\n with open_file(location_file, 'rb') as input:\n locations = input.readlines()\n for location_string in locations:\n if location_string.strip():\n location = Location(known=True, **json.loads(location_string))\n self.location_id_to_location[location.id] = location\n self.add_location(location)\n", "role": "user" }, { "content": "load_locations", "role": "assistant" } ]
def x(self): try: return tuple(map(lambda x: x.lower(), self.name())) except: return tuple([x.lower() for x in self.name()])
canonical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return tuple(map(lambda x: x.lower(), self.name()))\n except:\n return tuple([x.lower() for x in self.name()])\n", "role": "user" }, { "content": "canonical", "role": "assistant" } ]
def x(self): try: return tuple(getattr(self, x) if getattr(self, x) else u'' for x in ('country', 'state', 'county', 'city')) except: return tuple(getattr(self, x) if getattr(self, x) else '' for x in ('country', 'state', 'county', 'city'))
name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n return tuple(getattr(self, x) if getattr(self, x) else u'' for x in\n ('country', 'state', 'county', 'city'))\n except:\n return tuple(getattr(self, x) if getattr(self, x) else '' for x in\n ('country', 'state', 'county', 'city'))\n", "role": "user" }, { "content": "name", "role": "assistant" } ]
def x(self): if self.city: return Location(country=self.country, state=self.state, county=self .county) if self.county: return Location(country=self.country, state=self.state) if self.state: return Location(country=self.country) return Location()
parent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.city:\n return Location(country=self.country, state=self.state, county=self\n .county)\n if self.county:\n return Location(country=self.country, state=self.state)\n if self.state:\n return Location(country=self.country)\n return Location()\n", "role": "user" }, { "content": "parent", "role": "assistant" } ]
def x(data_daily, method='equal', temp=None, a0=None, a1=None, kr=None, month_hour_precip_mean=None, preserve_daily_mean=False): assert method in ('equal', 'minimal', 'dewpoint_regression', 'min_max', 'linear_dewpoint_variation', 'month_hour_precip_mean' ), 'Invalid option' if method == 'equal': hum_disagg = melodist.distribute_equally(data_daily.hum) elif method in ('minimal', 'dewpoint_regression', 'linear_dewpoint_variation'): if method == 'minimal': a0 = 0 a1 = 1 assert a0 is not None and a1 is not None, 'a0 and a1 must be specified' tdew_daily = a0 + a1 * data_daily.tmin tdew = melodist.distribute_equally(tdew_daily) if method == 'linear_dewpoint_variation': assert kr is not None, 'kr must be specified' assert kr in (6, 12), 'kr must be 6 or 12' tdew_delta = 0.5 * np.sin((temp.index.hour + 1) * np.pi / kr - 3.0 * np.pi / 4.0) tdew_nextday = tdew.shift(-24) tdew_nextday.iloc[-24:] = tdew.iloc[-24:] tdew += temp.index.hour / 24.0 * (tdew_nextday - tdew) + tdew_delta sat_vap_press_tdew = util.vapor_pressure(tdew, 100) sat_vap_press_t = util.vapor_pressure(temp, 100) hum_disagg = pd.Series(index=temp.index, data=100 * sat_vap_press_tdew / sat_vap_press_t) elif method == 'min_max': assert 'hum_min' in data_daily.columns and 'hum_max' in data_daily.columns, 'Minimum and maximum humidity must be present in data frame' hmin = melodist.distribute_equally(data_daily.hum_min) hmax = melodist.distribute_equally(data_daily.hum_max) tmin = melodist.distribute_equally(data_daily.tmin) tmax = melodist.distribute_equally(data_daily.tmax) hum_disagg = hmax + (temp - tmin) / (tmax - tmin) * (hmin - hmax) elif method == 'month_hour_precip_mean': assert month_hour_precip_mean is not None precip_equal = melodist.distribute_equally(data_daily.precip) hum_disagg = pd.Series(index=precip_equal.index) locs = list(zip(hum_disagg.index.month, hum_disagg.index.hour, precip_equal > 0)) hum_disagg[:] = month_hour_precip_mean.loc[locs].values if preserve_daily_mean: daily_mean_df = pd.DataFrame(data=dict(obs=data_daily.hum, disagg= hum_disagg.resample('D').mean())) bias = melodist.util.distribute_equally(daily_mean_df.disagg - daily_mean_df.obs) bias = bias.fillna(0) hum_disagg -= bias return hum_disagg.clip(0, 100)
disaggregate_humidity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data_daily, method='equal', temp=None, a0=None, a1=None, kr=None,\n month_hour_precip_mean=None, preserve_daily_mean=False):\n assert method in ('equal', 'minimal', 'dewpoint_regression', 'min_max',\n 'linear_dewpoint_variation', 'month_hour_precip_mean'\n ), 'Invalid option'\n if method == 'equal':\n hum_disagg = melodist.distribute_equally(data_daily.hum)\n elif method in ('minimal', 'dewpoint_regression',\n 'linear_dewpoint_variation'):\n if method == 'minimal':\n a0 = 0\n a1 = 1\n assert a0 is not None and a1 is not None, 'a0 and a1 must be specified'\n tdew_daily = a0 + a1 * data_daily.tmin\n tdew = melodist.distribute_equally(tdew_daily)\n if method == 'linear_dewpoint_variation':\n assert kr is not None, 'kr must be specified'\n assert kr in (6, 12), 'kr must be 6 or 12'\n tdew_delta = 0.5 * np.sin((temp.index.hour + 1) * np.pi / kr - \n 3.0 * np.pi / 4.0)\n tdew_nextday = tdew.shift(-24)\n tdew_nextday.iloc[-24:] = tdew.iloc[-24:]\n tdew += temp.index.hour / 24.0 * (tdew_nextday - tdew) + tdew_delta\n sat_vap_press_tdew = util.vapor_pressure(tdew, 100)\n sat_vap_press_t = util.vapor_pressure(temp, 100)\n hum_disagg = pd.Series(index=temp.index, data=100 *\n sat_vap_press_tdew / sat_vap_press_t)\n elif method == 'min_max':\n assert 'hum_min' in data_daily.columns and 'hum_max' in data_daily.columns, 'Minimum and maximum humidity must be present in data frame'\n hmin = melodist.distribute_equally(data_daily.hum_min)\n hmax = melodist.distribute_equally(data_daily.hum_max)\n tmin = melodist.distribute_equally(data_daily.tmin)\n tmax = melodist.distribute_equally(data_daily.tmax)\n hum_disagg = hmax + (temp - tmin) / (tmax - tmin) * (hmin - hmax)\n elif method == 'month_hour_precip_mean':\n assert month_hour_precip_mean is not None\n precip_equal = melodist.distribute_equally(data_daily.precip)\n hum_disagg = pd.Series(index=precip_equal.index)\n locs = list(zip(hum_disagg.index.month, hum_disagg.index.hour, \n precip_equal > 0))\n hum_disagg[:] = month_hour_precip_mean.loc[locs].values\n if preserve_daily_mean:\n daily_mean_df = pd.DataFrame(data=dict(obs=data_daily.hum, disagg=\n hum_disagg.resample('D').mean()))\n bias = melodist.util.distribute_equally(daily_mean_df.disagg -\n daily_mean_df.obs)\n bias = bias.fillna(0)\n hum_disagg -= bias\n return hum_disagg.clip(0, 100)\n", "role": "user" }, { "content": "disaggregate_humidity", "role": "assistant" } ]
def x(x, a, b, t_shift): mean_wind, t = x return a * mean_wind * np.cos(np.pi * (t - t_shift) / 12) + b * mean_wind
cosine_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b, t_shift):\n mean_wind, t = x\n return a * mean_wind * np.cos(np.pi * (t - t_shift) / 12) + b * mean_wind\n", "role": "user" }, { "content": "cosine_function", "role": "assistant" } ]
def x(wind_daily, method='equal', a=None, b=None, t_shift=None): assert method in ('equal', 'cosine', 'random'), 'Invalid method' wind_eq = melodist.distribute_equally(wind_daily) if method == 'equal': wind_disagg = wind_eq elif method == 'cosine': assert None not in (a, b, t_shift) wind_disagg = _cosine_function(np.array([wind_eq.values, wind_eq. index.hour]), a, b, t_shift) elif method == 'random': wind_disagg = wind_eq * (-np.log(np.random.rand(len(wind_eq)))) ** 0.3 return wind_disagg
disaggregate_wind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wind_daily, method='equal', a=None, b=None, t_shift=None):\n assert method in ('equal', 'cosine', 'random'), 'Invalid method'\n wind_eq = melodist.distribute_equally(wind_daily)\n if method == 'equal':\n wind_disagg = wind_eq\n elif method == 'cosine':\n assert None not in (a, b, t_shift)\n wind_disagg = _cosine_function(np.array([wind_eq.values, wind_eq.\n index.hour]), a, b, t_shift)\n elif method == 'random':\n wind_disagg = wind_eq * (-np.log(np.random.rand(len(wind_eq)))) ** 0.3\n return wind_disagg\n", "role": "user" }, { "content": "disaggregate_wind", "role": "assistant" } ]
def x(wind): wind_daily = wind.groupby(wind.index.date).mean() wind_daily_hourly = pd.Series(index=wind.index, data=wind_daily.loc[ wind.index.date].values) df = pd.DataFrame(data=dict(daily=wind_daily_hourly, hourly=wind)).dropna( how='any') x = np.array([df.daily, df.index.hour]) popt, pcov = scipy.optimize.curve_fit(_cosine_function, x, df.hourly) return popt
fit_cosine_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wind):\n wind_daily = wind.groupby(wind.index.date).mean()\n wind_daily_hourly = pd.Series(index=wind.index, data=wind_daily.loc[\n wind.index.date].values)\n df = pd.DataFrame(data=dict(daily=wind_daily_hourly, hourly=wind)).dropna(\n how='any')\n x = np.array([df.daily, df.index.hour])\n popt, pcov = scipy.optimize.curve_fit(_cosine_function, x, df.hourly)\n return popt\n", "role": "user" }, { "content": "fit_cosine_function", "role": "assistant" } ]
def x(filename, mode): dict_d = {'TA': 'tmean', 'TMAX': 'tmax', 'TMIN': 'tmin', 'PSUM': 'precip', 'ISWR': 'glob', 'RH': 'hum', 'VW': 'wind'} dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', 'RH': 'hum', 'VW': 'wind'} with open(filename) as f: in_header = False data_start = None header = collections.OrderedDict() for line_num, line in enumerate(f): if line.strip() == '[HEADER]': in_header = True continue elif line.strip() == '[DATA]': data_start = line_num + 1 break if in_header: line_split = line.split('=') k = line_split[0].strip() v = line_split[1].strip() header[k] = v columns = header['fields'].split() multiplier = [float(x) for x in header['units_multiplier'].split()][1:] data = pd.read_table(filename, sep='\\s+', na_values=[-999], skiprows= data_start, names=columns, index_col='timestamp', parse_dates=True) data = data * multiplier del data.index.name if mode == 'd': data = data.rename(columns=dict_d) if mode == 'h': data = data.rename(columns=dict_h) return header, data
read_smet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, mode):\n dict_d = {'TA': 'tmean', 'TMAX': 'tmax', 'TMIN': 'tmin', 'PSUM':\n 'precip', 'ISWR': 'glob', 'RH': 'hum', 'VW': 'wind'}\n dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', 'RH': 'hum',\n 'VW': 'wind'}\n with open(filename) as f:\n in_header = False\n data_start = None\n header = collections.OrderedDict()\n for line_num, line in enumerate(f):\n if line.strip() == '[HEADER]':\n in_header = True\n continue\n elif line.strip() == '[DATA]':\n data_start = line_num + 1\n break\n if in_header:\n line_split = line.split('=')\n k = line_split[0].strip()\n v = line_split[1].strip()\n header[k] = v\n columns = header['fields'].split()\n multiplier = [float(x) for x in header['units_multiplier'].split()][1:]\n data = pd.read_table(filename, sep='\\\\s+', na_values=[-999], skiprows=\n data_start, names=columns, index_col='timestamp', parse_dates=True)\n data = data * multiplier\n del data.index.name\n if mode == 'd':\n data = data.rename(columns=dict_d)\n if mode == 'h':\n data = data.rename(columns=dict_h)\n return header, data\n", "role": "user" }, { "content": "read_smet", "role": "assistant" } ]
def x(filename, metadata, mode='d', skip_last=True): def x(filename, metadata, mode, skip_last): dict_d = {'LUFTTEMPERATUR': 'tmean', 'LUFTTEMPERATUR_MINIMUM': 'tmin', 'LUFTTEMPERATUR_MAXIMUM': 'tmax', 'NIEDERSCHLAGSHOEHE': 'precip', 'GLOBAL_KW_J': 'glob', 'REL_FEUCHTE': 'hum', 'WINDGESCHWINDIGKEIT': 'wind', 'SONNENSCHEINDAUER': 'sun_h'} meta = pd.read_csv(metadata, sep=';') meta.rename(columns=lambda x: x.strip(), inplace=True) header = {'Stations_id': meta.Stations_id[meta.last_valid_index()], 'Stationsname': meta.Stationsname[meta.last_valid_index()], 'Breite': meta.iloc[meta.last_valid_index(), 2], 'Laenge': meta .iloc[meta.last_valid_index(), 3]} if skip_last is not None: num_lines = sum(1 for line in open(filename)) skip_last = [num_lines - 1] if mode == 'd': data = pd.read_csv(filename, sep=';', na_values='-999', index_col=' MESS_DATUM', parse_dates=True, skiprows=skip_last) if mode == 'h': def x(date_time): hour = date_time[8:10] day = date_time[6:8] month = date_time[4:6] year = date_time[0:4] minute = '00' sec = '00' return pd.Timestamp('%s-%s-%s %s:%s:%s' % (year, month, day, hour, minute, sec)) data = pd.read_csv(filename, sep=';', na_values='-999', index_col=' MESS_DATUM', date_parser=date_parser, skiprows= skip_last) data.rename(columns=lambda x: x.strip(), inplace=True) data = data.rename(columns=dict_d) drop = [col for col in data.columns if col not in dict_d.values()] data = data.drop(drop, axis=1) if 'tmin' in data.columns: data['tmin'] = data['tmin'] + 273.15 if 'tmax' in data.columns: data['tmax'] = data['tmax'] + 273.15 if 'tmean' in data.columns: data['tmean'] = data['tmean'] + 273.15 if 'temp' in data.columns: data['temp'] = data['temp'] + 273.15 return header, data if type(filename) == list: i = 1 for file in filename: header, data_h = read_single_dwd(file, metadata, mode, skip_last) if i == 1: data = data_h else: data = data.join(data_h, how='outer') i += 1 else: header, data = read_single_dwd(filename, metadata, mode, skip_last) return header, data
read_dwd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, metadata, mode='d', skip_last=True):\n\n def x(filename, metadata, mode, skip_last):\n dict_d = {'LUFTTEMPERATUR': 'tmean', 'LUFTTEMPERATUR_MINIMUM':\n 'tmin', 'LUFTTEMPERATUR_MAXIMUM': 'tmax', 'NIEDERSCHLAGSHOEHE':\n 'precip', 'GLOBAL_KW_J': 'glob', 'REL_FEUCHTE': 'hum',\n 'WINDGESCHWINDIGKEIT': 'wind', 'SONNENSCHEINDAUER': 'sun_h'}\n meta = pd.read_csv(metadata, sep=';')\n meta.rename(columns=lambda x: x.strip(), inplace=True)\n header = {'Stations_id': meta.Stations_id[meta.last_valid_index()],\n 'Stationsname': meta.Stationsname[meta.last_valid_index()],\n 'Breite': meta.iloc[meta.last_valid_index(), 2], 'Laenge': meta\n .iloc[meta.last_valid_index(), 3]}\n if skip_last is not None:\n num_lines = sum(1 for line in open(filename))\n skip_last = [num_lines - 1]\n if mode == 'd':\n data = pd.read_csv(filename, sep=';', na_values='-999',\n index_col=' MESS_DATUM', parse_dates=True, skiprows=skip_last)\n if mode == 'h':\n\n def x(date_time):\n hour = date_time[8:10]\n day = date_time[6:8]\n month = date_time[4:6]\n year = date_time[0:4]\n minute = '00'\n sec = '00'\n return pd.Timestamp('%s-%s-%s %s:%s:%s' % (year, month, day,\n hour, minute, sec))\n data = pd.read_csv(filename, sep=';', na_values='-999',\n index_col=' MESS_DATUM', date_parser=date_parser, skiprows=\n skip_last)\n data.rename(columns=lambda x: x.strip(), inplace=True)\n data = data.rename(columns=dict_d)\n drop = [col for col in data.columns if col not in dict_d.values()]\n data = data.drop(drop, axis=1)\n if 'tmin' in data.columns:\n data['tmin'] = data['tmin'] + 273.15\n if 'tmax' in data.columns:\n data['tmax'] = data['tmax'] + 273.15\n if 'tmean' in data.columns:\n data['tmean'] = data['tmean'] + 273.15\n if 'temp' in data.columns:\n data['temp'] = data['temp'] + 273.15\n return header, data\n if type(filename) == list:\n i = 1\n for file in filename:\n header, data_h = read_single_dwd(file, metadata, mode, skip_last)\n if i == 1:\n data = data_h\n else:\n data = data.join(data_h, how='outer')\n i += 1\n else:\n header, data = read_single_dwd(filename, metadata, mode, skip_last)\n return header, data\n", "role": "user" }, { "content": "read_dwd", "role": "assistant" } ]
def x(filename, data, metadata, nodata_value=-999, mode='h', check_nan=True): dict_d = {'tmean': 'TA', 'tmin': 'TMAX', 'tmax': 'TMIN', 'precip': 'PSUM', 'glob': 'ISWR', 'hum': 'RH', 'wind': 'VW'} dict_h = {'temp': 'TA', 'precip': 'PSUM', 'glob': 'ISWR', 'hum': 'RH', 'wind': 'VW'} if mode == 'd': data = data.rename(columns=dict_d) if mode == 'h': data = data.rename(columns=dict_h) if check_nan: datas_in = data.sum().dropna().to_frame().T drop = [data_nan for data_nan in data.columns if data_nan not in datas_in] data = data.drop(drop, axis=1) with open(filename, 'w') as f: if mode == 'd': t = '%Y-%m-%dT00:00' if mode == 'h': t = '%Y-%m-%dT%H:%M' data['timestamp'] = [d.strftime(t) for d in data.index] cols = data.columns.tolist() cols = cols[-1:] + cols[:-1] data = data[cols] metadata['fields'] = ' '.join(data.columns) metadata['units_multiplier'] = len(metadata['fields'].split()) * '1 ' f.write('SMET 1.1 ASCII\n') f.write('[HEADER]\n') for k, v in metadata.items(): f.write('{} = {}\n'.format(k, v)) f.write('[DATA]\n') data_str = data.fillna(nodata_value).to_string(header=False, index= False, float_format=lambda x: '{:.2f}'.format(x)) f.write(data_str)
write_smet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, data, metadata, nodata_value=-999, mode='h', check_nan=True):\n dict_d = {'tmean': 'TA', 'tmin': 'TMAX', 'tmax': 'TMIN', 'precip':\n 'PSUM', 'glob': 'ISWR', 'hum': 'RH', 'wind': 'VW'}\n dict_h = {'temp': 'TA', 'precip': 'PSUM', 'glob': 'ISWR', 'hum': 'RH',\n 'wind': 'VW'}\n if mode == 'd':\n data = data.rename(columns=dict_d)\n if mode == 'h':\n data = data.rename(columns=dict_h)\n if check_nan:\n datas_in = data.sum().dropna().to_frame().T\n drop = [data_nan for data_nan in data.columns if data_nan not in\n datas_in]\n data = data.drop(drop, axis=1)\n with open(filename, 'w') as f:\n if mode == 'd':\n t = '%Y-%m-%dT00:00'\n if mode == 'h':\n t = '%Y-%m-%dT%H:%M'\n data['timestamp'] = [d.strftime(t) for d in data.index]\n cols = data.columns.tolist()\n cols = cols[-1:] + cols[:-1]\n data = data[cols]\n metadata['fields'] = ' '.join(data.columns)\n metadata['units_multiplier'] = len(metadata['fields'].split()) * '1 '\n f.write('SMET 1.1 ASCII\\n')\n f.write('[HEADER]\\n')\n for k, v in metadata.items():\n f.write('{} = {}\\n'.format(k, v))\n f.write('[DATA]\\n')\n data_str = data.fillna(nodata_value).to_string(header=False, index=\n False, float_format=lambda x: '{:.2f}'.format(x))\n f.write(data_str)\n", "role": "user" }, { "content": "write_smet", "role": "assistant" } ]
def x(filename): hourly_data_obs_raw = pd.read_csv(filename, parse_dates=[['YYYYMMDD', 'HH']], date_parser=lambda yyyymmdd, hh: pd.datetime(int(str( yyyymmdd)[0:4]), int(str(yyyymmdd)[4:6]), int(str(yyyymmdd)[6:8]), int(hh) - 1), skiprows=31, skipinitialspace=True, na_values='', keep_date_col=True) hourly_data_obs_raw.index = hourly_data_obs_raw['YYYYMMDD_HH'] hourly_data_obs_raw.index = hourly_data_obs_raw.index + pd.Timedelta(hours =1) columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd'] hourly_data_obs = pd.DataFrame(index=hourly_data_obs_raw.index, columns =columns_hourly, data=dict(temp=hourly_data_obs_raw['T'] / 10 + 273.15, precip=hourly_data_obs_raw['RH'] / 10, glob= hourly_data_obs_raw['Q'] * 10000 / 3600.0, hum=hourly_data_obs_raw[ 'U'], wind=hourly_data_obs_raw['FH'] / 10, ssd=hourly_data_obs_raw[ 'SQ'] * 6)) negative_values = hourly_data_obs['precip'] < 0.0 hourly_data_obs.loc[negative_values, 'precip'] = 0.0 return hourly_data_obs
read_single_knmi_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n hourly_data_obs_raw = pd.read_csv(filename, parse_dates=[['YYYYMMDD',\n 'HH']], date_parser=lambda yyyymmdd, hh: pd.datetime(int(str(\n yyyymmdd)[0:4]), int(str(yyyymmdd)[4:6]), int(str(yyyymmdd)[6:8]), \n int(hh) - 1), skiprows=31, skipinitialspace=True, na_values='',\n keep_date_col=True)\n hourly_data_obs_raw.index = hourly_data_obs_raw['YYYYMMDD_HH']\n hourly_data_obs_raw.index = hourly_data_obs_raw.index + pd.Timedelta(hours\n =1)\n columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']\n hourly_data_obs = pd.DataFrame(index=hourly_data_obs_raw.index, columns\n =columns_hourly, data=dict(temp=hourly_data_obs_raw['T'] / 10 + \n 273.15, precip=hourly_data_obs_raw['RH'] / 10, glob=\n hourly_data_obs_raw['Q'] * 10000 / 3600.0, hum=hourly_data_obs_raw[\n 'U'], wind=hourly_data_obs_raw['FH'] / 10, ssd=hourly_data_obs_raw[\n 'SQ'] * 6))\n negative_values = hourly_data_obs['precip'] < 0.0\n hourly_data_obs.loc[negative_values, 'precip'] = 0.0\n return hourly_data_obs\n", "role": "user" }, { "content": "read_single_knmi_file", "role": "assistant" } ]
def x(directory): filemask = '%s*.txt' % directory filelist = glob.glob(filemask) columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd'] ts = pd.DataFrame(columns=columns_hourly) first_call = True for file_i in filelist: print(file_i) current = read_single_knmi_file(file_i) if first_call: ts = current first_call = False else: ts = pd.concat([ts, current]) return ts
read_knmi_dataset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory):\n filemask = '%s*.txt' % directory\n filelist = glob.glob(filemask)\n columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']\n ts = pd.DataFrame(columns=columns_hourly)\n first_call = True\n for file_i in filelist:\n print(file_i)\n current = read_single_knmi_file(file_i)\n if first_call:\n ts = current\n first_call = False\n else:\n ts = pd.concat([ts, current])\n return ts\n", "role": "user" }, { "content": "read_knmi_dataset", "role": "assistant" } ]
def x(self): self.sun_times = melodist.util.get_sun_times(self.data_daily.index, self.lon, self.lat, self.timezone)
calc_sun_times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.sun_times = melodist.util.get_sun_times(self.data_daily.index,\n self.lon, self.lat, self.timezone)\n", "role": "user" }, { "content": "calc_sun_times", "role": "assistant" } ]
def x(self, method='equal'): self.data_disagg.wind = melodist.disaggregate_wind(self.data_daily.wind, method=method, **self.statistics.wind)
disaggregate_wind
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='equal'):\n self.data_disagg.wind = melodist.disaggregate_wind(self.data_daily.wind,\n method=method, **self.statistics.wind)\n", "role": "user" }, { "content": "disaggregate_wind", "role": "assistant" } ]
def x(self, method='equal', preserve_daily_mean=False): self.data_disagg.hum = melodist.disaggregate_humidity(self.data_daily, temp=self.data_disagg.temp, method=method, preserve_daily_mean= preserve_daily_mean, **self.statistics.hum)
disaggregate_humidity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='equal', preserve_daily_mean=False):\n self.data_disagg.hum = melodist.disaggregate_humidity(self.data_daily,\n temp=self.data_disagg.temp, method=method, preserve_daily_mean=\n preserve_daily_mean, **self.statistics.hum)\n", "role": "user" }, { "content": "disaggregate_humidity", "role": "assistant" } ]
def x(self, method='sine_min_max', min_max_time='fix', mod_nighttime=False): self.data_disagg.temp = melodist.disaggregate_temperature(self. data_daily, method=method, min_max_time=min_max_time, max_delta= self.statistics.temp.max_delta, mean_course=self.statistics.temp. mean_course, sun_times=self.sun_times, mod_nighttime=mod_nighttime)
disaggregate_temperature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='sine_min_max', min_max_time='fix', mod_nighttime=False):\n self.data_disagg.temp = melodist.disaggregate_temperature(self.\n data_daily, method=method, min_max_time=min_max_time, max_delta=\n self.statistics.temp.max_delta, mean_course=self.statistics.temp.\n mean_course, sun_times=self.sun_times, mod_nighttime=mod_nighttime)\n", "role": "user" }, { "content": "disaggregate_temperature", "role": "assistant" } ]
def x(self, method='equal', zerodiv='uniform', shift=0, master_precip=None): if method == 'equal': precip_disagg = melodist.disagg_prec(self.data_daily, method=method, shift=shift) elif method == 'cascade': precip_disagg = pd.Series(index=self.data_disagg.index) for months, stats in zip(self.statistics.precip.months, self. statistics.precip.stats): precip_daily = melodist.seasonal_subset(self.data_daily.precip, months=months) if len(precip_daily) > 1: data = melodist.disagg_prec(precip_daily, method=method, cascade_options=stats, shift=shift, zerodiv=zerodiv) precip_disagg.loc[data.index] = data elif method == 'masterstation': precip_disagg = melodist.precip_master_station(self.data_daily. precip, master_precip, zerodiv) self.data_disagg.precip = precip_disagg
disaggregate_precipitation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='equal', zerodiv='uniform', shift=0, master_precip=None):\n if method == 'equal':\n precip_disagg = melodist.disagg_prec(self.data_daily, method=method,\n shift=shift)\n elif method == 'cascade':\n precip_disagg = pd.Series(index=self.data_disagg.index)\n for months, stats in zip(self.statistics.precip.months, self.\n statistics.precip.stats):\n precip_daily = melodist.seasonal_subset(self.data_daily.precip,\n months=months)\n if len(precip_daily) > 1:\n data = melodist.disagg_prec(precip_daily, method=method,\n cascade_options=stats, shift=shift, zerodiv=zerodiv)\n precip_disagg.loc[data.index] = data\n elif method == 'masterstation':\n precip_disagg = melodist.precip_master_station(self.data_daily.\n precip, master_precip, zerodiv)\n self.data_disagg.precip = precip_disagg\n", "role": "user" }, { "content": "disaggregate_precipitation", "role": "assistant" } ]
def x(self, method='pot_rad', pot_rad=None): if self.sun_times is None: self.calc_sun_times() if pot_rad is None and method != 'mean_course': pot_rad = melodist.potential_radiation(self.data_disagg.index, self .lon, self.lat, self.timezone) self.data_disagg.glob = melodist.disaggregate_radiation(self.data_daily, sun_times=self.sun_times, pot_rad=pot_rad, method=method, angstr_a= self.statistics.glob.angstroem.a, angstr_b=self.statistics.glob. angstroem.b, bristcamp_a=self.statistics.glob.bristcamp.a, bristcamp_c=self.statistics.glob.bristcamp.c, mean_course=self. statistics.glob.mean_course)
disaggregate_radiation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='pot_rad', pot_rad=None):\n if self.sun_times is None:\n self.calc_sun_times()\n if pot_rad is None and method != 'mean_course':\n pot_rad = melodist.potential_radiation(self.data_disagg.index, self\n .lon, self.lat, self.timezone)\n self.data_disagg.glob = melodist.disaggregate_radiation(self.data_daily,\n sun_times=self.sun_times, pot_rad=pot_rad, method=method, angstr_a=\n self.statistics.glob.angstroem.a, angstr_b=self.statistics.glob.\n angstroem.b, bristcamp_a=self.statistics.glob.bristcamp.a,\n bristcamp_c=self.statistics.glob.bristcamp.c, mean_course=self.\n statistics.glob.mean_course)\n", "role": "user" }, { "content": "disaggregate_radiation", "role": "assistant" } ]
def x(self, column_hours, method='linear', limit=24, limit_direction='both', **kwargs): kwargs = dict(kwargs, method=method, limit=limit, limit_direction= limit_direction) data = melodist.util.prepare_interpolation_data(self.data_daily, column_hours) return data.interpolate(**kwargs)
interpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, column_hours, method='linear', limit=24, limit_direction='both',\n **kwargs):\n kwargs = dict(kwargs, method=method, limit=limit, limit_direction=\n limit_direction)\n data = melodist.util.prepare_interpolation_data(self.data_daily,\n column_hours)\n return data.interpolate(**kwargs)\n", "role": "user" }, { "content": "interpolate", "role": "assistant" } ]
def x(self, by=None): if by is None: primary_keys = self.table.primary_key.columns.keys() if len(primary_keys) > 1: warnings.warn( 'WARNING: MORE THAN 1 PRIMARY KEY FOR TABLE %s. USING THE FIRST KEY %s.' % (self.table.name, primary_keys[0])) if not primary_keys: raise NoPrimaryKeyException( 'Table %s needs a primary key forthe .last() method to work properly. Alternatively, specify an ORDER BY column with the by= argument. ' % self.table.name) id_col = primary_keys[0] else: id_col = by if self.column is None: col = '*' else: col = self.column.name return col, id_col
query_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, by=None):\n if by is None:\n primary_keys = self.table.primary_key.columns.keys()\n if len(primary_keys) > 1:\n warnings.warn(\n 'WARNING: MORE THAN 1 PRIMARY KEY FOR TABLE %s. USING THE FIRST KEY %s.'\n % (self.table.name, primary_keys[0]))\n if not primary_keys:\n raise NoPrimaryKeyException(\n 'Table %s needs a primary key forthe .last() method to work properly. Alternatively, specify an ORDER BY column with the by= argument. '\n % self.table.name)\n id_col = primary_keys[0]\n else:\n id_col = by\n if self.column is None:\n col = '*'\n else:\n col = self.column.name\n return col, id_col\n", "role": "user" }, { "content": "query_helper", "role": "assistant" } ]
def x(self, n=10, by=None, **kwargs): col, id_col = self._query_helper(by=by) select = 'SELECT %s FROM %s ORDER BY %s ASC LIMIT %d' % (col, self. table.name, id_col, n) return self._db.query(select, **kwargs)
head
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n=10, by=None, **kwargs):\n col, id_col = self._query_helper(by=by)\n select = 'SELECT %s FROM %s ORDER BY %s ASC LIMIT %d' % (col, self.\n table.name, id_col, n)\n return self._db.query(select, **kwargs)\n", "role": "user" }, { "content": "head", "role": "assistant" } ]
def x(self, n=10, by=None, **kwargs): return self.tail(n=n, by=by, **kwargs)
last
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n=10, by=None, **kwargs):\n return self.tail(n=n, by=by, **kwargs)\n", "role": "user" }, { "content": "last", "role": "assistant" } ]
def x(self, where_string, **kwargs): col, id_col = self._query_helper(by=None) where_string = str(where_string) where_operators = ['=', '>', '<', 'LIKE', 'like'] if np.any([where_string.__contains__(w) for w in where_operators]): select = 'SELECT %s FROM %s WHERE %s' % (col, self.table.name, where_string) else: select = 'SELECT %s FROM %s WHERE %s = %s' % (col, self.table.name, id_col, where_string) return self._db.query(select, **kwargs)
where
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, where_string, **kwargs):\n col, id_col = self._query_helper(by=None)\n where_string = str(where_string)\n where_operators = ['=', '>', '<', 'LIKE', 'like']\n if np.any([where_string.__contains__(w) for w in where_operators]):\n select = 'SELECT %s FROM %s WHERE %s' % (col, self.table.name,\n where_string)\n else:\n select = 'SELECT %s FROM %s WHERE %s = %s' % (col, self.table.name,\n id_col, where_string)\n return self._db.query(select, **kwargs)\n", "role": "user" }, { "content": "where", "role": "assistant" } ]
def x(self, sql_query, return_as='dataframe'): if isinstance(sql_query, str): pass elif isinstance(sql_query, unicode): sql_query = str(sql_query) else: raise QueryDbError('query() requires a str or unicode input.') query = sqlalchemy.sql.text(sql_query) if return_as.upper() in ['DF', 'DATAFRAME']: return self._to_df(query, self._engine) elif return_as.upper() in ['RESULT', 'RESULTPROXY']: with self._engine.connect() as conn: result = conn.execute(query) return result else: raise QueryDbError('Other return types not implemented.')
query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sql_query, return_as='dataframe'):\n if isinstance(sql_query, str):\n pass\n elif isinstance(sql_query, unicode):\n sql_query = str(sql_query)\n else:\n raise QueryDbError('query() requires a str or unicode input.')\n query = sqlalchemy.sql.text(sql_query)\n if return_as.upper() in ['DF', 'DATAFRAME']:\n return self._to_df(query, self._engine)\n elif return_as.upper() in ['RESULT', 'RESULTPROXY']:\n with self._engine.connect() as conn:\n result = conn.execute(query)\n return result\n else:\n raise QueryDbError('Other return types not implemented.')\n", "role": "user" }, { "content": "query", "role": "assistant" } ]
def x(self): meta = QueryDbMeta() with self._engine.connect() as conn: meta.bind = conn meta.reflect() self._meta = meta self.inspect = QueryDbAttributes() for table in self._meta.tables: setattr(self.inspect, table, QueryDbOrm(self._meta.tables[table], self) ) table_attr = getattr(self.inspect, table) table_cols = table_attr.table.columns for col in table_cols.keys(): setattr(table_attr, col, QueryDbOrm(table_cols[col], self)) primary_keys = table_attr.table.primary_key.columns.keys() self._summary_info.append((table, primary_keys[0] if len( primary_keys) == 1 else primary_keys, len(table_cols), len(set( [x.type.__class__ for x in table_cols.values()]))))
set_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n meta = QueryDbMeta()\n with self._engine.connect() as conn:\n meta.bind = conn\n meta.reflect()\n self._meta = meta\n self.inspect = QueryDbAttributes()\n for table in self._meta.tables:\n setattr(self.inspect, table, QueryDbOrm(self._meta.tables[table], self)\n )\n table_attr = getattr(self.inspect, table)\n table_cols = table_attr.table.columns\n for col in table_cols.keys():\n setattr(table_attr, col, QueryDbOrm(table_cols[col], self))\n primary_keys = table_attr.table.primary_key.columns.keys()\n self._summary_info.append((table, primary_keys[0] if len(\n primary_keys) == 1 else primary_keys, len(table_cols), len(set(\n [x.type.__class__ for x in table_cols.values()]))))\n", "role": "user" }, { "content": "set_metadata", "role": "assistant" } ]
def x(self, query, conn, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None): return pd.io.sql.read_sql(str(query), conn, index_col=index_col, coerce_float=coerce_float, params=params, parse_dates=parse_dates, columns=columns)
to_df
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, conn, index_col=None, coerce_float=True, params=None,\n parse_dates=None, columns=None):\n return pd.io.sql.read_sql(str(query), conn, index_col=index_col,\n coerce_float=coerce_float, params=params, parse_dates=parse_dates,\n columns=columns)\n", "role": "user" }, { "content": "to_df", "role": "assistant" } ]
def x(temp_hourly, lon, lat, time_zone): daily_index = temp_hourly.resample('D').mean().index sun_times = melodist.util.get_sun_times(daily_index, lon, lat, time_zone) idxmax = temp_hourly.groupby(temp_hourly.index.date).idxmax() idxmax.index = pd.to_datetime(idxmax.index) max_temp_hour_obs = idxmax.dropna().apply(lambda d: d.hour) max_temp_hour_pot = sun_times.sunnoon max_delta = max_temp_hour_obs - max_temp_hour_pot mean_monthly_delta = max_delta.groupby(max_delta.index.month).mean() return mean_monthly_delta
get_shift_by_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(temp_hourly, lon, lat, time_zone):\n daily_index = temp_hourly.resample('D').mean().index\n sun_times = melodist.util.get_sun_times(daily_index, lon, lat, time_zone)\n idxmax = temp_hourly.groupby(temp_hourly.index.date).idxmax()\n idxmax.index = pd.to_datetime(idxmax.index)\n max_temp_hour_obs = idxmax.dropna().apply(lambda d: d.hour)\n max_temp_hour_pot = sun_times.sunnoon\n max_delta = max_temp_hour_obs - max_temp_hour_pot\n mean_monthly_delta = max_delta.groupby(max_delta.index.month).mean()\n return mean_monthly_delta\n", "role": "user" }, { "content": "get_shift_by_data", "role": "assistant" } ]
def x(daily_data, divide=False): index = hourly_index(daily_data.index) hourly_data = daily_data.reindex(index) hourly_data = hourly_data.groupby(hourly_data.index.day).transform(lambda x: x.fillna(method='ffill', limit=23)) if divide: hourly_data /= 24 return hourly_data
distribute_equally
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(daily_data, divide=False):\n index = hourly_index(daily_data.index)\n hourly_data = daily_data.reindex(index)\n hourly_data = hourly_data.groupby(hourly_data.index.day).transform(lambda\n x: x.fillna(method='ffill', limit=23))\n if divide:\n hourly_data /= 24\n return hourly_data\n", "role": "user" }, { "content": "distribute_equally", "role": "assistant" } ]
def x(temp, hum): if np.isscalar(hum): hum = np.zeros(temp.shape) + hum assert temp.shape == hum.shape positives = np.array(temp >= 273.15) vap_press = np.zeros(temp.shape) * np.nan vap_press[positives] = 6.112 * np.exp(17.62 * (temp[positives] - 273.15 ) / (243.12 + (temp[positives] - 273.15))) * hum[positives] / 100.0 vap_press[~positives] = 6.112 * np.exp(22.46 * (temp[~positives] - 273.15) / (272.62 + (temp[~positives] - 273.15))) * hum[~positives ] / 100.0 return vap_press
vapor_pressure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(temp, hum):\n if np.isscalar(hum):\n hum = np.zeros(temp.shape) + hum\n assert temp.shape == hum.shape\n positives = np.array(temp >= 273.15)\n vap_press = np.zeros(temp.shape) * np.nan\n vap_press[positives] = 6.112 * np.exp(17.62 * (temp[positives] - 273.15\n ) / (243.12 + (temp[positives] - 273.15))) * hum[positives] / 100.0\n vap_press[~positives] = 6.112 * np.exp(22.46 * (temp[~positives] - \n 273.15) / (272.62 + (temp[~positives] - 273.15))) * hum[~positives\n ] / 100.0\n return vap_press\n", "role": "user" }, { "content": "vapor_pressure", "role": "assistant" } ]
def x(temp, hum): assert temp.shape == hum.shape vap_press = vapor_pressure(temp, hum) positives = np.array(temp >= 273.15) dewpoint_temp = temp.copy() * np.nan dewpoint_temp[positives] = 243.12 * np.log(vap_press[positives] / 6.112 ) / (17.62 - np.log(vap_press[positives] / 6.112)) dewpoint_temp[~positives] = 272.62 * np.log(vap_press[~positives] / 6.112 ) / (22.46 - np.log(vap_press[~positives] / 6.112)) return dewpoint_temp + 273.15
dewpoint_temperature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(temp, hum):\n assert temp.shape == hum.shape\n vap_press = vapor_pressure(temp, hum)\n positives = np.array(temp >= 273.15)\n dewpoint_temp = temp.copy() * np.nan\n dewpoint_temp[positives] = 243.12 * np.log(vap_press[positives] / 6.112\n ) / (17.62 - np.log(vap_press[positives] / 6.112))\n dewpoint_temp[~positives] = 272.62 * np.log(vap_press[~positives] / 6.112\n ) / (22.46 - np.log(vap_press[~positives] / 6.112))\n return dewpoint_temp + 273.15\n", "role": "user" }, { "content": "dewpoint_temperature", "role": "assistant" } ]
def x(x, y, return_stats=False): a1, a0, r_value, p_value, stderr = scipy.stats.linregress(x, y) retval = a1, a0 if return_stats: retval += r_value, p_value, stderr return retval
linregress
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, return_stats=False):\n a1, a0, r_value, p_value, stderr = scipy.stats.linregress(x, y)\n retval = a1, a0\n if return_stats:\n retval += r_value, p_value, stderr\n return retval\n", "role": "user" }, { "content": "linregress", "role": "assistant" } ]
def x(dates, lon, lat, time_zone): df = pd.DataFrame(index=dates, columns=['sunrise', 'sunnoon', 'sunset', 'daylength']) doy = np.array([((d - d.replace(day=1, month=1)).days + 1) for d in df. index]) day_angle_b = np.deg2rad(360.0 / 365.25 * (doy - 79.346)) declination = np.deg2rad(0.3723 + 23.2567 * np.sin(day_angle_b) - 0.758 * np.cos(day_angle_b) + 0.1149 * np.sin(2 * day_angle_b) + 0.3656 * np.cos(2 * day_angle_b) - 0.1712 * np.sin(3 * day_angle_b) + 0.0201 * np.cos(3 * day_angle_b)) day_angle_s = 2 * np.pi * (doy - 1) / 365.0 eq_time = 12.0 / np.pi * (7.5e-05 + 0.001868 * np.cos(day_angle_s) - 0.032077 * np.sin(day_angle_s) - 0.014615 * np.cos(2 * day_angle_s) - 0.040849 * np.sin(2 * day_angle_s)) standard_meridian = time_zone * 15.0 delta_lat_time = (lon - standard_meridian) * 24.0 / 360.0 omega_nul_arg = -np.tan(np.deg2rad(lat)) * np.tan(declination) omega_nul = np.arccos(omega_nul_arg) sunrise = 12.0 * (1.0 - omega_nul / np.pi) - delta_lat_time - eq_time sunset = 12.0 * (1.0 + omega_nul / np.pi) - delta_lat_time - eq_time sunnoon = 12.0 * 1.0 - delta_lat_time - eq_time pos = omega_nul_arg < -1 sunrise[pos] = sunnoon[pos] - 12 sunset[pos] = sunnoon[pos] + 12 pos = omega_nul_arg > 1 sunrise[pos] = sunnoon[pos] sunset[pos] = sunnoon[pos] daylength = sunset - sunrise sunrise[sunrise < 0] += 24 sunset[sunset > 24] -= 24 df.sunrise = sunrise df.sunnoon = sunnoon df.sunset = sunset df.daylength = daylength return df
get_sun_times
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dates, lon, lat, time_zone):\n df = pd.DataFrame(index=dates, columns=['sunrise', 'sunnoon', 'sunset',\n 'daylength'])\n doy = np.array([((d - d.replace(day=1, month=1)).days + 1) for d in df.\n index])\n day_angle_b = np.deg2rad(360.0 / 365.25 * (doy - 79.346))\n declination = np.deg2rad(0.3723 + 23.2567 * np.sin(day_angle_b) - 0.758 *\n np.cos(day_angle_b) + 0.1149 * np.sin(2 * day_angle_b) + 0.3656 *\n np.cos(2 * day_angle_b) - 0.1712 * np.sin(3 * day_angle_b) + 0.0201 *\n np.cos(3 * day_angle_b))\n day_angle_s = 2 * np.pi * (doy - 1) / 365.0\n eq_time = 12.0 / np.pi * (7.5e-05 + 0.001868 * np.cos(day_angle_s) - \n 0.032077 * np.sin(day_angle_s) - 0.014615 * np.cos(2 * day_angle_s) -\n 0.040849 * np.sin(2 * day_angle_s))\n standard_meridian = time_zone * 15.0\n delta_lat_time = (lon - standard_meridian) * 24.0 / 360.0\n omega_nul_arg = -np.tan(np.deg2rad(lat)) * np.tan(declination)\n omega_nul = np.arccos(omega_nul_arg)\n sunrise = 12.0 * (1.0 - omega_nul / np.pi) - delta_lat_time - eq_time\n sunset = 12.0 * (1.0 + omega_nul / np.pi) - delta_lat_time - eq_time\n sunnoon = 12.0 * 1.0 - delta_lat_time - eq_time\n pos = omega_nul_arg < -1\n sunrise[pos] = sunnoon[pos] - 12\n sunset[pos] = sunnoon[pos] + 12\n pos = omega_nul_arg > 1\n sunrise[pos] = sunnoon[pos]\n sunset[pos] = sunnoon[pos]\n daylength = sunset - sunrise\n sunrise[sunrise < 0] += 24\n sunset[sunset > 24] -= 24\n df.sunrise = sunrise\n df.sunnoon = sunnoon\n df.sunset = sunset\n df.daylength = daylength\n return df\n", "role": "user" }, { "content": "get_sun_times", "role": "assistant" } ]
def x(dataframe, timestep, print_all=False, print_max=5, verbose=True): gcount = 0 msg_counter = 0 warning_printed = False try: n = len(dataframe.index) except: print('Error: Invalid dataframe.') return -1 for i in range(0, n): if i > 0: time_diff = dataframe.index[i] - dataframe.index[i - 1] if time_diff.delta / 1000000000.0 != timestep: gcount += 1 if print_all or msg_counter <= print_max - 1: if verbose: print( 'Warning: Gap in time series found between %s and %s' % (dataframe.index[i - 1], dataframe.index[i])) msg_counter += 1 if (msg_counter == print_max and verbose and not warning_printed): print( 'Waring: Only the first %i gaps have been listed. Try to increase print_max parameter to show more details.' % msg_counter) warning_printed = True if verbose: print('%i gaps found in total.' % gcount) return gcount
detect_gaps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataframe, timestep, print_all=False, print_max=5, verbose=True):\n gcount = 0\n msg_counter = 0\n warning_printed = False\n try:\n n = len(dataframe.index)\n except:\n print('Error: Invalid dataframe.')\n return -1\n for i in range(0, n):\n if i > 0:\n time_diff = dataframe.index[i] - dataframe.index[i - 1]\n if time_diff.delta / 1000000000.0 != timestep:\n gcount += 1\n if print_all or msg_counter <= print_max - 1:\n if verbose:\n print(\n 'Warning: Gap in time series found between %s and %s'\n % (dataframe.index[i - 1], dataframe.index[i]))\n msg_counter += 1\n if (msg_counter == print_max and verbose and not\n warning_printed):\n print(\n 'Waring: Only the first %i gaps have been listed. Try to increase print_max parameter to show more details.'\n % msg_counter)\n warning_printed = True\n if verbose:\n print('%i gaps found in total.' % gcount)\n return gcount\n", "role": "user" }, { "content": "detect_gaps", "role": "assistant" } ]
def x(dataframe, shift=0): dropped = 0 if shift > 23 or shift < 0: print('Invalid shift parameter setting! Using defaults.') shift = 0 first = shift last = first - 1 if last < 0: last += 24 try: n = len(dataframe.index) except: print('Error: Invalid dataframe.') return dataframe delete = list() for i in range(0, n): if dataframe.index.hour[i] == first and dataframe.index.minute[i] == 0: break else: delete.append(i) dropped += 1 for i in range(n - 1, 0, -1): if dataframe.index.hour[i] == last and dataframe.index.minute[i] == 0: break else: delete.append(i) dropped += 1 return dataframe.drop(dataframe.index[[delete]])
drop_incomplete_days
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataframe, shift=0):\n dropped = 0\n if shift > 23 or shift < 0:\n print('Invalid shift parameter setting! Using defaults.')\n shift = 0\n first = shift\n last = first - 1\n if last < 0:\n last += 24\n try:\n n = len(dataframe.index)\n except:\n print('Error: Invalid dataframe.')\n return dataframe\n delete = list()\n for i in range(0, n):\n if dataframe.index.hour[i] == first and dataframe.index.minute[i] == 0:\n break\n else:\n delete.append(i)\n dropped += 1\n for i in range(n - 1, 0, -1):\n if dataframe.index.hour[i] == last and dataframe.index.minute[i] == 0:\n break\n else:\n delete.append(i)\n dropped += 1\n return dataframe.drop(dataframe.index[[delete]])\n", "role": "user" }, { "content": "drop_incomplete_days", "role": "assistant" } ]
def x(df): df_daily = pd.DataFrame() if 'temp' in df: df_daily['temp'] = df.temp.resample('D').mean() df_daily['tmin'] = df.temp.groupby(df.temp.index.date).min() df_daily['tmax'] = df.temp.groupby(df.temp.index.date).max() if 'precip' in df: df_daily['precip'] = df.precip.resample('D').sum() if 'glob' in df: df_daily['glob'] = df.glob.resample('D').mean() if 'hum' in df: df_daily['hum'] = df.hum.resample('D').mean() if 'hum' in df: df_daily['hum_min'] = df.hum.groupby(df.hum.index.date).min() if 'hum' in df: df_daily['hum_max'] = df.hum.groupby(df.hum.index.date).max() if 'wind' in df: df_daily['wind'] = df.wind.resample('D').mean() if 'ssd' in df: df_daily['ssd'] = df.ssd.resample('D').sum() / 60 df_daily.index.name = None return df_daily
daily_from_hourly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n df_daily = pd.DataFrame()\n if 'temp' in df:\n df_daily['temp'] = df.temp.resample('D').mean()\n df_daily['tmin'] = df.temp.groupby(df.temp.index.date).min()\n df_daily['tmax'] = df.temp.groupby(df.temp.index.date).max()\n if 'precip' in df:\n df_daily['precip'] = df.precip.resample('D').sum()\n if 'glob' in df:\n df_daily['glob'] = df.glob.resample('D').mean()\n if 'hum' in df:\n df_daily['hum'] = df.hum.resample('D').mean()\n if 'hum' in df:\n df_daily['hum_min'] = df.hum.groupby(df.hum.index.date).min()\n if 'hum' in df:\n df_daily['hum_max'] = df.hum.groupby(df.hum.index.date).max()\n if 'wind' in df:\n df_daily['wind'] = df.wind.resample('D').mean()\n if 'ssd' in df:\n df_daily['ssd'] = df.ssd.resample('D').sum() / 60\n df_daily.index.name = None\n return df_daily\n", "role": "user" }, { "content": "daily_from_hourly", "role": "assistant" } ]
def x(dailyData, method='equal', cascade_options=None, hourly_data_obs=None, zerodiv='uniform', shift=0): if method not in ('equal', 'cascade', 'masterstation'): raise ValueError('Invalid option') if method == 'equal': precip_disagg = melodist.distribute_equally(dailyData.precip, divide=True) elif method == 'masterstation': precip_disagg = precip_master_station(dailyData, hourly_data_obs, zerodiv) elif method == 'cascade': assert cascade_options is not None precip_disagg = disagg_prec_cascade(dailyData, cascade_options, shift=shift) return precip_disagg
disagg_prec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dailyData, method='equal', cascade_options=None, hourly_data_obs=None,\n zerodiv='uniform', shift=0):\n if method not in ('equal', 'cascade', 'masterstation'):\n raise ValueError('Invalid option')\n if method == 'equal':\n precip_disagg = melodist.distribute_equally(dailyData.precip,\n divide=True)\n elif method == 'masterstation':\n precip_disagg = precip_master_station(dailyData, hourly_data_obs,\n zerodiv)\n elif method == 'cascade':\n assert cascade_options is not None\n precip_disagg = disagg_prec_cascade(dailyData, cascade_options,\n shift=shift)\n return precip_disagg\n", "role": "user" }, { "content": "disagg_prec", "role": "assistant" } ]
def x(precip_daily, master_precip_hourly, zerodiv): precip_hourly = pd.Series(index=melodist.util.hourly_index(precip_daily .index)) for index_d, precip in precip_daily.iteritems(): index = index_d.date().isoformat() precip_h = master_precip_hourly[index] if precip_h.sum() != 0 and precip_h.sum() != np.isnan(precip_h.sum()): precip_h_rel = precip_h / precip_h.sum() * precip elif zerodiv == 'uniform': precip_h_rel = 1 / 24 * precip else: precip_h_rel = 0 precip_hourly[index] = precip_h_rel return precip_hourly
precip_master_station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(precip_daily, master_precip_hourly, zerodiv):\n precip_hourly = pd.Series(index=melodist.util.hourly_index(precip_daily\n .index))\n for index_d, precip in precip_daily.iteritems():\n index = index_d.date().isoformat()\n precip_h = master_precip_hourly[index]\n if precip_h.sum() != 0 and precip_h.sum() != np.isnan(precip_h.sum()):\n precip_h_rel = precip_h / precip_h.sum() * precip\n elif zerodiv == 'uniform':\n precip_h_rel = 1 / 24 * precip\n else:\n precip_h_rel = 0\n precip_hourly[index] = precip_h_rel\n return precip_hourly\n", "role": "user" }, { "content": "precip_master_station", "role": "assistant" } ]
def x(dataframe, months='all'): if isinstance(months, str) and months == 'all': months = np.arange(12) + 1 for month_num, month in enumerate(months): df_cur = dataframe[dataframe.index.month == month] if month_num == 0: df = df_cur else: df = df.append(df_cur) return df.sort_index()
seasonal_subset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dataframe, months='all'):\n if isinstance(months, str) and months == 'all':\n months = np.arange(12) + 1\n for month_num, month in enumerate(months):\n df_cur = dataframe[dataframe.index.month == month]\n if month_num == 0:\n df = df_cur\n else:\n df = df.append(df_cur)\n return df.sort_index()\n", "role": "user" }, { "content": "seasonal_subset", "role": "assistant" } ]
def x(ObsData, hourly=True, level=9, months=None, avg_stats=True, percentile=50 ): list_seasonal_casc = list() if months is None: months = [np.arange(12) + 1] for cur_months in months: vdn = seasonal_subset(ObsData, cur_months) if len(ObsData.precip[np.isnan(ObsData.precip)]) > 0: ObsData.precip[np.isnan(ObsData.precip)] = 0 casc_opt = melodist.cascade.CascadeStatistics() casc_opt.percentile = percentile list_casc_opt = list() count = 0 if hourly: aggre_level = 5 else: aggre_level = level thresholds = np.zeros(aggre_level) for i in range(0, aggre_level): casc_opt_i, vdn = aggregate_precipitation(vdn, hourly, percentile=percentile) thresholds[i] = casc_opt_i.threshold copy_of_casc_opt_i = copy.copy(casc_opt_i) list_casc_opt.append(copy_of_casc_opt_i) n_vdn = len(vdn) casc_opt_i * n_vdn casc_opt + casc_opt_i count = count + n_vdn casc_opt * (1.0 / count) casc_opt.threshold = thresholds if avg_stats: stat_obj = casc_opt else: stat_obj = list_casc_opt list_seasonal_casc.append(stat_obj) return list_seasonal_casc
build_casc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ObsData, hourly=True, level=9, months=None, avg_stats=True, percentile=50\n ):\n list_seasonal_casc = list()\n if months is None:\n months = [np.arange(12) + 1]\n for cur_months in months:\n vdn = seasonal_subset(ObsData, cur_months)\n if len(ObsData.precip[np.isnan(ObsData.precip)]) > 0:\n ObsData.precip[np.isnan(ObsData.precip)] = 0\n casc_opt = melodist.cascade.CascadeStatistics()\n casc_opt.percentile = percentile\n list_casc_opt = list()\n count = 0\n if hourly:\n aggre_level = 5\n else:\n aggre_level = level\n thresholds = np.zeros(aggre_level)\n for i in range(0, aggre_level):\n casc_opt_i, vdn = aggregate_precipitation(vdn, hourly,\n percentile=percentile)\n thresholds[i] = casc_opt_i.threshold\n copy_of_casc_opt_i = copy.copy(casc_opt_i)\n list_casc_opt.append(copy_of_casc_opt_i)\n n_vdn = len(vdn)\n casc_opt_i * n_vdn\n casc_opt + casc_opt_i\n count = count + n_vdn\n casc_opt * (1.0 / count)\n casc_opt.threshold = thresholds\n if avg_stats:\n stat_obj = casc_opt\n else:\n stat_obj = list_casc_opt\n list_seasonal_casc.append(stat_obj)\n return list_seasonal_casc\n", "role": "user" }, { "content": "build_casc", "role": "assistant" } ]
def x(self): self.p01 = np.array([[0.576724636119866, 0.238722774405744, 0.166532122130638, 0.393474644666218], [0.303345245644811, 0.0490956843857575, 0.0392403031072856, 0.228441890034704]]) self.p10 = np.array([[0.158217002255554, 0.256581140990052, 0.557852226779526, 0.422638238585814], [0.0439831163244427, 0.0474928027621488, 0.303675296728195, 0.217512052135178]]) self.pxx = np.array([[0.26505836162458, 0.504696084604205, 0.275615651089836, 0.183887116747968], [0.652671638030746, 0.903411512852094, 0.657084400164519, 0.554046057830118]]) self.wxx = np.array([[[0.188389148850583, 0.080683645398419, 0.0698113025807722, 0.0621499191745602], [0.240993281622128, 0.0831019646519721, 0.0415130545715575, 0.155284541403192]], [[ 0.190128959522795, 0.129220679033862, 0.0932213021787505, 0.193080698516532], [0.196379692358065, 0.108549414860949, 0.0592714297292217, 0.0421945385836429]], [[0.163043672107111, 0.152063537378127, 0.102823783410167, 0.0906028835221283], [ 0.186579466868095, 0.189705690316132, 0.0990207345993082, 0.107831389238912]], [[0.197765724699431, 0.220046257566978, 0.177876233348082, 0.261288786454262], [0.123823472714948, 0.220514673922285, 0.102486496386323, 0.101975538893918]], [[ 0.114435243444815, 0.170857634762767, 0.177327072603662, 0.135362730582518], [0.0939211776723413, 0.174291820501902, 0.125275822078525, 0.150842841725936]], [[0.0988683809545079, 0.152323481100248, 0.185606883566286, 0.167242856061538], [ 0.0760275616817939, 0.127275603247149, 0.202466168603738, 0.186580243138018]], [[0.0473688704207573, 0.0948047647595988, 0.19333342231228, 0.0902721256884624], [0.0822753470826286, 0.0965608324996108, 0.369966294031327, 0.255290907016382]]])
fill_with_sample_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.p01 = np.array([[0.576724636119866, 0.238722774405744, \n 0.166532122130638, 0.393474644666218], [0.303345245644811, \n 0.0490956843857575, 0.0392403031072856, 0.228441890034704]])\n self.p10 = np.array([[0.158217002255554, 0.256581140990052, \n 0.557852226779526, 0.422638238585814], [0.0439831163244427, \n 0.0474928027621488, 0.303675296728195, 0.217512052135178]])\n self.pxx = np.array([[0.26505836162458, 0.504696084604205, \n 0.275615651089836, 0.183887116747968], [0.652671638030746, \n 0.903411512852094, 0.657084400164519, 0.554046057830118]])\n self.wxx = np.array([[[0.188389148850583, 0.080683645398419, \n 0.0698113025807722, 0.0621499191745602], [0.240993281622128, \n 0.0831019646519721, 0.0415130545715575, 0.155284541403192]], [[\n 0.190128959522795, 0.129220679033862, 0.0932213021787505, \n 0.193080698516532], [0.196379692358065, 0.108549414860949, \n 0.0592714297292217, 0.0421945385836429]], [[0.163043672107111, \n 0.152063537378127, 0.102823783410167, 0.0906028835221283], [\n 0.186579466868095, 0.189705690316132, 0.0990207345993082, \n 0.107831389238912]], [[0.197765724699431, 0.220046257566978, \n 0.177876233348082, 0.261288786454262], [0.123823472714948, \n 0.220514673922285, 0.102486496386323, 0.101975538893918]], [[\n 0.114435243444815, 0.170857634762767, 0.177327072603662, \n 0.135362730582518], [0.0939211776723413, 0.174291820501902, \n 0.125275822078525, 0.150842841725936]], [[0.0988683809545079, \n 0.152323481100248, 0.185606883566286, 0.167242856061538], [\n 0.0760275616817939, 0.127275603247149, 0.202466168603738, \n 0.186580243138018]], [[0.0473688704207573, 0.0948047647595988, \n 0.19333342231228, 0.0902721256884624], [0.0822753470826286, \n 0.0965608324996108, 0.369966294031327, 0.255290907016382]]])\n", "role": "user" }, { "content": "fill_with_sample_data", "role": "assistant" } ]
def x(cls): if not cls._files: for f in os.listdir(cls._image_path): if not f.startswith('.') and os.path.isfile(os.path.join(cls. _image_path, f)): cls._files.append(os.path.splitext(f)[0]) return cls._files
names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls):\n if not cls._files:\n for f in os.listdir(cls._image_path):\n if not f.startswith('.') and os.path.isfile(os.path.join(cls.\n _image_path, f)):\n cls._files.append(os.path.splitext(f)[0])\n return cls._files\n", "role": "user" }, { "content": "names", "role": "assistant" } ]
def x(cls, replacement_string): e = cls() def x(match): val = match.group(1) if val in e: return e._image_string(match.group(1)) else: return match.group(0) return e._pattern.sub(_replace_emoji, replacement_string)
replace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, replacement_string):\n e = cls()\n\n def x(match):\n val = match.group(1)\n if val in e:\n return e._image_string(match.group(1))\n else:\n return match.group(0)\n return e._pattern.sub(_replace_emoji, replacement_string)\n", "role": "user" }, { "content": "replace", "role": "assistant" } ]
def x(cls, replacement_string): e = cls() output = [] surrogate_character = None if settings.EMOJI_REPLACE_HTML_ENTITIES: replacement_string = cls.replace_html_entities(replacement_string) for i, character in enumerate(replacement_string): if character in cls._unicode_modifiers: continue if not UNICODE_WIDE and not surrogate_character and ord(character ) >= UNICODE_SURROGATE_MIN and ord(character ) <= UNICODE_SURROGATE_MAX: surrogate_character = character continue if surrogate_character: character = convert_unicode_surrogates(surrogate_character + character) surrogate_character = None name = e.name_for(character) if name: if settings.EMOJI_ALT_AS_UNICODE: character = e._image_string(name, alt=character) else: character = e._image_string(name) output.append(character) return ''.join(output)
replace_unicode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, replacement_string):\n e = cls()\n output = []\n surrogate_character = None\n if settings.EMOJI_REPLACE_HTML_ENTITIES:\n replacement_string = cls.replace_html_entities(replacement_string)\n for i, character in enumerate(replacement_string):\n if character in cls._unicode_modifiers:\n continue\n if not UNICODE_WIDE and not surrogate_character and ord(character\n ) >= UNICODE_SURROGATE_MIN and ord(character\n ) <= UNICODE_SURROGATE_MAX:\n surrogate_character = character\n continue\n if surrogate_character:\n character = convert_unicode_surrogates(surrogate_character +\n character)\n surrogate_character = None\n name = e.name_for(character)\n if name:\n if settings.EMOJI_ALT_AS_UNICODE:\n character = e._image_string(name, alt=character)\n else:\n character = e._image_string(name)\n output.append(character)\n return ''.join(output)\n", "role": "user" }, { "content": "replace_unicode", "role": "assistant" } ]
def x(cls, replacement_string): def x(hex_code): if PYTHON3: hex_code = '{0:0>8}'.format(hex_code) as_int = struct.unpack('>i', bytes.fromhex(hex_code))[0] return '{0:c}'.format(as_int) else: return hex_to_unicode(hex_code) def x(match): hex_val = hex(int(match.group(1))) return _hex_to_unicode(hex_val.replace('0x', '')) def x(match): return _hex_to_unicode(match.group(1)) replacement_string = re.sub(cls._html_entities_integer_unicode_regex, _replace_integer_entity, replacement_string) replacement_string = re.sub(cls._html_entities_hex_unicode_regex, _replace_hex_entity, replacement_string) return replacement_string
replace_html_entities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, replacement_string):\n\n def x(hex_code):\n if PYTHON3:\n hex_code = '{0:0>8}'.format(hex_code)\n as_int = struct.unpack('>i', bytes.fromhex(hex_code))[0]\n return '{0:c}'.format(as_int)\n else:\n return hex_to_unicode(hex_code)\n\n def x(match):\n hex_val = hex(int(match.group(1)))\n return _hex_to_unicode(hex_val.replace('0x', ''))\n\n def x(match):\n return _hex_to_unicode(match.group(1))\n replacement_string = re.sub(cls._html_entities_integer_unicode_regex,\n _replace_integer_entity, replacement_string)\n replacement_string = re.sub(cls._html_entities_hex_unicode_regex,\n _replace_hex_entity, replacement_string)\n return replacement_string\n", "role": "user" }, { "content": "replace_html_entities", "role": "assistant" } ]
def x(configurator, path): path = os.path.join(configurator.target_directory, path) os.remove(path) try: os.removedirs(os.path.dirname(path)) except OSError: pass
delete_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(configurator, path):\n path = os.path.join(configurator.target_directory, path)\n os.remove(path)\n try:\n os.removedirs(os.path.dirname(path))\n except OSError:\n pass\n", "role": "user" }, { "content": "delete_file", "role": "assistant" } ]
def x(configurator, key, item): with _open_manifest(configurator) as f: manifest = f.read() if item in ast.literal_eval(manifest).get(key, []): return pattern = '(["\']{}["\']:\\s*\\[)'.format(key) repl = """\\1 '{}',""".format(item) manifest = re.sub(pattern, repl, manifest, re.MULTILINE) with _open_manifest(configurator, 'w') as f: f.write(manifest)
insert_manifest_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(configurator, key, item):\n with _open_manifest(configurator) as f:\n manifest = f.read()\n if item in ast.literal_eval(manifest).get(key, []):\n return\n pattern = '([\"\\']{}[\"\\']:\\\\s*\\\\[)'.format(key)\n repl = \"\"\"\\\\1\n '{}',\"\"\".format(item)\n manifest = re.sub(pattern, repl, manifest, re.MULTILINE)\n with _open_manifest(configurator, 'w') as f:\n f.write(manifest)\n", "role": "user" }, { "content": "insert_manifest_item", "role": "assistant" } ]
def x(filename): with open(filename) as requirements_file: contents = requirements_file.read() return [line.strip() for line in contents.splitlines() if _is_requirement(line)]
read_requirements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n with open(filename) as requirements_file:\n contents = requirements_file.read()\n return [line.strip() for line in contents.splitlines() if\n _is_requirement(line)]\n", "role": "user" }, { "content": "read_requirements", "role": "assistant" } ]
def x(perm, group): if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError( "For global permissions, first argument must be in format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.add(perm) return perm
assign_perm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(perm, group):\n if not isinstance(perm, Permission):\n try:\n app_label, codename = perm.split('.', 1)\n except ValueError:\n raise ValueError(\n \"For global permissions, first argument must be in format: 'app_label.codename' (is %r)\"\n % perm)\n perm = Permission.objects.get(content_type__app_label=app_label,\n codename=codename)\n group.permissions.add(perm)\n return perm\n", "role": "user" }, { "content": "assign_perm", "role": "assistant" } ]
def x(perm, group): if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError( "For global permissions, first argument must be in format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.remove(perm) return
remove_perm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(perm, group):\n if not isinstance(perm, Permission):\n try:\n app_label, codename = perm.split('.', 1)\n except ValueError:\n raise ValueError(\n \"For global permissions, first argument must be in format: 'app_label.codename' (is %r)\"\n % perm)\n perm = Permission.objects.get(content_type__app_label=app_label,\n codename=codename)\n group.permissions.remove(perm)\n return\n", "role": "user" }, { "content": "remove_perm", "role": "assistant" } ]
def x(context, list): return 'list_%s_%s' % (list.model._meta.app_label, list.model._meta. model_name)
get_list_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, list):\n return 'list_%s_%s' % (list.model._meta.app_label, list.model._meta.\n model_name)\n", "role": "user" }, { "content": "get_list_class", "role": "assistant" } ]
def x(time): user_time_zone = timezone.get_current_timezone() if time.tzinfo is None: time = time.replace(tzinfo=pytz.utc) user_time_zone = pytz.timezone(getattr(settings, 'USER_TIME_ZONE', 'GMT')) time = time.astimezone(user_time_zone) return time.strftime('%b %d, %Y %H:%M')
format_datetime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(time):\n user_time_zone = timezone.get_current_timezone()\n if time.tzinfo is None:\n time = time.replace(tzinfo=pytz.utc)\n user_time_zone = pytz.timezone(getattr(settings, 'USER_TIME_ZONE',\n 'GMT'))\n time = time.astimezone(user_time_zone)\n return time.strftime('%b %d, %Y %H:%M')\n", "role": "user" }, { "content": "format_datetime", "role": "assistant" } ]
def x(context, field): view = context['view'] obj = None if 'object' in context: obj = context['object'] value = view.lookup_field_value(context, obj, field) if type(value) == datetime: return format_datetime(value) return value
get_value_from_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, field):\n view = context['view']\n obj = None\n if 'object' in context:\n obj = context['object']\n value = view.lookup_field_value(context, obj, field)\n if type(value) == datetime:\n return format_datetime(value)\n return value\n", "role": "user" }, { "content": "get_value_from_view", "role": "assistant" } ]
def x(context, field, obj=None): view = context['view'] return view.lookup_field_class(field, obj, 'field_' + field)
get_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_class(field, obj, 'field_' + field)\n", "role": "user" }, { "content": "get_class", "role": "assistant" } ]
def x(context, field, obj=None): view = context['view'] return view.lookup_field_label(context, field, obj)
get_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_label(context, field, obj)\n", "role": "user" }, { "content": "get_label", "role": "assistant" } ]
def x(context, field, obj=None): view = context['view'] return view.lookup_field_link(context, field, obj)
get_field_link
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_link(context, field, obj)\n", "role": "user" }, { "content": "get_field_link", "role": "assistant" } ]
def x(): global permissions_app_name if not permissions_app_name: permissions_app_name = getattr(settings, 'PERMISSIONS_APP', None) if not permissions_app_name: app_names_with_models = [a.name for a in apps.get_app_configs() if a.models_module is not None] if app_names_with_models: permissions_app_name = app_names_with_models[-1] return permissions_app_name
get_permissions_app_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n global permissions_app_name\n if not permissions_app_name:\n permissions_app_name = getattr(settings, 'PERMISSIONS_APP', None)\n if not permissions_app_name:\n app_names_with_models = [a.name for a in apps.get_app_configs() if\n a.models_module is not None]\n if app_names_with_models:\n permissions_app_name = app_names_with_models[-1]\n return permissions_app_name\n", "role": "user" }, { "content": "get_permissions_app_name", "role": "assistant" } ]
def x(role, permissions, current_permissions): role_permissions = [] for permission in permissions: splits = permission.split('.') if len(splits) != 2 and len(splits) != 3: sys.stderr.write(' invalid permission %s, ignoring\n' % permission ) continue app = splits[0] codenames = [] if len(splits) == 2: codenames.append(splits[1]) else: object, action = splits[1:] if action == '*': for perm in Permission.objects.filter(codename__startswith= '%s_' % object, content_type__app_label=app): codenames.append(perm.codename) else: sys.stderr.write(' invalid permission %s, ignoring\n' % permission) continue if len(codenames) == 0: continue for codename in codenames: full_codename = '%s.%s' % (app, codename) role_permissions.append(full_codename) try: assign_perm(full_codename, role) except ObjectDoesNotExist: pass for permission in current_permissions: if isinstance(permission, str): key = permission else: key = '%s.%s' % (permission.content_type.app_label, permission. codename) if key not in role_permissions: remove_perm(key, role)
check_role_permissions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(role, permissions, current_permissions):\n role_permissions = []\n for permission in permissions:\n splits = permission.split('.')\n if len(splits) != 2 and len(splits) != 3:\n sys.stderr.write(' invalid permission %s, ignoring\\n' % permission\n )\n continue\n app = splits[0]\n codenames = []\n if len(splits) == 2:\n codenames.append(splits[1])\n else:\n object, action = splits[1:]\n if action == '*':\n for perm in Permission.objects.filter(codename__startswith=\n '%s_' % object, content_type__app_label=app):\n codenames.append(perm.codename)\n else:\n sys.stderr.write(' invalid permission %s, ignoring\\n' %\n permission)\n continue\n if len(codenames) == 0:\n continue\n for codename in codenames:\n full_codename = '%s.%s' % (app, codename)\n role_permissions.append(full_codename)\n try:\n assign_perm(full_codename, role)\n except ObjectDoesNotExist:\n pass\n for permission in current_permissions:\n if isinstance(permission, str):\n key = permission\n else:\n key = '%s.%s' % (permission.content_type.app_label, permission.\n codename)\n if key not in role_permissions:\n remove_perm(key, role)\n", "role": "user" }, { "content": "check_role_permissions", "role": "assistant" } ]
def x(sender, **kwargs): if not is_permissions_app(sender): return config = getattr(settings, 'GROUP_PERMISSIONS', dict()) for name, permissions in config.items(): group, created = Group.objects.get_or_create(name=name) if created: pass check_role_permissions(group, permissions, group.permissions.all())
check_all_group_permissions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, **kwargs):\n if not is_permissions_app(sender):\n return\n config = getattr(settings, 'GROUP_PERMISSIONS', dict())\n for name, permissions in config.items():\n group, created = Group.objects.get_or_create(name=name)\n if created:\n pass\n check_role_permissions(group, permissions, group.permissions.all())\n", "role": "user" }, { "content": "check_all_group_permissions", "role": "assistant" } ]
def x(content_type, permission): codename = '%s_%s' % (content_type.model, permission) if not Permission.objects.filter(content_type=content_type, codename= codename): Permission.objects.create(content_type=content_type, codename= codename, name='Can %s %s' % (permission, content_type.name))
add_permission
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(content_type, permission):\n codename = '%s_%s' % (content_type.model, permission)\n if not Permission.objects.filter(content_type=content_type, codename=\n codename):\n Permission.objects.create(content_type=content_type, codename=\n codename, name='Can %s %s' % (permission, content_type.name))\n", "role": "user" }, { "content": "add_permission", "role": "assistant" } ]
def x(sender, **kwargs): if not is_permissions_app(sender): return config = getattr(settings, 'PERMISSIONS', dict()) for natural_key, permissions in config.items(): if natural_key == '*': for content_type in ContentType.objects.all(): for permission in permissions: add_permission(content_type, permission) else: app, model = natural_key.split('.') try: content_type = ContentType.objects.get_by_natural_key(app, model) except ContentType.DoesNotExist: continue for permission in permissions: add_permission(content_type, permission)
check_all_permissions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, **kwargs):\n if not is_permissions_app(sender):\n return\n config = getattr(settings, 'PERMISSIONS', dict())\n for natural_key, permissions in config.items():\n if natural_key == '*':\n for content_type in ContentType.objects.all():\n for permission in permissions:\n add_permission(content_type, permission)\n else:\n app, model = natural_key.split('.')\n try:\n content_type = ContentType.objects.get_by_natural_key(app,\n model)\n except ContentType.DoesNotExist:\n continue\n for permission in permissions:\n add_permission(content_type, permission)\n", "role": "user" }, { "content": "check_all_permissions", "role": "assistant" } ]
def x(self, commit=True): is_new_user = self.instance.pk is None user = super(UserForm, self).save(commit) if is_new_user: user.is_active = True new_pass = self.cleaned_data['new_password'] if new_pass: user.set_password(new_pass) if commit: user.save() return user
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, commit=True):\n is_new_user = self.instance.pk is None\n user = super(UserForm, self).save(commit)\n if is_new_user:\n user.is_active = True\n new_pass = self.cleaned_data['new_password']\n if new_pass:\n user.set_password(new_pass)\n if commit:\n user.save()\n return user\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(url, obj=None): if url.find('@') >= 0: args, value = url.split('@') if args: val = getattr(obj, args, None) return reverse(value, args=[val]) else: return reverse(value) elif obj is None: return url else: return url % obj.id
smart_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(url, obj=None):\n if url.find('@') >= 0:\n args, value = url.split('@')\n if args:\n val = getattr(obj, args, None)\n return reverse(value, args=[val])\n else:\n return reverse(value)\n elif obj is None:\n return url\n else:\n return url % obj.id\n", "role": "user" }, { "content": "smart_url", "role": "assistant" } ]
def x(slug_url_kwarg, path, action): if slug_url_kwarg: return '^%s/%s/(?P<%s>[^/]+)/$' % (path, action, slug_url_kwarg) else: return '^%s/%s/(?P<pk>\\d+)/$' % (path, action)
derive_single_object_url_pattern
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(slug_url_kwarg, path, action):\n if slug_url_kwarg:\n return '^%s/%s/(?P<%s>[^/]+)/$' % (path, action, slug_url_kwarg)\n else:\n return '^%s/%s/(?P<pk>\\\\d+)/$' % (path, action)\n", "role": "user" }, { "content": "derive_single_object_url_pattern", "role": "assistant" } ]
def x(self, request, *args, **kwargs): self.kwargs = kwargs self.args = args self.request = request if not getattr(self, 'permission', None): return True else: return request.user.has_perm(self.permission)
has_permission
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, *args, **kwargs):\n self.kwargs = kwargs\n self.args = args\n self.request = request\n if not getattr(self, 'permission', None):\n return True\n else:\n return request.user.has_perm(self.permission)\n", "role": "user" }, { "content": "has_permission", "role": "assistant" } ]
def x(self, request, *args, **kwargs): def x(request, *args, **kwargs): if not self.has_permission(request, *args, **kwargs): path = urlquote(request.get_full_path()) login_url = kwargs.pop('login_url', settings.LOGIN_URL) redirect_field_name = kwargs.pop('redirect_field_name', REDIRECT_FIELD_NAME) return HttpResponseRedirect('%s?%s=%s' % (login_url, redirect_field_name, path)) else: response = self.pre_process(request, *args, **kwargs) if not response: return super(SmartView, self).dispatch(request, *args, **kwargs ) else: return response return wrapper(request, *args, **kwargs)
dispatch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, *args, **kwargs):\n\n def x(request, *args, **kwargs):\n if not self.has_permission(request, *args, **kwargs):\n path = urlquote(request.get_full_path())\n login_url = kwargs.pop('login_url', settings.LOGIN_URL)\n redirect_field_name = kwargs.pop('redirect_field_name',\n REDIRECT_FIELD_NAME)\n return HttpResponseRedirect('%s?%s=%s' % (login_url,\n redirect_field_name, path))\n else:\n response = self.pre_process(request, *args, **kwargs)\n if not response:\n return super(SmartView, self).dispatch(request, *args, **kwargs\n )\n else:\n return response\n return wrapper(request, *args, **kwargs)\n", "role": "user" }, { "content": "dispatch", "role": "assistant" } ]
def x(self, obj, field): curr_field = field.encode('ascii', 'ignore').decode('utf-8') rest = None if field.find('.') >= 0: curr_field = field.split('.')[0] rest = '.'.join(field.split('.')[1:]) obj_field = getattr(obj, curr_field, None) if obj_field and getattr(obj_field, '__call__', None): obj_field = obj_field() if obj_field and rest: return self.lookup_obj_attribute(obj_field, rest) else: return obj_field
lookup_obj_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj, field):\n curr_field = field.encode('ascii', 'ignore').decode('utf-8')\n rest = None\n if field.find('.') >= 0:\n curr_field = field.split('.')[0]\n rest = '.'.join(field.split('.')[1:])\n obj_field = getattr(obj, curr_field, None)\n if obj_field and getattr(obj_field, '__call__', None):\n obj_field = obj_field()\n if obj_field and rest:\n return self.lookup_obj_attribute(obj_field, rest)\n else:\n return obj_field\n", "role": "user" }, { "content": "lookup_obj_attribute", "role": "assistant" } ]
def x(self, context, obj, field): curr_field = field.encode('ascii', 'ignore').decode('utf-8') if field.find('.') == -1: view_method = getattr(self, 'get_%s' % curr_field, None) if view_method: return view_method(obj) return self.lookup_obj_attribute(obj, field)
lookup_field_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, obj, field):\n curr_field = field.encode('ascii', 'ignore').decode('utf-8')\n if field.find('.') == -1:\n view_method = getattr(self, 'get_%s' % curr_field, None)\n if view_method:\n return view_method(obj)\n return self.lookup_obj_attribute(obj, field)\n", "role": "user" }, { "content": "lookup_field_value", "role": "assistant" } ]
def x(self, context, field, default=None): if field.find('.') >= 0: return self.lookup_field_label(context, field.split('.')[-1], default) label = None if field in self.field_config and 'label' in self.field_config[field]: label = self.field_config[field]['label'] elif default: label = default else: for model_field in self.model._meta.fields: if model_field.name == field: return model_field.verbose_name.title() if label is None: label = self.derive_field_label(field) return label
lookup_field_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, field, default=None):\n if field.find('.') >= 0:\n return self.lookup_field_label(context, field.split('.')[-1], default)\n label = None\n if field in self.field_config and 'label' in self.field_config[field]:\n label = self.field_config[field]['label']\n elif default:\n label = default\n else:\n for model_field in self.model._meta.fields:\n if model_field.name == field:\n return model_field.verbose_name.title()\n if label is None:\n label = self.derive_field_label(field)\n return label\n", "role": "user" }, { "content": "lookup_field_label", "role": "assistant" } ]
def x(self, field, default=None): help = None if field in self.field_config and 'help' in self.field_config[field]: help = self.field_config[field]['help'] elif default: help = default elif hasattr(self, 'model'): for model_field in self.model._meta.fields: if model_field.name == field: help = model_field.help_text break return help
lookup_field_help
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field, default=None):\n help = None\n if field in self.field_config and 'help' in self.field_config[field]:\n help = self.field_config[field]['help']\n elif default:\n help = default\n elif hasattr(self, 'model'):\n for model_field in self.model._meta.fields:\n if model_field.name == field:\n help = model_field.help_text\n break\n return help\n", "role": "user" }, { "content": "lookup_field_help", "role": "assistant" } ]
def x(self, field, obj=None, default=None): css = '' if field in self.field_config and 'class' in self.field_config[field]: css = self.field_config[field]['class'] elif default: css = default return css
lookup_field_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field, obj=None, default=None):\n css = ''\n if field in self.field_config and 'class' in self.field_config[field]:\n css = self.field_config[field]['class']\n elif default:\n css = default\n return css\n", "role": "user" }, { "content": "lookup_field_class", "role": "assistant" } ]
def x(self): templates = [] if getattr(self, 'template_name', None): templates.append(self.template_name) if getattr(self, 'default_template', None): templates.append(self.default_template) else: templates = super(SmartView, self).get_template_names() return templates
get_template_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n templates = []\n if getattr(self, 'template_name', None):\n templates.append(self.template_name)\n if getattr(self, 'default_template', None):\n templates.append(self.default_template)\n else:\n templates = super(SmartView, self).get_template_names()\n return templates\n", "role": "user" }, { "content": "get_template_names", "role": "assistant" } ]
def x(self): fields = [] if self.fields: fields.append(self.fields) return fields
derive_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fields = []\n if self.fields:\n fields.append(self.fields)\n return fields\n", "role": "user" }, { "content": "derive_fields", "role": "assistant" } ]
def x(self, **kwargs): context = super(SmartView, self).get_context_data(**kwargs) self.field_config = self.derive_field_config() self.fields = self.derive_fields() url_params = '?' order_params = '' for key in self.request.GET.keys(): if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_' ): for value in self.request.GET.getlist(key): url_params += '%s=%s&' % (key, urlquote(value)) elif key == '_order': order_params = '&'.join([('%s=%s' % (key, _)) for _ in self. request.GET.getlist(key)]) context['url_params'] = url_params context['order_params'] = order_params + '&' context['pjax'] = self.pjax context['blocks'] = dict() context['fields'] = self.fields context['view'] = self context['field_config'] = self.field_config context['title'] = self.derive_title() context.update(self.extra_context) base_template = 'base.html' if 'pjax' in self.request.GET or 'pjax' in self.request.POST: base_template = 'smartmin/pjax.html' if 'HTTP_X_PJAX' in self.request.META: base_template = 'smartmin/pjax.html' context['base_template'] = base_template refresh = self.derive_refresh() if refresh: context['refresh'] = refresh return context
get_context_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n context = super(SmartView, self).get_context_data(**kwargs)\n self.field_config = self.derive_field_config()\n self.fields = self.derive_fields()\n url_params = '?'\n order_params = ''\n for key in self.request.GET.keys():\n if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_'\n ):\n for value in self.request.GET.getlist(key):\n url_params += '%s=%s&' % (key, urlquote(value))\n elif key == '_order':\n order_params = '&'.join([('%s=%s' % (key, _)) for _ in self.\n request.GET.getlist(key)])\n context['url_params'] = url_params\n context['order_params'] = order_params + '&'\n context['pjax'] = self.pjax\n context['blocks'] = dict()\n context['fields'] = self.fields\n context['view'] = self\n context['field_config'] = self.field_config\n context['title'] = self.derive_title()\n context.update(self.extra_context)\n base_template = 'base.html'\n if 'pjax' in self.request.GET or 'pjax' in self.request.POST:\n base_template = 'smartmin/pjax.html'\n if 'HTTP_X_PJAX' in self.request.META:\n base_template = 'smartmin/pjax.html'\n context['base_template'] = base_template\n refresh = self.derive_refresh()\n if refresh:\n context['refresh'] = refresh\n return context\n", "role": "user" }, { "content": "get_context_data", "role": "assistant" } ]
def x(self, context, **response_kwargs): if '_format' in self.request.GET and self.request.GET['_format'] == 'json': return JsonResponse(self.as_json(context), safe=False) else: return super(SmartView, self).render_to_response(context)
render_to_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, **response_kwargs):\n if '_format' in self.request.GET and self.request.GET['_format'] == 'json':\n return JsonResponse(self.as_json(context), safe=False)\n else:\n return super(SmartView, self).render_to_response(context)\n", "role": "user" }, { "content": "render_to_response", "role": "assistant" } ]
def x(self): if self.fields: return list(self.fields) else: fields = [] for field in self.object._meta.fields: fields.append(field.name) exclude = self.derive_exclude() fields = [field for field in fields if field not in exclude] return fields
derive_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.fields:\n return list(self.fields)\n else:\n fields = []\n for field in self.object._meta.fields:\n fields.append(field.name)\n exclude = self.derive_exclude()\n fields = [field for field in fields if field not in exclude]\n return fields\n", "role": "user" }, { "content": "derive_fields", "role": "assistant" } ]
def x(self, **kwargs): context = super(SmartDeleteView, self).get_context_data(**kwargs) context['name_field'] = self.name_field context['cancel_url'] = self.get_cancel_url() return context
get_context_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n context = super(SmartDeleteView, self).get_context_data(**kwargs)\n context['name_field'] = self.name_field\n context['cancel_url'] = self.get_cancel_url()\n return context\n", "role": "user" }, { "content": "get_context_data", "role": "assistant" } ]
def x(self): title = super(SmartListView, self).derive_title() if not title: return force_text(self.model._meta.verbose_name_plural).title() else: return title
derive_title
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n title = super(SmartListView, self).derive_title()\n if not title:\n return force_text(self.model._meta.verbose_name_plural).title()\n else:\n return title\n", "role": "user" }, { "content": "derive_title", "role": "assistant" } ]
def x(self, context): if self.link_fields is not None: return self.link_fields else: link_fields = set() if self.fields: for field in self.fields: if field != 'is_active': link_fields.add(field) break return link_fields
derive_link_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n if self.link_fields is not None:\n return self.link_fields\n else:\n link_fields = set()\n if self.fields:\n for field in self.fields:\n if field != 'is_active':\n link_fields.add(field)\n break\n return link_fields\n", "role": "user" }, { "content": "derive_link_fields", "role": "assistant" } ]
def x(self, field): try: self.model._meta.get_field_by_name(field) return True except Exception: return False
lookup_field_orderable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field):\n try:\n self.model._meta.get_field_by_name(field)\n return True\n except Exception:\n return False\n", "role": "user" }, { "content": "lookup_field_orderable", "role": "assistant" } ]
def x(self, **kwargs): context = super(SmartListView, self).get_context_data(**kwargs) self.link_fields = self.derive_link_fields(context) context['link_fields'] = self.link_fields if 'search' in self.request.GET: context['search'] = self.request.GET['search'] order = self.derive_ordering() if order: if order[0] == '-': context['order'] = order[1:] context['order_asc'] = False else: context['order'] = order context['order_asc'] = True return context
get_context_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n context = super(SmartListView, self).get_context_data(**kwargs)\n self.link_fields = self.derive_link_fields(context)\n context['link_fields'] = self.link_fields\n if 'search' in self.request.GET:\n context['search'] = self.request.GET['search']\n order = self.derive_ordering()\n if order:\n if order[0] == '-':\n context['order'] = order[1:]\n context['order_asc'] = False\n else:\n context['order'] = order\n context['order_asc'] = True\n return context\n", "role": "user" }, { "content": "get_context_data", "role": "assistant" } ]
def x(self, **kwargs): queryset = super(SmartListView, self).get_queryset(**kwargs) search_fields = self.derive_search_fields() search_query = self.request.GET.get('search') if search_fields and search_query: term_queries = [] for term in search_query.split(' '): field_queries = [] for field in search_fields: field_queries.append(Q(**{field: term})) term_queries.append(reduce(operator.or_, field_queries)) queryset = queryset.filter(reduce(operator.and_, term_queries)) related = self.derive_select_related() if related: queryset = queryset.select_related(*related) return queryset
derive_queryset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n queryset = super(SmartListView, self).get_queryset(**kwargs)\n search_fields = self.derive_search_fields()\n search_query = self.request.GET.get('search')\n if search_fields and search_query:\n term_queries = []\n for term in search_query.split(' '):\n field_queries = []\n for field in search_fields:\n field_queries.append(Q(**{field: term}))\n term_queries.append(reduce(operator.or_, field_queries))\n queryset = queryset.filter(reduce(operator.and_, term_queries))\n related = self.derive_select_related()\n if related:\n queryset = queryset.select_related(*related)\n return queryset\n", "role": "user" }, { "content": "derive_queryset", "role": "assistant" } ]
def x(self, **kwargs): queryset = self.derive_queryset(**kwargs) return self.order_queryset(queryset)
get_queryset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n queryset = self.derive_queryset(**kwargs)\n return self.order_queryset(queryset)\n", "role": "user" }, { "content": "get_queryset", "role": "assistant" } ]
def x(self): if '_order' in self.request.GET: return self.request.GET['_order'] elif self.default_order: return self.default_order else: return None
derive_ordering
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if '_order' in self.request.GET:\n return self.request.GET['_order']\n elif self.default_order:\n return self.default_order\n else:\n return None\n", "role": "user" }, { "content": "derive_ordering", "role": "assistant" } ]
def x(self, queryset): order = self.derive_ordering() if '_order' in self.request.GET: if order.lstrip('-') not in self.derive_fields(): order = None if order: if isinstance(order, str): order = order, queryset = queryset.order_by(*order) return queryset
order_queryset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, queryset):\n order = self.derive_ordering()\n if '_order' in self.request.GET:\n if order.lstrip('-') not in self.derive_fields():\n order = None\n if order:\n if isinstance(order, str):\n order = order,\n queryset = queryset.order_by(*order)\n return queryset\n", "role": "user" }, { "content": "order_queryset", "role": "assistant" } ]
def x(self): if self.fields: return self.fields else: fields = [] for field in self.object_list.model._meta.fields: if field.name != 'id': fields.append(field.name) return fields
derive_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.fields:\n return self.fields\n else:\n fields = []\n for field in self.object_list.model._meta.fields:\n if field.name != 'id':\n fields.append(field.name)\n return fields\n", "role": "user" }, { "content": "derive_fields", "role": "assistant" } ]
def x(self, context, **response_kwargs): if self.request.GET.get('_format', 'html') == 'select2': results = [] for obj in context['object_list']: result = None if hasattr(obj, 'as_select2'): result = obj.as_select2() if not result: result = dict(id=obj.pk, text='%s' % obj) results.append(result) json_data = dict(results=results, err='nil', more=context[ 'page_obj'].has_next()) return JsonResponse(json_data) else: return super(SmartListView, self).render_to_response(context)
render_to_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, **response_kwargs):\n if self.request.GET.get('_format', 'html') == 'select2':\n results = []\n for obj in context['object_list']:\n result = None\n if hasattr(obj, 'as_select2'):\n result = obj.as_select2()\n if not result:\n result = dict(id=obj.pk, text='%s' % obj)\n results.append(result)\n json_data = dict(results=results, err='nil', more=context[\n 'page_obj'].has_next())\n return JsonResponse(json_data)\n else:\n return super(SmartListView, self).render_to_response(context)\n", "role": "user" }, { "content": "render_to_response", "role": "assistant" } ]
def x(self): self.form = super(SmartFormMixin, self).get_form() fields = list(self.derive_fields()) exclude = self.derive_exclude() exclude += self.derive_readonly() for field in exclude: if field in self.form.fields: del self.form.fields[field] if fields is not None: remove = [name for name in self.form.fields.keys() if name not in fields] for name in remove: del self.form.fields[name] location = forms.CharField(widget=forms.widgets.HiddenInput(), required =False) if 'HTTP_REFERER' in self.request.META: location.initial = self.request.META['HTTP_REFERER'] self.form.fields['loc'] = location if fields: fields.append('loc') for name, field in self.form.fields.items(): field = self.customize_form_field(name, field) self.form.fields[name] = field return self.form
get_form
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.form = super(SmartFormMixin, self).get_form()\n fields = list(self.derive_fields())\n exclude = self.derive_exclude()\n exclude += self.derive_readonly()\n for field in exclude:\n if field in self.form.fields:\n del self.form.fields[field]\n if fields is not None:\n remove = [name for name in self.form.fields.keys() if name not in\n fields]\n for name in remove:\n del self.form.fields[name]\n location = forms.CharField(widget=forms.widgets.HiddenInput(), required\n =False)\n if 'HTTP_REFERER' in self.request.META:\n location.initial = self.request.META['HTTP_REFERER']\n self.form.fields['loc'] = location\n if fields:\n fields.append('loc')\n for name, field in self.form.fields.items():\n field = self.customize_form_field(name, field)\n self.form.fields[name] = field\n return self.form\n", "role": "user" }, { "content": "get_form", "role": "assistant" } ]
def x(self, name, field): if isinstance(field, forms.fields.DateField) and isinstance(field. widget, forms.widgets.DateInput): field.widget = widgets.DatePickerWidget() field.input_formats = [field.widget.input_format[1]] + list(field. input_formats) if isinstance(field, forms.fields.ImageField) and isinstance(field. widget, forms.widgets.ClearableFileInput): field.widget = widgets.ImageThumbnailWidget() return field
customize_form_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, field):\n if isinstance(field, forms.fields.DateField) and isinstance(field.\n widget, forms.widgets.DateInput):\n field.widget = widgets.DatePickerWidget()\n field.input_formats = [field.widget.input_format[1]] + list(field.\n input_formats)\n if isinstance(field, forms.fields.ImageField) and isinstance(field.\n widget, forms.widgets.ClearableFileInput):\n field.widget = widgets.ImageThumbnailWidget()\n return field\n", "role": "user" }, { "content": "customize_form_field", "role": "assistant" } ]
def x(self, context, field, default=None): default = None for form_field in self.form: if form_field.name == field: default = form_field.label break return super(SmartFormMixin, self).lookup_field_label(context, field, default=default)
lookup_field_label
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context, field, default=None):\n default = None\n for form_field in self.form:\n if form_field.name == field:\n default = form_field.label\n break\n return super(SmartFormMixin, self).lookup_field_label(context, field,\n default=default)\n", "role": "user" }, { "content": "lookup_field_label", "role": "assistant" } ]
def x(self, field, default=None): default = None for form_field in self.form: if form_field.name == field: default = form_field.help_text break return super(SmartFormMixin, self).lookup_field_help(field, default=default )
lookup_field_help
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field, default=None):\n default = None\n for form_field in self.form:\n if form_field.name == field:\n default = form_field.help_text\n break\n return super(SmartFormMixin, self).lookup_field_help(field, default=default\n )\n", "role": "user" }, { "content": "lookup_field_help", "role": "assistant" } ]
def x(self): readonly = list(self.readonly) for key, value in self.field_config.items(): if 'readonly' in value and value['readonly']: readonly.append(key) return readonly
derive_readonly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n readonly = list(self.readonly)\n for key, value in self.field_config.items():\n if 'readonly' in value and value['readonly']:\n readonly.append(key)\n return readonly\n", "role": "user" }, { "content": "derive_readonly", "role": "assistant" } ]
def x(self): if self.fields is not None: fields = list(self.fields) else: form = self.form fields = [] for field in form: fields.append(field.name) readonly = self.derive_readonly() if readonly: fields += readonly for exclude in self.derive_exclude(): if exclude in fields: fields.remove(exclude) return fields
derive_fields
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.fields is not None:\n fields = list(self.fields)\n else:\n form = self.form\n fields = []\n for field in form:\n fields.append(field.name)\n readonly = self.derive_readonly()\n if readonly:\n fields += readonly\n for exclude in self.derive_exclude():\n if exclude in fields:\n fields.remove(exclude)\n return fields\n", "role": "user" }, { "content": "derive_fields", "role": "assistant" } ]
def x(self): if self.form_class: form_class = self.form_class else: if self.model is not None: model = self.model elif hasattr(self, 'object') and self.object is not None: model = self.object.__class__ else: model = self.get_queryset().model factory_kwargs = self.get_factory_kwargs() form_class = model_forms.modelform_factory(model, **factory_kwargs) return form_class
get_form_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.form_class:\n form_class = self.form_class\n else:\n if self.model is not None:\n model = self.model\n elif hasattr(self, 'object') and self.object is not None:\n model = self.object.__class__\n else:\n model = self.get_queryset().model\n factory_kwargs = self.get_factory_kwargs()\n form_class = model_forms.modelform_factory(model, **factory_kwargs)\n return form_class\n", "role": "user" }, { "content": "get_form_class", "role": "assistant" } ]
def x(self): params = dict() exclude = self.derive_exclude() exclude += self.derive_readonly() if self.fields: fields = list(self.fields) for ex in exclude: if ex in fields: fields.remove(ex) params['fields'] = fields if exclude: params['exclude'] = exclude return params
get_factory_kwargs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n params = dict()\n exclude = self.derive_exclude()\n exclude += self.derive_readonly()\n if self.fields:\n fields = list(self.fields)\n for ex in exclude:\n if ex in fields:\n fields.remove(ex)\n params['fields'] = fields\n if exclude:\n params['exclude'] = exclude\n return params\n", "role": "user" }, { "content": "get_factory_kwargs", "role": "assistant" } ]
def x(self): if self.success_url: if self.success_url.find('@') > 0: return smart_url(self.success_url, self.object) else: return smart_url(self.success_url, None) elif 'loc' in self.form.cleaned_data: return self.form.cleaned_data['loc'] raise ImproperlyConfigured( 'No redirect location found, override get_success_url to not use redirect urls' )
get_success_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.success_url:\n if self.success_url.find('@') > 0:\n return smart_url(self.success_url, self.object)\n else:\n return smart_url(self.success_url, None)\n elif 'loc' in self.form.cleaned_data:\n return self.form.cleaned_data['loc']\n raise ImproperlyConfigured(\n 'No redirect location found, override get_success_url to not use redirect urls'\n )\n", "role": "user" }, { "content": "get_success_url", "role": "assistant" } ]
def x(self): kwargs = super(SmartFormMixin, self).get_form_kwargs() kwargs['initial'] = self.derive_initial() return kwargs
get_form_kwargs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n kwargs = super(SmartFormMixin, self).get_form_kwargs()\n kwargs['initial'] = self.derive_initial()\n return kwargs\n", "role": "user" }, { "content": "get_form_kwargs", "role": "assistant" } ]
def x(self): if not self.title: return _('Create %s') % force_text(self.model._meta.verbose_name ).title() else: return self.title
derive_title
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.title:\n return _('Create %s') % force_text(self.model._meta.verbose_name\n ).title()\n else:\n return self.title\n", "role": "user" }, { "content": "derive_title", "role": "assistant" } ]