source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(name):
def x(class_):
if name in known_resolvers:
raise ValueError('duplicate resolver name "%s"' % name)
known_resolvers[name] = class_
return decorator
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n\n def x(class_):\n if name in known_resolvers:\n raise ValueError('duplicate resolver name \"%s\"' % name)\n known_resolvers[name] = class_\n return decorator\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(order=None, options=None, modules=None):
if not known_resolvers:
from . import resolvers as carmen_resolvers
modules = [carmen_resolvers] + (modules or [])
for module in modules:
for loader, name, _ in pkgutil.iter_modules(module.__path__):
full_name = module.__name__ + '.' + name
loader.find_module(full_name).load_module(full_name)
if order is None:
order = 'place', 'geocode', 'profile'
else:
order = tuple(order)
if options is None:
options = {}
resolvers = []
for resolver_name in order:
if resolver_name not in known_resolvers:
raise ValueError('unknown resolver name "%s"' % resolver_name)
resolvers.append((resolver_name, known_resolvers[resolver_name](**
options.get(resolver_name, {}))))
return ResolverCollection(resolvers)
|
get_resolver
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(order=None, options=None, modules=None):\n if not known_resolvers:\n from . import resolvers as carmen_resolvers\n modules = [carmen_resolvers] + (modules or [])\n for module in modules:\n for loader, name, _ in pkgutil.iter_modules(module.__path__):\n full_name = module.__name__ + '.' + name\n loader.find_module(full_name).load_module(full_name)\n if order is None:\n order = 'place', 'geocode', 'profile'\n else:\n order = tuple(order)\n if options is None:\n options = {}\n resolvers = []\n for resolver_name in order:\n if resolver_name not in known_resolvers:\n raise ValueError('unknown resolver name \"%s\"' % resolver_name)\n resolvers.append((resolver_name, known_resolvers[resolver_name](**\n options.get(resolver_name, {}))))\n return ResolverCollection(resolvers)\n",
"role": "user"
},
{
"content": "get_resolver",
"role": "assistant"
}
] |
def x(self, location_file=None):
if location_file is None:
contents = pkgutil.get_data(__package__, 'data/locations.json')
contents_string = contents.decode('ascii')
locations = contents_string.split('\n')
else:
from .cli import open_file
with open_file(location_file, 'rb') as input:
locations = input.readlines()
for location_string in locations:
if location_string.strip():
location = Location(known=True, **json.loads(location_string))
self.location_id_to_location[location.id] = location
self.add_location(location)
|
load_locations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, location_file=None):\n if location_file is None:\n contents = pkgutil.get_data(__package__, 'data/locations.json')\n contents_string = contents.decode('ascii')\n locations = contents_string.split('\\n')\n else:\n from .cli import open_file\n with open_file(location_file, 'rb') as input:\n locations = input.readlines()\n for location_string in locations:\n if location_string.strip():\n location = Location(known=True, **json.loads(location_string))\n self.location_id_to_location[location.id] = location\n self.add_location(location)\n",
"role": "user"
},
{
"content": "load_locations",
"role": "assistant"
}
] |
def x(self):
try:
return tuple(map(lambda x: x.lower(), self.name()))
except:
return tuple([x.lower() for x in self.name()])
|
canonical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return tuple(map(lambda x: x.lower(), self.name()))\n except:\n return tuple([x.lower() for x in self.name()])\n",
"role": "user"
},
{
"content": "canonical",
"role": "assistant"
}
] |
def x(self):
try:
return tuple(getattr(self, x) if getattr(self, x) else u'' for x in
('country', 'state', 'county', 'city'))
except:
return tuple(getattr(self, x) if getattr(self, x) else '' for x in
('country', 'state', 'county', 'city'))
|
name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n return tuple(getattr(self, x) if getattr(self, x) else u'' for x in\n ('country', 'state', 'county', 'city'))\n except:\n return tuple(getattr(self, x) if getattr(self, x) else '' for x in\n ('country', 'state', 'county', 'city'))\n",
"role": "user"
},
{
"content": "name",
"role": "assistant"
}
] |
def x(self):
if self.city:
return Location(country=self.country, state=self.state, county=self
.county)
if self.county:
return Location(country=self.country, state=self.state)
if self.state:
return Location(country=self.country)
return Location()
|
parent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.city:\n return Location(country=self.country, state=self.state, county=self\n .county)\n if self.county:\n return Location(country=self.country, state=self.state)\n if self.state:\n return Location(country=self.country)\n return Location()\n",
"role": "user"
},
{
"content": "parent",
"role": "assistant"
}
] |
def x(data_daily, method='equal', temp=None, a0=None, a1=None, kr=None,
month_hour_precip_mean=None, preserve_daily_mean=False):
assert method in ('equal', 'minimal', 'dewpoint_regression', 'min_max',
'linear_dewpoint_variation', 'month_hour_precip_mean'
), 'Invalid option'
if method == 'equal':
hum_disagg = melodist.distribute_equally(data_daily.hum)
elif method in ('minimal', 'dewpoint_regression',
'linear_dewpoint_variation'):
if method == 'minimal':
a0 = 0
a1 = 1
assert a0 is not None and a1 is not None, 'a0 and a1 must be specified'
tdew_daily = a0 + a1 * data_daily.tmin
tdew = melodist.distribute_equally(tdew_daily)
if method == 'linear_dewpoint_variation':
assert kr is not None, 'kr must be specified'
assert kr in (6, 12), 'kr must be 6 or 12'
tdew_delta = 0.5 * np.sin((temp.index.hour + 1) * np.pi / kr -
3.0 * np.pi / 4.0)
tdew_nextday = tdew.shift(-24)
tdew_nextday.iloc[-24:] = tdew.iloc[-24:]
tdew += temp.index.hour / 24.0 * (tdew_nextday - tdew) + tdew_delta
sat_vap_press_tdew = util.vapor_pressure(tdew, 100)
sat_vap_press_t = util.vapor_pressure(temp, 100)
hum_disagg = pd.Series(index=temp.index, data=100 *
sat_vap_press_tdew / sat_vap_press_t)
elif method == 'min_max':
assert 'hum_min' in data_daily.columns and 'hum_max' in data_daily.columns, 'Minimum and maximum humidity must be present in data frame'
hmin = melodist.distribute_equally(data_daily.hum_min)
hmax = melodist.distribute_equally(data_daily.hum_max)
tmin = melodist.distribute_equally(data_daily.tmin)
tmax = melodist.distribute_equally(data_daily.tmax)
hum_disagg = hmax + (temp - tmin) / (tmax - tmin) * (hmin - hmax)
elif method == 'month_hour_precip_mean':
assert month_hour_precip_mean is not None
precip_equal = melodist.distribute_equally(data_daily.precip)
hum_disagg = pd.Series(index=precip_equal.index)
locs = list(zip(hum_disagg.index.month, hum_disagg.index.hour,
precip_equal > 0))
hum_disagg[:] = month_hour_precip_mean.loc[locs].values
if preserve_daily_mean:
daily_mean_df = pd.DataFrame(data=dict(obs=data_daily.hum, disagg=
hum_disagg.resample('D').mean()))
bias = melodist.util.distribute_equally(daily_mean_df.disagg -
daily_mean_df.obs)
bias = bias.fillna(0)
hum_disagg -= bias
return hum_disagg.clip(0, 100)
|
disaggregate_humidity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data_daily, method='equal', temp=None, a0=None, a1=None, kr=None,\n month_hour_precip_mean=None, preserve_daily_mean=False):\n assert method in ('equal', 'minimal', 'dewpoint_regression', 'min_max',\n 'linear_dewpoint_variation', 'month_hour_precip_mean'\n ), 'Invalid option'\n if method == 'equal':\n hum_disagg = melodist.distribute_equally(data_daily.hum)\n elif method in ('minimal', 'dewpoint_regression',\n 'linear_dewpoint_variation'):\n if method == 'minimal':\n a0 = 0\n a1 = 1\n assert a0 is not None and a1 is not None, 'a0 and a1 must be specified'\n tdew_daily = a0 + a1 * data_daily.tmin\n tdew = melodist.distribute_equally(tdew_daily)\n if method == 'linear_dewpoint_variation':\n assert kr is not None, 'kr must be specified'\n assert kr in (6, 12), 'kr must be 6 or 12'\n tdew_delta = 0.5 * np.sin((temp.index.hour + 1) * np.pi / kr - \n 3.0 * np.pi / 4.0)\n tdew_nextday = tdew.shift(-24)\n tdew_nextday.iloc[-24:] = tdew.iloc[-24:]\n tdew += temp.index.hour / 24.0 * (tdew_nextday - tdew) + tdew_delta\n sat_vap_press_tdew = util.vapor_pressure(tdew, 100)\n sat_vap_press_t = util.vapor_pressure(temp, 100)\n hum_disagg = pd.Series(index=temp.index, data=100 *\n sat_vap_press_tdew / sat_vap_press_t)\n elif method == 'min_max':\n assert 'hum_min' in data_daily.columns and 'hum_max' in data_daily.columns, 'Minimum and maximum humidity must be present in data frame'\n hmin = melodist.distribute_equally(data_daily.hum_min)\n hmax = melodist.distribute_equally(data_daily.hum_max)\n tmin = melodist.distribute_equally(data_daily.tmin)\n tmax = melodist.distribute_equally(data_daily.tmax)\n hum_disagg = hmax + (temp - tmin) / (tmax - tmin) * (hmin - hmax)\n elif method == 'month_hour_precip_mean':\n assert month_hour_precip_mean is not None\n precip_equal = melodist.distribute_equally(data_daily.precip)\n hum_disagg = pd.Series(index=precip_equal.index)\n locs = list(zip(hum_disagg.index.month, hum_disagg.index.hour, \n precip_equal > 0))\n hum_disagg[:] = month_hour_precip_mean.loc[locs].values\n if preserve_daily_mean:\n daily_mean_df = pd.DataFrame(data=dict(obs=data_daily.hum, disagg=\n hum_disagg.resample('D').mean()))\n bias = melodist.util.distribute_equally(daily_mean_df.disagg -\n daily_mean_df.obs)\n bias = bias.fillna(0)\n hum_disagg -= bias\n return hum_disagg.clip(0, 100)\n",
"role": "user"
},
{
"content": "disaggregate_humidity",
"role": "assistant"
}
] |
def x(x, a, b, t_shift):
mean_wind, t = x
return a * mean_wind * np.cos(np.pi * (t - t_shift) / 12) + b * mean_wind
|
cosine_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, b, t_shift):\n mean_wind, t = x\n return a * mean_wind * np.cos(np.pi * (t - t_shift) / 12) + b * mean_wind\n",
"role": "user"
},
{
"content": "cosine_function",
"role": "assistant"
}
] |
def x(wind_daily, method='equal', a=None, b=None, t_shift=None):
assert method in ('equal', 'cosine', 'random'), 'Invalid method'
wind_eq = melodist.distribute_equally(wind_daily)
if method == 'equal':
wind_disagg = wind_eq
elif method == 'cosine':
assert None not in (a, b, t_shift)
wind_disagg = _cosine_function(np.array([wind_eq.values, wind_eq.
index.hour]), a, b, t_shift)
elif method == 'random':
wind_disagg = wind_eq * (-np.log(np.random.rand(len(wind_eq)))) ** 0.3
return wind_disagg
|
disaggregate_wind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wind_daily, method='equal', a=None, b=None, t_shift=None):\n assert method in ('equal', 'cosine', 'random'), 'Invalid method'\n wind_eq = melodist.distribute_equally(wind_daily)\n if method == 'equal':\n wind_disagg = wind_eq\n elif method == 'cosine':\n assert None not in (a, b, t_shift)\n wind_disagg = _cosine_function(np.array([wind_eq.values, wind_eq.\n index.hour]), a, b, t_shift)\n elif method == 'random':\n wind_disagg = wind_eq * (-np.log(np.random.rand(len(wind_eq)))) ** 0.3\n return wind_disagg\n",
"role": "user"
},
{
"content": "disaggregate_wind",
"role": "assistant"
}
] |
def x(wind):
wind_daily = wind.groupby(wind.index.date).mean()
wind_daily_hourly = pd.Series(index=wind.index, data=wind_daily.loc[
wind.index.date].values)
df = pd.DataFrame(data=dict(daily=wind_daily_hourly, hourly=wind)).dropna(
how='any')
x = np.array([df.daily, df.index.hour])
popt, pcov = scipy.optimize.curve_fit(_cosine_function, x, df.hourly)
return popt
|
fit_cosine_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(wind):\n wind_daily = wind.groupby(wind.index.date).mean()\n wind_daily_hourly = pd.Series(index=wind.index, data=wind_daily.loc[\n wind.index.date].values)\n df = pd.DataFrame(data=dict(daily=wind_daily_hourly, hourly=wind)).dropna(\n how='any')\n x = np.array([df.daily, df.index.hour])\n popt, pcov = scipy.optimize.curve_fit(_cosine_function, x, df.hourly)\n return popt\n",
"role": "user"
},
{
"content": "fit_cosine_function",
"role": "assistant"
}
] |
def x(filename, mode):
dict_d = {'TA': 'tmean', 'TMAX': 'tmax', 'TMIN': 'tmin', 'PSUM':
'precip', 'ISWR': 'glob', 'RH': 'hum', 'VW': 'wind'}
dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', 'RH': 'hum',
'VW': 'wind'}
with open(filename) as f:
in_header = False
data_start = None
header = collections.OrderedDict()
for line_num, line in enumerate(f):
if line.strip() == '[HEADER]':
in_header = True
continue
elif line.strip() == '[DATA]':
data_start = line_num + 1
break
if in_header:
line_split = line.split('=')
k = line_split[0].strip()
v = line_split[1].strip()
header[k] = v
columns = header['fields'].split()
multiplier = [float(x) for x in header['units_multiplier'].split()][1:]
data = pd.read_table(filename, sep='\\s+', na_values=[-999], skiprows=
data_start, names=columns, index_col='timestamp', parse_dates=True)
data = data * multiplier
del data.index.name
if mode == 'd':
data = data.rename(columns=dict_d)
if mode == 'h':
data = data.rename(columns=dict_h)
return header, data
|
read_smet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, mode):\n dict_d = {'TA': 'tmean', 'TMAX': 'tmax', 'TMIN': 'tmin', 'PSUM':\n 'precip', 'ISWR': 'glob', 'RH': 'hum', 'VW': 'wind'}\n dict_h = {'TA': 'temp', 'PSUM': 'precip', 'ISWR': 'glob', 'RH': 'hum',\n 'VW': 'wind'}\n with open(filename) as f:\n in_header = False\n data_start = None\n header = collections.OrderedDict()\n for line_num, line in enumerate(f):\n if line.strip() == '[HEADER]':\n in_header = True\n continue\n elif line.strip() == '[DATA]':\n data_start = line_num + 1\n break\n if in_header:\n line_split = line.split('=')\n k = line_split[0].strip()\n v = line_split[1].strip()\n header[k] = v\n columns = header['fields'].split()\n multiplier = [float(x) for x in header['units_multiplier'].split()][1:]\n data = pd.read_table(filename, sep='\\\\s+', na_values=[-999], skiprows=\n data_start, names=columns, index_col='timestamp', parse_dates=True)\n data = data * multiplier\n del data.index.name\n if mode == 'd':\n data = data.rename(columns=dict_d)\n if mode == 'h':\n data = data.rename(columns=dict_h)\n return header, data\n",
"role": "user"
},
{
"content": "read_smet",
"role": "assistant"
}
] |
def x(filename, metadata, mode='d', skip_last=True):
def x(filename, metadata, mode, skip_last):
dict_d = {'LUFTTEMPERATUR': 'tmean', 'LUFTTEMPERATUR_MINIMUM':
'tmin', 'LUFTTEMPERATUR_MAXIMUM': 'tmax', 'NIEDERSCHLAGSHOEHE':
'precip', 'GLOBAL_KW_J': 'glob', 'REL_FEUCHTE': 'hum',
'WINDGESCHWINDIGKEIT': 'wind', 'SONNENSCHEINDAUER': 'sun_h'}
meta = pd.read_csv(metadata, sep=';')
meta.rename(columns=lambda x: x.strip(), inplace=True)
header = {'Stations_id': meta.Stations_id[meta.last_valid_index()],
'Stationsname': meta.Stationsname[meta.last_valid_index()],
'Breite': meta.iloc[meta.last_valid_index(), 2], 'Laenge': meta
.iloc[meta.last_valid_index(), 3]}
if skip_last is not None:
num_lines = sum(1 for line in open(filename))
skip_last = [num_lines - 1]
if mode == 'd':
data = pd.read_csv(filename, sep=';', na_values='-999',
index_col=' MESS_DATUM', parse_dates=True, skiprows=skip_last)
if mode == 'h':
def x(date_time):
hour = date_time[8:10]
day = date_time[6:8]
month = date_time[4:6]
year = date_time[0:4]
minute = '00'
sec = '00'
return pd.Timestamp('%s-%s-%s %s:%s:%s' % (year, month, day,
hour, minute, sec))
data = pd.read_csv(filename, sep=';', na_values='-999',
index_col=' MESS_DATUM', date_parser=date_parser, skiprows=
skip_last)
data.rename(columns=lambda x: x.strip(), inplace=True)
data = data.rename(columns=dict_d)
drop = [col for col in data.columns if col not in dict_d.values()]
data = data.drop(drop, axis=1)
if 'tmin' in data.columns:
data['tmin'] = data['tmin'] + 273.15
if 'tmax' in data.columns:
data['tmax'] = data['tmax'] + 273.15
if 'tmean' in data.columns:
data['tmean'] = data['tmean'] + 273.15
if 'temp' in data.columns:
data['temp'] = data['temp'] + 273.15
return header, data
if type(filename) == list:
i = 1
for file in filename:
header, data_h = read_single_dwd(file, metadata, mode, skip_last)
if i == 1:
data = data_h
else:
data = data.join(data_h, how='outer')
i += 1
else:
header, data = read_single_dwd(filename, metadata, mode, skip_last)
return header, data
|
read_dwd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, metadata, mode='d', skip_last=True):\n\n def x(filename, metadata, mode, skip_last):\n dict_d = {'LUFTTEMPERATUR': 'tmean', 'LUFTTEMPERATUR_MINIMUM':\n 'tmin', 'LUFTTEMPERATUR_MAXIMUM': 'tmax', 'NIEDERSCHLAGSHOEHE':\n 'precip', 'GLOBAL_KW_J': 'glob', 'REL_FEUCHTE': 'hum',\n 'WINDGESCHWINDIGKEIT': 'wind', 'SONNENSCHEINDAUER': 'sun_h'}\n meta = pd.read_csv(metadata, sep=';')\n meta.rename(columns=lambda x: x.strip(), inplace=True)\n header = {'Stations_id': meta.Stations_id[meta.last_valid_index()],\n 'Stationsname': meta.Stationsname[meta.last_valid_index()],\n 'Breite': meta.iloc[meta.last_valid_index(), 2], 'Laenge': meta\n .iloc[meta.last_valid_index(), 3]}\n if skip_last is not None:\n num_lines = sum(1 for line in open(filename))\n skip_last = [num_lines - 1]\n if mode == 'd':\n data = pd.read_csv(filename, sep=';', na_values='-999',\n index_col=' MESS_DATUM', parse_dates=True, skiprows=skip_last)\n if mode == 'h':\n\n def x(date_time):\n hour = date_time[8:10]\n day = date_time[6:8]\n month = date_time[4:6]\n year = date_time[0:4]\n minute = '00'\n sec = '00'\n return pd.Timestamp('%s-%s-%s %s:%s:%s' % (year, month, day,\n hour, minute, sec))\n data = pd.read_csv(filename, sep=';', na_values='-999',\n index_col=' MESS_DATUM', date_parser=date_parser, skiprows=\n skip_last)\n data.rename(columns=lambda x: x.strip(), inplace=True)\n data = data.rename(columns=dict_d)\n drop = [col for col in data.columns if col not in dict_d.values()]\n data = data.drop(drop, axis=1)\n if 'tmin' in data.columns:\n data['tmin'] = data['tmin'] + 273.15\n if 'tmax' in data.columns:\n data['tmax'] = data['tmax'] + 273.15\n if 'tmean' in data.columns:\n data['tmean'] = data['tmean'] + 273.15\n if 'temp' in data.columns:\n data['temp'] = data['temp'] + 273.15\n return header, data\n if type(filename) == list:\n i = 1\n for file in filename:\n header, data_h = read_single_dwd(file, metadata, mode, skip_last)\n if i == 1:\n data = data_h\n else:\n data = data.join(data_h, how='outer')\n i += 1\n else:\n header, data = read_single_dwd(filename, metadata, mode, skip_last)\n return header, data\n",
"role": "user"
},
{
"content": "read_dwd",
"role": "assistant"
}
] |
def x(filename, data, metadata, nodata_value=-999, mode='h', check_nan=True):
dict_d = {'tmean': 'TA', 'tmin': 'TMAX', 'tmax': 'TMIN', 'precip':
'PSUM', 'glob': 'ISWR', 'hum': 'RH', 'wind': 'VW'}
dict_h = {'temp': 'TA', 'precip': 'PSUM', 'glob': 'ISWR', 'hum': 'RH',
'wind': 'VW'}
if mode == 'd':
data = data.rename(columns=dict_d)
if mode == 'h':
data = data.rename(columns=dict_h)
if check_nan:
datas_in = data.sum().dropna().to_frame().T
drop = [data_nan for data_nan in data.columns if data_nan not in
datas_in]
data = data.drop(drop, axis=1)
with open(filename, 'w') as f:
if mode == 'd':
t = '%Y-%m-%dT00:00'
if mode == 'h':
t = '%Y-%m-%dT%H:%M'
data['timestamp'] = [d.strftime(t) for d in data.index]
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
metadata['fields'] = ' '.join(data.columns)
metadata['units_multiplier'] = len(metadata['fields'].split()) * '1 '
f.write('SMET 1.1 ASCII\n')
f.write('[HEADER]\n')
for k, v in metadata.items():
f.write('{} = {}\n'.format(k, v))
f.write('[DATA]\n')
data_str = data.fillna(nodata_value).to_string(header=False, index=
False, float_format=lambda x: '{:.2f}'.format(x))
f.write(data_str)
|
write_smet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, data, metadata, nodata_value=-999, mode='h', check_nan=True):\n dict_d = {'tmean': 'TA', 'tmin': 'TMAX', 'tmax': 'TMIN', 'precip':\n 'PSUM', 'glob': 'ISWR', 'hum': 'RH', 'wind': 'VW'}\n dict_h = {'temp': 'TA', 'precip': 'PSUM', 'glob': 'ISWR', 'hum': 'RH',\n 'wind': 'VW'}\n if mode == 'd':\n data = data.rename(columns=dict_d)\n if mode == 'h':\n data = data.rename(columns=dict_h)\n if check_nan:\n datas_in = data.sum().dropna().to_frame().T\n drop = [data_nan for data_nan in data.columns if data_nan not in\n datas_in]\n data = data.drop(drop, axis=1)\n with open(filename, 'w') as f:\n if mode == 'd':\n t = '%Y-%m-%dT00:00'\n if mode == 'h':\n t = '%Y-%m-%dT%H:%M'\n data['timestamp'] = [d.strftime(t) for d in data.index]\n cols = data.columns.tolist()\n cols = cols[-1:] + cols[:-1]\n data = data[cols]\n metadata['fields'] = ' '.join(data.columns)\n metadata['units_multiplier'] = len(metadata['fields'].split()) * '1 '\n f.write('SMET 1.1 ASCII\\n')\n f.write('[HEADER]\\n')\n for k, v in metadata.items():\n f.write('{} = {}\\n'.format(k, v))\n f.write('[DATA]\\n')\n data_str = data.fillna(nodata_value).to_string(header=False, index=\n False, float_format=lambda x: '{:.2f}'.format(x))\n f.write(data_str)\n",
"role": "user"
},
{
"content": "write_smet",
"role": "assistant"
}
] |
def x(filename):
hourly_data_obs_raw = pd.read_csv(filename, parse_dates=[['YYYYMMDD',
'HH']], date_parser=lambda yyyymmdd, hh: pd.datetime(int(str(
yyyymmdd)[0:4]), int(str(yyyymmdd)[4:6]), int(str(yyyymmdd)[6:8]),
int(hh) - 1), skiprows=31, skipinitialspace=True, na_values='',
keep_date_col=True)
hourly_data_obs_raw.index = hourly_data_obs_raw['YYYYMMDD_HH']
hourly_data_obs_raw.index = hourly_data_obs_raw.index + pd.Timedelta(hours
=1)
columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']
hourly_data_obs = pd.DataFrame(index=hourly_data_obs_raw.index, columns
=columns_hourly, data=dict(temp=hourly_data_obs_raw['T'] / 10 +
273.15, precip=hourly_data_obs_raw['RH'] / 10, glob=
hourly_data_obs_raw['Q'] * 10000 / 3600.0, hum=hourly_data_obs_raw[
'U'], wind=hourly_data_obs_raw['FH'] / 10, ssd=hourly_data_obs_raw[
'SQ'] * 6))
negative_values = hourly_data_obs['precip'] < 0.0
hourly_data_obs.loc[negative_values, 'precip'] = 0.0
return hourly_data_obs
|
read_single_knmi_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n hourly_data_obs_raw = pd.read_csv(filename, parse_dates=[['YYYYMMDD',\n 'HH']], date_parser=lambda yyyymmdd, hh: pd.datetime(int(str(\n yyyymmdd)[0:4]), int(str(yyyymmdd)[4:6]), int(str(yyyymmdd)[6:8]), \n int(hh) - 1), skiprows=31, skipinitialspace=True, na_values='',\n keep_date_col=True)\n hourly_data_obs_raw.index = hourly_data_obs_raw['YYYYMMDD_HH']\n hourly_data_obs_raw.index = hourly_data_obs_raw.index + pd.Timedelta(hours\n =1)\n columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']\n hourly_data_obs = pd.DataFrame(index=hourly_data_obs_raw.index, columns\n =columns_hourly, data=dict(temp=hourly_data_obs_raw['T'] / 10 + \n 273.15, precip=hourly_data_obs_raw['RH'] / 10, glob=\n hourly_data_obs_raw['Q'] * 10000 / 3600.0, hum=hourly_data_obs_raw[\n 'U'], wind=hourly_data_obs_raw['FH'] / 10, ssd=hourly_data_obs_raw[\n 'SQ'] * 6))\n negative_values = hourly_data_obs['precip'] < 0.0\n hourly_data_obs.loc[negative_values, 'precip'] = 0.0\n return hourly_data_obs\n",
"role": "user"
},
{
"content": "read_single_knmi_file",
"role": "assistant"
}
] |
def x(directory):
filemask = '%s*.txt' % directory
filelist = glob.glob(filemask)
columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']
ts = pd.DataFrame(columns=columns_hourly)
first_call = True
for file_i in filelist:
print(file_i)
current = read_single_knmi_file(file_i)
if first_call:
ts = current
first_call = False
else:
ts = pd.concat([ts, current])
return ts
|
read_knmi_dataset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory):\n filemask = '%s*.txt' % directory\n filelist = glob.glob(filemask)\n columns_hourly = ['temp', 'precip', 'glob', 'hum', 'wind', 'ssd']\n ts = pd.DataFrame(columns=columns_hourly)\n first_call = True\n for file_i in filelist:\n print(file_i)\n current = read_single_knmi_file(file_i)\n if first_call:\n ts = current\n first_call = False\n else:\n ts = pd.concat([ts, current])\n return ts\n",
"role": "user"
},
{
"content": "read_knmi_dataset",
"role": "assistant"
}
] |
def x(self):
self.sun_times = melodist.util.get_sun_times(self.data_daily.index,
self.lon, self.lat, self.timezone)
|
calc_sun_times
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.sun_times = melodist.util.get_sun_times(self.data_daily.index,\n self.lon, self.lat, self.timezone)\n",
"role": "user"
},
{
"content": "calc_sun_times",
"role": "assistant"
}
] |
def x(self, method='equal'):
self.data_disagg.wind = melodist.disaggregate_wind(self.data_daily.wind,
method=method, **self.statistics.wind)
|
disaggregate_wind
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='equal'):\n self.data_disagg.wind = melodist.disaggregate_wind(self.data_daily.wind,\n method=method, **self.statistics.wind)\n",
"role": "user"
},
{
"content": "disaggregate_wind",
"role": "assistant"
}
] |
def x(self, method='equal', preserve_daily_mean=False):
self.data_disagg.hum = melodist.disaggregate_humidity(self.data_daily,
temp=self.data_disagg.temp, method=method, preserve_daily_mean=
preserve_daily_mean, **self.statistics.hum)
|
disaggregate_humidity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='equal', preserve_daily_mean=False):\n self.data_disagg.hum = melodist.disaggregate_humidity(self.data_daily,\n temp=self.data_disagg.temp, method=method, preserve_daily_mean=\n preserve_daily_mean, **self.statistics.hum)\n",
"role": "user"
},
{
"content": "disaggregate_humidity",
"role": "assistant"
}
] |
def x(self, method='sine_min_max', min_max_time='fix', mod_nighttime=False):
self.data_disagg.temp = melodist.disaggregate_temperature(self.
data_daily, method=method, min_max_time=min_max_time, max_delta=
self.statistics.temp.max_delta, mean_course=self.statistics.temp.
mean_course, sun_times=self.sun_times, mod_nighttime=mod_nighttime)
|
disaggregate_temperature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='sine_min_max', min_max_time='fix', mod_nighttime=False):\n self.data_disagg.temp = melodist.disaggregate_temperature(self.\n data_daily, method=method, min_max_time=min_max_time, max_delta=\n self.statistics.temp.max_delta, mean_course=self.statistics.temp.\n mean_course, sun_times=self.sun_times, mod_nighttime=mod_nighttime)\n",
"role": "user"
},
{
"content": "disaggregate_temperature",
"role": "assistant"
}
] |
def x(self, method='equal', zerodiv='uniform', shift=0, master_precip=None):
if method == 'equal':
precip_disagg = melodist.disagg_prec(self.data_daily, method=method,
shift=shift)
elif method == 'cascade':
precip_disagg = pd.Series(index=self.data_disagg.index)
for months, stats in zip(self.statistics.precip.months, self.
statistics.precip.stats):
precip_daily = melodist.seasonal_subset(self.data_daily.precip,
months=months)
if len(precip_daily) > 1:
data = melodist.disagg_prec(precip_daily, method=method,
cascade_options=stats, shift=shift, zerodiv=zerodiv)
precip_disagg.loc[data.index] = data
elif method == 'masterstation':
precip_disagg = melodist.precip_master_station(self.data_daily.
precip, master_precip, zerodiv)
self.data_disagg.precip = precip_disagg
|
disaggregate_precipitation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='equal', zerodiv='uniform', shift=0, master_precip=None):\n if method == 'equal':\n precip_disagg = melodist.disagg_prec(self.data_daily, method=method,\n shift=shift)\n elif method == 'cascade':\n precip_disagg = pd.Series(index=self.data_disagg.index)\n for months, stats in zip(self.statistics.precip.months, self.\n statistics.precip.stats):\n precip_daily = melodist.seasonal_subset(self.data_daily.precip,\n months=months)\n if len(precip_daily) > 1:\n data = melodist.disagg_prec(precip_daily, method=method,\n cascade_options=stats, shift=shift, zerodiv=zerodiv)\n precip_disagg.loc[data.index] = data\n elif method == 'masterstation':\n precip_disagg = melodist.precip_master_station(self.data_daily.\n precip, master_precip, zerodiv)\n self.data_disagg.precip = precip_disagg\n",
"role": "user"
},
{
"content": "disaggregate_precipitation",
"role": "assistant"
}
] |
def x(self, method='pot_rad', pot_rad=None):
if self.sun_times is None:
self.calc_sun_times()
if pot_rad is None and method != 'mean_course':
pot_rad = melodist.potential_radiation(self.data_disagg.index, self
.lon, self.lat, self.timezone)
self.data_disagg.glob = melodist.disaggregate_radiation(self.data_daily,
sun_times=self.sun_times, pot_rad=pot_rad, method=method, angstr_a=
self.statistics.glob.angstroem.a, angstr_b=self.statistics.glob.
angstroem.b, bristcamp_a=self.statistics.glob.bristcamp.a,
bristcamp_c=self.statistics.glob.bristcamp.c, mean_course=self.
statistics.glob.mean_course)
|
disaggregate_radiation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='pot_rad', pot_rad=None):\n if self.sun_times is None:\n self.calc_sun_times()\n if pot_rad is None and method != 'mean_course':\n pot_rad = melodist.potential_radiation(self.data_disagg.index, self\n .lon, self.lat, self.timezone)\n self.data_disagg.glob = melodist.disaggregate_radiation(self.data_daily,\n sun_times=self.sun_times, pot_rad=pot_rad, method=method, angstr_a=\n self.statistics.glob.angstroem.a, angstr_b=self.statistics.glob.\n angstroem.b, bristcamp_a=self.statistics.glob.bristcamp.a,\n bristcamp_c=self.statistics.glob.bristcamp.c, mean_course=self.\n statistics.glob.mean_course)\n",
"role": "user"
},
{
"content": "disaggregate_radiation",
"role": "assistant"
}
] |
def x(self, column_hours, method='linear', limit=24, limit_direction='both',
**kwargs):
kwargs = dict(kwargs, method=method, limit=limit, limit_direction=
limit_direction)
data = melodist.util.prepare_interpolation_data(self.data_daily,
column_hours)
return data.interpolate(**kwargs)
|
interpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, column_hours, method='linear', limit=24, limit_direction='both',\n **kwargs):\n kwargs = dict(kwargs, method=method, limit=limit, limit_direction=\n limit_direction)\n data = melodist.util.prepare_interpolation_data(self.data_daily,\n column_hours)\n return data.interpolate(**kwargs)\n",
"role": "user"
},
{
"content": "interpolate",
"role": "assistant"
}
] |
def x(self, by=None):
if by is None:
primary_keys = self.table.primary_key.columns.keys()
if len(primary_keys) > 1:
warnings.warn(
'WARNING: MORE THAN 1 PRIMARY KEY FOR TABLE %s. USING THE FIRST KEY %s.'
% (self.table.name, primary_keys[0]))
if not primary_keys:
raise NoPrimaryKeyException(
'Table %s needs a primary key forthe .last() method to work properly. Alternatively, specify an ORDER BY column with the by= argument. '
% self.table.name)
id_col = primary_keys[0]
else:
id_col = by
if self.column is None:
col = '*'
else:
col = self.column.name
return col, id_col
|
query_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, by=None):\n if by is None:\n primary_keys = self.table.primary_key.columns.keys()\n if len(primary_keys) > 1:\n warnings.warn(\n 'WARNING: MORE THAN 1 PRIMARY KEY FOR TABLE %s. USING THE FIRST KEY %s.'\n % (self.table.name, primary_keys[0]))\n if not primary_keys:\n raise NoPrimaryKeyException(\n 'Table %s needs a primary key forthe .last() method to work properly. Alternatively, specify an ORDER BY column with the by= argument. '\n % self.table.name)\n id_col = primary_keys[0]\n else:\n id_col = by\n if self.column is None:\n col = '*'\n else:\n col = self.column.name\n return col, id_col\n",
"role": "user"
},
{
"content": "query_helper",
"role": "assistant"
}
] |
def x(self, n=10, by=None, **kwargs):
col, id_col = self._query_helper(by=by)
select = 'SELECT %s FROM %s ORDER BY %s ASC LIMIT %d' % (col, self.
table.name, id_col, n)
return self._db.query(select, **kwargs)
|
head
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n=10, by=None, **kwargs):\n col, id_col = self._query_helper(by=by)\n select = 'SELECT %s FROM %s ORDER BY %s ASC LIMIT %d' % (col, self.\n table.name, id_col, n)\n return self._db.query(select, **kwargs)\n",
"role": "user"
},
{
"content": "head",
"role": "assistant"
}
] |
def x(self, n=10, by=None, **kwargs):
return self.tail(n=n, by=by, **kwargs)
|
last
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n=10, by=None, **kwargs):\n return self.tail(n=n, by=by, **kwargs)\n",
"role": "user"
},
{
"content": "last",
"role": "assistant"
}
] |
def x(self, where_string, **kwargs):
col, id_col = self._query_helper(by=None)
where_string = str(where_string)
where_operators = ['=', '>', '<', 'LIKE', 'like']
if np.any([where_string.__contains__(w) for w in where_operators]):
select = 'SELECT %s FROM %s WHERE %s' % (col, self.table.name,
where_string)
else:
select = 'SELECT %s FROM %s WHERE %s = %s' % (col, self.table.name,
id_col, where_string)
return self._db.query(select, **kwargs)
|
where
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, where_string, **kwargs):\n col, id_col = self._query_helper(by=None)\n where_string = str(where_string)\n where_operators = ['=', '>', '<', 'LIKE', 'like']\n if np.any([where_string.__contains__(w) for w in where_operators]):\n select = 'SELECT %s FROM %s WHERE %s' % (col, self.table.name,\n where_string)\n else:\n select = 'SELECT %s FROM %s WHERE %s = %s' % (col, self.table.name,\n id_col, where_string)\n return self._db.query(select, **kwargs)\n",
"role": "user"
},
{
"content": "where",
"role": "assistant"
}
] |
def x(self, sql_query, return_as='dataframe'):
if isinstance(sql_query, str):
pass
elif isinstance(sql_query, unicode):
sql_query = str(sql_query)
else:
raise QueryDbError('query() requires a str or unicode input.')
query = sqlalchemy.sql.text(sql_query)
if return_as.upper() in ['DF', 'DATAFRAME']:
return self._to_df(query, self._engine)
elif return_as.upper() in ['RESULT', 'RESULTPROXY']:
with self._engine.connect() as conn:
result = conn.execute(query)
return result
else:
raise QueryDbError('Other return types not implemented.')
|
query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sql_query, return_as='dataframe'):\n if isinstance(sql_query, str):\n pass\n elif isinstance(sql_query, unicode):\n sql_query = str(sql_query)\n else:\n raise QueryDbError('query() requires a str or unicode input.')\n query = sqlalchemy.sql.text(sql_query)\n if return_as.upper() in ['DF', 'DATAFRAME']:\n return self._to_df(query, self._engine)\n elif return_as.upper() in ['RESULT', 'RESULTPROXY']:\n with self._engine.connect() as conn:\n result = conn.execute(query)\n return result\n else:\n raise QueryDbError('Other return types not implemented.')\n",
"role": "user"
},
{
"content": "query",
"role": "assistant"
}
] |
def x(self):
meta = QueryDbMeta()
with self._engine.connect() as conn:
meta.bind = conn
meta.reflect()
self._meta = meta
self.inspect = QueryDbAttributes()
for table in self._meta.tables:
setattr(self.inspect, table, QueryDbOrm(self._meta.tables[table], self)
)
table_attr = getattr(self.inspect, table)
table_cols = table_attr.table.columns
for col in table_cols.keys():
setattr(table_attr, col, QueryDbOrm(table_cols[col], self))
primary_keys = table_attr.table.primary_key.columns.keys()
self._summary_info.append((table, primary_keys[0] if len(
primary_keys) == 1 else primary_keys, len(table_cols), len(set(
[x.type.__class__ for x in table_cols.values()]))))
|
set_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n meta = QueryDbMeta()\n with self._engine.connect() as conn:\n meta.bind = conn\n meta.reflect()\n self._meta = meta\n self.inspect = QueryDbAttributes()\n for table in self._meta.tables:\n setattr(self.inspect, table, QueryDbOrm(self._meta.tables[table], self)\n )\n table_attr = getattr(self.inspect, table)\n table_cols = table_attr.table.columns\n for col in table_cols.keys():\n setattr(table_attr, col, QueryDbOrm(table_cols[col], self))\n primary_keys = table_attr.table.primary_key.columns.keys()\n self._summary_info.append((table, primary_keys[0] if len(\n primary_keys) == 1 else primary_keys, len(table_cols), len(set(\n [x.type.__class__ for x in table_cols.values()]))))\n",
"role": "user"
},
{
"content": "set_metadata",
"role": "assistant"
}
] |
def x(self, query, conn, index_col=None, coerce_float=True, params=None,
parse_dates=None, columns=None):
return pd.io.sql.read_sql(str(query), conn, index_col=index_col,
coerce_float=coerce_float, params=params, parse_dates=parse_dates,
columns=columns)
|
to_df
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, conn, index_col=None, coerce_float=True, params=None,\n parse_dates=None, columns=None):\n return pd.io.sql.read_sql(str(query), conn, index_col=index_col,\n coerce_float=coerce_float, params=params, parse_dates=parse_dates,\n columns=columns)\n",
"role": "user"
},
{
"content": "to_df",
"role": "assistant"
}
] |
def x(temp_hourly, lon, lat, time_zone):
daily_index = temp_hourly.resample('D').mean().index
sun_times = melodist.util.get_sun_times(daily_index, lon, lat, time_zone)
idxmax = temp_hourly.groupby(temp_hourly.index.date).idxmax()
idxmax.index = pd.to_datetime(idxmax.index)
max_temp_hour_obs = idxmax.dropna().apply(lambda d: d.hour)
max_temp_hour_pot = sun_times.sunnoon
max_delta = max_temp_hour_obs - max_temp_hour_pot
mean_monthly_delta = max_delta.groupby(max_delta.index.month).mean()
return mean_monthly_delta
|
get_shift_by_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(temp_hourly, lon, lat, time_zone):\n daily_index = temp_hourly.resample('D').mean().index\n sun_times = melodist.util.get_sun_times(daily_index, lon, lat, time_zone)\n idxmax = temp_hourly.groupby(temp_hourly.index.date).idxmax()\n idxmax.index = pd.to_datetime(idxmax.index)\n max_temp_hour_obs = idxmax.dropna().apply(lambda d: d.hour)\n max_temp_hour_pot = sun_times.sunnoon\n max_delta = max_temp_hour_obs - max_temp_hour_pot\n mean_monthly_delta = max_delta.groupby(max_delta.index.month).mean()\n return mean_monthly_delta\n",
"role": "user"
},
{
"content": "get_shift_by_data",
"role": "assistant"
}
] |
def x(daily_data, divide=False):
index = hourly_index(daily_data.index)
hourly_data = daily_data.reindex(index)
hourly_data = hourly_data.groupby(hourly_data.index.day).transform(lambda
x: x.fillna(method='ffill', limit=23))
if divide:
hourly_data /= 24
return hourly_data
|
distribute_equally
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(daily_data, divide=False):\n index = hourly_index(daily_data.index)\n hourly_data = daily_data.reindex(index)\n hourly_data = hourly_data.groupby(hourly_data.index.day).transform(lambda\n x: x.fillna(method='ffill', limit=23))\n if divide:\n hourly_data /= 24\n return hourly_data\n",
"role": "user"
},
{
"content": "distribute_equally",
"role": "assistant"
}
] |
def x(temp, hum):
if np.isscalar(hum):
hum = np.zeros(temp.shape) + hum
assert temp.shape == hum.shape
positives = np.array(temp >= 273.15)
vap_press = np.zeros(temp.shape) * np.nan
vap_press[positives] = 6.112 * np.exp(17.62 * (temp[positives] - 273.15
) / (243.12 + (temp[positives] - 273.15))) * hum[positives] / 100.0
vap_press[~positives] = 6.112 * np.exp(22.46 * (temp[~positives] -
273.15) / (272.62 + (temp[~positives] - 273.15))) * hum[~positives
] / 100.0
return vap_press
|
vapor_pressure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(temp, hum):\n if np.isscalar(hum):\n hum = np.zeros(temp.shape) + hum\n assert temp.shape == hum.shape\n positives = np.array(temp >= 273.15)\n vap_press = np.zeros(temp.shape) * np.nan\n vap_press[positives] = 6.112 * np.exp(17.62 * (temp[positives] - 273.15\n ) / (243.12 + (temp[positives] - 273.15))) * hum[positives] / 100.0\n vap_press[~positives] = 6.112 * np.exp(22.46 * (temp[~positives] - \n 273.15) / (272.62 + (temp[~positives] - 273.15))) * hum[~positives\n ] / 100.0\n return vap_press\n",
"role": "user"
},
{
"content": "vapor_pressure",
"role": "assistant"
}
] |
def x(temp, hum):
assert temp.shape == hum.shape
vap_press = vapor_pressure(temp, hum)
positives = np.array(temp >= 273.15)
dewpoint_temp = temp.copy() * np.nan
dewpoint_temp[positives] = 243.12 * np.log(vap_press[positives] / 6.112
) / (17.62 - np.log(vap_press[positives] / 6.112))
dewpoint_temp[~positives] = 272.62 * np.log(vap_press[~positives] / 6.112
) / (22.46 - np.log(vap_press[~positives] / 6.112))
return dewpoint_temp + 273.15
|
dewpoint_temperature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(temp, hum):\n assert temp.shape == hum.shape\n vap_press = vapor_pressure(temp, hum)\n positives = np.array(temp >= 273.15)\n dewpoint_temp = temp.copy() * np.nan\n dewpoint_temp[positives] = 243.12 * np.log(vap_press[positives] / 6.112\n ) / (17.62 - np.log(vap_press[positives] / 6.112))\n dewpoint_temp[~positives] = 272.62 * np.log(vap_press[~positives] / 6.112\n ) / (22.46 - np.log(vap_press[~positives] / 6.112))\n return dewpoint_temp + 273.15\n",
"role": "user"
},
{
"content": "dewpoint_temperature",
"role": "assistant"
}
] |
def x(x, y, return_stats=False):
a1, a0, r_value, p_value, stderr = scipy.stats.linregress(x, y)
retval = a1, a0
if return_stats:
retval += r_value, p_value, stderr
return retval
|
linregress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, return_stats=False):\n a1, a0, r_value, p_value, stderr = scipy.stats.linregress(x, y)\n retval = a1, a0\n if return_stats:\n retval += r_value, p_value, stderr\n return retval\n",
"role": "user"
},
{
"content": "linregress",
"role": "assistant"
}
] |
def x(dates, lon, lat, time_zone):
df = pd.DataFrame(index=dates, columns=['sunrise', 'sunnoon', 'sunset',
'daylength'])
doy = np.array([((d - d.replace(day=1, month=1)).days + 1) for d in df.
index])
day_angle_b = np.deg2rad(360.0 / 365.25 * (doy - 79.346))
declination = np.deg2rad(0.3723 + 23.2567 * np.sin(day_angle_b) - 0.758 *
np.cos(day_angle_b) + 0.1149 * np.sin(2 * day_angle_b) + 0.3656 *
np.cos(2 * day_angle_b) - 0.1712 * np.sin(3 * day_angle_b) + 0.0201 *
np.cos(3 * day_angle_b))
day_angle_s = 2 * np.pi * (doy - 1) / 365.0
eq_time = 12.0 / np.pi * (7.5e-05 + 0.001868 * np.cos(day_angle_s) -
0.032077 * np.sin(day_angle_s) - 0.014615 * np.cos(2 * day_angle_s) -
0.040849 * np.sin(2 * day_angle_s))
standard_meridian = time_zone * 15.0
delta_lat_time = (lon - standard_meridian) * 24.0 / 360.0
omega_nul_arg = -np.tan(np.deg2rad(lat)) * np.tan(declination)
omega_nul = np.arccos(omega_nul_arg)
sunrise = 12.0 * (1.0 - omega_nul / np.pi) - delta_lat_time - eq_time
sunset = 12.0 * (1.0 + omega_nul / np.pi) - delta_lat_time - eq_time
sunnoon = 12.0 * 1.0 - delta_lat_time - eq_time
pos = omega_nul_arg < -1
sunrise[pos] = sunnoon[pos] - 12
sunset[pos] = sunnoon[pos] + 12
pos = omega_nul_arg > 1
sunrise[pos] = sunnoon[pos]
sunset[pos] = sunnoon[pos]
daylength = sunset - sunrise
sunrise[sunrise < 0] += 24
sunset[sunset > 24] -= 24
df.sunrise = sunrise
df.sunnoon = sunnoon
df.sunset = sunset
df.daylength = daylength
return df
|
get_sun_times
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dates, lon, lat, time_zone):\n df = pd.DataFrame(index=dates, columns=['sunrise', 'sunnoon', 'sunset',\n 'daylength'])\n doy = np.array([((d - d.replace(day=1, month=1)).days + 1) for d in df.\n index])\n day_angle_b = np.deg2rad(360.0 / 365.25 * (doy - 79.346))\n declination = np.deg2rad(0.3723 + 23.2567 * np.sin(day_angle_b) - 0.758 *\n np.cos(day_angle_b) + 0.1149 * np.sin(2 * day_angle_b) + 0.3656 *\n np.cos(2 * day_angle_b) - 0.1712 * np.sin(3 * day_angle_b) + 0.0201 *\n np.cos(3 * day_angle_b))\n day_angle_s = 2 * np.pi * (doy - 1) / 365.0\n eq_time = 12.0 / np.pi * (7.5e-05 + 0.001868 * np.cos(day_angle_s) - \n 0.032077 * np.sin(day_angle_s) - 0.014615 * np.cos(2 * day_angle_s) -\n 0.040849 * np.sin(2 * day_angle_s))\n standard_meridian = time_zone * 15.0\n delta_lat_time = (lon - standard_meridian) * 24.0 / 360.0\n omega_nul_arg = -np.tan(np.deg2rad(lat)) * np.tan(declination)\n omega_nul = np.arccos(omega_nul_arg)\n sunrise = 12.0 * (1.0 - omega_nul / np.pi) - delta_lat_time - eq_time\n sunset = 12.0 * (1.0 + omega_nul / np.pi) - delta_lat_time - eq_time\n sunnoon = 12.0 * 1.0 - delta_lat_time - eq_time\n pos = omega_nul_arg < -1\n sunrise[pos] = sunnoon[pos] - 12\n sunset[pos] = sunnoon[pos] + 12\n pos = omega_nul_arg > 1\n sunrise[pos] = sunnoon[pos]\n sunset[pos] = sunnoon[pos]\n daylength = sunset - sunrise\n sunrise[sunrise < 0] += 24\n sunset[sunset > 24] -= 24\n df.sunrise = sunrise\n df.sunnoon = sunnoon\n df.sunset = sunset\n df.daylength = daylength\n return df\n",
"role": "user"
},
{
"content": "get_sun_times",
"role": "assistant"
}
] |
def x(dataframe, timestep, print_all=False, print_max=5, verbose=True):
gcount = 0
msg_counter = 0
warning_printed = False
try:
n = len(dataframe.index)
except:
print('Error: Invalid dataframe.')
return -1
for i in range(0, n):
if i > 0:
time_diff = dataframe.index[i] - dataframe.index[i - 1]
if time_diff.delta / 1000000000.0 != timestep:
gcount += 1
if print_all or msg_counter <= print_max - 1:
if verbose:
print(
'Warning: Gap in time series found between %s and %s'
% (dataframe.index[i - 1], dataframe.index[i]))
msg_counter += 1
if (msg_counter == print_max and verbose and not
warning_printed):
print(
'Waring: Only the first %i gaps have been listed. Try to increase print_max parameter to show more details.'
% msg_counter)
warning_printed = True
if verbose:
print('%i gaps found in total.' % gcount)
return gcount
|
detect_gaps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataframe, timestep, print_all=False, print_max=5, verbose=True):\n gcount = 0\n msg_counter = 0\n warning_printed = False\n try:\n n = len(dataframe.index)\n except:\n print('Error: Invalid dataframe.')\n return -1\n for i in range(0, n):\n if i > 0:\n time_diff = dataframe.index[i] - dataframe.index[i - 1]\n if time_diff.delta / 1000000000.0 != timestep:\n gcount += 1\n if print_all or msg_counter <= print_max - 1:\n if verbose:\n print(\n 'Warning: Gap in time series found between %s and %s'\n % (dataframe.index[i - 1], dataframe.index[i]))\n msg_counter += 1\n if (msg_counter == print_max and verbose and not\n warning_printed):\n print(\n 'Waring: Only the first %i gaps have been listed. Try to increase print_max parameter to show more details.'\n % msg_counter)\n warning_printed = True\n if verbose:\n print('%i gaps found in total.' % gcount)\n return gcount\n",
"role": "user"
},
{
"content": "detect_gaps",
"role": "assistant"
}
] |
def x(dataframe, shift=0):
dropped = 0
if shift > 23 or shift < 0:
print('Invalid shift parameter setting! Using defaults.')
shift = 0
first = shift
last = first - 1
if last < 0:
last += 24
try:
n = len(dataframe.index)
except:
print('Error: Invalid dataframe.')
return dataframe
delete = list()
for i in range(0, n):
if dataframe.index.hour[i] == first and dataframe.index.minute[i] == 0:
break
else:
delete.append(i)
dropped += 1
for i in range(n - 1, 0, -1):
if dataframe.index.hour[i] == last and dataframe.index.minute[i] == 0:
break
else:
delete.append(i)
dropped += 1
return dataframe.drop(dataframe.index[[delete]])
|
drop_incomplete_days
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataframe, shift=0):\n dropped = 0\n if shift > 23 or shift < 0:\n print('Invalid shift parameter setting! Using defaults.')\n shift = 0\n first = shift\n last = first - 1\n if last < 0:\n last += 24\n try:\n n = len(dataframe.index)\n except:\n print('Error: Invalid dataframe.')\n return dataframe\n delete = list()\n for i in range(0, n):\n if dataframe.index.hour[i] == first and dataframe.index.minute[i] == 0:\n break\n else:\n delete.append(i)\n dropped += 1\n for i in range(n - 1, 0, -1):\n if dataframe.index.hour[i] == last and dataframe.index.minute[i] == 0:\n break\n else:\n delete.append(i)\n dropped += 1\n return dataframe.drop(dataframe.index[[delete]])\n",
"role": "user"
},
{
"content": "drop_incomplete_days",
"role": "assistant"
}
] |
def x(df):
df_daily = pd.DataFrame()
if 'temp' in df:
df_daily['temp'] = df.temp.resample('D').mean()
df_daily['tmin'] = df.temp.groupby(df.temp.index.date).min()
df_daily['tmax'] = df.temp.groupby(df.temp.index.date).max()
if 'precip' in df:
df_daily['precip'] = df.precip.resample('D').sum()
if 'glob' in df:
df_daily['glob'] = df.glob.resample('D').mean()
if 'hum' in df:
df_daily['hum'] = df.hum.resample('D').mean()
if 'hum' in df:
df_daily['hum_min'] = df.hum.groupby(df.hum.index.date).min()
if 'hum' in df:
df_daily['hum_max'] = df.hum.groupby(df.hum.index.date).max()
if 'wind' in df:
df_daily['wind'] = df.wind.resample('D').mean()
if 'ssd' in df:
df_daily['ssd'] = df.ssd.resample('D').sum() / 60
df_daily.index.name = None
return df_daily
|
daily_from_hourly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n df_daily = pd.DataFrame()\n if 'temp' in df:\n df_daily['temp'] = df.temp.resample('D').mean()\n df_daily['tmin'] = df.temp.groupby(df.temp.index.date).min()\n df_daily['tmax'] = df.temp.groupby(df.temp.index.date).max()\n if 'precip' in df:\n df_daily['precip'] = df.precip.resample('D').sum()\n if 'glob' in df:\n df_daily['glob'] = df.glob.resample('D').mean()\n if 'hum' in df:\n df_daily['hum'] = df.hum.resample('D').mean()\n if 'hum' in df:\n df_daily['hum_min'] = df.hum.groupby(df.hum.index.date).min()\n if 'hum' in df:\n df_daily['hum_max'] = df.hum.groupby(df.hum.index.date).max()\n if 'wind' in df:\n df_daily['wind'] = df.wind.resample('D').mean()\n if 'ssd' in df:\n df_daily['ssd'] = df.ssd.resample('D').sum() / 60\n df_daily.index.name = None\n return df_daily\n",
"role": "user"
},
{
"content": "daily_from_hourly",
"role": "assistant"
}
] |
def x(dailyData, method='equal', cascade_options=None, hourly_data_obs=None,
zerodiv='uniform', shift=0):
if method not in ('equal', 'cascade', 'masterstation'):
raise ValueError('Invalid option')
if method == 'equal':
precip_disagg = melodist.distribute_equally(dailyData.precip,
divide=True)
elif method == 'masterstation':
precip_disagg = precip_master_station(dailyData, hourly_data_obs,
zerodiv)
elif method == 'cascade':
assert cascade_options is not None
precip_disagg = disagg_prec_cascade(dailyData, cascade_options,
shift=shift)
return precip_disagg
|
disagg_prec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dailyData, method='equal', cascade_options=None, hourly_data_obs=None,\n zerodiv='uniform', shift=0):\n if method not in ('equal', 'cascade', 'masterstation'):\n raise ValueError('Invalid option')\n if method == 'equal':\n precip_disagg = melodist.distribute_equally(dailyData.precip,\n divide=True)\n elif method == 'masterstation':\n precip_disagg = precip_master_station(dailyData, hourly_data_obs,\n zerodiv)\n elif method == 'cascade':\n assert cascade_options is not None\n precip_disagg = disagg_prec_cascade(dailyData, cascade_options,\n shift=shift)\n return precip_disagg\n",
"role": "user"
},
{
"content": "disagg_prec",
"role": "assistant"
}
] |
def x(precip_daily, master_precip_hourly, zerodiv):
precip_hourly = pd.Series(index=melodist.util.hourly_index(precip_daily
.index))
for index_d, precip in precip_daily.iteritems():
index = index_d.date().isoformat()
precip_h = master_precip_hourly[index]
if precip_h.sum() != 0 and precip_h.sum() != np.isnan(precip_h.sum()):
precip_h_rel = precip_h / precip_h.sum() * precip
elif zerodiv == 'uniform':
precip_h_rel = 1 / 24 * precip
else:
precip_h_rel = 0
precip_hourly[index] = precip_h_rel
return precip_hourly
|
precip_master_station
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(precip_daily, master_precip_hourly, zerodiv):\n precip_hourly = pd.Series(index=melodist.util.hourly_index(precip_daily\n .index))\n for index_d, precip in precip_daily.iteritems():\n index = index_d.date().isoformat()\n precip_h = master_precip_hourly[index]\n if precip_h.sum() != 0 and precip_h.sum() != np.isnan(precip_h.sum()):\n precip_h_rel = precip_h / precip_h.sum() * precip\n elif zerodiv == 'uniform':\n precip_h_rel = 1 / 24 * precip\n else:\n precip_h_rel = 0\n precip_hourly[index] = precip_h_rel\n return precip_hourly\n",
"role": "user"
},
{
"content": "precip_master_station",
"role": "assistant"
}
] |
def x(dataframe, months='all'):
if isinstance(months, str) and months == 'all':
months = np.arange(12) + 1
for month_num, month in enumerate(months):
df_cur = dataframe[dataframe.index.month == month]
if month_num == 0:
df = df_cur
else:
df = df.append(df_cur)
return df.sort_index()
|
seasonal_subset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dataframe, months='all'):\n if isinstance(months, str) and months == 'all':\n months = np.arange(12) + 1\n for month_num, month in enumerate(months):\n df_cur = dataframe[dataframe.index.month == month]\n if month_num == 0:\n df = df_cur\n else:\n df = df.append(df_cur)\n return df.sort_index()\n",
"role": "user"
},
{
"content": "seasonal_subset",
"role": "assistant"
}
] |
def x(ObsData, hourly=True, level=9, months=None, avg_stats=True, percentile=50
):
list_seasonal_casc = list()
if months is None:
months = [np.arange(12) + 1]
for cur_months in months:
vdn = seasonal_subset(ObsData, cur_months)
if len(ObsData.precip[np.isnan(ObsData.precip)]) > 0:
ObsData.precip[np.isnan(ObsData.precip)] = 0
casc_opt = melodist.cascade.CascadeStatistics()
casc_opt.percentile = percentile
list_casc_opt = list()
count = 0
if hourly:
aggre_level = 5
else:
aggre_level = level
thresholds = np.zeros(aggre_level)
for i in range(0, aggre_level):
casc_opt_i, vdn = aggregate_precipitation(vdn, hourly,
percentile=percentile)
thresholds[i] = casc_opt_i.threshold
copy_of_casc_opt_i = copy.copy(casc_opt_i)
list_casc_opt.append(copy_of_casc_opt_i)
n_vdn = len(vdn)
casc_opt_i * n_vdn
casc_opt + casc_opt_i
count = count + n_vdn
casc_opt * (1.0 / count)
casc_opt.threshold = thresholds
if avg_stats:
stat_obj = casc_opt
else:
stat_obj = list_casc_opt
list_seasonal_casc.append(stat_obj)
return list_seasonal_casc
|
build_casc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ObsData, hourly=True, level=9, months=None, avg_stats=True, percentile=50\n ):\n list_seasonal_casc = list()\n if months is None:\n months = [np.arange(12) + 1]\n for cur_months in months:\n vdn = seasonal_subset(ObsData, cur_months)\n if len(ObsData.precip[np.isnan(ObsData.precip)]) > 0:\n ObsData.precip[np.isnan(ObsData.precip)] = 0\n casc_opt = melodist.cascade.CascadeStatistics()\n casc_opt.percentile = percentile\n list_casc_opt = list()\n count = 0\n if hourly:\n aggre_level = 5\n else:\n aggre_level = level\n thresholds = np.zeros(aggre_level)\n for i in range(0, aggre_level):\n casc_opt_i, vdn = aggregate_precipitation(vdn, hourly,\n percentile=percentile)\n thresholds[i] = casc_opt_i.threshold\n copy_of_casc_opt_i = copy.copy(casc_opt_i)\n list_casc_opt.append(copy_of_casc_opt_i)\n n_vdn = len(vdn)\n casc_opt_i * n_vdn\n casc_opt + casc_opt_i\n count = count + n_vdn\n casc_opt * (1.0 / count)\n casc_opt.threshold = thresholds\n if avg_stats:\n stat_obj = casc_opt\n else:\n stat_obj = list_casc_opt\n list_seasonal_casc.append(stat_obj)\n return list_seasonal_casc\n",
"role": "user"
},
{
"content": "build_casc",
"role": "assistant"
}
] |
def x(self):
self.p01 = np.array([[0.576724636119866, 0.238722774405744,
0.166532122130638, 0.393474644666218], [0.303345245644811,
0.0490956843857575, 0.0392403031072856, 0.228441890034704]])
self.p10 = np.array([[0.158217002255554, 0.256581140990052,
0.557852226779526, 0.422638238585814], [0.0439831163244427,
0.0474928027621488, 0.303675296728195, 0.217512052135178]])
self.pxx = np.array([[0.26505836162458, 0.504696084604205,
0.275615651089836, 0.183887116747968], [0.652671638030746,
0.903411512852094, 0.657084400164519, 0.554046057830118]])
self.wxx = np.array([[[0.188389148850583, 0.080683645398419,
0.0698113025807722, 0.0621499191745602], [0.240993281622128,
0.0831019646519721, 0.0415130545715575, 0.155284541403192]], [[
0.190128959522795, 0.129220679033862, 0.0932213021787505,
0.193080698516532], [0.196379692358065, 0.108549414860949,
0.0592714297292217, 0.0421945385836429]], [[0.163043672107111,
0.152063537378127, 0.102823783410167, 0.0906028835221283], [
0.186579466868095, 0.189705690316132, 0.0990207345993082,
0.107831389238912]], [[0.197765724699431, 0.220046257566978,
0.177876233348082, 0.261288786454262], [0.123823472714948,
0.220514673922285, 0.102486496386323, 0.101975538893918]], [[
0.114435243444815, 0.170857634762767, 0.177327072603662,
0.135362730582518], [0.0939211776723413, 0.174291820501902,
0.125275822078525, 0.150842841725936]], [[0.0988683809545079,
0.152323481100248, 0.185606883566286, 0.167242856061538], [
0.0760275616817939, 0.127275603247149, 0.202466168603738,
0.186580243138018]], [[0.0473688704207573, 0.0948047647595988,
0.19333342231228, 0.0902721256884624], [0.0822753470826286,
0.0965608324996108, 0.369966294031327, 0.255290907016382]]])
|
fill_with_sample_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.p01 = np.array([[0.576724636119866, 0.238722774405744, \n 0.166532122130638, 0.393474644666218], [0.303345245644811, \n 0.0490956843857575, 0.0392403031072856, 0.228441890034704]])\n self.p10 = np.array([[0.158217002255554, 0.256581140990052, \n 0.557852226779526, 0.422638238585814], [0.0439831163244427, \n 0.0474928027621488, 0.303675296728195, 0.217512052135178]])\n self.pxx = np.array([[0.26505836162458, 0.504696084604205, \n 0.275615651089836, 0.183887116747968], [0.652671638030746, \n 0.903411512852094, 0.657084400164519, 0.554046057830118]])\n self.wxx = np.array([[[0.188389148850583, 0.080683645398419, \n 0.0698113025807722, 0.0621499191745602], [0.240993281622128, \n 0.0831019646519721, 0.0415130545715575, 0.155284541403192]], [[\n 0.190128959522795, 0.129220679033862, 0.0932213021787505, \n 0.193080698516532], [0.196379692358065, 0.108549414860949, \n 0.0592714297292217, 0.0421945385836429]], [[0.163043672107111, \n 0.152063537378127, 0.102823783410167, 0.0906028835221283], [\n 0.186579466868095, 0.189705690316132, 0.0990207345993082, \n 0.107831389238912]], [[0.197765724699431, 0.220046257566978, \n 0.177876233348082, 0.261288786454262], [0.123823472714948, \n 0.220514673922285, 0.102486496386323, 0.101975538893918]], [[\n 0.114435243444815, 0.170857634762767, 0.177327072603662, \n 0.135362730582518], [0.0939211776723413, 0.174291820501902, \n 0.125275822078525, 0.150842841725936]], [[0.0988683809545079, \n 0.152323481100248, 0.185606883566286, 0.167242856061538], [\n 0.0760275616817939, 0.127275603247149, 0.202466168603738, \n 0.186580243138018]], [[0.0473688704207573, 0.0948047647595988, \n 0.19333342231228, 0.0902721256884624], [0.0822753470826286, \n 0.0965608324996108, 0.369966294031327, 0.255290907016382]]])\n",
"role": "user"
},
{
"content": "fill_with_sample_data",
"role": "assistant"
}
] |
def x(cls):
if not cls._files:
for f in os.listdir(cls._image_path):
if not f.startswith('.') and os.path.isfile(os.path.join(cls.
_image_path, f)):
cls._files.append(os.path.splitext(f)[0])
return cls._files
|
names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n if not cls._files:\n for f in os.listdir(cls._image_path):\n if not f.startswith('.') and os.path.isfile(os.path.join(cls.\n _image_path, f)):\n cls._files.append(os.path.splitext(f)[0])\n return cls._files\n",
"role": "user"
},
{
"content": "names",
"role": "assistant"
}
] |
def x(cls, replacement_string):
e = cls()
def x(match):
val = match.group(1)
if val in e:
return e._image_string(match.group(1))
else:
return match.group(0)
return e._pattern.sub(_replace_emoji, replacement_string)
|
replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, replacement_string):\n e = cls()\n\n def x(match):\n val = match.group(1)\n if val in e:\n return e._image_string(match.group(1))\n else:\n return match.group(0)\n return e._pattern.sub(_replace_emoji, replacement_string)\n",
"role": "user"
},
{
"content": "replace",
"role": "assistant"
}
] |
def x(cls, replacement_string):
e = cls()
output = []
surrogate_character = None
if settings.EMOJI_REPLACE_HTML_ENTITIES:
replacement_string = cls.replace_html_entities(replacement_string)
for i, character in enumerate(replacement_string):
if character in cls._unicode_modifiers:
continue
if not UNICODE_WIDE and not surrogate_character and ord(character
) >= UNICODE_SURROGATE_MIN and ord(character
) <= UNICODE_SURROGATE_MAX:
surrogate_character = character
continue
if surrogate_character:
character = convert_unicode_surrogates(surrogate_character +
character)
surrogate_character = None
name = e.name_for(character)
if name:
if settings.EMOJI_ALT_AS_UNICODE:
character = e._image_string(name, alt=character)
else:
character = e._image_string(name)
output.append(character)
return ''.join(output)
|
replace_unicode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, replacement_string):\n e = cls()\n output = []\n surrogate_character = None\n if settings.EMOJI_REPLACE_HTML_ENTITIES:\n replacement_string = cls.replace_html_entities(replacement_string)\n for i, character in enumerate(replacement_string):\n if character in cls._unicode_modifiers:\n continue\n if not UNICODE_WIDE and not surrogate_character and ord(character\n ) >= UNICODE_SURROGATE_MIN and ord(character\n ) <= UNICODE_SURROGATE_MAX:\n surrogate_character = character\n continue\n if surrogate_character:\n character = convert_unicode_surrogates(surrogate_character +\n character)\n surrogate_character = None\n name = e.name_for(character)\n if name:\n if settings.EMOJI_ALT_AS_UNICODE:\n character = e._image_string(name, alt=character)\n else:\n character = e._image_string(name)\n output.append(character)\n return ''.join(output)\n",
"role": "user"
},
{
"content": "replace_unicode",
"role": "assistant"
}
] |
def x(cls, replacement_string):
def x(hex_code):
if PYTHON3:
hex_code = '{0:0>8}'.format(hex_code)
as_int = struct.unpack('>i', bytes.fromhex(hex_code))[0]
return '{0:c}'.format(as_int)
else:
return hex_to_unicode(hex_code)
def x(match):
hex_val = hex(int(match.group(1)))
return _hex_to_unicode(hex_val.replace('0x', ''))
def x(match):
return _hex_to_unicode(match.group(1))
replacement_string = re.sub(cls._html_entities_integer_unicode_regex,
_replace_integer_entity, replacement_string)
replacement_string = re.sub(cls._html_entities_hex_unicode_regex,
_replace_hex_entity, replacement_string)
return replacement_string
|
replace_html_entities
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, replacement_string):\n\n def x(hex_code):\n if PYTHON3:\n hex_code = '{0:0>8}'.format(hex_code)\n as_int = struct.unpack('>i', bytes.fromhex(hex_code))[0]\n return '{0:c}'.format(as_int)\n else:\n return hex_to_unicode(hex_code)\n\n def x(match):\n hex_val = hex(int(match.group(1)))\n return _hex_to_unicode(hex_val.replace('0x', ''))\n\n def x(match):\n return _hex_to_unicode(match.group(1))\n replacement_string = re.sub(cls._html_entities_integer_unicode_regex,\n _replace_integer_entity, replacement_string)\n replacement_string = re.sub(cls._html_entities_hex_unicode_regex,\n _replace_hex_entity, replacement_string)\n return replacement_string\n",
"role": "user"
},
{
"content": "replace_html_entities",
"role": "assistant"
}
] |
def x(configurator, path):
path = os.path.join(configurator.target_directory, path)
os.remove(path)
try:
os.removedirs(os.path.dirname(path))
except OSError:
pass
|
delete_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(configurator, path):\n path = os.path.join(configurator.target_directory, path)\n os.remove(path)\n try:\n os.removedirs(os.path.dirname(path))\n except OSError:\n pass\n",
"role": "user"
},
{
"content": "delete_file",
"role": "assistant"
}
] |
def x(configurator, key, item):
with _open_manifest(configurator) as f:
manifest = f.read()
if item in ast.literal_eval(manifest).get(key, []):
return
pattern = '(["\']{}["\']:\\s*\\[)'.format(key)
repl = """\\1
'{}',""".format(item)
manifest = re.sub(pattern, repl, manifest, re.MULTILINE)
with _open_manifest(configurator, 'w') as f:
f.write(manifest)
|
insert_manifest_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(configurator, key, item):\n with _open_manifest(configurator) as f:\n manifest = f.read()\n if item in ast.literal_eval(manifest).get(key, []):\n return\n pattern = '([\"\\']{}[\"\\']:\\\\s*\\\\[)'.format(key)\n repl = \"\"\"\\\\1\n '{}',\"\"\".format(item)\n manifest = re.sub(pattern, repl, manifest, re.MULTILINE)\n with _open_manifest(configurator, 'w') as f:\n f.write(manifest)\n",
"role": "user"
},
{
"content": "insert_manifest_item",
"role": "assistant"
}
] |
def x(filename):
with open(filename) as requirements_file:
contents = requirements_file.read()
return [line.strip() for line in contents.splitlines() if
_is_requirement(line)]
|
read_requirements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n with open(filename) as requirements_file:\n contents = requirements_file.read()\n return [line.strip() for line in contents.splitlines() if\n _is_requirement(line)]\n",
"role": "user"
},
{
"content": "read_requirements",
"role": "assistant"
}
] |
def x(perm, group):
if not isinstance(perm, Permission):
try:
app_label, codename = perm.split('.', 1)
except ValueError:
raise ValueError(
"For global permissions, first argument must be in format: 'app_label.codename' (is %r)"
% perm)
perm = Permission.objects.get(content_type__app_label=app_label,
codename=codename)
group.permissions.add(perm)
return perm
|
assign_perm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(perm, group):\n if not isinstance(perm, Permission):\n try:\n app_label, codename = perm.split('.', 1)\n except ValueError:\n raise ValueError(\n \"For global permissions, first argument must be in format: 'app_label.codename' (is %r)\"\n % perm)\n perm = Permission.objects.get(content_type__app_label=app_label,\n codename=codename)\n group.permissions.add(perm)\n return perm\n",
"role": "user"
},
{
"content": "assign_perm",
"role": "assistant"
}
] |
def x(perm, group):
if not isinstance(perm, Permission):
try:
app_label, codename = perm.split('.', 1)
except ValueError:
raise ValueError(
"For global permissions, first argument must be in format: 'app_label.codename' (is %r)"
% perm)
perm = Permission.objects.get(content_type__app_label=app_label,
codename=codename)
group.permissions.remove(perm)
return
|
remove_perm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(perm, group):\n if not isinstance(perm, Permission):\n try:\n app_label, codename = perm.split('.', 1)\n except ValueError:\n raise ValueError(\n \"For global permissions, first argument must be in format: 'app_label.codename' (is %r)\"\n % perm)\n perm = Permission.objects.get(content_type__app_label=app_label,\n codename=codename)\n group.permissions.remove(perm)\n return\n",
"role": "user"
},
{
"content": "remove_perm",
"role": "assistant"
}
] |
def x(context, list):
return 'list_%s_%s' % (list.model._meta.app_label, list.model._meta.
model_name)
|
get_list_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, list):\n return 'list_%s_%s' % (list.model._meta.app_label, list.model._meta.\n model_name)\n",
"role": "user"
},
{
"content": "get_list_class",
"role": "assistant"
}
] |
def x(time):
user_time_zone = timezone.get_current_timezone()
if time.tzinfo is None:
time = time.replace(tzinfo=pytz.utc)
user_time_zone = pytz.timezone(getattr(settings, 'USER_TIME_ZONE',
'GMT'))
time = time.astimezone(user_time_zone)
return time.strftime('%b %d, %Y %H:%M')
|
format_datetime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(time):\n user_time_zone = timezone.get_current_timezone()\n if time.tzinfo is None:\n time = time.replace(tzinfo=pytz.utc)\n user_time_zone = pytz.timezone(getattr(settings, 'USER_TIME_ZONE',\n 'GMT'))\n time = time.astimezone(user_time_zone)\n return time.strftime('%b %d, %Y %H:%M')\n",
"role": "user"
},
{
"content": "format_datetime",
"role": "assistant"
}
] |
def x(context, field):
view = context['view']
obj = None
if 'object' in context:
obj = context['object']
value = view.lookup_field_value(context, obj, field)
if type(value) == datetime:
return format_datetime(value)
return value
|
get_value_from_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, field):\n view = context['view']\n obj = None\n if 'object' in context:\n obj = context['object']\n value = view.lookup_field_value(context, obj, field)\n if type(value) == datetime:\n return format_datetime(value)\n return value\n",
"role": "user"
},
{
"content": "get_value_from_view",
"role": "assistant"
}
] |
def x(context, field, obj=None):
view = context['view']
return view.lookup_field_class(field, obj, 'field_' + field)
|
get_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_class(field, obj, 'field_' + field)\n",
"role": "user"
},
{
"content": "get_class",
"role": "assistant"
}
] |
def x(context, field, obj=None):
view = context['view']
return view.lookup_field_label(context, field, obj)
|
get_label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_label(context, field, obj)\n",
"role": "user"
},
{
"content": "get_label",
"role": "assistant"
}
] |
def x(context, field, obj=None):
view = context['view']
return view.lookup_field_link(context, field, obj)
|
get_field_link
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, field, obj=None):\n view = context['view']\n return view.lookup_field_link(context, field, obj)\n",
"role": "user"
},
{
"content": "get_field_link",
"role": "assistant"
}
] |
def x():
global permissions_app_name
if not permissions_app_name:
permissions_app_name = getattr(settings, 'PERMISSIONS_APP', None)
if not permissions_app_name:
app_names_with_models = [a.name for a in apps.get_app_configs() if
a.models_module is not None]
if app_names_with_models:
permissions_app_name = app_names_with_models[-1]
return permissions_app_name
|
get_permissions_app_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n global permissions_app_name\n if not permissions_app_name:\n permissions_app_name = getattr(settings, 'PERMISSIONS_APP', None)\n if not permissions_app_name:\n app_names_with_models = [a.name for a in apps.get_app_configs() if\n a.models_module is not None]\n if app_names_with_models:\n permissions_app_name = app_names_with_models[-1]\n return permissions_app_name\n",
"role": "user"
},
{
"content": "get_permissions_app_name",
"role": "assistant"
}
] |
def x(role, permissions, current_permissions):
role_permissions = []
for permission in permissions:
splits = permission.split('.')
if len(splits) != 2 and len(splits) != 3:
sys.stderr.write(' invalid permission %s, ignoring\n' % permission
)
continue
app = splits[0]
codenames = []
if len(splits) == 2:
codenames.append(splits[1])
else:
object, action = splits[1:]
if action == '*':
for perm in Permission.objects.filter(codename__startswith=
'%s_' % object, content_type__app_label=app):
codenames.append(perm.codename)
else:
sys.stderr.write(' invalid permission %s, ignoring\n' %
permission)
continue
if len(codenames) == 0:
continue
for codename in codenames:
full_codename = '%s.%s' % (app, codename)
role_permissions.append(full_codename)
try:
assign_perm(full_codename, role)
except ObjectDoesNotExist:
pass
for permission in current_permissions:
if isinstance(permission, str):
key = permission
else:
key = '%s.%s' % (permission.content_type.app_label, permission.
codename)
if key not in role_permissions:
remove_perm(key, role)
|
check_role_permissions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(role, permissions, current_permissions):\n role_permissions = []\n for permission in permissions:\n splits = permission.split('.')\n if len(splits) != 2 and len(splits) != 3:\n sys.stderr.write(' invalid permission %s, ignoring\\n' % permission\n )\n continue\n app = splits[0]\n codenames = []\n if len(splits) == 2:\n codenames.append(splits[1])\n else:\n object, action = splits[1:]\n if action == '*':\n for perm in Permission.objects.filter(codename__startswith=\n '%s_' % object, content_type__app_label=app):\n codenames.append(perm.codename)\n else:\n sys.stderr.write(' invalid permission %s, ignoring\\n' %\n permission)\n continue\n if len(codenames) == 0:\n continue\n for codename in codenames:\n full_codename = '%s.%s' % (app, codename)\n role_permissions.append(full_codename)\n try:\n assign_perm(full_codename, role)\n except ObjectDoesNotExist:\n pass\n for permission in current_permissions:\n if isinstance(permission, str):\n key = permission\n else:\n key = '%s.%s' % (permission.content_type.app_label, permission.\n codename)\n if key not in role_permissions:\n remove_perm(key, role)\n",
"role": "user"
},
{
"content": "check_role_permissions",
"role": "assistant"
}
] |
def x(sender, **kwargs):
if not is_permissions_app(sender):
return
config = getattr(settings, 'GROUP_PERMISSIONS', dict())
for name, permissions in config.items():
group, created = Group.objects.get_or_create(name=name)
if created:
pass
check_role_permissions(group, permissions, group.permissions.all())
|
check_all_group_permissions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender, **kwargs):\n if not is_permissions_app(sender):\n return\n config = getattr(settings, 'GROUP_PERMISSIONS', dict())\n for name, permissions in config.items():\n group, created = Group.objects.get_or_create(name=name)\n if created:\n pass\n check_role_permissions(group, permissions, group.permissions.all())\n",
"role": "user"
},
{
"content": "check_all_group_permissions",
"role": "assistant"
}
] |
def x(content_type, permission):
codename = '%s_%s' % (content_type.model, permission)
if not Permission.objects.filter(content_type=content_type, codename=
codename):
Permission.objects.create(content_type=content_type, codename=
codename, name='Can %s %s' % (permission, content_type.name))
|
add_permission
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(content_type, permission):\n codename = '%s_%s' % (content_type.model, permission)\n if not Permission.objects.filter(content_type=content_type, codename=\n codename):\n Permission.objects.create(content_type=content_type, codename=\n codename, name='Can %s %s' % (permission, content_type.name))\n",
"role": "user"
},
{
"content": "add_permission",
"role": "assistant"
}
] |
def x(sender, **kwargs):
if not is_permissions_app(sender):
return
config = getattr(settings, 'PERMISSIONS', dict())
for natural_key, permissions in config.items():
if natural_key == '*':
for content_type in ContentType.objects.all():
for permission in permissions:
add_permission(content_type, permission)
else:
app, model = natural_key.split('.')
try:
content_type = ContentType.objects.get_by_natural_key(app,
model)
except ContentType.DoesNotExist:
continue
for permission in permissions:
add_permission(content_type, permission)
|
check_all_permissions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender, **kwargs):\n if not is_permissions_app(sender):\n return\n config = getattr(settings, 'PERMISSIONS', dict())\n for natural_key, permissions in config.items():\n if natural_key == '*':\n for content_type in ContentType.objects.all():\n for permission in permissions:\n add_permission(content_type, permission)\n else:\n app, model = natural_key.split('.')\n try:\n content_type = ContentType.objects.get_by_natural_key(app,\n model)\n except ContentType.DoesNotExist:\n continue\n for permission in permissions:\n add_permission(content_type, permission)\n",
"role": "user"
},
{
"content": "check_all_permissions",
"role": "assistant"
}
] |
def x(self, commit=True):
is_new_user = self.instance.pk is None
user = super(UserForm, self).save(commit)
if is_new_user:
user.is_active = True
new_pass = self.cleaned_data['new_password']
if new_pass:
user.set_password(new_pass)
if commit:
user.save()
return user
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, commit=True):\n is_new_user = self.instance.pk is None\n user = super(UserForm, self).save(commit)\n if is_new_user:\n user.is_active = True\n new_pass = self.cleaned_data['new_password']\n if new_pass:\n user.set_password(new_pass)\n if commit:\n user.save()\n return user\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(url, obj=None):
if url.find('@') >= 0:
args, value = url.split('@')
if args:
val = getattr(obj, args, None)
return reverse(value, args=[val])
else:
return reverse(value)
elif obj is None:
return url
else:
return url % obj.id
|
smart_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(url, obj=None):\n if url.find('@') >= 0:\n args, value = url.split('@')\n if args:\n val = getattr(obj, args, None)\n return reverse(value, args=[val])\n else:\n return reverse(value)\n elif obj is None:\n return url\n else:\n return url % obj.id\n",
"role": "user"
},
{
"content": "smart_url",
"role": "assistant"
}
] |
def x(slug_url_kwarg, path, action):
if slug_url_kwarg:
return '^%s/%s/(?P<%s>[^/]+)/$' % (path, action, slug_url_kwarg)
else:
return '^%s/%s/(?P<pk>\\d+)/$' % (path, action)
|
derive_single_object_url_pattern
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(slug_url_kwarg, path, action):\n if slug_url_kwarg:\n return '^%s/%s/(?P<%s>[^/]+)/$' % (path, action, slug_url_kwarg)\n else:\n return '^%s/%s/(?P<pk>\\\\d+)/$' % (path, action)\n",
"role": "user"
},
{
"content": "derive_single_object_url_pattern",
"role": "assistant"
}
] |
def x(self, request, *args, **kwargs):
self.kwargs = kwargs
self.args = args
self.request = request
if not getattr(self, 'permission', None):
return True
else:
return request.user.has_perm(self.permission)
|
has_permission
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n self.kwargs = kwargs\n self.args = args\n self.request = request\n if not getattr(self, 'permission', None):\n return True\n else:\n return request.user.has_perm(self.permission)\n",
"role": "user"
},
{
"content": "has_permission",
"role": "assistant"
}
] |
def x(self, request, *args, **kwargs):
def x(request, *args, **kwargs):
if not self.has_permission(request, *args, **kwargs):
path = urlquote(request.get_full_path())
login_url = kwargs.pop('login_url', settings.LOGIN_URL)
redirect_field_name = kwargs.pop('redirect_field_name',
REDIRECT_FIELD_NAME)
return HttpResponseRedirect('%s?%s=%s' % (login_url,
redirect_field_name, path))
else:
response = self.pre_process(request, *args, **kwargs)
if not response:
return super(SmartView, self).dispatch(request, *args, **kwargs
)
else:
return response
return wrapper(request, *args, **kwargs)
|
dispatch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n\n def x(request, *args, **kwargs):\n if not self.has_permission(request, *args, **kwargs):\n path = urlquote(request.get_full_path())\n login_url = kwargs.pop('login_url', settings.LOGIN_URL)\n redirect_field_name = kwargs.pop('redirect_field_name',\n REDIRECT_FIELD_NAME)\n return HttpResponseRedirect('%s?%s=%s' % (login_url,\n redirect_field_name, path))\n else:\n response = self.pre_process(request, *args, **kwargs)\n if not response:\n return super(SmartView, self).dispatch(request, *args, **kwargs\n )\n else:\n return response\n return wrapper(request, *args, **kwargs)\n",
"role": "user"
},
{
"content": "dispatch",
"role": "assistant"
}
] |
def x(self, obj, field):
curr_field = field.encode('ascii', 'ignore').decode('utf-8')
rest = None
if field.find('.') >= 0:
curr_field = field.split('.')[0]
rest = '.'.join(field.split('.')[1:])
obj_field = getattr(obj, curr_field, None)
if obj_field and getattr(obj_field, '__call__', None):
obj_field = obj_field()
if obj_field and rest:
return self.lookup_obj_attribute(obj_field, rest)
else:
return obj_field
|
lookup_obj_attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, field):\n curr_field = field.encode('ascii', 'ignore').decode('utf-8')\n rest = None\n if field.find('.') >= 0:\n curr_field = field.split('.')[0]\n rest = '.'.join(field.split('.')[1:])\n obj_field = getattr(obj, curr_field, None)\n if obj_field and getattr(obj_field, '__call__', None):\n obj_field = obj_field()\n if obj_field and rest:\n return self.lookup_obj_attribute(obj_field, rest)\n else:\n return obj_field\n",
"role": "user"
},
{
"content": "lookup_obj_attribute",
"role": "assistant"
}
] |
def x(self, context, obj, field):
curr_field = field.encode('ascii', 'ignore').decode('utf-8')
if field.find('.') == -1:
view_method = getattr(self, 'get_%s' % curr_field, None)
if view_method:
return view_method(obj)
return self.lookup_obj_attribute(obj, field)
|
lookup_field_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, obj, field):\n curr_field = field.encode('ascii', 'ignore').decode('utf-8')\n if field.find('.') == -1:\n view_method = getattr(self, 'get_%s' % curr_field, None)\n if view_method:\n return view_method(obj)\n return self.lookup_obj_attribute(obj, field)\n",
"role": "user"
},
{
"content": "lookup_field_value",
"role": "assistant"
}
] |
def x(self, context, field, default=None):
if field.find('.') >= 0:
return self.lookup_field_label(context, field.split('.')[-1], default)
label = None
if field in self.field_config and 'label' in self.field_config[field]:
label = self.field_config[field]['label']
elif default:
label = default
else:
for model_field in self.model._meta.fields:
if model_field.name == field:
return model_field.verbose_name.title()
if label is None:
label = self.derive_field_label(field)
return label
|
lookup_field_label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, field, default=None):\n if field.find('.') >= 0:\n return self.lookup_field_label(context, field.split('.')[-1], default)\n label = None\n if field in self.field_config and 'label' in self.field_config[field]:\n label = self.field_config[field]['label']\n elif default:\n label = default\n else:\n for model_field in self.model._meta.fields:\n if model_field.name == field:\n return model_field.verbose_name.title()\n if label is None:\n label = self.derive_field_label(field)\n return label\n",
"role": "user"
},
{
"content": "lookup_field_label",
"role": "assistant"
}
] |
def x(self, field, default=None):
help = None
if field in self.field_config and 'help' in self.field_config[field]:
help = self.field_config[field]['help']
elif default:
help = default
elif hasattr(self, 'model'):
for model_field in self.model._meta.fields:
if model_field.name == field:
help = model_field.help_text
break
return help
|
lookup_field_help
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field, default=None):\n help = None\n if field in self.field_config and 'help' in self.field_config[field]:\n help = self.field_config[field]['help']\n elif default:\n help = default\n elif hasattr(self, 'model'):\n for model_field in self.model._meta.fields:\n if model_field.name == field:\n help = model_field.help_text\n break\n return help\n",
"role": "user"
},
{
"content": "lookup_field_help",
"role": "assistant"
}
] |
def x(self, field, obj=None, default=None):
css = ''
if field in self.field_config and 'class' in self.field_config[field]:
css = self.field_config[field]['class']
elif default:
css = default
return css
|
lookup_field_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field, obj=None, default=None):\n css = ''\n if field in self.field_config and 'class' in self.field_config[field]:\n css = self.field_config[field]['class']\n elif default:\n css = default\n return css\n",
"role": "user"
},
{
"content": "lookup_field_class",
"role": "assistant"
}
] |
def x(self):
templates = []
if getattr(self, 'template_name', None):
templates.append(self.template_name)
if getattr(self, 'default_template', None):
templates.append(self.default_template)
else:
templates = super(SmartView, self).get_template_names()
return templates
|
get_template_names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n templates = []\n if getattr(self, 'template_name', None):\n templates.append(self.template_name)\n if getattr(self, 'default_template', None):\n templates.append(self.default_template)\n else:\n templates = super(SmartView, self).get_template_names()\n return templates\n",
"role": "user"
},
{
"content": "get_template_names",
"role": "assistant"
}
] |
def x(self):
fields = []
if self.fields:
fields.append(self.fields)
return fields
|
derive_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fields = []\n if self.fields:\n fields.append(self.fields)\n return fields\n",
"role": "user"
},
{
"content": "derive_fields",
"role": "assistant"
}
] |
def x(self, **kwargs):
context = super(SmartView, self).get_context_data(**kwargs)
self.field_config = self.derive_field_config()
self.fields = self.derive_fields()
url_params = '?'
order_params = ''
for key in self.request.GET.keys():
if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_'
):
for value in self.request.GET.getlist(key):
url_params += '%s=%s&' % (key, urlquote(value))
elif key == '_order':
order_params = '&'.join([('%s=%s' % (key, _)) for _ in self.
request.GET.getlist(key)])
context['url_params'] = url_params
context['order_params'] = order_params + '&'
context['pjax'] = self.pjax
context['blocks'] = dict()
context['fields'] = self.fields
context['view'] = self
context['field_config'] = self.field_config
context['title'] = self.derive_title()
context.update(self.extra_context)
base_template = 'base.html'
if 'pjax' in self.request.GET or 'pjax' in self.request.POST:
base_template = 'smartmin/pjax.html'
if 'HTTP_X_PJAX' in self.request.META:
base_template = 'smartmin/pjax.html'
context['base_template'] = base_template
refresh = self.derive_refresh()
if refresh:
context['refresh'] = refresh
return context
|
get_context_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n context = super(SmartView, self).get_context_data(**kwargs)\n self.field_config = self.derive_field_config()\n self.fields = self.derive_fields()\n url_params = '?'\n order_params = ''\n for key in self.request.GET.keys():\n if key != 'page' and key != 'pjax' and (len(key) == 0 or key[0] != '_'\n ):\n for value in self.request.GET.getlist(key):\n url_params += '%s=%s&' % (key, urlquote(value))\n elif key == '_order':\n order_params = '&'.join([('%s=%s' % (key, _)) for _ in self.\n request.GET.getlist(key)])\n context['url_params'] = url_params\n context['order_params'] = order_params + '&'\n context['pjax'] = self.pjax\n context['blocks'] = dict()\n context['fields'] = self.fields\n context['view'] = self\n context['field_config'] = self.field_config\n context['title'] = self.derive_title()\n context.update(self.extra_context)\n base_template = 'base.html'\n if 'pjax' in self.request.GET or 'pjax' in self.request.POST:\n base_template = 'smartmin/pjax.html'\n if 'HTTP_X_PJAX' in self.request.META:\n base_template = 'smartmin/pjax.html'\n context['base_template'] = base_template\n refresh = self.derive_refresh()\n if refresh:\n context['refresh'] = refresh\n return context\n",
"role": "user"
},
{
"content": "get_context_data",
"role": "assistant"
}
] |
def x(self, context, **response_kwargs):
if '_format' in self.request.GET and self.request.GET['_format'] == 'json':
return JsonResponse(self.as_json(context), safe=False)
else:
return super(SmartView, self).render_to_response(context)
|
render_to_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, **response_kwargs):\n if '_format' in self.request.GET and self.request.GET['_format'] == 'json':\n return JsonResponse(self.as_json(context), safe=False)\n else:\n return super(SmartView, self).render_to_response(context)\n",
"role": "user"
},
{
"content": "render_to_response",
"role": "assistant"
}
] |
def x(self):
if self.fields:
return list(self.fields)
else:
fields = []
for field in self.object._meta.fields:
fields.append(field.name)
exclude = self.derive_exclude()
fields = [field for field in fields if field not in exclude]
return fields
|
derive_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.fields:\n return list(self.fields)\n else:\n fields = []\n for field in self.object._meta.fields:\n fields.append(field.name)\n exclude = self.derive_exclude()\n fields = [field for field in fields if field not in exclude]\n return fields\n",
"role": "user"
},
{
"content": "derive_fields",
"role": "assistant"
}
] |
def x(self, **kwargs):
context = super(SmartDeleteView, self).get_context_data(**kwargs)
context['name_field'] = self.name_field
context['cancel_url'] = self.get_cancel_url()
return context
|
get_context_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n context = super(SmartDeleteView, self).get_context_data(**kwargs)\n context['name_field'] = self.name_field\n context['cancel_url'] = self.get_cancel_url()\n return context\n",
"role": "user"
},
{
"content": "get_context_data",
"role": "assistant"
}
] |
def x(self):
title = super(SmartListView, self).derive_title()
if not title:
return force_text(self.model._meta.verbose_name_plural).title()
else:
return title
|
derive_title
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n title = super(SmartListView, self).derive_title()\n if not title:\n return force_text(self.model._meta.verbose_name_plural).title()\n else:\n return title\n",
"role": "user"
},
{
"content": "derive_title",
"role": "assistant"
}
] |
def x(self, context):
if self.link_fields is not None:
return self.link_fields
else:
link_fields = set()
if self.fields:
for field in self.fields:
if field != 'is_active':
link_fields.add(field)
break
return link_fields
|
derive_link_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n if self.link_fields is not None:\n return self.link_fields\n else:\n link_fields = set()\n if self.fields:\n for field in self.fields:\n if field != 'is_active':\n link_fields.add(field)\n break\n return link_fields\n",
"role": "user"
},
{
"content": "derive_link_fields",
"role": "assistant"
}
] |
def x(self, field):
try:
self.model._meta.get_field_by_name(field)
return True
except Exception:
return False
|
lookup_field_orderable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field):\n try:\n self.model._meta.get_field_by_name(field)\n return True\n except Exception:\n return False\n",
"role": "user"
},
{
"content": "lookup_field_orderable",
"role": "assistant"
}
] |
def x(self, **kwargs):
context = super(SmartListView, self).get_context_data(**kwargs)
self.link_fields = self.derive_link_fields(context)
context['link_fields'] = self.link_fields
if 'search' in self.request.GET:
context['search'] = self.request.GET['search']
order = self.derive_ordering()
if order:
if order[0] == '-':
context['order'] = order[1:]
context['order_asc'] = False
else:
context['order'] = order
context['order_asc'] = True
return context
|
get_context_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n context = super(SmartListView, self).get_context_data(**kwargs)\n self.link_fields = self.derive_link_fields(context)\n context['link_fields'] = self.link_fields\n if 'search' in self.request.GET:\n context['search'] = self.request.GET['search']\n order = self.derive_ordering()\n if order:\n if order[0] == '-':\n context['order'] = order[1:]\n context['order_asc'] = False\n else:\n context['order'] = order\n context['order_asc'] = True\n return context\n",
"role": "user"
},
{
"content": "get_context_data",
"role": "assistant"
}
] |
def x(self, **kwargs):
queryset = super(SmartListView, self).get_queryset(**kwargs)
search_fields = self.derive_search_fields()
search_query = self.request.GET.get('search')
if search_fields and search_query:
term_queries = []
for term in search_query.split(' '):
field_queries = []
for field in search_fields:
field_queries.append(Q(**{field: term}))
term_queries.append(reduce(operator.or_, field_queries))
queryset = queryset.filter(reduce(operator.and_, term_queries))
related = self.derive_select_related()
if related:
queryset = queryset.select_related(*related)
return queryset
|
derive_queryset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n queryset = super(SmartListView, self).get_queryset(**kwargs)\n search_fields = self.derive_search_fields()\n search_query = self.request.GET.get('search')\n if search_fields and search_query:\n term_queries = []\n for term in search_query.split(' '):\n field_queries = []\n for field in search_fields:\n field_queries.append(Q(**{field: term}))\n term_queries.append(reduce(operator.or_, field_queries))\n queryset = queryset.filter(reduce(operator.and_, term_queries))\n related = self.derive_select_related()\n if related:\n queryset = queryset.select_related(*related)\n return queryset\n",
"role": "user"
},
{
"content": "derive_queryset",
"role": "assistant"
}
] |
def x(self, **kwargs):
queryset = self.derive_queryset(**kwargs)
return self.order_queryset(queryset)
|
get_queryset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n queryset = self.derive_queryset(**kwargs)\n return self.order_queryset(queryset)\n",
"role": "user"
},
{
"content": "get_queryset",
"role": "assistant"
}
] |
def x(self):
if '_order' in self.request.GET:
return self.request.GET['_order']
elif self.default_order:
return self.default_order
else:
return None
|
derive_ordering
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if '_order' in self.request.GET:\n return self.request.GET['_order']\n elif self.default_order:\n return self.default_order\n else:\n return None\n",
"role": "user"
},
{
"content": "derive_ordering",
"role": "assistant"
}
] |
def x(self, queryset):
order = self.derive_ordering()
if '_order' in self.request.GET:
if order.lstrip('-') not in self.derive_fields():
order = None
if order:
if isinstance(order, str):
order = order,
queryset = queryset.order_by(*order)
return queryset
|
order_queryset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, queryset):\n order = self.derive_ordering()\n if '_order' in self.request.GET:\n if order.lstrip('-') not in self.derive_fields():\n order = None\n if order:\n if isinstance(order, str):\n order = order,\n queryset = queryset.order_by(*order)\n return queryset\n",
"role": "user"
},
{
"content": "order_queryset",
"role": "assistant"
}
] |
def x(self):
if self.fields:
return self.fields
else:
fields = []
for field in self.object_list.model._meta.fields:
if field.name != 'id':
fields.append(field.name)
return fields
|
derive_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.fields:\n return self.fields\n else:\n fields = []\n for field in self.object_list.model._meta.fields:\n if field.name != 'id':\n fields.append(field.name)\n return fields\n",
"role": "user"
},
{
"content": "derive_fields",
"role": "assistant"
}
] |
def x(self, context, **response_kwargs):
if self.request.GET.get('_format', 'html') == 'select2':
results = []
for obj in context['object_list']:
result = None
if hasattr(obj, 'as_select2'):
result = obj.as_select2()
if not result:
result = dict(id=obj.pk, text='%s' % obj)
results.append(result)
json_data = dict(results=results, err='nil', more=context[
'page_obj'].has_next())
return JsonResponse(json_data)
else:
return super(SmartListView, self).render_to_response(context)
|
render_to_response
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, **response_kwargs):\n if self.request.GET.get('_format', 'html') == 'select2':\n results = []\n for obj in context['object_list']:\n result = None\n if hasattr(obj, 'as_select2'):\n result = obj.as_select2()\n if not result:\n result = dict(id=obj.pk, text='%s' % obj)\n results.append(result)\n json_data = dict(results=results, err='nil', more=context[\n 'page_obj'].has_next())\n return JsonResponse(json_data)\n else:\n return super(SmartListView, self).render_to_response(context)\n",
"role": "user"
},
{
"content": "render_to_response",
"role": "assistant"
}
] |
def x(self):
self.form = super(SmartFormMixin, self).get_form()
fields = list(self.derive_fields())
exclude = self.derive_exclude()
exclude += self.derive_readonly()
for field in exclude:
if field in self.form.fields:
del self.form.fields[field]
if fields is not None:
remove = [name for name in self.form.fields.keys() if name not in
fields]
for name in remove:
del self.form.fields[name]
location = forms.CharField(widget=forms.widgets.HiddenInput(), required
=False)
if 'HTTP_REFERER' in self.request.META:
location.initial = self.request.META['HTTP_REFERER']
self.form.fields['loc'] = location
if fields:
fields.append('loc')
for name, field in self.form.fields.items():
field = self.customize_form_field(name, field)
self.form.fields[name] = field
return self.form
|
get_form
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.form = super(SmartFormMixin, self).get_form()\n fields = list(self.derive_fields())\n exclude = self.derive_exclude()\n exclude += self.derive_readonly()\n for field in exclude:\n if field in self.form.fields:\n del self.form.fields[field]\n if fields is not None:\n remove = [name for name in self.form.fields.keys() if name not in\n fields]\n for name in remove:\n del self.form.fields[name]\n location = forms.CharField(widget=forms.widgets.HiddenInput(), required\n =False)\n if 'HTTP_REFERER' in self.request.META:\n location.initial = self.request.META['HTTP_REFERER']\n self.form.fields['loc'] = location\n if fields:\n fields.append('loc')\n for name, field in self.form.fields.items():\n field = self.customize_form_field(name, field)\n self.form.fields[name] = field\n return self.form\n",
"role": "user"
},
{
"content": "get_form",
"role": "assistant"
}
] |
def x(self, name, field):
if isinstance(field, forms.fields.DateField) and isinstance(field.
widget, forms.widgets.DateInput):
field.widget = widgets.DatePickerWidget()
field.input_formats = [field.widget.input_format[1]] + list(field.
input_formats)
if isinstance(field, forms.fields.ImageField) and isinstance(field.
widget, forms.widgets.ClearableFileInput):
field.widget = widgets.ImageThumbnailWidget()
return field
|
customize_form_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, field):\n if isinstance(field, forms.fields.DateField) and isinstance(field.\n widget, forms.widgets.DateInput):\n field.widget = widgets.DatePickerWidget()\n field.input_formats = [field.widget.input_format[1]] + list(field.\n input_formats)\n if isinstance(field, forms.fields.ImageField) and isinstance(field.\n widget, forms.widgets.ClearableFileInput):\n field.widget = widgets.ImageThumbnailWidget()\n return field\n",
"role": "user"
},
{
"content": "customize_form_field",
"role": "assistant"
}
] |
def x(self, context, field, default=None):
default = None
for form_field in self.form:
if form_field.name == field:
default = form_field.label
break
return super(SmartFormMixin, self).lookup_field_label(context, field,
default=default)
|
lookup_field_label
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context, field, default=None):\n default = None\n for form_field in self.form:\n if form_field.name == field:\n default = form_field.label\n break\n return super(SmartFormMixin, self).lookup_field_label(context, field,\n default=default)\n",
"role": "user"
},
{
"content": "lookup_field_label",
"role": "assistant"
}
] |
def x(self, field, default=None):
default = None
for form_field in self.form:
if form_field.name == field:
default = form_field.help_text
break
return super(SmartFormMixin, self).lookup_field_help(field, default=default
)
|
lookup_field_help
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field, default=None):\n default = None\n for form_field in self.form:\n if form_field.name == field:\n default = form_field.help_text\n break\n return super(SmartFormMixin, self).lookup_field_help(field, default=default\n )\n",
"role": "user"
},
{
"content": "lookup_field_help",
"role": "assistant"
}
] |
def x(self):
readonly = list(self.readonly)
for key, value in self.field_config.items():
if 'readonly' in value and value['readonly']:
readonly.append(key)
return readonly
|
derive_readonly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n readonly = list(self.readonly)\n for key, value in self.field_config.items():\n if 'readonly' in value and value['readonly']:\n readonly.append(key)\n return readonly\n",
"role": "user"
},
{
"content": "derive_readonly",
"role": "assistant"
}
] |
def x(self):
if self.fields is not None:
fields = list(self.fields)
else:
form = self.form
fields = []
for field in form:
fields.append(field.name)
readonly = self.derive_readonly()
if readonly:
fields += readonly
for exclude in self.derive_exclude():
if exclude in fields:
fields.remove(exclude)
return fields
|
derive_fields
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.fields is not None:\n fields = list(self.fields)\n else:\n form = self.form\n fields = []\n for field in form:\n fields.append(field.name)\n readonly = self.derive_readonly()\n if readonly:\n fields += readonly\n for exclude in self.derive_exclude():\n if exclude in fields:\n fields.remove(exclude)\n return fields\n",
"role": "user"
},
{
"content": "derive_fields",
"role": "assistant"
}
] |
def x(self):
if self.form_class:
form_class = self.form_class
else:
if self.model is not None:
model = self.model
elif hasattr(self, 'object') and self.object is not None:
model = self.object.__class__
else:
model = self.get_queryset().model
factory_kwargs = self.get_factory_kwargs()
form_class = model_forms.modelform_factory(model, **factory_kwargs)
return form_class
|
get_form_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.form_class:\n form_class = self.form_class\n else:\n if self.model is not None:\n model = self.model\n elif hasattr(self, 'object') and self.object is not None:\n model = self.object.__class__\n else:\n model = self.get_queryset().model\n factory_kwargs = self.get_factory_kwargs()\n form_class = model_forms.modelform_factory(model, **factory_kwargs)\n return form_class\n",
"role": "user"
},
{
"content": "get_form_class",
"role": "assistant"
}
] |
def x(self):
params = dict()
exclude = self.derive_exclude()
exclude += self.derive_readonly()
if self.fields:
fields = list(self.fields)
for ex in exclude:
if ex in fields:
fields.remove(ex)
params['fields'] = fields
if exclude:
params['exclude'] = exclude
return params
|
get_factory_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n params = dict()\n exclude = self.derive_exclude()\n exclude += self.derive_readonly()\n if self.fields:\n fields = list(self.fields)\n for ex in exclude:\n if ex in fields:\n fields.remove(ex)\n params['fields'] = fields\n if exclude:\n params['exclude'] = exclude\n return params\n",
"role": "user"
},
{
"content": "get_factory_kwargs",
"role": "assistant"
}
] |
def x(self):
if self.success_url:
if self.success_url.find('@') > 0:
return smart_url(self.success_url, self.object)
else:
return smart_url(self.success_url, None)
elif 'loc' in self.form.cleaned_data:
return self.form.cleaned_data['loc']
raise ImproperlyConfigured(
'No redirect location found, override get_success_url to not use redirect urls'
)
|
get_success_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.success_url:\n if self.success_url.find('@') > 0:\n return smart_url(self.success_url, self.object)\n else:\n return smart_url(self.success_url, None)\n elif 'loc' in self.form.cleaned_data:\n return self.form.cleaned_data['loc']\n raise ImproperlyConfigured(\n 'No redirect location found, override get_success_url to not use redirect urls'\n )\n",
"role": "user"
},
{
"content": "get_success_url",
"role": "assistant"
}
] |
def x(self):
kwargs = super(SmartFormMixin, self).get_form_kwargs()
kwargs['initial'] = self.derive_initial()
return kwargs
|
get_form_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n kwargs = super(SmartFormMixin, self).get_form_kwargs()\n kwargs['initial'] = self.derive_initial()\n return kwargs\n",
"role": "user"
},
{
"content": "get_form_kwargs",
"role": "assistant"
}
] |
def x(self):
if not self.title:
return _('Create %s') % force_text(self.model._meta.verbose_name
).title()
else:
return self.title
|
derive_title
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.title:\n return _('Create %s') % force_text(self.model._meta.verbose_name\n ).title()\n else:\n return self.title\n",
"role": "user"
},
{
"content": "derive_title",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.