blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
00ccabca272902bdb95981e4071b71dd97536bfb
Python
jmberros/stem-loop
/bin/slice-fastas.py
UTF-8
2,272
2.84375
3
[]
no_license
#!/usr/bin/python #-*- encoding:utf-8 -*- import sys import os import argparse from Bio import SeqIO from Bio.SeqRecord import SeqRecord def slice_fasta(filename, subseq_name, start, end, subdir): # "Negative" nucleotides won't work for the slicing if start < 0: start = 0 print "Warning! {} had a negative start nucleotide. I assigned 0.".format(filename) if end < 0: end = 0 print "Warning! {} had a negative end nucleotide. I assigned 0.".format(filename) is_antisense = end < start seq_record = SeqIO.read(filename, "fasta") if not os.path.exists(subdir): os.makedirs(subdir) subseq_filename = subdir + "/" + \ filename.replace(".fa", "__sliced_{}.fa".format(subseq_name)) if is_antisense: #seq = seq_record.reverse_complement().seq seq = seq_record.seq subseq_record = SeqRecord(seq[end-1:start]) # Include limits of range subseq_record.description = "from {} to {}".format(end, start) else: seq = seq_record.seq subseq_record = SeqRecord(seq[start-1:end]) # Include limits of range subseq_record.description = "{} from {} to {}".format(seq_record.name, start, end) subseq_record.id = "{}_{}".format(seq_record.name, subseq_name) with open(subseq_filename, "w") as file: file.write(subseq_record.format("fasta")) return subseq_filename if os.path.isfile(subseq_filename) else None if __name__ == "__main__": parser = argparse.ArgumentParser(description="Slice FASTAs") parser.add_argument("filename", help="FASTA to slice") parser.add_argument("--subdir", default="sliced-fastas", help="Subdirectory to move sliced files") parser.add_argument("--name", help="Subsequence name") parser.add_argument("-f", "--from", type=int, help="Start nucleotide", required=True) parser.add_argument("-t", "--to", type=int, help="End nucleotide", required=True) for line in sys.stdin: args = line.rstrip("\n").split(" ") args = vars(parser.parse_args(args)) subseq_filename= slice_fasta( filename=args['filename'], subseq_name=args['name'], start=args['from'], end=args['to'], subdir=args['subdir'] ) print subseq_filename
true
ca2345559a8d296488f1031b2382db71af57b8e4
Python
AkaiTobira/TetrisAgents
/Libraries/game_master.py
UTF-8
2,572
2.84375
3
[]
no_license
import pygame import time import enum from Libraries.Structures.tetrisGame import Tetris from Libraries.game import Game from Libraries.presenter import Presenter from Libraries.tester import Tester from Libraries.consts import * class GameState(Enum): LearningApp = 1, PresentingApp = 2, TestingApp = 3, class StateChanger: activeApp = None apps = {} def get_state(self, state): if state == GameState.LearningApp: if not 1 in self.apps.keys(): self.apps[1] = Game((250,860), "Tetris") self.activeApp = self.apps[1] return self.activeApp if state == GameState.TestingApp: if not 3 in self.apps.keys(): self.apps[3] = Tester((250,860), "Tetris") self.activeApp = self.apps[3] return self.activeApp if state == GameState.PresentingApp: if not 2 in self.apps.keys(): self.apps[2] = Presenter((int(1300 * NUMBER_OF_SCREENS/5.0) ,860), "Tetris") self.activeApp = self.apps[2] return self.activeApp class GameMaster: stateSwitcher = None activeScreen = None activeState = GameState.LearningApp running = True def __init__(self): pygame.mouse.set_visible(False) self.stateSwitcher = StateChanger() self.activeScreen = self.stateSwitcher.get_state(self.activeState) def process(self): while True: event = pygame.event.poll() if event.type == pygame.NOEVENT: return if event.type == pygame.QUIT: self.running = False return self.process_change_app(event) self.activeScreen.process(event) def process_change_app(self, event): if event.type == pygame.KEYUP: last_state = self.activeState if event.key == AppKeys.ChangeScreen: self.activeState = GameState.LearningApp if event.key == AppKeys.ChangeScreen2: self.activeState = GameState.PresentingApp if event.key == AppKeys.ChangeScreen3: self.activeState = GameState.TestingApp if last_state != self.activeState: self.activeScreen = self.stateSwitcher.get_state(self.activeState) self.activeScreen.reset_resolution() def update(self, delta): self.activeScreen.update(delta) def draw(self,): self.activeScreen.draw() def is_running(self): return self.running
true
4b32154f1f0fd3a8598c61f26d510ca1b5575df9
Python
cryptolovers-tipbots/words2binary_converter
/Words2Binary.py
UTF-8
1,700
3.4375
3
[]
no_license
# Auto converter words to Binary or hex(later) s = input() def binary(input): encrypt = {'A': '01000001', 'B': '01000010', 'C': '01000011', 'D': '01000100', 'E': '01000101', 'F': '01000110', 'G': '01000111', 'H': '01001000', 'I': '01001001', 'J': '01001010', 'K': '01001011', 'L': '01001100', 'M': '01001101', 'N': '01001110', 'O': '01001111', 'P': '01010000', 'Q': '01010001', 'R': '01010010', 'S': '01010011', 'T': '01010100', 'U': '01010101', 'V': '01010110', 'W': '01010111', 'X': '01011000', 'Y': '01011001', 'Z': '01011010', 'a': '01100001', 'b': '01100010', 'c': '01100011', 'd': '01100100', 'e': '01100101', 'f': '01100110', 'g': '01100111', 'h': '01101000', 'i': '01101001', 'j': '01101010', 'k': '01101011', 'l': '01101100', 'm': '01101101', 'n': '01101110', 'o': '01101111', 'p': '01110000', 'q': '01110001', 'r': '01110010', 's': '01110011', 't': '01110100', 'u': '01110101', 'v': '01110110', 'w': '01110111', 'x': '01111000', 'y': '01111001', 'z': '01111010'} decrypt = {value: key for key, value in encrypt.items()} if '1' in input: return ''.join(decrypt[i] for i in input.split()) return ' '.join(encrypt[i] for i in input.__str__()) print(binary(s)) #takes single word input uppercase or lower and returns the letters in Binary and then can be converted back into original word. # this was a full out learning experience for me never worked with a dic{} before. Leared alot and it was fun, But would like to figure out how to input sentances but the throw an error on the spacing. Cant figure out a way to code around it any ideas?
true
07ead8857ccba543a15f3123d5f6a190201148a7
Python
maina2998/python_test.py
/python_test.py
UTF-8
1,048
4.03125
4
[]
no_license
y =[] x =[100,110,120,130,140,150] for d in x: if d * 5: y.append(x) print(x) def divisible_by_three(n): for x in n: n = 10 if x % 3 == 0: print("{} is divisible by three".format(x)) else: print("{} is not divisible by three".format(x)) y =[] def flatten_the_lists(l): flist =[] flist.extend([l]) if(type(l)is not list): return flist else: x =[[1,2],[3,4],[5,6]] flist=flatten_the_lists(x) print(flist) def divisible_by_seven(): x in range(100,200) for y in x: if y % 7 != 0: print("{} is divisible by 7 ".format(y)) else: print("{} not divisible by 7". format(y)) def greetings(*args): students =[{"age":19, "name":"Eunice"}, {"age":21, "name":"Agnes"}, {"age":18, "name":"Teresa"}, {"age":22, "name":"Asha"}] for student in greetings: print(f"Hello {args.name} , you were born in the year {args.year}") greetings()
true
00502f082d3df5472daae4246cdbe3902234482f
Python
KimYeong-su/Baekjoon
/python/1074_Z.py
UTF-8
1,335
3.359375
3
[]
no_license
''' 1074_Z sol) col๊ณผ row์˜ ๋‚˜๋จธ์ง€๋ฅผ ํ†ตํ•ด ์–ด๋А๋งŒํผ์˜ ๊ฐ’์ด ๋”ํ•ด์ ธ์•ผํ•˜๋Š”์ง€๋ฅผ ํŒ๋‹จ ๋˜ํ•œ ๊ฐ€์žฅ ํฐ ์‚ฌ๊ฐํ˜•์—์„œ ์ ์  ์ž‘์•„์งˆ ์ˆ˜๋ก 4์˜ ๋ฐฐ์ˆ˜๋กœ ๋‚˜๋ˆ ์ง„๋‹ค๋Š” ๊ฒƒ์„ ์ƒ๊ฐ!! ์ •์‚ฌ๊ฐํ˜•์˜ ๋„“์ด๋Š” ๊ธธ์ด์˜ ์ œ๊ณฑ์˜ ๋น„๋ก€ ํ•œ๋‹ค๋Š” ๊ฑฐ.. ์ด๊ฑธ ๋†“์น˜๋ฉด ํž˜๋“ญ๋‹ˆ๋‹ค. ์ง„์งœ ์ฝ”๋“œ๋ฅผ ๋”๋Ÿฝ๊ฒŒ ์งฐ๋Š”๋ฐ ๊ฐ๊ฐ์˜ row๋Š” 2์˜ ๋ฐฐ์ˆ˜๋กœ ์ปค์ง€๊ณ  col์€ 1์”ฉ ์ปค์ง„๋‹ค๋Š” ์ ์„ ์ƒ๊ฐํ•ด ๊ทธ๋ƒฅ 2์ง„์ˆ˜๋กœ ๋ฐ”๊ฟ”์„œ ์ž๋ฆฌ๋งˆ๋‹ค์˜ ํฌ๊ธฐ๋ฅผ ์ด์šฉํ•œ๋‹ค๋ฉด ๋‹จ 2์ค„๋กœ ํ’€์ˆ˜ ์žˆ๋‹ค๋Š” ์ .. ''' def z_potition(size, tr, tc, result): global answer if size==0: answer = result return if tr < 2**(size-1) and tc < 2**(size-1): z_potition(size-1, tr%2**(size-1), tc%2**(size-1), result+4**(size-1)*0) elif tr < 2**(size-1) and tc >= 2**(size-1): z_potition(size-1, tr%2**(size-1), tc%2**(size-1), result+4**(size-1)*1) elif tr >= 2**(size-1) and tc < 2**(size-1): z_potition(size-1, tr%2**(size-1), tc%2**(size-1), result+4**(size-1)*2) elif tr >= 2**(size-1) and tc >= 2**(size-1): z_potition(size-1, tr%2**(size-1), tc%2**(size-1), result+4**(size-1)*3) N, r, c = map(int,input().split()) answer = 0 z_potition(N, r, c, 0) print(answer) # n,r,c=map(int,input().split()) # print(int(f'{c:b}',4)+2*int(f'{r:b}',4))
true
9791deeec7c9c5bef473bdb48113f4d4d71d9fe4
Python
donadivarun/MLCMS
/MLCMS-master/gui2.py
UTF-8
3,659
2.859375
3
[]
no_license
import wx import sys import system as model import json def initialize_system(file_name): """ Reads the scenario file and initializes the system :param file_name: :return: """ with open(file_name) as scenario: data = json.load(scenario) rows = data['rows'] cols = data['cols'] system = model.System(cols, rows) for col, row in data['pedestrians']: system.add_pedestrian_at((col, row)) for col, row in data['obstacles']: system.add_obstacle_at((col, row)) col, row = data['target'] target = system.add_target_at((col, row)) #model.evaluate_cell_distance(system, target) return system class Frame(wx.Frame): def __init__(self, parent, system): wx.Frame.__init__(self, parent) self.system = system self.cell_size = 10 self.InitUI() def InitUI(self): self.SetTitle("Cellular Automaton") self.SetSize((self.system.cols + 10) * self.cell_size, (self.system.rows + 10) * self.cell_size) self.canvas_panel = Canvas(self) self.button_panel = ButtonPanel(self) sizer_1 = wx.BoxSizer(wx.HORIZONTAL) sizer_1.Add(self.canvas_panel, 1, wx.EXPAND | wx.ALL, 0) sizer_1.Add(self.button_panel, 0, wx.EXPAND | wx.ALL, 1) self.SetSizer(sizer_1) self.Layout() # self.Centre() class Canvas(wx.Panel): def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0, name="Canvas"): super(Canvas, self).__init__(parent, id, pos, size, style, name) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_PAINT, self.OnPaint) self.parent = parent def OnSize(self, event): self.Refresh() # MUST have this, else the rectangle gets rendered corruptly when resizing the window! #event.Skip() # seems to reduce the ammount of OnSize and OnPaint events generated when resizing the window def OnPaint(self, event): dc = wx.PaintDC(self) dc.Clear() # print(self.parent.system.__str__()) for row in self.parent.system.grid: for cell in row: dc.SetBrush(wx.Brush(cell.state)) dc.DrawRectangle(cell.row * self.parent.cell_size, cell.col * self.parent.cell_size, self.parent.cell_size, self.parent.cell_size) def color_gui(self, event): self.parent.system.update_sys() self.OnPaint(event) class ButtonPanel(wx.Panel): def __init__(self, parent: Frame, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0, name="ButtonPanel"): super(ButtonPanel, self).__init__(parent, id, pos, size, style, name) self.SetSize(10*parent.cell_size, parent.system.rows*parent.cell_size) self.button_start = wx.Button(self, -1, "Start") self.button_start.Bind(wx.EVT_BUTTON, parent.canvas_panel.color_gui) self.button_stop = wx.Button(self, -1, "Stop") self.button_step = wx.Button(self, -1, "Step") sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add(self.button_start, 1, 0) sizer_1.Add(self.button_stop, 1, wx.EXPAND | wx.ALL, 0) sizer_1.Add(self.button_step, 1, wx.EXPAND | wx.ALL, 0) self.SetSizer(sizer_1) self.Layout() def main(): # file_name = input("Please enter a scenario file name: ") app = wx.App() # gui = Frame(parent= None, system=initialize_system('Scenarios/' + file_name)) gui = Frame(parent=None, system=initialize_system('Scenarios/scenario_task2.json')) gui.Show() app.MainLoop() if __name__ == '__main__': main()
true
52b3000009ce20e2c3a9c0f234055086a168376e
Python
ek-ok/deep-cupid
/char_rnn.py
UTF-8
5,689
2.71875
3
[]
no_license
import tensorflow as tf import numpy as np class CharRNN(): def __init__(self, char_to_ind, batch_shape, rnn_size, num_layers, learning_rate, grad_clip, predict=False): self.char_to_ind = char_to_ind self.num_classes = len(char_to_ind) self.num_samples, self.num_chars = batch_shape self.rnn_size = rnn_size self.num_layers = num_layers self.learning_rate = learning_rate self.grad_clip = grad_clip if predict: self.num_samples, self.num_chars = (1, 1) self.checkpoint = tf.train.latest_checkpoint('checkpoints') self.build_network() def build_network(self): tf.reset_default_graph() self.build_inputs_layer() self.build_rnn_layer() self.build_outputs_layer() self.build_loss() self.build_optimizer() self.saver = tf.train.Saver() def build_inputs_layer(self): """build the input layer""" shape = (self.num_samples, self.num_chars) self.inputs = tf.placeholder(tf.int32, shape=shape, name='inputs') self.targets = tf.placeholder(tf.int32, shape=shape, name='targets') self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.rnn_inputs = tf.one_hot(self.inputs, self.num_classes) def build_rnn_layer(self): cell = tf.contrib.rnn.BasicLSTMCell cells = [cell(self.rnn_size) for _ in range(self.num_layers)] rnn = tf.contrib.rnn.MultiRNNCell(cells) rnn = tf.contrib.rnn.DropoutWrapper(rnn, output_keep_prob=self.keep_prob) # noqa E501 self.initial_state = rnn.zero_state(self.num_samples, dtype=tf.float32) self.rnn_outputs, self.final_state = tf.nn.dynamic_rnn( rnn, self.rnn_inputs, initial_state=self.initial_state) def build_outputs_layer(self): """build the output layer""" # Concatenate the output of rnn_cell๏ผŒ # Example: [[1,2,3],[4,5,6]] -> [1,2,3,4,5,6] output = tf.concat(self.rnn_outputs, axis=1) x = tf.reshape(output, [-1, self.rnn_size]) with tf.variable_scope('softmax'): shape = [self.rnn_size, self.num_classes] w = tf.Variable(tf.truncated_normal(shape, stddev=0.1)) b = tf.Variable(tf.zeros(self.num_classes)) self.logits = tf.matmul(x, w) + b self.prob_pred = tf.nn.softmax(self.logits, name='predictions') def build_loss(self): """calculate loss according to logits and targets""" # One-hot coding y_one_hot = tf.one_hot(self.targets, self.num_classes) y_reshaped = tf.reshape(y_one_hot, self.logits.get_shape()) # Softmax cross entropy loss loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.logits, labels=y_reshaped) self.loss = tf.reduce_mean(loss) def build_optimizer(self): adam = tf.train.AdamOptimizer(learning_rate=self.learning_rate) gradients, variables = zip(*adam.compute_gradients(self.loss)) gradients, _ = tf.clip_by_global_norm(gradients, self.grad_clip) self.optimizer = adam.apply_gradients(zip(gradients, variables)) def train(self, batches, iters, keep_prob=0.5): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) new_state = sess.run(self.initial_state) for i in range(iters): x, y = next(batches) feed = {self.inputs: x, self.targets: y, self.keep_prob: keep_prob, self.initial_state: new_state} loss, new_state, _ = sess.run([self.loss, self.final_state, self.optimizer], feed_dict=feed) if i % 200 == 0: print(f'step: {i} loss: {loss:.4f}') self.saver.save(sess, f'checkpoints/i{i}_l{self.rnn_size}_ckpt') # noqa E501 def sample_top_n(self, preds, top_n=5): """Choose top_n most possible characters in predictions""" # Set all values other that top_n choices to 0 p = np.squeeze(preds) p[np.argsort(p)[:-top_n]] = 0 # Normalization p = p / np.sum(p) # Randomly choose one character c = np.random.choice(self.num_classes, 1, p=p)[0] return c def predict(self, prime, num_char): ind_to_char = {v: k for k, v in self.char_to_ind.items()} input_chars = [self.char_to_ind[s] for s in list(prime)] output_chars = [] output_char = input_chars[-1] with tf.Session() as sess: self.saver.restore(sess, self.checkpoint) state = sess.run(self.initial_state) # Loop for inputs for input_char in input_chars: feed = {self.inputs: [[input_char]], self.initial_state: state, self.keep_prob: 1.} state = sess.run(self.final_state, feed_dict=feed) # Loop for prediction for _ in range(num_char): feed = {self.inputs: [[output_char]], self.initial_state: state, self.keep_prob: 1.} preds, state = sess.run([self.prob_pred, self.final_state], feed_dict=feed) output_char = self.sample_top_n(preds, 5) output_chars.append(ind_to_char[output_char]) return prime + ''.join(output_chars)
true
ddcef4292b9c34a778cfcd88fd208dee31fd7b5f
Python
PaulHancock/Aegean
/tests/unit/test_cluster.py
UTF-8
5,404
2.578125
3
[ "AFL-3.0" ]
permissive
#! /usr/bin/env python """ Test cluster.py """ import logging import math from copy import deepcopy import numpy as np from AegeanTools import catalogs, cluster, wcs_helpers from AegeanTools.models import SimpleSource from astropy.io import fits __author__ = 'Paul Hancock' logging.basicConfig(format="%(module)s:%(levelname)s %(message)s") log = logging.getLogger("Aegean") log.setLevel(logging.INFO) def test_norm_dist(): """Test norm_dist""" src1 = SimpleSource() src1.ra = 0 src1.dec = 0 src1.a = 1. src1.b = 1. src1.pa = 0. src2 = SimpleSource() src2.ra = 0 src2.dec = 1/3600. src2.a = 1 src2.b = 1 src2.pa = 0. if not cluster.norm_dist(src1, src1) == 0: raise AssertionError() if not cluster.norm_dist(src1, src2) == 1/math.sqrt(2): raise AssertionError() def test_sky_dist(): """Test sky_dist""" src1 = SimpleSource() src1.ra = 0 src1.dec = 0 src2 = SimpleSource() src2.ra = 0 src2.dec = 1/3600. if not cluster.sky_dist(src1, src1) == 0.: raise AssertionError() if not cluster.sky_dist(src1, src2) == 1/3600.: raise AssertionError() def test_vectorized(): """Test that norm_dist and sky_dist can be vectorized""" # random data as struct array with interface like SimpleSource X = np.random.RandomState(0).rand(20, 6) Xr = np.rec.array(X.view([('ra', 'f8'), ('dec', 'f8'), ('a', 'f8'), ('b', 'f8'), ('pa', 'f8'), ('peak_flux', 'f8')]).ravel()) def to_ss(x): "Convert numpy.rec to SimpleSource" out = SimpleSource() for f in Xr.dtype.names: setattr(out, f, getattr(x, f)) return out for dist in [cluster.norm_dist, cluster.sky_dist]: x0 = Xr[0] # calculate distance of x0 to all of Xr with vectorized operations: dx0all = dist(x0, Xr) for i, xi in enumerate(Xr): dx0xi = dist(x0, xi) # check equivalence between pairs of sources and vectorized if not np.isclose(dx0xi, dx0all[i], atol=0): raise AssertionError() # check equivalence between SimpleSource and numpy.record if not np.isclose(dx0xi, dist(to_ss(x0), to_ss(xi)), atol=0): raise AssertionError() def test_pairwise_elliptical_binary(): """Test pairwise_elliptical_binary distance""" src1 = SimpleSource() src1.ra = 0 src1.dec = 0 src1.a = 1. src1.b = 1. src1.pa = 0. src2 = deepcopy(src1) src2.dec = 1/3600. src3 = deepcopy(src1) src3.dec = 50 mat = cluster.pairwise_ellpitical_binary([src1, src2, src3], eps=0.5) if not np.all(mat == [[False, True, False], [True, False, False], [False, False, False]]): raise AssertionError() def test_regroup(): """Test that regroup does things""" # this should throw an attribute error try: cluster.regroup([1], eps=1) except AttributeError as e: print(f"Correctly raised error {type(e)}") # this should result in 51 groups a = cluster.regroup('tests/test_files/1904_comp.fits', eps=1/3600.) if not len(a) == 51: raise AssertionError( "Regroup with eps=1/3600. gave {0} groups instead of 51" .format(len(a))) # this should give 1 group a = cluster.regroup('tests/test_files/1904_comp.fits', eps=10, far=1000) if not len(a) == 1: raise AssertionError( "Regroup with eps=10, far=1000. gave {0} groups instead of 51" .format(len(a))) def test_regroup_dbscan(): table = catalogs.load_table('tests/test_files/1904_comp.fits') srccat = catalogs.table_to_source_list(table) a = cluster.regroup_dbscan(srccat, eps=1/3600.) if not len(a) == 51: raise AssertionError( "Regroup_dbscan with eps=1/3600. gave {0} groups instead of 51" .format(len(a))) return def test_resize_ratio(): """Test that resize works with ratio""" # Load a table table = catalogs.load_table('tests/test_files/1904_comp.fits') srccat = catalogs.table_to_source_list(table) first = deepcopy(srccat[0]) out = cluster.resize(deepcopy(srccat), ratio=1) if not ((first.a - out[0].a < 1e-9) and (first.b - out[0].b < 1e-9)): raise AssertionError("resize of 1 is not identity") return def test_resize_psfhelper(): """Test that resize works with psfhelpers""" # Load a table table = catalogs.load_table('tests/test_files/1904_comp.fits') srccat = catalogs.table_to_source_list(table) # make psfhelper head = fits.getheader('tests/test_files/1904-66_SIN.fits') psfhelper = wcs_helpers.WCSHelper.from_header(head) first = deepcopy(srccat[0]) out = cluster.resize(deepcopy(srccat), psfhelper=psfhelper) print(first.a, out[0].a) if not ((first.a - out[0].a < 1e-9) and (first.b - out[0].b < 1e-9)): raise AssertionError("resize with psfhelper is not identity") return if __name__ == "__main__": # introspect and run all the functions starting with 'test' for f in dir(): if f.startswith('test'): print(f) globals()[f]()
true
eea41ede11f47409661461ed44a93ce333cfc195
Python
dillonhicks/ipymake
/branches/devel-0.2-alpha/examples/kusp/subsystems/datastreams/postprocess/headfilter.py
UTF-8
6,651
2.625
3
[]
no_license
import filtering import entities import thread import time import inputs import copy import sys class HeadFilter(filtering.Filter): """this is the first filter in a pipeline, and has an execution loop which drives the rest of the pipeline""" #debug_flag = True def choose_next(self, entitydict): """entitydict is a mapping from source ids (which can be used to reference source objects in self.sources) to the next available entity for that source. this function examines these entities and returns the source id of the source to obtain the next event.""" raise Exception("Abstract Method") def preprocess(self, entity): """any processing that needs to be done to an entity BEFORE a decision is made to choose the next entity. you may return None if the entity is to be rejected.""" return entity def postprocess(self, entity): """any processing that needs to be done to an entity AFTER a decision is made to choose the next entity""" return entity def open_sources(self): """initialization step. create any sources here and install them with add_input_source. this function is called from establish_connections() and after it completes, each source will be individually opened""" pass def __init__(self, params): filtering.Filter.__init__(self, params) # a dictionary of named input sources. each one maps to an InputSource # object. the run() method iterates through all the sources and # sends them in chronological order to the filters self.sources = {} # a dictionary, with each key being an input source. the value # is another dictionary, which maps entity composite IDs from that # source to composite IDs in the merged namespace. if a composite id # is not present in this dictionary, it will be unmodified. self.remapping = {} # This dictionary maps input source names to the next available # entity for that input source self.next_entity = {} self.lock = thread.allocate_lock() self.terminate_flag = False def stop(self): self.debug("stop called") self.lock.acquire() self.terminate_flag = True self.lock.release() def run(self): """main execution function which drives entire pipeline. entities are demultiplexed from the input sources and pushed chronologically through the pipeline until there are no more entities. you must have first called establish_connections() before you can call run()""" self.nsevent = self.namespace["DSTREAM_ADMIN_FAM/NAMESPACE"].get_id() # build the next_entity dictionary self.lock.acquire() for sourceid, source in self.sources.iteritems(): entity = self.fetch(sourceid) if entity.message == entities.PIPELINE_EOF: self.sources[sourceid].close() else: self.next_entity[sourceid] = entity self.lock.release() # iterate, sending the earliest event down the pipeline, # until there are no more events while(True): self.lock.acquire() if self.terminate_flag or not self.next_entity: self.lock.release() break min_sourceid = self.choose_next(self.next_entity) try: ne = self.next_entity[min_sourceid] ne = self.postprocess(ne) if ne: self.send(ne) except Exception, e: self.info("caught exception "+`e`) self.send(entities.PipelineError()) raise nextent = self.fetch(min_sourceid) if nextent.message == entities.PIPELINE_EOF: self.info("Finished reading data from source "+`min_sourceid`) self.sources[min_sourceid].close() del self.sources[min_sourceid] del self.next_entity[min_sourceid] else: self.next_entity[min_sourceid] = nextent self.lock.release() # all done. send a pipelineend message self.send(entities.PipelineEnd()) def add_input_source(self, source): """add an input source object for this pipeline to read entities from""" self.lock.acquire() sourceid = source.get_name() self.sources[sourceid] = source self.remapping[sourceid] = {} source.open() self.lock.release() def establish_connections(self): """create and open all input sources. this has to be a separate step from run(), because otherwise there will be no way to construct the dependencies""" pass def get_dependencies(self): """return names of pipelines that this depends on for data""" deps = [] self.lock.acquire() for source in self.sources.values(): d = source.get_dependency() if d: deps.append(d) self.lock.release() return deps def process(self, entity): raise Exception("process should never be called on a head filter") def fetch(self, sourceid): """fetch an entity from a named input source, and do some preprocessing before being merged.""" #self.namespace.check_ids() while True: try: entity = self.sources[sourceid].read() except Exception: self.info("ERROR: Failed to read entity from input source "+`sourceid`) self.send(entities.PipelineError()) raise if (entity.message == entities.PIPELINE_EOF or entity.message == entities.PIPELINE_ERROR): # this is a special entity that specifies end-of-file. it gets # passed along so all filters and outputs can close themseleves return entity entity = self.preprocess(entity) if not entity: continue cid = entity.get_cid() if cid == self.nsevent: # this is a namespace event. merge the namespace into our own, # renumbering new families/entities as necessary. any renumbering # done will be noted in the source-specific remapping dictionary # so entities can automatically be renumbered as they come in conflicts, new_ns = self.namespace.merge(entity.get_extra_data()) if conflicts: pass #print "CONFLICTS",conflicts for old_cid, new_cid in conflicts.iteritems(): #print sourceid, old_cid, new_cid self.remapping[sourceid][old_cid] = new_cid # if our namespace wasn't changed, no point in passing along # data. return None, which means 'try again' if not new_ns.values(): continue entity = entity.change_extra_data(new_ns) # the cid is still the value read in from the input source # if during merging this needs to be changed, the cid will be # in the remapping dictionary if cid in self.remapping[sourceid]: #print self.remapping[sourceid] entity = entity.change_cid(self.remapping[sourceid][cid]) # entities can look up their own information in the namespace. # this value is cleared before it is serialized to not waste space try: entity.set_namespace(self.namespace) except Exception, e: self.info("FAIL") raise #print entity return entity
true
6ab8b5bd3125eaf1e9ee191281a0f58a84de60d4
Python
SvenGronauer/successful-ingredients-paper
/sipga/common/online_mean_std.py
UTF-8
2,115
3.21875
3
[]
no_license
import numpy as np import torch class OnlineMeanStd(torch.nn.Module): """Track mean and standard deviation of inputs with incremental formula.""" def __init__(self, epsilon=1e-5, shape=()): super().__init__() self.mean = torch.nn.Parameter(torch.zeros(*shape), requires_grad=False) self.std = torch.nn.Parameter(torch.ones(*shape), requires_grad=False) self.count = torch.nn.Parameter(torch.zeros(1), requires_grad=False) self.eps = epsilon self.bound = 10 self.S = torch.nn.Parameter(torch.zeros(*shape), requires_grad=False) @staticmethod def _convert_to_torch(x): if isinstance(x, np.ndarray): x = torch.from_numpy(x) if isinstance(x, float): x = torch.tensor([x]) # use [] to make tensor torch.Size([1]) if isinstance(x, np.floating): x = torch.tensor([x]) # use [] to make tensor torch.Size([1]) return x def forward(self, x, subtract_mean=True, clip=False): """Make input average free and scale to standard deviation.""" is_numpy = isinstance(x, np.ndarray) x = self._convert_to_torch(x) assert x.shape[-1] == self.mean.shape[-1], \ f'got shape={x.shape} but expected: {self.mean.shape}' if subtract_mean: x_new = (x - self.mean) / (self.std + self.eps) else: x_new = x / (self.std + self.eps) if clip: x_new = torch.clamp(x_new, -self.bound, self.bound) x_new = x_new.numpy() if is_numpy else x_new return x_new def update(self, x) -> None: """Update internals incrementally.""" x = self._convert_to_torch(x) assert len(x.shape) == 1, 'Not implemented for dim > 1.' self.count.data += 1 new_mean = self.mean + (x - self.mean) / self.count new_S = self.S + (x - self.mean) * (x - new_mean) # nn.Parameters cannot be updated directly, must use .data instead self.mean.data = new_mean self.std.data = torch.sqrt(new_S / self.count) self.S.data = new_S
true
a3d0d6d3c2a5dbcea1ea61a641309af3c2db2502
Python
clpetrie/nuclear
/notes/invertP/invertexpm2r.py
UTF-8
815
2.734375
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import random as ran from math import pi num=100000 rmin=0.0 rmax=10.0 a=0.0 b=0.5 #max value of P nbin=50 ranr=[] r=[] mybin=[] for i in range(0,num): temp=0.5*np.log(1/(2*ran.uniform(a,b))) #P=2*exp(-2r) ranr.append(temp) step=(rmax-rmin)/nbin for i in range(0,nbin+1): mybin.append(i*step) P,edges=np.histogram(ranr,bins=mybin) #P=P/(float(np.sum(P))*(edges[1]-edges[0])) #normalize P to add to 1 #for i in range(0,len(edges)-1): # r.append(0.5*(edges[i+1]+edges[i])) P=P/(float(np.sum(P))*(mybin[1]-mybin[0])) #normalize P to add to 1 for i in range(0,len(mybin)-1): r.append(0.5*(mybin[i+1]+mybin[i])) plt.plot(r,P,linewidth=3) print r r=np.arange(rmin,rmax,0.05) plt.plot(r,2.0*np.exp(-2*r),'r',linewidth=2) #plt.xlim(rmin,rmax) plt.show()
true
d7b53b50a7fff94d3e480da4144cc43eb6b6e777
Python
ibrahimsha23/prak_algo
/binary_search_algo.py
UTF-8
1,428
4.21875
4
[]
no_license
import random def generate_random_list(): # Generate Random List random_list = random.sample(range(45), 34) print("Random List is - {0}".format(random_list)) return random_list def sort_list(rlist): # Sorting - Insert Sort for i in range(1, len(rlist)): key = rlist[i] position = i while position > 0 and rlist[position -1] > key: rlist[position] = rlist[position-1] rlist[position - 1] = key position = position - 1 rlist[position] = key print("Sorted List is - {0}".format(rlist)) return rlist def binary_search(rlist, fval): # Binary Search while len(rlist) is not 1: rlist_len = len(rlist) f_ele = rlist[:round(len(rlist)/2)] s_ele = rlist[round(len(rlist)/2):] if f_ele[-1] >= fval: rlist = f_ele continue elif s_ele[-1] >= fval: rlist = s_ele continue else: print("{0} value does not exists".format(fval)) return False print(rlist[0]) if rlist[0] is fval: print("{0} value exists".format(fval)) return True else: print("{0} value does not exists".format(fval)) return False rlist = generate_random_list() sorted_rlist = sort_list(rlist) search_val = int(input("Enter the search value: ")) binary_search(sorted_rlist, search_val)
true
0d467a899abc4604bb898045005c4f6a2c953fb0
Python
BohdanKryven/Python-Orion-basic-
/homework_14_decorators_practice/2_task.py
UTF-8
787
3.359375
3
[]
no_license
class WrongType(Exception): pass class DecoratorTypeR: def __init__(self, arg_1, arg_2, arg_3, arg_4): self.arg_1 = arg_1 self.arg_2 = arg_2 self.arg_3 = arg_3 self.arg_4 = arg_4 def __call__(self, func): def wrap(a, b, c): try: if isinstance(a, self.arg_1) and isinstance(b, self.arg_2) and isinstance(c, self.arg_3) \ and isinstance(func(a, b, c), self.arg_4): return func(a, b, c) else: raise WrongType except WrongType: return "Wrong type. Rewrite please" return wrap @DecoratorTypeR(int, float, int, float) def func_(a, b, c): return sum([a, b, c]) print(func_(7, 1.2, 4))
true
ab2bbd2026d9e3fe323a2dc3b818c4e26eb0dcef
Python
wattaihei/ProgrammingContest
/AtCoder/ABC-B/086probB.py
UTF-8
128
3.0625
3
[]
no_license
a, b = map(str, input().split()) X = int(a+b) ans = 'No' for x in range(1001): if x**2 == X: ans = 'Yes' print(ans)
true
3685311cffcce1a0c2491daf109d624eeb457c58
Python
Kingdon065/Replace
/Color/color.py
UTF-8
931
2.859375
3
[]
no_license
#! python3 # _*_ coding: utf-8 _*_ from colorama import init, Fore init(autoreset=False) class Colored: # ๅ‰ๆ™ฏ่‰ฒ:็บข่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def red(self, s): return Fore.LIGHTRED_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:็ปฟ่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def green(self, s): return Fore.LIGHTGREEN_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:้ป„่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def yellow(self, s): return Fore.LIGHTYELLOW_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:็™ฝ่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def white(self,s): return Fore.LIGHTWHITE_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:่“่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def blue(self,s): return Fore.LIGHTBLUE_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:้’่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def cyan(self, s): return Fore.LIGHTCYAN_EX + s + Fore.RESET # ๅ‰ๆ™ฏ่‰ฒ:ๆด‹็บข่‰ฒ ่ƒŒๆ™ฏ่‰ฒ:้ป˜่ฎค def magenta(self, s): return Fore.LIGHTMAGENTA_EX + s + Fore.RESET
true
0c4198d0c08425db431d48b058d8caf814226ef1
Python
gannaramu/LeetCode-1
/python/140_Word_Break_II.py
UTF-8
1,415
3.8125
4
[ "MIT" ]
permissive
""" Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, add spaces in s to construct a sentence where each word is a valid dictionary word. Return all such possible sentences. Note: The same word in the dictionary may be reused multiple times in the segmentation. You may assume the dictionary does not contain duplicate words. Example 1: Input: s = "catsanddog" wordDict = ["cat", "cats", "and", "sand", "dog"] Output: [ "cats and dog", "cat sand dog" ] """ class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> List[str]: """ :type s: str :type wordDict: List[str] :rtype: bool """ wordSet = set(wordDict) from collections import defaultdict memo = defaultdict(list) def DFS(s): """ top-down DFS with memoization """" #nonlocal memo if not s: return [None] if s in memo: return memo[s] for endIndex in range(1, len(s)+1): word = s[:endIndex] if word in wordSet: for sentence in DFS(s[endIndex:]): memo[s].append(word + (' ' + sentence if sentence else '')) return memo[s] DFS(s) return memo[s]
true
10260e79086a7c836e91b11e541b21d38a755d98
Python
avi9839/document-converter
/txt2doc.py
UTF-8
458
2.59375
3
[]
no_license
from docx import Document import re import os path = '/home/tusharsk/Desktop/game_is_on' direct = os.listdir(path) for i in direct: document = Document() document.add_heading(i, 0) myfile = open('/home/tusharsk/Desktop/game_is_on/'+i).read() myfile = re.sub(r'[^\x00-\x7F]+|\x0c',' ', myfile) # remove all non-XML-compatible characters p = document.add_paragraph(myfile) document.save('/home/tusharsk/Desktop/game_is_on'+i+'.docx')
true
de0b738356aa1a45510eedba72ab78386f8952ed
Python
allenmattp/automate
/ch12/tickerScraper.py
UTF-8
2,249
2.84375
3
[]
no_license
import bs4, requests def getQuote(ticker): site = "https://finance.yahoo.com/quote/" + ticker res = requests.get(site) res.raise_for_status() # make sure yahoo is talking to us # collect selections from site soup = bs4.BeautifulSoup(res.text, "html.parser") last_price = soup.select("#quote-header-info > div.My\(6px\).Pos\(r\).smartphone_Mt\(6px\) > div.D\(ib\).Va\(m\).Maw\(65\%\).Ov\(h\) > div > span.Trsdu\(0\.3s\).Fw\(b\).Fz\(36px\).Mb\(-4px\).D\(ib\)") bid = soup.select("#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pend\(12px\).Va\(t\).ie-7_D\(i\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pend\(0px\).smartphone_BdY.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-child(3) > td.Ta\(end\).Fw\(600\).Lh\(14px\) > span") ask = soup.select("#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pend\(12px\).Va\(t\).ie-7_D\(i\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pend\(0px\).smartphone_BdY.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-child(4) > td.Ta\(end\).Fw\(600\).Lh\(14px\) > span") cap = soup.select("#quote-summary > div.D\(ib\).W\(1\/2\).Bxz\(bb\).Pstart\(12px\).Va\(t\).ie-7_D\(i\).ie-7_Pos\(a\).smartphone_D\(b\).smartphone_W\(100\%\).smartphone_Pstart\(0px\).smartphone_BdB.smartphone_Bdc\(\$seperatorColor\) > table > tbody > tr:nth-child(1) > td.Ta\(end\).Fw\(600\).Lh\(14px\) > span") try: print(f"{ticker.upper()}:\nLast price: ${last_price[0].text.strip()}\n" f"Bid: ${bid[0].text.strip()}\n" f"Ask: ${ask[0].text.strip()}\n" f"Market Cap: ${cap[0].text.strip()}") except IndexError: # if a ticker doesn't have data, skip it print(f"Issue with {ticker}... Skipping") def getSymbols(file): # create a list of ticker symbols with open(file, "r") as f: line = f.readline() ticker_list = [] while line: ticker_list.append(line.split()) line = f.readline() f.close() return ticker_list if __name__ == '__main__': ticker_list = getSymbols("symbols.txt") # symbols.txt includes all symbols on file with SEC for ticker in ticker_list: getQuote(ticker[0]) print() # line break
true
2443120e25bc81bb1738c5c338252adb0902dc8e
Python
Helga-Helga/consistency-constraints-recognition
/lab2_max_flow/src/utils.py
UTF-8
1,755
3.421875
3
[]
no_license
from numpy import ( dot, zeros, reshape, where, array, clip, ) lookup_table = zeros((256, 256)) for i in range(256): for j in range(256): lookup_table[i, j] = (i - j) ** 2 def neighbor_exists(i, j, neighbor_index, height, width): """Returns True if a given neighbor exists for a given pixel Parameters ---------- i: unsigned integer Vertical coordinate of a pixel j: unsigned integer Horizontal coordinate of a pixel neighbor_index: belongs to {0, 1, 2, 3} Index of a neighbor height: unsigned integer Image height width: unsigned integer Image width Returns ------- True of False Result depends on existence of a given neighbor """ if neighbor_index == 0 and j > 0: return True elif neighbor_index == 1 and i > 0: return True elif neighbor_index == 2 and j + 1 < width: return True elif neighbor_index == 3 and i + 1 < height: return True else: return False def get_neighbor_coordinate(i, j, neighbor_number): """Calculate coordinate of a given neighbor for a given pixel Parameters ---------- i: unsigned integer Vertical coordinate of a pixel j: unsigned integer Horizontal coordinate of a pixel neighbor_number: number from {0, 1, 2, 3} Neighbor index Returns ------- tuple of unsigned integers Coordinated of neighbor """ if neighbor_number == 0: return i, j - 1 elif neighbor_number == 1: return i - 1, j elif neighbor_number == 2: return i, j + 1 elif neighbor_number == 3: return i + 1, j else: return None, None
true
67c70519ed71add7dfe8f00c4366839f393811f8
Python
chenliang15405/python-learning
/study_day05-ๅคšไปปๅŠก/ๅ็จ‹/01_่ฟญไปฃๅ™จ.py
UTF-8
1,888
4.96875
5
[]
no_license
""" int ็ฑปๅž‹ไธๆ˜ฏๅฏ่ฟญไปฃ็š„็ฑปๅž‹๏ผŒๆ‰€ไปฅไธๅฏไปฅ็›ดๆŽฅ่ฟญไปฃ for i in range(10): print(i) ่ฟ™็งไธๆ˜ฏ้ๅކint็ฑปๅž‹๏ผŒๆ˜ฏ้ๅކไธ€ไธชๅˆ—่กจ๏ผŒrange(10) ๆ˜ฏๅˆ›ๅปบไธ€ไธช1-10็š„ๅˆ—่กจ ๅ…ƒ็ป„ใ€ๅˆ—่กจใ€ๅญ—ๅ…ธใ€ๅญ—็ฌฆไธฒ้ƒฝๆ˜ฏๅฏ่ฟญไปฃ็ฑปๅž‹๏ผŒๆ•ฐๅญ—็ฑปๅž‹้ƒฝๆ˜ฏไธๅฏไปฅ่ฟญไปฃ็š„็ฑปๅž‹ ๆƒณ่ฆๅˆ›ๅปบ็š„ๅฏน่ฑกๅฏไปฅ่ฟญไปฃ๏ผŒ้œ€่ฆ้‡ๅ†™__iter__ๆ–นๆณ•,ๅนถไธ”่ฏฅๆ–นๆณ•้œ€่ฆ่ฟ”ๅ›žไธ€ไธชๅฏน่ฑก็š„ๅผ•็”จ๏ผˆ่ฟ™ไธชๅฏน่ฑกไธญๅฟ…้กปๅŒ…ๅซ__iter__ ๅ’Œ__next__ๆ–นๆณ•๏ผ‰ """ from collections.abc import Iterable print(isinstance("123", Iterable)) """ ่‡ชๅทฑๅฎž็Žฐไธ€ไธชๅฏ่ฟญไปฃ็š„ๅฏน่ฑก""" class Classmate(object): def __init__(self): self.names = list() def add(self, name): self.names.append(name) """ๆƒณ่ฆๅˆ›ๅปบ็š„ๅฏน่ฑกๅฏไปฅ่ฟญไปฃ๏ผŒ้œ€่ฆ้‡ๅ†™__iter__ๆ–นๆณ•,ๅนถไธ”่ฏฅๆ–นๆณ•้œ€่ฆ่ฟ”ๅ›žไธ€ไธชๅฏน่ฑก็š„ๅผ•็”จ๏ผˆ่ฟ™ไธชๅฏน่ฑกไธญๅฟ…้กปๅŒ…ๅซ__iter__ ๅ’Œ__next__ๆ–นๆณ•๏ผ‰""" def __iter__(self): return CalssIterable(self) # ๅฎšไน‰ไธ€ไธช่ฟญไปฃๅ™จ๏ผŒnextๆ–นๆณ•ๅฐฑๆ˜ฏforๅพช็Žฏ่‡ชๅŠจ่ฐƒ็”จ็š„ๆ–นๆณ•๏ผŒ้€š่ฟ‡ๅœจไธŠไธ€ไธชๅฏน่ฑกไธญ่ฟ”ๅ›ž่ฏฅๅฏน่ฑก๏ผŒๅฎž้™…ไธŠ่ฟญไปฃ็š„ๆ—ถๅ€™๏ผŒไฝฟ็”จ็š„ๆ˜ฏ่ฟ™ไธชๅฏน่ฑก class CalssIterable(object): def __init__(self, obj): self.obj = obj self.current_num = 0 def __iter__(self): pass def __next__(self): if self.current_num < len(self.obj.names): ret = self.obj.names[self.current_num] self.current_num += 1 return ret else: raise StopIteration classmate = Classmate() classmate.add("ๅผ ไธ‰") classmate.add("ๆŽๅ››") classmate.add("็Ž‹ไบ” ") print("ๆ˜ฏๅฆๆ˜ฏๅฏ่ฟญไปฃๅฏน่ฑก๏ผš", isinstance(classmate, Iterable)) calssmate_iter = iter(classmate) print("ๅˆคๆ–ญclassmate_iterๆ˜ฏๅฆๆ˜ฏ่ฟญไปฃๅ™จ:", isinstance(calssmate_iter, Iterable)) print(next(calssmate_iter)) for i in classmate: print(i)
true
4c78d3b4d2c237dc31feca8337e6a62136693e85
Python
xuelang201201/PythonCrashCourse
/ๆ•ฐๆฎๅฏ่ง†ๅŒ–/ๅŠจๆ‰‹่ฏ•ไธ€่ฏ•/die_visual.py
UTF-8
872
3.546875
4
[]
no_license
""" ่‡ชๅŠจ็”Ÿๆˆๆ ‡็ญพ๏ผš่ฏทไฟฎๆ”น die_visual.py ๅ’Œ dice_visual.py๏ผŒๅฐ†็”จๆฅ่ฎพ็ฝฎhist.x_labelsๅ€ผ็š„ๅˆ—่กจๆ›ฟๆขไธบไธ€ไธช่‡ชๅŠจ็”Ÿๆˆ่ฟ™็งๅˆ—่กจ็š„ๅพช็Žฏใ€‚ ๅฆ‚ๆžœไฝ ็†Ÿๆ‚‰ๅˆ—่กจ่งฃๆž๏ผŒๅฏๅฐ่ฏ•ๅฐ† die_visual.py ๅ’Œ dice_visual.py ไธญ็š„ๅ…ถไป– for ๅพช็ŽฏไนŸๆ›ฟๆขไธบๅˆ—่กจ่งฃๆžใ€‚ """ import pygal from die import Die # ๅˆ›ๅปบไธ€ไธชD6 die = Die() # ๆŽทๅ‡ ๆฌก้ชฐๅญ๏ผŒๅนถๅฐ†็ป“ๆžœๅญ˜ๅ‚จๅœจไธ€ไธชๅˆ—่กจไธญ results = [die.roll() for roll_num in range(1000)] # ๅˆ†ๆž็ป“ๆžœ frequencies = [results.count(value) for value in range(1, die.num_sides + 1)] # print(frequencies) # ๅฏน็ป“ๆžœ่ฟ›่กŒๅฏ่ง†ๅŒ– hist = pygal.Bar() hist.title = "Results of rolling one D6 1000 times." hist.x_labels = [str(x) for x in range(1, die.num_sides + 1)] hist.x_title = "Result" hist.y_title = "Frequency of Result" hist.add('D6', frequencies) hist.render_to_file('die_visual.svg')
true
617e96aaf22739c43607d6d7833a6e59e23e9799
Python
aarsh-sharma/Competitive-Programming
/CodeChef/KS2.py
UTF-8
209
3.78125
4
[]
no_license
def sumDigit(n): s = 0 while (n > 0): s += n % 10 n = n//10 return s t = int(input()) while(t): t -= 1 n = int(input()) n *= 10 while (sumDigit(n) % 10 != 0): n += 1 print(n)
true
5849576132c0d77baae374f9467dc3f1a9065ca7
Python
isabella232/ignite-python-thin-client
/examples/get_and_put_complex.py
UTF-8
2,239
2.65625
3
[ "Apache-2.0" ]
permissive
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from pyignite import Client from pyignite.datatypes import CollectionObject, MapObject, ObjectArrayObject client = Client() with client.connect('127.0.0.1', 10800): my_cache = client.get_or_create_cache('my cache') value = OrderedDict([(1, 'test'), ('key', 2.0)]) # saving ordered dictionary type_id = MapObject.LINKED_HASH_MAP my_cache.put('my dict', (type_id, value)) result = my_cache.get('my dict') print(result) # (2, OrderedDict([(1, 'test'), ('key', 2.0)])) # saving unordered dictionary type_id = MapObject.HASH_MAP my_cache.put('my dict', (type_id, value)) result = my_cache.get('my dict') print(result) # (1, {'key': 2.0, 1: 'test'}) type_id = CollectionObject.LINKED_LIST value = [1, '2', 3.0] my_cache.put('my list', (type_id, value)) result = my_cache.get('my list') print(result) # (2, [1, '2', 3.0]) type_id = CollectionObject.HASH_SET value = [4, 4, 'test', 5.6] my_cache.put('my set', (type_id, value)) result = my_cache.get('my set') print(result) # (3, [5.6, 4, 'test']) type_id = ObjectArrayObject.OBJECT value = [7, '8', 9.0] my_cache.put( 'my array of objects', (type_id, value), value_hint=ObjectArrayObject # this hint is mandatory! ) result = my_cache.get('my array of objects') print(result) # (-1, [7, '8', 9.0]) my_cache.destroy()
true
01b3ee1be227019b6144e997fd8bffff6616c94c
Python
lyssym/NER-toolkits
/keras_kit/multi/runModel.py
UTF-8
1,305
2.78125
3
[ "MIT" ]
permissive
# _*_ coding: utf-8 _*_ from __future__ import print_function import nltk from .util.preprocessing import addCharInformation, createMatrices, addCasingInformation from .neuralnets.bilstm import BiLSTM import sys if __name__ == '__main__': if len(sys.argv) < 3: print("Usage: python runModel.py modelPath inputPath") exit() modelPath = sys.argv[1] inputPath = sys.argv[2] # :: Read input :: with open(inputPath, 'r') as f: text = f.read() # :: Load the model :: lstmModel = BiLSTM.loadModel(modelPath) # :: Prepare the input :: sentences = [{'tokens': nltk.word_tokenize(sent)} for sent in nltk.sent_tokenize(text)] addCharInformation(sentences) addCasingInformation(sentences) dataMatrix = createMatrices(sentences, lstmModel.mappings, True) # :: Tag the input :: tags = lstmModel.tagSentences(dataMatrix) # :: Output to stdout :: for sentenceIdx in range(len(sentences)): tokens = sentences[sentenceIdx]['tokens'] for tokenIdx in range(len(tokens)): tokenTags = [] for modelName in sorted(tags.keys()): tokenTags.append(tags[modelName][sentenceIdx][tokenIdx]) print("%s\t%s" % (tokens[tokenIdx], "\t".join(tokenTags))) print("")
true
eff1ff235bf5c6df5c41a9a7f7a650ef44b9dbf3
Python
ThomasZumsteg/adventofcode2015
/day16.py
UTF-8
1,860
3.453125
3
[]
no_license
#!/usr/bin/env python3 from get_input import get_input, line_parser import operator def filter_aunts(aunts, props): for prop, test in props.items(): new_aunts = {} for a, props in aunts.items(): if prop not in props or test(props[prop]): new_aunts[a] = props aunts = new_aunts return aunts def part1(aunts, known_pros=None): props = { 'children': lambda v: v == 3, 'cats': lambda v: v == 7, 'samoyeds': lambda v: v == 2, 'pomeranians': lambda v: v == 3, 'akitas': lambda v: v == 0, 'vizslas': lambda v: v == 0, 'goldfish': lambda v: v == 5, 'trees': lambda v: v == 3, 'cars': lambda v: v == 2, 'perfumes': lambda v: v == 1, } aunts = filter_aunts(aunts, props) assert len(aunts) == 1 return list(aunts.keys())[0] def part2(aunts, known_pros=None, compare=None): props = { 'children': lambda v: v == 3, 'cats': lambda v: v > 7, 'samoyeds': lambda v: v == 2, 'pomeranians': lambda v: v < 3, 'akitas': lambda v: v == 0, 'vizslas': lambda v: v == 0, 'goldfish': lambda v: v < 5, 'trees': lambda v: v > 3, 'cars': lambda v: v == 2, 'perfumes': lambda v: v == 1, } aunts = filter_aunts(aunts, props) assert len(aunts) == 1 return list(aunts.keys())[0] def parse(line): aunt_n = line.index(':') aunt = int(line[4:aunt_n]) props = {} for prop in line[aunt_n+2:].split(', '): k, v = prop.split(': ') props[k] = int(v) return (aunt, props) if __name__ == '__main__': aunts = dict(line_parser(get_input(day=16, year=2015), parse=parse)) # Part 1: 103 # Part 2: 405 print("Part 1: {}".format(part1(aunts))) print("Part 2: {}".format(part2(aunts)))
true
e13593c50e95055a4b5dcd06844ef470cf92137f
Python
xuming0629/xm-study
/xm-study/python-test/yearif.py
UTF-8
252
3.609375
4
[]
no_license
year=int(input("่ฏท่พ“ๅ…ฅไธ€ไธชๅนดไปฝ:")) if(year%400==0): print("ๆ˜ฏ้—ฐๅนด") else: if(year%4==0): if(y%100==0): print("ไธๆ˜ฏ้—ฐๅนด") else: print("ๆ˜ฏ้—ฐๅนด") else: print("ไธๆ˜ฏ้—ฐๅนด")
true
78c582ff6fd7db8ea5bc3359baf7d79fd8f9d16f
Python
GbotemiB/Simple-Tasks
/factorial.py
UTF-8
212
3.921875
4
[]
no_license
def fact(n): if n == 1: return 1 return n*fact(n-1) factorialOf = int(input("Enter the number which you seek to find it factorial \n")) print("Factorial of %s :" % factorialOf,fact(factorialOf))
true
a8eec4e77b38e9da8579d3103a0aa55c4db6b92b
Python
pip-install-HSE/TelegramCalendarBot
/bot/keyboards.py
UTF-8
5,592
2.8125
3
[]
no_license
import calendar import re from bot.modules.keyboard import KeyboardInline, KeyboardReply from aiogram import types from datetime import datetime, timedelta import locale import logging def toArray(object): if type(object) == type([]): array = object elif type(object) == type("string") or type(object) == type(0): array = [object] else: array = [] return array def to2Array(object, toString = False): array = toArray(object) for i, data in enumerate(array): if type(data) == type("string") or type(data) == type(0): array[i] = [data] if toString == True: for i, line in enumerate(array): for j, object in enumerate(line): if type(object) == type(0): array[i][j] = str(object) if type(array[i][j]) != type("string"): # print(object, type(object)) array = [[]] break return array def reply(array, one_time_keyboard = False, resize_keyboard = True): array = to2Array(array, True) keyboard = types.ReplyKeyboardMarkup(one_time_keyboard = True, resize_keyboard = True) for line in array: keyboard.row(*line) return keyboard def remove(): return types.ReplyKeyboardRemove() def force_reply(): return types.ForceReply() def url(text, url): keyboard = types.InlineKeyboardMarkup(row_width=1) keyboard.add(types.InlineKeyboardButton(text=text, url=url)) return keyboard def inline(array, callback = None): array = to2Array(array) if callback != None: callback = to2Array(callback) else: callback = array # print(array, callback) max_len = len(max(array, key=len)) keyboard = types.InlineKeyboardMarkup(row_width = max_len) for i, line in enumerate(array): buttons = [] for j, text in enumerate(line): button = types.InlineKeyboardButton(text = text, callback_data = callback[i][j]) buttons.append(button) # print("new line") keyboard.add(*buttons) return keyboard """ keyboard v 1.0 :List of :Dicts where first is :Str name, last is :Str callback. """ menu = KeyboardReply([["ะ—ะฐะฟะธััŒ", "ะกั‚ัƒะดะธั"], ["ะšะฐะบ ะฟั€ะพะตั…ะฐั‚ัŒ?", "ะŸั€ะฐะนั-ะปะธัั‚"]]).get() matches = KeyboardInline([{"<-": "prev", "->": "next"}, {"ะœะตะฝัŽ": "menu"}]).get() back = KeyboardInline([{"ะœะตะฝัŽ": "menu"}]).get() def month(month, year): #locale.setlocale(locale.LC_ALL, "ru") month_array = ['ะฏะฝะฒะฐั€ัŒ', 'ะคะตะฒั€ะฐะปัŒ', 'ะœะฐั€ั‚', 'ะะฟั€ะตะปัŒ', 'ะœะฐะน', 'ะ˜ัŽะฝัŒ', 'ะ˜ัŽะปัŒ', 'ะะฒะณัƒัั‚', 'ะกะตะฝั‚ัะฑั€ัŒ', 'ะžะบั‚ัะฑั€ัŒ', 'ะะพัะฑั€ัŒ','ะ”ะตะบะฐะฑั€ัŒ'] today = datetime.today() current = datetime.today().replace(day=1, month=month, year=year) next = current + timedelta(days=31) prev = current - timedelta(days=1) # month_str = current.strftime("%B") month_str=month_array[current.month-1] month_text=[f"{month_str} {current.year}"] scroll_text = [">>"] month_callback = [f"choose_month {current.strftime('%m.%Y')}"] scroll_callback = [f"set_month {next.strftime('%m.%Y')}"] if current.year > today.year or (current.year == today.year and current.month > today.month): scroll_text = ["<<"] + scroll_text logging.info(scroll_text) month_callback=[f"choose_month {current.strftime('%m.%Y')}"] scroll_callback = [f"set_month {prev.strftime('%m.%Y')}"]+scroll_callback logging.info(scroll_text) return inline( [ month_text, scroll_text, ["ะ’ั‹ะฑั€ะฐั‚ัŒ"] ], [ month_callback, scroll_callback, [f"choose_month {current.strftime('%m.%Y')}"] ] ) def day(month, year): today = datetime.today() current = datetime.today().replace(day=1, month=month, year=year) first_day = 1 count = calendar.mdays[current.month] logging.info(f"Days in month: {count}") if current.month == today.month and current.year == today.year: first_day = today.day count -= (today.day - 1) row_count = count // 8 + (1 if (count % 8) != 0 else 0) count_in_row = count // row_count keyboard = [] for day in range(first_day, first_day + count): if (day - first_day) % count_in_row == 0: keyboard.append([]) keyboard[-1].append(day) callback = [[f"set_day {button//10}{button%10}" for button in row] for row in keyboard] return inline( keyboard+["ะ’ะตั€ะฝัƒั‚ัŒัั ะบ ะฒั‹ะฑะพั€ัƒ ะผะตััั†ะฐ"], callback+ ["choose_month"] ) def time(events): keyboard = [] callback = [] for event in events: start = event['start'].get('dateTime', event['start'].get('date')) start = re.findall(r"\d\d\d\d-\d\d-\d\dT(\d\d:\d\d):\d\d\+\d\d:\d\d", start)[0] end = event['end'].get('dateTime', event['end'].get('date')) end = re.findall(r"\d\d\d\d-\d\d-\d\dT(\d\d:\d\d):\d\d\+\d\d:\d\d", end)[0] try: if(event['description']==None): keyboard.append([f"{start}-{end}"]) callback.append([event['id']]) except: keyboard.append([f"{start}-{end}"]) callback.append([event['id']]) if (keyboard==[]): return None return inline( keyboard+["ะ’ะตั€ะฝัƒั‚ัŒัั ะบ ะฒั‹ะฑะพั€ัƒ ะดะฝั"], callback+ ["choose_day"] )
true
5a16b99cd35a0c482ea68dfb9a1f4ea64b7123b7
Python
gochab/project_calculate_it
/chapter_03.py
UTF-8
340
4.125
4
[]
no_license
def addition(): first_number = 30 second_number = 60 print(first_number + second_number) addition() def multiplication(): first_number = 50 second_number = 20 print(first_number * second_number) multiplication() def height(): heigh = raw_input("What is you weight?") print ("You mesure " + heigh) height()
true
5ffee59e643d7500b9e597a144fb53a9eccb1e21
Python
Aasthaengg/IBMdataset
/Python_codes/p02791/s670187435.py
UTF-8
141
2.96875
3
[]
no_license
n=int(input()) p=list(map(int,input().split())) t=0 ans=0 for i in range(n): if t>=p[i] or t==0: ans+=1 t=p[i] print(ans)
true
a6e390341a306666fba93983a088eee864bfe5d4
Python
KristoferSundequist/Slider
/Dreamer/simple_slider.py
UTF-8
3,905
3.46875
3
[]
no_license
from graphics import * import numpy as np import globals from typing import List ########## ## GAME ## ########## width = globals.width height = globals.height def clear(win): for item in win.items[:]: item.undraw() win.update() class Slider: def __init__(self): self.reset() def reset(self): self.x = float(np.random.randint(50, width - 50)) self.y = float(np.random.randint(50, height - 50)) self.radius = 30 self.speed = 5 # 1 # 0 2 # 3 def push(self, direction): if direction == 0: self.x -= self.speed elif direction == 1: self.y -= self.speed elif direction == 2: self.x += self.speed elif direction == 3: self.y += self.speed def update(self): if self.x + self.radius >= width: self.x = width - self.radius if self.x - self.radius <= 0: self.x = self.radius if self.y + self.radius >= height: self.y = height - self.radius if self.y - self.radius <= 0: self.y = self.radius def render(self, win): c = Circle(Point(self.x, self.y), self.radius) c.setFill("black") c.draw(win) class Target: def __init__(self, radius): self.reset() self.radius = radius def reset(self): self.x = float(np.random.randint(width)) self.y = float(np.random.randint(height)) def render(self, win): c = Circle(Point(self.x, self.y), self.radius) c.setFill("yellow") c.setOutline("yellow") c.draw(win) class Enemy: def __init__(self, radius): self.x = float(np.random.randint(width)) self.y = float(np.random.randint(height)) self.radius = radius def reset(self): self.x = float(np.random.randint(width)) self.y = float(np.random.randint(height)) def render(self, win): c = Circle(Point(self.x, self.y), self.radius) c.setFill("red") c.setOutline("red") c.draw(win) def update(self, sliderx, slidery): if self.x > sliderx: self.x -= 1 else: self.x += 1 if self.y > slidery: self.y -= 1 else: self.y += 1 class Game: state_space_size = 6 action_space_size = 5 def __init__(self): self.s = Slider() self.t = Target(50) self.enemy = Enemy(30) def intersect(self, a, b): return a.radius + b.radius > np.sqrt(np.power(a.x - b.x, 2) + np.power(a.y - b.y, 2)) def get_state(self) -> List[float]: return [ self.s.x / width, self.s.y / height, self.t.x / width, self.t.y / height, self.enemy.x / width, self.enemy.y / height, ] def set_game_state(self, gamestate: List[float]): self.s.x = gamestate[0] * globals.width self.s.y = gamestate[1] * globals.height self.t.x = gamestate[2] * globals.width self.t.y = gamestate[3] * globals.height self.enemy.x = gamestate[4] * globals.width self.enemy.y = gamestate[5] * globals.height def step(self, action): self.s.push(action) self.s.update() self.enemy.update(self.s.x, self.s.y) reward = 0 if self.intersect(self.s, self.t): reward += 0.2 self.t.reset() if self.intersect(self.s, self.enemy): reward -= 1 self.enemy.reset() return reward, self.get_state() # 1 # 0 2 # 3 def render(self, value, reward, win): clear(win) self.t.render(win) self.s.render(win) self.enemy.render(win) Text(Point(250, 250), value).draw(win) Text(Point(300, 300), reward).draw(win)
true
65f00fd9f6863140b9ceff7cbd51bfe9ef9f5322
Python
liquor1014/blog
/blog.py
UTF-8
2,905
2.96875
3
[]
no_license
import os from flask import Flask, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy #ๅˆๅง‹ๅŒ–็จ‹ๅบๅ’Œๆ•ฐๆฎๅบ“ app = Flask(__name__) #ๅˆ›ๅปบๅบ”็”จ็จ‹ๅบๅฏน่ฑก๏ผ› basedir = os.path.abspath(os.path.dirname(__file__)) #่Žทๅ–ๅฝ“ๅ‰็›ฎๅฝ•็š„็ปๅฏน่ทฏๅพ„๏ผ› # print(__file__) # print(basedir) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir,'myblog.db') #sqliteๆ•ฐๆฎๅบ“็š„ๆ–‡ไปถๅญ˜ๆ”พ่ทฏๅพ„ db = SQLAlchemy(app) #ๅฎšไน‰ๅšๅฎขๆ–‡็ซ ๆ•ฐๆฎModel็ฑป class Blog(db.Model): id = db.Column(db.Integer,primary_key= True) title = db.Column(db.String(50)) text = db.Column(db.Text) def __init__(self,title,text): #ๅˆๅง‹ๅŒ–ๆ–นๆณ• self.title = title self.text = text def __repr__(self): return self.title + ":" + self.text # db.create_all() #ๅˆ›ๅปบๆ•ฐๆฎๅบ“ๆ–‡ไปถๅ’Œๆ•ฐๆฎๅบ“่กจ๏ผŒไฝ†ๅช้œ€ๆ“ไฝœไธ€ๆฌก @app.route('/') def home_blog(): ''' ๆธฒๆŸ“้ฆ–้กตHTMLๆจกๆฟๆ–‡ไปถ ''' return render_template('home.html') #ๆŸฅ่ฏขๅšๆ–‡ๅ…จ้ƒจๅˆ—่กจ @app.route('/blogs',methods=['GET']) def list_blog(): blogs = Blog.query.all() return render_template('list.html',blogs = blogs) #ๅˆ›ๅปบblogๆ–‡็ซ  @app.route('/blogs/create',methods=['GET','POST']) def write_blog(): if request.method == 'GET': return render_template('write.html') else: title = request.form['title'] #request.from่Žทๅ–ไปฅpostๆ–นๅผๆไบค็š„ๆ•ฐๆฎ text = request.form['text'] #ๅˆ›ๅปบไธ€ไธชblogๅฏน่ฑก blog = Blog(title = title , text = text) db.session.add(blog) db.session.commit() # ๅฟ…้กปๆไบคๆ‰่ƒฝ็”Ÿๆ•ˆ return redirect('/blogs') # ๅˆ›ๅปบๅฎŒๆˆไน‹ๅŽ้‡ๅฎšๅ‘ๅˆฐๅšๆ–‡ๅˆ—่กจ้กต้ข #blog่ฏฆๆƒ…ๅ’Œๅˆ ้™ค @app.route('/blogs/<uid>', methods=['GET','DELETE']) def del_inquire_blog(uid): if request.method == 'GET': blog = Blog.query.filter_by(id =uid).first_or_404() return render_template('query_blog.html', blog=blog) elif request.method == 'DELETE': blog = Blog.query.filter_by(id =uid).delete() db.session.commit() return 'ok' @app.route('/blogs/update/<id>',methods = ['GET', 'POST']) def update_note(id): ''' ๆ›ดๆ–ฐๅšๆ–‡ ''' if request.method == 'GET': # ๆ นๆฎIDๆŸฅ่ฏขๅšๆ–‡่ฏฆๆƒ… blog = Blog.query.filter_by(id = id).first_or_404() # ๆธฒๆŸ“ไฟฎๆ”น็ฌ”่ฎฐ้กต้ขHTMLๆจกๆฟ return render_template('update_blog.html',blog = blog) else: # ่Žทๅ–่ฏทๆฑ‚็š„ๅšๆ–‡ๆ ‡้ข˜ๅ’Œๆญฃๆ–‡ title = request.form['title'] text = request.form['text'] # ๆ›ดๆ–ฐๅšๆ–‡ blog = Blog.query.filter_by(id = id).update({'title':title,'text':text}) # ๆไบคๆ‰่ƒฝ็”Ÿๆ•ˆ db.session.commit() # ไฟฎๆ”นๅฎŒๆˆไน‹ๅŽ้‡ๅฎšๅ‘ๅˆฐๅšๆ–‡่ฏฆๆƒ…้กต้ข return redirect('/blogs/{id}'.format(id = id)) app.run()
true
1cb1a8b1cddf5b396d9052564010a32d0a25529e
Python
abawgus/Trolin
/DONTTOUCH/TerminalDrivenBackend.py
UTF-8
1,213
3.15625
3
[]
no_license
c=0 #class bg(self): # def f(self): # if bg =='AC': # pass #loc='url' #class Person(name): # """who the player is interacting with""" # if name=='Storey': # pass while c is 0: var=raw_input("Hey welcome to your freshman year! I'm your sibb! It's my job to teach you the ropes here at Olin. You can ask me what like about Olin. Just type ASK WEST HALL to ask me about west hall. When you're ready to enter Olin, say EXIT ") inp=var.split(' ') if inp[0]=='ASK': if inp[1] == 'WEST': var=raw_input("West Hall is where most First Years and Sophmores live.It has a pretty good Lounge culture, with four Lounges that are frequenctly occupied. All of the rooms are doubles; you'll be in one of them. West Hall also has Laundry Room and a Kitchen ") if inp[1] == 'EAST': var=raw_input("East Hall is where most of the Juniors and Seniors live. It has doubles as well as suites. East Hall also has the Piano Room, Bike Room, and Public Saftey. Man Hall is also in East Hall. ") if inp[1] == 'MILAS': var=raw_input("Milas Hall is blahbalh blah insert whatever") if inp[0]=='EXIT': c=1
true
1eb2b793f16fea465fd011b211e4e3c031920fee
Python
jornbergmans/snippets
/02_python/discord/raidcalendar.py
UTF-8
487
2.734375
3
[]
no_license
#!/usr/bin/env python3 import discord TOKEN = 'NjAzMTQxMTQ5NjM2Njg5OTIw.XTbM3w.2VE73TyajD6kg0h2yh0KDYUAZog' client = discord.Client() @client.event async def on_message(message): if message.author.id == client.user.id: return if message.content.startswith('!hello'): msg = 'Hello {0.author.mention}'.format(message) await message.channel.send(msg) @client.event async def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') client.run(TOKEN)
true
7622a94abc9a369c6e7e4349366666b3987e0d80
Python
waynewu6250/LeetCode-Solutions
/852.peak-index-in-a-mountain-array.py
UTF-8
493
2.90625
3
[]
no_license
# # @lc app=leetcode id=852 lang=python3 # # [852] Peak Index in a Mountain Array # # @lc code=start class Solution: def peakIndexInMountainArray(self, A: List[int]) -> int: left = 0 right = len(A)-1 while left + 1 < right: mid = (left+right) // 2 if A[mid] < A[mid+1]: left = mid else: right = mid return left if A[left] > A[right] else right # @lc code=end
true
7c008ac508328fca8a3c2151a78d75e7991c8fc0
Python
OdedMous/Imbalanced-Dataset
/adversarial.py
UTF-8
5,855
3.15625
3
[]
no_license
import copy import models import torch import torch.optim as optim import torch.nn as nn from torch.autograd import Variable import numpy as np import visualizations def adversarial_optimizing_noise(model, org_img, true_label, target_label, regularization="l1"): """ Creates an adversarial image by optimizing some noise, and add it to some original image. :param model: the trained model we want to fool. :param org_img: original image. to it we want to add the noise in order to create the adversarial image. :param true_label: the gold label of org_image. :param target_label: the label we want the trained model will mistakly classify it for the adversarial image. :param regularization: which norm to use in order to keep the noise as low as possibale. :return: noise - the noise we should add to original image in order to create an adversarial image pred_adversarial_label - the last label the trained model predicted to the noise image in the noise optimization iterations. """ # necessary pre-processing target_label = torch.LongTensor([target_label]) # org_img = org_img.unsqueeze(0) # add batch diminsion to org_image # Init value of noise and make its gradients updatable noise = nn.Parameter(data=torch.zeros(1, 3*32*32), requires_grad=True) # gray image #noise = nn.Parameter(data=torch.ones(1, 3*32*32), requires_grad=True) # white image #noise = nn.Parameter(data=torch.randn(1, 3*32*32), requires_grad=True) # gaussion noise # Check classification before modification pred_label = np.argmax(model(org_img).data.numpy()) if true_label != pred_label: print("WARNING: IMAGE WAS NOT CLASSIFIED CORRECTLY") criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(params=[noise], lr=0.001, momentum=0.9) # Noise optimization iterations = 30000 for iteration in range(iterations): optimizer.zero_grad() output = model(org_img + noise.view((1,3,32,32))) loss = criterion(output, target_label) if regularization == "l1": adv_loss = loss + torch.mean(torch.abs(noise)) elif regularization == "l2": adv_loss = loss + torch.mean(torch.pow(noise, 2)) else: adv_loss = loss adv_loss.backward() optimizer.step() # keep optimizing until we get that the predicted label is the target label pred_adversarial_label = np.argmax(model(org_img).data.numpy()) if pred_adversarial_label == target_label: break if iteration == iterations-1: print("Warning: optimization loop ran for the maximum iterations. The result may not be correct") return noise.view((3,32,32)).detach(), pred_adversarial_label def FGSM(model, org_img, true_label): """ Creates an adversarial image by Fast Gradient Sign Method. :param model: the trained model. :param org_img: original image. to it we want to add the noise in order to create the adversarial image. :param true_label: the gold label of org_image. :return: adversarial_img, noise - the noise used to create the adversarial image y_pred_adversarial """ true_label = Variable(torch.LongTensor(np.array([true_label])), requires_grad=False) org_img = org_img.unsqueeze(0) # add batch diminsion org_img = Variable(org_img, requires_grad=True) # set org_img as parameter (cuz we need its gradient) # Classification before Adv pred_label = np.argmax(model(org_img).data.numpy()) criterion = nn.CrossEntropyLoss() # Forward pass output = model(org_img) loss = criterion(output, true_label) loss.backward() # obtain gradients on org_img # Add perturbation epsilon = 0.01 #0.01 # 0.15 x_grad = torch.sign(org_img.grad.data) noise = epsilon * x_grad adversarial_img = torch.clamp(org_img.data + noise, 0, 1) # Classification after optimization y_pred_adversarial = np.argmax(model(Variable(adversarial_img)).data.numpy()) return adversarial_img.squeeze(0), noise.squeeze(0), y_pred_adversarial def create_adversarial_img(path, org_img, true_label): """ Creates an adversarial image, and display it. We do it with 2 different methods. :param path: a path for the trained model. :param org_img: original image. to it we want to add the noise in order to create the adversarial image. :param true_label: the gold label of org_image. """ # Load trained model trained_net = models.SimpleModel() trained_net.load(path=path) trained_net.eval() # show original image visualizations.imshow(org_img) # Adversarial method 1 # Copy the model so the original trained network wont change while we creating # the adversarial image model_copy = copy.deepcopy(trained_net) model_copy.eval() noise, adv_label = adversarial_optimizing_noise(model_copy, org_img, true_label=0, target_label=2, regularization="l1") visualizations.imshow(noise) # show noise visualizations.imshow(org_img+noise) # show adversarial image out = trained_net((org_img+noise).unsqueeze(0)) print("true label:", true_label, "adv_label:", adv_label, "trained_net label:", out) # Adversarial method 2 model_copy2 = copy.deepcopy(trained_net) adver_img, noise2, adv_label_2 = FGSM(model_copy2, org_img, true_label=0) visualizations.imshow(noise2) # show noise visualizations.imshow(adver_img) # show adversarial image out = trained_net(adver_img.unsqueeze(0)) print("true label:", true_label, "adv_label:", adv_label_2, "trained_ned label:", out)
true
48a0d471d4d94049b6bd782f407c0785138e09ab
Python
Bryan-Brito/IFRN
/TESTES LEGAIS/PYCODEBR V1.py
UTF-8
120
2.9375
3
[]
no_license
import socket as s host = 'google.com' Ip = s.gethostbyname(host) print('O IP do Host"' + host + '" รฉ: ' + Ip)
true
33e64556876207cd729514503501f1a89c7e92f1
Python
Hellofafar/Leetcode
/Easy/566.py
UTF-8
2,173
4.09375
4
[]
no_license
# ------------------------------ # 566. Reshape the Matrix # # Description: # In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data. # You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively. # The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were. # If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix. # Example 1: # Input: # nums = # [[1,2], # [3,4]] # r = 1, c = 4 # Output: # [[1,2,3,4]] # Explanation: # The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list. # # Example 2: # Input: # nums = # [[1,2], # [3,4]] # r = 2, c = 4 # Output: # [[1,2], # [3,4]] # Explanation: # There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix. # # Note: # The height and width of the given matrix is in range [1, 100]. # The given r and c are all positive. # # Version: 1.0 # 07/18/18 by Jianfa # ------------------------------ class Solution(object): def matrixReshape(self, nums, r, c): """ :type nums: List[List[int]] :type r: int :type c: int :rtype: List[List[int]] """ if not nums or not nums[0]: return [] if len(nums) * len(nums[0]) != r * c: return nums res = [] temp = [] for i in range(len(nums)): for j in range(len(nums[0])): if len(temp) < c: temp.append(nums[i][j]) else: res.append(temp) temp = [nums[i][j]] res.append(temp) return res # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: #
true
25847034ca11c46e1a8b7ead090e54eb293eed4f
Python
nbyouri/LINGI2261-AI
/Assignment3_Siam/basic_agent.py
UTF-8
2,220
3.390625
3
[]
no_license
from agent import AlphaBetaAgent import minimax from state_tools_basic import rocks from constants import* """ Agent skeleton. Fill in the gaps. """ class MyAgent(AlphaBetaAgent): """This is the skeleton of an agent to play the game.""" def get_action(self, state, last_action, time_left): """This function is used to play a move according to the board, player and time left provided as input. It must return an action representing the move the player will perform. """ return minimax.search(state, self) def successors(self, state): """The successors function must return (or yield) a list of pairs (a, s) in which a is the action played to reach the state s; """ actions = state.get_current_player_actions() successors = list() for action in actions: if state.is_action_valid(action): new_state = state.copy() new_state.apply_action(action) successors.append((action, new_state)) for s in successors: yield s def cutoff(self, state, depth): """The cutoff function returns true if the alpha-beta/minimax search has to stop; false otherwise. """ return state.game_over() or depth >= 1 def evaluate(self, state): """The evaluate function must return an integer value representing the utility function of the board. """ return static_evaluate(self.id, state) - static_evaluate(self.id - 1, state) def static_evaluate(id, state): """The val function is the sum of (5 - # moves from p in direction f to exit) for each rock controlled by player where p,f are the position and the exit direction for each rock controlled by player""" val = 0 controlled_rocks = rocks(state, id) for (x, y), f in controlled_rocks: if f == UP: dst = x + 1 elif f == LEFT: dst = y + 1 elif f == DOWN: dst = 5 - x elif f == RIGHT: dst = 5 - y else: raise ValueError("Wrong face value %s", f) val += 5 - dst return val
true
7a7e8b7b1ef0e01596216343dedb4b739df641b7
Python
kurakura1412/luna-offlineserver
/_z_python/sorting.py
UTF-8
1,755
2.671875
3
[]
no_license
#! python # readonly data. do not edit. [ "name", index, position, special_id] mdata =[ ["EMPTY_C", 999999, 0, 874], ["Potion x5", 200012, 1, 875], ["Potion x20", 200012, 2, 556], ["Magicgong", 200014, 3, 235], ["Ether", 200015, 4, 587], ["Elixir", 200016, 5, 547], ["Megalixir", 200017, 6, 897], ["Enfuss", 200019, 7, 652], ["EMPTY_A", 999999, 8, 874], ["EMPTY_B", 999999, 9, 214], ["Lunar", 200010, 10, 542], ["Lunar X", 200009, 11, 5421] ] mdatacopy = [[i for i in a] for a in mdata ] # sorting. editing is allowed. listTC = [] tosort = 0 for f in mdata: if f[0][0:5] != "EMPTY": listTC.append(f) tosort += 0 # bsorted = False while bsorted == False: bsorted = True; for i in range(len(listTC) - 1): if listTC[i][1] > listTC[i+1][1]: bsorted = False; listTC[i],listTC[i+1] = listTC[i+1],listTC[i] # def finditembyIDandPOS( x, y, z): for data in z: if data[1] == x and data[2] == y: return data def finditembyPOS( y,z): for data in z: if data[2] == y: return data def finditembyID( x,z): for data in z: if data[1] == x: return data def finditembySPECID( v,z): for data in z: if data[3] == v: return data # list_move = [] for i in range(len(listTC)): dataA = listTC[i] dataB = finditembySPECID(dataA[3],mdatacopy) dataC = mdatacopy[i] if dataA[2] != dataC[2]: indexA = mdatacopy.index(dataB); indexB = mdatacopy.index(dataC) list_move.append("move %d <-> %d [%s <-> %s]" % (indexA,indexB,dataB[0],dataC[0] ) ) #dataX = dataB #dataB = dataC #dataC = dataX mdatacopy[ indexA], mdatacopy[ indexB] = mdatacopy[ indexB], mdatacopy[ indexA ]; #printing print( listTC ) print( "@@" ) print(mdata) print( "@@" ) print(mdatacopy) print( "@@" ) for cc in list_move: print(cc)
true
aab69da308b59b71d66e7471c89ff487891c81b8
Python
gianheck/MeshSim
/scripts/chainsim/pp_scripts/tabulate
UTF-8
3,379
3.09375
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 import sys import re import getopt def build_table(file_name): tbl = {} # Read table data fp = open(file_name, 'r') for l in fp: l = l.strip() if len(l) == 0: continue l = l.split(' ') if l[0] == 'file': size = int(re.search(",size_([0-9]*),", l[1]).group(1)) elif l[0] == 'xfer_bytes': xfer_bytes = int(l[1]) if size in tbl: tbl[size].append(xfer_bytes) else: tbl[size] = [ xfer_bytes ] fp.close() # Sort columns for k in tbl.keys(): tbl[k].sort() return tbl def print_table(tbl, width, factor=None): nrow = max(len(x) for x in tbl.values()) cols = sorted(x for x in tbl.keys()) int_format = "%%%dd" % width str_format = "%%%ds" % width float_format = "%%%d.2f" % width # Print heading heading = "" for cv in cols: heading += (int_format % cv) print(heading) print(width * len(cols) * '-') # Print entries for i in range(nrow): row = "" for cv in cols: index = i - nrow + len(tbl[cv]) if index >= 0: if factor is None: row += (int_format % (tbl[cv][index],)) else: row += (float_format % (tbl[cv][index] * factor,)) else: row += (str_format % "") print(row) print(width * len(cols) * '-') def usage(): print("Tabulate data from tcp average throughput data.") print("") print("This tool processes the output of pcap_eval, when run with") print("no argument. the input file is assumed to contain metrics") print("from multiple pcap files, with the chain size stored in the") print("file name. It then creates a table of measurements, one") print("column for each chain size. The rate entries in each column") print("are then sorted in increasing size.") print("") print("Usage:") print("tabulate [-h] [-d <duration>] [-w <width>] [tcpavg.txt files...]") print("") print("Switches:") print(" -h display this help") print(" -d <dur> download duration in seconds; when") print(" this is given, a rate in Mbps will be") print(" computed, otherwise aggregate download") print(" size in bytes.") print(" -w <wid> column width.") if __name__ == "__main__": # default arguments duration = None width = 10 # read command line arguments opts, args = getopt.getopt(sys.argv[1:], "hd:w:") for o, v in opts: if o == '-h': usage() sys.exit(0) elif o == '-d': duration = float(v) elif o == '-w': width = int(v) else: sys.exit(1) if len(args) != 1: sys.stderr.write("Error: Expect exactly one stats file on " "command line\n") sys.exit(1) # Create table tbl = build_table(args[0]) if len(tbl) == 0: sys.stderr.write("Error: No data points found in file `%s'\n" % args[0]) sys.exit(1) # Print table if duration is None: print_table(tbl, width) else: print_table(tbl, width, 8. / duration / 1000000.)
true
2f8fcd1904edea9207a65cd3bc15b581e6067a87
Python
elginbeloy/trading
/backtester/strategies/macd_strat_1.py
UTF-8
2,821
3.09375
3
[]
no_license
from ta.trend import MACD, SMAIndicator from ta.volume import MFIIndicator from strategy import Strategy from utils import has_n_days_data # Risk 5% of capital per trade by default (weighted by probability) DEFAULT_RISK_PER_TRADE = 0.05 # MACDStratOne: MACD has positive slope and crosses signal # in a not already overbought asset with positive long and # medium term trends. class MACDStratOne(Strategy): def init(self): self.add_column_to_all_assets("SMA_10", ["Close"], lambda c: SMAIndicator(c, window=10).sma_indicator()) self.add_column_to_all_assets("SMA_50", ["Close"], lambda c: SMAIndicator(c, window=50).sma_indicator()) self.add_column_to_all_assets("SMA_200", ["Close"], lambda c: SMAIndicator(c, window=200).sma_indicator()) self.add_column_to_all_assets("MFI", ["High", "Low", "Close", "Volume"], lambda c1, c2, c3, c4: MFIIndicator(c1, c2, c3, c4).money_flow_index()) self.add_column_to_all_assets("MACD", ["Close"], lambda c: MACD(c).macd()) self.add_column_to_all_assets("MACD_SIG", ["Close"], lambda c: MACD(c).macd_signal()) def create_signals(self): typical_bet_size = self.available_cash * DEFAULT_RISK_PER_TRADE for symbol in self.asset_dfs.keys(): if has_n_days_data(self.asset_dfs[symbol], self.current_day, 201): close_prices = self.asset_dfs[symbol]["Close"].to_list() sma_10_price = self.asset_dfs[symbol]["SMA_10"].iloc[-1] sma_50_price = self.asset_dfs[symbol]["SMA_50"].iloc[-1] sma_200_price = self.asset_dfs[symbol]["SMA_200"].iloc[-1] mfi_arr = self.asset_dfs[symbol]["MFI"].to_list() macd_arr = self.asset_dfs[symbol]["MACD"].to_list() macd_sig_arr = self.asset_dfs[symbol]["MACD_SIG"].to_list() # Entry Signals # Close price was higher than the day before if close_prices[-1] > close_prices[-2]: # MFI is not already overbought if mfi_arr[-1] < 60: # Medium term trend is positive beyond a trend threshold if sma_10_price > sma_50_price * 1.1: # Long term trend is positive beyond a trend threshold if sma_50_price > sma_200_price * 1.1: # MACD is above signal if macd_arr[-1] - macd_sig_arr[-1] * 1.05: # MACD is growing recently if macd_arr[-1] > macd_arr[-2] and macd_arr[-1] > macd_arr[-3]: amount_to_buy = close_prices[-1] / typical_bet_size if amount_to_buy > 0.1: self.buy(symbol, amount_to_buy) # Exit Signals # MACD signal crosses over MACD if macd_arr[-1] * 1.05 < macd_sig_arr[-1]: if self.get_available_equity()[symbol]: self.sell(symbol, self.get_available_equity()[symbol])
true
3372917ecee2767485fed41bbf9e6312df417da6
Python
robobrobotcop/shadow-boys
/mtg-card-sale/mtg_card_sale.py
UTF-8
2,522
2.515625
3
[]
no_license
# -*- coding: utf-8 -*- import json import requests import os from datetime import datetime, timedelta from retry import PostFailure, retry today = datetime.utcnow() update = datetime.utcnow() - timedelta(1) @retry(PostFailure) def get_api_data(user): response = requests.post(user['url'], data="""{ me { name inventoryCount inventoryValue clientFunds sold (soldSince: \"$update") { qty name price foil lang } payouts { sum } } }""".replace("$update", update.strftime("%Y-%m-%d %H:%M:%S")), auth=(user['usr'], user['pwd'])) if response.status_code not in (200, 403): raise PostFailure('error code from api') return response @retry(PostFailure) def post_to_slack(payload, user): response = requests.post(user['webhook'], data=json.dumps(payload)) if response.status_code != 200: raise PostFailure('error code from slack') with open('{}/mtg_card_sale_config.json'.format(os.path.dirname(os.path.abspath(__file__))), 'r') as fh: users = json.load(fh) for user in users: response = get_api_data(user) cards = '' for sold_card in response.json()['me']['sold']: if sold_card['foil']: card = str(sold_card['qty']) + ' ' + sold_card['name'] + u', ร  ' + str(sold_card['price']) + ' SEK, Language: ' + sold_card['lang'] + ', *Foil*' + '\n' else: card = str(sold_card['qty']) + ' ' + sold_card['name'] + u', ร  ' + str(sold_card['price']) + ' SEK, Language: ' + sold_card['lang'] + '\n' cards = ''.join((cards, card)) paid_out = 0 if response.json()['me']['payouts']: for payout in response.json()['me']['payouts']: paid_out += payout['sum'] else: paid_out = 0 payload = { 'text': '*MTG cards for sale, update {}*'.format(today.strftime("%Y-%m-%d")) + '\n' 'Cards in inventory: ' + str(response.json()['me']['inventoryCount']) + '\n' 'Value of inventory: ' + str(response.json()['me']['inventoryValue']) + ' SEK' + '\n' 'Sum at client funds account (to be paid out): ' + str(response.json()['me']['clientFunds']) + ' SEK' + '\n' 'Total sum paid out: ' + str(paid_out) + ' SEK' + '\n' '*New sold cards:*' + '\n' + cards, 'channel': user['channel']} if cards != '': post_to_slack(payload, user)
true
3f3ccc6581092bb7d5597140a1002fc776b32300
Python
xkdytk/Algorithm
/sort/count_sort.py
UTF-8
430
3.640625
4
[]
no_license
def count_sort(array): sort_arr = [] count = [0] * (max(array)+1) index = 0 for i in array: count[i] += 1 while index < len(count): if count[index] != 0: count[index] -= 1 sort_arr.append(index) else: index += 1 return sort_arr print(count_sort([7, 5, 9, 0, 3, 1, 6, 2, 9, 1, 4, 8, 0, 5, 2])) print(count_sort([3, 2, 5, 4, 2, 1, 5, 2, 2, 1]))
true
0ce217d67e7e19414eef48b1f32bd6c096f5799e
Python
FilaCo/upg
/src/ui/cli/group.py
UTF-8
338
2.890625
3
[ "MIT" ]
permissive
from ui.cli.command import Command class Group(Command): def __init__(self): self.__children = [] def render(self): map(lambda x: x.render(), self.__children) def add(self, child: Command): self.__children.append(child) @property def children(self) -> list: return self.__children
true
82482d8ff1eda48ec89b610926534442d01510db
Python
shengexing/AlgorithmLearn_Python
/AlgorithmDiagram9787115447630/Chapter04/c04_2_quickSort/quickSort.py
UTF-8
604
4.1875
4
[]
no_license
""" ๅฟซ้€ŸๆŽ’ๅบ """ import random # ๅฟซ้€ŸๆŽ’ๅบ็š„ๅ‡ฝๆ•ฐ def quickSort(array): if len(array) < 2: return array # ๅŸบ็บฟๆกไปถ๏ผšไธบ็ฉบๆˆ–ๅชๅŒ…ๅซไธ€ไธชๅ…ƒ็ด ็š„ๆ•ฐ็ป„ๆ˜ฏ โ€œๆœ‰ๅบโ€ ็š„ else: index = random.randint(0, len(array) - 1) return quickSort( [i for i in array[0:index] + array[index+1:] if i < array[index]] ) + [array[index]] + quickSort( [i for i in array[0:index] + array[index+1:] if i >= array[index]] ) print(quickSort([])) print(quickSort([5])) print(quickSort([5, 3])) print(quickSort([5, 3, 6, 2, 10]))
true
8ba754f530c78564917b39fcfdc001dcb9565e04
Python
yanrising/bitez
/resources/bch/rates.py
UTF-8
391
2.6875
3
[ "MIT" ]
permissive
from bitcash.network import satoshi_to_currency_cached, currency_to_satoshi_cached def bch_to_fiat(amount, currency): amount = amount * (10**8) conversion = satoshi_to_currency_cached(amount, currency) return conversion def fiat_to_bch(amount, currency): conversion = currency_to_satoshi_cached(amount, currency) conversion = conversion / (10**8) return conversion
true
63b4fbe597fa921d86f245d5116655c30c5c1876
Python
AdityJadhao/pythonProject
/dictAndsets.py
UTF-8
587
3.703125
4
[]
no_license
#dictonary is collection of key value pair #create dictionary myDic = { "Power": "Knowledge", "Aditya": "Student", "Marks": [1,2,3,5], "myDic2": {'Taste': 'Sweet'} #nested dictionary } print(myDic['Power']) print(myDic['myDic2']['Taste']) print(myDic.keys()) print(myDic.values()) print(myDic.items()) #update dictionary updateDic = { "keys" : "values" } myDic.update(updateDic) print(myDic) print(type(myDic)) print(myDic.get('Power')) # use this, if value is not present , it return NOne print(myDic['Power']) # if value is not present , it return key error
true
339f92fa1047d62e6e31b14eee897410827930b9
Python
jhl667/compbio-galaxy-wrappers
/nanostring/nanostring_client.py
UTF-8
2,114
2.640625
3
[]
no_license
#!/usr/bin/env python ## author: Janice Patterson ## targets nCounter MAX/FLEX system import ftputil from ftputil import FTPHost import sys import os import json class nCounter(FTPHost): ''' inheriting from ftputil.FTPHost ''' def download_datadir(self, source_dir, dest_dir): ''' :param source_dir: /technician/RCCData, /technician/RLFData, /technician/CLFData :param dest_dir: dest directory name the directory RCCData, RLFData, CLFData :return: transfers ''' if self.path.exists(source_dir): recursive = self.walk(source_dir, topdown=True, onerror=None) for root, dirs, files in recursive: for file in files: print(root + "/" + file + " to ", dest_dir) fpath = self.path.join(root, file) print(fpath) if self.path.isfile(fpath): dest_file = os.path.join(dest_dir, file) print(dest_file) # download only if newer double make sure if not self.path.exists(dest_file): self.download_if_newer(fpath,dest_file) else: print(dest_file + " exists already, skipping.") else: print("FTP dir is "+ self.getcwd()) print(self.listdir(self.curdir)) def download_batch(self, batch, dest_dir): ''' :param batch: batch id only, path to file /technician/RCCData is taken care of :return: download zip to current directory ''' zfile = batch + "_RCC.ZIP" batchpath = self.path.join("/technician/RCCData") zfiles = self.listdir(batchpath) if zfile in zfiles: dest_file = os.path.join(dest_dir, zfile) print(os.path.join(batchpath, zfile) + " to ", dest_file) source_file = os.path.join(batchpath, zfile) self.download(source_file, dest_file) else: print(zfile + " DOES NOT EXIST") print(zfiles)
true
4346ca5735253e5fe63dec5e8aad40613eebcdb4
Python
XiaoyanYang2008/IRS-MRS-F2M2HRSystem
/webapp/search.py
UTF-8
7,057
2.671875
3
[]
no_license
import re import string import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.neighbors import NearestNeighbors import app_constants import lk_parser import normalizeText class ResultElement: def __init__(self, rank, name, filename, score, type): self.rank = rank self.name = name self.filename = filename self.score = score self.type = type def getfilepath(loc): temp = str(loc) temp = temp.replace('\\', '/') return temp def clearup(s, chars): return re.sub('[%s]' % chars, '', s).lower() def normalize(words): words = words.lower() words = normalizeText.replace_numbers(words) # replace number to words words = words.translate(str.maketrans({key: None for key in string.punctuation})) # remove punctuation words = words.strip() # remove white space words = normalizeText.remove_stopwords(words) words = normalizeText.remove_non_ascii(words) words = normalizeText.lemmatize_verbs(words) words = ' '.join(words) return words hasA = 'noA' hasB = 'noB' def gethasA(): return hasA def gethasB(): return hasB def ui_search(important_search): global hasA df1 = search_by_tfidf(important_search) # print(df1) flask_return = [] rank = 0 for idx, row in df1.head(20).iterrows(): name = row['name'] filename = row['profileURL'] score = row['NScore'] rank = rank + 1 flask_return.append(ResultElement(rank, name, filename, score, 'typeA')) hasA = 'hasA' # for idx, row in df1.head(20).iterrows(): # name = row['name'] # filename = row['profileURL'] # score = row['NScore'] # if (score <= 1 and score > 0.75): # type = 'typeA' # hasA = 'hasA' # elif (score <0.75): # type = 'typeB' # hasB = 'hasB' # else: # type = 'noType' # rank = rank + 1 # res = ResultElement(rank, name, filename, score, type) # flask_return.append(res) return flask_return def search_by_tfidf(search_keywords): search_keywords = normalize(search_keywords) resume_df = pd.read_csv("./db/resume_db.csv") resume_df.drop_duplicates(subset="profileURL", keep='last', inplace=True) resumes = resume_df['rawResume'] resume_sm, tfidf_vectorizer = build_tfidf_vectorizer(resumes) search_sm = tfidf_vectorizer.transform([search_keywords]) vals = cosine_similarity(search_sm, resume_sm) df = resume_df df['Score'] = vals[0] df = df[df['Score'] != 0] if(len(df)==0): return df if max(df['Score'] != 0): df['NScore'] = df['Score'] / max(df['Score']) # rescale for optaPlanner planning else: df['NScore'] = df['Score'] # idx = vals.argsort()[0][-1] # # print(type(vals)) # print(resumeDF.iloc[[idx]]) df = df.sort_values(by=["Score"], ascending=False) db = lk_parser.loadData(app_constants.RESUMEDB_FILE_PB) df['expectedMonthlySalary'] = df['profileURL'].apply(lambda x: getExpectMonthlySalary(db, x)) df1 = df[['name', 'profileURL', 'Score', 'NScore', 'expectedMonthlySalary']] # df1 = df return df1 def getExpectMonthlySalary(db, x): resume = lk_parser.findResumeByURL(db, x) if resume is not None: return resume.monthlySalary else: return 0 def build_tfidf_vectorizer(resumes): resumes = resumes.apply(normalize) # TODO: search keywords can be comma seperated, input this method to see what result matched what keywords. # May help to explain results matched with which keywords, as long as none zero. # Example, zaki matched java, but other people doesn't matched java. so, java keywords under zaki has a score tfidf_vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1, 2)) tfidf_vectorizer.fit(resumes.tolist()) resume_sm = tfidf_vectorizer.transform(resumes.tolist()) return resume_sm, tfidf_vectorizer def res(importantkey, optionalkey): normalizeText.denoise_text(importantkey) normalizeText.denoise_text(optionalkey) importantkey = normalize(importantkey) optionalkey = normalize(optionalkey) try: impt = str(importantkey) textimp = [impt] except: textimp = 'None' vectorizer = TfidfVectorizer(stop_words='english') vectorizer.fit(textimp) vector = vectorizer.transform(textimp) Job_Desc_Imp = vector.toarray() if len(optionalkey) != 0: try: optt = str(optionalkey) textopt = [optt] vectorizerOpt = TfidfVectorizer(stop_words='english') vectorizerOpt.fit(textopt) vectorOpt = vectorizer.transform(textopt) Job_Desc_Opt = vectorOpt.toarray() except: textopt = 'None' df = pd.read_csv("./db/resume_db.csv") df.drop_duplicates(subset="profileURL", keep='last', inplace=True) resume = df['rawResume'] resume_vect = [] resume_vect_Raw = [] score_A = [] score_B = [] for row in resume: t_raw = str(row) try: t_resume = normalize(t_raw) # t_resume = ' '.join(text) # done in normalize() t_resume = t_resume.translate(str.maketrans('', '', string.punctuation)) text = [t_resume] vector_raw = vectorizer.transform(text) resume_vect_Raw.append(vector_raw.toarray()) vector = vectorizer.transform(text) resume_vect.append(vector.toarray()) except Exception as e: print(e) pass for i in resume_vect: samples = i neigh = NearestNeighbors(n_neighbors=1) neigh.fit(samples) NearestNeighbors(algorithm='auto', leaf_size=30) scorea = neigh.kneighbors(Job_Desc_Imp)[0][0].tolist() score_A.append(scorea[0]) if len(optionalkey) != 0: scoreb = neigh.kneighbors(Job_Desc_Opt)[0][0].tolist() score_B.append(scoreb[0]) df['Score_A'] = score_A if len(optionalkey) != 0: df['Score_B'] = score_B df['Score'] = df['Score_A'] * 0.7 + df['Score_B'] * 0.3 else: df['Score'] = df['Score_A'] df = df.sort_values(by=["Score"]) df1 = df[['name', 'profileURL', 'Score']] print(df1) flask_return = [] rank = 0 global hasA global hasB for idx, row in df1.head(20).iterrows(): name = row['name'] filename = row['profileURL'] score = row['Score'] if score < 1: type = 'typeA' hasA = 'hasA' elif (score >= 1 and score < 2): type = 'typeB' hasB = 'hasB' else: type = 'noType' rank = rank + 1 res = ResultElement(rank, name, filename, score, type) flask_return.append(res) return flask_return
true
a181148cb257c606cb3ef073ff4b6f515098cf0a
Python
alehander92/bach
/bach/opcodes.py
UTF-8
542
3.34375
3
[ "MIT" ]
permissive
class Opcodes(object): ''' a collection of cpython opcodes for cleaner opcode comprehensions in generator ''' def __init__(self, *values): self.values = [] for value in values: if isinstance(value, list): data = Opcodes(*value) self.values += data.to_list() elif isinstance(value, Opcodes): self.values += value.to_list() else: self.values.append(value) def to_list(self): return self.values
true
aa7f217eff47d8554d688d062e303aa6cd4c3ff1
Python
sanjiv576/Game
/rootPackage/agreement_file.py
UTF-8
3,916
2.84375
3
[]
no_license
from tkinter import * from tkinter.font import * from rootPackage.create_accounts import link def terms_and_conditions(): agreement = Toplevel() agreement.title("Terms and Conditions") agreement.geometry("800x700") agreement.iconbitmap("agree_0.ico") agreement.configure(bg="silver") # using different fonts for different headings myFont = Font(size=20, weight="bold") # function created to hide this module and reveal main login window def close(): agreement.withdraw() link() #create_my_account() # function for agree def agree(): response = val.get() if response == "On": continue_button = Button(agreement, text="Continue", highlightbackground="yellow", command=close, font=("Gothic", 20), padx=9, pady=9) continue_button.pack() # files handling and labelling terms_and_condition_label = Label(agreement, text="Terms and Conditions", bg="black", fg="white") terms_and_condition_label['font'] = myFont terms_and_condition_label.pack() agreement_t = """ Please read these Terms and Conditions carefully, before playing โ€œSpace Invaders โ€ operated by Guardians of the Galaxy. Your access to and use of our game is conditioned on your acceptance of and compliance with these Terms. These Terms apply to all visitors, users and others who access or use the game. You will need to enter your name and password to have access to our game. We can guarantee you that your details will remain confidential and we whatsoever have no right to share it. """ agreement_label = Label(agreement, text=agreement_t, bg="silver") agreement_label.pack() sound_t ="""This game may have some sound effects or music which may be disturbing to you so we recommend to mute the game if you find it difficult to listen. """ sound_label = Label(agreement, text="Sound and Music", bg="silver") sound_label['font'] = myFont sound_label.pack() sound = Label(agreement, text=sound_t, bg="silver") sound.pack() terms = """ Please read these Terms and Conditions carefully, before playing โ€œSpace Invaders โ€ operated by Guardians of the Galaxy. Your access to and use of our game is conditioned on your acceptance of and compliance with these Terms. These Terms apply to all visitors, users and others who access or use the game. You will need to enter your name and password to have access to our game. We can guarantee you that your details will remain confidential and we whatsoever have no right to share it. """ permission_label = Label(agreement, text="Permission", bg="silver") permission_label['font'] = myFont permission_label.pack() permission_t = Label(agreement, text=terms, bg="silver") permission_t.pack() changes = """ We reserve the right, at our sole discretion, to modify or replace these Terms at any time. If any change were to come to our terms that directly or indirectly hampers your data and information, we will try to provide at least 15 daysโ€™ notice prior to any new terms taking effect. By accessing or using the game, you agree to be bound by these Terms. If you disagree with any part of the terms, then you may not access the Game.""" changes_label = Label(agreement, text="Changes and Update", bg="silver") changes_label['font'] = myFont changes_label.pack() changes_t = Label(agreement, text=changes, bg="silver") changes_t.pack() # inserting check button val = StringVar() check_button = Checkbutton(agreement, text="Yes, I agree.", bg="teal", font=("Century, Gothic", 22), fg="white", variable=val, onvalue="On", offvalue="Off", command=agree) check_button.deselect() check_button.pack() agreement.mainloop()
true
7470b8822c206a916e67f88d448b1d90ef026a2c
Python
igortereshchenko/datascience
/holenyshchenkosd/integration/validator.py
UTF-8
1,474
3.265625
3
[]
no_license
def city_validator(text): match = re.match('[A-Z\s]+', text) if match: return True else: print(f'\'{text}\' is not valid, must be capital word(-s)!') return False def zip_code_validator(text): match = re.match('^\d{5}$', text) if match: return True else: print(f'\'{text}\' is not valid, must be 5 digits!') return False def total_episodes_non_lupa_validator(text): match = re.match('\d+', text) if match: return True else: print(f'\'{text}\' is not valid, must be integer!') return False def state_validator(txt): pattern = re.compile('([A-Z])([A-Z])') if re.match(pattern, txt): return True else: print('It is not a state') return False def percent_of_beneficiaries_with_cancer_validator(txt): pattern = re.compile(r'100|\d?\d+') if re.match(r'100|\d?\d', txt) and float(txt) <= 100: return True else: print('It can\'t be a percent_of_beneficiaries_with_cancer') return False def percent_of_beneficiaries_with_depression_validator(txt): if re.match(r'100|\d?\d', txt) and float(txt) <= 100: return True else: print('It can\'t be a percent_of_depression_with_depression') return False def provider_id_validator (txt): if re.match(r'\d\d\d\d\d\d', txt): return True else: print('It can\'t be a provider_id') return False
true
a9805fb45001b5176649e445aff2fb9d02dba397
Python
Liu0330/spider
/xiaospider/01_tieba_spider.py
UTF-8
3,698
2.71875
3
[]
no_license
# coding=utf-8 import requests from lxml import etree import json class TiebaSpider: def __init__(self,tieba_name): self.tieba_name = tieba_name self.start_url = "http://tieba.baidu.com/mo/q----,sz@320_240-1-3---2/m?kw="+tieba_name+"&pn=0" self.part_url = "http://tieba.baidu.com/mo/q----,sz@320_240-1-3---2/" self.headers= {"User-Agent":"Mozilla/5.0 (Linux; Android 5.1.1; Nexus 6 Build/LYZ28E) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Mobile Safari/537.36"} def parse_url(self,url):#ๅ‘้€่ฏทๆฑ‚๏ผŒ่Žทๅ–ๅ“ๅบ” print(url) response = requests.get(url,headers=self.headers) return response.content def get_content_list(self,html_str):#3ๆๅ–ๆ•ฐๆฎ html = etree.HTML(html_str) div_list = html.xpath("//div[contains(@class,'i')]") #ๆ นๆฎdivๅˆ†็ป„ content_list = [] for div in div_list: item = {} item["title"] = div.xpath("./a/text()")[0] if len(div.xpath("./a/text()"))>0 else None item["href"] = self.part_url+div.xpath("./a/@href")[0] if len(div.xpath("./a/@href"))>0 else None item["img_list"] = self.get_img_list(item["href"],[]) # itemp["img_list"] = [requests.utils.unquote(i).split("src=")[-1] for i in item["img_list"]] content_list.append(item) #ๆๅ–ไธ‹ไธ€้กต็š„urlๅœฐๅ€ next_url = self.part_url+html.xpath("//a[text()='ไธ‹ไธ€้กต']/@href")[0] if len(html.xpath("//a[text()='ไธ‹ไธ€้กต']/@href"))>0 else None return content_list,next_url def get_img_list(self,detail_url,total_img_list): #่Žทๅ–ๅธ–ๅญไธญ็š„ๆ‰€ๆœ‰็š„ๅ›พ็‰‡ #3.2่ฏทๆฑ‚ๅˆ—่กจ้กต็š„urlๅœฐๅ€๏ผŒ่Žทๅ–่ฏฆๆƒ…้กต็š„็ฌฌไธ€้กต detail_html_str = self.parse_url(detail_url) detail_html = etree.HTML(detail_html_str) #3.3ๆๅ–่ฏฆๆƒ…้กต็ฌฌไธ€้กต็š„ๅ›พ็‰‡๏ผŒๆๅ–ไธ‹ไธ€้กต็š„ๅœฐๅ€ img_list = detail_html.xpath("//img[@class='BDE_Image']/@src") total_img_list.extend(img_list) #3.4่ฏทๆฑ‚่ฏฆๆƒ…้กตไธ‹ไธ€้กต็š„ๅœฐๅ€๏ผŒ่ฟ›ๅ…ฅๅพช็Žฏ3.2-3.4 detail_next_url = detail_html.xpath("//a[text()='ไธ‹ไธ€้กต']/@href") if len(detail_next_url)>0: detail_next_url = self.part_url + detail_next_url[0] return self.get_img_list(detail_next_url,total_img_list) # else: # return total_img_list return total_img_list def save_content_list(self,content_list): #4ไฟๅญ˜ๆ•ฐๆฎ file_path = self.tieba_name+".txt" with open(file_path,"a",encoding="utf-8") as f: for content in content_list: f.write(json.dumps(content,ensure_ascii=False,indent=2)) f.write("\n") print("ไฟๅญ˜ๆˆๅŠŸ") def run(self):#ๅฎž็Žฐไธป่ฆ้€ป่พ‘ next_url = self.start_url while next_url is not None: #1.start_url #2.ๅ‘้€่ฏทๆฑ‚๏ผŒ่Žทๅ–ๅ“ๅบ” html_str = self.parse_url(next_url) #3.ๆๅ–ๆ•ฐๆฎ๏ผŒๆๅ–ไธ‹ไธ€้กต็š„urlๅœฐๅ€ #3.1ๆๅ–ๅˆ—่กจ้กต็š„urlๅœฐๅ€ๅ’Œๆ ‡้ข˜ #3.2่ฏทๆฑ‚ๅˆ—่กจ้กต็š„urlๅœฐๅ€๏ผŒ่Žทๅ–่ฏฆๆƒ…้กต็š„็ฌฌไธ€้กต #3.3ๆๅ–่ฏฆๆƒ…้กต็ฌฌไธ€้กต็š„ๅ›พ็‰‡๏ผŒๆๅ–ไธ‹ไธ€้กต็š„ๅœฐๅ€ #3.4่ฏทๆฑ‚่ฏฆๆƒ…้กตไธ‹ไธ€้กต็š„ๅœฐๅ€๏ผŒ่ฟ›ๅ…ฅๅพช็Žฏ3.2-3.4 content_list,next_url = self.get_content_list(html_str) #4.ไฟๅญ˜ๆ•ฐๆฎ self.save_content_list(content_list) #5.่ฏทๆฑ‚ไธ‹ไธ€้กต็š„urlๅœฐๅ€๏ผŒ่ฟ›ๅ…ฅๅพช็Žฏ2-5ยท if __name__ == '__main__': tieba_spider = TiebaSpider("ๅ†ทๆธ…ๆธ…") tieba_spider.run()
true
734fae2c5c11d12088606601943d97b6a1132f9e
Python
dmoranj/cvdatasetutils
/cvdatasetutils/oranalysis.py
UTF-8
2,844
2.546875
3
[ "MIT" ]
permissive
from cvdatasetutils.pascalvoc import load_VOC from cvdatasetutils.visualgenome import load_visual_genome, extract_object_dataframe from mltrainingtools.cmdlogging import section_logger import pandas as pd import os from cvdatasetutils.coco import COCOSet def extract_voc_object_data(img_url): def extractor(obj): return [ '', '', obj['class'], img_url, obj['bx'], obj['by'], obj['h'], obj['w'] ] return extractor def extract_voc_object_dataframe(voc, limit=10, report=2e5): section = section_logger(1) data = [] counter = 0 for img in voc[0]: if counter > limit: break else: counter += 1 if counter % report == 0: section("Loaded objects in {} images".format(counter)) rows = map(extract_voc_object_data(img['filename']), img['objects']) data.extend(rows) odf = pd.DataFrame(data, columns=['object_id', 'synsets', 'names', 'img', 'x', 'y', 'h', 'w']) return odf def extract_coco_object_dataframe(coco_definitions): annotations = coco_definitions.get_annotations() images = coco_definitions.get_images() joined_df = annotations.join(images.set_index('image_id'), on='image_id') joined_df['x'] = joined_df.x / joined_df.width joined_df['y'] = joined_df.y / joined_df.height joined_df['w'] = joined_df.w / joined_df.width joined_df['h'] = joined_df.h / joined_df.height return joined_df[['x', 'y', 'w', 'h', 'name', 'image_id']] def generate_analysis(coco_path, voc_path, vg_path, output_path): log = section_logger() log('Loading definitions for COCO') coco_definitions = COCOSet(coco_path) log('Converting COCO data to dataframes') coco_df = extract_coco_object_dataframe(coco_definitions) log('Loading definitions for VOC') voc_definitions = load_VOC(voc_path) log('Converting VOC data to dataframes') voc_df = extract_voc_object_dataframe(voc_definitions, limit=1e8) log('Loading definitions for Visual Genome') vg_definitions = load_visual_genome(vg_path) log('Converting VG data to dataframes') vg_df = extract_object_dataframe(vg_definitions, limit=1e8) log('Saving dataframes') voc_df.to_csv(os.path.join(output_path, 'voc_df.csv')) vg_df.to_csv(os.path.join(output_path, 'vg_df.csv')) coco_df.to_csv(os.path.join(output_path, 'coco_df.csv')) generate_analysis('/home/dani/Documentos/Proyectos/Doctorado/Datasets/COCO', '/home/dani/Documentos/Proyectos/Doctorado/Datasets/VOC2012/VOCdevkit/VOC2012', '/home/dani/Documentos/Proyectos/Doctorado/Datasets/VisualGenome', '/home/dani/Documentos/Proyectos/Doctorado/cvdatasetutils/analytics')
true
3b4eff6f8441c56821db6c042ae4bfacf9a182d0
Python
JobJob/DeepLearningTutorials
/code/starty.py
UTF-8
4,440
2.625
3
[]
no_license
import cPickle, gzip import numpy as np import scipy as sp import theano import theano.tensor as T from PIL import Image # Load the dataset f = gzip.open('../data/mnist.pkl.gz', 'rb') train_set, valid_set, test_set = cPickle.load(f) f.close() len(train_set[1]) len(valid_set[1]) len(test_set[1]) def shared_dataset(data_xy): """ Function that loads the dataset into shared variables The reason we store our dataset in shared variables is to allow Theano to copy it into the GPU memory (when code is run on GPU). Since copying data into the GPU is slow, copying a minibatch everytime is needed (the default behaviour if the data is not in a shared variable) would lead to a large decrease in performance. """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX)) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX)) # When storing data on the GPU it has to be stored as floats # therefore we will store the labels as ``floatX`` as well # (``shared_y`` does exactly that). But during our computations # we need them as ints (we use labels as index, and if they are # floats it doesn't make sense) therefore instead of returning # ``shared_y`` we will have to cast it to int. This little hack # lets us get around this issue return shared_x, T.cast(shared_y, 'int32') test_set_x, test_set_y = shared_dataset(test_set) valid_set_x, valid_set_y = shared_dataset(valid_set) train_set_x, train_set_y = shared_dataset(train_set) batch_size = 500 # size of the minibatch # accessing the third minibatch of the training set data = train_set_x[2 * batch_size: 3 * batch_size] label = train_set_y[2 * batch_size: 3 * batch_size] imgname = "bananas" imd = test_set[0][1].reshape(28,28) sp.misc.imsave(imgname+".png", imd) filter_names = ["sobel","prewitt","laplace"] filters = {filter_name: getattr(sp.ndimage.filters, filter_name) for filter_name in filter_names} imagefns = [] for fltrname,fltr in filters.iteritems(): imgnamefl = imgname+"_"+fltrname+".png" sp.misc.imsave(imgnamefl, fltr(imd)) imagefns.append(imgnamefl) import os, sys # os.system("open {0}".format(" ".join(imagefns))) from skimage import data, io, filter image = data.coins() # or any NumPy array! edges = filter.sobel(imd) #io.imshow(edges) # io.show() from skimage.feature import corner_harris, corner_subpix, corner_peaks from matplotlib import pyplot as plt # coords = corner_peaks(corner_harris(imd), min_distance=5) # coords # coords_subpix = corner_subpix(imd, coords, window_size=13) # fig, ax = plt.subplots() # ax.imshow(imd, interpolation='nearest', cmap=plt.cm.gray) # ax.plot(coords[:, 1], coords[:, 0], '.b', markersize=3) # ax.plot(coords_subpix[:, 1], coords_subpix[:, 0], '+r', markersize=15) # ax.axis((0, 28, 28, 0)) # plt.show() plt.figure() from skimage import data from skimage import transform as tf from skimage.feature import (match_descriptors, corner_harris, corner_peaks, ORB, plot_matches) from skimage.color import rgb2gray import matplotlib.pyplot as plt img1 = rgb2gray(data.lena()) img1.shape imd.shape img1.dtype imd.dtype imd = np.asfarray(imd) img1 imd descriptor_extractor = ORB() descriptor_extractor.detect_and_extract(img1) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors keypoints1 descriptors1 plt.imshow(imd, cmap=plt.cm.gray) plt.show() plt.imshow(img1, cmap=plt.cm.gray) # print "keypoints1",keypoints1 # print "descriptors1",descriptors1 exit() from skimage import measure contour_counts = {0:2, 1:1, 2:2, 3:1, 4:1, 5:1, 6:2, 7:1, 8:3, 9:2 } wrongs = [] THRESH = float(sys.argv[1]) for i in range(100): imd = test_set[0][i] digit = test_set[1][i] non_zeros = imd > THRESH imd[non_zeros] = 1.0 imd = imd.reshape(28,28) # Find contours at a constant value of 0.8 contours = measure.find_contours(imd, 0.2) num_contours = len(contours) if num_contours > contour_counts[digit]: fig, ax = plt.subplots() ax.imshow(imd, interpolation='nearest', cmap=plt.cm.gray) print i,":",digit,"-",num_contours wrongs.append(i) for n, contour in enumerate(contours): # plot all contours found ax.plot(contour[:, 1], contour[:, 0], linewidth=2) #Display the image with the contours ax.axis('image') ax.set_xticks([]) ax.set_yticks([]) plt.show() print(wrongs)
true
748ca91d9a7955b2727284ccba7cd896f99153a8
Python
trevino-676/users-service
/app/api/routes.py
UTF-8
4,151
2.578125
3
[]
no_license
from flask import Blueprint, request, jsonify, make_response # from werkzeug import check_password_hash, generate_password_hash from app import app from app import db from app import jwt_required from app.models.company import Company from app.models.users import User from app.api.controllers.user_controller import UserController from app.api.controllers.company_controller import CompanyController user_controller = UserController() company_controller = CompanyController() mod_user = Blueprint('user', __name__, url_prefix='/v1/user') company_routes = Blueprint('company', __name__, url_prefix='/v1/company') @mod_user.route('/') @jwt_required() def root(): users = [user.to_dict() for user in user_controller.get_users(0, 0)] if len(users) == 0: return make_response(jsonify( { "data": [], "message": "No users found" }), 401) return make_response(jsonify( { "data": users, "message": "ok" } ), 200) @mod_user.route("/", methods=["POST"]) @jwt_required() # TODO mandar bad requests def add_user(): input_data = request.json username = input_data["username"] mail = input_data["email"] first_name = input_data["first_name"] last_name = input_data["last_name"] password = input_data["password"] company = input_data["company"] is_inserted = user_controller.new_user(username, mail, first_name, last_name, password, company) if not is_inserted: return make_response(jsonify( {"error": "error al insertar el usuarion", "status": "error"}), 401) return make_response(jsonify({"status": True, "error": ""}), 200) @mod_user.route("/update", methods=["POST"]) @jwt_required() def update_user(): input_data = request.json id = input_data["id"] username = input_data["username"] mail = input_data["email"] first_name = input_data["first_name"] last_name = input_data["last_name"] password = input_data["password"] company = input_data["company"] is_updated = user_controller.update_user(id, username, mail, first_name, last_name, password, company) if not is_updated: make_response( jsonify({ "message": "Error al modificar el usuario", "status": "error" }), 401 ) return make_response(jsonify({"message": "True", "status": "ok"}), 200) @mod_user.route("/delete", methods=["POST"]) @jwt_required() def delete_user(): deleted_id = request.json["id"] if not user_controller.delete_user(deleted_id): return jsonify("{'error': 'Error al eliminar el usuario'}") return jsonify("{'is_deleted': True, 'error': '' }") @company_routes.route("/<id>") @jwt_required() def get_companies_by_id(id): filters = {"id": id, "actives": True} companies = company_controller.get_companies(filters) return jsonify(companies) @company_routes.route("/") @jwt_required() def get_companies(): filters = {"actives": True} companies = company_controller.get_companies(filters) return jsonify(companies) @company_routes.route("/", methods=["POST"]) @jwt_required() def add_company(): data = request.json if not company_controller.add_company(data): return make_response(jsonify("{'error': 'Error al insertar la compaรฑia'"), 500) return make_response(jsonify("{'is_inserted': True, 'error': ''"), 200) @company_routes.route("/update", methods=["POST"]) @jwt_required() def update_company(): data = request.json if not company_controller.update_company(data): return make_response(jsonify("{'error': 'Error al actualizar la compaรฑia'"), 500) return make_response(jsonify("{'is_updated': True, 'error': ''"), 200) @company_routes.route("/delete", methods=["POST"]) @jwt_required() def delete_company(): deleted_id = request.json["id"] if not company_controller.delete_company(deleted_id): return make_response(jsonify("{'error': 'Error al eliminar la compaรฑia'"), 500) return make_response(jsonify("{'is_updated': True, 'error': ''"), 200)
true
a3d56a666364fc53c25371d47ac769e4c03717a1
Python
tedrepo/nlg-mcts
/lm_mcts_sequence_demo.py
UTF-8
744
2.78125
3
[ "MIT" ]
permissive
from nlgmcts import * if __name__ == '__main__': print("creating language model...") lm = ShakespeareCharLanguageModel(n=5) num_simulations = 1000 width = 6 text_length = 50 start_state = ["<L>"] eval_function = lambda text: 100 - lm.perplexity(text) # mcts = LanguageModelMCTS(lm, width, text_length, eval_function, c=25) mcts = LanguageModelMCTSWithPUCT(lm, width, text_length, eval_function, cpuct=25) state = start_state print("beginning search...") mcts.search(state, num_simulations) best = mcts.get_best_sequence() generated_text = ''.join(best[0]) print("generated text: %s (score: %s, perplexity: %s)" % (generated_text, str(best[1]), lm.perplexity(generated_text)))
true
ba3e9386d79256de80a1053d8d89f34e3da2abf3
Python
verasazonova/textsim
/corpus/reuters.py
UTF-8
3,321
2.828125
3
[]
no_license
__author__ = 'verasazonova' from nltk.corpus import reuters import argparse import numpy as np from corpus.medical import word_valid class ReutersDataset(): def __init__(self, categories=None, lower=True): if categories == None or len(categories) == 1: self.fileids = reuters.fileids() else: self.fileids = reuters.fileids(categories) self.categories = categories self.lower = lower def get_subset(self, fileid): if self.lower: return [ word.lower() for word in reuters.words(fileid) if word_valid(word) ] else: return [ word for word in reuters.words(fileid) if word_valid(word) ] def __iter__(self): for fileid in self.fileids: yield self.get_subset(fileid) def get_train(self): x = [ self.get_subset(fileid) for fileid in self.fileids if fileid.startswith("train")] y = [ 1 if self.categories[0] in reuters.categories(fileid) else 0 for fileid in self.fileids if fileid.startswith("train")] return x, y def get_test(self): x = [ self.get_subset(fileid) for fileid in self.fileids if fileid.startswith("test")] y = [ 1 if self.categories[0] in reuters.categories(fileid) else 0 for fileid in self.fileids if fileid.startswith("test")] return x, y def get_target(self): # cat1 vs. cat2 if len(self.categories) > 1: target = [ [cat for cat in reuters.categories(fileid) if cat in self.categories][0] for fileid in self.fileids] # cat1 vs. not cat1 else: target = [ 1 if self.categories[0] in reuters.categories(fileid) else 0 for fileid in self.fileids] self.classes, target = np.unique(target, return_inverse=True) return target def explore_categories(max_len=5000, min_len=100, percentage=0.3): for cat in reuters.categories(): for cat2 in reuters.categories(): if cat2 > cat: if len(set(reuters.fileids(cat)) & set(reuters.fileids(cat2))) == 0: l1 = len(reuters.fileids(cat)) l2 = len(reuters.fileids(cat2)) if ( (l1 + l2) > min_len) and ( (l1 + l2) < max_len) and float((min(l1, l2))/float(l1+l2) > percentage): print cat, cat2, l1 + l2, float(min(l1, l2))/float(l1+l2) def __main__(): parser = argparse.ArgumentParser(description='') parser.add_argument('-c', action='store', nargs='+', dest='categories', help='Data filename') parser.add_argument('-min', action='store', dest='min', help='Data filename') parser.add_argument('-max', action='store', dest='max', help='Data filename') parser.add_argument('-p', action='store', dest='percentage', help='Data filename') arguments = parser.parse_args() rd = ReutersDataset(arguments.categories) x, y = rd.get_test() print len(x) print len(y) x, y = rd.get_train() print len(x) print len(y) print y #print rd.get_train() #print arguments.percentage #explore_categories(max_len=int(arguments.max), min_len=int(arguments.min), percentage=float(arguments.percentage)) if __name__ == "__main__": __main__()
true
6954ce78332b3688910b1f6fa0228c049afc1bd9
Python
drummonds/fab_support
/tests/test_utils.py
UTF-8
285
3.46875
3
[ "MIT" ]
permissive
from shutil import rmtree def remove_tree(path): assert path not in ("c:\\", "c:", "\\", "/") # Add safety check if isinstance(path, tuple) or isinstance(path, list): for this in path: remove_tree(this) else: rmtree(path, ignore_errors=True)
true
5339debd744e07523929e5a7f9a1ef75f2971035
Python
sdbaronc/taller_de_algoritmos
/algoritmo_23.py
UTF-8
159
3.453125
3
[]
no_license
seg=int(input("Digita la cantidad de segundos: ")) min=seg/60 seg_2=int(seg%60) horas=int(min/60) min_2=int(min%60) print("Tiempo ",horas,":",min_2, ":",seg_2)
true
93f324b6d60900aab1dc3dce5c4bbc0a7139fcf9
Python
aidanr002/Emergency-Watch
/EmergencyWatch/python serverside/wafire.py
UTF-8
6,479
2.65625
3
[]
no_license
from bs4 import BeautifulSoup import requests import json import time from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from datetime import datetime from dateutil import tz from scraper_cleanup import character_ord_check from scraper_cleanup import tag_removal_for_linebreak from scraper_cleanup import special_tag_removal def get_wa_fire_events(data): session = requests.Session() retry = Retry(connect = 3, backoff_factor = 0.5) adapter = HTTPAdapter(max_retries = retry) session.mount('https://', adapter) session.mount('http://', adapter) #fire INFORMATION_FIRE_ICON = "http://images001.cyclonewebservices.com/wp-content/uploads/2019/03/information.png" ADVICE_FIRE_ICON = "http://images001.cyclonewebservices.com/wp-content/uploads/2019/03/yellowfire.png" WATCHACT_FIRE_ICON = "http://images001.cyclonewebservices.com/wp-content/uploads/2019/03/orangefire.png" EMERGENCY_FIRE_ICON = "http://images001.cyclonewebservices.com/wp-content/uploads/2019/03/redfire.png" APP_ICON = 'http://images001.cyclonewebservices.com/wp-content/uploads/2019/03/triangle.png' #Start of loop for WA Fire #Loads link as focus source source = session.get('http://www.emergency.wa.gov.au/data/message_DFESCap.xml', verify = False).text #Creates object with this source soup = BeautifulSoup(source, 'lxml') # Goes through the soup object and for each class it iterates through some extractions for entry in soup.find_all('cap:alert'): #event_type = 'Fire' #Gets the level if 'fire' in entry.find("cap:category").text.lower(): event_level = entry.find("cap:severity").text #For the emergency type fire, add one of the fire icons #Depending on level, sets icon if "unknown" in event_level.lower() or "minor" in event_level.lower(): event_icon = INFORMATION_FIRE_ICON elif "moderate" in event_level.lower(): event_icon = ADVICE_FIRE_ICON elif "severe" in event_level.lower(): event_icon = WATCHACT_FIRE_ICON elif "extreme" in event_level.lower(): event_icon = EMERGENCY_FIRE_ICON else: event_icon = INFORMATION_FIRE_ICON #Gets headline event_title = entry.find('cap:headline').text event_title = character_ord_check(event_title) #Gets updated time event_time = entry.find("cap:sent").text event_time = event_time.replace('+08:00', '') from_zone = tz.gettz('UTC') to_zone = tz.gettz('Australia/Perth') utc = datetime.strptime(event_time, '%Y-%m-%dT%H:%M:%S') utc = utc.replace(tzinfo=from_zone) event_time = utc.astimezone(to_zone) event_time_converted = event_time.isoformat() #Seperates into usable parts year = "%d" % event_time.year month = "%d" % event_time.month day = "%d" % event_time.day hour = "%d" % event_time.hour minute = "%d" % event_time.minute if int(minute) < 10: minute = "0" + minute #Concatanate the parts into the ideal string if int(hour) > 12: hour = int(hour) % 12 event_time = str(hour) + ':' + minute + 'pm ' + day + '/' + month + '/' + year elif int(hour) == 12: event_time = str(hour) + ':' + minute + 'pm ' + day + '/' + month + '/' + year elif int(hour) < 12: event_time = str(hour) + ':' + minute + 'am ' + day + '/' + month + '/' + year #Makes the description event_headline = None event_category = None event_response = None event_urgency = None event_severity = None event_certainty = None event_areaDesc = None event_description = None event_instruction = None try: event_headline = entry.find("cap:headline").text event_category = entry.find("cap:category").text event_response = entry.find("cap:responseType").text event_urgency = entry.find("cap:urgency").text event_severity = entry.find("cap:severity").text event_certainty = entry.find("cap:certainty").text event_areaDesc = entry.find("cap:areaDesc").text event_description = entry.find("description").text event_instruction = entry.find("instruction").text except Exception: pass event_content = '' if event_category != None and event_headline != None: event_content += event_category + ": " + event_headline + "\n" if event_areaDesc != None: event_content += 'Location: ' + event_areaDesc + '\n' if event_severity != None: event_content += "Severity: " + event_severity + '\n' if event_urgency != None: event_content += "Urgency: " + event_urgency + '\n' if event_certainty != None: event_content += "Certainty: " + event_certainty + '\n' if event_response != None: event_content += "Response: " + event_response + '\n' if event_description != None: event_content += "Description: " + event_description + '\n' if event_instruction != None: event_content += "Instructions: " + event_instruction + '\n' event_content = character_ord_check(event_content) event_content = tag_removal_for_linebreak(event_content) event_content = special_tag_removal(event_content) # Gets the set of coord's and sets them to sperate variables event_lat_long, throw_away = entry.find("cap:circle").text.split(" ") event_lat, event_lng = event_lat_long.split(",") data['events'].append({ 'event_heading': event_title, 'location': 'Unknown', 'time': event_time, 'description': event_content, 'event_icon': event_icon, 'event_lat': event_lat, 'event_lng': event_lng }) return (data)
true
e13f702b13f6ad9c9abf62de9bbce1a0e891a55d
Python
tianxing1994/MachineLearning
/Kaggle/titanic/ๆ–นๆณ•ไบŒ/ๆต‹่ฏ•ๆ•ฐๆฎๅพ—ๅˆ† 95%.py
UTF-8
5,649
3.59375
4
[]
no_license
"""่ฎญ็ปƒๆ•ฐๆฎไธญ, ๆ นๆฎๆœ‰ Age ๅ€ผ็š„ๆ ทๆœฌ, ็บฟๆ€งๅ›žๅฝ’้ข„ๆต‹ๅ‡บๆ—  Age ๅ€ผ็š„ๆ ทๆœฌไน‹ Age ๅ€ผ. """ import re from sklearn.linear_model import LinearRegression, LogisticRegression import pandas as pd from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR Titanic = pd.read_csv(r"C:\Users\tianx\PycharmProjects\analysistest\dataset\titanic\train.csv") gender_submission = pd.read_csv(r"C:\Users\tianx\PycharmProjects\analysistest\dataset\titanic\gender_submission.csv") Titanic_test = pd.read_csv(r"C:\Users\tianx\PycharmProjects\analysistest\dataset\titanic\test.csv") # print(Titanic.isnull().any()) # print(Titanic.dtypes) # Age, Cabin, Embarked ๅˆ—ๆœ‰็ฉบๅ€ผ # Name, Sex, Ticket, Cabin, Embarked ไธบๆ–‡ๆœฌๅ€ผ. # print(len(Titanic)) # print(Titanic.loc[:,"Age"].isnull().sum()) # ่ฎญ็ปƒๆ ทๆœฌๆœ‰ 891 ไธช, Age ็ผบๅคฑๅ€ผ 177 ไธช. ้€š่ฟ‡ๅทฒๆœ‰ๅ€ผ, ็บฟๆ€งๅ›žๅฝ’ๆฑ‚ๆœช็Ÿฅๅ€ผ. # print(Titanic.loc[:,"Cabin"].isnull().sum()) # Cabin ็ผบๅคฑๅ€ผ 687 ไธช, ๅคง้ƒจไปฝ้ƒฝๅทฒ็ผบๅคฑ, drop ๆމ. # print(Titanic.loc[:,"Embarked"].isnull().sum()) # print(Titanic.loc[:,"Embarked"].value_counts()) # Embarked ๅช็ผบๅคฑ 2 ไธช, ่ฏฅๅˆ—ๅชๆœ‰ไธ‰ไธชๅ€ผ, S 644, C 168, Q 77. ็”จ S ๆฅๅกซๅ……ไธคไธช็ผบๅคฑๅ€ผ. Titanic_1 = Titanic.drop("Cabin",axis=1) Titanic_1 = Titanic_1.drop("Ticket",axis=1) Titanic_1.loc[:,"Embarked"] = Titanic_1.loc[:,"Embarked"].fillna("S") # print(Titanic_1.columns) # print(Titanic_1.loc[:,"Embarked"].isnull().sum()) # ๅฐ†ๆ‰€ๆœ‰ๅญ—็ฌฆไธฒ็š„ๅˆ—่ฝฌๆขไธบๆ•ฐๅญ—. object_columns = ["Sex", "Embarked"] global_namespace = globals() for column in object_columns: global_namespace[column] = dict(zip(Titanic_1.loc[:,column].unique(), range(len(Titanic_1.loc[:,column].unique())))) Titanic_1.loc[:, column] = Titanic_1.loc[:,column].map(global_namespace[column]) # print(Titanic_1.dtypes) # ๅชๅ‰ฉ Name ๅˆ—ไธบ object ็ฑปๅž‹. ่Žทๅ– Name ๅˆ—ๅ„ไบบ็š„็งฐ่ฐ“. Titanic_1.loc[:,"Name"] = Titanic_1.loc[:,"Name"].map(lambda x:re.search(" ([A-Za-z]+)\.", x)[0]) # ๅฏน่ฝฌๆขไธบ็งฐ่ฐ“ๅŽ็š„ Name ๅˆ—่ฟ›่กŒ Object ่ฝฌ int64 Name_dict = dict(zip(Titanic_1.loc[:,"Name"].unique(), range(len(Titanic_1.loc[:,"Name"].unique())))) Titanic_1.loc[:,"Name"] = Titanic_1.loc[:,"Name"].map(Name_dict) # print(Titanic_1.dtypes) # ็ฑปๅž‹่ฝฌๆขๅฎŒๆˆ. # ๅ–ๅ‡บ Age ไธญไธไธบ็ฉบ็š„ไธŽไธบ็ฉบ็š„ๆ ทๆœฌ. age_isnull = Titanic_1.loc[Titanic_1.loc[:,"Age"].isnull()] age_notnull = Titanic_1.loc[Titanic_1.loc[:,"Age"].notnull()] # print(age_isnull.loc[:,"Age"].isnull().sum()) # print(age_notnull.loc[:,"Age"].notnull().sum()) # isnull ๆ ทๆœฌ 177 ไธช, notnull ๆ ทๆœฌ 714 ไธช. # ไฝฟ็”จ SVR ็บฟๆ€งๅ›žๅฝ’. # svr = SVR() # svr.fit(age_notnull.drop("Age",axis=1),age_notnull.loc[:,"Age"]) # score_svr = svr.score(age_notnull.drop("Age",axis=1),age_notnull.loc[:,"Age"]) # print(score_svr) # ๅพ—ๅˆ† 0.093 # parameters = { # # "kernel": ["linear","rbf","poly","sigmoid"], # "kernel": ["linear"], # 'C':[2,] # } # # svr = SVR(gamma="scale") # clf = GridSearchCV(svr,parameters,cv=5) # clf.fit(age_notnull.drop("Age",axis=1),age_notnull.loc[:,"Age"]) # print(clf.score(age_notnull.drop("Age",axis=1),age_notnull.loc[:,"Age"])) # print(clf.best_estimator_) # print(clf.best_score_) # C=1.0, kernel="linear" ๆœ€ไฝณๅพ—ๅˆ† 0.20 # ไฝฟ็”จ SVR ็บฟๆ€งๅ›žๅฝ’. linearR = LinearRegression() linearR.fit(age_notnull.drop(["Age","Survived"],axis=1),age_notnull.loc[:,"Age"]) # score_linearR = linearR.score(age_notnull.drop("Age",axis=1),age_notnull.loc[:,"Age"]) # print(score_linearR) # ๅพ—ๅˆ† 0.276 # ๅกซๅ……็ฉบๆ•ฐๆฎ. age_pred = linearR.predict(age_isnull.drop(["Age","Survived"],axis=1)) age_isnull.loc[:,"Age"] = age_pred # print(age_isnull.isnull().any()) # print(age_pred) train_data = age_isnull.append(age_notnull) # print(train_data.shape) # ่ฎญ็ปƒๆจกๅž‹ logistic = LogisticRegression() logistic.fit(train_data.drop("Survived",axis=1), train_data.loc[:,"Survived"]) # ๆฃ€ๆŸฅๆต‹่ฏ•ๆ•ฐๆฎ # print(Titanic_test.dtypes) # print(Titanic_test.isnull().any()) # Name, Sex, Ticket, Embarked ไธบ object ็ฑปๅž‹ # Age, Fare, Cabin ๅญ˜ๅœจ็ผบๅคฑๅ€ผ Titanic_test_1 = Titanic_test.drop("Cabin",axis=1) Titanic_test_1 = Titanic_test_1.drop("Ticket",axis=1) test_data_object_columns = ["Sex", "Embarked"] for column in test_data_object_columns: Titanic_test_1.loc[:, column] = Titanic_test_1.loc[:,column].map(global_namespace[column]) Name_test_unique = Titanic_test_1.loc[:,"Name"].map(lambda x:re.search(" ([A-Za-z]+)\.", x)[0]).unique() # for name in Name_test_unique: # if name not in Name_dict: # print(name) # Dona. ไธๅœจ Name_dict ไธญ. # print(Name_dict) Name_dict["Dona."] = 2 Titanic_test_1.loc[:,"Name"] = Titanic_test_1.loc[:,"Name"].map(lambda x:re.search(" ([A-Za-z]+)\.", x)[0]) Titanic_test_1.loc[:,"Name"] = Titanic_test_1.loc[:,"Name"].map(Name_dict) Titanic_test_1.loc[:,"Name"].fillna(1,inplace=True) Titanic_test_1.loc[:,"Fare"].fillna(method='ffill',inplace=True) # print(Titanic_test_1.loc[:,"Age"].isnull().sum()) Titanic_test_age_isnull = Titanic_test_1.loc[Titanic_test_1.loc[:,"Age"].isnull()] Titanic_test_age_notnull = Titanic_test_1.loc[Titanic_test_1.loc[:,"Age"].notnull()] age_test_pred = linearR.predict(Titanic_test_age_isnull.drop("Age",axis=1)) Titanic_test_age_isnull.loc[:,"Age"] = age_test_pred test_data = Titanic_test_age_isnull.append(Titanic_test_age_notnull) # print(test_data.dtypes) # print(test_data.isnull().any()) result_dict = dict(zip(gender_submission.loc[:,"PassengerId"], gender_submission.loc[:,"Survived"])) test_target = test_data.loc[:,"PassengerId"].map(result_dict) test_score = logistic.score(test_data, test_target) print(test_score) # ๆต‹่ฏ•ๆ•ฐๆฎๅพ—ๅˆ† 95%
true
82266bdbfb736076e175672cdc5c81d2718b3362
Python
abeasock/python
/weatherunderground_api.py
UTF-8
5,259
3.015625
3
[]
no_license
############################################################################## #----------------------------------------------------------------------------- # Program Information #----------------------------------------------------------------------------- # Author : Amber Zaratisan # Creation Date : 06SEP2017 #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Script Information #----------------------------------------------------------------------------- # Script : weatherunderground_api.py # Brief Description : This script will use Weather Underground's API to # do a geolookup and gather weather elements for a # given latitude/longitude at a particular date and # hour. # Data used : # Output Files : locations_weather_joined.csv # # Notes / Assumptions : WU Documentation: https://www.wunderground.com/weather/api/d/docs?d=index #----------------------------------------------------------------------------- # Environment Information #----------------------------------------------------------------------------- # Python Version : 3.6.2 # Anaconda Version : 5.0.1 # Spark Version : n/a # Operating System : Windows 10 #----------------------------------------------------------------------------- # Change Control Information #----------------------------------------------------------------------------- # Programmer Name/Date : Change and Reason # ############################################################################## import pandas as pd import requests import json import datetime api_key = <your api key> # Create a pandas DataFrame with latitudes, longitudes locations = [('2/14/2014 12:31', 39.633556, -86.813806), ('5/19/2016 23:01', 41.992934, -86.128012), ('12/29/2017 20:05', 39.975028, -81.577583), ('4/7/2016 3:00', 44.843667, -87.421556), ('7/2/2015 5:45', 39.794824, -76.647191)] labels = ['date', 'latitude', 'longitude'] df = pd.DataFrame(locations, columns=labels) # Convert string to datetime df['timestamp'] = df['date'].map(lambda x: datetime.datetime.strptime(x,'%m/%d/%Y %H:%M')) df.drop('date', axis=1, inplace=True) def get_historical_weather(df): df_out = pd.DataFrame() for index, row in df.iterrows(): timestamp = row['timestamp'] latitude = row['latitude'] longitude = row['longitude'] date = datetime.datetime.strptime(str(timestamp), '%Y-%m-%d %H:%M:%S').strftime("%Y-%m-%d") hour = datetime.datetime.strptime(str(timestamp), '%Y-%m-%d %H:%M:%S').strftime("%H") weather_url = 'http://api.wunderground.com/api/' + api_key + '/geolookup/history_' + str(date) + '/q/' + str(latitude) + ',' + str(longitude) + '.json' weather_req = requests.get(weather_url) if weather_req.status_code==200: jsondata = json.loads(weather_req.content) else: print('[ ERROR ] WUnderground.com Status Code: ' + str(weather_req.status_code)) record = [hour_obs for hour_obs in jsondata['history']['observations'] if hour_obs['utcdate']['hour'] == hour ] row['heatindexm'] = record[0]['heatindexm'] row['windchillm'] = record[0]['windchillm'] row['wdire'] = record[0]['wdire'] row['wdird'] = record[0]['wdird'] row['windchilli'] = record[0]['windchilli'] row['hail'] = record[0]['hail'] row['heatindexi'] = record[0]['heatindexi'] row['precipi'] = record[0]['precipi'] row['thunder'] = record[0]['thunder'] row['pressurei'] = record[0]['pressurei'] row['snow'] = record[0]['snow'] row['pressurem'] = record[0]['pressurem'] row['fog'] = record[0]['fog'] row['icon'] = record[0]['icon'] row['precipm'] = record[0]['precipm'] row['conds'] = record[0]['conds'] row['tornado'] = record[0]['tornado'] row['hum'] = record[0]['hum'] row['tempi'] = record[0]['tempi'] row['tempm'] = record[0]['tempm'] row['dewptm'] = record[0]['dewptm'] row['rain'] = record[0]['rain'] row['dewpti'] = record[0]['dewpti'] row['visi'] = record[0]['visi'] row['vism'] = record[0]['vism'] row['wgusti'] = record[0]['wgusti'] row['metar'] = record[0]['metar'] row['wgustm'] = record[0]['wgustm'] row['wspdi'] = record[0]['wspdi'] row['wspdm'] = record[0]['wspdm'] df_out = df_out.append(row) return df_out df2 = get_historical_weather(df) df2.to_csv('locations_weather_joined.csv', index=False)
true
a9e8432a55e1d8201a9d980c12f6aac626d6e8d6
Python
lmagalhaes/toy-robot
/toy_robot/robot.py
UTF-8
2,407
3.0625
3
[]
no_license
from toy_robot.utils import Boundary, CardinalCoordinates, Point default_boundary = Boundary(Point(0, 0), Point(4, 4)) class Robot: def __init__(self, location: Point = None, direction: str = None, boundary: Boundary = None): self.location = location self.direction = direction self.boundaries = boundary if boundary else default_boundary @property def is_activated(self) -> bool: return self.location and self._direction @property def location(self) -> Point: return self._location @location.setter def location(self, location: Point) -> None: if not location: location = Point(None, None) self._location = location @property def direction(self): return None if not self._direction else CardinalCoordinates(self._direction).name @direction.setter def direction(self, direction: str) -> None: if direction: direction = CardinalCoordinates[direction.upper()].value self._direction = direction def place(self, location: Point, direction: str) -> None: if self.is_within_boundaries(location): self.location = location self.direction = direction def right(self) -> None: self._rotate(1) def left(self) -> None: self._rotate(-1) def _rotate(self, direction: int) -> None: new_direction = self._direction + direction if not 0 < new_direction < 5: # full rotation new_direction = 1 if new_direction else 4 self._direction = new_direction def move(self) -> None: if not self.location: return increase_coordinate = { CardinalCoordinates.NORTH.name: Point(0, 1), CardinalCoordinates.SOUTH.name: Point(0, -1), CardinalCoordinates.EAST.name: Point(1, 0), CardinalCoordinates.WEST.name: Point(-1, 0) } new_location = self.location.sum( increase_coordinate.get(self.direction) ) if self.is_within_boundaries(new_location): self.location = new_location def is_within_boundaries(self, location: Point) -> bool: return location and self.boundaries.is_within_boundaries(location) def report(self) -> str: if not self.location: return '' return f'{self.location},{self.direction}'
true
f91848ce185e71c39c63344e8a674964b7bc3741
Python
Gwiradus/Dynamic-Programming-and-Reinforcement-Learning
/ev_fleet_model.py
UTF-8
4,753
3.453125
3
[]
no_license
"""EV Fleet Model""" import numpy as np import matplotlib.pyplot as plt """Helper Functions""" def rayleigh_cdf(x_value, sigma=11.1): """Rayleigh cumulative distribution function""" return 1 - np.exp(-(x_value**2 / (2*sigma**2))) def rayleigh_pdf(x_value, sigma=11.1): """Rayleigh probability distribution function""" return (x_value / sigma**2) * np.exp(-(x_value**2 / (2*sigma**2))) def inverse_rayleigh_cdf(y_value, sigma=11.1): """Inverse of Rayleigh cumulative distribution function""" return np.sqrt(-1 * (np.log(1-y_value) * 2*sigma**2)) def truncate_normal(mean, sd, min_value, max_value, size): """Function that gives a list of normally distributed random numbers with given mean, standard deviation and max-min""" y_list = np.zeros((size, 1), dtype='float') for i in range(size): y = np.random.normal(mean, sd, 1) if y < min_value: y_list[i] = min_value elif min_value <= y <= max_value: y_list[i] = y else: y_list[i] = max_value return y_list def ev_single_boundary(time, time_vector, energy_req, power_max=6.6): """Function to find the max min energy boundaries of a single EV""" arrive_time = time_vector[0] depart_time = time_vector[1] e_min = 0 e_max = 0 if time < arrive_time: return [0, 0] elif arrive_time <= time <= depart_time: e_min = max(energy_req - power_max * (depart_time - time), 0) e_max = min(energy_req, power_max * (time - arrive_time)) return [e_min, e_max] else: return [energy_req, energy_req] def ev_fleet_boundary(time, arrive_vector, depart_vector, energy_req_vector, number_of_evs, power_max=6.6): """Function to find the max min energy boundaries of a fleet of EVs""" e_max = 0 e_min = 0 for ev in range(number_of_evs): energy_vector = ev_single_boundary(time, [arrive_vector[ev], depart_vector[ev]], energy_req_vector[ev], power_max) e_min += energy_vector[0] e_max += energy_vector[1] return [e_min, e_max] def initialise_fleet(number_of_evs): """Function to initialise fleet parameters like arrival/departure times, distance covered etc.""" t_min = 7 t_max = 18 arrive_time = truncate_normal(8, 0.5, t_min, 9, number_of_evs) depart_time = truncate_normal(17, 0.5, 16, t_max, number_of_evs) energy_req = np.array([(inverse_rayleigh_cdf(np.random.rand(1)) * 0.174) for i in range(number_of_evs)]) p_max = 6.6 # kW e_max = [] e_min = [] time = [] for t in range(t_min, t_max+1): energy = ev_fleet_boundary(t, arrive_time, depart_time, energy_req, number_of_evs, p_max) e_min.append(energy[0]) e_max.append(energy[1]) time.append(t) return e_min, e_max, time """MDP Functions""" def spot_price(time): """Function that returns the day ahead price of that hour""" return 25 + 4 * np.sin(3 * np.pi * time/24) def transition_function(current_state, action, constraints): """Transition Function that gives the next state depending on current state and action""" delta_t = 1 next_state = current_state + action * delta_t if next_state < constraints[0]: next_state = constraints[0] elif constraints[0] <= next_state <= constraints[1]: next_state = next_state else: next_state = constraints[1] return next_state def reward_function(price, current_state, next_state): """Reward function that gives the reward for each hour, based on current state and next state reached""" return price * (next_state - current_state) def environment(time, current_state, action, constraint): """Environment function that gives the next state and reward based on current state and action""" price = spot_price(time) next_state = transition_function(current_state, action, constraint) reward = reward_function(price, current_state, next_state) return next_state, reward """Main Script""" n_ev = 1000 min_e, max_e, t_time = initialise_fleet(1000) state_track = [] xk = 0 for i in range(len(t_time)): t = t_time[i] uk = np.random.rand(1) * 500 # kW of charging power drawn print("Environment") xk1, rk = environment(t, xk, uk, [min_e[i], max_e[i]]) print("Next State =", xk1) print("Reward =", rk) xk = xk1 state_track.append(xk1) plt.plot(t_time, min_e, label='Minimum Energy', linestyle='--') plt.plot(t_time, max_e, label='Maximum Energy', linestyle='--') plt.plot(t_time, state_track, label='Energy') plt.legend() plt.show()
true
75355144051ececf0e1ed0e6eb40a53bb7fcb4e2
Python
AnaMaria99/EasyChatBot
/utils.py
UTF-8
405
2.890625
3
[]
no_license
class FileReader: def __init__(self, filename): self.__filename = filename def citire_date(self): date = [] with open(self.__filename) as f: for intrebare in f: raspuns = f.readline().strip('\n') date.append((intrebare, raspuns)) return date def parsefloat(string): try: return float(''.join([x for x in string if x.isdigit() or x == '.']).strip('.')) except: return None
true
9477300204d583663760f98b74a0acc45d4f5c51
Python
ThanHuuTuan/python-Spider
/Spider/Nine--Shoe Figure/้ž‹ๅ›พ.py
UTF-8
1,957
2.984375
3
[]
no_license
import requests from bs4 import BeautifulSoup import os import time import random def get_urls(url): res=requests.get(url) # print(res.text) s=1 html=BeautifulSoup(res.text,'lxml') div=html.find_all('div','showindex__children') for i in range(len(div)): # print(div[i]) url='http://qcr0122.x.yupoo.com'+div[i].find('a','album__main').get('href') title=div[i].find('a','album__main').get('title') # print(url) print(title) get_img(url,title) rtime = float( random.randint(1, 50) / 20) print("่ฏท่ฎฉๆˆ‘ไผ‘ๆฏ%d็ง’้’Ÿ" % rtime) print("ๆŽฅไธ‹ๆฅๅฐ†่ฆ็ˆฌๅ–" + "็ฌฌ%dๆฌพ" % (i + 1)) s+=1 time.sleep(rtime) def get_img(url,title): res=requests.get(url) html=BeautifulSoup(res.text,'lxml') divs=html.find('div','showalbum__parent showalbum__nor nor') # print(divs) div=divs.find_all('div','showalbum__children image__main') i=1 for i in range(len(div)): img='http://photo.yupoo.com'+div[i].find('img').get('data-path') #ๅ‘็Žฐ็š„img่ฟžๆŽฅๆ˜ฏๅ‡็š„ print(img) get_img_content(img,title,i) i+=1 def get_img_content(url,username,i): folder_path='./'+username if os.path.exists(folder_path)==False: os.makedirs(folder_path) res=requests.get(url) try: fp = open(folder_path+'\\' +str(i)+'.jpg', 'wb') fp.write(res.content) print("Sucessful"+username) fp.close() except: print("Failed"+username) pass if __name__=='__main__': for i in range(11,19):#19 url='http://qcr0122.x.yupoo.com/albums?tab=gallery&page='+str(i) get_urls(url) rtime = float(5 + random.randint(1, 50) / 20) print("่ฏท่ฎฉๆˆ‘ไผ‘ๆฏ%d็ง’้’Ÿ" % rtime) print("ๆŽฅไธ‹ๆฅๅฐ†่ฆ็ˆฌๅ–" + "้ฆ–้กต็ฌฌ%d้กต" % (i+1)) time.sleep(rtime)
true
b9bbff89b17218769f471ded6f9c29df8c7387bc
Python
tkkuehn/aoc19
/day9/part1.py
UTF-8
13,312
3.078125
3
[]
no_license
#!/usr/bin/python3 with open('./input.txt', 'r') as f: contents = f.read().splitlines()[0] program = [int(x) for x in contents.split(',')] class Computer: def __init__(self): self.memory = {} self.inst_ptr = 0 self.input_queue = [] self.output_buffer = [] self.relative_base = 0 def run_program(self, program): self.memory = {idx: val for idx, val in zip(range(len(program)), program)} self.inst_ptr = 0 return self.continue_program() def access_memory(self, idx): if idx < 0: raise KeyError('Attempted to access negative address') try: return self.memory[idx] except KeyError: self.memory[idx] = 0 return 0 def mutate_memory(self, idx, val): if idx < 0: raise KeyError('Attempted to mutate negative address') self.memory[idx] = val def continue_program(self): while True: opcode_val = str(self.memory[self.inst_ptr]) digits = len(opcode_val) if digits == 1: opcode_val = '0' + opcode_val digits += 1 opcode = int(opcode_val[-2:]) if opcode == 99: return 0 elif opcode in [1, 2, 7, 8]: params = 3 elif opcode in [3, 4, 9]: params = 1 elif opcode in [5, 6]: params = 2 else: raise Exception('Invalid opcode') for i in range(params + 2 - digits): opcode_val = '0' + opcode_val increase_int_ptr = True if opcode == 1: augend_mode = int(opcode_val[-3]) if augend_mode == 0: augend_addr = self.access_memory(self.inst_ptr + 1) augend = self.access_memory(augend_addr) elif augend_mode == 1: augend = self.access_memory(self.inst_ptr + 1) elif augend_mode == 2: augend_addr = self.access_memory(self.inst_ptr + 1) augend = self.access_memory( self.relative_base + augend_addr) else: raise RuntimeError( 'Invalid augend mode: {}'.format(augend_mode)) addend_mode = int(opcode_val[-4]) if addend_mode == 0: addend_addr = self.access_memory(self.inst_ptr + 2) addend = self.access_memory(addend_addr) elif addend_mode == 1: addend = self.access_memory(self.inst_ptr + 2) elif addend_mode == 2: addend_addr = self.access_memory(self.inst_ptr + 2) addend = self.access_memory( self.relative_base + addend_addr) else: raise RuntimeError( 'Invalid addend mode: {}'.format(addend_mode)) result_mode = int(opcode_val[-5]) if result_mode == 0: result = self.access_memory(self.inst_ptr + 3) elif result_mode == 2: result = self.relative_base + self.access_memory( self.inst_ptr + 3) else: raise RuntimeError( 'Invalid result mode: {}'.format(result_mode)) self.mutate_memory(result, augend + addend) elif opcode == 2: multiplicand_mode = int(opcode_val[-3]) if multiplicand_mode == 0: multiplicand_addr = self.access_memory(self.inst_ptr + 1) multiplicand = self.access_memory(multiplicand_addr) elif multiplicand_mode == 1: multiplicand = self.access_memory(self.inst_ptr + 1) elif multiplicand_mode == 2: multiplicand_addr = self.access_memory(self.inst_ptr + 1) multiplicand = self.access_memory(self.relative_base + multiplicand_addr) else: raise RuntimeError( 'Invalid multiplicand mode: {}'.format( multiplicand_mode)) multiplier_mode = int(opcode_val[-4]) if multiplier_mode == 0: multiplier_addr = self.access_memory(self.inst_ptr + 2) multiplier = self.access_memory(multiplier_addr) elif multiplier_mode == 1: multiplier = self.access_memory(self.inst_ptr + 2) elif multiplier_mode == 2: multiplier_addr = self.access_memory(self.inst_ptr + 2) multiplier = self.access_memory(self.relative_base + multiplier_addr) else: raise RuntimeError( 'Invalid multiplier mode: {}'.format(multiplier_mode)) result_mode = int(opcode_val[-5]) if result_mode == 0: result = self.access_memory(self.inst_ptr + 3) elif result_mode == 2: result = self.relative_base + self.access_memory( self.inst_ptr + 3) else: raise RuntimeError( 'Invalid result mode: {}'.format(result_mode)) self.mutate_memory(result, multiplicand * multiplier) elif opcode == 3: input_mode = int(opcode_val[-3]) if input_mode == 0: input_ = self.access_memory(self.inst_ptr + 1) elif input_mode == 2: input_ = self.relative_base + self.access_memory( self.inst_ptr + 1) else: raise RuntimeError( 'Invalid input mode: {}'.format(input_mode)) val = int(self.input_queue.pop(0)) self.mutate_memory(input_, val) elif opcode == 4: output_mode = int(opcode_val[-3]) if output_mode == 0: output_addr = self.access_memory(self.inst_ptr + 1) output_ = self.access_memory(output_addr) elif output_mode == 1: output_ = self.access_memory(self.inst_ptr + 1) elif output_mode == 2: output_addr = self.relative_base + self.access_memory( self.inst_ptr + 1) output_ = self.access_memory(output_addr) else: raise RuntimeError( 'Invalid output mode: {}'.format(output_mode)) self.output_buffer.append(output_) self.inst_ptr += params + 1 return 1 elif opcode in [5, 6]: check_mode = int(opcode_val[-3]) if check_mode == 0: check_addr = self.access_memory(self.inst_ptr + 1) check = self.access_memory(check_addr) elif check_mode == 1: check = self.access_memory(self.inst_ptr + 1) elif check_mode == 2: check_addr = self.relative_base + self.access_memory( self.inst_ptr + 1) check = self.access_memory(check_addr) else: raise RuntimeError('Invalid check mode: {}'.format( check_mode)) val_mode = int(opcode_val[-4]) if val_mode == 0: val_addr = self.access_memory(self.inst_ptr + 2) val = self.access_memory(val_addr) elif val_mode == 1: val = self.access_memory(self.inst_ptr + 2) elif val_mode == 2: val_addr = self.relative_base + self.access_memory( self.inst_ptr + 2) val = self.access_memory(val_addr) else: raise RuntimeError('Invalid val mode: {}'.format( val_mode)) if ((opcode == 5 and check != 0) or (opcode == 6 and check == 0)): self.inst_ptr = val increase_int_ptr = False elif opcode == 7: a_mode = int(opcode_val[-3]) if a_mode == 0: a_addr = self.access_memory(self.inst_ptr + 1) a = self.access_memory(a_addr) elif a_mode == 1: a = self.access_memory(self.inst_ptr + 1) elif a_mode == 2: a_addr = self.relative_base + self.access_memory( self.inst_ptr + 1) a = self.access_memory(a_addr) else: raise RuntimeError('Invalid a mode: {}'.format( a_mode)) b_mode = int(opcode_val[-4]) if b_mode == 0: b_addr = self.access_memory(self.inst_ptr + 2) b = self.access_memory(b_addr) elif b_mode == 1: b = self.access_memory(self.inst_ptr + 2) elif b_mode == 2: b_addr = self.relative_base + self.access_memory( self.inst_ptr + 2) b = self.access_memory(b_addr) else: raise RuntimeError('Invalid b mode: {}'.format( b_mode)) result_mode = int(opcode_val[-5]) if result_mode == 0: result = self.access_memory(self.inst_ptr + 3) elif result_mode == 2: result = self.relative_base + self.access_memory( self.inst_ptr + 3) else: raise RuntimeError( 'Invalid result mode: {}'.format(result_mode)) if a < b: self.mutate_memory(result, 1) else: self.mutate_memory(result, 0) elif opcode == 8: a_mode = int(opcode_val[-3]) if a_mode == 0: a_addr = self.access_memory(self.inst_ptr + 1) a = self.access_memory(a_addr) elif a_mode == 1: a = self.access_memory(self.inst_ptr + 1) elif a_mode == 2: a_addr = self.relative_base + self.access_memory( self.inst_ptr + 1) a = self.access_memory(a_addr) else: raise RuntimeError('Invalid a mode: {}'.format( a_mode)) b_mode = int(opcode_val[-4]) if b_mode == 0: b_addr = self.access_memory(self.inst_ptr + 2) b = self.access_memory(b_addr) elif b_mode == 1: b = self.access_memory(self.inst_ptr + 2) elif b_mode == 2: b_addr = self.relative_base + self.access_memory( self.inst_ptr + 2) b = self.access_memory(b_addr) else: raise RuntimeError('Invalid b mode: {}'.format( b_mode)) result_mode = int(opcode_val[-5]) if result_mode == 0: result = self.access_memory(self.inst_ptr + 3) elif result_mode == 2: result = self.relative_base + self.access_memory( self.inst_ptr + 3) else: raise RuntimeError( 'Invalid result mode: {}'.format(result_mode)) if a == b: self.mutate_memory(result, 1) else: self.mutate_memory(result, 0) elif opcode == 9: adjust_mode = int(opcode_val[-3]) if adjust_mode == 0: adjust_addr = self.access_memory(self.inst_ptr + 1) adjust = self.access_memory(adjust_addr) elif adjust_mode == 1: adjust = self.access_memory(self.inst_ptr + 1) elif adjust_mode == 2: adjust_addr = self.relative_base + self.access_memory( self.inst_ptr + 1) adjust = self.access_memory(adjust_addr) else: raise RuntimeError('Invalid adjust mode: {}'.format( adjust_mode)) self.relative_base += adjust else: raise Exception('Invalid opcode: {}'.format(opcode)) if increase_int_ptr: self.inst_ptr += params + 1 a = Computer() a.input_queue.append(1) if a.run_program(program) == 1: while True: if a.continue_program() == 0: break print(a.output_buffer)
true
b78c56d1fc74f528fe60acda215964ef83af19ff
Python
gezpage/opyapi
/tests/schema/validators/test_date_time.py
UTF-8
767
3.09375
3
[ "MIT" ]
permissive
import pytest from opyapi.schema.validators import DateTime from datetime import datetime def test_can_instantiate(): validator = DateTime() assert validator.validate("2016-09-18T17:34:02.124Z") @pytest.mark.parametrize( "value", ( "2016-09-18T17:34:02.124Z", "2016-09-18 17:34:02.124Z", "2016-09-1817:34:02.124Z", "2016-09-1817:34:02Z", "2016-09-18T17:34:02+02:00", "20160918173402Z", ), ) def test_valid_values(value: str): validator = DateTime() date = validator.validate(value) assert isinstance(date, datetime) assert date.year == 2016 assert date.month == 9 assert date.day == 18 assert date.hour == 17 assert date.minute == 34 assert date.second == 2
true
11e5f4f70ef1ef84cf7abda18cc47f5d044fb592
Python
jseranna/HPE-Python-repository
/tr_assessment_IT calculator.py
UTF-8
590
3.71875
4
[]
no_license
# tax calculation app # input data name = input('What is your name: ') age = int(input('age please: ')) sal = int(input('what is your total CTC: ')) sec = int(input('money invested under section 80C(if any): ')) # process x= int(250000) if(sal <=250000): y=0 elif(sal >=250001 and sal <=500000): y=(sal-sec-x)*5/100 elif(sal >=500001 and sal <=1000000): y=(sal-sec-x-x)*20/100+12500 elif(sal >=1000001): y=(sal-sec-x-x-x-x)*30/100+112500 else: y=0 # Output print('Hi',name , 'your total tax payable amount is: ', y)
true
fe48ab6f1062d4ccbf89ebbe773b3e2d582b992d
Python
juneharold/PH526x_UPFR
/review/numpy_practice/numpy3.py
UTF-8
416
3.6875
4
[]
no_license
import numpy as np z1 = np.array([1, 3, 5, 7, 9]) z2 = z1+1 print(z1) print(z2) ind = [0, 2, 3] z3 = z1[ind] print(z3) z4 = (z1>6) print(z4) z5 = z1[z1 > 6] # only returns values where the index is true # slicing vs indexing z1 = np.array([1, 3, 5, 7, 9]) w = z1[0:3] # if w is modified, z1 also gets modified w[0]=3 print(w) print(z1) ind=[0, 1, 2] x=z1[ind] # even if x is modified, z1 does not get modified
true
9fddfd4f5dad0d2f8cbf03cd6588173ead9bf680
Python
xuehanshuo/ref-python-lan
/05_้ซ˜็บงๅ˜้‡/hm_01_ๅˆ—่กจๅขžๅˆ ๆŸฅๆ”น.py
UTF-8
1,023
4.15625
4
[]
no_license
name_list = ["one", "two", "three"] """ name_list. name_list.append name_list.count name_list.insert name_list.reverse name_list.clear name_list.extend name_list.pop name_list.sort name_list.copy name_list.index name_list.remove """ # 1.ๅ–ๅ€ผๅ’Œๅ–็ดขๅผ• # ๅ–ๅ€ผ print(name_list[0]) # ๅ–็ดขๅผ• print(name_list.index("one")) # 2.ไฟฎๆ”นๆ•ฐๆฎ name_list[0] = "ones" # 3.ๅขžๅŠ  # append ๅ‘ๅˆ—่กจๆœซๅฐพ่ฟฝๅŠ ๆ•ฐๆฎ name_list.append("one") # insert name_list.insert(1, "zero") # extend ๆŠŠๅ…ถไป–ๅˆ—่กจ่ฟฝๅŠ ๅˆฐๆœซๅฐพ name_list_temp = ["uno", "dos"] name_list.extend(name_list_temp) # 4.ๅˆ ้™ค # remove ๅˆ ้™ค็ฌฌไธ€ไธชๆŒ‡ๅฎš็š„ๆ•ฐๆฎ name_list.remove("ones") # pop ้ป˜่ฎคๅผนๅ‡บๅนถ่ฟ”ๅ›žๆœ€ๅŽไธ€ไธชๅ˜้‡๏ผŒๅฆๅˆ™ๅˆ ้™คๅฏนๅบ”็ดขๅผ•ๅ€ผ name_list.pop() name_list.pop(4) # clear ๆธ…็ฉบๅˆ—่กจ name_list.clear() # del ็”จไบŽไปŽๅ†…ๅญ˜ไธญๅˆ ้™คๆŸไธชๅ˜้‡๏ผŒๅŽ็ปญไปฃ็ ไธๅฏๅ†ไฝฟ็”จ่ฟ™ไธชๅ˜้‡ """ del name_list[0] name = "one" del name print(name) # ไธๅฏ็”จ """ print(name_list)
true
057d20c6613085b868397dc6677134382343bfe5
Python
SuryankDixit/LeetCode_Algorithms
/Python/Spiral_Matrix.py
UTF-8
767
3.140625
3
[]
no_license
class Solution(object): def spiralOrder(self, matrix): """ :type matrix: List[List[int]] :rtype: List[int] """ k, l = 0, 0 m = len(matrix) n = len(matrix[0]) res = [] while (k < m and l < n): for i in range(l, n): res.append(matrix[k][i]) k += 1 for i in range(k, m): res.append(matrix[i][n-1]) n -= 1 if (k < m): for i in range(n-1, (l-1), -1): res.append(matrix[m-1][i]) m -= 1 if (l < n): for i in range(m-1, k-1, -1): res.append(matrix[i][l]) l += 1 return res
true
7e32f4e01ef209571853ece8eaf7b319dd5df3ee
Python
itsavik4u/python-learning
/test_calc.py
UTF-8
868
3.484375
3
[]
no_license
import unittest from calc import Calc class TestCalc(unittest.TestCase): def test_add(self): c = Calc() # cover the edge cases self.assertEqual(c.add(36, 4), 40) self.assertEqual(c.add(-1, 1), 0) self.assertEqual(c.add(-2, -4), -6) self.assertEqual(c.add(-36, 4), -32) def test_div(self): c = Calc() # cover the edge cases self.assertEqual(c.div(36, 4), 9) self.assertEqual(c.div(-1, 1), -1) self.assertEqual(c.div(-1, -1), 1) self.assertEqual(c.div(5, 2), 2) # checking / raising the exception # self.assertRaises(ValueError, c.div, 10, 0) # alternate: using context manager with self.assertRaises(ValueError): # call the function normally c.div(10, 0) if __name__ == '__main__': unittest.main()
true
5526ab7d57981edbe79dcd197652d938b9c003ec
Python
ziqizhang/msm4phi
/code/python/src/analysis/IAA_kappa.py
UTF-8
1,973
2.6875
3
[]
no_license
import sklearn from sklearn.metrics import cohen_kappa_score lookup={} lookup["Advocates"]=0 lookup["Patient"]=1 lookup["P"]=1 lookup["HPO"]=2 lookup["HPI"]=3 lookup["Other"]=4 lookup["Research"]=5 def read_annotations(in_csv, num_lines:int, ignore_header=True): converted_labels=[] with open(in_csv, 'r') as f: lines = f.readlines() for i in range(0, num_lines+1): if ignore_header and i==0: continue l = lines[i].replace('"','').strip() part=l.split(",") labels=[] for x in range(1, len(part)): p = part[x] if len(p)==0: continue else: labels.append(lookup[p.strip()]) labels=sorted(labels, reverse=True) try: converted_labels.append(labels) except KeyError: print("error") return converted_labels def maximize_agreement(annotator1:list, annotator2:list): for i in range(0, len(annotator1)): ann1 = annotator1[i] ann2 = annotator2[i] if len(ann1)>1 or len(ann2)>1: inter = set(ann1) & set(ann2) if len(inter)>0: annotator1[i]=list(inter)[0] annotator2[i] = list(inter)[0] else: annotator1[i] = ann1[0] annotator2[i] = ann2[0] else: annotator1[i]=ann1[0] annotator2[i]=ann2[0] if __name__=="__main__": annotator1 = \ read_annotations("/home/zz/Cloud/GDrive/ziqizhang/project/msm4phi/paper2/data/annotation/GB_annotation.csv",100) annotator2 = \ read_annotations("/home/zz/Cloud/GDrive/ziqizhang/project/msm4phi/paper2/data/annotation/ZZ_annotation.csv",100) maximize_agreement(annotator1,annotator2) print(cohen_kappa_score(annotator1, annotator2, labels=None, weights=None))
true
8e6842779b87380cc90393e24fb0dc6c4c65ea54
Python
baubrun/dp_py
/observer/observer.py
UTF-8
259
2.59375
3
[]
no_license
from abc import ABCMeta, abstractmethod class Observer(metaclass=ABCMeta): @abstractmethod def update(self, desc): pass @abstractmethod def unsubscribe(self): pass @abstractmethod def subscribe(self): pass
true
98b10b4b9c6024feb65652b321dc1d3945b4ff40
Python
ky8778/AL_study
/A/BackTracking/BJ2580์Šค๋„์ฟ _KY.py
UTF-8
1,211
2.609375
3
[]
no_license
inData = [list(map(int,input().split())) for _ in range(9)] result = [[0 for _ in range(9)] for _ in range(9)] def checkMap(y,x): checkNum = [False for _ in range(10)] for idx in range(9): val = inData[y][idx] checkNum[val] = True val = inData[idx][x] checkNum[val] = True startY = (y//3)*3 startX = (x//3)*3 for i in range(3): for j in range(3): val = inData[i+startY][j+startX] checkNum[val] = True # print(checkNum) return checkNum def getResult(n): if n>=len(inList): for i in range(9): for j in range(9): result[i][j] = inData[i][j] return True yy = inList[n][0] xx = inList[n][1] checkNumber = checkMap(yy,xx) # print(checkNumber) for i in range(1,10): if not checkNumber[i]: inData[yy][xx] = i if getResult(n+1): return True else: inData[yy][xx] = 0 return False inList = [] for i in range(9): for j in range(9): if inData[i][j] == 0: inList.append([i,j]) getResult(0) # print(inData) for i in result: print(*i)
true
e364d18be3b242b3a07ea2a86a91548f648f752e
Python
TimurKTI/PythonProjects
/mono.py
UTF-8
1,892
3.8125
4
[]
no_license
alf = tuple("ะะ‘ะ’ะ“ะ”ะ•ะะ–ะ—ะ˜ะ™ะšะ›ะœะะžะŸะ ะกะขะฃะคะฅะฆะงะจะฉะชะซะฌะญะฎะฏ") N = len(alf) def encrypt(text, a, k): print(f"ะ—ะฐัˆะธั„ั€ะพะฒะบะฐ ะฟะพ ะบะปัŽั‡ัƒ: {key}\n") text = text.upper() gv_txt = "" for ch in text: if ch in alf: enc_ch = (a * alf.index(ch) + key) % (N) gv_txt += alf[enc_ch] else: gv_txt += ch return gv_txt def decrypt(text, a, k): print(f"ะ ะฐััˆะธั„ั€ะพะฒะบะฐ ะฟะพ ะบะปัŽั‡ัƒ: {key}\n") text = text.upper() gv_txt = "" a_inv = 0 flag = 0 for i in range(0, N): flag = (a * i) % (N) if flag == 1: a_inv = i for ch in text: if ch in alf: enc_ch = ( a_inv * (alf.index(ch) - key) ) % (N) gv_txt += alf[enc_ch] else: gv_txt += ch return gv_txt a = 13 key = 5 while True: user = input("""ะฒะฒะตะดะธั‚ะต "ัˆะธั„ั€", ะตัะปะธ ะฝัƒะถะฝะพ ะทะฐัˆะธั„ั€ะพะฒะฐั‚ัŒ ั‚ะตะบัั‚ ะธะปะธ "ั€ะฐััˆ", ะตัะปะธ ะฝัƒะถะฝะพ ั€ะฐััˆะธั„ั€ะพะฒะฐั‚ัŒ, ะธะปะธ ะถะต ะฒะฒะตะดะธ ั‡ั‚ะพ-ะฝะธะฑัƒะดัŒ ะดั€ัƒะณะพะต ะดะปั ั‚ะพะณะพ ั‡ั‚ะพะฑั‹ ะฒั‹ะนั‚ะธ ะธะท ะฟั€ะพะณั€ะฐะผะผั‹\n """) if user == 'ัˆะธั„ั€': text = input("ะฒะฒะตะดะธ ั‚ะตะบัั‚, ะบะพั‚ะพั€ั‹ะน ะฝัƒะถะฝะพ ะทะฐัˆะธั„ั€ะพะฒะฐั‚ัŒ\n") ciphtxt = encrypt(text, a, key) print("ะ’ะฐัˆ ะทะฐัˆะธั„ั€ะพะฒะฐะฝะฝั‹ะน ั‚ะตะบัั‚\n") print(ciphtxt) print('\n') elif user == 'ั€ะฐััˆ': text = input("ะฒะฒะตะดะธ ั‚ะตะบัั‚, ะบะพั‚ะพั€ั‹ะน ะฝัƒะถะฝะพ ั€ะฐััˆะธั„ั€ะพะฒะฐั‚ัŒ\n") firstxt = decrypt(text, a, key) print("ะ’ะฐัˆ ั€ะฐััˆะธั„ั€ะพะฒะฐะฝะฝั‹ะน ั‚ะตะบัั‚\n") print(firstxt) print('\n') else : break input("ะŸั€ะตะบั€ะฐั‰ะตะฝะธะต ั€ะฐะฑะพั‚ั‹ ะฟั€ะพะณั€ะฐะผะผั‹")
true
db59edcd86a97c5d6816fd92d9e006f9be9ed3ee
Python
mattijn/pynotebook
/2015/2015-12-18 Cartopy Global Drought.py
UTF-8
24,480
2.625
3
[]
no_license
# coding: utf-8 # In[1]: import matplotlib.pyplot as plt import cartopy.crs as ccrs from cartopy.mpl.gridliner import LATITUDE_FORMATTER, LONGITUDE_FORMATTER import matplotlib.ticker as mticker import matplotlib.colors as mcolors import matplotlib.colorbar as mcb import cartopy.feature as cfeature from matplotlib import gridspec from datetime import datetime import warnings from osgeo import gdal import numpy as np # In[2]: import numpy as np import matplotlib.colors as mcolors def make_colormap(seq): """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mcolors.LinearSegmentedColormap('CustomMap', cdict) c = mcolors.ColorConverter().to_rgb def cmap_discretize(cmap, N): """Return a discrete colormap from the continuous colormap cmap. cmap: colormap instance, eg. cm.jet. N: number of colors. Example x = resize(arange(100), (5,100)) djet = cmap_discretize(cm.jet, 5) imshow(x, cmap=djet) """ if type(cmap) == str: cmap = get_cmap(cmap) colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N+1) cdict = {} for ki,key in enumerate(('red','green','blue')): cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in xrange(N+1) ] # Return colormap object. return mcolors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024) def reverse_colourmap(cmap, name = 'my_cmap_r'): """ Return a reverse colormap from a LinearSegmentedColormaps cmap: LinearSegmentedColormap instance name: name of new cmap (default 'my_cmap_r') Explanation: t[0] goes from 0 to 1 row i: x y0 y1 -> t[0] t[1] t[2] / / row i+1: x y0 y1 -> t[n] t[1] t[2] so the inverse should do the same: row i+1: x y1 y0 -> 1-t[0] t[2] t[1] / / row i: x y1 y0 -> 1-t[n] t[2] t[1] """ reverse = [] k = [] for key in cmap._segmentdata: k.append(key) channel = cmap._segmentdata[key] data = [] for t in channel: data.append((1-t[0],t[2],t[1])) reverse.append(sorted(data)) LinearL = dict(zip(k,reverse)) my_cmap_r = mcolors.LinearSegmentedColormap(name, LinearL) return my_cmap_r # In[3]: date = datetime(2004,10,15) extent = [-179,179,-60,80] # In[4]: date_str = '20041015' prefix = ['P0','P1','P2','P3','MEAN','DC'] folder = r'D:\Downloads\Mattijn@Zhou\GlobalDroughtProvince\tif//' in_rasters = [] for pre in prefix: out_raster = folder + pre + date_str + '.tif' print out_raster in_rasters.append(out_raster) data1 = np.ma.masked_equal(gdal.Open(in_rasters[0]).ReadAsArray(),7) data2 = np.ma.masked_equal(gdal.Open(in_rasters[1]).ReadAsArray(),7) data3 = np.ma.masked_equal(gdal.Open(in_rasters[2]).ReadAsArray(),7) data4 = np.ma.masked_equal(gdal.Open(in_rasters[3]).ReadAsArray(),7) data5 = np.ma.masked_equal(gdal.Open(in_rasters[4]).ReadAsArray(),7) data6 = np.ma.masked_equal(gdal.Open(in_rasters[5]).ReadAsArray(),7) # In[5]: data6.max() # In[6]: in_tif = in_rasters[0] ds = gdal.Open(in_tif) print 'geotransform', ds.GetGeoTransform() print 'raster X size', ds.RasterXSize print 'raster Y size', ds.RasterYSize data = ds.ReadAsArray() data_ma = np.ma.masked_equal(data,7) gt = ds.GetGeoTransform() proj = ds.GetProjection() xres = gt[1] yres = gt[5] # get the edge coordinates and add half the resolution # to go to center coordinates xmin = gt[0] + xres * 0.5 xmax = gt[0] + (xres * ds.RasterXSize) - xres * 0.5 ymin = gt[3] + (yres * ds.RasterYSize) + yres * 0.5 ymax = gt[3] - yres * 0.5 #ds = None gridlons = np.mgrid[xmin:xmax+xres:xres] gridlats = np.mgrid[ymax+yres:ymin:yres] # In[7]: drought_cat_tci_cmap = make_colormap([c('#993406'), c('#D95E0E'),0.2, c('#D95E0E'), c('#FE9829'),0.4, c('#FE9829'), c('#FFD98E'),0.6, c('#FFD98E'), c('#FEFFD3'),0.8, c('#C4DC73')]) drought_per_tci_cmap = make_colormap([c('#993406'), c('#D95E0E'),0.2, c('#D95E0E'), c('#FE9829'),0.4, c('#FE9829'), c('#FFD98E'),0.6, c('#FFD98E'), c('#FEFFD3'),0.8, c('#FEFFD3')]) drought_avg_tci_cmap = make_colormap([c('#993406'), c('#D95E0E'),0.1, c('#D95E0E'), c('#FE9829'),0.2, c('#FE9829'), c('#FFD98E'),0.3, c('#FFD98E'), c('#FEFFD3'),0.4, c('#FEFFD3'), c('#C4DC73'),0.5, c('#C4DC73'), c('#93C83D'),0.6, c('#93C83D'), c('#69BD45'),0.7, c('#69BD45'), c('#6ECCDD'),0.8, c('#6ECCDD'), c('#3553A4'),0.9, c('#3553A4')]) drought_per_tci_cmap_r = reverse_colourmap(drought_per_tci_cmap, name = 'drought_per_tci_cmap_r') drought_cat_tci_cmap_r = reverse_colourmap(drought_cat_tci_cmap, name = 'drought_cat_tci_cmap_r') # In[8]: #extent = [111.91693268, 123.85693268, 49.43324112, 40.67324112] #extent = [73.5,140,14,53.6] fig = plt.figure(figsize=(27.69123,12)) gs = gridspec.GridSpec(3, 3) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax1 # PLOT TOP LEFT ax1 = fig.add_subplot(gs[0,0], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax1.set_extent(extent) ax1.outline_patch.set_edgecolor('none') # gridlines gl1 = ax1.gridlines() # pcolormesh bounds1 = [0.25,0.5,0.75,1] cmap1 = cmap_discretize(drought_per_tci_cmap_r,6) norm1 = mcolors.BoundaryNorm(bounds1, cmap1.N) im1 = ax1.pcolormesh(gridlons, gridlats, data1, transform=ccrs.PlateCarree(), norm=norm1, cmap=cmap1, vmin=0, vmax=1) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax2 # PLOT MIDDLE LEFT ax2 = fig.add_subplot(gs[1,0], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax2.set_extent(extent) ax2.outline_patch.set_edgecolor('none') # gridlines gl2 = ax2.gridlines() # pcolormesh bounds2 = [0.25,0.5,0.75,1] cmap2 = cmap_discretize(drought_per_tci_cmap_r,6) norm2 = mcolors.BoundaryNorm(bounds2, cmap2.N) im2 = ax2.pcolormesh(gridlons, gridlats, data2, transform=ccrs.PlateCarree(), norm=norm2, cmap=cmap2, vmin=0, vmax=1) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax3 # PLOT BOTTOM LEFT ax3 = fig.add_subplot(gs[2, 0], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax3.set_extent(extent) ax3.outline_patch.set_edgecolor('none') # gridlines gl3 = ax3.gridlines() # pcolormesh bounds3 = [0.25,0.5,0.75,1] cmap3 = cmap_discretize(drought_per_tci_cmap_r,6) norm3 = mcolors.BoundaryNorm(bounds3, cmap3.N) im3 = ax3.pcolormesh(gridlons, gridlats, data3, transform=ccrs.PlateCarree(), norm=norm3, cmap=cmap3, vmin=0, vmax=1) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax4 # PLOT BOTTOM MIDDLE ax4 = fig.add_subplot(gs[2,1], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax4.set_extent(extent) ax4.outline_patch.set_edgecolor('none') # gridlines gl4 = ax4.gridlines() # pcolormesh bounds4 = [0.25,0.5,0.75,1] cmap4 = cmap_discretize(drought_per_tci_cmap_r,6) norm4 = mcolors.BoundaryNorm(bounds4, cmap4.N) im4 = ax4.pcolormesh(gridlons, gridlats, data4, transform=ccrs.PlateCarree(), norm=norm4, cmap=cmap4, vmin=0, vmax=1) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax5 # PLOT BOTTOM RIGHT ax5 = fig.add_subplot(gs[2,2], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax5.set_extent(extent) ax5.outline_patch.set_edgecolor('none') # gridlines gl5 = ax5.gridlines(linewidth=1, color='gray', linestyle=':') # pcolormesh bounds5 = [-1,-0.35,-0.25,-0.15,0,0.15,0.25,0.35,1] cmap5 = cmap_discretize(drought_avg_tci_cmap,8) norm5 = mcolors.BoundaryNorm(bounds5, cmap5.N) im5 = ax5.pcolormesh(gridlons, gridlats, data5, transform=ccrs.PlateCarree(), norm=norm5, cmap=cmap5, vmin=-1, vmax=1) # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ax6 # PLOT CENTER ax6 = fig.add_subplot(gs[0:2,1:3], projection=ccrs.InterruptedGoodeHomolosine(central_longitude=0)) ax6.set_extent(extent) ax6.outline_patch.set_edgecolor('gray') ax6.outline_patch.set_linewidth(1) ax6.outline_patch.set_linestyle(':') # features coastline = cfeature.COASTLINE.scale='50m' borders = cfeature.BORDERS.scale='50m' ax6.add_feature(cfeature.COASTLINE,linewidth=0.5, edgecolor='black') ax6.add_feature(cfeature.BORDERS, linewidth=0.5, edgecolor='black') # gridlines gl6 = ax6.gridlines(linewidth=1, color='gray', linestyle=':') gl6.xlocator = mticker.FixedLocator(range(-180,190,20)) gl6.ylocator = mticker.FixedLocator(range(-60,90,10)) gl6.xformatter = LONGITUDE_FORMATTER gl6.yformatter = LATITUDE_FORMATTER # pcolormesh bounds6 = [0, 1, 2, 3, 4, 5] cmap6 = cmap_discretize(drought_cat_tci_cmap_r,5) norm6 = mcolors.BoundaryNorm(bounds6, cmap6.N) im6 = ax6.pcolormesh(gridlons, gridlats, data6, transform=ccrs.PlateCarree(), norm=norm6, cmap=cmap6, vmin=0, vmax=4) #date = i[-7:] #year = date[-4::] #doy = date[-7:-4] #date_out = datetime.datetime.strptime(str(year)+'-'+str(doy),'%Y-%j') date_label = 'Date: '+str(date.year) +'-'+str(date.month).zfill(2)+'-'+str(date.day).zfill(2) # ADD LABELS FOR EACH PLOT ax1.set_title('Percentage of Slight Drought', weight='semibold', fontsize=12) ax2.set_title('Percentage of Moderate Drought', weight='semibold', fontsize=12) ax3.set_title('Percentage of Severe Drought', weight='semibold', fontsize=12) ax4.set_title('Percentage of Extreme Drought', weight='semibold', fontsize=12) ax5.set_title('Average of NDAI', weight='semibold', fontsize=12) ax6.set_title('Drought Alert at Province Level. '+date_label, fontsize=20, weight='semibold', color='k') # ADD LEGEND IN ALL PLOTS # -------------------------Ax 1 #cbax1 = fig.add_axes([0.328, 0.67, 0.011, 0.16]) # without tight_layout() cbax1 = fig.add_axes([0.03, 0.7, 0.011, 0.10]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_per_tci_cmap,6) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5] bounds_ticks = [1.5, 2.5, 3.5, 4.5] bounds_ticks_name = ['>75%', '50-75%', '25-50%', '<25%'] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax1, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) # -------------------------Ax 2 #cbax1 = fig.add_axes([0.328, 0.67, 0.011, 0.16]) # without tight_layout() cbax2 = fig.add_axes([0.03, 0.37, 0.011, 0.10]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_per_tci_cmap,6) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5] bounds_ticks = [1.5, 2.5, 3.5, 4.5] bounds_ticks_name = ['>75%', '50-75%', '25-50%', '<25%'] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax2, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) # -------------------------Ax 3 #cbax1 = fig.add_axes([0.328, 0.67, 0.011, 0.16]) # without tight_layout() cbax3 = fig.add_axes([0.03, 0.04, 0.011, 0.10]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_per_tci_cmap,6) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5] bounds_ticks = [1.5, 2.5, 3.5, 4.5] bounds_ticks_name = ['>75%', '50-75%', '25-50%', '<25%'] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax3, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) # -------------------------Ax 4 #cbax1 = fig.add_axes([0.328, 0.67, 0.011, 0.16]) # without tight_layout() cbax4 = fig.add_axes([0.36, 0.04, 0.011, 0.10]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_per_tci_cmap,6) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5] bounds_ticks = [1.5, 2.5, 3.5, 4.5] bounds_ticks_name = ['>75%', '50-75%', '25-50%', '<25%'] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax4, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) # -------------------------Ax 5 #cbax5 = fig.add_axes([0.85, 0.15, 0.011, 0.16]) # without tight_layout() cbax5 = fig.add_axes([0.6922, 0.04, 0.011, 0.16]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_avg_tci_cmap,8) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5,6,7,8,9] bounds_ticks = [1.5, 2.5, 3.5, 4.5,5.5,6.6,7.5,8.5] bounds_ticks_name = [' ', '-0.35', ' ', '-0.15','0','0.15',' ','0.35',' '] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax5, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds,#_name, # optional spacing='proportional', orientation='vertical') cb2.set_ticklabels(bounds_ticks_name) # ------------------------Ax 6 #cbax6 = fig.add_axes([0.79, 0.48, 0.020, 0.30]) # without tight_layout() cbax6 = fig.add_axes([0.37, 0.4, 0.020, 0.20]) # without tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) cmap = cmap_discretize(drought_cat_tci_cmap,5) cmap.set_over('0.25') cmap.set_under('0.75') # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5,6] bounds_ticks = [1.5, 2.5, 3.5, 4.5,5.5] bounds_ticks_name = ['Extreme Drought', 'Severe Drought', 'Moderate Drought', 'Slight Drought', 'No Drought'] norm = mcolors.BoundaryNorm(bounds, cmap.N) cb2 = mcb.ColorbarBase(cbax6, cmap=cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) cb2.ax.tick_params(labelsize=12) # # ADD LAKES AND RIVERS # #FOR PLOT 1 # lakes = cfeature.LAKES.scale='110m' # rivers = cfeature.RIVERS.scale='110m' # ax1.add_feature(cfeature.LAKES) # ax1.add_feature(cfeature.RIVERS) # #FOR PLOT 2 # ax2.add_feature(cfeature.LAKES) # ax2.add_feature(cfeature.RIVERS) # #FOR PLOT 3 # ax3.add_feature(cfeature.LAKES) # ax3.add_feature(cfeature.RIVERS) # #FOR PLOT 4 # ax4.add_feature(cfeature.LAKES) # ax4.add_feature(cfeature.RIVERS) # #FOR PLOT 5 # ax5.add_feature(cfeature.LAKES) # ax5.add_feature(cfeature.RIVERS) #FOR PLOT 6 #lakes = cfeature.LAKES.scale='50m' #rivers = cfeature.RIVERS.scale='50m' #ax6.add_feature(cfeature.LAKES) #ax6.add_feature(cfeature.RIVERS) ax1.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax1.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') ax2.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax2.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') ax3.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax3.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') ax4.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax4.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') ax5.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax5.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') ax6.add_feature(cfeature.COASTLINE, linewidth=0.2, edgecolor='black') ax6.add_feature(cfeature.BORDERS, linewidth=0.2, edgecolor='black') with warnings.catch_warnings(): # This raises warnings since tight layout cannot # handle gridspec automatically. We are going to # do that manually so we can filter the warning. warnings.simplefilter("ignore", UserWarning) gs.tight_layout(fig, rect=[None,None,None,None]) #gs.update(wspace=0.03, hspace=0.03) path_out = r'D:\Downloads\Mattijn@Zhou\GlobalDroughtProvince\png//Global_' file_out = 'DroughtAlert_'+str(date.timetuple().tm_yday).zfill(3)+str(date.year).zfill(4)+'.png' filepath = path_out+file_out fig.savefig(filepath, dpi=200, bbox_inches='tight') print filepath #plt.show() fig.clf() plt.close() #del record#,county ram = None # In[ ]: get_ipython().magic(u'matplotlib inline') # In[ ]: my_cmap = drought_per_tci_cmap # In[ ]: fig = plt.figure(figsize=(12, 32)) ax1 = fig.add_axes([0.03, 0.7, 0.011, 0.10]) # including tight_layout() #cmap = mcolors.ListedColormap(['r', 'g', 'b', 'c']) my_cmap = cmap_discretize(drought_per_tci_cmap,6) #for key in cmap._segmentdata: # cmap._segmentdata[key] = list(reversed(cmap._segmentdata[key])) # If a ListedColormap is used, the length of the bounds array must be # one greater than the length of the color list. The bounds must be # monotonically increasing. bounds = [1, 2, 3, 4, 5] bounds_ticks = [1.5, 2.5, 3.5, 4.5] bounds_ticks_name = ['>75%', '50-75%', '25-50%', '<25%'] norm = mcolors.BoundaryNorm(bounds, my_cmap.N) cb2 = mcb.ColorbarBase(ax1, cmap=my_cmap, norm=norm, # to use 'extend', you must # specify two extra boundaries: #boundaries=[0]+bounds+[13], #extend='both', extendfrac='auto', ticklocation='right', ticks=bounds_ticks,#_name, # optional spacing='proportional', orientation='vertical') #cb2.set_label('Discrete intervals, some other units') cb2.set_ticklabels(bounds_ticks_name) plt.show() # In[ ]: my_cmap # In[ ]: def reverse_colourmap(cmap, name = 'my_cmap_r'): """ In: cmap name (default 'my_cmap_r') Out: my_cmap_r Explanation: t[0] goes from 0 to 1 row i: x y0 y1 -> t[0] t[1] t[2] / / row i+1: x y0 y1 -> t[n] t[1] t[2] so the inverse should do the same: row i+1: x y1 y0 -> 1-t[0] t[2] t[1] / / row i: x y1 y0 -> 1-t[n] t[2] t[1] """ reverse = [] k = [] for key in cmap._segmentdata: k.append(key) channel = cmap._segmentdata[key] data = [] for t in channel: data.append((1-t[0],t[2],t[1])) reverse.append(sorted(data)) LinearL = dict(zip(k,reverse)) my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL) return my_cmap_r # In[ ]: my_cmap_r = reverse_colourmap(my_cmap) # In[ ]: #my_cmap_r._segmentdata arg = cmap_discretize(my_cmap_r,6) # In[ ]: fig = plt.figure(figsize=(8, 2)) ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15]) ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15]) norm = mpl.colors.Normalize(vmin=0, vmax=1) cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = my_cmap, norm=norm,orientation='horizontal') cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = my_cmap_r, norm=norm, orientation='horizontal') # In[ ]: import matplotlib as mpl # In[ ]:
true
904980c5f87a3a8187d023c38936992d3abb612f
Python
adslchen/leetcode
/E15/lc310.py
UTF-8
1,152
3.1875
3
[]
no_license
class Solution(object): def findMinHeightTrees(self, n, edges): """ :type n: int :type edges: List[List[int]] :rtype: List[int] """ if n == 1: return [0] graph = {} # build the neighbor list for edge in edges: node1 = edge[0] node2 = edge[1] if node1 in graph: graph[node1].append(node2) else: graph[node1] = [node2] if node2 in graph: graph[node2].append(node1) else: graph[node2] = [node1] print(graph) leaves = [] for node in graph.keys(): if len(graph[node]) == 1: leaves.append(node) print(leaves) while n > 2: n -= len(leaves) new_leaves = [] for leaf in leaves: neighbor = graph[leaf].pop() graph[neighbor].remove(leaf) if len(graph[neighbor]) == 1: new_leaves.append(neighbor) leaves = new_leaves return leaves
true
f84b3f75a098d32b93fb49a14afdc974a143b724
Python
englandbaron/CadvisorAnalysis
/K8sModel/Deployment.py
UTF-8
476
2.515625
3
[]
no_license
#!/usr/bin/env python # encoding: utf-8 """ @author: Tang Smith @contact: 415107188@qq.com @software: PyCharm @time: 2019/9/13 ไธŠๅˆ12:25 """ from .Pod import Pod class Deployment(object): def __init__(self,name,InitialPodNumber): # TODO: Logic View for Pods self.PodNumber = InitialPodNumber self.pod_list = [] pass def pod_bind(self,pod): self.pod_list.append(pod) def __repr__(self): return "<Deployment %s>" % self.name
true
45dc097d5334bc6ab7ba7fe9a046d6728a5ab9c5
Python
SharpColton/HighSchoolCodingAA
/NumTemp.py
UTF-8
338
4.0625
4
[]
no_license
def GetTemp(): while True: try: print('Please Enter The Temperature You Would Like Converted ') print('Numeric Values Only') temp = eval(input('Temperature To Be Converted: ')) return temp break; except NameError: print ("Invalid input")
true
8210d8222aff6c3e8b6897ab73ff9e05557b99a5
Python
Aasthaengg/IBMdataset
/Python_codes/p02410/s412174668.py
UTF-8
314
2.953125
3
[]
no_license
# coding: utf-8 n, m = map(int, input().split()) matrixA = [] vectorB = [] for i in range(n): matrixA.append(list(map(int, input().split()))) for i in range(m): vectorB.append(int(input())) for i in range(n): num = 0 for j in range(m): num += matrixA[i][j] * vectorB[j] print(num)
true
3ee6055f0b355179b0934daa19ac3ec316aa72f3
Python
VinF/deer
/examples/ALE/ALE_env_gym.py
UTF-8
4,140
2.59375
3
[ "MIT", "BSD-3-Clause" ]
permissive
""" Interface with the ALE environment Authors: Vincent Francois-Lavet """ import numpy as np np.set_printoptions(threshold=np.nan) import cv2 #from ale_python_interface import ALEInterface import gym from deer.base_classes import Environment #import matplotlib #matplotlib.use('qt5agg') #from mpl_toolkits.axes_grid1 import host_subplot #import mpl_toolkits.axisartist as AA #import matplotlib.pyplot as plt #from PIL import Image class MyEnv(Environment): VALIDATION_MODE = 0 def __init__(self, rng, **kwargs): """ Initialize environment. Arguments: rng - the numpy random number generator """ if(bool(kwargs["game"])): self.env = gym.make(kwargs["game"]) else: # Choice between Seaquest-v4, Breakout-v4, SpaceInvaders-v4, BeamRider-v4, Qbert-v4, Freeway-v4', etc. self.env = gym.make('Seaquest-v4') self._random_state=rng self.env.reset() frame_skip=kwargs.get('frame_skip',1) self._frame_skip = frame_skip if frame_skip >= 1 else 1 self._screen=np.average(self.env.render(mode='rgb_array'),axis=-1) self._reduced_screen = cv2.resize(self._screen, (84, 84), interpolation=cv2.INTER_LINEAR) #decide whether you want to keep this in repo, if so: add dependency to cv2 #plt.imshow(self._reduced_screen, cmap='gray') #plt.show() self._mode = -1 self._mode_score = 0.0 self._mode_episode_count = 0 def reset(self, mode): if mode == self._mode: # already in the right mode self._mode_episode_count += 1 else: # switching mode self._mode = mode self._mode_score = 0.0 self._mode_episode_count = 0 self.env.reset() for _ in range(self._random_state.randint(15)): action = self.env.action_space.sample() # this executes the environment with an action, # and returns the observation of the environment, # the reward, if the env is over, and other info. observation, reward, self.terminal, info = self.env.step(action) self._screen=np.average(self.env.render(mode='rgb_array'),axis=-1) self._reduced_screen = cv2.resize(self._screen, (84, 84), interpolation=cv2.INTER_LINEAR) self.state=np.zeros((84,84), dtype=np.uint8) #FIXME return [1*[4 * [84 * [84 * [0]]]]] def act(self, action): #print "action" #print action self.state=np.zeros((4,84,84), dtype=np.float) reward=0 for t in range(4): observation, r, self.terminal, info = self.env.step(action) #print "observation, reward, self.terminal" #print observation, reward, self.terminal reward+=r if self.inTerminalState(): break self._screen=np.average(observation,axis=-1) # Gray levels self._reduced_screen = cv2.resize(self._screen, (84, 84), interpolation=cv2.INTER_NEAREST) # 84*84 #plt.imshow(self._screen, cmap='gray') #plt.show() self.state[t,:,:]=self._reduced_screen self._mode_score += reward return np.sign(reward) def summarizePerformance(self, test_data_set, learning_algo, *args, **kwargs): if self.inTerminalState() == False: self._mode_episode_count += 1 print("== Mean score per episode is {} over {} episodes ==".format(self._mode_score / self._mode_episode_count, self._mode_episode_count)) def inputDimensions(self): return [(1, 4, 84, 84)] def observationType(self, subject): return np.float16 def nActions(self): print ("self.env.action_space") print (self.env.action_space) return self.env.action_space.n def observe(self): return [(np.array(self.state)-128.)/128.] def inTerminalState(self): return self.terminal if __name__ == "__main__": pass
true
5fe01016af5e4bed37a7865dece431f970647423
Python
Cc618/ML0
/linear_regression.py
UTF-8
1,558
3.9375
4
[]
no_license
from random import random def predict(x): ''' Prediction by the network ''' return a * x + b def show(): ''' Displays the data in a graph ''' import matplotlib.pyplot as plt # Blue = ground truth plt.plot(x_data, y_data, 'b.') # Red = prediction plt.plot(x_data, [predict(x) for x in x_data], 'r-') plt.axis([0, 1, 2, 3]) plt.show() target_a = .5 target_b = 2 print_freq = 25 # * Dataset n = 20 # x data is within [0, 1) x_data = [x / n for x in range(n)] y_data = [target_a * x + target_b for x in x_data] # With noise : # noise_strength = 5e-2 # y_data = [target_a * x + target_b + random() * noise_strength for x in x_data] # * Weigths # Init weights with 'random values' a = -.12 b = 0 # * Hyper parameters learning_rate = 1e-1 epochs = 500 # * Training avg_loss = 0 for e in range(epochs): loss = 0 da = 0 db = 0 # For each tuple (x, y) in the dataset for x, y in zip(x_data, y_data): yi = predict(x) loss += (yi - y) ** 2 # * Compute gradient da += x * (yi - y) db += yi - y da /= n db /= n loss /= n # * Back propagate a -= learning_rate * da b -= learning_rate * db avg_loss += loss if e != 0 and e % print_freq == 0: print(f'Epoch : {e:3d} Loss : {avg_loss / n:1.6f}') avg_loss = 0 print(f'a = {a:.2f} b = {b:2.2f}') print(f'Target : {[f"{target_a * x + target_b:.2f}" for x in x_data]}') print(f'Guess : {[f"{predict(x):.2f}" for x in x_data]}') show()
true
e6983674bc0b5743ee75df53dc8e859c7d289ec7
Python
basakrajarshi/HackerRankChallenges-Python
/InterviewPreparationKit/Arrays/array_manipulation.py
UTF-8
717
2.703125
3
[]
no_license
import math import os import random import re import sys def arrayManipulation(n, queries): diffarr = [0]*(n+1) #print(diffarr) for i in queries: diffarr[i[0]-1] += i[2] diffarr[i[1]] -= i[2] maxi = 0 asum = 0 for j in diffarr: asum += j if (asum > maxi): maxi = asum return (maxi) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nm = input().split() n = int(nm[0]) m = int(nm[1]) queries = [] for _ in range(m): queries.append(list(map(int, input().rstrip().split()))) result = arrayManipulation(n, queries) fptr.write(str(result) + '\n') fptr.close()
true
e438a62e4bef285ad5cca8dcf12e25a8d9079f73
Python
emrantalukder/eventstream-stack
/eventstream-transform/transform.py
UTF-8
1,890
2.59375
3
[]
no_license
import os import socket import logging from time import strftime from datetime import datetime from flask import Flask, request, json, jsonify from elasticsearch import Elasticsearch ELASTICSEARCH_URL = os.getenv('ELASTICSEARCH_URL', 'http://elasticsearch:9200') app = Flask(__name__) es = Elasticsearch([ELASTICSEARCH_URL]) # write to a "durable" queue file def durable_write(event): with open("data/durable_queue.json", 'a+') as durable_queue: json.dump(event, durable_queue) durable_queue.write("\n") return event # write to elasticsearch def es_write(event): try: res = es.index(index=event['eventType'], doc_type='event', body=event) return res except Exception as e: logging.error(str(e)) res = durable_write(event) return event # find event id def find_event_id(event): try: eventType = event['eventType'] eventValue = event['eventValue'] with open(f'data/{eventType}.json') as eventFile: data = json.load(eventFile) id = data[eventValue] eventId = id return eventId except Exception as e: logging.error(str(e)) return None # transform event by loading and parsing eventType file from disk def xform(event): eventId = find_event_id(event) res = es_write(event) return res # web endpoint: @app.route("/", methods=["POST"]) def event_stream(): try: event = request.get_json(force=True) data = None # transform lists or single object if type(event) == list: data = list(map(lambda e: xform(e), event)) else: data = xform(event) return jsonify(data) except Exception as e: print(f'{strftime("%I:%M:%S")} - {str(e)}') return str(e), 500 if __name__ == "__main__": app.run(host='0.0.0.0', port=80)
true
c50a327b22c5b52d957a8a82c1b8268bfeb6ea0e
Python
beasyx0/cexio
/cexio/bot/tests/test_models.py
UTF-8
2,820
2.6875
3
[ "MIT" ]
permissive
from django.test import TestCase from django.utils import timezone from cexio.bot.models import TimeStamped, BotConfigurationVariables, Order class TestModels(TestCase): '''Tests for all bot.models''' def test_timestamped_save_method(self): '''Test model 'TimeStamped' checks that self.date and self.updated updates on save''' print('Testing TimeStamped save method') timestamped = TimeStamped() timestamped.save() now = timezone.now() timestamped.refresh_from_db() self.assertEqual(timestamped.date.date(), now.date()) self.assertEqual(timestamped.updated.date(), now.date()) print('Testing complete') def test_botconfigurationvariables_str_method_and_fields(self): '''Test model 'BotConfigurationVariables' str method''' # thest tests need impovement print('Testing BotConfigurationVariables str method and fields') bot = BotConfigurationVariables(name='Some bot', pair='BTC/USD', buy=0.02, upswing_buy=0.03, sell=0.02, downswing_sell=0.03, fee=1.0, auto_cancel_order_period=20) bot.save() bot.refresh_from_db() expected_str = 'Some bot' returned_str = bot.__str__() self.assertEqual(expected_str, returned_str) expected_pair = 'BTC/USD' returned_pair = bot.pair self.assertEqual(expected_pair, returned_pair) expected_buy = 0.02 returned_buy = bot.buy self.assertEqual(expected_buy, returned_buy) expected_upswing_buy = 0.03 returned_upswing_buy = bot.upswing_buy self.assertEqual(expected_upswing_buy, returned_upswing_buy) expected_sell = 0.02 returned_sell = bot.sell self.assertEqual(expected_sell, returned_sell) expected_downswing_sell = 0.03 returned_downswing_sell = bot.downswing_sell self.assertEqual(expected_downswing_sell, returned_downswing_sell) expected_fee = 1.0 returned_fee = bot.fee self.assertEqual(expected_fee, returned_fee) expected_auto_cancel_order_period = 20 returned_auto_cancel_order_period = bot.auto_cancel_order_period self.assertEqual(expected_auto_cancel_order_period, returned_auto_cancel_order_period) print('Testing complete') def test_order_str_method(self): '''Test model 'Order' str method''' print('Testing Order str method') order = Order(order_id='123456789', pair='BTC/USD', order_type='BUY', price=55000, amount=0.0001) order.save() order.refresh_from_db() expected_str = 'Order ID: 123456789' returned_str = order.__str__() self.assertEqual(expected_str, returned_str) print('Testing complete')
true
7d9d3a067dfa6f081bd1af30a96131d9b8641552
Python
kersky98/stud
/coursera/pythonHse/fifth/9.py
UTF-8
402
3.3125
3
[]
no_license
# ะะฐะนะดะธั‚ะต ะธ ะฒั‹ะฒะตะดะธั‚ะต ะฒัะต ะดะฒัƒะทะฝะฐั‡ะฝั‹ะต ั‡ะธัะปะฐ, ะบะพั‚ะพั€ั‹ะต ั€ะฐะฒะฝั‹ ัƒะดะฒะพะตะฝะฝะพะผัƒ # ะฟั€ะพะธะทะฒะตะดะตะฝะธัŽ ัะฒะพะธั… ั†ะธั„ั€. ns = 10 ne = 100 tt = tuple() for i in range(ns, ne): t = tuple(str(i)) zm = 2 * int(t[0]) * int(t[1]) if i == zm: # print(i) tt += (zm, ) for i in range(len(tt)): print(tt[i])
true
558eae1b75fc9bd292145f33bd1ea3c3cadfb0a8
Python
bartlebythecoder/otu_reports
/enigma_finder.py
UTF-8
2,307
3.171875
3
[]
no_license
#!/usr/bin/python import matplotlib.pyplot as plt import sqlite3 def hex_to_num(x): h2n_dict = {'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7, '8':8,'9':9,'A':10,'B':11,'C':12,'D':13,'E':14,'F':15,'G':16,'H':17,'J':18} return int(h2n_dict[x]) # MAIN PROGRAM # Open the SQLite 3 database print ('Which database would you like?') print ('1. Spinward Marches') print ('2. Solomani Rim') print ('3. Core') db_choice_no = input('Please pick a number... ') database_dict = {'1':'spinward_marches.db','2':'solomani_rim.db','3':'core.db'} header_dict = {'1':'the Marches','2':'the Rim','3':'Core'} conn = sqlite3.connect(database_dict[db_choice_no]) c = conn.cursor() tech_level_rating = { '0':10,'1':10,'2':10,'3':10,'4':10, '5':100,'6':100,'7':100,'8':100,'9':100, 'A':1000,'B':1000,'C':1000,'D':1000,'E':1000, 'F':1000,'G':1000,'H':1000,'J':1000} starport_to_color = {'A':10,'B':9,'C':8,'D':7,'E':6,'X':5} sql3_select = """ SELECT name, uwp, cx FROM tb_t5_systems """ c.execute(sql3_select) allrows = c.fetchall() name = list() law_level = list() accept_level = list() tech_level = list() strange_level = list() starport = list() for row in allrows: name_row = row[0] starport_row = row[1][0] law_level_row = hex_to_num(row[1][6]) accept_level_row = hex_to_num(row[2][2]) tech_level_row = hex_to_num(row[1][8]) strange_level_row = hex_to_num(row[2][3]) print (name_row, starport_row, tech_level_row) if starport_row == 'A': starport.append(starport_row) name.append(name_row) law_level.append(law_level_row) accept_level.append(accept_level_row) tech_level.append(tech_level_row) strange_level.append(strange_level_row) plt.xlabel('Tech Level') plt.ylabel('Strange Level') plt.title('Acceptance and Law in ' + header_dict[db_choice_no]) plt.axis([-1, 17, -1, 12]) plt.scatter(tech_level,strange_level,s=100, c = accept_level, cmap=plt.cm.YlGn) # for i, txt in enumerate(name): # plt.annotate(txt, (law_level[i]-.5,accept_level[i])) plt.show()
true
b8aaa5c1dd451b33c03d65d7e62666f904f71d06
Python
tonkla555/CP3-Klapathai-Chaikla
/Exercise8_Klapathai_C.py
UTF-8
1,749
3.53125
4
[]
no_license
username = input("Username : ") password = input("Password : ") if username == ("tonkla555") and password == ("tonkla55"): print("---Welcome To TK-Shop---") print("No. Product price") print("1. TK-001 (100 THB)") print("2. TK-002 (150 THB)") print("3. TK-002 (200 THB)") print("4. TK-004 (250 THB)") No = int(input("Select Product No. : ")) if No == 1: pieces = int(input("Enter the number of pieces : ")) if pieces > 0 : print("-------------------------------Total") print("TK-001 100(THB)","*",pieces," ",100*pieces,"(THB)") else : print("You cannot buy 0 items.") elif No == 2: pieces = int(input("Enter the number of pieces : ")) if pieces > 0 : print("-------------------------------Total") print("TK-002 150(THB)","*",pieces," ",150*pieces,"(THB)") else: print("You cannot buy 0 items.") elif No == 3: pieces = int(input("Enter the number of pieces : ")) if pieces > 0 : print("-------------------------------Total") print("TK-003 200(THB)","*",pieces," ",200*pieces,"(THB)") else: print("You cannot buy 0 items.") elif No == 4: pieces = int(input("Enter the number of pieces : ")) if pieces > 0 : print("-------------------------------Total") print("TK-004 250(THB)","*",pieces," ",250*pieces,"(THB)") else: print("You cannot buy 0 items.") else : print("The item you selected is not available.") else : print("Incorrect Username or Password.") print("-----Thank You-----")
true
d6a834777aacdec11c4533527236e156e595f8e5
Python
holcombddf/Protein-Design-Scripts
/src/plotter.py
UTF-8
6,147
3.328125
3
[]
no_license
#!/bin/python #Creates a graph for all data in a given CSV, using the first column as the x-values, and all other columns as the y-values for the plots. Change the sizing and plotting to suit your needs. import sys,re,os import matplotlib.pyplot as plt import matplotlib import numpy as np import csv import argparse class Plotter: def __init__(self, ax, s=20, linewidth=1.0): self.ax = ax self.s = s self.linewidth = linewidth #plots scatterplot and logarithmic regression def log_plot(self, x, y, label="", d=1, c="black", scatter=True, plot=True): #x data, y data, the axis to plot on, label, the degree of the polynomial, and the color l = min([len(x), len(y)]) fit = np.polyfit(np.log(x[:l]), y[:l], deg=d) #seems to work whether or not set_yscale is 'log' fity = [] for t in x[:l]: val = 0 for i, b in enumerate(fit): val = val + fit[i] * ((np.log(t)) ** (len(fit)-1-i)) fity.append(val) if scatter: self.ax.scatter(x[:l], y[:l], c=c, s=self.s) #change s to make the dots on the scatterplot bigger if plot: self.ax.plot(x[:l], fity, color=c, label=label, linewidth=self.linewidth) #change linewidth to make the line for the plot thicker #plots scatterplot and polynomial regression def poly_plot(self, x, y, label="", d=1, c="black", scatter=True, plot=True): l = min([len(x), len(y)]) if self.ax.get_yscale() == 'log': fit = np.polyfit(x[:l], [np.log10(z) for z in y[:l]], deg=d) else: fit = np.polyfit(x[:l], y[:l], deg=d) fity = [] for t in x[:l]: val = 0 for i, b in enumerate(fit): #build the y-value from the polynomial val = val + fit[i] * (t ** (len(fit)-1-i)) if self.ax.get_yscale() == 'log': fity.append(10 ** val) else: fity.append(val) if scatter: self.ax.scatter(x[:l], y[:l], c=c, s=self.s) #change s to make the dots on the scatterplot bigger if plot: self.ax.plot(x[:l], fity, color=c, label=label, linewidth=self.linewidth) #change linewidth to make the line for the plot thicker #transposes a data frame, assuming the data is float def reverse_frame(data): newdata = [[] for col in data[0]] for row in data: for i in range(len(newdata)): try: yval = float(row[i]) newdata[i].append(yval) except: pass return(newdata) #returns an array containing the current min and max def compare_range(xval, xran): if len(xran) == 0: xran.append(xval) elif len(xran) == 1: if xval > xran[0]: xran = [xran[0], xval] else: xran = [xval, xran[0]] elif xval > xran[1]: xran[1] = xval elif xval < xran[0]: xran[0] = xval return(xran) def eval_str_f(string): #defaults to false if it doesn't find true string = (string.strip()).lower() if string == "true" or string == "1" or string == "t": return(True) else: return(False) def parse_args(sysargv): parser = argparse.ArgumentParser() parser.add_argument("--csv", metavar='FILE', type=str, default=None, action="store", help="file containing the data to graph") parser.add_argument("--header", metavar='BOOL', type = str, default="false", action="store", help="whether or not the first row of the CSV file contains column headers") return(parser.parse_args()) def main(sysargv=[]): args = parse_args(sysargv) #range of minimum and maximum values for x and y variables #could be useful when defining xlim and ylim xran = [] yran = [] #read the data from the CSV x = [] y = [] labels = [] with open(args.csv, "r") as csvfile: reader = csv.reader(csvfile, delimiter=",",quotechar="\'") for i,row in enumerate(reader): if i == 0 and eval_str_f(args.header): labels = row else: try: #skips row if data is not numeric xval = float(row[0]) x.append(xval) #find the x minimum and maximum xran = compare_range(xval, xran) if len(y) == 0: y = [[] for z in row[1:]] for j,yval in enumerate(row[1:]): yval = float(yval) y[j].append(yval) #find the y minimum and maximum yran = compare_range(yval, yran) except Exception as e: print(str(e)) ################################################# ################################################# #CHANGE THIS PART TO SUIT YOUR NEEDS fig,ax=plt.subplots(figsize=(20, 10)) #adjusts the figure size My_Plotter = Plotter(ax, 75, 3.0) #adjusts the scatterplot point size and regression line width ax.set_yscale('log') #creates a logarithmic scale for the y-axis matplotlib.rcParams.update({'font.size': 30}) #adjusts the font size plt.xlim(xran[0]-0.02*(xran[1]-xran[0]), xran[1]+0.02*(xran[1]-xran[0])) #limits for the x-axis plt.ylim(yran[0]-1, yran[1]+300) #limits for the y-axis plt.xlabel("Time (seconds)") plt.ylabel("Hydrodynamic Radius (nm); Volume") #this part actually plots the data, using a scatterplot and a best fit polynomial or logarithmic #arguments are the x data array, the y data array, the label, the degree of the polynomial, and the color on the graph My_Plotter.log_plot(x, y[0], "2000 $\mu$M ATP", 3, "red") My_Plotter.log_plot(x, y[1], "500 $\mu$M ATP", 4, "blue") My_Plotter.poly_plot(x, y[2], "250 $\mu$M ATP", 8, "orange") My_Plotter.poly_plot(x, y[3], "100 $\mu$M ATP", 3, "green") My_Plotter.poly_plot(x, y[4], "50 $\mu$M ATP", 2, "magenta") My_Plotter.poly_plot(x, y[5], "0 $\mu$M ATP", 1, "black") #put the legend in the right side of the graph box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.78, box.height]) #change box.width scaling so that legend fits ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ################################################# ################################################# #create and save the graph fig.savefig(os.path.join(os.path.dirname(args.csv), "figure")) #saves the figure in the same directory as the data source plt.close() if __name__ == "__main__": main(sys.argv[1:])
true
759e320069935d34f7434e46fe0f667162b53f26
Python
nairaaoliveira/ProgWeb
/Exercicios_Python/Lista 5_Python/q01_Lista 5_Ex_Python.py
UTF-8
386
3.984375
4
[]
no_license
'''1. Faรงa uma funรงรฃo que recebe uma quantidade desejada de itens e retorna uma lista carregada com essa quantidade. Faรงa outra funรงรฃo para exibir esses itens esperados por espaรงo em branco.''' def ListaQuant(quant): L = [12, 9, 5] i = 0 while i < 3: print(len(L[quant])) break quant = int(input("Nรบmero : ")) ListaQuant(quant)
true
4a6b5579655bdc4257a87e1c184b688ad0ac6196
Python
sayantanauddy/hierarchical_bipedal_controller
/matsuoka_walk/robots.py
UTF-8
14,259
2.859375
3
[]
no_license
""" Module for wrappers of robot specific classes """ from abc import ABCMeta, abstractmethod, abstractproperty from nicomotion import Motion import math import pypot from pypot.vrep import from_vrep from pypot.creatures import PoppyHumanoid import time import numpy as np from pypot.utils.stoppablethread import StoppableLoopThread from pypot.dynamixel.motor import DxlMXMotor class Robot: """ Abstract class for robot specific functions """ # This class cannot be instantiated but must be inherited by a class that provides implementation of the methods # and values for the properties __metaclass__ = ABCMeta def __init__(self): """ The constructor of the abstract class """ pass @abstractproperty def sync_sleep_time(self): """ Time to sleep to allow the joints to reach their targets """ pass @abstractproperty def robot_handle(self): """ Stores the handle to the robot This handle is used to invoke methods on the robot """ pass @abstractproperty def interpolation(self): """ Flag to indicate if intermediate joint angles should be interpolated """ pass @abstractproperty def fraction_max_speed(self): """ Fraction of the maximum motor speed to use """ pass @abstractproperty def wait(self): """ Flag to indicate whether the control should wait for each angle to reach its target """ pass @abstractmethod def set_angles(self, joint_angles, duration=None, joint_velocities=None): """ Sets the joints to the specified angles :type joint_angles: dict :param joint_angles: Dictionary of joint_names: angles (in radians) :type duration: float :param duration: Time to reach the angular targets (in seconds) :type joint_velocities: dict :param joint_velocities: dict of joint angles and velocities :return: None """ pass @abstractmethod def get_angles(self, joint_names): """ Gets the angles of the specified joints and returns a dict of joint_names: angles (in radians) :type joint_names: list(str) :param joint_names: List of joint names :rtype: dict """ pass class Nico(Robot): """ This class encapsulates the methods and properties for interacting with the nao robot It extends the abstract class 'Robot' """ sync_sleep_time = None robot_handle = None interpolation = None fraction_max_speed = None wait = None def __init__(self, sync_sleep_time, interpolation=False, fraction_max_speed=0.01, wait=False, motor_config='config.json', vrep=False, vrep_host='127.0.0.1', vrep_port=19997, vrep_scene=None): """ The constructor of the class. Class properties should be set here The robot handle should be created here Any other initializations such as setting angles to particular values should also be taken care of here :type sync_sleep_time: float :param sync_sleep_time: Time to sleep to allow the joints to reach their targets (in seconds) :type interpolation: bool :param interpolation: Flag to indicate if intermediate joint angles should be interpolated :type fraction_max_speed: float :param fraction_max_speed: Fraction of the maximum motor speed to use :type wait: bool :param wait: Flag to indicate whether the control should wait for each angle to reach its target :type motor_config: str :param motor_config: json configuration file :type vrep: bool :param vrep: Flag to indicate if VREP is to be used :type vrep_host: str :param vrep_host: IP address of VREP server :type vrep_port: int :param vrep_port: Port of VREP server :type vrep_scene: str :param vrep_scene: VREP scene to load """ super(Nico, self).__init__() # Set the properties self.sync_sleep_time = sync_sleep_time self.interpolation = interpolation self.fraction_max_speed = fraction_max_speed self.wait = wait self.motor_config = motor_config self.vrep = vrep self.vrep_host = vrep_host self.vrep_port = vrep_port self.vrep_scene = vrep_scene # Create the robot handle self.robot_handle = Motion.Motion(self.motor_config, self.vrep, self.vrep_host, self.vrep_port, self.vrep_scene) # List of all joint names self.all_joint_names = self.robot_handle.getJointNames() # Initialize the joints # for joint_name in self.all_joint_names: # self.set_angles({joint_name:0.0}) # Sleep for a few seconds to allow the changes to take effect time.sleep(3) def set_angles_slow(self, target_angles, duration, step=0.01): """ Sets the angles over the specified duration using linear interpolation :param target_angles: :param duration: :param step: :return: """ # Retrieve the start angles start_angles = self.get_angles(joint_names=target_angles.keys()) # Calculate the slope for each joint angle_slopes = dict() for joint_name in target_angles.keys(): start = start_angles[joint_name] end = target_angles[joint_name] angle_slopes[joint_name] = (end - start)/duration # t starts from 0.0 and goes till duration for t in np.arange(0.0, duration+0.01, step): current_angles = dict() # Calculate the value of each joint angle at time t for joint_name in target_angles.keys(): current_angles[joint_name] = start_angles[joint_name] + angle_slopes[joint_name]*t # Set the current angles self.set_angles(current_angles) # Sleep for the step time time.sleep(step) def set_angles(self, joint_angles, duration=None, joint_velocities=None): """ Sets the joints to the specified angles (after converting radians to degrees since the poppy robot uses degrees) :type joint_angles: dict :param joint_angles: Dictionary of joint_names: angles (in radians) :type duration: float :param duration: Time to reach the angular targets (in seconds) :type joint_velocities: dict :param joint_velocities: dict of joint angles and velocities :return: None """ l_knee_max = 90.0 l_knee_min = 0.0 r_kee_max = 90.0 r_knee_min = 0.0 for joint_name in joint_angles.keys(): # Convert the angle to degrees target_angle_degrees = math.degrees(joint_angles[joint_name]) if joint_name == 'l_knee_y': if target_angle_degrees >= l_knee_max: target_angle_degrees = l_knee_max elif target_angle_degrees <= l_knee_min: target_angle_degrees = l_knee_min else: target_angle_degrees = target_angle_degrees if joint_name == 'r_knee_y': if target_angle_degrees >= r_kee_max: target_angle_degrees = r_kee_max elif target_angle_degrees <= r_knee_min: target_angle_degrees = r_knee_min else: target_angle_degrees = target_angle_degrees self.robot_handle.setAngle(joint_name, target_angle_degrees, self.fraction_max_speed) # Sleep to allow the motors to reach their targets if duration is not None: time.sleep(self.sync_sleep_time) def get_angles(self, joint_names=None): """ Gets the angles of the specified joints and returns a dict of joint_names: angles (in radians) If joint_names=None then the values of all joints are returned :type joint_names: list(str) :param joint_names: List of joint names :rtype: dict """ # Create the dict to be returned joint_angles = dict() # If joint names are not provided, get values of all joints if joint_names is None: # Call the nicomotion api function to get list of joint names joint_names = self.all_joint_names motors = self.robot_handle._robot.motors # If no joint names are specified, return angles of all joints in raidans # Else return only the angles (in radians) of the specified joints for m in motors: if joint_names is None: joint_angles[str(m.name)] = math.radians(m.present_position) else: if m.name in joint_names: joint_angles[str(m.name)] = math.radians(m.present_position) return joint_angles def cleanup(self): """ Cleans up the current connection to the robot :return: None """ self.robot_handle.cleanup() class Poppy(Robot): """ This class encapsulates the methods and properties for interacting with the poppy robot It extends the abstract class 'Robot' """ sync_sleep_time = None robot_handle = None interpolation = None fraction_max_speed = None wait = None def __init__(self, sync_sleep_time, interpolation=False, fraction_max_speed=0.01, wait=False, motor_config=None, vrep=False, vrep_host='127.0.0.1', vrep_port=19997, vrep_scene=None): """ The constructor of the class. Class properties should be set here The robot handle should be created here Any other initializations such as setting angles to particular values should also be taken care of here :type sync_sleep_time: float :param sync_sleep_time: Time to sleep to allow the joints to reach their targets (in seconds) :type interpolation: bool :param interpolation: Flag to indicate if intermediate joint angles should be interpolated :type fractionMaxSpeed: float :param fractionMaxSpeed: Fraction of the maximum motor speed to use :type wait: bool :param wait: Flag to indicate whether the control should wait for each angle to reach its target """ super(Poppy, self).__init__() # Set the properties self.sync_sleep_time = sync_sleep_time self.interpolation = interpolation self.fraction_max_speed = fraction_max_speed self.wait = wait self._maximumSpeed = 1.0 # Close existing vrep connections if any pypot.vrep.close_all_connections() # Create a new poppy robot and set the robot handle self.robot_handle = PoppyHumanoid(simulator='vrep', config=motor_config, host=vrep_host, port=vrep_port, scene=vrep_scene) # Sync the robot joints self.robot_handle.start_sync() # Perform required joint initializations # Move arms to pi/2 # self.robot_handle.l_shoulder_y.goal_position = -90 # self.robot_handle.r_shoulder_y.goal_position = -90 # Sleep for a few seconds to allow the changes to take effect time.sleep(3) def set_angles(self, joint_angles, duration=None, joint_velocities=None): """ Sets the joints to the specified angles (after converting radians to degrees since the poppy robot uses degrees) :type joint_angles: dict :param joint_angles: Dictionary of joint_names: angles (in radians) :type duration: float :param duration: Time to reach the angular targets (in seconds) :type joint_velocities: dict :param joint_velocities: dict of joint angles and velocities :return: None """ for joint_name in joint_angles.keys(): # Convert the angle to degrees target_angle_degrees = math.degrees(joint_angles[joint_name]) try: # Determine the right joint and set the joint angle for motor in self.robot_handle.motors: if motor.name == joint_name: motor.compliant = False motor.goal_speed = 1000.0 * min(self.fraction_max_speed, self._maximumSpeed) motor.goal_position = target_angle_degrees break except Exception as e: # Catch all exceptions print e.message raise RuntimeError('Could not set joint angle') # Sleep to allow the motors to reach their targets if not duration: time.sleep(self.sync_sleep_time) def get_angles(self, joint_names=None): """ Gets the angles of the specified joints and returns a dict of joint_names: angles (in radians) If joint_names=None then the values of all joints are returned :type joint_names: list :param joint_names: List of joint name strings :rtype: dict :returns: dict of joint names and angles """ # Create the dict to be returned joint_angles = dict() # Retrieve the list of DxlMXMotor objects motors = self.robot_handle.motors # If no joint names are specified, return angles of all joints in raidans # Else return only the angles (in radians) of the specified joints for m in motors: if joint_names is None: joint_angles[str(m.name)] = math.radians(m.present_position) else: if m.name in joint_names: joint_angles[str(m.name)] = math.radians(m.present_position) return joint_angles def cleanup(self): """ Cleans up the current connection to the robot :return: None """ # TODO check if it works self.robot_handle.close()
true
cf53ef9304116af8bf2caa501c19f0ce2c53a991
Python
SteveEwell/python-ldap-filter
/tests/test_filter_output.py
UTF-8
2,167
2.71875
3
[ "MIT" ]
permissive
import pytest from ldap_filter import Filter class TestFilterOutput: def test_to_string(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*)(!(account=disabled)))' parsed = Filter.parse(filt) string = parsed.to_string() assert string == filt def test_string_typecast(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*)(!(account=disabled)))' string = str(Filter.parse(filt)) assert string == filt def test_to_simple_concat(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*)(!(account=disabled)))' string = Filter.parse(filt) + '' assert string == filt def test_to_complex_concat(self): filt = '(&(sn=ron)(sn=bob))' string = Filter.parse(filt) + 'test' assert string == '(&(sn=ron)(sn=bob))test' class TestFilterFormatting: def test_default_beautify(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*))' parsed = Filter.parse(filt) string = parsed.to_string(True) assert string == '(&\n (|\n (sn=ron)\n (sn=bob)\n )\n (mail=*)\n)' def test_custom_indent_beautify(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*))' parsed = Filter.parse(filt) string = parsed.to_string(2) assert string == '(&\n (|\n (sn=ron)\n (sn=bob)\n )\n (mail=*)\n)' def test_custom_indent_char_beautify(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*))' parsed = Filter.parse(filt) string = parsed.to_string(indent=2, indt_char='!') assert string == '(&\n!!(|\n!!!!(sn=ron)\n!!!!(sn=bob)\n!!)\n!!(mail=*)\n)' class TestFilterSimplify: def test_optimized_filter(self): filt = '(&(|(sn=ron)(sn=bob))(mail=*)(!(account=disabled)))' parsed = Filter.parse(filt) string = parsed.simplify().to_string() assert string == filt def test_unoptimized_filter(self): filt = '(&(|(sn=ron)(&(sn=bob)))(|(mail=*))(!(account=disabled)))' optimized = '(&(|(sn=ron)(sn=bob))(mail=*)(!(account=disabled)))' parsed = Filter.parse(filt) string = parsed.simplify().to_string() assert string == optimized
true
ceb31a29f3a27f3007fd46ebe715528b212191c9
Python
bigbear11/TextClassify
/nbbaye.py
UTF-8
1,751
2.90625
3
[]
no_license
# -*- coding: utf-8 -*- import math import argparse from collections import defaultdict def loaddata(corpus_file): f=open(corpus_file) labels=defaultdict(int) labels_words=defaultdict(int) total=0 for line in f.readlines(): arr=line.strip().split('/') if len(arr)< 2:continue tokenizer=list(arr[1]) for item in tokenizer: labels[arr[0]] +=1 labels_words[(arr[0],item)] += 1 total+=1 #print arr[0],arr[1] #print total f.close() return labels,labels_words,total def model(labels,labels_words,total,text): words = list(text) temp = {} #print text for tag in labels.keys(): temp[tag] = math.log(labels[tag]) - math.log(total) for word in words: temp[tag] += math.log(labels_words.get((tag, word), 1.0)) - math.log(labels[tag]) label=0 grade = 0.0 for t in labels.keys(): cnt = 0.0 for tt in labels.keys(): cnt += math.exp(temp[tt] - temp[t]) cnt = 1.0 / cnt if cnt > grade: label, grade = t, cnt return label, grade def run(args): f=open(args.input_file) ff=open(args.output,'w') labels,labels_words,total=loaddata(args.corpus) for line in f.readlines(): query=line.strip() label,grade=model(labels,labels_words,total,query) ff.write(query+'\t'+label+'\t'+str(grade)+'\n') f.close() ff.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-c","--corpus",help="corpus") parser.add_argument("-i","--input_file",help="input_file") parser.add_argument("-o","--output",help="output") args = parser.parse_args() run(args)
true
6efb5571a96cdf49380ec1c562b89fb8c3a42a6a
Python
kashifusmani/interview_prep
/beyond/test.py
UTF-8
271
3.109375
3
[]
no_license
def find_duplicate(arr): s = set() for elem in arr: if elem not in s: s.add(elem) else: return elem def find_missing(arr): return 0 if __name__ == "__main__": a = [1, 4, 2, 0, 4, 5] print(find_duplicate(a))
true
56068f612af76e285aa0b235e5ee56144c53eea1
Python
koseus/CSE566
/hw1/hw1.py
UTF-8
2,027
3.6875
4
[]
no_license
import numpy as np f = open("input.txt", "r") size = int(f.readline()) # print(size) data = [] for i in range(size): line = f.readline() # print(line) instance = [] for l in line.split(): # print(l) instance.append(float(l)) # print(instance) data.append(instance) data = np.asarray(data, dtype=np.float32) # distinguish negative items from positive ones. We will use positives to compute S, and negatives to compute G. negative = data[0:10] positive = data[10:15] # print(negative) # print(positive) ##### Compute S ##### # Initial rectangle is equal to the first item S_minX = positive[0][0] S_maxX = positive[0][0] S_minY = positive[0][1] S_maxY = positive[0][1] for p in positive: if(S_minX > p[0]): S_minX = p[0] if(S_maxX < p[0]): S_maxX = p[0] if(S_minY > p[1]): S_minY = p[1] if(S_maxY < p[1]): S_maxY = p[1] print("Most specific hypothesis is (" + str(S_minX) + ", " + str(S_minY) + ") (" + str(S_maxX) + ", " + str(S_maxY) + ")") ##### Compute G ##### smallX = [] largeX = [] smallY = [] largeY = [] for n in negative: if(n[0] < S_minX): smallX.append(n[0]) if(n[0] > S_maxX): largeX.append(n[0]) if(n[1] < S_minY): smallY.append(n[1]) if(n[1] > S_maxY): largeY.append(n[1]) # Find the largest X smaller than S_minX max = 0 for s in smallX: if(s > max): max = s G_minX = max # Find the largest Y smaller than S_minY max = 0 for s in smallY: if(s > max): max = s G_minY = max # Find the smallest X larger than S_maxX min = 10 for l in largeX: if(l < min): min = l G_maxX = min # Find the smallest Y larger than S_maxY min = 10 for l in largeY: if(l < min): min = l G_maxY = min # Squeeze the rectangle by 1 quantum from all sides so that the border does not contain any negatives G_minX = round(G_minX + 0.05, 2) G_maxX = round(G_maxX - 0.05, 2) G_minY = round(G_minY + 0.05, 2) G_maxY = round(G_maxY - 0.05, 2) print("Most general hypothesis is (" + str(G_minX) + ", " + str(G_minY) + ") (" + str(G_maxX) + ", " + str(G_maxY) + ")")
true
f1da9446da4f5865379fbb5bdf80986cda6a9d35
Python
MLmicroscopy/distortions
/src/ang/phase.py
UTF-8
7,261
2.84375
3
[ "Apache-2.0" ]
permissive
import numpy as np import io import re import collections def np2str(arr, precision=6, smart_int=False): assert len(arr.shape) == 1 s = [] for x in arr: x = float(x) if smart_int and x.is_integer(): s += ["{}".format(int(x))] else: s += ["{0:.{1}f}".format(x, precision)] return " ".join(s) _default_latticeConstants = np.zeros([6]) # 3 constants & 3 angles _default_elasticConstants = np.zeros([6, 6]) _default_categories = np.zeros([4]) class Phase(object): def __init__(self, id, name='', formula='', symmetry=0, latticeConstants=_default_latticeConstants, hklFamilies=np.array([]), elasticConstants=np.array([]), categories=_default_categories): self._id = id self._materialName = name self._formula = formula self._info = '' self._symmetry = symmetry self._latticeConstants = latticeConstants self._hklFamilies = hklFamilies self._elasticConstants = elasticConstants self._categories = categories @property def id(self): return self._id @property def materialName(self): return self._materialName @materialName.setter def materialName(self, val): if not isinstance(val, str): raise AttributeError("materialName must be a string.") self._materialName = val @property def formula(self): return self._formula @formula.setter def formula(self, val): if not isinstance(val, str): raise AttributeError("formula must be a string.") self._formula = val @property def symmetry(self): return self._symmetry @symmetry.setter def symmetry(self, val): if not isinstance(val, int) or val < 0: raise AttributeError("symmetry must be a positive integer. Get {}".format(val)) self._symmetry = val @property def latticeConstants(self): return self._latticeConstants @latticeConstants.setter def latticeConstants(self, val): if not isinstance(val, np.ndarray): raise AttributeError("latticeConstants must be a numpy array") if val.shape != _default_latticeConstants.shape: raise AttributeError("latticeConstants must have a shape of {}. Get {}" .format(_default_latticeConstants.shape, val.shape)) self._latticeConstants = val @property def hklFamilies(self): return self._hklFamilies @hklFamilies.setter def hklFamilies(self, val): if not isinstance(val, np.ndarray): raise AttributeError("hklFamilies must be a numpy array") if len(val.shape) not in [0, 2] or val.shape[1] != 6: raise AttributeError("hklFamilies must have a shape of ?x6. Get {}".format(val.shape)) self._hklFamilies = val @property def numberFamilies(self): return len(self._hklFamilies) @property def elasticConstants(self): return self._elasticConstants @elasticConstants.setter def elasticConstants(self, val): if not isinstance(val, np.ndarray): raise AttributeError("elasticConstants must be a numpy array") if len(val.shape) not in [0, 2] or val.shape != _default_elasticConstants.shape: raise AttributeError("elasticConstants must have a shape of {}. Get {}" .format(_default_elasticConstants.shape, val.shape)) self._elasticConstants = val @property def categories(self): return self._categories @categories.setter def categories(self, val): if not isinstance(val, np.ndarray): raise AttributeError("categories must be a numpy array") if val.shape != _default_categories.shape: raise AttributeError("categories must have a shape of {}. Get {}" .format(_default_categories.shape, val.shape)) self._categories = val @staticmethod def create_from_phase(id, name, formula, phase): return Phase(id=id, name=name, formula=formula, symmetry=phase.symmetry, latticeConstants=phase.latticeConstants, hklFamilies=phase.hklFamilies, elasticConstants=phase.elasticConstants, categories=phase.categories) @staticmethod def load_from_string(sphase): lines = sphase.splitlines() # extract phase id (compulsary) phase_id = re.findall("# Phase (\d+)", string=lines[0]) if len(phase_id) != 1: raise Exception("Invalid Format: Could not retrieve the phase id") phase = Phase(id=int(phase_id[0])) list_buffer = collections.defaultdict(list) for i, line in enumerate(lines[1:]): if line.startswith("#"): tokens = re.split('\s+', line.strip()) if tokens[1] == 'MaterialName': phase.materialName = str(tokens[2]) elif tokens[1] == 'Formula': phase.formula = str(tokens[2]) elif tokens[1] == 'Symmetry': phase.symmetry = int(tokens[2]) elif tokens[1] == 'LatticeConstants': phase.latticeConstants = np.array(tokens[2:], dtype=np.float32) elif tokens[1] == 'Categories0': phase.categories = np.array(tokens[2:], dtype=np.float32) elif tokens[1] in ['hklFamilies', 'ElasticConstants']: list_buffer[tokens[1]].append(tokens[2:]) else: raise Exception("Invalid Format: missing diese in the header") # Post process list if "hklFamilies" in list_buffer: phase.hklFamilies = np.array(list_buffer["hklFamilies"], dtype=np.float32) if "ElasticConstants" in list_buffer: phase.elasticConstants = np.array(list_buffer["ElasticConstants"], dtype=np.float32) return phase def dump(self): with io.StringIO() as buffer: buffer.write("# Phase\t{}\n".format(self.id)) buffer.write("# MaterialName\t{}\n".format(self.materialName)) buffer.write("# Formula\t{}\n".format(self.formula)) buffer.write("# Info\n") buffer.write("# Symmetry\t{}\n".format(self.symmetry)) buffer.write("# LatticeConstants\t{}\n".format(np2str(self.latticeConstants, precision=3))) buffer.write("# NumberFamilies\t{}\n".format(self.numberFamilies)) for family in self.hklFamilies: buffer.write("# hklFamilies \t{}\n".format(np2str(family, smart_int=True))) for elastic in self.elasticConstants: buffer.write("# ElasticConstants \t{}\n".format(np2str(elastic, precision=6))) buffer.write("# Categories0\t{}\n".format(np2str(self.categories, smart_int=True))) sphase = buffer.getvalue() return sphase
true