blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
0e916e2c5c21fa90619c5a498a3f02adb866766d
Python
NewFrenchDev/Coding-Project
/Code python/Script/Trier_fichier.py
UTF-8
828
2.890625
3
[]
no_license
import shutil import glob import os import time #path CUR_DIR = os.path.dirname(__file__) #Files extension extensions = {".mp3": "Musique", ".wav": "Musique", ".mp4": "Videos", ".avi": "Videos", ".jpeg": "Images", ".jpg": "Images", ".png": "Images", ".pdf": "Documents", ".ipynb": "Notebooks", ".exe": "Software"} fichiers = glob.glob(os.path.join(f'{CUR_DIR}', "*")) for fichier in fichiers: extension = os.path.splitext(fichier)[-1] folder = extensions.get(extension) if folder: folder_path = os.path.join(f'{CUR_DIR}', folder) os.makedirs(folder_path, exist_ok=True) shutil.move(fichier, folder_path) print("Files have been moved successfully!") time.sleep(2)
true
ae210e9cc2991c3923baf123520b633ffc85a1b3
Python
jm-avila/REST-APIs-Python
/Refresher/06_advanced_set_operations/code.py
UTF-8
431
3.875
4
[]
no_license
art = {"Bob", "Jen", "Rolf", "Charlie"} science = {"Bob", "Jen", "Adam", "Anne"} # difference takes one set and removes the items found at passed set. onlyArt = art.difference(science) onlyScience = science.difference(art) print("only Art", onlyArt) print("only Science", onlyScience) print() # intersection takes one set and removes the items not found at passed set. both = art.intersection(science) print("take both", both)
true
0e15b6e8a15f34ec7cdb7e7c3c13ef38d955352d
Python
JGilstrap1/Sportsbook
/exe/SportsBook.py
UTF-8
37,040
2.765625
3
[]
no_license
import pandas as pd from pandas import DataFrame import numpy as np from tkinter import * from tkinter import ttk import statistics import cmath root = Tk() root.title('NHL Prediction Calculator') root.iconbitmap('/Users/jimbo/Documents/Sportsbook/exe/Skating.ico') root.geometry("600x1000") def webScrapeTeamStatsUrl(StatUrl): dfs = pd.read_html(StatUrl) for df in dfs: df_subset = DataFrame(df, columns = ['Team', 'GP', 'W', 'L', 'OTL','Points', 'SF', 'SF/GP', 'SA', 'SA/GP', 'GF', 'GF/GP', 'GF/GP_Rank', 'xGF', 'xGF_Rank', 'xGA', 'xGA_Rank', 'GA', 'GA/GP', 'GA/GP_Rank', 'CompareGF', 'OffensiveRank', 'CompareGA', 'DefensiveRank', 'SCF', 'SCGF', 'SCO', 'SCO_Rank', 'SCA', 'SCGA', 'SCD', 'SCD_Rank']) for idx, row in df_subset.iterrows(): df_subset.loc[idx, 'GF/GP'] = row['GF'] / row['GP'] df_subset.loc[idx, 'GA/GP'] = row['GA'] / row['GP'] df_subset.loc[idx, 'SF/GP'] = row['SF'] / row['GP'] df_subset.loc[idx, 'SA/GP'] = row['SA'] / row['GP'] for idx, row in df_subset.iterrows(): df_subset.loc[idx, 'CompareGF'] = row['GF/GP'] / df_subset['GF/GP'].mean() df_subset.loc[idx, 'CompareGA'] = row['GA/GP'] / df_subset['GF/GP'].mean() df_subset.loc[idx, 'SCO'] = (row['SCGF'] / row['SCF']) * 100 df_subset.loc[idx, 'SCD'] = (row['SCGA'] / row['SCA']) * 100 df_subset['GF/GP_Rank'] = df_subset['CompareGF'].rank(ascending=False) df_subset['GA/GP_Rank'] = df_subset['CompareGA'].rank() df_subset['xGF_Rank'] = df_subset['xGF'].rank(ascending=False) df_subset['xGA_Rank'] = df_subset['xGA'].rank() df_subset['SCO_Rank'] = df_subset['SCO'].rank(ascending=False) df_subset['SCD_Rank'] = df_subset['SCD'].rank() for idx, row in df_subset.iterrows(): df_subset['OffensiveRank'] = ((df_subset['xGF_Rank'] + df_subset['GF/GP_Rank'] + df_subset['SCO_Rank']) / 3) df_subset['DefensiveRank'] = ((df_subset['xGA_Rank'] + df_subset['GA/GP_Rank'] + df_subset['SCD_Rank']) / 3) df_subset['GF/GP'] = df_subset['GF/GP'].map('{:,.2f}'.format) df_subset['GA/GP'] = df_subset['GA/GP'].map('{:,.2f}'.format) df_subset['OffensiveRank'] = df_subset['OffensiveRank'].map('{:,.0f}'.format) df_subset['DefensiveRank'] = df_subset['DefensiveRank'].map('{:,.0f}'.format) return df_subset def webScrapeGoalieStatsUrl(StatUrl): dfs = pd.read_html(StatUrl) for df in dfs: df_subset = DataFrame(df, columns = ['Player', 'Team', 'GP', 'Shots Against', 'Saves', 'Goals Against', 'SV%', 'SV% Rank', 'GAA', 'GAA Rank']) df_subset['SV% Rank'] = df_subset['SV%'].rank(ascending=False) df_subset['GAA Rank'] = df_subset['GAA'].rank() return df_subset def webScrapePowerPlayStatsUrl(StatUrl): dfs = pd.read_html(StatUrl) for df in dfs: df_subset = DataFrame(df, columns = ['Team', 'GF', 'PP', 'GF_Rank', 'PP_Rank', 'xGF', 'xGF_Rank', 'SCF', 'SCGF', 'SCO', 'SCO_Rank']) for idx, row in df_subset.iterrows(): df_subset.loc[idx, 'PP'] = row['GF'] / df_subset['GF'].mean() df_subset.loc[idx, 'SCO'] = (row['SCGF'] / row['SCF']) * 100 df_subset['PP'] = df_subset['PP'].map('{:,.2f}'.format) df_subset['GF_Rank'] = df_subset['PP'].rank(ascending=False) df_subset['xGF_Rank'] = df_subset['xGF'].rank(ascending=False) df_subset['SCO_Rank'] = df_subset['SCO'].rank(ascending=False) for idx, row in df_subset.iterrows(): df_subset['PP_Rank'] = ((df_subset['GF_Rank'] + df_subset['xGF_Rank'] + df_subset['SCO_Rank']) / 3) df_subset['PP_Rank'] = df_subset['PP_Rank'].map('{:,.0f}'.format) return df_subset def webScrapePenaltyKillStatsUrl(StatUrl): dfs = pd.read_html(StatUrl) for df in dfs: df_subset = DataFrame(df, columns = ['Team', 'GA', 'PK', 'GA_Rank', 'PK_Rank', 'xGA', 'xGA_Rank', 'SCA', 'SCGA', 'SCD', 'SCA_Rank']) for idx, row in df_subset.iterrows(): df_subset.loc[idx, 'PK'] = row['GA'] / df_subset['GA'].mean() df_subset.loc[idx, 'SCD'] = (row['SCGA'] / row['SCA']) * 100 df_subset['PK'] = df_subset['PK'].map('{:,.2f}'.format) df_subset['GA_Rank'] = df_subset['PK'].rank() df_subset['xGA_Rank'] = df_subset['xGA'].rank() df_subset['SCA_Rank'] = df_subset['SCD'].rank() for idx, row in df_subset.iterrows(): df_subset['PK_Rank'] = ((df_subset['GA_Rank'] + df_subset['xGA_Rank'] + df_subset['SCA_Rank']) / 3) df_subset['PK_Rank'] = df_subset['PK_Rank'].map('{:,.0f}'.format) return df_subset def webScrapeStreakStatsUrl(StatUrl): dfs = pd.read_html(StatUrl) for df in dfs: df_subset = DataFrame(df, columns = ['Team', 'Wins', 'Losses', 'Home Wins', 'Home Losses', 'Road Wins', 'Road Losses']) return df_subset def homeTeamSelected(homeTeam): global parsedHomeStats #homeTeam = homeTeamCombo.get() homeFilter = homeTeamStats['Team'] == homeTeam parsedHomeStats = homeTeamStats[homeFilter] global parsedHomePpStats homePpFilter = homePowerPlayStats['Team'] == homeTeam parsedHomePpStats = homePowerPlayStats[homePpFilter] global parsedHomePkStats homePkFilter = homePenaltyKillStats['Team'] == homeTeam parsedHomePkStats = homePenaltyKillStats[homePkFilter] global parsedHomeStreakStats homeStreakFilter = homeStreakStats['Team'] == homeTeam parsedHomeStreakStats = homeStreakStats[homeStreakFilter] def awayTeamSelected(awayTeam): global parsedAwayStats awayFilter = awayTeamStats['Team'] == awayTeam parsedAwayStats = awayTeamStats[awayFilter] global parsedAwayPpStats awayPpFilter = awayPowerPlayStats['Team'] == awayTeam parsedAwayPpStats = awayPowerPlayStats[awayPpFilter] global parsedAwayPkStats awayPkFilter = awayPenaltyKillStats['Team'] == awayTeam parsedAwayPkStats = awayPenaltyKillStats[awayPkFilter] global parsedAwayStreakStats awayStreakFilter = awayStreakStats['Team'] == awayTeam parsedAwayStreakStats = awayStreakStats[awayStreakFilter] def homeGoalieSelected(homeGoalie): global parsedHomeGoalieStats homeFilter = homeGoalieStats['Player'] == homeGoalie parsedHomeGoalieStats = homeGoalieStats[homeFilter] def awayGoalieSelected(awayGoalie): global parsedAwayGoalieStats awayFilter = awayGoalieStats['Player'] == awayGoalie parsedAwayGoalieStats = awayGoalieStats[awayFilter] def homeGoalieDisplay(): #home goalie GP gaaLabelHome = Label(goalieStatsFrame, text = "GP") gaaLabelHome.grid(row = 0, column = 0, padx = 10, pady = 10) #home goalie GAA gaaLabelHome = Label(goalieStatsFrame, text = "GAA") gaaLabelHome.grid(row = 1, column = 0, padx = 10, pady = 10) #home goalie GAA Rank gaaRankLabelHome = Label(goalieStatsFrame, text = 'GAA Rank') gaaRankLabelHome.grid(row = 2, column = 0, padx = 10, pady = 10) #home goalie SV% svLabelHome = Label(goalieStatsFrame, text = "SV%") svLabelHome.grid(row = 3, column = 0, padx = 10, pady = 10) #home goalie SV% Rank svRankLabelHome = Label(goalieStatsFrame, text = 'SV% Rank') svRankLabelHome.grid(row = 4, column = 0, padx = 10, pady = 10) def awayGoalieDisplay(): #away goalie GP gaaLabelaway = Label(goalieStatsFrame, text = "GP") gaaLabelaway.grid(row = 0, column = 2, padx = 10, pady = 10) #away goalie GAA gaaLabelaway = Label(goalieStatsFrame, text = "GAA") gaaLabelaway.grid(row = 1, column = 2, padx = 10, pady = 10) #away goalie GAA Rank gaaRankLabelAway = Label(goalieStatsFrame, text = 'GAA Rank') gaaRankLabelAway.grid(row = 2, column = 2, padx = 10, pady = 10) #away goalie SV% svLabelAway = Label(goalieStatsFrame, text = "SV%") svLabelAway.grid(row = 3, column = 2, padx = 10, pady = 10) #away goalie SV% Rank svRankLabelAway = Label(goalieStatsFrame, text = 'SV% Rank') svRankLabelAway.grid(row = 4, column = 2, padx = 10, pady = 10) def homeTeamDisplay(): #home team wins winsLabelhome = Label(teamStatsFrame, text = "Wins") winsLabelhome.grid(row = 0, column = 0, padx = 10, pady = 10) #home team losses lossLabelhome = Label(teamStatsFrame, text = "Losses") lossLabelhome.grid(row = 1, column = 0, padx = 10, pady = 10) #home team OTL otlLabelhome = Label(teamStatsFrame, text = "OTL") otlLabelhome.grid(row = 2, column = 0, padx = 10, pady = 10) #home team GF/GP gfgpLabelhome = Label(teamStatsFrame, text = "GF/GP") gfgpLabelhome.grid(row = 3, column = 0, padx = 10, pady = 10) #home team GA/GP gagpLabelhome = Label(teamStatsFrame, text = "GA/GP") gagpLabelhome.grid(row = 4, column = 0, padx = 10, pady = 10) # #home team offensive strength # osLabelhome = Label(teamStatsFrame, text = "Offsensive Strength") # osLabelhome.grid(row = 5, column = 0, padx = 10, pady = 10) #home team offensive rank orLabelhome = Label(teamStatsFrame, text = "Offsensive Rank") orLabelhome.grid(row = 5, column = 0, padx = 10, pady = 10) # #home team defensive strength # dsLabelhome = Label(teamStatsFrame, text = "Defensive Strength") # dsLabelhome.grid(row = 7, column = 0, padx = 10, pady = 10) #home team defensive rank drLabelhome = Label(teamStatsFrame, text = "Defensive Rank") drLabelhome.grid(row = 6, column = 0, padx = 10, pady = 10) # #home team powerplay strength # ppsLabelhome = Label(teamStatsFrame, text = "Powerplay Strength") # ppsLabelhome.grid(row = 9, column = 0, padx = 10, pady = 10) #home team powerplay ranking pprLabelhome = Label(teamStatsFrame, text = "Powerplay Ranking") pprLabelhome.grid(row = 7, column = 0, padx = 10, pady = 10) # #home team pentaly kill strength # pksLabelhome = Label(teamStatsFrame, text = "Penalty Kill Strength") # pksLabelhome.grid(row = 11, column = 0, padx = 10, pady = 10) #home team pentaly kill ranking pkrLabelhome = Label(teamStatsFrame, text = "Penalty Kill Ranking") pkrLabelhome.grid(row = 8, column = 0, padx = 10, pady = 10) #home team win streak wsLabelhome = Label(teamStatsFrame, text = "Win Streak") wsLabelhome.grid(row = 9, column = 0, padx = 10, pady = 10) #home team loss streak lsLabelhome = Label(teamStatsFrame, text = "Loss Streak") lsLabelhome.grid(row = 10, column = 0, padx = 10, pady = 10) def awayTeamDisplay(): #away team wins winsLabelAway = Label(teamStatsFrame, text = "Wins") winsLabelAway.grid(row = 0, column = 3, padx = 10, pady = 10) #away team losses lossLabelAway = Label(teamStatsFrame, text = "Losses") lossLabelAway.grid(row = 1, column = 3, padx = 10, pady = 10) #away team OTL otlLabelAway = Label(teamStatsFrame, text = "OTL") otlLabelAway.grid(row = 2, column = 3, padx = 10, pady = 10) #away team GF/GP gfgpLabelAway = Label(teamStatsFrame, text = "GF/GP") gfgpLabelAway.grid(row = 3, column = 3, padx = 10, pady = 10) #away team GA/GP gagpLabelAway = Label(teamStatsFrame, text = "GA/GP") gagpLabelAway.grid(row = 4, column = 3, padx = 10, pady = 10) # #away team offensive strength # osLabelAway = Label(teamStatsFrame, text = "Offsensive Strength") # osLabelAway.grid(row = 5, column = 3, padx = 10, pady = 10) #away team offensive rank orLabelAway = Label(teamStatsFrame, text = "Offsensive Rank") orLabelAway.grid(row = 5, column = 3, padx = 10, pady = 10) # #away team defensive strength # dsLabelAway = Label(teamStatsFrame, text = "Defensive Strength") # dsLabelAway.grid(row = 7, column = 3, padx = 10, pady = 10) #away team defensive rank drLabelAway = Label(teamStatsFrame, text = "Defensive Rank") drLabelAway.grid(row = 6, column = 3, padx = 10, pady = 10) # #away team powerplay strength # ppsLabelAway = Label(teamStatsFrame, text = "Powerplay Strength") # ppsLabelAway.grid(row = 9, column = 3, padx = 10, pady = 10) #away team powerplay ranking pprLabelAway = Label(teamStatsFrame, text = "Powerplay Ranking") pprLabelAway.grid(row = 7, column = 3, padx = 10, pady = 10) # #away team pentaly kill strength # pksLabelAway = Label(teamStatsFrame, text = "Penalty Kill Strength") # pksLabelAway.grid(row = 11, column = 3, padx = 10, pady = 10) #away team pentaly kill ranking pkrLabelAway = Label(teamStatsFrame, text = "Penalty Kill Ranking") pkrLabelAway.grid(row = 8, column = 3, padx = 10, pady = 10) #away team win streak wsLabelAway = Label(teamStatsFrame, text = "Win Streak") wsLabelAway.grid(row = 9, column = 3, padx = 10, pady = 10) #away team loss streak lsLabelAway = Label(teamStatsFrame, text = "Loss Streak") lsLabelAway.grid(row = 10, column = 3, padx = 10, pady = 10) def populateHomeGoalieStats(): homeGp = IntVar() homeGaa = IntVar() homeGaaRank = IntVar() homeSV = IntVar() homeSvRank = IntVar() homeGp.set(parsedHomeGoalieStats.iloc[0]['GP']) homeGaa.set(parsedHomeGoalieStats.iloc[0]['GAA']) homeGaaRank.set(parsedHomeGoalieStats.iloc[0]['GAA Rank']) homeSV.set(parsedHomeGoalieStats.iloc[0]['SV%']) homeSvRank.set(parsedHomeGoalieStats.iloc[0]['SV% Rank']) gpHome = Label(goalieStatsFrame, textvariable = homeGp) gpHome.grid(row = 0, column = 1, padx = 10, pady = 10) gaaHome = Label(goalieStatsFrame, textvariable = homeGaa) gaaHome.grid(row = 1, column = 1, padx = 10, pady = 10) gaaRankHome = Label(goalieStatsFrame, textvariable = homeGaaRank) gaaRankHome.grid(row = 2, column = 1, padx = 10, pady = 10) svHome = Label(goalieStatsFrame, textvariable = homeSV) svHome.grid(row = 3, column = 1, padx = 10, pady = 10) svRankHome = Label(goalieStatsFrame, textvariable = homeSvRank) svRankHome.grid(row = 4, column = 1, padx = 10, pady = 10) def populateAwayGoalieStats(): awayGp = IntVar() awayGaa = IntVar() awayGaaRank = IntVar() awaySV = IntVar() awaySvRank = IntVar() awayGp.set(parsedAwayGoalieStats.iloc[0]['GP']) awayGaa.set(parsedAwayGoalieStats.iloc[0]['GAA']) awayGaaRank.set(parsedAwayGoalieStats.iloc[0]['GAA Rank']) awaySV.set(parsedAwayGoalieStats.iloc[0]['SV%']) awaySvRank.set(parsedAwayGoalieStats.iloc[0]['SV% Rank']) gpAway = Label(goalieStatsFrame, textvariable = awayGp) gpAway.grid(row = 0, column = 3, padx = 10, pady = 10) gaaAway = Label(goalieStatsFrame, textvariable = awayGaa) gaaAway.grid(row = 1, column = 3, padx = 10, pady = 10) gaaRankAway = Label(goalieStatsFrame, textvariable = awayGaaRank) gaaRankAway.grid(row = 2, column = 3, padx = 10, pady = 10) svAway = Label(goalieStatsFrame, textvariable = awaySV) svAway.grid(row = 3, column = 3, padx = 10, pady = 10) svRankAway = Label(goalieStatsFrame, textvariable = awaySvRank) svRankAway.grid(row = 4, column = 3, padx = 10, pady = 10) def populateHomeTeamStats(): homeWins = IntVar() homeLoss = IntVar() homeOTL = IntVar() homeGFGP = IntVar() homeGAGP = IntVar() homeOS = IntVar() homeOR = IntVar() homeDS = IntVar() homeDR = IntVar() homePP = IntVar() homePPR = IntVar() homePK = IntVar() homePKR = IntVar() homeStreakWins = IntVar() homeStreakLosses = IntVar() homeWins.set(parsedHomeStats.iloc[0]['W']) homeLoss.set(parsedHomeStats.iloc[0]['L']) homeOTL.set(parsedHomeStats.iloc[0]['OTL']) homeGFGP.set(parsedHomeStats.iloc[0]['GF/GP']) homeGAGP.set(parsedHomeStats.iloc[0]['GA/GP']) homeOR.set(parsedHomeStats.iloc[0]['OffensiveRank']) homeDR.set(parsedHomeStats.iloc[0]['DefensiveRank']) homePPR.set(parsedHomePpStats.iloc[0]['PP_Rank']) homePKR.set(parsedHomePkStats.iloc[0]['PK_Rank']) homeStreakWins.set(parsedHomeStreakStats.iloc[0]['Wins']) homeStreakLosses.set(parsedHomeStreakStats.iloc[0]['Losses']) winsHome = Label(teamStatsFrame, textvariable = homeWins) winsHome.grid(row = 0, column = 1, padx = 10, pady = 10) lossesHome = Label(teamStatsFrame, textvariable = homeLoss) lossesHome.grid(row = 1, column = 1, padx = 10, pady = 10) otlHome = Label(teamStatsFrame, textvariable = homeOTL) otlHome.grid(row = 2, column = 1, padx = 10, pady = 10) gfgpHome = Label(teamStatsFrame, textvariable = homeGFGP) gfgpHome.grid(row = 3, column = 1, padx = 10, pady = 10) gagpHome = Label(teamStatsFrame, textvariable = homeGAGP) gagpHome.grid(row = 4, column = 1, padx = 10, pady = 10) orHome = Label(teamStatsFrame, textvariable = homeOR) orHome.grid(row = 5, column = 1, padx = 10, pady = 10) drHome = Label(teamStatsFrame, textvariable = homeDR) drHome.grid(row = 6, column = 1, padx = 10, pady = 10) PprHome = Label(teamStatsFrame, textvariable = homePPR) PprHome.grid(row = 7, column = 1, padx = 10, pady = 10) PkrHome = Label(teamStatsFrame, textvariable = homePKR) PkrHome.grid(row = 8, column = 1, padx = 10, pady = 10) winsStreakHome = Label(teamStatsFrame, textvariable = homeStreakWins) winsStreakHome.grid(row = 9, column = 1, padx = 10, pady = 10) lossStreakHome = Label(teamStatsFrame, textvariable = homeStreakLosses) lossStreakHome.grid(row = 10, column = 1, padx = 10, pady = 10) def populateAwayTeamStats(): awayWins = IntVar() awayLoss = IntVar() awayOTL = IntVar() awayGFGP = IntVar() awayGAGP = IntVar() awayOS = IntVar() awayOR = IntVar() awayDS = IntVar() awayDR = IntVar() awayPP = IntVar() awayPPR = IntVar() awayPK = IntVar() awayPKR = IntVar() awayStreakWins = IntVar() awayStreakLosses = IntVar() awayWins.set(parsedAwayStats.iloc[0]['W']) awayLoss.set(parsedAwayStats.iloc[0]['L']) awayOTL.set(parsedAwayStats.iloc[0]['OTL']) awayGFGP.set(parsedAwayStats.iloc[0]['GF/GP']) awayGAGP.set(parsedAwayStats.iloc[0]['GA/GP']) awayOR.set(parsedAwayStats.iloc[0]['OffensiveRank']) awayDR.set(parsedAwayStats.iloc[0]['DefensiveRank']) awayPPR.set(parsedAwayPpStats.iloc[0]['PP_Rank']) awayPKR.set(parsedAwayPkStats.iloc[0]['PK_Rank']) awayStreakWins.set(parsedAwayStreakStats.iloc[0]['Wins']) awayStreakLosses.set(parsedAwayStreakStats.iloc[0]['Losses']) winsAway = Label(teamStatsFrame, textvariable = awayWins) winsAway.grid(row = 0, column = 4, padx = 10, pady = 10) lossesAway = Label(teamStatsFrame, textvariable = awayLoss) lossesAway.grid(row = 1, column = 4, padx = 10, pady = 10) otlAway = Label(teamStatsFrame, textvariable = awayOTL) otlAway.grid(row = 2, column = 4, padx = 10, pady = 10) gfgpAway = Label(teamStatsFrame, textvariable = awayGFGP) gfgpAway.grid(row = 3, column = 4, padx = 10, pady = 10) gagpAway = Label(teamStatsFrame, textvariable = awayGAGP) gagpAway.grid(row = 4, column = 4, padx = 10, pady = 10) orAway = Label(teamStatsFrame, textvariable = awayOR) orAway.grid(row = 5, column = 4, padx = 10, pady = 10) drAway = Label(teamStatsFrame, textvariable = awayDR) drAway.grid(row = 6, column = 4, padx = 10, pady = 10) PprAway = Label(teamStatsFrame, textvariable = awayPPR) PprAway.grid(row = 7, column = 4, padx = 10, pady = 10) PkrAway = Label(teamStatsFrame, textvariable = awayPKR) PkrAway.grid(row = 8, column = 4, padx = 10, pady = 10) winsStreakAway = Label(teamStatsFrame, textvariable = awayStreakWins) winsStreakAway.grid(row = 9, column = 4, padx = 10, pady = 10) lossStreakAway = Label(teamStatsFrame, textvariable = awayStreakLosses) lossStreakAway.grid(row = 10, column = 4, padx = 10, pady = 10) def calculateStatistics(): #home goalie stats #home goalie / 2.5 since the number of goalies is significantly higher than number of teams numOfHomeGoalies = len(homeGoalieStats) homeGoalieGaaCalc = (((numOfHomeGoalies - parsedHomeGoalieStats.iloc[0]['GAA Rank']) * 0.10) / 2.5) homeGoalieSvCalc = (((numOfHomeGoalies - parsedHomeGoalieStats.iloc[0]['SV% Rank']) * 0.10) / 2.5) #home strength calcs numOfHomeTeams = len(homeTeamStats) homeOffensiveStrengthCalc = ((numOfHomeTeams - int(parsedHomeStats.iloc[0]['OffensiveRank'])) * 0.30) homeDefensiveStrengthCalc = ((numOfHomeTeams - int(parsedHomeStats.iloc[0]['DefensiveRank'])) * 0.20) homePowerPlayStrengthCalc = ((numOfHomeTeams - int(parsedHomePpStats.iloc[0]['PP_Rank'])) * 0.15) homePentalyKillStrengthCalc = ((numOfHomeTeams - int(parsedAwayPkStats.iloc[0]['PK_Rank'])) * 0.15) #away goalie stats #away goalie / 2.5 since the number of goalies is significantly higher than number of teams numAwayGoalies = len(awayGoalieStats) awayGoalieGaaCalc = (((numAwayGoalies - parsedAwayGoalieStats.iloc[0]['GAA Rank']) * 0.10) / 2.5) awayGoalieSvCalc = (((numAwayGoalies - parsedAwayGoalieStats.iloc[0]['SV% Rank']) * 0.10) / 2.5) #away offensive strength numOfAwayTeams = len(awayTeamStats) awayOffensiveStrengthCalc = ((numOfAwayTeams - int(parsedAwayStats.iloc[0]['OffensiveRank'])) * 0.30) awayDefensiveStrengthCalc = ((numOfAwayTeams - int(parsedAwayStats.iloc[0]['DefensiveRank'])) * 0.20) awayPowerPlayStrengthCalc = ((numOfAwayTeams - int(parsedAwayPpStats.iloc[0]['PP_Rank'])) * 0.15) awayPentalyKillStrengthCalc = ((numOfAwayTeams - int(parsedAwayPkStats.iloc[0]['PK_Rank'])) * 0.15) #calculate totals homeTotalCount = homeGoalieGaaCalc + homeGoalieSvCalc + homeOffensiveStrengthCalc + homeDefensiveStrengthCalc + homePowerPlayStrengthCalc + homePentalyKillStrengthCalc awayTotalCount = awayGoalieGaaCalc + awayGoalieSvCalc + awayOffensiveStrengthCalc + awayDefensiveStrengthCalc + awayPowerPlayStrengthCalc + awayPentalyKillStrengthCalc totalCount = homeTotalCount + awayTotalCount homePercentage = ((homeTotalCount / totalCount) * 100) awayPercentage = ((awayTotalCount / totalCount) * 100) #display calculations finalHomePercentage = StringVar() finalHomePercentage.set("{:.2f}".format(homePercentage) + " %") homeTeam = Label(totalCalcFrame, text = parsedHomeStats.iloc[0]['Team']) homeTeam.grid(row = 0, column = 0, padx = 10, pady = 10) homePercentageLabel = Label(totalCalcFrame, textvariable = finalHomePercentage) homePercentageLabel.grid(row = 1, column = 0, padx = 10, pady = 10) finalAwayPercentage = StringVar() finalAwayPercentage.set("{:.2f}".format(awayPercentage) + " %") awayTeam = Label(totalCalcFrame, text = parsedAwayStats.iloc[0]['Team']) awayTeam.grid(row = 0, column = 1, padx = 10, pady = 10) awayPercentageLabel = Label(totalCalcFrame, textvariable = finalAwayPercentage) awayPercentageLabel.grid(row = 1, column = 1, padx = 10, pady = 10) def calculateGoalsScored(): homeOffensiveAdjust = 0 awayOffensiveAdjust = 0 if int(parsedHomeStats.iloc[0]['OffensiveRank']) <= 7: homeOffensiveAdjust = 1.0 elif int(parsedHomeStats.iloc[0]['OffensiveRank']) <= 15 and int(parsedHomeStats.iloc[0]['OffensiveRank']) > 7: homeOffensiveAdjust = 0.5 if int(parsedHomeStats.iloc[0]['OffensiveRank']) <= 7: awayOffensiveAdjust = 1.0 elif int(parsedHomeStats.iloc[0]['OffensiveRank']) <= 15 and int(parsedHomeStats.iloc[0]['OffensiveRank']) > 7: awayOffensiveAdjust = 0.5 #calculate score method one homeMethodOne = (statistics.mean([float(parsedHomeStats.iloc[0]['GF/GP']), float(parsedAwayStats.iloc[0]['GA/GP'])]) + homeOffensiveAdjust) awayMethodOne = (statistics.mean([float(parsedAwayStats.iloc[0]['GF/GP']), float(parsedHomeStats.iloc[0]['GA/GP'])]) + awayOffensiveAdjust) #calculate score method two homeExpectedShots = statistics.mean([float(parsedHomeStats.iloc[0]['SF/GP']), float(parsedAwayStats.iloc[0]['SA/GP'])]) awayExpectedShots = statistics.mean([float(parsedAwayStats.iloc[0]['SF/GP']), float(parsedHomeStats.iloc[0]['SA/GP'])]) homeMethodTwo = (((1.0 - float(parsedAwayGoalieStats.iloc[0]['SV%'])) * homeExpectedShots) + homeOffensiveAdjust) awayMethodTwo = (((1.0 - float(parsedHomeGoalieStats.iloc[0]['SV%'])) * awayExpectedShots) + awayOffensiveAdjust) #calculate score method three homeAvgShotsPerGoal = (float(parsedHomeStats.iloc[0]['SF/GP']) / float(parsedHomeStats.iloc[0]['GF/GP'])) awayAvgShotsPerGoal = (float(parsedAwayStats.iloc[0]['SF/GP']) / float(parsedAwayStats.iloc[0]['GF/GP'])) homeMethodThree = ((homeExpectedShots / homeAvgShotsPerGoal) + homeOffensiveAdjust) awayMethodThree = ((awayExpectedShots / awayAvgShotsPerGoal) + awayOffensiveAdjust) #method four homeMethodfour = (float(parsedAwayStats.iloc[0]['GA/GP']) + homeOffensiveAdjust) awayMethodFour = (float(parsedHomeStats.iloc[0]['GA/GP']) + awayOffensiveAdjust) #method five homeMethodFive = (float(parsedHomeStats.iloc[0]['GF/GP']) + homeOffensiveAdjust) awayMethodFive = (float(parsedAwayStats.iloc[0]['GF/GP']) + awayOffensiveAdjust) homeAverage = statistics.mean([homeMethodOne, homeMethodTwo, homeMethodThree, homeMethodfour, homeMethodFive]) awayAverage = statistics.mean([awayMethodOne, awayMethodTwo, awayMethodThree, awayMethodFour, awayMethodFive]) homeScore = homeAverage awayScore = awayAverage if int(parsedAwayStats.iloc[0]['DefensiveRank']) < (len(awayTeamStats) / 2): homeScore = ((1 - (((len(awayTeamStats) / 2) - int(parsedAwayStats.iloc[0]['DefensiveRank'])) / 100)) * homeAverage) elif int(parsedAwayStats.iloc[0]['DefensiveRank']) > (len(awayTeamStats) / 2): homeScore = ((1 + ((int(parsedAwayStats.iloc[0]['DefensiveRank']) - (len(awayTeamStats) / 2)) / 100)) * homeAverage) if int(parsedAwayStats.iloc[0]['DefensiveRank']) < (len(awayTeamStats) / 2): awayScore = ((1 - (((len(homeTeamStats) / 2) - int(parsedAwayStats.iloc[0]['DefensiveRank'])) / 100)) * awayAverage) elif int(parsedAwayStats.iloc[0]['DefensiveRank']) > (len(awayTeamStats) / 2): awayScore = ((1 + ((int(parsedAwayStats.iloc[0]['DefensiveRank']) - (len(homeTeamStats) / 2)) / 100)) * awayAverage) #display final calculated goals finalHomeGoals = StringVar() finalHomeGoals.set("Goals: ""{:.2f}".format(homeScore)) homeGoalsLabel = Label(totalCalcFrame, textvariable = finalHomeGoals) homeGoalsLabel.grid(row = 2, column = 0, padx = 10, pady = 10) finalAwayGoals = StringVar() finalAwayGoals.set("Goals: ""{:.2f}".format(awayScore)) homeGoalsLabel = Label(totalCalcFrame, textvariable = finalAwayGoals) homeGoalsLabel.grid(row = 2, column = 1, padx = 10, pady = 10) def computeStats(): populateHomeGoalieStats() populateAwayGoalieStats() populateHomeTeamStats() populateAwayTeamStats() calculateStatistics() calculateGoalsScored() def updateHomeListBox(homeTeamValues): homeTeamList.delete(0, END) for item in homeTeamValues: homeTeamList.insert(END, item) def fillOutHomeTeamList(e): homeTeamSearchBox.delete(0, END) homeTeamSearchBox.insert(0, homeTeamList.get(ANCHOR)) homeTeamSelected(homeTeamList.get(ANCHOR)) def checkHomeTeam(e): typed = homeTeamSearchBox.get() data = homeTeamValues if typed == "": data = homeTeamValues else: data = [] for item in homeTeamValues: if typed.lower() in item.lower(): data.append(item) updateHomeListBox(data) def updateAwayListBox(awayTeamValues): awayTeamList.delete(0, END) for item in awayTeamValues: awayTeamList.insert(END, item) def fillOutAwayTeamList(e): awayTeamSearchBox.delete(0, END) awayTeamSearchBox.insert(0, awayTeamList.get(ANCHOR)) awayTeamSelected(awayTeamList.get(ANCHOR)) def checkAwayTeam(e): typed = awayTeamSearchBox.get() data = awayTeamValues if typed == "": data = awayTeamValues else: data = [] for item in awayTeamValues: if typed.lower() in item.lower(): data.append(item) updateAwayListBox(data) def updateHomeGoalieListBox(homeGoalieValues): homeGoalieList.delete(0, END) for item in homeGoalieValues: homeGoalieList.insert(END, item) def fillOutHomeGoalieList(e): homeGoalieSearchBox.delete(0, END) homeGoalieSearchBox.insert(0, homeGoalieList.get(ANCHOR)) homeGoalieSelected(homeGoalieList.get(ANCHOR)) def checkHomeGoalie(e): typed = homeGoalieSearchBox.get() data = homeGoalieValues if typed == "": data = homeGoalieValues else: data = [] for item in homeGoalieValues: if typed.lower() in item.lower(): data.append(item) updateHomeGoalieListBox(data) def updateAwayGoalieListBox(awayGoalieValues): awayGoalieList.delete(0, END) for item in awayGoalieValues: awayGoalieList.insert(END, item) def fillOutAwayGoalieList(e): awayGoalieSearchBox.delete(0, END) awayGoalieSearchBox.insert(0, awayGoalieList.get(ANCHOR)) awayGoalieSelected(awayGoalieList.get(ANCHOR)) def checkAwayGoalie(e): typed = awayGoalieSearchBox.get() data = awayGoalieValues if typed == "": data = awayGoalieValues else: data = [] for item in awayGoalieValues: if typed.lower() in item.lower(): data.append(item) updateAwayGoalieListBox(data) #web scrape links # homeTeamStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=5v5&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' # awayTeamStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=5v5&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' # homeGoalieStatsUrl = 'http://www.naturalstattrick.com/playerteams.php?fromseason=20202021&thruseason=20202021&stype=2&sit=5v5&score=all&stdoi=g&rate=n&team=ALL&pos=S&loc=H&toi=0&gpfilt=none&fd=&td=&tgp=410&lines=single&draftteam=ALL' # awayGoalieStatsUrl = 'http://www.naturalstattrick.com/playerteams.php?fromseason=20202021&thruseason=20202021&stype=2&sit=5v5&score=all&stdoi=g&rate=n&team=ALL&pos=S&loc=A&toi=0&gpfilt=none&fd=&td=&tgp=410&lines=single&draftteam=ALL' # homePowerPlayStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=pp&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' # awayPowerPlayStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=pp&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' # homePenaltyKillStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=pk&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' # awayPenaltyKillStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20202021&thruseason=20202021&stype=2&sit=pk&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' homeTeamStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=5v5&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' awayTeamStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=5v5&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' homeGoalieStatsUrl = 'http://www.naturalstattrick.com/playerteams.php?fromseason=20192020&thruseason=20202021&stype=2&sit=5v5&score=all&stdoi=g&rate=n&team=ALL&pos=S&loc=H&toi=0&gpfilt=none&fd=&td=&tgp=410&lines=single&draftteam=ALL' awayGoalieStatsUrl = 'http://www.naturalstattrick.com/playerteams.php?fromseason=20192020&thruseason=20202021&stype=2&sit=5v5&score=all&stdoi=g&rate=n&team=ALL&pos=S&loc=A&toi=0&gpfilt=none&fd=&td=&tgp=410&lines=single&draftteam=ALL' homePowerPlayStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=pp&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' awayPowerPlayStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=pp&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' homePenaltyKillStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=pk&score=all&rate=n&team=all&loc=H&gpf=410&fd=&td=' awayPenaltyKillStatsUrl = 'http://www.naturalstattrick.com/teamtable.php?fromseason=20192020&thruseason=20202021&stype=2&sit=pk&score=all&rate=n&team=all&loc=A&gpf=410&fd=&td=' streakStatsUrl = 'http://www.naturalstattrick.com/teamstreaks.php' #web scrape to get dataframe tables in Pandas homeTeamStats = webScrapeTeamStatsUrl(homeTeamStatsUrl) awayTeamStats = webScrapeTeamStatsUrl(awayTeamStatsUrl) homeGoalieStats = webScrapeGoalieStatsUrl(homeGoalieStatsUrl) awayGoalieStats = webScrapeGoalieStatsUrl(awayGoalieStatsUrl) homePowerPlayStats = webScrapePowerPlayStatsUrl(homePowerPlayStatsUrl) awayPowerPlayStats = webScrapePowerPlayStatsUrl(awayPowerPlayStatsUrl) homePenaltyKillStats = webScrapePenaltyKillStatsUrl(homePenaltyKillStatsUrl) awayPenaltyKillStats = webScrapePenaltyKillStatsUrl(awayPenaltyKillStatsUrl) homeStreakStats = webScrapeStreakStatsUrl(streakStatsUrl) awayStreakStats = webScrapeStreakStatsUrl(streakStatsUrl) mainFrame = LabelFrame(root) mainFrame.pack(fill = BOTH, expand = 1) myCanvas = Canvas(mainFrame) myCanvas.pack(side = LEFT, fill = BOTH, expand = 1) yscrollbar = ttk.Scrollbar(mainFrame, orient = VERTICAL, command = myCanvas.yview) yscrollbar.pack(side = RIGHT, fill = Y) myCanvas.configure(yscrollcommand = yscrollbar.set) myCanvas.bind('<Configure>', lambda e: myCanvas.configure(scrollregion = myCanvas.bbox('all'))) myFrame = Frame(myCanvas) myCanvas.create_window((0,0), window = myFrame, anchor = "nw") #create user input frames selectionFrame = LabelFrame(myFrame, padx = 10, pady = 10) selectionFrame.pack(padx = 75, pady = 5) #goalie statistics frame goalieStatsFrame = LabelFrame(myFrame, padx = 10, pady = 10) goalieStatsFrame.pack(padx = 75, pady = 5) #team statistics frame teamStatsFrame = LabelFrame(myFrame, padx = 10, pady = 10) teamStatsFrame.pack(padx = 75, pady = 5) #calculation frame totalCalcFrame = LabelFrame(myFrame, padx = 10, pady = 10, width = 250, height = 150) totalCalcFrame.pack(padx = 75, pady = 5) homeGoalieDisplay() awayGoalieDisplay() homeTeamDisplay() awayTeamDisplay() #home team selection label homeTeamLabel = ttk.Label(selectionFrame, text = 'Select Home Team') homeTeamLabel.grid(row = 0, column = 0, padx = 5, pady = 10) #home team searchbox homeTeamValues = list(homeTeamStats['Team'].unique()) homeTeamSearchBox = Entry(selectionFrame, text = "Search") homeTeamSearchBox.grid(row = 1, column = 0) homeTeamList = Listbox(selectionFrame) homeTeamList.grid(row = 2, column = 0) updateHomeListBox(homeTeamValues) homeTeamList.bind("<<ListboxSelect>>", fillOutHomeTeamList) homeTeamSearchBox.bind("<KeyRelease>", checkHomeTeam) #away team selection label awayTeamLabel = ttk.Label(selectionFrame, text = 'Select Away Team') awayTeamLabel.grid(row = 0, column = 1, padx = 5, pady = 10) #away team searchbox awayTeamValues = list(awayTeamStats['Team'].unique()) awayTeamSearchBox = Entry(selectionFrame) awayTeamSearchBox.grid(row = 1, column = 1) awayTeamList = Listbox(selectionFrame) awayTeamList.grid(row = 2, column = 1) updateAwayListBox(awayTeamValues) awayTeamList.bind("<<ListboxSelect>>", fillOutAwayTeamList) awayTeamSearchBox.bind("<KeyRelease>", checkAwayTeam) #home goalie selection label homeGoalieLabel = ttk.Label(selectionFrame, text = 'Select Home Goalie') homeGoalieLabel.grid(row = 3, column = 0, padx = 5, pady = 10) #home goalie combobox homeGoalieValues = list(homeGoalieStats['Player'].unique()) homeGoalieSearchBox = Entry(selectionFrame) homeGoalieSearchBox.grid(row = 4, column = 0) homeGoalieList = Listbox(selectionFrame) homeGoalieList.grid(row = 5, column = 0) updateHomeGoalieListBox(homeGoalieValues) homeGoalieList.bind("<<ListboxSelect>>", fillOutHomeGoalieList) homeGoalieSearchBox.bind("<KeyRelease>", checkHomeGoalie) #away goalie selection label awayGoalieLabel = ttk.Label(selectionFrame, text = 'Select Away Goalie') awayGoalieLabel.grid(row = 3, column = 1, padx = 5, pady = 10) #away goalie combobox awayGoalieValues = list(awayGoalieStats['Player'].unique()) awayGoalieSearchBox = Entry(selectionFrame) awayGoalieSearchBox.grid(row = 4, column = 1) awayGoalieList = Listbox(selectionFrame) awayGoalieList.grid(row = 5, column = 1) updateAwayGoalieListBox(awayGoalieValues) awayGoalieList.bind("<<ListboxSelect>>", fillOutAwayGoalieList) awayGoalieSearchBox.bind("<KeyRelease>", checkAwayGoalie) # awayGoalieCombo = ttk.Combobox(selectionFrame, value = awayGoalieValues) # awayGoalieCombo.grid(row = 4, column = 1) # awayGoalieCombo.bind("<<ComboboxSelected>>", awayGoalieSelected) button = ttk.Button(myFrame, text = 'Run', command=lambda : computeStats()) button.pack(pady = 10) #GUI mainloop root.mainloop()
true
ab3478fbda20466fc7ea7e0121b3867724b60175
Python
dantin/daylight
/dcp/045/solution.py
UTF-8
584
3.53125
4
[ "BSD-3-Clause" ]
permissive
# -*- coding: utf-8 -*- import random def rand5(): return random.randint(1, 5) def rand7(): while True: num = 5 * (rand5() - 1) + (rand5() - 1) if num < 21: return num % 7 + 1 if __name__ == '__main__': count = 10 ** 6 result_dict = {} for _ in range(count): num = rand7() if num not in result_dict: result_dict[num] = 0 result_dict[num] += 1 print('\n Output:') for num, freq in sorted(result_dict.items()): print(' {}: {}, probability: {}'.format(num, freq, freq / count))
true
5786c068e4f55b1e2d683103a1d2f43ac54dc00a
Python
claying/state-space-energy
/period.py
UTF-8
1,725
3.4375
3
[]
no_license
import numpy as np def weekends_array(T): T1 = 95 T_we = 48 T_wd = 120 weekends = [] for i in range(T): if i > T1 and (i-T1-1)%168<T_we: weekends.append(True) else: weekends.append(False) weekends = np.array(weekends) workdays = np.invert(weekends) return weekends, workdays def days_array(T): T_day = 11 T_night = 24 - T_day T1_night = 7 days = [] for i in range(T): if i >= T1_night and (i-T1_night)%24 < T_day: days.append(True) else: days.append(False) days = np.array(days) return days def nights_array(T): TT_day = 14 TT_night = 24 - TT_day TT1_night = 6 nights = [] for i in range(T): if i >= TT1_night and (i-TT1_night)%24 < TT_day: nights.append(False) else: nights.append(True) nights = np.array(nights) complet_days = np.invert(nights) return nights, complet_days def regimes(T, t0=1, di=(8,19), ni=(21,7), tw0=95, wl=48): """ tw0: start position wl: weekend length """ regimes = np.zeros(T, dtype=int) for i in range(T): time = (t0 + i)%24 if (i >= tw0 and (i-tw0)%168 < wl): # weekend regimes[i] = 4 elif ((time >= ni[0] and time < 24) or (time + 24 >= ni[0] and time < ni[1])): # night regimes[i] = 1 elif time >= di[0] and time < di[1]: # day regimes[i] = 0 elif (time >= di[1] and time < ni[0]): # day-to-night regimes[i] = 2 else: # night-to-day regimes[i] = 3 return regimes # a = np.ones(200)*3 # a[days_array(200)] = 0 # a[nights_array(200)[0]] = 1 # a[weekends_array(200)[0]] = 1 # print(a) # b = regimes(200) # print(b) # print(regimes(200, t0=1, di=(10,20), ni=(23,5))) # print(regimes(200, t0=1, di=(7,18), ni=(21,5))) # print(a==b) # print (regimes(100, di=(8,19), ni=(21,6), tw0=0, wl=48))
true
dc5d54f56c22785f00a277b3730982ca70fe654b
Python
demongolem/MultilevelSentiment
/CharLSTMSentiment.py
UTF-8
9,001
2.578125
3
[]
no_license
#!/usr/bin/env python # encoding: utf-8 ''' Created on Sep 19, 2018 @author: g.werner ''' import Config import json from lib_model.bidirectional_lstm import LSTM import logging import nltk from nltk import Tree from nltk.tokenize import sent_tokenize, word_tokenize import os from os import listdir from os.path import isfile, join from queue import Queue from stanfordcorenlp import StanfordCoreNLP nltk.download('punkt') # for testing only please! Use the server created in Entry => StanfordSentiment please for deployment usage def getCoreNlpInstance(config_item): # don't need sentiment, however the stanford annotator does need it props={'annotators': 'tokenize,ssplit,pos,lemma,ner,parse,coref,sentiment', 'pipelineLanguage':'en', 'outputFormat':'json', 'parse.model':'edu/stanford/nlp/models/srparser/englishSR.ser.gz', 'sentiment.model': os.path.realpath(__file__) + '/../model/stanford/model-0000-70.74.ser.gz' } # we do not provide the same level of recovery as in StanfordSentiment. Please manually start your server first return StanfordCoreNLP(config_item.STANFORD_SERVER, port=config_item.STANFORD_PORT, logging_level=logging.DEBUG, max_retries=5, memory='8g') def convert_scale(positive): return 2 * positive - 1 def flatten(input_list): return [val for sublist in input_list for val in sublist] def tree_to_str(tree): return ' '.join([w for w in tree.leaves()]) def get_rep_mention(coreference): for reference in coreference: if reference['isRepresentativeMention'] == True: pos = (reference['startIndex'], reference['headIndex']) text = reference['text'] return text, pos def get_subtrees(tree): """ Return chunked sentences """ subtrees = [] queue = Queue() queue.put(tree) while not queue.empty(): node = queue.get() for child in node: if isinstance(child, Tree): queue.put(child) if node.label() == "S": # if childs are (respectively) 'NP' and 'VP' # convert subtree to string, else keep looking # TODO: MAKE SURE NP IS A PERSON child_labels = [child.label() for child in node] if "NP" in child_labels and "VP" in child_labels: sentence = tree_to_str(node) for child in node: if child.label() == "NP": # look for NNP subchild_labels = [subchild.label() for subchild in child] if "NNP" in subchild_labels: noun = "" for subchild in child: if subchild.label() == "NNP": noun = ' '.join([noun, subchild.leaves()[0]]) subtrees.append((noun, sentence)) return subtrees class CharLSTMSentiment(object): def __init__(self): self.network = LSTM() self.network.build() self.server_on = False def config(self, config, nlp): self.nlp = nlp self.server_on = True def init_dict(self): local_dict = {} for k, _ in self.contexts: if not k in local_dict: local_dict[k] = None self.entities = local_dict def evaluate_single_document(self, document, mode): if mode == 'document': document = document[0:1000] p = self.network.predict_sentences([document]) positive = p[0][0][0] return [convert_scale(positive)] elif mode == 'sentence': return self.evaluate_sentences(sent_tokenize(document)) elif mode == 'entity': return self.get_entity_sentiment(document) else: return ['UNKNOWN MODE'] #sentence sentiment function def evaluate_sentences(self, sentences): scores = [] p = self.network.predict_sentences(sentences) for i in range(0, len(sentences)): positive = p[0][i][0] scores.append(convert_scale(positive)) return scores # the following in this class all have to do with entity sentiment # we need to make sure it is serializable to json (i.e. beware of float32) def get_entity_sentiment(self, document): """ Create a dict of every entities with their associated sentiment """ print('Parsing Document...') self.parse_doc(document) print('Done Parsing Document!') self.init_dict() #sentences = [sentence.encode('utf-8') for _, sentence in self.contexts] sentences = [sentence for _, sentence in self.contexts] print('Predicting!') predictions = self.network.predict_sentences(sentences) for i, c in enumerate(self.contexts): key = c[0] if self.entities[key] != None: self.entities[key] += (predictions[0][i][0] - predictions[0][i][1]) self.entities[key] /= 2 else: self.entities[key] = (predictions[0][i][0] - predictions[0][i][1]) for e in self.entities.keys(): # conversion for json purposes self.entities[e] = str(self.entities[e]) print('Entity: %s -- sentiment: %s' % (e, self.entities[e])) return self.entities def parse_doc(self, document): """ Extract relevant entities in a document """ print('Tokenizing sentences...') # why are we mixing nlp pipelines here? #nltk sentences = sent_tokenize(document) print('Done Sentence Tokenize!') # Context of all named entities ne_context = [] for sentence in sentences: # change pronouns to their respective nouns print('Anaphora resolution for sentence: %s' % sentence) (output, modified_sentence) = self.coreference_resolution(sentence) tree = self.parse_sentence(output, modified_sentence) print('Done Anaphora Resolution!') # get context for each noun print('Named Entity Clustering:') context = get_subtrees(tree) for n, s in context: print('%s' % s) ne_context.append(context) self.contexts = flatten(ne_context) def coreference_resolution(self, sentence): # coreference resolution # corenlp print('Starting document annotation for ' + sentence) output_string = self.nlp.annotate(sentence) print('Done document annotation') output = json.loads(output_string) coreferences = output['corefs'] entity_keys = coreferences.keys() tokens = word_tokenize(sentence) for k in entity_keys: # skip non PERSON NP if coreferences[k][0]['gender'] == 'MALE' or coreferences[k][0]['gender'] == 'FEMALE': rep_mention, pos = get_rep_mention(coreferences[k]) for reference in coreferences[k]: if not reference['isRepresentativeMention']: start, end = reference['startIndex'] - 1, reference['headIndex'] - 1 if start == end: tokens[start] = rep_mention else: tokens[start] = rep_mention del tokens[start + 1: end] sentence = ' '.join(tokens) print('Ending coref function') return (output, sentence.encode('utf-8')) def parse_sentence(self, output, sentence): """ sentence --> named-entity chunked tree """ try: return Tree.fromstring(output['sentences'][0]['parse']) except TypeError as e: import pdb; pdb.set_trace() side_effect = [] def fetch_files(directory): global side_effect filelines = [] onlyfiles = [f for f in listdir(directory) if isfile(join(directory, f))] for onlyfile in onlyfiles: side_effect.append(onlyfile) with open(join(directory, onlyfile), 'r', encoding="utf-8") as f: filelines.append(f.readlines()) return filelines if __name__ == '__main__': cls = CharLSTMSentiment() config_item = Config.DevelopmentConfig cls.config(config_item, getCoreNlpInstance(config_item)) document = 'Bob talked with the great ruler John yesterday. John mentioned how horrible Tesla is. The nefarious Bob agreed.' print('Fetching files') filelines = fetch_files('input/test') print(len(filelines)) limit_files_to = 10 for i in range(0, len(filelines)): if i == limit_files_to: break print(i) fileline = filelines[i] document = '\n'.join(fileline) result = cls.evaluate_single_document(document, 'entity') print(result)
true
8bb363f298f22a6c70291075d6e6769d698a3ca5
Python
Jonsm/Data_analysis
/T2R_loop_fit.py
UTF-8
2,618
2.609375
3
[]
no_license
from matplotlib import pyplot as plt import numpy as np import h5py from scipy.optimize import curve_fit from scipy.optimize import OptimizeWarning import warnings warnings.simplefilter("error", OptimizeWarning) warnings.simplefilter("error", RuntimeWarning) def func(x, a, b, c, d, g): return a*np.exp(-x/b)*np.cos(2*np.pi*c*((x-g))) + d directory = 'D:\Data\Fluxonium #10_7.5GHzCav\T2R' fname = '062217_T2R_YOKO_24.49mA_Cav7.3644GHz_-7dBm_Qubit4.1335GHz_25dBm_PiPulse420ns_Count40_TimeStep20.h5' path = directory + '\\' + fname T2_array = [] T2_err_array = [] fR_array = [] fR_err_array = [] pts_num = 40 time_step = 20 t2_guess = 1e-6 f2_guess = 2e6 time = np.linspace(0, pts_num*time_step, pts_num) time_nice = np.linspace(0, pts_num*time_step, pts_num*100) loop_count = 90 #Read data and fit with h5py.File(path,'r') as hf: print('List of arrays in this file: \n', hf.keys()) count = np.array(hf.get('count')) phase_raw = hf.get('PHASEMAG_Phase0') # print phase_raw for idx in range(loop_count): phase = phase_raw[idx, 0] phase = np.unwrap(phase)*180/np.pi phase = phase - np.min(phase) phase = abs(phase) guess = [np.max(phase) - np.min(phase), t2_guess, f2_guess, 0, 0] try: popt, pcov = curve_fit(func, time*1e-9, phase, guess) except RuntimeError: print ("Doesn't fit well entry " + str(idx)) continue except RuntimeWarning: print ("Doesn't fit well entry " + str(idx)) continue except OptimizeWarning: print ("Doesn't fit well entry " + str(idx)) continue a,b,c,d,g = popt #b is T2, c is fR phase_fit = func(time_nice*1e-9, a, b, c, d, g) perr = np.sqrt(abs(np.diag(pcov))) T2 = b*1e6 T2_err = perr[1]*1e6 fR = c*1e-3 #in kHz fR_err = perr[2]*1e-3 if T2 < time_step*1e-3: continue T2_array = np.append(T2_array, T2) T2_err_array = np.append(T2_err_array, T2_err) fR_array = np.append(fR_array, fR) fR_err_array = np.append(fR_err_array, fR_err) plt.figure(1) plt.plot(time, phase, 'g-o', alpha = 0.25) plt.plot(time_nice, phase_fit, 'k-') # print T2 # print T2_err count = np.linspace(0, len(T2_array), len(T2_array)) plt.figure(2) plt.errorbar(count, T2_array, yerr=T2_err_array, fmt = 'h', mfc = 'none', mew = 2.0, mec = 'y', ecolor = 'y') plt.figure(3) plt.errorbar(count, fR_array, yerr=fR_err_array, fmt = 'h', mfc = 'none', mew = 2.0, mec = 'k', ecolor = 'k') plt.show()
true
fff810740eac3d131a1e6ab3f968ede46381b7c8
Python
gonzalob24/Learning_Central
/Python_Programming/BootCamp/regx.py
UTF-8
5,314
4.125
4
[]
no_license
import re patterns = ['term1', 'term2'] text = 'this is a string with term1, but not other term' # print(re.search('hello', 'hello world')) for pattern in patterns: print('Search for "%s" in: \n"%s"' % (pattern, text)) # Check for a match if re.search(pattern, text): print("\n") print("match was found") else: print("\n") print("Match was not found") print("\n\n") # Splitting with regx split_term = '@' phrase = "what is your email, is it hello@gmail.com" print(re.split(split_term, phrase)) print("\n\n") # Finding all instances of a pattern print(re.findall("match", "here is one match, here is another match")) def multi_re_find(patterns, phrase): """ Takes in a list of regex patterns prints a lift of all matches :param patterns: :param phrase: :return: """ for pattern in patterns: print("Searching the phrase using the re check: %r" % pattern) print(re.findall(pattern, phrase)) print("\n") print("\n\nUsing meta chatracters:") test_phrase = "sdsd..sssddd...sdddsddd...dsds...dsssss...sdddd" test_patterns = ['sd*', # s followed by zero or more d's 'sd+', # s followed by one or more d's 'sd?', # s followed by zero or one d's 'sd{3}', # s followed by 3 d's 'sd{2,3}', # s followed by by two to three d's ] multi_re_find(test_patterns, test_phrase) """ There are five ways to express repetition in a pattern: 1.A pattern followed by the meta-character * is repeated zero or more times. 2. Replace the * with + and the pattern must appear at least once. 3. Using ? means the pattern appears zero or one time. 4. For a specific number of occurrences, use {m} after the pattern, where m is replaced with the number of times the pattern should repeat. 5. Use {m,n} where m is the minimum number of repetitions and n is the maximum. Leaving out n {m,} means the value appears at least m times, with no maximum. """ """ Character sets: Are used when you wish to match any one of a group of characters at a point in the input. Brackets are used to construct character set inputs. For example: the input [ab] searches for occurrences of either a or b. Let's see some examples: """ test_patterns2 = ['[sd]', # either s or d 's[sd]+'] # s followed by one or more s or d multi_re_find(test_patterns2, test_phrase) """ Exclusion (^) We can use ^ to exclude terms by incorporating it into the bracket syntax notation. For example: [^...] will match any single character not in the brackets. Let's see some examples: """ ''' Use [^!.? ] to check for matches that are not a !,.,?, or space. Add a + to check that the match appears at least once. This basically translates into finding the words. ''' test_phrase3 = 'This is a string! But it has punctuation. How can we remove it?' print(re.findall('[^!.? ]+', test_phrase3)) print("\n\nCharacter Ranges") """ Character Ranges As character sets grow larger, typing every character that should (or should not) match could become very tedious. A more compact format using character ranges lets you define a character set to include all of the contiguous characters between a start and stop point. The format used is [start-end]. Common use cases are to search for a specific range of letters in the alphabet. For instance, [a-f] would return matches with any occurrence of letters between a and f. Let's walk through some examples: """ test_phrase4 = 'This is an example sentence. Lets see if we can find some letters.' test_patterns4 = ['[a-z]+', # sequences of lower case letters '[A-Z]+', # sequences of upper case letters '[a-zA-Z]+', # sequences of lower or upper case letters '[A-Z][a-z]+'] # one upper case letter followed by lower case letters multi_re_find(test_patterns4, test_phrase4) print("\n\nEscape Codes") """ Escape Codes You can use special escape codes to find specific types of patterns in your data, such as digits, non-digits, whitespace, and more. For example: Code Meaning \d a digit \D a non-digit \s whitespace (tab, space, newline, etc.) \S non-whitespace \w alphanumeric \W non-alphanumeric Escapes are indicated by prefixing the character with a backslash \. Unfortunately, a backslash must itself be escaped in normal Python strings, and that results in expressions that are difficult to read. Using raw strings, created by prefixing the literal value with r, eliminates this problem and maintains readability. Personally, I think this use of r to escape a backslash is probably one of the things that block someone who is not familiar with regex in Python from being able to read regex code at first. Hopefully after seeing these examples this syntax will become clear. """ test_phrase5 = 'This is! a string!.? with some numbers 1233 and a symbol #hashtag' test_patterns5 = [r'\d+', # sequence of digits r'\D+', # sequence of non-digits r'\s+', # sequence of whitespace r'\S+', # sequence of non-whitespace r'\w+', # alphanumeric characters r'\W+', # non-alphanumeric ] multi_re_find(test_patterns5, test_phrase5)
true
b8fe3d4664a2ffa4c2d642a0dd6bab1801902142
Python
rajlath/rkl_codes
/codechef/INTY2018_INF1803.py
UTF-8
898
2.875
3
[]
no_license
# -*- coding: utf-8 -*- # @Date : 2018-10-21 18:32:13 # @Author : raj lath (oorja.halt@gmail.com) # @Link : link # @Version : 1.0.0 #learned from solution by huggy_hermit from sys import stdin max_val=int(10e12) min_val=int(-10e12) def read_int() : return int(stdin.readline()) def read_ints() : return [int(x) for x in stdin.readline().split()] def read_str() : return input() def read_strs() : return [x for x in stdin.readline().split()] limit = 100001 mods = 1000000007 def build_series(): series = [0] for i, v in enumerate(range(5, limit, 3)): series.append((series[-1] + pow(v, v, mods))%mods) return series nb_test = read_int() series = build_series() for _ in range(nb_test): left, rite = read_ints() left = max(0, (left // 3) -1) rite = (rite - 2 )//3 resu = series[rite] - series[left] if resu < 0: resu += mods print(resu)
true
e428e5a679e68058f0d5f55a4d602803f14ef919
Python
kenneth-miura/Drive-Syncer
/syncer.py
UTF-8
3,108
2.671875
3
[]
no_license
from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive import glob import os import re import argparse # TODO: alter so this can take N directories & targets def set_up_drive(settings_file, credentials_file): print( f'Settings File Location: {settings_file} Credentials File Location: {credentials_file}' ) gauth = GoogleAuth(settings_file=settings_file) # Try to load saved client credentials gauth.LoadCredentialsFile(credentials_file) if gauth.credentials is None: # Authenticate if they're not there gauth.LocalWebserverAuth() elif gauth.access_token_expired: # Refresh them if expired gauth.GetFlow() gauth.flow.params.update({'access_type': 'offline'}) gauth.flow.params.update({'approval_prompt': 'force'}) gauth.Refresh() else: # Initialize the saved creds gauth.Authorize() # Save the current credentials to a file gauth.SaveCredentialsFile(credentials_file) return GoogleDrive(gauth) def get_drive_target_dir_id(drive, drive_folder): folder_query = "'root' in parents and trashed=false and mimeType='application/vnd.google-apps.folder'" folder_list = drive.ListFile({"q": folder_query}).GetList() for folder in folder_list: if folder['title'] == drive_folder: drive_target_dir_id = folder['id'] return drive_target_dir_id def backup_dir(drive, drive_folder, folder_to_sync): drive_target_dir_id = get_drive_target_dir_id(drive, drive_folder) # Clean all old files in target query = f"'{drive_target_dir_id}' in parents and trashed=false" file_list = drive.ListFile({'q': query}).GetList() for file1 in file_list: file1.Delete() # Upload local files to drive for file_path in glob.glob(os.path.join(folder_to_sync, '*')): file_name = re.split('/', file_path)[-1] print(file_name) g_file = drive.CreateFile({"parents": [{"id": drive_target_dir_id}]}) g_file.SetContentFile(file_path) g_file['title'] = file_name g_file.Upload() def main(): parser = argparse.ArgumentParser() parser.add_argument("setting_file", nargs='?', default='settings.yaml', help="location of the settings.yaml file") parser.add_argument("credentials_file", nargs='?', default='credentials.txt', help="location of the credentials.txt file") parser.add_argument("drive_folder", help="Path to Folder in Drive that you want to backup to") parser.add_argument("folder_to_sync", help="Path to Local Folder you want to sync") settings_file = parser.parse_args().setting_file credentials_file = parser.parse_args().credentials_file drive_folder = parser.parse_args().drive_folder folder_to_sync = parser.parse_args().folder_to_sync drive = set_up_drive(settings_file, credentials_file) backup_dir(drive, drive_folder, folder_to_sync) if __name__ == '__main__': main()
true
104dd8ebea76a7037dbefff2f51774689eacd740
Python
fabiocaccamo/python-benedict
/tests/dicts/io/test_io_dict_xls.py
UTF-8
10,772
2.515625
3
[ "MIT" ]
permissive
from unittest.mock import patch from decouple import config from benedict.dicts.io import IODict from benedict.exceptions import ExtrasRequireModuleNotFoundError from .test_io_dict import io_dict_test_case class io_dict_xls_test_case(io_dict_test_case): """ This class describes an IODict / xls test case. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._extensions = [ "xlsx", "xlsm", "xls", ] def test_from_xls_with_valid_file_valid_content(self): expected_dict = { "values": [ { "mon": 10, "tue": 11, "wed": 12, "thu": 13, "fri": 14, "sat": 15, "sun": 16, }, { "mon": 20, "tue": 21, "wed": 22, "thu": 23, "fri": 24, "sat": 25, "sun": 26, }, { "mon": 30, "tue": 31, "wed": 32, "thu": 33, "fri": 34, "sat": 35, "sun": 36, }, ] } for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_file_valid_content" ): filepath = self.input_path(f"valid-content.{extension}") # static method d = IODict.from_xls(filepath) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor explicit format d = IODict(filepath, format=extension) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor implicit format d = IODict(filepath) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) @patch("benedict.serializers.xls.xls_installed", False) def test_from_xls_with_valid_file_valid_content_but_xls_extra_not_installed(self): for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_file_valid_content_but_xls_extra_not_installed" ): filepath = self.input_path(f"valid-content.{extension}") # static method with self.assertRaises(ExtrasRequireModuleNotFoundError): _ = IODict.from_xls(filepath) # constructor explicit format with self.assertRaises(ExtrasRequireModuleNotFoundError): _ = IODict(filepath, format=extension) # constructor implicit format with self.assertRaises(ExtrasRequireModuleNotFoundError): _ = IODict(filepath) def test_from_xls_with_valid_url_valid_content(self): expected_dict = { "values": [ { "mon": 10, "tue": 11, "wed": 12, "thu": 13, "fri": 14, "sat": 15, "sun": 16, }, { "mon": 20, "tue": 21, "wed": 22, "thu": 23, "fri": 24, "sat": 25, "sun": 26, }, { "mon": 30, "tue": 31, "wed": 32, "thu": 33, "fri": 34, "sat": 35, "sun": 36, }, ] } for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_url_valid_content" ): # url = f"https://github.com/fabiocaccamo/python-benedict/raw/s3/tests/dicts/io/input/valid-content.{extension}" url = f"https://github.com/fabiocaccamo/python-benedict/raw/main/tests/dicts/io/input/valid-content.{extension}" # static method d = IODict.from_xls(url) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor explicit format d = IODict(url, format=extension) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor implicit format d = IODict(url) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) def test_from_xls_with_valid_s3_url_valid_content(self): aws_access_key_id = config("AWS_ACCESS_KEY_ID", default=None) aws_secret_access_key = config("AWS_SECRET_ACCESS_KEY", default=None) if not all([aws_access_key_id, aws_secret_access_key]): # don't use s3 on GH CI return s3_options = { "aws_access_key_id": aws_access_key_id, "aws_secret_access_key": aws_secret_access_key, } expected_dict = { "values": [ { "mon": 10, "tue": 11, "wed": 12, "thu": 13, "fri": 14, "sat": 15, "sun": 16, }, { "mon": 20, "tue": 21, "wed": 22, "thu": 23, "fri": 24, "sat": 25, "sun": 26, }, { "mon": 30, "tue": 31, "wed": 32, "thu": 33, "fri": 34, "sat": 35, "sun": 36, }, ] } for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_s3_url_valid_content" ): url = f"s3://python-benedict/valid-content.{extension}" # static method d = IODict.from_xls(url, s3_options=s3_options) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor explicit format d = IODict(url, format=extension, s3_options=s3_options) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) # constructor implicit format d = IODict(url, s3_options=s3_options) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) def test_from_xls_with_valid_file_valid_content_custom_sheet_by_index_and_columns( self, ): expected_dict = { "values": [ { "name": "Red", "hex": "#FF0000", }, { "name": "Green", "hex": "#00FF00", }, { "name": "Blue", "hex": "#0000FF", }, ] } for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_file_valid_content_custom_sheet_by_index_and_columns" ): filepath = self.input_path(f"valid-content.{extension}") # static method d = IODict.from_xls( filepath, sheet=1, columns=["name", "hex"], columns_row=False, ) self.assertTrue(isinstance(d, dict)) self.assertEqual(d, expected_dict) def test_from_xls_with_invalid_file(self): for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_file_valid_content" ): filepath = self.input_path(f"invalid-file.{extension}") # static method with self.assertRaises(ValueError): IODict.from_xls(filepath) # constructor explicit format with self.assertRaises(ValueError): IODict(filepath, format=extension) # constructor implicit format with self.assertRaises(ValueError): IODict(filepath) def test_from_xls_with_valid_url_invalid_content(self): for extension in self._extensions: with self.subTest( msg=f"test_from_xls_({extension})_with_valid_url_invalid_content" ): url = "https://github.com/fabiocaccamo/python-benedict" # static method with self.assertRaises(ValueError): IODict.from_xls(url) # constructor explicit format with self.assertRaises(ValueError): IODict(url, format=extension) # constructor implicit format with self.assertRaises(ValueError): IODict(url) def test_from_xls_with_invalid_url(self): for extension in self._extensions: with self.subTest(msg=f"test_from_xls_({extension})_with_invalid_url"): url = "https://github.com/fabiocaccamo/python-benedict-invalid" # static method with self.assertRaises(ValueError): IODict.from_xls(url) # constructor explicit format with self.assertRaises(ValueError): IODict(url, format=extension) # constructor implicit format with self.assertRaises(ValueError): IODict(url) def test_to_xls(self): d = IODict( { "values": [ {"x": "1"}, {"x": "2"}, {"x": "3"}, {"x": "4"}, {"x": "5"}, ], } ) with self.assertRaises(NotImplementedError): _ = d.to_xls()
true
587785f798ac61ed031c2d1ab2b77144b160392b
Python
feulf/ecc-mul-pow-jsong-pb-denver-070918
/test/index_test.py
UTF-8
475
2.765625
3
[]
no_license
from unittest import TestCase from ipynb.fs.full.index import * class FieldElementTest(TestCase): def test_mul(self): a = FieldElement(24, 31) b = FieldElement(19, 31) self.assertEqual(a*b, FieldElement(22, 31)) def test_pow(self): a = FieldElement(17, 31) self.assertEqual(a**3, FieldElement(15, 31)) a = FieldElement(5, 31) b = FieldElement(18, 31) self.assertEqual(a**5 * b, FieldElement(16, 31))
true
13016854e8029f2766ebe175a061bef3b15ca74d
Python
pranu46/Pythontrials
/Class_HW/Praveena_Homework3.1.py
UTF-8
1,620
4.40625
4
[]
no_license
''' Addition and subtraction of quadratic expressions by using operator overloading. Check the equality of the quadratic expressions. Check the co-efficients of the quadratic expressions to put + or - in return string ''' class Quadratic: def __init__(self, Q1, Q2, Q3): self.Q1 = Q1 self.Q2 = Q2 self.Q3 = Q3 def __str__(self): if self.Q1 < 0: self.Q1 = '-x^2' elif self.Q1 == 1: self.Q1 = 'x^2' else: self.Q1 = '%sx^2' % self.Q1 if self.Q2 < 0: self.Q2 = ' - %sx' % (self.Q2 * -1) elif self.Q2 == 0: self.Q2 = '' elif self.Q2 == 1: self.Q2 = ' + x' else: self.Q2 = ' + %sx' % self.Q2 if self.Q3 < 0: self.Q3 = ' - %s' % (self.Q3 * -1) elif self.Q3 == 0: self.Q3 = '' else: self.Q3 = ' + %s' % self.Q3 return self.Q1 + self.Q2 + self.Q3 def __add__(self, other): return Quadratic(self.Q1 + other.Q1, self.Q2 + other.Q2, self.Q3 + other.Q3) def __sub__(self, other): return Quadratic(self.Q1 - other.Q1, self.Q2 - other.Q2, self.Q3 - other.Q3) def __eq__(self,other): if self.Q1 == other.Q1 and self.Q2 == other.Q2 and self.Q3 == other.Q3: return True else: return False Q1 = Quadratic(3, 8, -5) Q2 = Quadratic(2, 3, 7) print('Sum of 2 quadratic expressions:', Q1 + Q2) print('Difference between 2 quadratic expressions:', Q1 - Q2) print('Is the 2 given quadratic expressions are same ?', Q1 == Q2)
true
426215825b247cf9fa6432c18ee688cd1be21e9d
Python
vishal-1codes/python
/INTRODUCTION_TO_CLASSES/Class_Syntax.py
UTF-8
90
2.609375
3
[]
no_license
#user-defined Python class names start with a capital letter. class Animal(object): pass
true
99cb5d839933b8df7b2d77d703f342546782bd46
Python
rk-exxec/micropython
/tests/extmod/vfs_posix.py
UTF-8
2,447
2.828125
3
[ "MIT", "GPL-1.0-or-later" ]
permissive
# Test for VfsPosix try: import gc import os os.VfsPosix except (ImportError, AttributeError): print("SKIP") raise SystemExit # We need a directory for testing that doesn't already exist. # Skip the test if it does exist. temp_dir = "micropy_test_dir" try: import os os.stat(temp_dir) print("SKIP") raise SystemExit except OSError: pass # getcwd and chdir curdir = os.getcwd() os.chdir("/") print(os.getcwd()) os.chdir(curdir) print(os.getcwd() == curdir) # stat print(type(os.stat("/"))) # listdir and ilistdir print(type(os.listdir("/"))) # mkdir os.mkdir(temp_dir) # file create f = open(temp_dir + "/test", "w") f.write("hello") f.close() # close on a closed file should succeed f.close() # construct a file object with a raw fileno f = open(2) print(f) # file read f = open(temp_dir + "/test", "r") print(f.read()) f.close() # file finaliser, also see vfs_fat_finaliser.py names = [temp_dir + "/x%d" % i for i in range(4)] basefd = temp_dir + "/nextfd1" nextfd = temp_dir + "/nextfd2" with open(basefd, "w") as f: base_file_no = f.fileno() for i in range(1024): # move GC head forwards by allocating a lot of single blocks [] def write_files_without_closing(): for n in names: open(n, "w").write(n) sorted(list(range(128)), key=lambda x: x) # use up Python and C stack so f is really gone write_files_without_closing() gc.collect() with open(nextfd, "w") as f: next_file_no = f.fileno() print("next_file_no <= base_file_no", next_file_no <= base_file_no) for n in names + [basefd, nextfd]: os.remove(n) # rename os.rename(temp_dir + "/test", temp_dir + "/test2") print(os.listdir(temp_dir)) # construct new VfsPosix with path argument vfs = os.VfsPosix(temp_dir) print(list(i[0] for i in vfs.ilistdir("."))) # stat, statvfs (statvfs may not exist) print(type(vfs.stat("."))) if hasattr(vfs, "statvfs"): assert type(vfs.statvfs(".")) is tuple # check types of ilistdir with str/bytes arguments print(type(list(vfs.ilistdir("."))[0][0])) print(type(list(vfs.ilistdir(b"."))[0][0])) # remove os.remove(temp_dir + "/test2") print(os.listdir(temp_dir)) # remove with error try: import os os.remove(temp_dir + "/test2") except OSError: print("remove OSError") # rmdir os.rmdir(temp_dir) print(temp_dir in os.listdir()) # rmdir with error try: import os os.rmdir(temp_dir) except OSError: print("rmdir OSError")
true
4c4615dde5b56c2dac8a11f5cab49c72691edea9
Python
redstarkeT/CS-115-Assignments
/CS 115 Assignments/lab1-TimothyStephens.py
UTF-8
1,170
4
4
[]
no_license
"""Timothy Stephens, I pledge my honor that I have abided by the Stevens Honor System.""" from math import factorial from cs115 import reduce import math def inverse(n): """This function returns the inverse of the number plugged in.""" return 1/n def add(x,y): return x+y def e(n): """This function returns the summation of 1+1/n!""" Step1=list(range(1,n+1)) Step2=list(map(factorial,Step1)) Step3=list(map(inverse,Step2)) Step4=reduce(add,Step3) Step5=1+Step4 return Step5 def error(n): """This function returns the absolute value of the difference between math.e and e(n).""" diff=math.e - e(n) return abs(diff) #e(n): #Algorithm copied down from written stuff (sort of like proofs from discrete working backwards) #Step 1: Make a range from 1 to n+1 #Step 2: Apply summation on all of list using map #Step 3: Apply an inverse function on all of list using map #Step 4: Apply add to all the numbers using reduce #Step 5: Add answer to +1 for final answer #goal is to return 1+1/1!+1/2!+1/3!+...+1/n! #>>>import math #>>> math.e #2.718281828459045 #>>> math.factorial(2) #2 #>>> abs(-1) #1
true
23538c4646ce239f3893ffbfd3181c034ae1ad42
Python
lsx137946009/bandparser
/sensparser/sensomics_utils.py
UTF-8
1,933
2.765625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 1 15:45:47 2019 @author: lsx """ import numpy as np import time def function_date_parse(frame, date0_loc, date1_loc, date2_loc, date3_loc): date0 = '{:08b}'.format(frame[date0_loc]) date1 = '{:08b}'.format(frame[date1_loc]) date2 = '{:08b}'.format(frame[date2_loc]) date3 = '{:08b}'.format(frame[date3_loc]) date = (date0+date1+date2+date3)[::-1] date_sec = int(date[0 : 5], 2) date_min = int(date[6 :11], 2) date_hour = int(date[12:16], 2) date_day = int(date[17:21], 2) date_mon = int(date[22:25], 2) date_year = int(date[26:31], 2) + 2000 time_ = time.struct_time( tm_year=date_year, tm_mon =date_mon, tm_mday=date_day, tm_hour=date_hour, tm_min =date_min, tm_sec =date_sec) return time_ def function_byte_shift(byte_list): byte_list.reverse() data_len = len(byte_list) shift = np.array(list(map(lambda x: 2**x, range(0, data_len*8, 8)))) # [1, 256, 65536, ...] data = np.array(byte_list) value = float(np.dot(shift, data)) return value def function_byte_shift_sign(byte_list): sign = byte_list.pop(0) if sign == 0: sign = -1 elif sign == 1: sign = 1 else: value = None value = function_byte_shift(byte_list) value = float(sign*value) return value kind_field_mapping = [ [int(0xff), int(0xa1)], [int(0xff), int(0x84)] ] def function_kind_parse(kind_list): byte_kind = function_byte_shift(kind_list) kind = kind_field_mapping[byte_kind] return kind def function_time_ts2sec(time): return time time_func_mapping = {'sec': function_time_ts2sec}
true
cc9eea6bb4ff801b076b262e8a4e22bfbfa4ed33
Python
BuyankinM/JetBrainsAcademyProjects
/Rock-Paper-Scissors/Problems/Writing to a file immediately/task.py
UTF-8
196
2.921875
3
[]
no_license
long_list = list(range(1000000)) file_name = "my_file.txt" opened_file = open(file_name, 'w') for _item in long_list: command = "print(_item, file=opened_file, flush=True)" opened_file.close()
true
7d18c5412a5559876ba0c732b3e71006c7f5d734
Python
hzhcui/ScrapingNBA
/Test 1 for basketball-reference.py
UTF-8
773
2.84375
3
[]
no_license
import urllib from urllib2 import urlopen from bs4 import BeautifulSoup import sys reload(sys) sys.setdefaultencoding('utf-8') def make_soup(url): thepage = urllib.urlopen(url) soupdata = BeautifulSoup(thepage, "html.parser") return soupdata playerdatasaved="" soup = make_soup("https://www.basketball-reference.com/players/a/") for record in soup.find_all('tr'): playerdata="" for data in record.find_all(['th','td']): playerdata=playerdata+","+data.text if len(playerdata)!=0: playerdatasaved=playerdatasaved+"\n"+playerdata[1:] #header="Player, From, To, Pos, Ht, Wt, Birth Date, College" file=open('C:/users/hzhcui/desktop/Basketball.csv',"wb") #file.write(bytes(header)) file.write(bytes(playerdatasaved)) print(playerdatasaved)
true
e481bc9df7fc980fd0c5f997a3edc159d565a47f
Python
lucasdpn/query_builder
/model/operations.py
UTF-8
15,477
2.71875
3
[]
no_license
from sqlalchemy.sql import select, and_, or_ from sqlalchemy import Table, cast, Integer, func from sqlalchemy.sql.expression import literal_column, between from utils.db import dal from model import sql_operations """ An operation represents a query that is built based on the input configuration -params- and optionally, it can depend on intermediate tables -sub_operations-. This way, a single operation can be used to compose many queries. Basically, when a new operation must be written, we basically heritage the IOperation class and override the method get_statement. """ class IOperation(): """ Abstract class that defines the interface to create new operations. """ def get_statement(self, params, sub_operations): """ This method defines the operation. *args: params - a dictionary that has specific information about the operation. sub_operations - It has a list of operations in which this new operation depends. It must return a SQLAlchemy select statement. """ raise NotImplementedError("Implement this method") class GreatEqual(IOperation): OPERATION = "great_equal" def get_statement(self, params, sub_operations): table = Table(params['db'], dal.metadata, autoload=True, schema=params['schema_input']) stm = select( [table]).where(table.c.signal >= literal_column(params['value'])) return stm class CombinedMaps(IOperation): OPERATION = 'join' def get_statement(self, params, sub_operations): # load tables. sub_tables = [] for table in sub_operations.values(): sub_tables.append(Table(table.save_at(), dal.metadata, schema=dal.schema_output, autoload=True)) # join statement stm = select([sub_tables[0]]) stm_join = sub_tables[0] for i in range(1, len(sub_tables)): stm_join = stm_join.join(sub_tables[i], sub_tables[i-1].c.pixel == sub_tables[i].c.pixel) stm = stm.select_from(stm_join) return stm class BadRegions(IOperation): OPERATION = "bad_regions" def get_statement(self, params, sub_operations): table = Table(params['db'], dal.metadata, autoload=True, schema=params['schema_input']) stm = select([table]).where(sql_operations.BitwiseAnd( cast(table.c.signal, Integer), literal_column(params['value'])) > literal_column('0')) return stm class Footprint(IOperation): OPERATION = 'footprint' def get_statement(self, params, sub_operations): inner_join = ["exposure_time", "depth_map", "mangle_map"] left_join = ["bad_regions"] inner_join_ops = [] left_join_ops = [] # divide operations accordingly if sub_operations: for k, v in list(sub_operations.items()): if k in inner_join: inner_join_ops.append(v) elif k in left_join: left_join_ops.append(v) else: raise("operations does not exist.") # load tables. # review from data. table_footprint = Table(params['db'], dal.metadata, autoload=True, schema=params['schema_input']) sub_tables_inner = [] for table in inner_join_ops: sub_tables_inner.append(Table(table.save_at(), dal.metadata, autoload=True, schema=dal.schema_output)) sub_tables_left = [] for table in left_join_ops: sub_tables_left.append(Table(table.save_at(), dal.metadata, autoload=True, schema=dal.schema_output)) stm = select([table_footprint]) # join statement stm_join = table_footprint # Inner join for table in sub_tables_inner: stm_join = stm_join.join(table, table_footprint.c.pixel == table.c.pixel) # Left Join for table in sub_tables_left: stm_join = stm_join.join(table, table_footprint.c.pixel == table.c.pixel, isouter=True) if len(sub_tables_inner) > 0 or len(sub_tables_left) > 0: stm = stm.select_from(stm_join) if len(sub_tables_left) > 0: for table in sub_tables_left: stm = stm.where(table.c.pixel == None) return stm class Reduction(IOperation): OPERATION = 'reduction' def get_statement(self, params, sub_operations): # load tables. t_footprint = Table(sub_operations['footprint'].save_at(), dal.metadata, autoload=True, schema=dal.schema_output) t_objects_ring = Table(params['table_coadd_objects_ring'], dal.metadata, autoload=True, schema=params['schema_input']) # join statement stm_join = t_footprint stm_join = stm_join.join(t_objects_ring, t_footprint.c.pixel == t_objects_ring.c.pixel) stm = select([t_objects_ring.c.coadd_objects_id]).\ select_from(stm_join) return stm class Cuts(IOperation): OPERATION = 'cuts' BANDS = ['g', 'r', 'i', 'z', 'y'] def get_statement(self, params, sub_operations): t_reduction = Table(sub_operations['reduction'].save_at(), dal.metadata, autoload=True, schema=dal.schema_output) t_coadd = Table(params['table_coadd_objects'], dal.metadata, autoload=True, schema=params['schema_input']) # join statement stm_join = t_reduction stm_join = stm_join.join(t_coadd, t_reduction.c.coadd_objects_id == t_coadd.c.coadd_objects_id) _where = [] # cuts involving only coadd_objects_columns # sextractor flags if 'sextractor_bands' in params and\ 'sextractor_flags' in params: # combine_flags queries = [] sum_flags = sum(params['sextractor_flags']) for band in params['sextractor_bands']: query = [] col = getattr(t_coadd.c, 'flags_%s' % band) if 0 in params['sextractor_flags']: query.append(col == literal_column('0')) if sum_flags > 0: and_op = sql_operations.BitwiseAnd( col, literal_column(str(sum_flags))) query.append((and_op) > literal_column('0')) queries.append(or_(*query)) _where.append(and_(*queries)) # bbj if 'remove_bbj' in params['additional_cuts']: _where.append(or_( t_coadd.c.nepochs_g > literal_column('0'), t_coadd.c.magerr_auto_g > literal_column('0.05'), t_coadd.c.mag_model_i - t_coadd.c.mag_auto_i > literal_column('-0.4') )) # niter model if 'niter_model' in params['additional_cuts']: tmp = [] for band in ObjectSelection.BANDS: col = getattr(t_coadd.c, 'niter_model_%s' % band) tmp.append(col > literal_column('0')) _where.append(and_(*tmp)) # spreaderr model if 'spreaderr_model' in params['additional_cuts']: tmp = [] for band in Cuts.BANDS: col = getattr(t_coadd.c, 'spreaderr_model_%s' % band) tmp.append(col > literal_column('0')) _where.append(and_(*tmp)) # bad astronomic color if 'bad_astronomic_colors' in params['additional_cuts']: _where.append(and_( and_( func.abs(t_coadd.c.alphawin_j2000_g - t_coadd.c.alphawin_j2000_i) < literal_column('0.0003'), func.abs(t_coadd.c.deltawin_j2000_g - t_coadd.c.deltawin_j2000_i) < literal_column('0.0003') ), or_( t_coadd.c.magerr_auto_g > literal_column('0.05') ) )) # REVIEW: zero_point is not beeing applied. mag_auto is hardcoded. # signal to noise cuts if 'sn_cuts' in params: tmp = [] for element in params['sn_cuts'].items(): band, value = element col = getattr(t_coadd.c, 'magerr_auto_%s' % band) tmp.append(and_( col > literal_column('0'), literal_column('1.086')/col > literal_column(str(value)) )) _where.append(and_(*tmp)) # magnitude limit if 'magnitude_limit' in params: tmp = [] for element in params['magnitude_limit'].items(): band, value = element col = getattr(t_coadd.c, 'mag_auto_%s' % band) tmp.append(col < literal_column(str(value))) _where.append(and_(*tmp)) # bright magnitude limit if 'bright_magnitude' in params: tmp = [] for element in params['bright_magnitude'].items(): band, value = element col = getattr(t_coadd.c, 'mag_auto_%s' % band) tmp.append(col > literal_column(str(value))) _where.append(and_(*tmp)) # color cuts if 'color_cuts' in params: tmp = [] for element in params['color_cuts'].items(): band, value = element col_max = getattr(t_coadd.c, 'mag_auto_%s' % band[0]) col_min = getattr(t_coadd.c, 'mag_auto_%s' % band[1]) tmp.append(between(literal_column(str(col_max - col_min)), literal_column(str(value[0])), literal_column(str(value[1])))) _where.append(and_(*tmp)) stm = select([t_coadd.c.coadd_objects_id]).\ select_from(stm_join).where(and_(*_where)) return stm class Bitmask(IOperation): OPERATION = 'bitmask' def get_statement(self, params, sub_operations): sub_op = list(sub_operations.values())[0] # load tables. t_sub_op = Table(sub_op.save_at(), dal.metadata, autoload=True, schema=dal.schema_output) _where = [] # bitmask alias_table = None t_coadd_molygon = Table(params['table_coadd_objects_molygon'], dal.metadata, autoload=True, schema=params['schema_input']) t_molygon = Table(params['table_molygon'], dal.metadata, autoload=True, schema=params['schema_input']) stm_join = t_sub_op stm_join = stm_join.join(t_coadd_molygon, t_sub_op.c.coadd_objects_id == t_coadd_molygon.c.coadd_objects_id) for band in params['mangle_bitmask']: # give the str column and retrieve the attribute. alias_table = t_molygon.alias('molygon_%s' % band) col = getattr(t_coadd_molygon.c, 'molygon_id_%s' % band) stm_join = stm_join.join(alias_table, col == alias_table.c.id) _where.append(alias_table.c.hole_bitmask != literal_column('1')) stm = select([t_sub_op.c.coadd_objects_id]).\ select_from(stm_join).where(and_(*_where)) return stm class ObjectSelection(IOperation): OPERATION = 'object_selection' def get_statement(self, params, sub_operations): sub_op = list(sub_operations.values())[0] # load tables. t_sub_op = Table(sub_op.save_at(), dal.metadata, autoload=True, schema=dal.schema_output) stm = select([t_sub_op.c.coadd_objects_id]) return stm class SgSeparation(IOperation): OPERATION = 'sg_separation' def get_statement(self, params, sub_operations): # load tables. t_obj_selection = Table(sub_operations['object_selection'].save_at(), dal.metadata, autoload=True, schema=dal.schema_output) t_sg = [] for table in params['tables_sg']: t_sg.append(Table(table, dal.metadata, autoload=True, schema=params['schema_input'])) _where = [] # join statement stm_join = t_obj_selection for table in t_sg: stm_join = stm_join.join( table, t_obj_selection.c.coadd_objects_id == table.c.coadd_objects_id) col = getattr(table.c, '%s' % params['ref_band']) _where.append(col == literal_column('0')) stm = select([t_obj_selection.c.coadd_objects_id]).\ select_from(stm_join).where(and_(*_where)) return stm class PhotoZ(IOperation): OPERATION = 'photoz' def get_statement(self, params, sub_operations): sub_op = list(sub_operations.values())[0] # load tables. t_sub_op = Table(sub_op.save_at(), dal.metadata, autoload=True, schema=dal.schema_output) t_pz = [] for table in params['tables_zp']: t_pz.append(Table(table, dal.metadata, autoload=True, schema=params['schema_input'])) _where = [] # join statement stm_join = t_sub_op for table in t_pz: stm_join = stm_join.join( table, t_sub_op.c.coadd_objects_id == table.c.coadd_objects_id) _where.append(and_(table.c.z_best > literal_column(str(params['zmin'])), table.c.z_best < literal_column(str(params['zmax'])))) stm = select([t_sub_op.c.coadd_objects_id]).\ select_from(stm_join).where(and_(*_where)) return stm class GalaxyProperties(IOperation): OPERATION = 'galaxy_properties' def get_statement(self, params, sub_operations): sub_op = list(sub_operations.values())[0] # load tables. t_sub_op = Table(sub_op.save_at(), dal.metadata, autoload=True, schema=dal.schema_output) t_gp = [] for table in params['tables_gp']: t_gp.append(Table(table, dal.metadata, autoload=True, schema=params['schema_input'])) # join statement stm_join = t_sub_op for table in t_gp: stm_join = stm_join.join( table, t_sub_op.c.coadd_objects_id == table.c.coadd_objects_id) stm = select([t_sub_op.c.coadd_objects_id]).\ select_from(stm_join) return stm
true
e3c759c6c4cdde58c5b8cde67bebfb8c388e4b8c
Python
Aasthaengg/IBMdataset
/Python_codes/p03402/s814954157.py
UTF-8
324
3.171875
3
[]
no_license
import sys input = sys.stdin.readline A,B=map(int,input().split()) a=[["#"]*100 for i in range(50)] b=[["."]*100 for i in range(50)] for i in range(A-1): a[2*(i//50)][2*(i%50)]="." for i in range(B-1): b[2*(i//50)+1][2*(i%50)]="#" print(100,100) for i in a: print("".join(i)) for i in b: print("".join(i))
true
a85fccbb18a4d5a2592c1d98793b460ef465d873
Python
Cyxapic/arcade
/core/parts/commons/miniature.py
UTF-8
919
3.421875
3
[ "MIT" ]
permissive
from abc import ABC, abstractmethod from pygame import image class Miniature(ABC): """ Parent class for menu, gameover etc Arguments: screen -- Main display surface image_file -- image file path """ def __init__(self, screen, image_file): self.screen = screen self.width, self.heigth = screen.get_size() self._img = image.load(image_file) self._get_rect() self._titles = self._create_titles() def _get_rect(self): self._rect = self._img.get_rect() self._rect.x = self.width // 2 - self._rect.width // 2 self._rect.y = 50 @abstractmethod def _create_titles(self): """ Render titles method must return tuple ((Surface, dest), ... ) """ def run(self): """Entry point method""" self.screen.blits(((self._img, self._rect), *self._titles))
true
be02294595732e464de715633722a3dba33a3841
Python
pbudzyns/BigDataITMO2018
/SparkTask.py
UTF-8
15,161
2.828125
3
[]
no_license
from pyspark.sql import SparkSession from pyspark.sql.functions import UserDefinedFunction from pyspark.sql.functions import collect_set, array_contains, col, max, mean, desc, sum from pyspark.sql.types import ArrayType import os os.environ["PYSPARK_PYTHON"] = "/home/pawel/PycharmProjects/HPC/venv/bin/python3.5" os.environ["PYSPARK_DRIVER_PYTHON"] = "/home/pawel/PycharmProjects/HPC/venv/bin/python3.5" """ Process data and build user profile vector with the following characteristics: 1) count of comments, posts (all), original posts, reposts and likes made by user 2) count of friends, groups, followers 3) count of videos, audios, photos, gifts 4) count of "incoming" (made by other users) comments, max and mean "incoming" comments per post 5) count of "incoming" likes, max and mean "incoming" likes per post 6) count of geo tagged posts 7) count of open / closed (e.g. private) groups a user participates in Medium: 1) count of reposts from subscribed and not-subscribed groups 2) count of deleted users in friends and followers 3) aggregate (e.g. count, max, mean) characteristics for comments and likes (separtely) made by (a) friends and (b) followers per post 4) aggregate (e.g. count, max, mean) characteristics for comments and likes (separtely) made by (a) friends and (b) followers per user 5) find emoji (separately, count of: all, negative, positive, others) in (a) user's posts (b) user's comments """ class SparkTask: def __init__(self): """ Configuration for Spark: master: address to Master node or local path: path to folder with *.parquet files """ self.path = "/home/pawel/bd_parquets/" self.master = "local" self.app_name = "Spark Task" self.spark = SparkSession.builder \ .master(self.master) \ .appName(self.app_name) \ .getOrCreate() def read_parquet_file(self, filename): return self.spark.read.parquet(self.path + filename) def task1a(self): """1) count of comments, posts (all), original posts, reposts and likes made by user""" user_wall_likes = self.read_parquet_file("userWallLikes.parquet") user_wall_posts = self.read_parquet_file("userWallPosts.parquet") user_wall_comments = self.read_parquet_file("userWallComments.parquet") likes_count = user_wall_likes \ .groupBy('likerId') \ .count() \ .withColumnRenamed('likerId', 'UserId') \ .withColumnRenamed('count', 'likes') posts_count = user_wall_posts \ .groupBy('from_id') \ .count() \ .withColumnRenamed('from_id', 'UserId') \ .withColumnRenamed('count', 'posts(all)') original_posts_count = user_wall_posts \ .filter(user_wall_posts['is_reposted'] == 'false') \ .groupBy('from_id') \ .count() \ .withColumnRenamed('from_id', 'UserId') \ .withColumnRenamed('count', 'original_posts') reposts_count = user_wall_posts \ .filter(user_wall_posts['is_reposted'] == 'true') \ .groupBy('from_id') \ .count() \ .withColumnRenamed('from_id', 'UserId') \ .withColumnRenamed('count', 'reposts') comments_cout = user_wall_comments \ .groupBy('from_id') \ .count() \ .withColumnRenamed('from_id', 'UserId') \ .withColumnRenamed('count', 'comments') final_table = comments_cout \ .join(posts_count, 'UserId') \ .join(original_posts_count, 'UserId') \ .join(reposts_count, 'UserId') \ .join(likes_count, 'UserId') return final_table def task2a(self): """2) count of friends, groups, followers""" followers = self.read_parquet_file("followers.parquet") friends = self.read_parquet_file("friends.parquet") groupsSubs = self.read_parquet_file("userGroupsSubs.parquet") friends_count = friends \ .groupBy('profile') \ .count() \ .withColumnRenamed('profile', 'UserId') \ .withColumnRenamed('count', 'friends') groups_count = groupsSubs \ .groupBy('user') \ .count() \ .withColumnRenamed('user', 'UserId') \ .withColumnRenamed('count', 'groups') followers_count = followers \ .groupBy('profile') \ .count() \ .withColumnRenamed('profile', 'UserId') \ .withColumnRenamed('count', 'followers') result_table = friends_count.join(groups_count, 'UserId').join(followers_count, 'UserId') return result_table def task3a(self): """3) count of videos, audios, photos, gifts""" friends_profiles = self.read_parquet_file("followerProfiles.parquet") result_table = friends_profiles \ .filter(friends_profiles.counters.isNotNull()) \ .select(friends_profiles.id.alias("UserId"), friends_profiles.counters.videos.alias("videos"), friends_profiles.counters.audios.alias("audios"), friends_profiles.counters.photos.alias("photos"), friends_profiles.counters.gifts.alias("gifts")) return result_table def task4a(self): """4) count of "incoming" (made by other users) comments, max and mean "incoming" comments per post""" user_wall_comments = self.read_parquet_file("userWallComments.parquet") comments_by_post_count = user_wall_comments \ .filter(user_wall_comments['from_id'] != user_wall_comments['post_owner_id']) \ .select('post_id', 'post_owner_id') \ .groupBy('post_id') \ .count() comment_to_user = user_wall_comments \ .filter(user_wall_comments['from_id'] != user_wall_comments['post_owner_id']) \ .select('post_id', 'post_owner_id') \ .dropDuplicates() result_table = comment_to_user\ .join(comments_by_post_count, "post_id")\ .groupBy("post_owner_id").agg(sum("count"), max("count"), mean("count")) return result_table def task5a(self): """5) count of "incoming" likes, max and mean "incoming" likes per post""" userWallLikes = self.read_parquet_file("userWallLikes.parquet") likes_per_post = userWallLikes \ .filter(userWallLikes['ownerId'] != userWallLikes['likerId']) \ .groupBy('itemId') \ .count() post_to_user = userWallLikes \ .filter(userWallLikes['ownerId'] != userWallLikes['likerId']) \ .select('itemId', 'ownerId') \ .dropDuplicates() result_table = post_to_user\ .join(likes_per_post, 'itemId')\ .groupBy('ownerId')\ .agg(sum('count'), max('count'), mean('count')) return result_table def task6a(self): """6) count of geo tagged posts""" userWallPosts = self.read_parquet_file("userWallPosts.parquet") geo_tagged_posts_count = userWallPosts \ .filter(userWallPosts['geo.coordinates'] != 'null') \ .groupBy('owner_id') \ .count() \ .withColumnRenamed('owned_id', 'UserId') \ .withColumnRenamed('count', 'geo_tagged_posts') \ result_table = geo_tagged_posts_count return result_table def task7a(self): """7) count of open / closed (e.g. private) groups a user participates in""" groupsProfiles = self.read_parquet_file("groupsProfiles.parquet") userGroupsSubs = self.read_parquet_file("userGroupsSubs.parquet") invert_id = UserDefinedFunction(lambda x: -int(x)) user_to_group = userGroupsSubs \ .select("user", invert_id("group")) \ .withColumnRenamed("<lambda>(group)", "group")\ .dropDuplicates() group_type = groupsProfiles\ .select("id", "is_closed")\ .withColumnRenamed("id", "group")\ .dropDuplicates() user_to_group_type = user_to_group\ .join(group_type, "group")\ opened_groups = user_to_group_type\ .filter(user_to_group_type['is_closed'] == 0)\ .groupBy("user")\ .count()\ .withColumnRenamed("count", "opened") closed_groups = user_to_group_type\ .filter(user_to_group_type['is_closed'] > 0)\ .groupBy("user")\ .count()\ .withColumnRenamed("count", "closed") result_table = opened_groups\ .join(closed_groups, "user", how="full_outer")\ .fillna(0) return result_table def task1b(self): """1) count of reposts from subscribed and not-subscribed groups""" userWallPosts = self.read_parquet_file("userWallPosts.parquet") userGroupsSubs = self.read_parquet_file("userGroupsSubs.parquet") reposts_t = userWallPosts \ .filter(userWallPosts.is_reposted) \ .select('owner_id', 'repost_info.orig_owner_id')\ .withColumnRenamed("owner_id", "user") reposts = reposts_t.filter(reposts_t["orig_owner_id"] < 0) user_to_group_sub = userGroupsSubs\ .select("user", "group")\ .groupBy("user")\ .agg(collect_set("group"))\ .withColumnRenamed("collect_set(group)", "groups") def contains(id, groups): if not groups: return False if str(id) in groups: return True else: return False contains_udf = UserDefinedFunction(contains) temp = reposts.join(user_to_group_sub, "user", how="left_outer") reposts_from = temp\ .withColumn("from_subscribed", contains_udf(temp.orig_owner_id, temp.groups)) reposts_from_subscribed = reposts_from\ .filter(reposts_from.from_subscribed == 'true')\ .select('user')\ .groupBy('user')\ .count()\ .withColumnRenamed("count", "from_subscribed") reposts_not_from_subscribed = reposts_from \ .filter(reposts_from['from_subscribed'] == 'false') \ .select('user')\ .groupBy("user")\ .count()\ .withColumnRenamed("count", "not_from_subscribed") result_table = reposts_from_subscribed\ .join(reposts_not_from_subscribed, 'user', how="full_outer")\ .fillna(0) return result_table def task2b(self): """2) count of deleted users in friends and followers""" friends = self.read_parquet_file("friends.parquet") followers = self.read_parquet_file("followers.parquet") friendsProfiles = self.read_parquet_file("friendsProfiles.parquet") followersProfiles = self.read_parquet_file("followerProfiles.parquet") deleted_friends_profiles = friendsProfiles\ .filter(friendsProfiles.deactivated == "deleted")\ .select("id", "deactivated")\ .withColumnRenamed("id", "follower") deleted_follower_profiles = followersProfiles\ .filter(followersProfiles.deactivated == "deleted")\ .select("id", "deactivated")\ .withColumnRenamed("id", "follower") deleted_friends = friends\ .join(deleted_friends_profiles, "follower", how="inner")\ .select('profile', 'deactivated')\ .dropDuplicates()\ .groupBy('profile')\ .count()\ .withColumnRenamed('count', 'deleted_fiends_acc') deleted_followers = followers\ .join(deleted_follower_profiles, "follower", how="inner")\ .select("profile", "deactivated")\ .dropDuplicates()\ .groupBy("profile")\ .count()\ .withColumnRenamed("count", "deleted_followers_acc") result_table = deleted_friends\ .join(deleted_followers, "profile", how="full_outer")\ .fillna(0) return result_table def task3b(self): """3) aggregate (e.g. count, max, mean) characteristics for comments and likes (separtely) made by (a) friends and (b) followers per post""" pass def task4b_friends(self): """3) aggregate (e.g. count, max, mean) characteristics for comments and likes (separtely) made by (a) friends and (b) followers per user""" friends = self.read_parquet_file("friends.parquet") # userWallPosts = self.read_parquet_file("userWallPosts.parquet") userWallComments = self.read_parquet_file("userWallComments.parquet") userWallLikes = self.read_parquet_file("userWallLikes.parquet") user_friends = friends\ .groupBy("profile")\ .agg(collect_set("follower"))\ .withColumnRenamed("collect_set(follower)", "friends")\ .select("profile", "friends") comments = userWallComments.select("post_owner_id", "from_id", "post_id") def contains(id, groups): if not groups: return False if str(id) in groups: return True else: return False contains_udf = UserDefinedFunction(contains) post_comment_to_relation = comments\ .withColumnRenamed("post_owner_id", "profile")\ .join(user_friends, "profile", how="left_outer")\ .withColumn("is_from_friend", contains_udf(col("from_id"), col("friends")))\ .select("profile", "is_from_friend", "post_id")\ .filter(col("is_from_friend") == "true")\ comments_from_friends_per_post = post_comment_to_relation\ .groupBy("post_id")\ .count() result_table = post_comment_to_relation\ .select("profile", "post_id")\ .join(comments_from_friends_per_post, "post_id")\ .groupBy("profile")\ .agg(max("count"), mean("count"), sum("count"))\ .sort(desc("sum(count)")) result_table.show() def task4b_followers(self): followers = self.read_parquet_file("followers.parquet") user_followers = followers\ .groupBy("profile")\ .agg(collect_set("follower"))\ .withColumnRenamed("collect_set(follower)", "followers")\ .select("profile", "followers") def task5b(self): """5) find emoji (separately, count of: all, negative, positive, others) in (a) user's posts (b) user's comments """ pass if __name__ == "__main__": spark = SparkTask() # spark.task1a().show() # spark.task2a().show() # spark.task3a().show() spark.task4a().show() # spark.task5a().show() # spark.task6a().show() # spark.task7a().show() # spark.task1b().show() # spark.task2b().show() # spark.task4b_friends() # print(res.show())
true
3a5f5a8a5084b16341f89ab254c224c11149da94
Python
QuantEcon/QuantEcon.py
/quantecon/optimize/tests/test_lcp_lemke.py
UTF-8
3,218
2.578125
3
[ "MIT" ]
permissive
""" Tests for lcp_lemke """ import numpy as np from numpy.testing import assert_, assert_allclose, assert_equal from quantecon.optimize import lcp_lemke def _assert_ray_termination(res): # res: lcp result object assert_(not res.success, "incorrectly reported success") assert_equal(res.status, 2, "failed to report ray termination status") def _assert_success(res, M, q, desired_z=None, rtol=1e-15, atol=1e-15): if not res.success: msg = "lcp_lemke status {0}".format(res.status) raise AssertionError(msg) assert_equal(res.status, 0) if desired_z is not None: assert_allclose(res.z, desired_z, err_msg="converged to an unexpected solution", rtol=rtol, atol=atol) assert_((res.z >= -atol).all()) w = M @ res.z + q assert_((w >= -atol).all()) assert_allclose(w * res.z, np.zeros_like(res.z), rtol=rtol, atol=atol) class TestLCPLemke: def test_Murty_Ex_2_8(self): M = [[1, -1, -1, -1], [-1, 1, -1, -1], [1, 1, 2, 0], [1, 1, 0, 2]] q = [3, 5, -9, -5] M, q = map(np.asarray, [M, q]) res = lcp_lemke(M, q) _assert_success(res, M, q) def test_Murty_Ex_2_9(self): M = [[-1, 0, -3], [1, -2, -5], [-2, -1, -2]] q = [-3, -2, -1] M, q = map(np.asarray, [M, q]) res = lcp_lemke(M, q) _assert_ray_termination(res) def test_Kostreva_Ex_1(self): # Cycling without careful tie breaking M = [[1, 2, 0], [0, 1, 2], [2, 0, 1]] q = [-1, -1, -1] M, q = map(np.asarray, [M, q]) res = lcp_lemke(M, q) _assert_success(res, M, q) def test_Kostreva_Ex_2(self): # Cycling without careful tie breaking M = [[1, -1, 3], [2, -1, 3], [-1, -2, 0]] q = [-1, -1, -1] M, q = map(np.asarray, [M, q]) res = lcp_lemke(M, q) _assert_ray_termination(res) def test_Murty_Ex_2_11(self): M = [[-1.5, 2], [-4, 4]] q = [-5, 17] d = [5., 16.] M, q, d = map(np.asarray, [M, q, d]) res = lcp_lemke(M, q, d=d) _assert_ray_termination(res) res = lcp_lemke(M, q, d=np.ones_like(d)) _assert_success(res, M, q, atol=1e-13) def test_bimatrix_game(self): A = [[3, 3], [2, 5], [0, 6]] B = [[3, 2, 3], [2, 6, 1]] A, B = map(np.asarray, [A, B]) m, n = A.shape I = np.cumsum([0, m, n, m, m, n, n]) M = np.zeros((3*m+3*n, 3*m+3*n)) M[I[0]:I[1], I[1]:I[2]] = -A + A.max() M[I[0]:I[1], I[2]:I[3]], M[I[0]:I[1], I[3]:I[4]] = 1, -1 M[I[1]:I[2], I[0]:I[1]] = -B + B.max() M[I[1]:I[2], I[4]:I[5]], M[I[1]:I[2], I[5]:I[6]] = 1, -1 M[I[2]:I[3], I[0]:I[1]], M[I[3]:I[4], I[0]:I[1]] = -1, 1 M[I[4]:I[5], I[1]:I[2]], M[I[5]:I[6], I[1]:I[2]] = -1, 1 q = np.zeros(3*m+3*n) q[I[2]:I[3]], q[I[3]:I[4]] = 1, -1 q[I[4]:I[5]], q[I[5]:I[6]] = 1, -1 res = lcp_lemke(M, q) _assert_success(res, M, q)
true
275229f22a2979a0c26aab289d6dedd4a7af5998
Python
HyunSeungBum/sbhyun_python_lib
/sbhyun_utils.py
UTF-8
5,909
2.640625
3
[]
no_license
#!/usr/local/python2.7/bin/python # -*- coding: UTF-8 -*- ''' Useful function packages ''' __author__ = "Seung-Bum Hyun <orion203@gmail.com>" __date__ = "27 March 2012" __version__ = "0.1" __License__ = "GPL" import os import time import sys import socket import fcntl import struct import locale import logging def GetIpAddress(ifname): '''get the IP address associated with a network interface (linux only) http://code.activestate.com/recipes/439094''' s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl( s.fileno(), 0x8915, # SIOCGIFADDR struct.pack('256s', ifname[:15]) )[20:24]) def GetHwAddress(ifname): '''get the Network Mac Address associated with a network interface (linux only) http://code.activestate.com/recipes/439094''' s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) info = fcntl.ioctl(s.fileno(), 0x8927, struct.pack('256s', ifname[:15])) return ''.join(['%02x:' % ord(char) for char in info[18:24]])[:-1] def GetHostname(): '''get hostname ''' return os.uname()[1] ''' GetHumanReadableSize lambda function ''' GetHumanReadableSize = lambda s: [(s % 1024 ** i and "%.1f" % (s / 1024.0 ** i) or str(s / 1024 ** i)) + x.strip() for i, x in enumerate(' KMGTPEZY') if s < 1024 ** (i + 1) or i == 8][0] def human_num(num, divisor=1, power=""): """Convert a number for human consumption http://www.pixelbeat.org/scripts/human.py""" locale.setlocale(locale.LC_ALL, '') num = float(num) if divisor == 1: return locale.format("%ld", int(num), 1) elif divisor == 1000: powers = [" ", "K", "M", "G", "T", "P"] elif divisor == 1024: powers = [" ", "Ki", "Mi", "Gi", "Ti", "Pi"] else: raise ValueError("Invalid divisor") if not power: power = powers[0] while num >= 1000: # 4 digits num /= divisor power = powers[powers.index(power) + 1] human_num(num, divisor, power) if power.strip(): return "%6.1f%s" % (num, power) else: return "%4ld %s" % (num, power) def GetLoadAverage(): """get LoadAverage """ load = 'load average: %.2f %.2f %.2f' % os.getloadavg() return load def logs(logdir=None): """ Cumtomizing logging """ if logdir is None: logdir = os.environ['HOME'] + '/logs/' + time.strftime("%Y") + '/' + time.strftime("%m%d") if os.path.exists(logdir) is False: os.makedirs(logdir, 0755) logger = logging.getLogger('') logger.setLevel(logging.DEBUG) filename = os.path.basename(sys.argv[0]) # create file handler which logs even debug messages fh = logging.FileHandler(logdir + '/' + filename + '_' + time.strftime("%Y%m%d%H%M%S") + '.log') fh.setLevel(logging.INFO) # create console handler with a higher log level ch = logging.FileHandler(logdir + '/' + filename + '_' + time.strftime("%Y%m%d%H%M%S") + '_error.log') ch.setLevel(logging.ERROR) # create formatter and add it to the handlers formatter = logging.Formatter('[%(asctime)s] - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') ch.setFormatter(formatter) fh.setFormatter(formatter) # add the handlers to logger logger.addHandler(ch) logger.addHandler(fh) return logger """ require python 2.7 above""" from collections import namedtuple def DiskPartitions(all=False): """Return all mountd partitions as a nameduple. If all == False return phyisical partitions only.""" phydevs = [] disk_ntuple = namedtuple('partition', 'device mountpoint fstype') f = open("/proc/filesystems", "r") for line in f: if not line.startswith("nodev"): phydevs.append(line.strip()) retlist = [] f = open('/etc/mtab', "r") for line in f: if not all and line.startswith('none'): continue fields = line.split() device = fields[0] mountpoint = fields[1] fstype = fields[2] if not all and fstype not in phydevs: continue if device == 'none': device = '' ntuple = disk_ntuple(device, mountpoint, fstype) retlist.append(ntuple) return retlist def DiskUsage(path): """Return disk usage associated with path.""" usage_ntuple = namedtuple('usage', 'total used free percent') st = os.statvfs(path) free = (st.f_bavail * st.f_frsize) total = (st.f_blocks * st.f_frsize) used = (st.f_blocks - st.f_bfree) * st.f_frsize try: percent = ret = (float(used) / total) * 100 except ZeroDivisionError: percent = 0 # NB: the percentage is -5% than what shown by df due to # reserved blocks that we are currently not considering: # http://goo.gl/sWGbH return usage_ntuple(total, used, free, round(percent, 1)) if __name__ == '__main__': # get Ip, Mac Address for Network Interface Card print GetIpAddress('eth0') print GetHwAddress('eth0') for part in DiskPartitions(): print part print " %s\n" % str(DiskUsage(part.mountpoint)) print GetHumanReadableSize(273675342365) + 'iB' print GetLoadAverage() print human_num(378682763, 1024) + 'B' log = logs() log.error('Error: asd') log.info('INFO: ad')
true
ae08da179786ac815f8d5fbf495990f85574c185
Python
Aasthaengg/IBMdataset
/Python_codes/p02582/s956413300.py
UTF-8
133
3.171875
3
[]
no_license
s = input() cnt = 0 ans = [0] for i in range(3): if s[i] == 'R': cnt+=1 ans.append(cnt) else: cnt = 0 print(max(ans))
true
af43a3ccfc523ffee7e0f818b9c24e6f63f989aa
Python
robdunn220/List_Exercises
/sum_num_list.py
UTF-8
92
3.375
3
[]
no_license
numbers = [1, 2, 3, 4, 5, 6] num_sum = 0 for x in numbers: num_sum += x print num_sum
true
c9de04b35b67d01a9ddde260d8e103195fc33de8
Python
xiaodongdreams/Random-Forest
/DataClean.py
UTF-8
908
2.6875
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np import csv import pandas as pd import scipy as sp from sklearn.preprocessing import * ''' dataSet=[] with open('all.csv', 'r') as file: csvReader = csv.reader(file) for line in csvReader: dataSet.append(line) #print dataSet Data=np.mat(dataSet) Data=Data.T m,n=np.shape(Data) print m,n #Data[2]=Data[2]*10 fig=plt.figure() ax=fig.add_subplot(1,1,1) nums=np.arange(0,n,step=1) nums=np.mat(nums) print np.shape(nums.T) print np.shape(Data[0].T) ax.plot(nums.T,Data[1].T,label="CO") ax.plot(nums.T,Data[3].T,label="HC") ax.plot(nums.T,Data[5].T,label="NO") ax.set_xlabel("numbers") ax.set_ylabel("") ax.legend(loc="upper left") plt.suptitle("Exhaust") plt.show() #plt.savefig("Exhaust.jpg") ''' dataSet=pd.read_csv('all.csv') dataSet=np.mat(dataSet) m,n=dataSet.shape print m,n for i in range(n): print i,sp.sum(sp.isnan(dataSet[:,i]))
true
852d1dce8e8552f5f0cdd93065a8c92a8ca3fc54
Python
ScienceMan117/BabyPython
/Chapter_10/addition.py
UTF-8
531
4.0625
4
[]
no_license
import math while True: # Allows user to input values to be added together try: first_number = input ("Enter the first number: ") if first_number == 'q': break second_number = input ("\nEnter the second number: ") if second_number == 'q': break addition = int(first_number) + int(second_number) # Handles any errors that are not integers except Exception as x: print("Get your shit together!") else: print(addition)
true
9c317b83451deedee4d80a4f11a03423039d067a
Python
winstonplaysfetch/binf2111-woo-python
/LotteryGenerator.py
UTF-8
229
3.34375
3
[]
no_license
#! /usr/bin/env python import random def lottery(): for i in xrange(6): yield random.randint(1,40) yield random.randint(1,15) for random_number in lottery(): print "Next lottery number: %d" %random_number
true
5b40405315171a3d46d7def37ef8edb99022bb69
Python
Deepakdv15/Selenium10
/Prectice/square_test.py
UTF-8
352
2.890625
3
[]
no_license
import math import pytest @pytest.mark.great def test_sqr(): assert 5==math.sqrt(25) @pytest.mark.great def testequal(): assert 7*7==40 @pytest.mark.great def tesNum(): assert 10==11 @pytest.mark.others def test_grester_numner(): num=20 assert 21>num @pytest.mark.others def test_less_number(): num=20 assert 12<num
true
a25fd25bbb217f6e7aaed9ddc913519f900401d2
Python
ritchie46/concatPDF
/test/test.py
UTF-8
800
2.625
3
[ "MIT" ]
permissive
import unittest from concatPDF.builder import Build, str_to_flt, natural_keys class TestFileOrder(unittest.TestCase): def test_str_to_flt(self): self.assertEqual(str_to_flt("2.20"), 2.2) self.assertEqual(str_to_flt("2.2.0"), "2.2.0") self.assertEqual(natural_keys("1.1_you"), [1.1, "_you"]) self.assertEqual(natural_keys("1_1_you"), [1, '_', 1, "_you"]) self.assertEqual(natural_keys("_1.1_1foo2"), ['_', 1.1, '_', 1.0, 'foo', 2.0]) def test_file_order(self): b = Build("./test/source/config.ini") self.assertEqual(b._def_path_order(".txt"), ['./test/source/1_file.txt', './test/source/1.3-file.txt', './test/source/1.3_file.txt']) if __name__ == "__main__": unittest.main()
true
54b2621d608942bb715acd8332e7f478f1121cfb
Python
nnnazek/ICT
/ict/19.py
UTF-8
279
3.703125
4
[]
no_license
import math height = float(input("Please enter a height from which an object is dropped from in meters: ")) acceleration = 9.8 finalVelocity = math.sqrt(2*acceleration*height) print("The final velocity when the object hits the ground is {}m/s^2.".format(finalVelocity))
true
7b948fe8e21adb9a023cff0b5fca18d10fdfe76b
Python
roije/portal_scraper
/portal.py
UTF-8
9,079
2.828125
3
[]
no_license
import requests import hashlib from config import Config from bs4 import BeautifulSoup from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.action_chains import ActionChains from hashchecker import HashChecker from db import DatabaseConnector import datetime class PortalScraper(): def __init__(self, person, init_page): self.person = person self.init_soup = self.request_init_page(init_page) self.db = DatabaseConnector(Config.DATABASE) def request_init_page(self, init_page): # request portal.fo res = requests.get(init_page) #read text and using bs4 html parser soup = BeautifulSoup(res.text, 'html.parser') return soup def get_person_article_links(self): """ Reads through the init page (http://portal.fo/seinastu+vidmerkingarnar.html) And gets every comment of search person and stores the link to article in which the comment was given in a Set. Returns: Set if page is changed, and None if nothing has changed. """ comment_items = self.init_soup.find_all("div", class_="comment_item") hash_checker = HashChecker() hash_checker.generate_hash(comment_items) # Will compare with the hash saved in prev_hash.txt page_has_changed = hash_checker.hash_compare() if page_has_changed: hash_checker.save_new_hash() search_person_article_links = set() for comment in comment_items: commenter_name = comment.find(class_="comment_profilename").text if(commenter_name == self.person): search_person_article_links.add(comment.parent.get('href')) return search_person_article_links else: return None def scrape_articles(self, articles): # test = 0 for article in articles: # test_file = "test-" + str(test) + ".txt" comment_section_soup = self.get_comment_section(article) self.extract_comment_data(comment_section_soup, article) ''' with open(test_file, "w", encoding="utf-8") as fo: fo.write(str(comment_section_soup.prettify())) test = test + 1 ''' def get_comment_section(self, article): """ -- This method is only meant to be used in this file -- The Facebook Comments Plugin is loaded with Javascript, so we can't use the request module to read the articles, because it only gets static server HTML. This method uses Selenium, so we can wait for the plugin to have been loaded Returns: Soup for each article comment section (BeautifulSoup object) """ driver = Config.get_driver() driver.get(article) timeout = 10 try: # First we have to wait until the page is fully loaded. Using selenium and WebDriverWait to do that # Facebook Comments plugin is loaded via Javascript, so we cant use the request module to simply read the page element_present = EC.presence_of_element_located((By.CLASS_NAME, 'fb_iframe_widget')) WebDriverWait(driver, timeout).until(element_present) # wait for fb_iframe_widget_loader to disappear self.wait_until_disappeared(driver, 'fb_iframe_widget_loader') # Now the Facebook plugin has been loaded # First get innerHTML of the page and use BeautifulSoup HTML parser so that we can work with it innerHTML = driver.execute_script("return document.body.innerHTML") #returns the inner HTML as a string soup_comments = BeautifulSoup(innerHTML, 'html.parser') # This is the Facebook comments plugin which is an iframe facebook_plugin_iframe = soup_comments.find('iframe', class_="fb_ltr") frame_id = facebook_plugin_iframe.get('id') # Because we need to work with another iframe, we need to change the frame # First set the current frame of the driver to the default # Then switch to iframe with the id we got from the Facebook comments plugin (line 29) # Then get innerHTML of the iframe and use BeautifulSoup so that we can work with it driver.switch_to_default_content() driver.switch_to.frame(frame_id) self.press_load_more_comments_if_present(driver) self.press_open_replies_if_present(driver) iframe_innerhtml = driver.execute_script("return document.body.innerHTML") #returns the inner HTML as a string iframe_soup = BeautifulSoup(iframe_innerhtml, 'html.parser') return iframe_soup except TimeoutException: print("Timed out waiting for page to load") def wait_until_disappeared(self, driver ,element): timeout = 10 try: element = WebDriverWait(driver, timeout).until(EC.invisibility_of_element_located((By.CLASS_NAME, element))) except TimeoutException: print("Timed out waiting for element to disappear") def press_load_more_comments_if_present(self, driver): load_more_buttons = driver.find_elements_by_xpath("//*[contains(text(), 'more comments')]") for load_button in load_more_buttons: # Navigate one level up to the anchor tag driver.execute_script("arguments[0].scrollIntoView();", load_button) load_button.click() def press_open_replies_if_present( self, driver): """ -- This method is only meant to be used in this file -- """ span_show_more_replies = driver.find_elements_by_xpath("//*[contains(text(), 'more replies in this thread') or contains(text(), 'more reply in this thread')]") for span_tag in span_show_more_replies: # Navigate one level up to the anchor tag anchor_clickable = span_tag.find_element_by_xpath('..') driver.execute_script("arguments[0].scrollIntoView();", anchor_clickable) anchor_clickable.click() # Wait until all loading spans are gone. # The presence of them means that the plugin is loading the comments timeout = 10 try: element = WebDriverWait(driver, timeout).until(EC.invisibility_of_element_located((By.XPATH, "//span[@aria-valuetext='Loading...']"))) except TimeoutException: print("Timed out waiting for element to disappear") def extract_comment_data(self, comment_section_soup, article): comment_divs = comment_section_soup.find_all(class_='UFICommentActorName') for comment_div in comment_divs: # Get commenter name and compare it with the person we are searching for commenter_name = comment_div.text if(commenter_name == self.person): print('This is ', self.person) person_dict = {} # Traverse to parent span, so that we can traverse to the other divs from here # PARENT parent_span = comment_div.parent # GO TO TOP SIBLING OF PARENT # Go to the next sibling of the parent span. This is where the comment is located comment_sibling_div = parent_span.find_next_sibling() # print(comment_sibling_div) comment_text = comment_sibling_div.text # GO TO TOP SIBLING OF COMMENT_SIBLING # Div that contains lin to comment and time of comment like_time_sibling_div = comment_sibling_div.find_next_sibling() # print('Hey', like_time_sibling_div.prettify()) # Check if the i tag exists. Then there are likes likes = '' for child in like_time_sibling_div.children: itag = child.find('i') if itag: likes = child.text comment_utime = like_time_sibling_div.find("abbr", { "class" : "UFISutroCommentTimestamp"}).get('data-utime') comment_timestamp = self.utime_to_timespamp(comment_utime) person_dict['name'] = commenter_name person_dict['text'] = comment_text person_dict['article'] = article person_dict['likes'] = likes person_dict['comment_timestamp'] = comment_timestamp self.db.insert_comment(person_dict) def utime_to_timespamp(self, utime): return datetime.datetime.fromtimestamp(int(utime)).strftime('%Y-%m-%d %H:%M:%S') def __repr__(self): return "Search person: %s" % (self.init_soup)
true
dea484075682bce5707bc3cb61eef2c2d6bcfb72
Python
varun3108/Agent-Selector-based-on-issue
/AgentSelect.py
UTF-8
5,430
3.203125
3
[]
no_license
import datetime import random agent_list= [1001, True, datetime.time(8, 0), 'Support', 1002, True, datetime.time(10, 0), 'Sales', 1003, True, datetime.time(11, 0), 'Spanish speaker', 1004, True, datetime.time(12, 0), 'Sales', 1005, True, datetime.time(11, 0), 'Support', 1006, True, datetime.time(12, 0), 'Spanish speaker', 1007, True, datetime.time(15, 0), 'Sales', 1008, True, datetime.time(16, 0), 'Spanish speaker', 1009, True, datetime.time(9, 0), 'Sales', 1010, True, datetime.time(16, 0), 'Support'] roles = ['Support', 'Sales', 'Spanish speaker'] """ LIST OF AGENTS The following code is to enter details of agents to create an agent list. It also takes into consideration the types of roles by making a list of roles. AGENT LIST CREATION (OPTIONAL) i = 'Y' agent_list = [] roles = [] while i == 'Y': add_detail = input('Do you want to enter agent details (Y/N):') if add_detail == 'Y': agent_id = int(input('Agent ID:')) is_available = bool(input('Agent Availablity (True/False):')) available = input('specify time since agent is available in HH,MM format:') available = available.split(',') available_since = datetime.time(int(available[0]),int(available[1])) role = str(input('Enter the Role:')) agent_list.append(agent_id) agent_list.append(is_available) agent_list.append(available_since) agent_list.append(role) if role not in roles: roles.append(role) else: break """ issues = [9001, 'Technical problems with the platform', datetime.time(13, 38), 'Support', 9002, 'Want to know about features in spanish language.', datetime.time(8, 49), 'Sales,Spanish speaker', 9003, 'Want an AI chatbot for my website', datetime.time(11, 39), 'Sales,Support', 9004, 'Want to know about features in Japanese Language', datetime.time(10, 40), 'Japanese speaker,Sales'] """ LIST OF ISSUES The following code is to enter the issue and the type of role/roles of agents related to the issue. issues = [] j = 'Y' while j == 'Y': add_detail = input('Do you want to enter issues details (Y/N):') if add_detail == 'Y': issue_id = int(input('Issue ID:')) issue_desp = input('Issue:') role_issue = str(input('Enter the Roles involved separated by comma:')) timenow = ((datetime.datetime.now()).strftime("%X")).split(":") #timenow = timenow.split(":") time_now = datetime.time(int(timenow[0]),int(timenow[1])) issues.append(issue_id) issues.append(issue_desp) issues.append(time_now) issues.append(role_issue) else: break """ print ('AGENT LIST: ',agent_list) print ('AGENT ROLES: ',roles) print ('ISSUES LIST: ',issues) select_mode = '' the_issue = [] def agent_select(agent_list,select_mode,the_issue): agent_reqd = [] types_roles= (the_issue[3]).split(',') for k in range(len(types_roles)): for l in range(int(len(agent_list)/4)): if types_roles[k] == agent_list[(4*l +3)]: agent_reqd.append(agent_list[(4*l)]) agent_reqd.append(agent_list[(4*l+1)]) agent_reqd.append(agent_list[(4*l+2)]) agent_reqd.append(agent_list[(4*l+3)]) if types_roles[k] not in agent_list: print ('The role '+ types_roles[k] + ' is not available') # print('LIST OF AGENTS WITH ROLES RELATED TO THE ISSUE: ',agent_reqd) if select_mode == 'All available': print('For the issue:') print(the_issue) print('with selection mode:') print(select_mode) print('Here are the agents:') print(agent_reqd) if select_mode == 'Least busy': o = 0 Diff = [] timeDiff = 0 for n in range(int(len(agent_reqd)/4)): A = datetime.datetime.combine(datetime.date.today(), the_issue[2]) B = datetime.datetime.combine(datetime.date.today(), agent_reqd[(4*n+2)]) timeDiff = A-B timeDiff = int(timeDiff.total_seconds()) Diff.append(agent_reqd[(4*n)]) Diff.append(timeDiff) if timeDiff > o : o = timeDiff # print('HIGHEST TIME DIFFERENCE BETWEEN THE ISSUE AND AVAILABILITY OF THE AGENT: ',o) # print('LIST OF TIME DIFFERENCES: ',Diff) for p in range(int(len(Diff)/2)): if o == Diff[2*p+1]: agent_reqd = agent_reqd[(4*p):(4*p+4)] print('For the issue:') print(the_issue) print('with selection mode:') print(select_mode) print('Here is the agent:') if o >0: print(agent_reqd) else: print('NIL') if select_mode == 'Random': q = random.randrange(int(len(agent_reqd)/4)) agent_reqd = agent_reqd[(4*q):(4*q+4)] print('For the issue:') print(the_issue) print('with selection mode:') print(select_mode) print('Here is the agent:') print(agent_reqd) for m in range(int(len(issues)/4)): the_issue = issues[(4*m):(4*m+4)] print ('THE ISSUE: ',the_issue) select_mode = input('Select a selection mode (All available/Least busy/Random):') agent_select(agent_list,select_mode,the_issue)
true
729e3657584d0f00c4c4681672e5c5c1e892e754
Python
Audi-Un-Autre/TheTranslators
/COGS/errorHandling.py
UTF-8
1,248
2.796875
3
[]
no_license
# This cog listens to all command calls and reports error directly to the user in the channel import discord from discord.ext import commands from botmain import config class ErrorHandling(commands.Cog): def __init__(self, bot): self.bot = bot # General error response @commands.Cog.listener() async def on_command_error(self, ctx, error): errorFormat = self.bot.get_cog('Formatting') if isinstance(error, commands.CommandNotFound): await errorFormat.formatGeneral(ctx, 'Command not recognized.') if isinstance(error, commands.CheckFailure): await errorFormat.formatGeneral(ctx, 'You do not have permission to do this.') if isinstance(error, commands.BadArgument): await errorFormat.formatGeneral(ctx, 'Invalid argument. Command canceled.') if isinstance(error, commands.MissingRequiredArgument): await errorFormat.formatGeneral(ctx, 'Nothing to translate. Please retry in the format of: ```!french + word``````!english + word```') if isinstance(error, discord.Forbidden): await errorFormat.formatGeneral(ctx, 'I don\'t have permission to do this.') def setup(bot): bot.add_cog(ErrorHandling(bot))
true
6a8266f7275c8f233ef9efb4c1f1eba9886d2e71
Python
Tom-Adamski/PythonPlayground
/matplotlib/triangle.py
UTF-8
1,374
2.953125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection width = 50 height = 50 fig, ax = plt.subplots() ax.set_xlim([0,width]) ax.set_ylim([0,height]) patches = [] N = 100 ratio = 0.01 ratioInv = 1 - ratio colors = [] point = [] #triangle point += [[0,0]] point += [[25, 50]] point += [[50,0]] pt = np.array(point) polygon = Polygon(pt, True) patches.append(polygon) for nb in range(N): nPoint = [] for i in range(len(point) - 1): x = ratio * point[i][0] + ratioInv * point[i+1][0] y = ratio * point[i][1] + ratioInv * point[i+1][1] nPoint += [[ x , y ]] x = ratio * point[i+1][0] + ratioInv * point[0][0] y = ratio * point[i+1][1] + ratioInv * point[0][1] nPoint += [[ x , y ]] npt = np.array(nPoint) polygon = Polygon(npt, True) patches.append(polygon) point = nPoint #ratio += 0.001 ratioInv = 1 - ratio p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4) p.set_color([1,0,1]) #for i in range(N): # if i%2 == 0 : # colors += [ 50 ] # else: # colors += [ 100 ] for i in range(N): colors += [ i ] p.set_array(np.array(colors)) ax.add_collection(p) plt.show()
true
33cc09f486e7f0c4620b261dfd84f56a4c32ef49
Python
BenGreenDev/ATDeepLearningAssetGeneration
/ConvNet.py
UTF-8
3,266
2.640625
3
[]
no_license
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D from tensorflow.keras.callbacks import TensorBoard import pickle import time import tensorflow.keras NAME = "Satellite-Image-Classifier-cnn-64x2-{}".format(int(time.time())) # Create callback board tensorboard = TensorBoard(log_dir='logs\\{}'.format(NAME)) config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) pickle_in = open("X.pickle", "rb") X = pickle.load(pickle_in) pickle_in = open("Y.pickle", "rb") Y = pickle.load(pickle_in) Y = tf.keras.utils.to_categorical(Y, 8) #X = X/255.0 # dense_layers = [1, 2] # layer_sizes = [32, 64, 128, 256] # conv_layers = [1, 2, 3] # kernal_sizes = [3, 7] # denselayer_sizes = [8] # num_epochs = [50, 100, 200, 300, 400, 500, 800, 1000, 1200] dense_layers = [1] dense_layer_sizes = [256] conv_layers = [2] conv_layer_sizes = [128] kernal_sizes = [7] num_epochs = [550] for dense_layer in dense_layers: for dense_layer_size in dense_layer_sizes: for conv_layer in conv_layers: for conv_layer_size in conv_layer_sizes: for kernal_size in kernal_sizes: for num_epoch in num_epochs: NAME = "{}-conv-{}-nodes-{}-dense-{}-kernal-{}-numepoch-{}".format(conv_layer, dense_layer_size, dense_layer, kernal_size, num_epoch, int(time.time())) print(NAME) model = Sequential() model.add(Conv2D(conv_layer_size, (kernal_size, kernal_size), input_shape=X.shape[1:])) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.15)) for l in range(conv_layer-1): model.add(Conv2D(conv_layer_size, (kernal_size, kernal_size))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.15)) model.add(Flatten()) for _ in range(dense_layer): model.add(Dense(dense_layer_size)) model.add(Activation('relu')) model.add(Dropout(0.35)) model.add(Dense(8)) model.add(Activation('softmax')) tensorboard = TensorBoard(log_dir="logs\\{}".format(NAME)) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) model.fit(X, Y, batch_size=32, # steps_per_epoch=50, # validation_steps=25, epochs=num_epoch, validation_split=0.3, callbacks=[tensorboard], shuffle=True) model.save('CNN.model')
true
218d6ac49e4668947b8f563ee82bf3ee00ec49e9
Python
Sohailsaifi/Internet-Speed-Test
/test.py
UTF-8
374
2.96875
3
[]
no_license
import speedtest s = speedtest.Speedtest() option = int(input('''What do you want to know : 1 - upload speed 2 - download speed 3 - ping \n''')) if option == 1: print(s.upload()) elif option == 2: print(s.download()) elif option == 3: server = [] s.get_servers(server) print(s.results.ping) else : print("Invalid Option!!...Please try again.")
true
e0f3d984d34775a40246acc75fa859013fa4f37f
Python
gagan1510/PythonBasics
/PythonRef/file.py
UTF-8
509
3.65625
4
[]
no_license
fName = input("Please enter the file name with extension to be read: ") try: f = open(fName) line = f.readline() while line: print(line, ) line = f.readline() f.close() print("This is being printed using the for loop.\n") for line in open(fName): print(line) f.close() year = 20 principle = 2000 f = open(fName, "w") f.write("%3d %.2f\n" % (year, principle)) f.close() except Exception: print("Couldn't find file " + fName)
true
6f16c076fad7413890d76074098c478fb1866aea
Python
mina0805/Programming-with-Python
/Programming_Basics_with_Python/02.ПРОСТИ ПРЕСМЯТАНИЯ/10.Radians_To_degrees.py
UTF-8
105
3.296875
3
[]
no_license
import math rad = float(input()) deg = (180/math.pi)*rad deg_round = round(deg, 2) print(deg_round)
true
7cf1928e181b0781f79fc5148dd42522a40eac3d
Python
RichardLaBella/PyLessons
/ex6
UTF-8
668
4.25
4
[]
no_license
#!/usr/bin/python # using %d format character to reference the 10 x = "There are %d types of people." % 10 binary = "binary" do_not = "don't" # using %s format character twice to reference the % variable in parenthesis y = "Those who know %s and those who %s." % (binary, do_not) # Just printing x and then printing y print x print y # printing this to screen. %r is referencing x which is "there are 10 types of people" print "I said: %r. " % x print "I also said: '%s'. " % y hilarious = False joke_evaluation = "isn't that joke so funny?! %r" print joke_evaluation % hilarious w = "This is the left side of..." e = "a sting with a right side." print w + e
true
0878226013543f04a6b03b6bf2f3301139bcbdc7
Python
gtmkr1234/learn-python39
/learn-python39/set_Python/practice_questions_sheet.py
UTF-8
482
4.125
4
[]
no_license
""" Write a Python program to remove an item from a set if it is present in the set. HereBothItem and Set is enter by the User. """ # user data is space separated h = set(map(int, input().split())) itm = eval(input('enter the item ')) # h.remove(itm) h.discard(itm) print(h) # 2nd st1 = set('hello') st2 = set('hi') re = st1 - st2 # re = st1.difference(st2) print(re) # 3rd st1 = set('hello') st2 = set('hi') re = st1 ^ st2 # re = st1.symmetric_difference(st2) print(re)
true
654f0ce008a1716dfbdc396b7328d0de2418085c
Python
ishantk/ENC2020PYAI1
/Session58C.py
UTF-8
417
3.515625
4
[]
no_license
import nltk # nltk.download('punkt') -> Required for word_tokenize # nltk.download('averaged_perceptron_tagger') -> Required for POS Tagging from nltk import word_tokenize, pos_tag sentence = "A very Happy Navratras to All. Code Well. Be at Home. Stay Safe :)" tokens = word_tokenize(sentence) print(tokens) # POS is Parts of Speech # POS Tagging is tagging the token with language grammar print(pos_tag(tokens))
true
e36286ce329ec9eee60b25f950f32548070c16dc
Python
ljw0096/Python_300_practice
/py121_130.py
UTF-8
261
3.015625
3
[]
no_license
import requests btc =requests.get("https://api.bithumb.com/public/ticker/").json()['data'] variation = int(btc['max_price'])-int(btc['min_price']) res = variation+int(btc['opening_price']) if res>int(btc['max_price']): print("up") else: print("down")
true
e775fa42a75450c2e4b675e886b26bf8e0d5a651
Python
jaimegildesagredo/booby
/booby/inspection.py
UTF-8
1,674
2.53125
3
[ "Apache-2.0" ]
permissive
# -*- coding: utf-8 -*- # # Copyright 2014 Jaime Gil de Sagredo Luna # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The :mod:`inspection` module provides users and 3rd-party library developers a public api to access :mod:`booby` objects and classes internal data, such as defined fields, and some low-level type validations. This module is based on the Python :py:mod:`inspect` module. """ from booby import models def get_fields(model): """Returns a `dict` mapping the given `model` field names to their `fields.Field` objects. :param model: The `models.Model` subclass or instance you want to get their fields. :raises: :py:exc:`TypeError` if the given `model` is not a model. """ if not is_model(model): raise TypeError( '{} is not a {} subclass or instance'.format(model, models.Model)) return dict(model._fields) def is_model(obj): """Returns `True` if the given object is a `models.Model` instance or subclass. If not then returns `False`. """ try: return (isinstance(obj, models.Model) or issubclass(obj, models.Model)) except TypeError: return False
true
3a2dfc3cf3ba23889f2658b175a95e195e65d7d6
Python
AkaiTobira/TetrisAgents
/Libraries/game.py
UTF-8
1,604
2.625
3
[]
no_license
import pygame import time from Libraries.consts import * from Libraries.Structures.tetrisGame import Tetris from Libraries.Structures.displayers import FPSDisplayer from Libraries.Structures.tetrominoSpawner import RandomSpawnTetromino, SimpleSpawnTetrimino from Libraries.Structures.playerList import PlymodeController from Libraries.Structures.meansures import Meansures class Game: screen = None resolution = None name = "" fpsRate = None def __init_pygame(self, resolution, name): pygame.display.set_caption(name) self.screen = pygame.display.set_mode(resolution) def reset_resolution(self): self.__init_pygame(self.resolution,self.name) def __init__(self, resolution, name): self.name = name self.resolution = resolution self.reset_resolution() self.tetris = Tetris(self.screen, [OFFSET/2 + 6, OFFSET/2 +6], SimpleSpawnTetrimino(), PlymodeController()) self.fpsRate = FPSDisplayer (self.screen, [ OFFSET/2 + 6 + 100, OFFSET/2 +6 + (GRID_HEIGHT + 15) * SQUARE_SIZE ]) def is_running(self): return self.running def process(self, event): self.tetris.process(event) def draw(self): self.screen.fill(get_color(Colors.BLACK)) self.tetris.draw() self.fpsRate.draw_text(19) pygame.display.flip() def update(self, delta): if self.tetris.is_game_over: self.tetris.reset() self.tetris.update(delta) Meansures.tick() self.fpsRate.update(delta)
true
9195d7c958e1e050e22466a523e6f4c18a70a23c
Python
rjnp2/deep_learning_from_scratch
/loss/loss.py
UTF-8
3,194
3.390625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 2 15:57:07 2020 @author: rjn """ # importing required library import cupy as cp class Loss(object): def loss(self, y: cp.array , y_pred: cp.array ): ''' Parameters ---------- y : cp.array Ground truth value. y_pred : cp.array Predicted values. Returns ------- NotImplementedError : TYPE DESCRIPTION. ''' return NotImplementedError() def gradient(self, y: cp.array , y_pred: cp.array ): ''' Parameters ---------- y : cp.array Ground truth value. y_pred : cp.array Predicted values. Returns ------- NotImplementedError : TYPE DESCRIPTION. ''' raise NotImplementedError() def acc(self, y: cp.array , y_pred: cp.array ): ''' Parameters ---------- y : cp.array Ground truth value. y_pred : cp.array Predicted values. Returns ------- NotImplementedError : TYPE DESCRIPTION. ''' return 0 class mean_absolute_loss(Loss): ''' Mean absolute Error (MSE) is the commonly used regression loss function. MAE is the sum of absolute distances between our target variable and predicted values. Computes the mean absolute error between labels and predictions. The logistic function is defined as follows: L(y,y_pred) = 1 --- * ∑ |y - y_pred| N `loss = mean(abs(y_true - y_pred), axis=-1)` MAE is not sensitive towards outliers and given several examples with the same input feature values, and the optimal prediction will be their median target value. This should be compared with Mean Squared Error, where the optimal prediction is the mean. ''' def __init__(self): pass def loss(self, y: cp.array , y_pred: cp.array )-> cp.array: ''' Parameters ---------- y : cp.array Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred : cp.array The predicted values. shape = `[batch_size, d0, .. dN]`. Returns ------- cp.array Mean absolute error values. shape = `[batch_size, d0, .. dN-1]`. ''' return cp.mean(cp.abs(y - y_pred)) def gradient(self, y: cp.array , y_pred: cp.array ) -> cp.array: ''' Parameters ---------- y : cp.array Ground truth values. shape = `[batch_size, d0, .. dN]`. y_pred : cp.array The predicted values. shape = `[batch_size, d0, .. dN]`. Returns ------- cp.array Mean squared error values. shape = `[batch_size, d0, .. dN-1]`. ''' return (y_pred - y)
true
4d8737f2a14db091ee464476a7abc71547b38d5c
Python
Conor12345/misc
/challenges/venv/challenge7maybe.py
UTF-8
145
3.375
3
[]
no_license
str1 = "abcdefghijklmnopqrstuvwxyz" for i in range(0, 26): foo = str1[i:10] if foo == "": break print(foo)
true
65b081ea259df0caab212231a2ed29da08b1a244
Python
roxor05/Programs
/Python-scripts/ALL-snowflake_tables-arrived-today.py
UTF-8
3,688
2.625
3
[]
no_license
# -*- coding: utf-8 -*- from __future__ import unicode_literals #### Requirement for running this code #### # First install pip3 then install snowflake connector # pip3 install asn1crypto==1.3.0 # pip3 install snowflake-connector-python ######################################################################### import snowflake.connector from datetime import datetime from datetime import date, timedelta date_today = date.today() Current_date=date_today.strftime('%Y-%m-%d') print("--------------------------------------------------------------------------") print(Current_date + " --- Today's date") print("--------------------------------------------------------------------------") ####### For a specific date uncomment the below line with the Date required ############# # Current_date='2020-02-19' ######################################################################################### open("snowflake_tables.txt", "w").close() Username = '' Password = '' account = '' conn = snowflake.connector.connect( user= Username, password= Password, account= account, warehouse='COMPUTE_WH_XS', database='AVNR_STAGE', schema='INFORMATION_SCHEMA' ) # Create cursor cur = conn.cursor() #### Tables in L1 schema #### cur.execute("SELECT DISTINCT TABLE_NAME FROM TABLES WHERE TABLE_SCHEMA LIKE '%L1%' ORDER BY TABLE_NAME ASC") for row in cur: print(f'{row[0]}',file=open("snowflake_tables.txt", "a")) cur.close() conn.close() print("Tables in L1 schema are copied to snowflake_tables.txt") print("--------------------------------------------------------------------------") ##### To get the count for L1 tables ##### try: conn = snowflake.connector.connect( user= Username, password= Password, account= account, warehouse='COMPUTE_WH_XS', database='AVNR_STAGE', schema='L1' ) cur = conn.cursor() # Execute SQL statement with open('snowflake_tables.txt','r') as f: for line in f: # we use veeva crm then this line is excuted as it doesnt have Extract date column in it if 'VEEVA_CRM' in line: try: cur.execute("select max(last_modified_time) from {};".format(line)) for (last_modified_time,) in cur: print('{}------'.format(line.strip()) + 'last_modified_time: {0}'.format(datetime.date(last_modified_time))) # else: # pass except Exception as e: print(e) # this prints all the others in the data else: try: cur.execute("select MAX(EXTRACT_DT),count(*) from {} where EXTRACT_DT='{}';".format(line,Current_date)) #cur.execute("select MAX(EXTRACT_DT) from {};".format(line)) for (EXTRACT_DT,count) in cur: if count == 0: pass else: #for EXTRACT_DT in cur: print('{}------'.format(line.strip()) + 'EXTRACT_DT:{0}------Count:{1}'.format(EXTRACT_DT, count)) #print('{}------'.format(line.strip()) + 'EXTRACT_DT:{0}'.format(EXTRACT_DT),file=open("snowflake_count.txt", "a")) except Exception as e: pass except Exception as e: pass cur.close() conn.close()
true
af0ddd3696971ae804471efae6cee7614c1fd13c
Python
ElijahEldredge/Turtlebot_Navigation
/src/navigation/Node.py
UTF-8
1,451
3.53125
4
[]
no_license
#!/usr/bin/env python # Team 14: Brandon Knox, Elijah Eldredge, Jon Andrews # RBE 3002, Unified Robotics IV # Assignment: Final Term Project import math, geometry_msgs, time from geometry_msgs.msg import Point # Node(object) # This class generates node objects, giving them aspects of # coordinates, parents, and distance. Instansiating both node # neighbors and node contents class Node(object): # definitions: def __init__(self, coord, parent, dist): self.coord = coord self.parent = parent self.dist = dist # getNeighbors returns node neighbors given a resolution, # creating a new list and appending each new neighbor to it def getNeighbors(self, res): myNeighbors =[] for x in [-res,0,res]: for y in [-res,0,res]: time.sleep(.001) pos = Point() pos.x = self.coord.x + x pos.y = self.coord.y + y pos.z = self.coord.z newNode = Node(pos, self, self.dist + math.sqrt(x**2 + y**2)) # if statement to add only new nodes if self.contains(pos, res): pass else: myNeighbors.append(newNode) return myNeighbors # contains checks if the res/2 is less than or greater to the # individual contents of the node in the x,y,z or parent def contains(self, pos, res): if self.coord.x + res/2 > pos.x and self.coord.x - res/2 < pos.x and self.coord.y + res/2 > pos.y and self.coord.y - res/2 < pos.y: return True elif not self.parent: return False else: return self.parent.contains(pos, res)
true
aa1d3baff0aef1666687b2b08b5123ce366e1bf5
Python
threexc/WeatherVane
/vane/weathervane.py
UTF-8
5,749
3.015625
3
[]
no_license
import requests import sys import re import datetime import os import errno import xml.etree.ElementTree as ET # WeatherCollector will collect and tidy the necessary METAR and TAF data for # a specified aerodrome. This is currently hard-coded to work with the NAV # CANADA website only. This object-oriented implementation is still under # development. class WeatherCollector: def __init__(self, station, page_format='raw', language='anglais', region='can'): # The page of interest. Use GET calls to provide it the parameters for # each aerodrome self.url = "https://flightplanning.navcanada.ca/cgi-bin/Fore-obs/metar.cgi" self.station = station # Default headers to mimic for scraping the page self.headers = { "user-agent": "Mozilla/5.0 (X11; Fedora; Linux x86_64; rv:58.0) Gecko/20100101 Firefox/58.0" } # The parameters to be encoded and passed to the page as part of the # GET request. Note that the only parameter that should ever be # modified (and is in fact intended to be) is the station (aerodrome). # The others are provided as inputs for testing and for potential # future-proofing self.params = {'Stations': station, 'format': page_format, 'Langue': language, 'Region': region} # class variables to hold the data for each aerodrome once it is parsed self.parsed_data = None self.metar = None self.taf = None # The core component of the WeatherCollector class. This function takes the # input URL and parameters, then performs the following: # # 1. Encodes the base URL and parameters while sending a GET request to the # page # 2. Removes all of the HTML formatting from the text data (string) # 3. Removes whitespace and leftover formatting ("&nbsp;...") # 4. Creates a baseline string containing all of the data before further # isolating the METAR and TAF content # 5. Splits out the TAF data and truncates it following the final "=", which # is found in every aerodrome reading tested # 6. Similarly splits out the METAR data and truncates it following the # final "=" character # 7. Sets the class variables self.parsed_data, self.metar, and self.taf # equal to their corresponding strings # TODO: Write extensive error handling into this function def gather_weather_data(self): response = self.send_query() self.parsed_data = self.clean_query(response) self.taf = self.format_taf(self.parsed_data) self.metar = self.format_metar(self.parsed_data) return def send_query(self): # Send the GET request with the base URL and parameters response = requests.get(self.url, params=self.params, verify=False, headers=self.headers) return response def clean_query(self, response): # Strip out all of the HTML formatting stripped = re.sub("<.*?>", "", response.text) # Get rid of newlines cleaned = stripped.replace('\n', '') # Remove the mysterious &nbsp; substring tidied = cleaned.replace('&nbsp;&nbsp;&nbsp;&nbsp;', ' ') # Ignore the text before the first occurrence of the substring "TAF" split_data = tidied.split('TAF ', 1)[1] return split_data def format_taf(self, cleaned_query): # Pluck the TAF from the data and remove the trailing "=" taf = cleaned_query.split('TAF ', 1)[1] fixed_taf = taf[:taf.rfind('=')] return fixed_taf def format_metar(self, cleaned_query): # Pluck the METAR from the data and remove the trailing "=" metar = cleaned_query.split('TAF ', 1)[0] fixed_metar = metar[:metar.rfind('=')] return fixed_metar def get_dromeID(self): return self.station # This class writes the METAR and TAF to respective time-stamped files, and # does so in a clean format class WeatherWriter: # The root_path input is the root directory that the data will be # written to. The station argument refers to the aerodrome code, e.g. "CYOW" # for Ottawa. All of the directory and filename setup is done in this # constructor; all other functions handle and write to these directories # and/or filenames def __init__(self, station, root_path, collector): self.station = station self.root_path = root_path self.collector = collector self.date = None # Create separate subdirectories for the station's METAR and TAF self.metar_dir = ("{}/{}".format(self.station, "METAR")) self.taf_dir = ("{}/{}".format(self.station, "TAF")) # Create a hyphen-delimited timestamp to concatenate with the aerodrome # ID to make the filename for the data. The whitespace is replaced with # an underscore to make sure the filenames will play nice with Unix and # Linux systems date = str(datetime.datetime.utcnow().strftime("%Y-%m-%d %H-%M-%S")) self.date = date.replace(' ', '_') # Create a string to use for each text file's name self.metar_file = ("{}_{}_{}".format(self.station, "METAR", self.date)) self.taf_file = ("{}_{}_{}".format(self.station, "TAF", self.date)) # Combine the parts of the filename. Might be overkill # TODO: Determine if there is a simpler way to do this self.full_metar_path = ("{}/{}/{}".format(self.root_path, self.metar_dir, self.metar_file)) self.full_taf_path = ("{}/{}/{}".format(self.root_path, self.taf_dir, self.taf_file)) def write_metar(self, metar): if not os.path.exists(self.root_path + '/' + self.metar_dir): os.makedirs(self.root_path + '/' + self.metar_dir) with open(self.full_metar_path, 'w') as f: f.write(metar) f.close() def write_taf(self, taf): if not os.path.exists(self.root_path + '/' + self.taf_dir): os.makedirs(self.root_path + '/' + self.taf_dir) with open(self.full_taf_path, 'w') as f: f.write(taf) f.close() # The analysis class. Reads from the files for a specific aerodrome and does # various statistical analyses depending on inputs class WeatherAnalyzer: pass
true
6d6ca8449fd692bf2ee32c6714d665295b5c81d5
Python
CS26-BW1-Javascript-Is-Bad/FE-Client
/core/domain/map.py
UTF-8
3,554
2.625
3
[]
no_license
import math import core.util.constants as constants import os.path as path import pygame as pg import pytmx from core.util.colors import * from core.util.functions import draw_text from core.util.settings import * class Map: def __init__(self, rooms): self.rooms = rooms self.size = math.sqrt(len(rooms)) self.visited_list = [] self.game = None self.mini_map = None def show_map(self): grid_size = math.sqrt(len(self.rooms)) x, y = self.game.screen.get_size() room_size = int(x / grid_size * .2) pos = (x//2 - (room_size * (grid_size//2)), y//2 - (room_size * (grid_size//2))) #self.game.screen.fill(BLACK) while True: offsety = 0 offsetx = 0 i = 1 counter = 0 events = pg.event.get() for event in events: print(event) if event.type == pg.QUIT: pg.quit() quit() keys = pg.key.get_pressed() if keys[pg.K_n]: return offset_y = 150 offset_x = 50 room_dimension = 12 room_scale = 30 n_to_x_offset = 4 n_to_y_offset = 17 n_to_line_width = 4 n_to_line_height = 18 for room in self.rooms: room_color = PURPLE if room.x == self.game.room.x and room.y == self.game.room.y: room_color = GREEN pg.draw.rect(self.game.screen, room_color, (offset_y + room.y * room_scale, offset_x + room.x * room_scale, room_dimension, room_dimension)) if room.n_to != 0: pg.draw.rect(self.game.screen, RED, (offset_y + room.y * room_scale + n_to_x_offset, offset_x + room.x * room_scale - n_to_y_offset, n_to_line_width, n_to_line_height)) if room.e_to != 0: pg.draw.rect(self.game.screen, RED, (offset_y + room.y * room_scale + n_to_y_offset - 4, offset_x + room.x * room_scale + n_to_x_offset, n_to_line_height, n_to_line_width)) pg.display.update() pg.display.flip() class MiniMap(): def __init__(self, game, map): self.game = game self.map = map def build_map(self): self.map_group = pg.sprite.Group() col = 0 room_index = 0 self.map_node_list = [] while col < self.map.size: row = 0 while row < self.map.size: room = self.map.rooms[room_index] if room == self.game.room: contains_player = True else: contains_player = False node = MiniMapNode(row, col, room.visited, contains_player) self.map_node_list.append(node) self.map_group.add(node) row += 1 room_index += 1 col += 1 return self.map_group class MiniMapNode(pg.sprite.Sprite): def __init__(self, x, y, visited, contains_player): self.image = pg.image.load(path.join(sprite_folder, PLATFORM_IMG)) self.rect = self.image.get_rect() pg.sprite.Sprite.__init__(self)
true
92c32f115940ef9d24b0b0815d5dc0d9424c9cc4
Python
HardyYao/hardy_python
/project/004 国内三大交易所数据爬虫程序/scraw_shanghai_data.py
UTF-8
5,966
2.578125
3
[]
no_license
#!usr/bin/env python ''' #-*- coding:utf-8 -*- @Author HardyYao @Time 2017/10/2 7:28 ''' import requests import xlwt import time import random from urllib.error import URLError, HTTPError from json.decoder import JSONDecodeError from conn import headers class getShangHaiFutures(object): def scraw_shanghai_data(self, place_shanghai, variety, contract_id, year, month, day, url, path): req = requests.get(url.format(year, month, day), headers=headers()) if req.status_code == 200: try: jsonData = req.json() except(URLError, HTTPError, JSONDecodeError) as e: print('Error:{}'.format(e)) if len(jsonData['o_cursor']) > 10: # 创建一个空的excel文件 workbook = xlwt.Workbook() # 创建表 worksheet = workbook.add_sheet('Sheet1') first_col = worksheet.col(0) first_col.width = 256 * 16 secon_col = worksheet.col(1) secon_col.width = 256 * 16 third_col = worksheet.col(2) third_col.width = 256 * 16 four_col = worksheet.col(3) four_col.width = 256 * 16 five_col = worksheet.col(4) five_col.width = 256 * 16 six_col = worksheet.col(5) six_col.width = 256 * 16 seven_col = worksheet.col(6) seven_col.width = 256 * 16 eight_col = worksheet.col(7) eight_col.width = 256 * 16 nine_col = worksheet.col(8) nine_col.width = 256 * 16 ten_col = worksheet.col(9) ten_col.width = 256 * 16 elev_col = worksheet.col(10) elev_col.width = 256 * 16 twel_col = worksheet.col(11) twel_col.width = 256 * 16 thritteen_col = worksheet.col(12) thritteen_col.width = 256 * 16 fourteen_col = worksheet.col(13) fourteen_col.width = 256 * 16 fifteen_col = worksheet.col(14) fifteen_col.width = 256 * 16 sixteen_col = worksheet.col(15) sixteen_col.width = 256 * 16 # 写标题行数据 worksheet.write(0, 0, '日期') worksheet.write(0, 1, '交易所') worksheet.write(0, 2, '品种') worksheet.write(0, 3, '合约') worksheet.write(0, 4, '成交量名次') worksheet.write(0, 5, '成交量会员简称') worksheet.write(0, 6, '成交量') worksheet.write(0, 7, '成交量增减') worksheet.write(0, 8, '持买单量名次') worksheet.write(0, 9, '持买单量会员简称') worksheet.write(0, 10, '持买单量') worksheet.write(0, 11, '持买单量增减') worksheet.write(0, 12, '持卖单量名次') worksheet.write(0, 13, '持卖单量会员简称') worksheet.write(0, 14, '持卖单量') worksheet.write(0, 15, '持卖单量增减') for i in range(len(jsonData['o_cursor'])): if jsonData['o_cursor'][i]['INSTRUMENTID'].replace(' ', '') == contract_id: if jsonData['o_cursor'][i]['RANK'] != -1 and jsonData['o_cursor'][i]['RANK'] != 0 and jsonData['o_cursor'][i]['RANK'] != 999: worksheet.write(int(jsonData['o_cursor'][i]['RANK']), 0, '{}/{}/{}'.format(year, month, day)) # 日期 worksheet.write(jsonData['o_cursor'][i]['RANK'], 1, place_shanghai) # 交易所 worksheet.write(jsonData['o_cursor'][i]['RANK'], 2, variety) # 品种 worksheet.write(jsonData['o_cursor'][i]['RANK'], 3, contract_id) # 合约 worksheet.write(jsonData['o_cursor'][i]['RANK'], 4, jsonData['o_cursor'][i]['RANK']) # 成交量名次 worksheet.write(jsonData['o_cursor'][i]['RANK'], 5, jsonData['o_cursor'][i]['PARTICIPANTABBR1'],) # 成交量会员简称 worksheet.write(jsonData['o_cursor'][i]['RANK'], 6, jsonData['o_cursor'][i]['CJ1']) # 成交量 worksheet.write(jsonData['o_cursor'][i]['RANK'], 7, jsonData['o_cursor'][i]['CJ1_CHG']) # 成交量增减 worksheet.write(jsonData['o_cursor'][i]['RANK'], 8, jsonData['o_cursor'][i]['RANK']) # 持买单量名次 worksheet.write(jsonData['o_cursor'][i]['RANK'], 9, jsonData['o_cursor'][i]['PARTICIPANTABBR2']) # 持买单量会员简称 worksheet.write(jsonData['o_cursor'][i]['RANK'], 10, jsonData['o_cursor'][i]['CJ2']) # 持买单量 worksheet.write(jsonData['o_cursor'][i]['RANK'], 11, jsonData['o_cursor'][i]['CJ2_CHG']) # 持买单量增减 worksheet.write(jsonData['o_cursor'][i]['RANK'], 12, jsonData['o_cursor'][i]['RANK']) # 持卖单量名次 worksheet.write(jsonData['o_cursor'][i]['RANK'], 13, jsonData['o_cursor'][i]['PARTICIPANTABBR3']) # 持卖单量会员简称 worksheet.write(jsonData['o_cursor'][i]['RANK'], 14, jsonData['o_cursor'][i]['CJ3']) # 持卖单量 worksheet.write(jsonData['o_cursor'][i]['RANK'], 15, jsonData['o_cursor'][i]['CJ3_CHG']) # 持卖单量增减 workbook.save('{}\\{}.{}.{}.xls'.format(path, year, month, day)) print('{}.{}.{}的({}-{})数据已采集到并保存为excel文件'.format(year, month, day, variety, contract_id)) time.sleep(random.randint(0, 1))
true
346c15e9d335d5ef4873cdc58a2f27928178c686
Python
faemiyah/dnload
/dnload/glsl_name_strip.py
UTF-8
5,314
2.78125
3
[ "BSD-3-Clause" ]
permissive
import re from dnload.glsl_name import is_glsl_name ######################################## # GlslNameStrip ######################## ######################################## class GlslNameStrip: """Strip of names used for renaming purposes.""" def __init__(self, block, name): """Constructor.""" self.__blocks = [block] self.__names = [] self.addName(name) def addBlock(self, op): """Add block to the list of blocks.""" self.__blocks += [op] def addName(self, name): """Append one name to the list.""" if not is_glsl_name(name): raise RuntimeError("not a GLSL name: %s" % (str(name))) if (self.getNameCount() >= 1) and (name != self.__names[0]): raise RuntimeError("trying to append unrelated names: %s != %s" % (str(self.__names[0]), str(name))) # Used and declared name lists may contain the exact same name. for ii in self.__names: if ii is name: return self.__names += [name] def appendTo(self, op): """Appends all names into another GLSL name strip.""" for ii in self.__blocks: op.addBlock(ii) for ii in self.__names: op.addName(ii) def collectMemberAccesses(self): """Collect all member name accesses from the blocks.""" # First, collect all uses from members. uses = {} for ii in self.__blocks: collect_member_uses(ii, uses) # Then collect all uses from names. for ii in self.__names: aa = ii.getAccess() # Might be just declaration. if not aa: continue aa.disableSwizzle() name_object = aa.getName() name_string = name_object.getName() if not (name_string in uses): raise RuntimeError("access '%s' not present outside members" % (str(aa))) uses[name_string] += [name_object] # Expand uses, set types and sort. ret = [] for kk in uses.keys(): name_list = uses[kk] if 1 >= len(name_list): print("WARNING: member '%s' of '%s' not accessed" % (name_list[0].getName(), str(block))) typeid = name_list[0].getType() if not typeid: raise RuntimeError("name '%s' has no type" % (name_list[0])) for ii in name_list[1:]: current_typeid = ii.getType() # Check that there is no conflicting type. if current_typeid: if current_typeid != typeid: raise RuntimeError("member access %s type %s does not match base type %s" % (str(ii), str(current_typeid), str(typeid))) continue # No existing type, fill it in. ii.setType(typeid) ret += [name_list] return sorted(ret, key=len, reverse=True) def getBlock(self): """Gets the block that declared the original name.""" return self.__blocks[0] def getBlockCount(self): """Gets the number of blocks.""" return len(self.__blocks) def getBlockList(self): """Accessor.""" return self.__blocks def getName(self): """Gets the declared name associated with this name strip.""" return self.__names[0] def getNameCount(self): """Gets the number of names in this name strip.""" return len(self.__names) def getNameList(self): """Accessor.""" return self.__names def isUniform(self): """Tells if this name strip originates from an uniform block.""" return is_glsl_block_uniform(self.__blocks[0]) def lockNames(self, op): """Lock all names to given string.""" for ii in self.__names: ii.lock(op) def updateNameTypes(self): """Update all name types and check for errors.""" typeid = self.getName().getType() if not typeid: raise RuntimeError("declared name in GlslNameStrip has no type id") for ii in self.__names[1:]: found_type = ii.getType() if found_type: if typeid != found_type: raise RuntimeError("conflicting type found for %s: %s vs. %s" % (str(ii), str(typeid), str(found_type))) else: ii.setType(typeid) def __lt__(lhs, rhs): """Comparison operator.""" return lhs.getNameCount() < rhs.getNameCount() def __str__(self): """String representation.""" return "GlslNameStrip('%s', %i)" % (self.getName().getName(), self.getNameCount()) ######################################## # Functions ############################ ######################################## def collect_member_uses(block, uses): """Collect member uses from inout struct block.""" for ii in block.getMembers(): name_object = ii.getName() name_string = name_object.getName() if name_string in uses: uses[name_string] += [name_object] else: uses[name_string] = [name_object] def is_glsl_name_strip(op): """Tells if given object is a GLSL name strip.""" return isinstance(op, GlslNameStrip)
true
44d3b1b32fe317b75dc84bcf1a34576766e91631
Python
jquintus/PiProject
/Feather/button_and_led_matrix/code.py
UTF-8
1,168
2.609375
3
[ "MIT" ]
permissive
import time import digitalio import board import adafruit_matrixkeypad import simpleio cols = [digitalio.DigitalInOut(x) for x in (board.D9, board.D10, board.D11, board.D12, board.D13)] rows = [digitalio.DigitalInOut(x) for x in (board.D6, board.D7)] keys = ((1, 2, 4, 8, 16), (32, 64, 128, 256, 512)) # rowsx = [digitalio.DigitalInOut(board.D6)] # keysx = (("Blue 1", "White 1", "Yellow 1", "Black 1", "Red 1")) keypad = adafruit_matrixkeypad.Matrix_Keypad(rows, cols, keys) print ("setting up LEDs") data = digitalio.DigitalInOut(board.D2) data.direction = digitalio.Direction.OUTPUT latch = digitalio.DigitalInOut(board.D4) latch.direction = digitalio.Direction.OUTPUT clk = digitalio.DigitalInOut(board.D3) clk.direction = digitalio.Direction.OUTPUT print ("Start pressing buttons") while True: keys = keypad.pressed_keys print("Pressed: ", keys) byte = sum(keys) # if (last_byte != byte and byte > 0): # write to 595 chip latch.value = False simpleio.shift_out(data, clk, byte, bitcount=10) print("sending: {0:#020b} {0}".format(byte),end="\n") latch.value = True last_byte = byte time.sleep(0.1)
true
192b37702cddbcc526c206775140d87cfb4b4be0
Python
jbrusey/cogent-house
/tests/model_tests/testRoom.py
UTF-8
3,664
2.875
3
[]
no_license
""" Test for the Sensor Type Classes """ #from datetime import datetime import datetime #Python Module Imports import sqlalchemy.exc import cogent.base.model as models import tests.base as base import json class TestRoom(base.ModelTestCase): def _serialobj(self): """Helper Method to provde an object to serialise""" theItem = models.Room(id=1, name="Test Room", roomTypeId = 1) return theItem def _dictobj(self): """Helper method to provide a dictionay representaiton of the object generated by _serialobj()""" theDict = {"__table__":"Room", "id":1, "name":"Test Room", "roomTypeId" : 1 } return theDict def testEq(self): """Test for Equality""" item1 = models.Room(id=1, name="Test Room", roomTypeId = 1) item2 = models.Room(id=1, name="Test Room", roomTypeId = 1) self.assertEqual(item1,item2) self.assertReallyEqual(item1,item2) #Not massivly botherered about Id at the moment item2.id = 5 self.assertEqual(item1,item2) self.assertReallyEqual(item1,item2) def testNEQ(self): item1 = models.Room(id=1, name="Test Room", roomTypeId = 1) item2 = models.Room(id=1, name="Test Room", roomTypeId = 1) self.assertEqual(item1,item2) item2.name = "FOO" self.assertNotEqual(item1,item2) self.assertReallyNotEqual(item1,item2) item2.name = item1.name item2.roomTypeId = 2 def testCmp(self): """Test Compaison function (actually __lt__ for Py3K Comat)""" item1 = models.Room(id=1, name="Test Room", roomTypeId = 1) item2 = models.Room(id=1, name="Test Room", roomTypeId = 1) self.assertEqual(item1,item2) #Order On Name item2.name = "A_Test" self.assertGreater(item1,item2) item2.name = "Z_Test" self.assertLess(item1,item2) item2.name = item1.name item2.roomTypeId = 0 self.assertGreater(item1,item2) item2.roomTypeId = 2 self.assertLess(item1,item2) # def testAssociations(self): # """Test if backrefs and foriegn keys work correctly""" # session = self.session # roomtype = models.RoomType(name = "Foo Type") # session.add(roomtype) # session.flush() # room = models.Room(name = "Test Room", # roomTypeId = roomtype.id) # session.add(room) # session.flush() # session.commit() # #And then do the check the backrefs etc # qryroom = session.query(models.Room).filter_by(name="Test Room").first() # print "-" # print "-"*70 # print "OR RM: ",room # print "NE RM: ",qryroom # print "OR TY: ",roomtype # print "TY ID: ",qryroom.roomTypeId # print "-"*70 # self.assertEqual(room,qryroom) # #Check the Ids match # qrytype = qryroom.roomTypeId # self.assertEqual(qrytype, roomtype.id) # #And check on the backrefs # qrytype = qryroom.roomType # self.assertEqual(qrytype,roomtype)
true
966d056edffa7772267f787a2ad80e4d062bc860
Python
agdsn/pycroft
/tests/helpers/test_functional.py
UTF-8
1,305
2.640625
3
[ "Apache-2.0" ]
permissive
# Copyright (c) 2023. The Pycroft Authors. See the AUTHORS file. # This file is part of the Pycroft project and licensed under the terms of # the Apache License, Version 2.0. See the LICENSE file for details import pytest from pycroft.helpers.functional import map_collecting_errors @pytest.mark.parametrize( "input", [ [1, 2, 3], [object(), 0, 7, "foo", None], list(reversed([object(), 0, 7, "foo", None])), [], [None], [float("NaN")], ], ) @pytest.mark.parametrize("error_type", [Exception, ZeroDivisionError, ValueError]) def test_identity_no_error_collection(input, error_type): assert map_collecting_errors(lambda x: x, error_type, input) == (list(input), []) @pytest.mark.parametrize( "input, expected_result", [ ([1, 0, 2, 0, 3], [1, 2, 3]), ([1, 0, 2, 0, 3, 0], [1, 2, 3]), ([0, 1, 0, 2, 0, 3], [1, 2, 3]), ([0, 1, 0, 2, 0, 3, 0], [1, 2, 3]), ], ) def test_error_collection_inversion(input, expected_result): result, errors = map_collecting_errors( lambda x: 1 / (1 / x), ZeroDivisionError, input ) assert result == expected_result assert len(errors) == len(input) - len(expected_result) assert all(isinstance(err, ZeroDivisionError) for err in errors)
true
62f959e0b4126bbc963087ca6ec694a464c31533
Python
vivek111/Pywork
/stack.py
UTF-8
854
4.21875
4
[]
no_license
def push(stack,ele): stack.append(ele) return def pop1(stack): x=stack.pop() return x def display(stack): print(stack) stack=[] top=-1 size=10 while True: print("1.Push\n2.Pop\n3.Display\n4.Exit") x=int(input("Enter your choice\n")) if x==1: if top==size-1: print("stack Full") else: ele=int(input("Enter the element to push\n")) top+=1 push(stack,ele) elif x==2: if top==-1: print("Empty stack") else: print("Deleted element=",pop1(stack)) top-=1 elif x==3: if top==-1: print("Empty stack") else: print("Elements of stack are\n") display(stack) else: break
true
f9d4c71610b59a7a0415beb1f520e362f83781c5
Python
SharujanMuthu/NhlDiscordBot
/WebScraper.py
UTF-8
1,023
2.625
3
[]
no_license
import urllib import urllib.request from bs4 import BeautifulSoup import os def create_soup(url): page = urllib.request.urlopen(url) link = BeautifulSoup(page, 'html.parser') return link soup = create_soup('https://www.hockey-reference.com/leagues/NHL_2022_skaters.html#stats::points') def get_data(): ''' Gets the real time stats of every NHL player who has played a game in the current NHL season and saves it to nhl_stats.csv ''' all_data = "" for records in soup.select('tr[class!="over_header"]'): team_data = "" for data in records.findAll('td'): team_data = team_data + "," + data.text all_data = all_data + '\n' + team_data[1:] headers = "Rk,Player,Age,Tm,Pos,GP,G,A,PTS,+/-,PIM,PS,EV,PP,SH,GW,EV,PP,SH,S,S%,TOI,ATOI,BLK,HIT,FOW,FOL,FO%" file=open(os.path.expanduser('nhl_stats.csv'), 'wb') file.write(bytes(headers, encoding='ascii', errors='ignore')) file.write(bytes(all_data, encoding='ascii', errors='ignore'))
true
38aa6ce2c06c64000a2353e4deb5f8b2804f2a38
Python
VerstraeteBert/algos-ds
/test/vraag4/src/isbn/71.py
UTF-8
3,031
3.640625
4
[]
no_license
def isISBN_13(getal): if isinstance(getal, int): return False for i in range(len(getal)): if getal[i].isalpha(): return False som1 = 0 som2 = 0 for i in range(1, 12, 2): som1 += int(getal[i - 1]) for i in range(2, 13, 2): som2 += int(getal[i - 1]) dertiende = (10 - (som1 + (3 * som2) % 10) % 10) if dertiende == int(getal[12]): return True elif dertiende == 10 and int(getal[12]) == 0: return True else: return False def overzicht(codes): dict = {} for element in codes: if isISBN_13(element): letter = element[3] if letter == '0' or letter == '1': try: teller = dict['Engelstalige landen'] teller += 1 dict['Engelstalige landen'] = teller except KeyError: dict['Engelstalige landen'] = 1 elif letter == '2': try: teller = dict['Franstalige landen'] teller += 1 dict['Franstalige landen'] = teller except KeyError: dict['Franstalige landen'] = 1 elif letter == '3': try: teller = dict['Duitstalige landen'] teller += 1 dict['Duitstalige landen'] = teller except KeyError: dict['Duitstalige landen'] = 1 elif letter == '4': try: teller = dict['Japan'] teller += 1 dict['Japan'] = teller except KeyError: dict['Japan'] = 1 elif letter == '5': try: teller = dict['Russischtalige landen'] teller += 1 dict['Russischtalige landen'] = teller except KeyError: dict['Russischtalige landen'] = 1 elif letter == '7': try: teller = dict['China'] teller += 1 dict['China'] = teller except KeyError: dict['China'] = 1 elif letter == '6' or letter == '8' or letter == '9': try: teller = dict['Overige landen'] teller += 1 dict['Overige landen'] = teller except KeyError: dict['Overige landen'] = 1 else: try: teller = dict['Fouten'] teller += 1 dict['Fouten'] = teller except KeyError: dict['Fouten'] = 1 tuple = ('Engelstalige landen','Franstalige landen','Duitstalige landen','Japan','Russischtalige landen','China','Overige landen','Fouten') for element in tuple: print(element + ':{0:>2}'.format(dict[element]))
true
15c01ca5df97d2e0ff861a3f8cc6bd350f4ab89d
Python
quantumech3/WUSB-Donor-Monitor
/Source/debug.py
UTF-8
1,223
3.59375
4
[]
no_license
# -*- coding: utf-8 -*- ''' Created by Scott Burgert on 2/20/2019 Project name: WUSB Donor Monitor © Module name: debug.py Module description: Has methods used by different modules to log events and warnings. These logs only show when 'VERBOSE' = True ''' # Hard coded constant. if true, status, log and warning messages will show in console VERBOSE = True def success(msg): ''' Prints value of ‘msg’ in green if VERBOSE = True :param msg: Any :return: None ''' if VERBOSE: # Print green message print("\n\u001b[32m" + "SUCCESS[]: " + msg + "\u001b[0m") def warn(msg): ''' Prints value of ‘msg’ in yellow if VERBOSE = True :param msg: Any :return: None ''' if VERBOSE: # Print yellow message print("\n\u001b[33m" + "WARN[]: " + msg + "\u001b[0m") def err(msg): ''' Prints ‘msg’ in red regardless of VERBOSE value :param msg: Any :return: None ''' # Print red message print("\n\u001b[31m" + "ERROR[]: " + msg + "\u001b[0m") def log(msg): ''' Prints error message in grey if VERBOSE = True :param msg: Any :return: None ''' if VERBOSE: print('\nLOG[]: ' + msg)
true
fedbbeb5789f7167280c0130ad18e791785f5498
Python
stuglaser/advent2020
/days/day10.py
UTF-8
1,162
2.671875
3
[]
no_license
#!/usr/bin/env python3 from collections import deque from collections import namedtuple import enum import itertools import unittest import sys from utils import * INPUT = 'inputs/input10.txt' class TestToday(unittest.TestCase): def test_common(self): pass def main(): nums = [] with open(INPUT, 'r') as fin: for line in fin: line = line.rstrip() nums.append(int(line)) BUILTIN = max(nums) + 3 CHARGE = 0 nums.sort() num1 = 0 num3 = 1 for i in range(len(nums)): last = 0 if i == 0 else nums[i - 1] if nums[i] - last == 3: num3 += 1 elif nums[i] - last == 1: num1 += 1 print('part 1:', num1 * num3) nums = [0] + nums + [BUILTIN] ways = [0] * len(nums) ways[0] = 1 for i in range(1, len(nums)): j = i - 1 while j >= 0 and nums[j] >= nums[i] - 3: ways[i] += ways[j] j -= 1 print('part 2:', ways[-1]) if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] == 'test': unittest.main(argv=sys.argv[:1] + sys.argv[2:]) else: main()
true
c0c8c7acfbd1d95de93f87e119551a94fe14c644
Python
simon-zhangmuye/leetcode
/83.py
UTF-8
745
3.765625
4
[]
no_license
# coding=utf-8 __author__ = 'Simon Zhang' __date__ = '2019/10/12 15:26' # 给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点。 # # 示例: # # 给定一个链表: 1->2->3->4->5, 和 n = 2. # # 当删除了倒数第二个节点后,链表变为 1->2->3->5. class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: end = head start = head for i in range(n): end = end.next if not end: return head.next while end.next: start = start.next end = end.next if start.next.next: start.next = start.next.next else: start.next = None return head
true
de6d80cd4f822dc2cc6be8d742bc78b5881eee49
Python
Leoberium/CS
/stepik_data_structures/network_packets.py
UTF-8
942
3.296875
3
[]
no_license
import sys class Processor: def __init__(self, size, n): self.times = [(-1, -1)] * n self.free = size self.queue = [] self.cnt = 0 def add_packet(self, a, d): time = a while self.queue and self.times[self.queue[0]][1] <= a: self.queue.pop(0) self.free += 1 if self.queue: time = self.times[self.queue[-1]][1] if self.free: self.free -= 1 self.times[self.cnt] = (time, time + d) self.queue.append(self.cnt) self.cnt += 1 def output(self): for start, end in self.times: print(start) def main(): size, n = map(int, sys.stdin.readline().split()) p = Processor(size, n) for _ in range(n): arrival, duration = map(int, sys.stdin.readline().split()) p.add_packet(arrival, duration) p.output() if __name__ == '__main__': main()
true
21b7e43bb7d5eda5c41ca5496a2d1923ca8efae3
Python
abrarhamzah/Hearty
/models/classification/Naive_Bayes/naiveBayes.py
UTF-8
2,303
3.078125
3
[]
no_license
######################################################### # File : naiveBayes.py # Project : FIT3164 project # # Date : 5/10/2020 # Author : Abrar Fauzan Hamzah # # Purpose : Implement Naive Bayes classifier # & test Gaussian, multinomial and Bernoulli ######################################################## import pandas as pd import numpy as np from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score from sklearn import metrics from sklearn.naive_bayes import MultinomialNB, GaussianNB, BernoulliNB from sklearn.model_selection import cross_val_score #Read external data Cad_train = pd.read_csv('./data/filtered_features/heart_train.csv') Cad_test = pd.read_csv('./data/filtered_features/heart_test.csv') #extract Xand Y Y_train = Cad_train.CAD_Yes.values Y_test = Cad_test.CAD_Yes.values X_train = Cad_train.drop(['CAD_Yes'], axis = 1) X_test = Cad_test.drop(['CAD_Yes'], axis = 1) #Classifier Gaussian Gaus_train = GaussianNB() Gaus_train.fit(X_train, Y_train) expected = Y_test Gaus_predicted = Gaus_train.predict(X_test) # summarize the fit of the model #print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, Gaus_predicted)) # Binomial binomial = BernoulliNB() binomial.fit(X_train, Y_train) binomial_predicted = binomial.predict(X_test) # summarize the fit of the model #print(metrics.classification_report(expected_test, predicted_test)) print(metrics.confusion_matrix(expected, binomial_predicted)) #binomial model accuracy binomial.score(X_test, Y_test) #cv 10 scores = cross_val_score(binomial, X_test, Y_test, cv=10, scoring="accuracy") meanScore = scores.mean() print(meanScore * 100) # Multinomial multi = MultinomialNB() multi.fit(X_train, Y_train) expected =Y_test predicted = multi.predict(X_test) # summarize the fit of the model #print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted)) multi.score(X_train, Y_train) scores = cross_val_score(multi, X_test, Y_test, cv=10, scoring="accuracy") meanScore = scores.mean() print(scores) print(meanScore * 100) # Gaussian : 71.4% (w/o cv) & 80.11% (with cv) # Bernoulli : 83.52% (w/o cv) & 84.89% (with cv) # Multinomial : 58.24% (w/o cv) & 67% (with cv)
true
4913910752d8e22574ba640551da0b59adcb2719
Python
alexlaplap/Pycharm-Exercises
/Exercise 06-Character Length/main.py
UTF-8
204
3.9375
4
[]
no_license
a = input('Please enter name: ') b = len(a) if b < 3: print('Name must be 3 characters long.') elif b > 50: print('Name must not exceed 50 characters long.') else: print('Name is registered.')
true
b8dae593bb847a64e5fc5755c82dbe83a8c5f44e
Python
woider/runoob
/sorting/python_sort.py
UTF-8
249
2.765625
3
[]
no_license
''' 原生排序 ''' from exec_time import exectime from random_list import load_random_array @exectime def python_sort(array): array.sort() return array array = load_random_array('numbers.json') print(python_sort(array))
true
d54b40791dd81650f2ebf736c25771fe901c0a52
Python
christinaWiss/math_projects
/math_projects/ShortRatesModels/PythonCode/dothan.py
UTF-8
965
2.75
3
[]
no_license
import constants import main import matplotlib.pyplot as plt """The dothan Model model: Here the differential equation is given by dr(t)=βr(t)dt +σr(t)dW∗(t). """ beta = -.06 sigma = 0.1 initial_r = 0.08 def short_rate_dothan_model(beta, sigma, initial_r): Brownian_Motion = [i / (len(constants.gather_unit)) ** 0.5 for i in main.random_walk(prob=0.5, gather=constants.gather_unit)] short_rate = [initial_r] last = initial_r last_b = 0 for i in Brownian_Motion: short_rate += [last + (beta * last)/constants.width + sigma * last * (i-last_b)] last = short_rate[-1] last_b = i short_rate.pop() return short_rate r_path3 = short_rate_dothan_model(beta, sigma, .1) r_path2 = short_rate_dothan_model(beta, sigma, .1) r_path = short_rate_dothan_model(beta, .0, .1) plt.plot(constants.gather_unit, r_path3) plt.plot(constants.gather_unit, r_path2) plt.plot(constants.gather_unit, r_path) plt.show()
true
6014c4444fb3b89c61b612b4d488848a56b82964
Python
leeo1116/PyCharm
/Algorithms/leetcode_charlie/030_substring_with_concatenation_of_all_words.py
UTF-8
1,220
4.28125
4
[]
no_license
""" You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters. For example, given: s: "barfoothefoobarman" words: ["foo", "bar"] You should return the indices: [0,9]. (order does not matter). """ class Solution(object): def find_substring(self, s, words): """ find all indices of words concatenation in a string :type s: str :type words: list :param s: string that contains words :param words: words that have the same length :return: indices of all concatenation words in string s :rtype: list[int] """ if len(words) == 0: return [] word_len = len(words[0]) index = [] for i in range(len(s)): for j in range(len(words)): if s[j*word_len+i:j*word_len+i+word_len] not in words: j = 0 break if j == len(words)-1: index.append(i) return index s = Solution() print(s.find_substring("barfoothefoobarman", ["foo", "bar"]))
true
28dfed963268573039baf80a37e6ef29afe16f7b
Python
ulillilu/MachineLearning-DeepLearning
/01-04.All_Download_From_Link/cr_path.py
UTF-8
303
3.140625
3
[]
no_license
#상대 경로를 절대 경로로 전환 from urllib.parse import urljoin url = "http://example.com/html/a.html" print( urljoin(url, "b.html") ) print( urljoin(url, "sub/c.html") ) print( urljoin(url, "../index.html") ) print( urljoin(url, "../img/hoge.png") ) print( urljoin(url, "../css/hoge.css") )
true
a6dea4f0755681d6fa631e8d2b1328f10c030e71
Python
lanking520/CYTON_VETA_FILE
/Internet Model/Client side/gamepad (Always send).py
UTF-8
1,070
2.8125
3
[]
no_license
import time import pygame import SimpleGUICS2Pygame.simpleguics2pygame as simplegui import socket pygame.init() joy = pygame.joystick.Joystick(0) joy.init() out = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] s = socket.socket() # Create a socket object host = '192.168.32.191' # Get local machine IP port = 12345 # Reserve a port for your service. s.bind((host, port)) # Bind to the port s.listen(5) # Now wait for client connection. c, addr = s.accept() # Establish connection with client. print 'Got connection from', addr def joystick(): it = 0 #iterator pygame.event.pump() #Read input from the two joysticks for i in range(0, joy.get_numaxes()): out[it] = joy.get_axis(i) it+=1 #Read input from buttons for i in range(0, joy.get_numbuttons()): out[it] = joy.get_button(i) it+=1 out[16] +=1 return out def network(): package = joystick() c.send(str(package)) package_timer = simplegui.create_timer(50,network) package_timer.start()
true
1a38483cd4b38802fe04b121692fee8e0b4f6e85
Python
stat17-hb/algorithm
/geeksforgeeks/n진수 구하기.py
UTF-8
816
3.5625
4
[]
no_license
#%% n = 2 number = 32 from collections import deque deq = deque([number]) res = deque() while True: temp = deq.popleft() deq.append(temp // n) # 몫 res.appendleft(temp % n) # 나머지 if temp // n == 0 : break res #%% n = 2 number = 32 res = [] while True: q = number // n # 몫 res[:0] = [number % n] # 나머지 if number // n == 0 : break # 몫이 0일 때 멈춤 number = q res #%% n = 26 number = 26 res = "" while True: q = number // n # 몫 res = str(number % n) + res # 나머지 if number // n == 0 : break # 몫이 0일 때 멈춤 number = q int(res) #%% n = 5 number = 10**5 res = "" while True: q = number // n # 몫 res = str(number % n) + res # 나머지 if number // n == 0 : break # 몫이 0일 때 멈춤 number = q int(res)
true
1cef718723094f8741b730dba5c1b74a47c2d8de
Python
ken0105/competitive-programming
/procon-archive/atcoder.jp/dp/dp_h/Main.py
UTF-8
846
2.78125
3
[]
no_license
def main(): h, w = map(int, input().split()) a = [] for _ in range(h): a.append(input()) route = [[0] * w for _ in range(h)] has_wall_w, has_wall_h = False, False for i in range(h): for j in range(w): if i == 0 and a[i][j] == "." and not has_wall_h: route[i][j] = 1 elif i == 0 and a[i][j] == "#": has_wall_h = True elif j == 0 and a[i][j] == "." and not has_wall_w: route[i][j] = 1 elif j == 0 and a[i][j] == "#": has_wall_w = True for i in range(1, h): for j in range(1, w): if a[i][j] == "#": continue route[i][j] = route[i - 1][j] + route[i][j - 1] print(route[h - 1][w - 1] % (10 ** 9 + 7)) if __name__ == '__main__': main()
true
7031537917e2179a3e115f1a16ce02a816232b81
Python
fandiandian/python_learning_excerise
/part1.4习题/minima_in_permutation(最小置换).py
UTF-8
1,132
4.21875
4
[]
no_license
# 最小置换 # minima in permutation # 生成一个长度为 n ,个数为 m 的二维随机数组,输出生成的排列中从左至右极小数的数量的平均值 # 通过定义函数的,调用函数的方式实现 # (我对这个题目的理解可能有问题) import random m = int(input('请输入数组的行数\n')) n = int(input('请输入数组的列数\n')) # 随机数的范围定在 [1,20] # 构建函数 def minima_in_permutation(a,b): # 构建随机数组 rand_list = [[random.randrange(1,21) for i in range(b)] for j in range(a)] # 保存最小值 mimima 及其个数 time 的列表 times times = [] for ii in range(a): # 计数 time 及 最小值 time = 0 minima = min(rand_list[ii]) for jj in range(b): if rand_list[ii][jj] == minima: time += 1 times += [(minima,time)] print(times) total = 0 for iii in range(len(times)): total += times[iii][1] print('极小值的个数的为:{}'.format(total/len(times))) # 调用函数 minima_in_permutation(m,n)
true
6cbe8cb84b88dc7f1613e77ed18cfab7bb37bfb6
Python
jimmyhzuk/morning-stock-market-emails
/ScrapeInformation/pe_ratio.py
UTF-8
3,332
2.78125
3
[]
no_license
import requests import time year_month = time.strftime("%Y-%m-%d") r = requests.get('https://financialmodelingprep.com/api/v4/industry_price_earning_ratio?date=' + year_month +'&exchange=NYSE&apikey=e49e22b0865cfeea71aa0771ddf965a1') print(year_month) ratio = r.json() # for x in ratio: # print(x) year = ['2021'] for x in year: print('https://financialmodelingprep.com/api/v4/sector_price_earning_ratio?date='+ x + '-'+year_month +'&exchange=NYSE&apikey=e49e22b0865cfeea71aa0771ddf965a1') sectors = requests.get('https://financialmodelingprep.com/api/v4/sector_price_earning_ratio?date='+ x +'-'+ year_month +'&exchange=NYSE&apikey=e49e22b0865cfeea71aa0771ddf965a1') sectors = sectors.json() for i in sectors: if i['sector'] == 'Technology': print(x,": ",i) apple = [] times = [] new_group = [] stocks = ['AAPL','MA','BR','CSGP','GLOB','CDNS','PETS','NVR','TWLO','AMCX','FDX','CMG','TREX','PINS'] # stocks = ['AAPL','MA'] for stock in stocks: try: i = 0 price = requests.get('https://financialmodelingprep.com/api/v3/historical-price-full/'+stock+'?from=2021-03-12&to=2021-07-09&apikey=e49e22b0865cfeea71aa0771ddf965a1') # price = requests.get('https://financialmodelingprep.com/api/v3/historical-chart/30min/'+ stock +'?apikey=e49e22b0865cfeea71aa0771ddf965a1') price = price.json() price = price['historical'] # print(price) total_len = len(price) for x in price: if x['date'] > '2021-06-18 09:30:00': i += 1 # print(i," of ", total_len) price = x['high'] date = x['date'] json = {'price': price, 'date': date} apple.append(json) # if stock == 'PINS' and x['date']: # print(x) stock_price = [x['price'] for x in apple] minimum = min(stock_price) maximum = max(stock_price) # print(minimum) # print(maximum) for x in apple: if x['price'] == minimum: min_value = x # print(min_value) # print(min_value['date']) low = min_value['price'] for x in apple: if x['price'] == maximum and min_value['date'] < x['date']: max_value = x print(max_value['date']) print(min_value) print("max",max_value) high = max_value['price'] difference = float(((-(low)/high)+1)*100).__round__(2) print(stock,": ",difference,"%") print('\n') apple.clear() times.clear() except: Exception # print(low_date) # for x in times: # stock_date = x['time'] # unix = requests.get('https://showcase.api.linx.twenty57.net/UnixTime/tounix?date=' + stock_date ) # unix = float(unix.json()) # if unix > float(low_date): # new_group.append(x['price']) # highest = max(new_group) # for x in times: # if x['price'] == highest: # print(x) # apple.clear() # times.clear() # difference = float(((-(low/highest)+1)*100).__round__(2)) # print(stock,": ",difference,"%") # apple.clear() # times.clear() # print('\n') # print(unix.json())
true
fa31f5e2ba22494e270527767180f8155799e129
Python
SUDARSHANSHARMA1998/WebMaps
/Map1.py
UTF-8
1,218
2.828125
3
[]
no_license
import folium import pandas data=pandas.read_excel("Volcanoes.xlsx",sheet_name=0) data = data.dropna(how='any',axis=0) lat = list(data["Latitude"]) lon = list(data["Longitude"]) elev = list(data["Elevation"]) name= list(data["Volcano Name"]) def color_producer(elevation): if elevation < 1000: return 'green' elif 1000 <= elevation < 3000: return 'orange' else: return 'red' map = folium.Map(location=[50.21,8.80], zoom_start=2, tiles="Mapbox Bright") fgv = folium.FeatureGroup(name="Volcanoes") for lt, ln, el,s in zip(lat, lon, elev,name): fgv.add_child(folium.CircleMarker(location=[lt, ln], radius = 4, popup=str(s)+":"+str(el)+" m", fill_color=color_producer(el), fill=True, color = 'grey', fill_opacity=0.9)) fgp = folium.FeatureGroup(name="Population") fgp.add_child(folium.GeoJson(data=open('world.json', 'r', encoding='utf-8-sig').read(), style_function=lambda x: {'fillColor':'green' if x['properties']['POP2005'] < 10000000 else 'orange' if 10000000 <= x['properties']['POP2005'] < 30000000 else 'red','weight':1})) map.add_child(fgv) map.add_child(fgp) map.add_child(folium.LayerControl()) map.save("Map1.html")
true
4e11dce24d9fa6ec16ca8a2f5e41107da40dc5ce
Python
zerojpyle/learningPy
/ex10.py
UTF-8
502
3.921875
4
[]
no_license
tabby_cat = "\tI'm tabbed in." persian_cat = "I'm split\non a line." backslash_cat = "I'm \\ a \\ cat." fat_cat = """ I'll do a list: \t* Cat food \t* Fishies \t* Catnip\n\t* Grass """ print(tabby_cat) print(persian_cat) print(backslash_cat) print(fat_cat) # Practice escape character "\b" test = "{}{}{}{}" print(test.format('test','\b','\b','?')) print(test.format('test','\b','','?')) print(test.format('test','1','2','3')) print(test.format('test','\b\b\b\b','?','?')) print('...^...^...^...^')
true
87a6af65ccfc471025da4bb745d333e02488deeb
Python
dariaserkova/helper_scripts
/git-apies/archivation.py
UTF-8
1,643
2.625
3
[]
no_license
#!/usr/bin/env python ''' Docs to be written ''' import yaml import gitlab import sys ##################### ## Reading the configuration ##################### try: with open("config.yml", 'r') as ymlfile: cfg = yaml.load(ymlfile) except IOError: print('Can not find config.yml in the current directory') sys.exit(1) try: GITLAB_TOKEN = cfg['GITLAB_TOKEN'] GITLAB_ENDPOINT = cfg['GITLAB_ENDPOINT'] except KeyError, exc: print("No such option in config.yml - {}".format(str(exc))) sys.exit(1) ##################### ## Connection ##################### def connection(): global gitlab_conn gitlab_conn = gitlab.Gitlab(GITLAB_ENDPOINT,GITLAB_TOKEN) gitlab_conn.auth() ######################### ## Check if group exists ######################### def check_group(group_name): try: group = gitlab_conn.groups.get(group_name) except (gitlab.GitlabHttpError, gitlab.GitlabGetError, gitlab.GitlabError): group = None return group def main(): global gitlab_group_name gitlab_group_name = sys.argv[1] connection() gitlab_group = check_group(gitlab_group_name) for group_project in gitlab_group.projects.list(all=True): try: project = gitlab_conn.projects.get(group_project.get_id()) print(project.attributes.get('path_with_namespace') + '\n') project.archive() except gitlab.exceptions.GitlabCreateError, exc: print("Get an error for {}:\n{}".format(project, str(exc))) continue if __name__ == "__main__": main()
true
cb1bfe7e9ff6642f4f7977bf2609e9ffd3fc57d1
Python
DQDH/Algorithm_Code
/ProgramForLeetCode/LeetCode/75_sortColors.py
UTF-8
1,413
3.34375
3
[]
no_license
class Solution(object): def sortColors(self, nums): """ :type nums: List[int] :rtype: None Do not return anything, modify nums in-place instead. """ left,current,right=0,0,len(nums)-1 while current<=right: if left>right: break if nums[current]==0: nums[left],nums[current]=nums[current],nums[left] left+=1 current+=1 elif nums[current]==2: nums[right],nums[current]=nums[current],nums[right] right-=1 else: current+=1 return nums def sortColors1(self, nums): """ :type nums: List[int] :rtype: None Do not return anything, modify nums in-place instead. """ count=[0,0,0] for nums_i in nums: if nums_i==0: count[0]+=1 elif nums_i==1: count[1]+=1 else: count[2]+=1 i=0 while count[0]>0: nums[i]=0 i+=1 count[0]-=1 while count[1]>0: nums[i] = 1 i += 1 count[1] -= 1 while count[2]>0: nums[i] = 2 i += 1 count[2] -= 1 return nums print(Solution().sortColors([2,0,1]))
true
6d8ce500b8d8845ca66bd1949681e7ad7637b2d2
Python
barmako/cv_cifar10
/BOWPreprocessor.py
UTF-8
1,362
2.875
3
[]
no_license
import random import numpy as np from sklearn.cluster import MiniBatchKMeans from SIFTPreprocessor import SIFTPreprocessor class SIFTBOWPreprocessor: def __init__(self, decorated=SIFTPreprocessor(concat=False), n_words=1000, kmeans_train_size=5000): self.kmeans_train_size = kmeans_train_size self.n_words = n_words self.decorated = decorated self.kmeans = MiniBatchKMeans(n_words) self.kmeans_model = None def preprocess(self, data): self.decorated.preprocess(data) base_descs = self.decorated.get_descriptors(data) sifts = [] for sifts_array in base_descs: for sift in sifts_array: sifts.append(sift) print "Clustering sifts (shape %s) with k-means to build a codebook" % str(np.shape(sifts)) kmeans_train_data = random.sample(sifts, self.kmeans_train_size) self.kmeans_model = self.kmeans.fit(kmeans_train_data) def get_descriptors(self, data): data_sifts = self.decorated.get_descriptors(data) return [self.quantize_descriptor(sifts) for sifts in data_sifts] def quantize_descriptor(self, sifts): image_desc = np.zeros(self.n_words) words = self.kmeans_model.predict(sifts) for word in words: image_desc[word] = image_desc[word] + 1 return image_desc
true
8a0bda9cad85e4c958e677d16855b9e8df7b4d81
Python
ckoryom/MiningGitHub
/Application/menu.py
UTF-8
3,601
2.671875
3
[]
no_license
''' Created on May 6, 2014 @author: ckoryom ''' from Application.mining import Mining from Model.parameters import Parameters class Menu(object): mining = Mining() def selectMenu (self): menuId = 0 while (int(menuId) != 1 and int(menuId) != 2 and int(menuId) != 3 and int(menuId) != 4): print "1) Mine Repository Data to XML" print "2) Mine Repository Data to R" print "3) Mine Repository Data" print "4) Exit" menuId = raw_input("Selection:") if (int(menuId) == 1): self.mining.startMiningProcedure() elif (int(menuId) == 2): print "Using R Module..." parameters = Parameters() parameters.values["mineCommits"] = False parameters.values["writeXML"] = False parameters.values["useR"] = True parameters.values["issuesLimit"] = 10 parameters.values["labels"] = "bug" self.mining.menu = self self.mining.parameters = parameters self.mining.startMiningProcedure() elif (int(menuId) == 3): self.collectDataMenu() elif (int(menuId) == 4): return "" def groupOption(self): print "Group data size:" size = raw_input("size:") return size def collectDataMenu(self): menuId = 0 while (int(menuId) != 1 and int(menuId) != 2): print "1) Export Data to CSV" print "2) Read CSV File" menuId = raw_input("Selection:") if (int(menuId) == 1): self.exportToCsv() elif (int(menuId) == 2): self.readCsvFile() def exportToCsv(self): sinceDate = raw_input("Mine Issues Since: (DD/MM/YYYY)") untilDate = raw_input("Mine Issues Until: (DD/MM/YYYY)") parameters = Parameters() parameters.values["sinceDate"] = sinceDate parameters.values["untilDate"] = untilDate parameters.values["mineCommits"] = False parameters.values["writeXML"] = False parameters.values["useR"] = False parameters.values["exportToCsv"] = True parameters.values["issuesLimit"] = None parameters.values["labels"] = "bug" self.mining.menu = self self.mining.parameters = parameters self.mining.startMiningProcedure() def collectData(self): print "Finished" def readCsvFile(self): print "" def RMenu(self, rModule): menuId = 0 while (int(menuId) != 1 and int(menuId) != 2 and int(menuId) != 3 and int(menuId) != 4): print "1) Get MTTR" print "2) Get MTTF" print "3) Get MTBF" print "4) Get ALL" menuId = raw_input("Selection:") if (int(menuId) == 1): rModule.calculateMeanTimeToRepair(self.groupOption()) elif (int(menuId) == 2): rModule.calculateMeanTimeToFailure(self.groupOption()) elif (int(menuId) == 3): rModule.calculateMeanTimeBetweenFailure(self.groupOption()) elif (int(menuId) == 4): untouchedModule = rModule MTBF = rModule.calculateMeanTimeBetweenFailure(self.groupOption()) rModule = untouchedModule MTTR = rModule.calculateMeanTimeToRepair(self.groupOption()) rModule = untouchedModule MTTF = rModule.calculateMeanTimeToFailure(self.groupOption()) availability = rModule.calculateAvailability(MTBF, MTTR)
true
fd99ccb6903909dc5ead2da77e2e65b44f764e79
Python
patchiu/math-programmmmm
/ml/gradient descent 1d.py
UTF-8
1,460
4.0625
4
[]
no_license
#gradient descent 1d import numpy as np import matplotlib.pyplot as plt # 目標函數:y=x^2 def func(x): return np.square(x) # 目標函數一階導數:dy/dx=2*x def dfunc(x): return 2 * x def GD(x_start, df, epochs, lr): """ 梯度下降法。給定起始點與目標函數的一階導函數,求在epochs次反覆運算中x的更新值 :param x_start: x的起始點 :param df: 目標函數的一階導函數 :param epochs: 反覆運算週期 :param lr: 學習率 :return: x在每次反覆運算後的位置(包括起始點),長度為epochs+1 """ xs = np.zeros(epochs+1) x = x_start xs[0] = x for i in range(epochs): dx = df(x) # v表示x要改變的幅度 v = - dx * lr x += v xs[i+1] = x return xs # Main # 起始權重 x_start = 5 # 執行週期數 epochs = 15 # 學習率 lr = 0.3 # 梯度下降法 x = GD(x_start, dfunc, epochs, lr=lr) print (x) # 輸出:[-5. -2. -0.8 -0.32 -0.128 -0.0512] color = 'r' #plt.plot(line_x, line_y, c='b') from numpy import arange t = arange(-6.0, 6.0, 0.01) plt.plot(t, func(t), c='b') plt.plot(x, func(x), c=color, label='lr={}'.format(lr)) plt.scatter(x, func(x), c=color, ) plt.legend() plt.show()
true
145437ddfadf9c210bf34d37104791ff8d3b3c74
Python
matt-ankerson/racing_prediction
/Scraper/event_scraper.py
UTF-8
8,526
2.890625
3
[]
no_license
import requests import re from datetime import date from bs4 import BeautifulSoup from race_event_types import Event from race_event_types import Race from race_event_types import Competitor from race_event_types import Bet def ScrapeEvent(race_result_url): month_dict = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6, 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12} r = requests.get(race_result_url) # Create soup from web request result content content = r.content soup = BeautifulSoup(content, 'html5lib') # Get the event name event_element = \ soup.find('div', class_='infoPanelBar navbar').find('strong') event_name = event_element.contents[0].strip() # Get the event date event_date_arr = event_name.split(' ')[-3:] event_date = date(int(event_date_arr[2]), month_dict[event_date_arr[1]], int(event_date_arr[0])) # Create the event event = Event(name=event_name, date=event_date, races=[]) # Take the race containers from the soup # - This collection of elements contains info # about the races at this event. race_containers = soup.find_all('div', class_='content') for race_container in race_containers: # race_container is a tag try: race_title = race_container.find('div', class_='raceTitle')\ .contents[0].strip() except AttributeError: race_title = race_container.find('div', class_='header bold') race_title = race_title.text.strip().replace('index', '') race_det_arr = [x.rstrip() for x in race_title.split()] new_race = Race(race_number=race_det_arr[1], distance=race_det_arr[race_det_arr.index('m') - 1], stake=race_container.find('th', text='Stake:') .fetchNextSiblings()[0].contents[0], track_condition=race_container.find('th', text='Track:') .fetchNextSiblings()[0].contents[0], weather=race_container.find('th', text='Weather:') .fetchNextSiblings()[0].contents[0], bets=[], winning_margins=[], winner_owners=[], winner_trainer=None, winner_breeding=None, sub=None, winner_time=None, competitors=[]) # add first 3 results (if there are any) try: placing_results = \ race_container.find('table', class_='raceResults')\ .find('tbody').find_all('tr') win_results = placing_results[0].findChildren() second_results = placing_results[1].findChildren() third_results = placing_results[2].findChildren() # first place new_race.competitors.append(Competitor( place_in_race=( len(new_race.competitors) + 1), number=win_results[0].contents[0], name=win_results[1].contents[0], jockey=win_results[2].contents[0], win=win_results[3].contents[0].strip(), place=win_results[4] .contents[0].strip())) # second place new_race.competitors.append(Competitor( place_in_race=( len(new_race.competitors) + 1), number=second_results[0].contents[0], name=second_results[1].contents[0], jockey=second_results[2].contents[0], win=None, place=second_results[4].contents[0] .strip())) # third place new_race.competitors.append(Competitor( place_in_race=( len(new_race.competitors) + 1), number=third_results[0].contents[0], name=third_results[1].contents[0], jockey=third_results[2].contents[0], win=None, place=third_results[4] .contents[0].strip())) except: pass # add remaining competitors (if any are listed) try: also_ran = race_container.find('strong', text='ALSO RAN:')\ .parent.text.strip() # also_ran_arr is quite a dirty array also_ran_arr = [x.replace('ALSO RAN:\n', '') for x in also_ran.split(',')] for competitor in also_ran_arr: competitor_breakdown = competitor.split('-') # add other competitors to collection new_race.competitors.append( Competitor(number=competitor_breakdown[0], place_in_race=(len(new_race.competitors) + 1), name=competitor_breakdown[1], jockey=re.sub(r'\([^)]*\)', '', competitor_breakdown[2]), win=None, place=None, lengths_behind_leader=None)) except: pass # scrape bet information (of which there are an arbitrary number) try: bets = race_container.find('div', text='Bet Type')\ .parent.parent.parent.parent.find('tbody').find_all('tr') except: bets = [] for bet_row in bets: clean_bet_row = [x.text.strip() for x in bet_row.findChildren()] runners = re.split(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./<>?]', clean_bet_row[1]) runners = [x.strip() for x in runners] new_race.bets.append(Bet(bet_type=clean_bet_row[0], runners=runners, dividend=clean_bet_row[2])) # scrape remaining race information try: race_metadata = race_container\ .find('strong', text='Winning Margins:')\ .parent.parent.text.split('\n') race_metadata = \ [x.strip().split(':') for x in race_metadata if x != ''] race_metadata = \ [item for sublist in race_metadata for item in sublist] race_metadata = \ [x for x in race_metadata if x != ''] except: race_metadata = [] # sometimes these attributes are missing try: new_race.winning_margins = \ race_metadata[race_metadata.index('Winning Margins') + 1] except: pass try: new_race.winner_owners = \ race_metadata[race_metadata.index('Owners') + 1] except: pass try: new_race.winner_trainer = \ race_metadata[race_metadata.index('Trainer') + 1] except: pass try: new_race.winner_breeding = \ race_metadata[race_metadata.index('Breeding') + 1] except: pass try: new_race.sub = \ race_metadata[race_metadata.index('SUB') + 1] except: pass try: winners_time = \ race_metadata[race_metadata.index('Winners Time') + 1: race_metadata.index('Winners Time') + 3] new_race.winner_time = winners_time[0] + ':' + winners_time[1] except: pass # append this race to the event event.races.append(new_race) return event # event = ScrapeEvent("https://ebet.tab.co.nz/results/DBAI-reslt03251700.html") # print(str(event))
true
f86ab10f51621e1828f0e14ded911f9a6ebf2b34
Python
alexandraback/datacollection
/solutions_1483488_1/Python/rfw/actually_c.py
UTF-8
839
3.25
3
[]
no_license
import math import multiprocessing import functools def rotations(n): results = [] expn = int(math.log(n, 10)) exp = 10 ** expn for _ in xrange(0, expn): n, r = divmod(n, 10) n += r * exp results.append(n) return frozenset(results) def n_rotations(p, a, b): results = set() for r in p.map(functools.partial(rots_for, a, b), xrange(a, b)): results |= r return len(results) def rots_for(a, b, n): results = set() for m in rotations(n): if a <= m <= b and n != m: results.add(frozenset([n, m])) return results if __name__ == "__main__": p = multiprocessing.Pool(20) for i in xrange(1, int(raw_input()) + 1): x, y = [ int(j) for j in raw_input().split(" ") ] print "Case #{0}: {1}".format(i, n_rotations(p, x, y))
true
0d0176f631237c0ed0be8fe261d80b91276049a3
Python
00116/TouPy
/hai.py
UTF-8
1,434
3.484375
3
[]
no_license
# 牌の種類などを管理する class Hai: KIND = {0: '萬', 1: '筒', 2: '索', 3: '東', 4: '南', 5: '西', 6: '北', 7: '白', 8: '発', 9: '中'} AKADORA = {16: '赤5萬', 52: '赤5筒', 88: '赤5索'} # number0to135に0から135の整数を入力するとその牌の内容が生成される # self.kindは0~3までありそれぞれ萬子筒子索子字牌を表す # self.numberは数牌では数字(-1)を表し、字牌では0から順に東南西北白発中を表す # self.akaariは赤ドラが存在するゲームの際に全ての牌においてTrueとなる # self.akahaiはその牌自体が赤ドラの際にTrueとなる def __init__(self, number0to135, aka=False): self.number0to135 = number0to135 self.akaari = aka self.akahai = False # 数牌の場合の処理 if self.number0to135 < 108: self.kind = self.number0to135 // 36 self.number = self.number0to135 // 4 - self.kind * 9 if aka and self.number0to135 in self.AKADORA: self.str = self.AKADORA[self.number0to135] self.akahai = True else: self.str = str(self.number + 1) + self.KIND[self.kind] # 字牌の場合の処理 else: self.kind = 3 self.number = (self.number0to135 - 108) // 4 self.str = self.KIND[self.kind + self.number]
true
4de0a47906d8206765327d4100256027f1bef214
Python
kohei-okazaki/work-3g
/ha-selenium/src/main/python/common/util.py
UTF-8
950
2.890625
3
[]
no_license
# -*- coding:utf-8 -*- ''' Created on 2020/06/09 健康管理アプリで使用する共通的な関数をまとめたPython @version: 1.0.0 ''' from src.main.python.login.login_auth import LoginAuth from src.main.python.login.login_form import LoginForm def login_default_selenium_user(driver): ''' 健康情報画面がログイン後の画面のため、最初にログイン処理を行う @driver Driver ''' LoginAuth(driver).doLogin(LoginForm({ "mailAddress": "selenium@gmail.com", "password": "seleniumuser", })) def setTextById(driver, element_id, text): ''' 指定したブラウザに文字列を設定する @param element_id ブラウザ情報のDOMのキー @param text 設定対象文字列 ''' driver.find_element_by_id(element_id).click() driver.find_element_by_id(element_id).clear() driver.find_element_by_id(element_id).send_keys(text)
true
80f6470d558ab11a59b0e120f880ced6c08ce201
Python
saraselis/ProgramcaoOrientadaObjetosEC
/Ativades de Sala/Atividade_06/ControleEstoque.py
UTF-8
8,404
3.078125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # # # Atividade 06 - POO # Projete e implemente o sistema que faz controle de estoque de uma dessas plataformas de venda online, guardando a disposição dos itens nos locais de armazenamento, tipos de pagamento e preço de frete para a entrega. # * Banco onde vamos gerir o estoque dos produtos # In[1]: from pymongo import MongoClient # In[2]: cliente = MongoClient('mongodb://localhost:27017/') db = cliente.sistema produtos = db.produtos # In[3]: produtos # * Biblioteca que vamos utilizar pra abrir o modelo pra realizar a predicao das futuras vendas # In[4]: import joblib # * Logs para acompanhar o sistema # In[5]: import logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # * Excções personalizadas do sistema # In[6]: class ModeloZoado(Exception): ''' Excecao estourada quando não se consegue importar o modelo para prever as vendas. ''' def __init__(self): super().__init__("Seu modelo por algum motivo não pode ser importado!") # In[7]: class Generica(Exception): ''' Excecao estourada em casos genericos nao previstos pelo sistema. ''' def __init__(self): super().__init__("Ocorreu um erro, estamos verificando!") # * Classe generica para instanciar os produtos # In[8]: class Produto: ''' Instância um produto a ser trabalhado no sistema de estoque. ''' def __init__(self, _id: int, nome: str, lugar: str, tipo_pagamento: str, preco_frete: float, preco_produto: float, quantidade: int): self._id = _id self._nome = nome self._lugar = lugar self._tipo_pagamento = tipo_pagamento self._preco_frete = preco_frete self._preco_produto = preco_produto self._quantidade = quantidade @property def nome(self) -> str: ''' Retorna o nome do produto. ''' return self._nome @nome.setter def nome(self, new_name: str): ''' Altera o nome do produto :new_name: novo nome ''' self._nome = new_name @property def lugar(self) -> str: ''' Retorna o lugar onde o produto será colocado. ''' return self._lugar @lugar.setter def lugar(self, new_lugar: str): ''' Altera o lugar do produto :new_lugar: novo lugar ''' self._lugar = new_lugar @property def tipo_pagamento(self) -> str: ''' Retorna o tipo de pagamento aceito por aquele produto. ''' return self._tipo_pagamento @tipo_pagamento.setter def tipo_pagamento(self, new_pag: str): ''' Altera o tipo de pagamento do produto. :new_pag: novo pagamento ''' self._tipo_pagamento = new_pag @property def preco_frete(self) -> float: ''' Retorna o preco do frete daquele produto. ''' return self._preco_frete @preco_frete.setter def preco_frete(self, new_frete: float): ''' Altera o preco de frete do produto. :new_frete: novo frete ''' self._preco_frete = new_frete @property def preco_produto(self) -> float: ''' Retorna o preco do produto. ''' return self._preco_produto @preco_produto.setter def preco_produto(self, new_preco: float): ''' Altera o preco do produto. :new_preco: novo preco ''' self._preco_produto = new_preco @property def quantidade(self) -> int: ''' Retorna a quantidade daquele produto. ''' return self._quantidade @quantidade.setter def quantidade(self, new_qtd: int): ''' Altera a quantidade do produto. :new_qtd: nova quantidade ''' self._quantidade = new_qtd def _decorator(foo): ''' Decorador para a funcao de predict. ''' def mostra(self) : print("Siga Rexa compras nas redes sociais e não perca as melhores ofertas!") foo(self) return mostra @_decorator def predict(self) -> str: ''' Realiza predição de venda baseado na quantidade do produto e no preco deles. O modelo foi treinado utilizando o preco do produto e a quantidade em estoque para prever a venda deste produto. ''' try: logging.info('Iniciando a predicao') modelo = joblib.load('estoque.joblib') except FileNotFoundError as error: logging.warning('Excecao estourada') mensagem = "Não pudemos finalizar sua compra :( mas já estamos verificando!" raise ModeloZoado except Exception as error: logging.warning('Excecao estourada') mensagem = "Não pudemos finalizar sua compra :( mas vamos verificar o que ocorreu!" raise Generico else: estoque = self._quantidade preco = self._preco_produto input_ = [[estoque, preco]] venda = modelo.predict(input_)[0] logging.info('Predicao finalizada') mensagem = f"A previsão de vendas do produto {self._nome} é de {int(venda)} unidades, então corra já e garanta a sua!" finally: logging.info('Processo finalizado') print("Obrigada por comprar conosco") print(mensagem) return mensagem def __str__(self) -> str: return "O produto foi instanciado" # In[9]: tv = Produto(3, 'tv da sony', 'Setor A', 'Boleto', 19.0, 10.8, 2) # In[10]: print(tv) # In[11]: tv._id, tv.nome, tv.lugar, tv.tipo_pagamento, tv.preco_frete, tv.preco_produto, tv.quantidade # In[12]: tv.predict() # In[13]: class Sistema(): ''' Instancia um sistema de gencia de estoque. ''' def __init__(self, nome_sistema: str): self._nome_sistema = nome_sistema @property def nome_sistema(self) -> str: ''' Retorna o nome do sistema. ''' return self._nome_sistema @nome_sistema.setter def nome_sistema(self, new_nome: str): ''' Altera o nome do sistema. :new_name: novo nome ''' self._nome_sistema = new_nome def coloca_produto(self, prod: Produto) -> str: ''' Insere o produto no banco de dados. Params :prod: Produto a ser inserido ''' produto = produtos.insert_one(prod.__dict__).inserted_id logging.info('Produto inserido no banco') return f'Produto: {prod._nome} inserido!' def mostra_prod(self, prod: Produto) -> dict: ''' Mostra o produto no banco de dados. Params :prod: Produto a ser mostrado ''' logging.info('Mostrando dados do banco') return produtos.find_one({"_id": prod._id}) def retira_produto(self, prod: Produto): ''' Retira o produto no banco de dados. Params :prod: Produto a ser retirado ''' produtos.delete_one({"_id": prod._id}) logging.info('Produto excluido no banco') def atualiza_produto(self, prod: Produto, attr, new_attr): ''' Atualiza o produto no banco de dados. Params :prod: Produto a ser atualizado ''' produtos.update_one({'_id': prod._id}, {'$set': {attr: new_attr}}) logging.info('Produto atualizado') @staticmethod def mostra_todos() -> dict: ''' Mostra os produtos no banco de dados. ''' logging.info('Mostrando dados do banco') return produtos.find() def __str__(self) -> str: return "O sistema foi instanciado" # In[14]: sis = Sistema('sistemoso') # In[15]: print(sis) # In[16]: sis.nome_sistema # In[17]: sis.coloca_produto(tv) # In[18]: sis.mostra_prod(tv) # In[19]: sis.atualiza_produto(tv, '_nome', 'Tevelisao') # In[20]: sis.mostra_prod(tv) # In[21]: sis.retira_produto(tv) # In[22]: sis.mostra_todos() # In[ ]:
true
f4dd417072d632fe028beef1070a1551aa29ddad
Python
MCRogersI/Panorama
/Users/features.py
UTF-8
3,860
3.1875
3
[]
no_license
from pony.orm import * #Luego deberíamos cambiar la importación de pony para que no se importen todas las cosas con * (mala práctica). import os import hashlib import pandas from tabulate import tabulate def createUser(db,name, level,password): ''' Este método crea una nueva entrada en la tabla de Usuarios de la base de datos Si es que en el futuro un administrador (usuario con level = 1) desea crear un nuevo usuario, este puede crearlo con una contraseña por defecto (0000 por ejemplo como para los codigos PIN de las tarjetas SIM) y notificar al usuario respectivo para que él cambie su contraseña''' salt,hashed_password = createSaltHash(password) with db_session: u = db.Users(user_name = name, user_level = level,salt = salt, hashed_password = hashed_password) commit() #falta un editUser o no? def editUserLevel(db, name, new_level, password): with db_session: if checkPassEntry(db, name, password): u = db.Users.get(user_name = name) u.user_level = new_level print('\n Usuario editado con éxito.') else: print('\n Usuario o contraseña incorrectos.') commit() def deleteUser(db,name): with db_session: db.Users.get(user_name = name).delete() def printUsers(db): with db_session: print('') Users = db.Users.select() data = [u.to_dict() for u in Users] df = pandas.DataFrame(data, columns = ['user_name','user_level']) df.columns = ['RUT de usuario', 'Nivel de usuario'] print( tabulate(df, headers='keys', tablefmt='psql')) def checkPassEntry(db,name_request, password): ''' Este método revisa que los datos ingresados para el sign-up sean correctos Retorna True si lo son y False en el caso contrario ''' with db_session: user = db.Users.get(user_name = name_request) if user == None: return False else: if hashComparison(password,user.salt,user.hashed_password): return True else: return False def getUserLevel(db,user_name): ''' Este método entrega el nivel del usuario correspondiente al nombre de usuario entregado.''' with db_session: user = db.Users.get(user_name = user_name) return user.user_level def createSaltHash(password): ''' Este método produce un salt y luego una 'hashed password' a partir de la contraseña ingresa. Retorna ambos valores en una tupla ''' salt = os.urandom(64) #Es muy importante notar que aquí no se verifica si la salt ya fue usada para el hash de otro usuario #Lo ideal es que los salt sean únicos, pero dado el tamaño de usuarios de la empresa, la probabilidad de que una salt se repita #es muy baja (y aunque se repitiera no debería ser un problema). #Decidimos hacerlo así por simplicidad encoded_pass = password.encode('utf-8') hashed_password = hashlib.sha256(salt + encoded_pass).digest() return (salt, hashed_password) def changePassword(db,user_name, password): ''' Este método modifica la contraseña del usuario correspondiente ''' with db_session: user = db.Users.get(user_name = user_name) salt, hashed_password = createSaltHash(password) user.salt = salt user.hashed_password = hashed_password def hashComparison(password,salt,hashed_password): ''' Este método verifica si la contraseña entrega (sometida al algoritmo de hash) produce el valor esperado para el hashed_pass Retorna True si el valor coincide y False si no''' encoded_pass = password.encode('utf-8') auxiliar_hashed_password = hashlib.sha256(salt + encoded_pass).digest() if auxiliar_hashed_password == hashed_password: return True else: return False
true
0bcaf54b4debd112f858f07d8bba80b0ee79c2ad
Python
syool/sketchbook
/Recurrenet/cellkit.py
UTF-8
4,130
3.09375
3
[]
no_license
# cellkit :: recurrent cells module # # Based on Numpy # # Austin Hyeon, 2020. "Sociology meets Computer Science" # import numpy as np from funckit import * class VanillaCell: ''' the vanilla cell ''' def __init__(self, Wx, Wh, b): self.params = [Wx, Wh, b] self.grads = [np.zeros_like(Wh), np.zeros_like(Wx), np.zeros_like(b)] self.cache = None def forward(self, x, h_prev): Wx, Wh, b = self.params t = np.matmul(h_prev, Wh) + np.matmul(x, Wx) + b h_next = np.tanh(t) self.cache = (x, h_prev, h_next) # tuple: the unamendable list return h_next def backward(self, dh_next): Wx, Wh, b = self.params x, h_prev, h_next = self.cache dt = dh_next * (1 - h_next ** 2) # derivative of t; h before tanh() db = np.sum(dt, axis=0) # derivative of bias dWh = np.matmul(h_prev.T, dt) # derivative of Wh dh_prev = np.matmul(dt, Wh.T) # derivative of h_prev dWx = np.matmul(x.T, dt) # derivative of Wx dx = np.matmul(dt, Wx.T) # derivative of x self.grads[0][...] = dWx # input dWx into grads[0][0] to [0][n] self.grads[1][...] = dWh # input dWh into grads[1][0] to [1][n] self.grads[2][...] = db # input db into grads[2][0] to [2][n] # grads = 3 X n matrix return dx, dh_prev class LSTMCell: ''' the long short-term memory cell ''' def __init__(self, Wx, Wh, b): self.params = [Wx, Wh, b] self.grads = [np.zeros_like(Wh), np.zeros_like(Wx), np.zeros_like(b)] self.cache = None def forward(self, x, h_prev, c_prev): Wx, Wh, b = self.params N, H = h_prev.shape f = np.matmul(x, Wx) + np.matmul(h_prev, Wh) + b ''' slice 'ƒ' into four pieces for each gate ''' f1 = f[:, :H] f2 = f[:, H:2*H] f3 = f[:, 2*H:3*H] f4 = f[:, 3*H:] ''' set gates ''' sig1 = sigmoid(f1) # sigmoid dam 1 tanh_f = np.tanh(f2) # tanh(ƒ) dam sig2 = sigmoid(f3) # sigmoid dam 2 sig3 = sigmoid(f4) # sigmoid dam 3 ''' set the flow ''' c_next = (c_prev * sig1) + (tanh_f * sig2) h_next = np.tanh(c_next) * sig3 # cache for bptt self.cache = (x, h_prev, c_prev, sig1, tanh_f, sig2, sig3, c_next) return h_next, c_next def backward(self, dh_next, dc_next): Wx, Wh, b = self.params x, h_prev, c_prev, sig1, tanh_f, sig2, sig3, c_next = self.cache tanh_c_next = np.tanh(c_next) ds = dc_next + (dh_next * sig3) * (1 - tanh_c_next ** 2) dc_prev = ds * sig1 d_sig1 = ds * c_prev # derivative of sigmoid dam 1 d_tanh_f = ds * sig2 # derivative of tanh(ƒ) dam d_sig2 = ds * tanh_f # derivative of sigmoid dam 2 d_sig3 = dh_next * tanh_c_next # derivative of sigmoid dam3 d_sig1 *= sig1 * (1 - sig1) d_tanh_f *= (1 - tanh_f ** 2) d_sig2 *= sig2 * (1 - sig2) d_sig3 *= sig3 * (1 - sig3) df = np.hstack((d_sig1, d_tanh_f, d_sig2, d_sig3)) # merge all derivatives(= gradients) of each gate ''' distribute dƒ ''' dWh = np.dot(h_prev.T, df) # derivative of Wh dWx = np.dot(x.T, df) # derivative of Wx db = df.sum(axis=0) # derivative of b ''' record gradients ''' self.grads[0][...] = dWx self.grads[1][...] = dWh self.grads[2][...] = db dx = np.dot(df, Wx.T) dh_prev = np.dot(df, Wh.T) return dx, dh_prev, dc_prev class GRUCell: ''' the gated recurrent unit cell ''' def __init__(self): None class EmbeddingCell: ''' the embedding recurrent cell ''' def __init__(self, EM): self.params = [EM] self.grads = [np.zeros_like(EM)] self.idx = None def forward(self, idx): EM, = self.params self.idx = idx out = EM[idx] return out def backward(self, dstream): dEM, = self.grads dEM[...] = 0 np.add.at(dEM, self.idx, dstream) return None
true
a352abcc3291a02b1c3791b4a7e7f020d9170d59
Python
shi-kejian/nyu
/csuy-1114/lab/2/lab2.py
UTF-8
2,164
4.25
4
[]
no_license
from math import * from turtle import * from datetime import * def kilo_pound(): kilo = int(input('Please put in the weight in kilograms: ')) KILO_POUND = 2.2046 POUND_OUNCE = 16 pounds_total = kilo * KILO_POUND pounds = str(pounds_total).split('.')[0] ounces_float = '.' + str(pounds_total).split('.')[1] ounces = float(ounces_float) * 16 print('The answer is %s pounds and %s ounces' % (pounds, ounces)) def circular(): radius = input('Please put in the radius of the circle: ') area = (int(radius) ** 2) * pi circumference = int(radius) * 2 * pi print('The area of the circle is %s and the circumeference is %s' % (area, circumference)) def draw_hexagon(): setup(500,500) pendown() for x in range(0, 6): forward(50) right(60) penup() def get_dob(): dob = input('Please input your date of birth (YYYYMMDD): ') dob_year = int(dob[0:4:]) dob_month = int(dob[4:6:]) dob_day = int(dob[6::]) dob_dateobject = date(dob_year, dob_month, dob_day) today_datetime = datetime.today() today_list = str(today_datetime).split(' ')[0].split('-') today_dateobject = date(int(today_list[0]), int(today_list[1]), int(today_list[2])) print('Today\'s date is %s' % today_dateobject) yes_no = input('Is that correct? (yes/no) \n') if yes_no == 'yes': days_difobject = str(today_dateobject - dob_dateobject) days_dif = int(days_difobject.split(' ')[0]) years_between = days_dif // 365 months_between = (days_dif % 365) // 30 days_between = (days_dif % 365) % 30 print('You are %s years %s months and %s days old' % (years_between, months_between, days_between)) else: get_dob() def add_length(): first_feet = input('Feet of the first length: ') first_inch = input('Inches of the first length: ') second_feet = input('Feet of the second length: ') second_inch = input('Inches of the second length: ') first_total = int(first_feet) * 12 + int(first_inch) second_total = int(second_feet) * 12 + int(second_inch) total = first_total + second_total print('The total is %s feet and %s inches' % (total//12,total%12))
true
90629a407ca0f504f4451dd73cd0b9271f53a200
Python
alancleetus/Linux-Task-Manager
/processStats.py
UTF-8
7,944
2.546875
3
[]
no_license
import os import re import pwd import time import json import subprocess from stat import * from process import Process from helperFunctions import readFile, round2, BasicCounter processDict = {} inodeDict = {} sysWideCpuTime = 0 vMemTotal = None phyMemTotal = None pageSize = None def setSysWideCpuTime(time): global sysWideCpuTime sysWideCpuTime = time def setPhyMemTotal(valInMB): """ This function calculates the number of pages in the physical memory of the system. The size of physical memory is in MB, but we convert it to byte then to pages because the rss value is given in pages. Note: This calculation is only done once because of the if statement. Parameters: valInMB: actual size of physical memory in MB. This value is passed in from the taskManager.py module. Returns: int: total number of physical memory pages """ global phyMemTotal try: if phyMemTotal ==None: phyMemTotal = (int(valInMB)*1024*1024)/int(pageSize) #convert to bytes then to total number of pages #print("Phy memtotal = ", phyMemTotal) except: pass return phyMemTotal def getPageSize(): global pageSize if pageSize: return pageSize else: pageSize = subprocess.check_output(["getconf","PAGE_SIZE"]).decode("utf-8") return (int)(pageSize) getPageSize() def calculateVMemTotal(): """ This function calculates the max virtual memory size of the system. Note: This calculation is only done once because of the if statement. Returns: int: total size of virutal memory in bytes """ global vMemTotal try: if vMemTotal ==None: architecture = subprocess.check_output(["uname","-m"]).decode("utf-8") if "64" in architecture: vMemTotal = 2**64 else: vMemTotal = 2**32 #print(vMemTotal) except: print("Error: getting vmem total") return vMemTotal calculateVMemTotal() def getAllPids(): """ This function gets all the pids from the /proc subdirectory. Returns: set: a set of all pids currently runnning on the system """ try: return set(filter(lambda dir: str.isdigit(dir), os.listdir("/proc"))) except: print("Error: Unable to get all PIDs") def getInodeDict(): global inodeDict return inodeDict def parseInodeNumber(pid): inodeVal = "" try: path = "/proc/"+pid+"/fd" inner = os.listdir(path) for fileName in inner: if str.isdigit(fileName): innerpath="/proc/"+pid+"/fd/"+fileName if S_ISSOCK(os.stat(innerpath).st_mode): global inodeDict inodeDict[str(os.stat(innerpath).st_ino)] = pid inodeVal = str(os.stat(innerpath).st_ino) except: #print("No inode number found for PID:", pid) return inodeVal return inodeVal def parseInfo(pid, statFile, statusFile, readTime): try: try: statFile = statFile.split() """ bug: if program name = (Web content) split() will split break it into two parts """ if statFile[1][-1] != ')': statFile[1] = statFile[1]+" "+statFile[2] statFile.pop(2) name = statFile[1][1:-1] userMode = statFile[13] sysMode = statFile[14] vmem = statFile[22] rss = statFile[23] except: print("Error: parsing /proc/{}/stat file".format(pid)) return None userName= "" try: uid = re.findall(r'Uid:\s+\d+\s',statusFile)[0].split()[1] userName = pwd.getpwuid(int(uid)).pw_name except: print("Error: trying to get userName") inodeNumber = parseInodeNumber(pid) if pid in processDict: processDict[pid].updateAll(name, userName, inodeNumber, userMode, sysMode, vmem, rss, readTime) return processDict[pid] else: temp_process = Process(pid) temp_process.updateAll(name, userName, inodeNumber, userMode, sysMode, vmem, rss, readTime) return temp_process except: print("Error: process parsing information") return None def removeProc(pidSet): """ This function removes all processes from processDict if the process is complete. For each process, check if pid is in pidSet(passed in from fetchAll()), if not remove that process from dict. Parameters: pidSet: set of pid's that are currenlty running """ try: global processDict pids = processDict.keys() processDict = {k: v for k, v in processDict.items() if k in pidSet} except: print("Error removing process from processDict") def fetchAll(): """ This function reads sends the information to parseInfo() to be processed. This function first get all the pid currently running in the system. Then this function passes the contents of /proc/pid/stat and /status files to parseInfo() to be processed. This is done for every single process in the system. Returns: dictionary: A dictionary holding information for each currently active process. """ pidSet = getAllPids() removeProc(pidSet) try: global processDict global inodeDict for pid in pidSet: if os.path.exists("/proc/"+pid): readTime = time.time() statFile = readFile("/proc/"+pid+"/stat") statusFile = readFile("/proc/"+pid+"/status") temp_process = parseInfo(pid, statFile, statusFile, readTime) #print(temp_process) if temp_process: processDict[pid]=temp_process return processDict except: print("Error: FetchAll error in processStat.py") return {} def toJSON(): global sysWideCpuTime global phyMemTotal global vMemTotal dataList = [] for pid, eachProcess in fetchAll().items(): cpu = eachProcess.calculateCpuUtilization(sysWideCpuTime) data = {} data['pid'] = eachProcess.pid data['name'] = eachProcess.name data['userName'] = eachProcess.userName data['inodeNumber'] = eachProcess.inodeNumber data['userMode'] = cpu["userMode"] data['sysMode'] = cpu["sysMode"] data['total'] = cpu["total"] data['vMemUtil'] = eachProcess.calculateVMemUtil(vMemTotal) data['vMemAvg'] = eachProcess.calculateVMemAvg() data['phyMemUtil'] = eachProcess.calculatePhyMemUtil(phyMemTotal) dataList.append(data) json_data = json.dumps(dataList) return json_data def printAll(): global sysWideCpuTime global phyMemTotal global vMemTotal print("\n|{:>6}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|".format( "pid", "Program", "UserName", "Inode Number", "User Util", "Sys Util", "Total Util", "VMem Avg", "Phy Mem Util")) print("|{:>6}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|".format("","","", "", "", "", "", "", "")) for pid, eachProcess in fetchAll().items(): cpu = eachProcess.calculateCpuUtilization(sysWideCpuTime) print("|{:>6}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|{:>15}|".format( eachProcess.pid, eachProcess.name, eachProcess.userName, eachProcess.inodeNumber, cpu["userMode"], cpu["sysMode"], cpu["total"], eachProcess.calculateVMemAvg(), eachProcess.calculatePhyMemUtil(phyMemTotal))) #print(sysWideCpuTime)
true
c1922f6d97050d45ad1e8db7c9fec4babfa226ba
Python
jorgeOmurillo/Python
/intro/control_structures.py
UTF-8
448
3.6875
4
[]
no_license
import math wordlist = ['conejo', 'perro', 'raton', 'gato'] letterlist = [] count =0 contar = 0 for aword in wordlist: count += 1 for aletter in aword: contar +=1 letterlist.append(aletter) print letterlist print count print contar n = 2 if n<0: print "Sorry" else: print math.sqrt(n) sqlist = [] for x in range(1,11): sqlist.append(x*x) print sqlist newlist = [x*3 for x in range(1,11)] print newlist
true
37f57c64d81060a5ee82aeec2e304f9a78c68697
Python
lilianluong16/cogworks_team4
/Face_Rec_Package/Face_Rec/__init__.py
UTF-8
13,979
2.59375
3
[]
no_license
from os import path, makedirs from pathlib import Path from camera import take_picture import os import pickle import numpy as np import matplotlib.patches as patches import matplotlib.pyplot as plt import skimage.io as io import dlib_models from dlib_models import load_dlib_models from dlib_models import models import numpy as np from camera import save_camera_config import cloudinary import cloudinary.uploader import cloudinary.api load_dlib_models() save_camera_config(port=1, exposure=0.7) _path = Path(path.dirname(path.abspath(__file__))) __all__ = ['get_img_from_camera', 'get_img_from_file', 'display_img', 'find_faces', 'find_descriptors', 'describe', 'calc_dist', 'is_face', 'identify_face', 'compare_faces', 'new_database', 'retrieve_database', 'write_database', 'add_image', 'initialize', 'clear_database' , 'del_person', 'identify', 'draw_faces', 'go', 'go_friend', 'add_file'] # uncomment for the first time running on a new machine """from dlib_models import download_model, download_predictor download_model() download_predictor()""" # TO CHANGE DEFAULT DATA FILE, CHANGE STRING BELOW DATABASE_FR = "data/facial_features.txt" # creates data file if it doesn't exist if not os.path.exists(DATABASE_FR): os.makedirs('/'.join(str.partition(DATABASE_FR, "/")[:-1])) with open(DATABASE_FR, "w+"): pass db = {} def get_img_from_camera(): """ Gets an image numpy array from the default camera Parameters: ----------- None Returns: -------- img (numpy array): the (H,W,3) rgb values of the image """ img_array = take_picture() return img_array def get_img_from_file(filepath): """ Gets an image numpy array from the default camera Parameters: ----------- the string file path of the picture Returns: -------- img (numpy array): the (H,W,3) rgb values of the image """ img_array = io.imread(filepath) return img_array def display_img(img_array): """ For testing. Shows the image based on it's numpy array Parameters: ----------- None Returns: -------- None; shows the image """ fig, ax = plt.subplots() ax.imshow(img_array) def find_faces(img_array): """ Finds all faces in an image Parameters: ----------- img_array (numpy array): the array (H,W,3) of rgb values for the image Returns: -------- detections (list): each element has the corners of the bounding box for that detected face """ face_detect = models["face detect"] # Number of times to upscale image before detecting faces. # When would you want to increase this number? upscale = 1 detections = face_detect(img_array, upscale) # returns sequence of face-detections detections = list(detections) if len(detections) > 0: det = detections[0] # first detected face in image # bounding box dimensions for detection l, r, t, b = det.left(), det.right(), det.top(), det.bottom() return detections def find_descriptors(img_array, detections): """ Provides descriptors of the faces bounded by the detection boxes in the img array Parameters: ----------- img_array (numpy array): the array (H,W,3) of rgb values for the image detections (list): each element has the corners of the bounding box for that detected face Returns: -------- descriptors (list of numpy arrays): a list of descriptors for each face in the image (has shape (128,)) """ descriptors = [] for det in detections: shape_predictor = models["shape predict"] shape = shape_predictor(img_array, det) face_rec_model = models["face rec"] descriptor = np.array(face_rec_model.compute_face_descriptor(img_array, shape)) descriptors.append(descriptor) return descriptors def describe(): """ Takes a picture and finds the descriptors of each face in it Parameters: ----------- None; will use configured camera Returns: -------- descriptors (list of numpy arrays): a list of descriptors for each face in the image (has shape (128,)) """ img = get_img_from_camera() rects = find_faces(img) descriptors = find_descriptors(img, rects) return descriptors def calc_dist(test, data): """ Calculates the L2 distance between two feature vectors. Parameters ---------- test: numpy array, shape (N,) data: numpy array, shape (N,) Returns ------- float """ return np.sqrt(np.sum((test - data) ** 2)) def is_face(test_desc, profile_mean, threshold): """ Determines whether or not a descriptor is close enough to a face, returning False if the L2 distance is greater than the threshold. Parameters ---------- test_desc: numpy array, shape (N,) The descriptor of the unknown face being tested. profile_mean: numpy array, shape (N,) The mean of descriptors for the profile being tested. threshold: numerical value (int, float) The maximum L2 distance accepted as a match. Returns ------- float, if L2 distance is less than the threshold None, otherwise """ l2d = calc_dist(test_desc, profile_mean) if l2d < threshold: return l2d return None def identify_face(desc, database, threshold=0.5, face_thres=0): """ Compares a test descriptor to all faces in a database and determines the best match, if any. Parameters ---------- desc: numpy array, shape (N,) The descriptor of the unknown face being tested. database: dictionary The database containing name keys and a list of descriptor vectors as well as the mean. threshold: numerical value (int, float) The maximum L2 distance accepted as a face match. face_thres: numerical value (int, float) The minimum distance between the top two matches to count a match. Returns ------- string, representing the name/key if a match is found None, otherwise """ matches = [] for key, data in db.items(): i_f = is_face(desc, data[1], threshold) if i_f is not None: matches.append((key, i_f)) if len(matches) == 0: return None if len(matches) == 1: return matches[0][0] matches = sorted(matches, key=lambda x: x[1]) if matches[1][1] - matches[0][1] > face_thres: return matches[0][0] return None def compare_faces(descriptors, database, threshold=0.45): """ Compares each face with the database and returns a list of detected people. Parameters ---------- descriptors: list of numpy arrays List of descriptor vectors corresponding to the features of each face. database: dictionary The database containing name keys and a list of descriptor vectors as well as the mean. Returns ------- list of strings, or None if match not found for that unit """ people = [] for d in descriptors: result = identify_face(d, database, threshold=threshold) people.append(result) return people def new_database(filepath=DATABASE_FR): """ Creates a new text file and folder in the filepath; uses If creating additional filepaths, specify it in the filepath variable in all functions with the filepath kwarg """ if not os.path.exists(filepath): os.makedirs(str.partition(filepath, "/")[0]) with open(filepath, "w+"): pass def retrieve_database(): global db with open(DATABASE_FR, "rb") as f: db = pickle.load(f) return db def write_database(self, filepath=DATABASE_FR): """ Simple function that writes to the Database """ with open(filepath, "wb") as f: global db pickle.dump(db, f) # Add image to database def add_image(descriptor, name=None): """ Assigns a descritpor to a name depending on whether the name is already in the Database or not. Parameters ---------- descriptor: numpy.array, shape (128,) The descriptor of the face whose image is to be added to the Database name= string If available, the name of the face is passed to added the corresponding descriptor to the Database Returns ------- Nothing. The purpose of this function is to associate the incoming descriptor with the right name (if present) or to ask the user to input a new name and associate it with the incoming descriptor """ global db if name != None: old_descriptor_list = list(db.get(name))[0] old_descriptor_list.append(descriptor) new_list = old_descriptor_list num_descriptors = len(new_list) temp_arr = np.array(new_list) new_mean = np.sum(temp_arr) / num_descriptors db[name] = [new_list, new_mean] if name == None: the_name = input("Please enter your name: ") if the_name in db: add_image(descriptor, name=the_name) else: db[the_name] = [[descriptor], descriptor] def clear_database(password): """ Clears everything in the database given the incoming parameter 'password' """ if password.lower() == "yes i am sure": if input("Are you very sure?").lower() == "y": global db db = {} # Start def initialize(): """ Initializes the Database """ cloudinary.config( cloud_name="luong44976", api_key="165891819185365", api_secret="p2ib0QA6Rl2nK8CNxlBFQeJmoaM" ) global db db = retrieve_database() def del_person(name): """ Deletes a person and their descriptors and mean from the Database. Parameters ---------- name= string The name of the individual whose descriptors are to be deleted from the Database Returns ------- Nothing. The incoming name parameter is simply deleted, along with its accompanying descriptor(s) and mean """ del db[name] def identify(save=True, force_input=False, from_file=False): """ Takes a picture with configured camera and identifies all of the faces in the picture Parameters: ----------- save (boolean): whether or not to add the captured image to the database from_file(boolean): whether or not expect a filename instead of taking a picture Returns: -------- names (list) the list of the name of each person in the picture """ if not from_file: img = get_img_from_camera() dets = find_faces(img) descs = find_descriptors(img, dets) else: filepath = input('Please enter the location (filepath) of the image: ') img = get_img_from_file(filepath) dets = find_faces(img) descs = find_descriptors(img, dets) names = compare_faces(descs, db, threshold=0.4) if save: if len(descs) > 1: print("Cannot add multiple people at once.") elif len(descs) < 1: print("There's no one there!") else: if force_input: add_image(descs[0]) else: add_image(descs[0], name=names[0]) draw_faces(dets, names, img) return names # In[4]: def draw_faces(detections, people, img): """ Draws bounding boxes over image, and labels them with people. Parameters ---------- detections: list of rectangles List of bounding box rectangles corresponding to the position of each detected face. people: list of strings List of the keys/names of people as found by compare_faces(), or None if no match is found. img: numpy array, shape (480, 640, 3) The array representing the image. Returns: -------- None """ fig, ax = plt.subplots() ax.imshow(img) for i in range(len(detections)): d = detections[i] rect = patches.Rectangle((d.left(), d.top()), d.width(), d.height(), fill=False, linewidth=1.2, color='#57FF36') ax.add_patch(rect) if people[i] is not None: ax.text(d.left() + 8, d.top() + d.height() + 15, people[i], backgroundcolor='#57FF36', fontsize='5', color='black', weight='bold') # plt.show() plt.savefig('static/img.png') return cloudinary.uploader.upload('static/img.png')['secure_url'] def go(): """ Takes a picture from the configured camera and displays the image with recognized faces and labels Parameters: ----------- None Returns: -------- compared: list of strings Names of everyone found in photo. img: numpy array The image itself. url: string URL of location for img file descs: list of numpy arrays Face descriptors. """ img = get_img_from_camera() dets = find_faces(img) descs = find_descriptors(img, dets) compared = compare_faces(descs, db) url = draw_faces(dets, compared, img) return compared, img, url, descs def go_friend(): """ Takes a picture from the configured camera and returns descs, names Parameters: ----------- None Returns: -------- compared: list of strings Names of everyone found in photo. descs: list of numpy arrays Face descriptors. """ img = get_img_from_camera() dets = find_faces(img) descs = find_descriptors(img, dets) compared = compare_faces(descs, db) return compared, descs def add_file(filepath): """ Adds a person to the database given a picture of their face Will ask for their name Parameters ---------- filepath (string): the location of the file that is the picture of the person's face Returns: -------- None """ img = get_img_from_file(filepath) det = find_faces(img) descriptor = find_descriptors(img, det) add_image(descriptor)
true
caec9dc5aef8d0e7b90c14f7279598cbf41b4316
Python
StevenWang30/tx2_sync
/gpio_sync.py
UTF-8
1,053
2.734375
3
[]
no_license
import Jetson.GPIO as GPIO import time as time #引用需要用的库 lidar_trigger = 11 camera_trigger = 13 GPIO.setmode(GPIO.BOARD) # GPIO.setup(lidar_trigger, GPIO.OUT) # GPIO.setup(camera_trigger, GPIO.OUT) # # trig = 0 # # try: # while (True): # if trig % 10 == 0: # GPIO.output(lidar_trigger, GPIO.HIGH) # GPIO.output(camera_trigger, GPIO.HIGH) # time.sleep(0.1) # # GPIO.output(lidar_trigger, GPIO.LOW) # GPIO.output(camera_trigger, GPIO.LOW) # # trig += 1 # except KeyboardInterrupt: # GPIO.cleanup() # GPIO.setup(lidar_trigger, GPIO.OUT, initial=GPIO.HIGH) l_t = GPIO.PWM(lidar_trigger, 50) # 50Hz l_t.start(25) # 25% duty cycle GPIO.setup(camera_trigger, GPIO.OUT, initial=GPIO.HIGH) c_t = GPIO.PWM(camera_trigger, 50) # 50Hz c_t.start(25) # 25% duty cycle print("PWM running. Press CTRL+C to exit.") try: while True: # p.ChangeDutyCycle(dc) # where 0.0 <= dc <= 100.0 time.sleep(1) finally: l_t.stop() c_t.stop() GPIO.cleanup()
true
b658e9e83b22b571a34b10002b6b637f2f852387
Python
Anusha-A-R/code-library
/codechefmay1.py
UTF-8
142
2.984375
3
[]
no_license
# cook your dish here t=int(input()) for i in range(t): x,a,b=list(map(int,input().split(" "))) ans=a+(100-x)*b print(ans*10)
true
f14ec513d81e84b7c54e077bc849d2aa64753429
Python
ruthvik4215/openCV
/scripts/face_detection.py
UTF-8
1,435
2.71875
3
[ "MIT" ]
permissive
import cv2 import random from random import randrange # loading the trained data set from the opencv. trained_face_data = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # getting live feed form the default webcam or any other video processing programs in your system . default_v_p = cv2.VideoCapture(0) # continues the live feed video for ever until we shut it down. while True: # reading the frames from the live feed. successful_frame_read, frame = default_v_p.read() # changing the color for the live feed video to enable the facial detection. gray_scale_video = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # pointing out the coordinate location for face in the image for drawing a rectangle around it. face_coordinates = trained_face_data.detectMultiScale(gray_scale_video) # looping through multiple human faces in a single frame. for (x, y, w, h) in face_coordinates: # drawing a rectangle around a face cv2.rectangle(frame, (x, y), (x+w,y+h), (0, 255, 0), 4) # pulling out the frame cv2.imshow("Ruthvik", frame) # waitkey waits for proccessing the video for 1 second to continue the frames. key = cv2.waitKey(1) # if Q button in keyborad is pressed than the live feed will be terminated. # As of ASCII the number for the character 'Q' is 113. if key==81 or key==113: break # Release's thew default_v_p video. default_v_p.release()
true
c727d51bf36256e09c66aed30ed9dc5c38bbf95e
Python
AppDaemon/appdaemon
/conf/example_apps/yr.py
UTF-8
2,128
2.59375
3
[ "Apache-2.0" ]
permissive
import hassapi as hass import requests import xml.etree.ElementTree as ET from datetime import datetime, timedelta """ Get detailed Yr weather data Arguments: - event: Entity name when publishing event - interval: Update interval, in minutes. Must be at least 10 - source: Yr xml source - hours: Number of hours to forecast, at most 48 """ disclaimer = "Weather forecast from Yr, delivered by the Norwegian Meteorological Institute and NRK" user_agent = "HomeAssistant/Appdaemon Python/requests" class Yr(hass.Hass): def initialize(self): self.url = self.args["source"] self.entity = self.args["event"] self.hours = self.args["hours"] inOneMinute = datetime.now() + timedelta(minutes=1) interval = int(self.args["interval"]) if interval < 10: raise Exception("Update interval ({}) must be at least 10 minutes".format(interval)) # delay first launch with one minute, run every 'interval' minutes self.run_every(self.updateState, inOneMinute, interval * 60) def updateState(self, kwargs): forecast = self.fetchForecast() self.set_app_state(self.entity, {"state": "", "attributes": forecast}) def fetchData(self): res = requests.get(self.url, headers={"User-Agent": user_agent}) return res.text def fetchForecast(self): data = self.fetchData() root = ET.fromstring(data) periods = root.find(".//tabular") return { "disclaimer": disclaimer, "forecast": [ { "from": x.get("from"), "to": x.get("to"), "weather": x.find("symbol").get("name"), "symbol": x.find("symbol").get("var"), "precip": x.find("precipitation").get("value"), "windSpeed": x.find("windSpeed").get("mps"), "windDirection": x.find("windDirection").get("deg"), "temp": x.find("temperature").get("value"), } for x in periods[: self.hours] ], }
true
6c3e80eb8f9fa561a06869b27be0ede07008e673
Python
ollema/AoC
/day3/day3_part2.py
UTF-8
489
3.515625
4
[]
no_license
file = open('input.txt') def is_triangle(triangle): sorted_triangle = sorted(triangle) return sorted_triangle[2] < sorted_triangle[0] + sorted_triangle[1] lines = file.readlines() count = 0 numbers = [] for line in lines: numbers.extend([int(x) for x in line.rstrip('\n').split()]) if len(numbers) == 9: for i in range(0, 3): if is_triangle([numbers[i], numbers[i + 3], numbers[i + 6]]): count += 1 numbers = [] print(count)
true
ad106d4fc0d60f278c0e34cc5f9b0b09f11eebb8
Python
ZJXD/DropBoxFile
/Python/ShiyanLou/WeatherAnalysis/Pic9-1.py
UTF-8
2,043
3.28125
3
[]
no_license
# coding:utf-8 # 每个城市的温度折线图 import numpy as np import pandas as pd import datetime df_asti = pd.read_csv('./WeatherData/asti_270615.csv') df_bologna = pd.read_csv('./WeatherData/bologna_270615.csv') df_cesena = pd.read_csv('./WeatherData/cesena_270615.csv') df_faenza = pd.read_csv('./WeatherData/faenza_270615.csv') df_ferrara = pd.read_csv('./WeatherData/ferrara_270615.csv') df_mantova = pd.read_csv('./WeatherData/mantova_270615.csv') df_milano = pd.read_csv('./WeatherData/milano_270615.csv') df_piacenza = pd.read_csv('./WeatherData/piacenza_270615.csv') df_ravenna = pd.read_csv('./WeatherData/ravenna_270615.csv') df_torino = pd.read_csv('./WeatherData/torino_270615.csv') import matplotlib.pyplot as plt import matplotlib.dates as mdates from dateutil import parser # 读取温度和日期数据 y1 = df_ravenna['temp'] x1 = df_ravenna['day'] y2 = df_faenza['temp'] x2 = df_faenza['day'] y3 = df_cesena['temp'] x3 = df_cesena['day'] y4 = df_milano['temp'] x4 = df_milano['day'] y5 = df_asti['temp'] x5 = df_asti['day'] y6 = df_torino['temp'] x6 = df_torino['day'] # 把日期从 string 类型转化为标准的 datetime 类型 day_ravenna = [parser.parse(x) for x in x1] day_faenza = [parser.parse(x) for x in x2] day_cesena = [parser.parse(x) for x in x3] day_milano = [parser.parse(x) for x in x4] day_asti = [parser.parse(x) for x in x5] day_torino = [parser.parse(x) for x in x6] # 调用 subplots() 函数,重新定义 fig, ax 变量,fig 是图像对象,ax 是坐标轴对象 fig, ax = plt.subplots() #plt.figure('Weather') # 调整x轴坐标刻度,使其旋转70度,方便查看 plt.xticks(rotation=70) # 设定时间格式 hours = mdates.DateFormatter('%H:%M') # 设定X轴显示的格式 ax.xaxis.set_major_formatter(hours) ax.set_title('Test') ax.set_xlabel('Time') #这里需要画出三根线,所以需要三组参数, 'g'代表'green' ax.plot(day_ravenna,y1,'r',day_faenza,y2,'r',day_cesena,y3,'r') ax.plot(day_milano,y4,'g',day_asti,y5,'g',day_torino,y6,'g') plt.show('Weather')
true