blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
3b42ac5534171999418bb0acec06d6b47705d2eb
Python
vegetablejuiceftw/sauron
/playground/shared_memory/generator.py
UTF-8
1,079
2.515625
3
[ "MIT" ]
permissive
from time import time, sleep import cv2 as cv import SharedArray as sa import numpy as np cap = cv.VideoCapture(0) # cap.set(cv.CAP_PROP_FPS, 29) # cap.set(cv.CAP_PROP_FRAME_HEIGHT, 720) # cap.set(cv.CAP_PROP_FRAME_WIDTH, 1280) ret, frame = cap.read() frame: np.ndarray shape = frame.shape dtype = frame.dtype print(shape) def get_publisher(channel: str, shape: tuple, dtype) -> np.ndarray: # Create an array in shared memory. short_name = channel.split("://")[-1] mapping = {e.name.decode(): e for e in sa.list()} if short_name in mapping: array = mapping[short_name] if array.dtype == dtype and array.dims == shape: return sa.attach(channel) sa.delete(short_name) return sa.create(channel, shape, dtype) frame = get_publisher("shm://test", shape, dtype) start = time() counter = 1 while cap.isOpened: counter += 1 cap.read(frame) if counter % 30 == 0: print(1 / (time() - start)) start = time() # cv.imshow('Capture - producer', frame) # if cv.waitKey(1) == 27: # break
true
c59f38407747bd9c45b86c783b40f2813f84bf25
Python
bilherron/advent-of-code
/2019/Day 7/7.1.py
UTF-8
3,226
2.828125
3
[]
no_license
import sys, io from itertools import permutations def computer(cmd, label, inp_values=[]): # print(inp_values) input_values_index = 0 # print("input_values_index", input_values_index) output = "" pointer = 0 instruction = str(cmd[pointer]).zfill(5) opcode = int(instruction[3:]) try: while opcode != 99: # print(pointer, instruction) # print(cmd) parameter_1 = cmd[pointer + 1] parameter_1_mode = instruction[2] parameter_2 = cmd[pointer + 2] parameter_2_mode = instruction[1] parameter_3 = cmd[pointer + 3] parameter_3_mode = instruction[0] # should always be 0 value_1 = cmd[parameter_1] if parameter_1_mode == "0" else parameter_1 if opcode not in [3,4]: value_2 = cmd[parameter_2] if parameter_2_mode == "0" else parameter_2 if opcode == 1: cmd[parameter_3] = value_1 + value_2 pointer += 4 elif opcode == 2: cmd[parameter_3] = value_1 * value_2 pointer += 4 elif opcode == 3: try: cmd[parameter_1] = int(inp_values[input_values_index]) input_values_index += 1 except KeyError: cmd[parameter_1] = int(input(f"Enter phase setting for amplifier {label}: ")) pointer += 2 elif opcode == 4: value_1 = cmd[parameter_1] if parameter_1_mode == "0" else parameter_1 # print(value_1) output = value_1 pointer += 2 elif opcode == 5: pointer = pointer + 3 if value_1 == 0 else value_2 elif opcode == 6: pointer = value_2 if value_1 == 0 else pointer + 3 elif opcode == 7: cmd[parameter_3] = 1 if value_1 < value_2 else 0 pointer += 4 elif opcode == 8: cmd[parameter_3] = 1 if value_1 == value_2 else 0 pointer += 4 else: raise ValueError instruction = str(cmd[pointer]).zfill(5) opcode = int(instruction[3:]) return output except KeyboardInterrupt: sys.exit() except: print("Computer on fire.", pointer, opcode, sys.exc_info()[0]) print(cmd) with open("input.txt") as fp: amplifier_controller_software = [int(n) for n in fp.read().split(",")] acs_test_1 = [int(n) for n in "3,15,3,16,1002,16,10,16,1,16,15,15,4,15,99,0,0".split(",")] acs_test_2 = [int(n) for n in "3,31,3,32,1002,32,10,32,1001,31,-2,31,1007,31,0,33,1002,33,7,33,1,33,31,31,1,32,31,31,4,31,99,0,0,0".split(",")] max_thrust = 0 amplifiers = ["A","B","C","D","E"] thruster_signal_permutations = list(permutations(range(0, 5))) for thruster_signals in thruster_signal_permutations: out = 0 for i, amp in enumerate(amplifiers): inp = [thruster_signals[i], out] out = computer(amplifier_controller_software[:], amp, inp) if out > max_thrust: max_thrust = out best_signal = thruster_signals print(best_signal, max_thrust)
true
7653e9f07bc705c9083511474975d2c65a1900ab
Python
xmillero/python2
/D03/ex00/geohashing.py
UTF-8
670
3.1875
3
[]
no_license
import sys import antigravity def Traitement(lat, lon, reste): antigravity.geohash(lat, lon, reste.encode()) if __name__ == '__main__': try: lat = float(sys.argv[1]) #verif lattitude except ValueError: print("Parametre 1 : mauvais format") exit(1) try: lon = float(sys.argv[2]) #verif longitude except ValueError: print("Parametre 2 : mauvais format") exit(2) try: dj = float(sys.argv[4]) #dernier indice dow a la date inStr = sys.argv[3] + '-' + str(dj) #concatenation de la date et de l'indice except ValueError: print("Parametre 4 : mauvais format") exit(3) Traitement(lat, lon, inStr) #renvoie les coordonnees d'un point
true
ab17604d524229c063740dd7e5b4365c95bd8265
Python
broadinstitute/dig-loam
/src/scripts/make_samples_restore_table.py
UTF-8
1,843
2.59375
3
[]
no_license
import pandas as pd import argparse def main(args=None): df = pd.DataFrame({'IID': [], 'RestoreFrom': []}) if args.ancestry_outliers_keep: with open(args.ancestry_outliers_keep) as f: lines = f.read().splitlines() tempdf=pd.DataFrame({'IID': lines, 'RestoreFrom': 'ancestryOutliersKeep'}) df = df.append(tempdf, ignore_index=True) if args.duplicates_keep: with open(args.duplicates_keep) as f: lines = f.read().splitlines() tempdf=pd.DataFrame({'IID': lines, 'RestoreFrom': 'duplicatesKeep'}) df = df.append(tempdf, ignore_index=True) if args.famsize_keep: with open(args.famsize_keep) as f: lines = f.read().splitlines() tempdf=pd.DataFrame({'IID': lines, 'RestoreFrom': 'famsizeKeep'}) df = df.append(tempdf, ignore_index=True) if args.sampleqc_keep: with open(args.sampleqc_keep) as f: lines = f.read().splitlines() tempdf=pd.DataFrame({'IID': lines, 'RestoreFrom': 'sampleqcKeep'}) df = df.append(tempdf, ignore_index=True) if args.sexcheck_keep: with open(args.sexcheck_keep) as f: lines = f.read().splitlines() tempdf=pd.DataFrame({'IID': lines, 'RestoreFrom': 'sexcheckKeep'}) df = df.append(tempdf, ignore_index=True) df.to_csv(args.out, header=True, index=False, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ancestry-outliers-keep', help='a list of sample IDs') parser.add_argument('--duplicates-keep', help='a list of sample IDs') parser.add_argument('--famsize-keep', help='a list of sample IDs') parser.add_argument('--sampleqc-keep', help='a list of sample IDs') parser.add_argument('--sexcheck-keep', help='a list of sample IDs') requiredArgs = parser.add_argument_group('required arguments') requiredArgs.add_argument('--out', help='an output filename', required=True) args = parser.parse_args() main(args)
true
17c140df3ffe08f993629a49bdc02633e6e53092
Python
raindolf/African-Grading-Program
/African-Grading-Program/main.py
UTF-8
2,832
3.671875
4
[]
no_license
## Importing Standard Libraries ## import sys class African_Grading_Program(): ## Begin License ## print "" print "" print "African Grading Program (Python Version) Copyright (C) 2012 Cody Dostal" print "This program comes with ABSOLUTELY NO WARRANTY; for details, go to http://www.gnu.org/licenses/gpl-3.0.html." print "This is free software, and you are welcome to redistribute it" print "under certain conditions; go to http://www.gnu.org/licenses/gpl-3.0.html for details." ## End License ## ## Two empty lines ## print "" print "" print "Please enter your full name:" name = raw_input() print "Welcome " + name + ", this is a basic Python program based off of Raindolf Owusu's C++ version." print "This program asks for a numerical percentile grade, and returns the letter grade, and an" print "interpretation of the grade." print "At any time, type any number greater than 100, less than 0 to quit." print "" while True: print "Please enter your numerical examination score: " num_marks = int(input()) if 70 <= num_marks <= 100: print "Your grade is an A, and it is interpreted as an excellent score." elif 65 <= num_marks <= 69: print "Your grade is an A-, and it is interpreted as a very good score." elif 60 <= num_marks <= 64: print "Your grade is a B+, and it is interpreted as a good score." elif 55 <= num_marks <= 59: print "Your grade is a B, and it is interpreted as an above average score." elif 50 <= num_marks <= 54: print "Your grade is a B-, and it is interpreted as an average score." elif 45 <= num_marks <= 49: print "Your grade is a C+, and it is interpreted as a passing grade." elif 40 <= num_marks <= 44: print "Your grade is a C, and it is interpreted as a passing grade." elif 30 <= num_marks <= 39: print "Your grade is a D, and it is interpreted as a failing grade." elif 0 <= num_marks <= 29: print "Your grade is an F, and it is interpreted as a failing grade." else: print "" print "" print "Thank you for using the Python version of Raindolf Owusu's African Grading Program." print "This python version was written by Cody Dostal. The original C++ version was written by Raindolf Owusu." print "If you have found any bugs, please email me at dostalcody@gmail.com" print "You may view the license for this program at http://www.gnu.org/licenses/gpl-3.0.html" sys.exit()
true
e85de1281c62f5f4d102c11fc4677e58839aebac
Python
evejazmin/c-digo
/resta.py
UTF-8
231
3.28125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon May 11 14:39:43 2020 @author: EstAnthonyFabricioSa """ def subtra(a,b): print(a-b) subtra(5, 2) # outputs:3 subtra(2, 5) subtra(a=2, b=5) subtra(b=2, a=5) subtra(2, b=5)
true
63ee00cbd9297c22ef490d7a235125330d38a91c
Python
georgi-lyubenov/HackBulgaria
/HackSearchProject/main.py
UTF-8
1,881
2.9375
3
[]
no_license
from sqlalchemy.orm import Session from sqlalchemy import create_engine import requests from bs4 import BeautifulSoup from create_db import * from urllib.parse import urljoin class Spider(): def __init__(self, homepage): self.scanned_pages = [] self.queue = [] self.engine = create_engine("sqlite:///my_database.db") Base.metadata.create_all(self.engine) self.session = Session(bind=self.engine) self.homepage = homepage def prepare_url(self, url, href): return urljoin(url, href) def scan_page(self, url): self.scanned_pages.append(url) r = requests.get(url) soup = BeautifulSoup(r.content) soup.prettify() html_title = soup.title.string try: description = soup.find(attrs={"property": "og:description"}).get("content") desc = description except Exception as e: desc = "None" links = soup.findAll('a') for link in links: url = self.prepare_url(url, link.get("href")) obj = Website(URL=url, title=html_title, description=desc) self.session.add(obj) self.session.commit() if "http" in link.get("href"): if link.get("href") not in self.scanned_pages: self.queue.append(self.prepare_url(url, link.get("href"))) def scan_website(self): self.scan_page(self.homepage) while self.queue: print(self.queue.pop(), len(self.scanned_pages)) try: self.scan_page(self.queue.pop()) except: pass return ("pages scanned: ", len(self.scanned_pages)) def main(): base_url = 'http://fmi.py-bg.net/' #base_url = 'http://google.com' s = Spider(base_url) s.scan_website() if __name__ == '__main__': main()
true
97eb410fee349185c6375859b7cb87eee509300e
Python
ha8sh/IBSng
/core/server/handler.py
UTF-8
1,494
3.0625
3
[]
no_license
class Handler: #ABSTRACT """ this is parent class for all handlers all handlers must set their name, and register their fucntions using register method so it'll return it's own name and methods . Hanlder methods can be called by "name"."method"("args") syntax. HandlerManagers use handler instances and call their methods on demand. As IBS uses threads for multiple requests, handlers must take care of multi threading issues if necassary. It's better not to use global/object variables for changing and use local variables instead """ def __init__(self,handler_name): self.__handler_name=handler_name self.__handler_methods=[] def getHandlerName(self): """ return name of handler that will be used in xmlrpc calls """ return self.__handler_name def getHandlerMethods(self): """ return a list of name strings that represent this handler methods this list is used to see if this handler has such method, and method is callable via rpc requests """ return self.__handler_methods def registerHandlerMethod(self,method_name): """ register a new method into this handler """ if method_name in self.__handler_methods: raise HandlerException("Duplicate registration of method %s"%method_name) self.__handler_methods.append(method_name)
true
fef2596ad53cb01fd56c81351bbaaf8aead00dcd
Python
Uxooss/Lessons-Hellel
/Lesson_09/9.2 - Shift_bit_place.py
UTF-8
1,732
4.21875
4
[]
no_license
''' Написать функцию, циклически сдвигающую целое число на N разрядов вправо или влево, в зависимости от третьего параметра функции. Функция должна принимать три параметра: в первом параметре передаётся число для сдвига, второй параметр задаёт количество разрядов для сдвига (по умолчанию сдвиг на 1 разряд), 3-й булевский параметр задаёт направление сдвига (по умолчанию влево (False)). ''' def bit_shift(num, shft=1, drct=False): if not drct: num = num * (10 ** -shft) elif drct: num = num * (10 ** shft) return num # ---------------------------------------- # Без ввода данных: print() res = bit_shift(225) print(res) res = bit_shift(205, 2, True) print(res) # ----------------------------------------- # С ввод данных: n = int(input('\nВведите число:\t')) qtn = str(input('\u2755 По-умолчанию, происходит сдвиг на 1 разряд влево.\n' 'Хотите изменить количество и направление сдвига? (y / n):\t')) if qtn == 'y': s = int(input('Введите величену сдвига:\t')) d = str(input('Введите направление сдвига ("-" или "+"):\t')) elif qtn == 'n': s = 1 d = False if d == '-': d = False elif d == '+': d = True res = bit_shift(n, s, d) print('\nРезультат сдвига:\t', res)
true
67cf2a4394e8dc0d426061ed2d96b1a875bb147d
Python
Kane610/deconz
/pydeconz/models/sensor/time.py
UTF-8
509
2.734375
3
[ "MIT" ]
permissive
"""Python library to connect deCONZ and Home Assistant to work together.""" from typing import TypedDict from . import SensorBase class TypedTimeState(TypedDict): """Time state type definition.""" lastset: str class TypedTime(TypedDict): """Time type definition.""" state: TypedTimeState class Time(SensorBase): """Time sensor.""" raw: TypedTime @property def last_set(self) -> str: """Last time time was set.""" return self.raw["state"]["lastset"]
true
bf9fcbc3cdd86f0c8a2d62bfc2d863bc9a070cd7
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2354/49823/300147.py
UTF-8
90
2.953125
3
[]
no_license
import random n=int(random.random()*2) if n==0: print('1') elif n==1: print('20')
true
a770074c29078a4dd3a1cba0aabc8a086864f976
Python
jacobwojcik/codewars-algorithms
/python/uniqueInOrder.py
UTF-8
437
4.03125
4
[]
no_license
# Implement the function unique_in_order which takes as argument a sequence # and returns a list of items without any elements with the same value # next to each other and preserving the original order of elements. def unique_in_order(iterable): if not iterable: return [] else: result=[iterable[0]] for i in iterable: if i!= result[-1]: result.append(i) return result
true
44047097744141a31f352e60ecb22531f862e589
Python
kaismithereens/realpython
/pages 0-100/exercises_pg43.py
UTF-8
310
3.640625
4
[]
no_license
my_string1 = "AAA" print(my_string1.find("a")) my_string2 = "version 2.0" number = 2.0 my_string3 = my_string2.find(str(number)) print(my_string3) user_input = input("How are you feeling today? ") print(user_input.find("a")) print(user_input.find("e")) print(user_input.find("i")) print(user_input.find("o"))
true
ae6d229afa4d7c429f76c827b0e7513c1099efed
Python
juanjoqmelian/python-silver-bars
/silver-bars/silver_bars_live_orders_board.py
UTF-8
2,453
3.171875
3
[]
no_license
import uuid from functools import reduce from itertools import groupby from order import Order from order_type import OrderType from summary_info import SummaryInfo class SilverBarsLiveOrdersBoard: def __init__(self) -> None: self.orders = [] def register(self, order: Order) -> str: """Registers a valid order in the live orders board, returning the id assigned to the new order""" if not order.is_valid(): raise ValueError('Cannot register an invalid order!') order.id = uuid.uuid1() self.orders.append(order) return order.id def summary(self) -> SummaryInfo: """Shows a summary list for all the existing orders in the board""" orders_by_type = self.__sort_by_type() final_orders = self.__group_by_type_and_price(orders_by_type) summaries = self.__generate_summary(final_orders) return SummaryInfo(*summaries) def cancel(self, order_id: str) -> None: """Cancels an existing order in the board. Raises exception if order does not exist.""" self.orders = [order for order in self.orders if order.id != order_id] def __sort_by_type(self): orders_by_type = dict() for order_type, items in groupby(self.orders, key=lambda o: o.type): orders_by_type[order_type] = list(items) orders_by_type[order_type].sort(key=lambda o: o.price) if order_type == OrderType.SELL else orders_by_type[order_type].sort(key=lambda o: o.price, reverse=True) return orders_by_type def __group_by_type_and_price(self, orders_by_type): final_orders = dict() for order_type in orders_by_type.keys(): final_orders[order_type] = dict() for price, items_by_price in groupby(list(orders_by_type[order_type]), key=lambda o: o.price): final_orders[order_type][price] = reduce(lambda left, right: Order(right.user_id, left.quantity + right.quantity, right.price, right.type, right.id), list(items_by_price) ) return final_orders def __generate_summary(self, final_orders): return [order.summary() for orders_by_price in final_orders.values() for order in orders_by_price.values()]
true
a41772741683a584406d00d5b82339d7a61309ed
Python
ghilbing/Ejemplos
/isUnique.py
UTF-8
99
3.296875
3
[]
no_license
def isUnique(a): return len(set(a)) == len(a) a = ["A", "B", "C", "D", "A"] print isUnique(a)
true
23c23c1105a6076d714a44159e13db730b680733
Python
devjoag/PyAssignments
/Assignment_2/Assignment2_10.py
UTF-8
236
3.75
4
[]
no_license
def main(): no=int(input("Enter Number: ")) st=list(str(no)) sum=0 for i in range (0,len(st)): sum=sum+int(st[i]) print("Sum of Digits in {} are {}".format(no,sum)) if(__name__) == "__main__": main()
true
2a883e80a476386db01ce6af3f9372ed99019245
Python
serofly/The-rudiments-of-Machine-Learning
/07kmeans.py
UTF-8
2,825
2.859375
3
[]
no_license
import pandas as pd from sklearn.decomposition import PCA from sklearn.cluster import KMeans import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score import numpy as np # 中文和负号的正常显示 plt.rcParams['font.sans-serif'] = 'Microsoft YaHei' plt.rcParams['axes.unicode_minus'] = False # 读取四张表数据 prior = pd.read_csv("./data/PCA/order_products__prior.csv") # product_id, order_id products = pd.read_csv("./data/PCA/products.csv") # product_id,aisle_id orders = pd.read_csv("./data/PCA/orders.csv") # order_id, user_id aisle = pd.read_csv("./data/PCA/aisles.csv") # aisle_id, aisle # 合并四张表,得到用户-物品类型 _mg = pd.merge(prior, products, left_on="product_id", right_on="product_id") _mg = pd.merge(_mg, orders, left_on="order_id", right_on="order_id") mt = pd.merge(_mg, aisle, left_on="aisle_id", right_on="aisle_id") # 交叉表 cross = pd.crosstab(mt['user_id'], mt['aisle']) # 主成分分析 pca = PCA(n_components=0.9) data = pca.fit_transform(cross) print(data.shape) # 假设一共有4个类别的用户,维度不高可以不用主成分分析 data = data[:500] km = KMeans(n_clusters=4) km.fit(data) predict = km.predict(data) # 每个数变成了0,1,2,3 # km.labels_获取聚类标签//km.cluster_centers_ #获取聚类中心 print("聚类分析的轮廓系数", silhouette_score(data, predict)) # -1到0为差,0-1为好,越靠近1越好 # 显示聚类结果散点图 plt.figure(figsize=(10, 10)) color = ["orange", "green", "blue", "red"] col = [color[i] for i in predict] plt.scatter(data[:, 1], data[:, 20], color=col) plt.xlabel("1") plt.ylabel("20") plt.show() # 图例带人数的雷达图 plt.figure(figsize=(10, 8)) plt.subplot(111, polar=True) plt.style.use('ggplot') # 统计频数 r1 = pd.Series(km.labels_).value_counts() # 将n个簇类中心转换成DataFrame格式 r2 = pd.DataFrame(km.cluster_centers_).iloc[:, :6] center = pd.concat([r2, r1], axis=1) feature = [1, 2, 3, 4, 5, 6] angles = np.linspace(0, 2 * np.pi, len(feature), endpoint=False) angles = np.concatenate((angles, [angles[0]])) for i, j in enumerate(center.values): # i 是行,即第几类人;j是列,表示feature+r1 # 为了使雷达图一圈封闭,需要以下步骤 values = np.concatenate((j[:-1], [j[0]])) # 绘制折线图 plt.plot(angles, values, 'o-', linewidth=2, label='第%d类人群,%d人' % (i + 1, j[-1])) # 填充颜色 plt.fill(angles, values, col[i], alpha=0.25) # 添加每个特质的标签 plt.thetagrids(angles * 180 / np.pi, feature) # 添加标题 plt.title('顾客分类状况') # 设置图例 plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1.0), ncol=1, fancybox=True, shadow=True) # 显示图形 plt.show()
true
1b72e7090866cb9997be8ac7b5a4556b9e8dad34
Python
jamtot/PyProjects
/The Coding Dead/game/hunter.py
UTF-8
564
3.21875
3
[ "MIT" ]
permissive
from entity import Entity class Hunter(Entity): # is initialised with position from base class Entity # and a map reference def destroy_zombie(self): # use position to check nearby tiles for zombies # check in every direction # kill up to 2 zombies pass def move(self, potential_moves): x_moves, y_moves = super(Hunter,self).move(potential_moves) def update(self): # can move 1 square in any direction to find zombie to kill # can slay up to two zombies after a move pass
true
a89a4bf447f2825e1afa5765055e6d7d12209de7
Python
must-11/ap_experiment
/src/chaos/euler_method.py
UTF-8
1,674
3.15625
3
[ "MIT" ]
permissive
import matplotlib.pyplot as plt import numpy as np # パラメータ g = 9.8 l_1 = 0.5 l_2 = 0.5 m_1 = 0.5 m_2 = 0.3 w = np.sqrt(g / l_1) l = l_2 / l_1 M = m_2 / (m_1 + m_2) h = 0.01 t = 100 n = np.int(t / h) def f(Y): d = Y[0] - Y[1] d1 = np.square(Y[2]) d2 = np.square(Y[3]) w2 = np.square(w) f_1 = (w2*l*(-np.sin(Y[0]) + M * np.cos(d) * np.sin(Y[1])) - M*l*(d1 * np.cos(d) + l * d2)*np.sin(d)) / (l - M*l*np.square(np.cos(d))) f_2 = (w2*np.cos(d)*np.sin(Y[0]) - w2*np.sin(Y[1]) + (d1 + M*l*d2*np.cos(d))*np.sin(d)) / (l - M*l*np.square(np.cos(d))) return np.array([Y[2], Y[3], f_1, f_2]) def exp_euler(Y, h): return Y + h * f(Y) def H(Y): d = Y[0] - Y[1] d1 = np.square(Y[2]) d2 = np.square(Y[3]) T = m_1*np.square(l_1)*d1/2 + (np.square(l_1)*d1 + np.square(l_2)*d2 + 2*l_1*l_2*Y[2]*Y[3]*np.cos(d))*m_2/2 U = -m_1*l_1*g*np.cos(Y[0]) - m_2*g*(l_1*np.cos(Y[0]) + l_2*np.cos(Y[1])) return T + U def main(): Y = np.array([0.1, 0, 0, 0]) theta = [[0.1], [0]] ham = [H(Y)] for i in range(n): Y = exp_euler(Y, h) theta[0].append(Y[0]) theta[1].append(Y[1]) ham.append(H(Y)) x = [i*0.01 for i in range(len(theta[0]))] fig = plt.figure(figsize=(12, 8)) plt.plot(x, theta[0], label="theta1") plt.plot(x, theta[1], label="theta2") plt.xlabel('time', fontsize=14) plt.legend(loc='upper right') fig.savefig("img01.png") fig = plt.figure(figsize=(12, 8)) plt.plot(x, ham, label="Hamiltonian") plt.xlabel('time', fontsize=14) plt.legend(loc='upper right') fig.savefig("img02.png") if __name__ == "__main__": main()
true
556e8bda5150838a5b56a7b5dee2bea105490d8d
Python
anpark/transform
/tensorflow_transform/tf_metadata/dataset_schema.py
UTF-8
15,548
2.8125
3
[ "Apache-2.0" ]
permissive
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """In-memory representation of the schema of a dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import tensorflow as tf class Schema(collections.namedtuple('Schema', ['column_schemas'])): """The schema of a dataset. This is an in-memory representation that may be serialized and deserialized to and from a variety of disk representations. Args: column_schemas: A dict from logical column names to `ColumnSchema`s. """ def __new__(cls, column_schemas=None): if not column_schemas: column_schemas = {} return super(Schema, cls).__new__(cls, column_schemas) def __eq__(self, other): if isinstance(other, self.__class__): return self._asdict() == other._asdict() return NotImplemented def __ne__(self, other): return not self == other def merge(self, other): # possible argument: resolution strategy (error or pick first and warn?) for key, value in other.column_schemas.items(): if key in self.column_schemas: self.column_schemas[key].merge(value) else: self.column_schemas[key] = value def as_feature_spec(self): """Returns a representation of this Schema as a feature spec. A feature spec (for a whole dataset) is a dictionary from logical feature names to one of `FixedLenFeature`, `SparseFeature` or `VarLenFeature`. Returns: A representation of this Schema as a feature spec. """ return {key: column_schema.as_feature_spec() for key, column_schema in self.column_schemas.items()} def as_batched_placeholders(self): """Returns a representation of this Schema as placeholder Tensors. Returns: A representation of this Schema as placeholder Tensors. """ return {key: column_schema.as_batched_placeholder() for key, column_schema in self.column_schemas.items()} class ColumnSchema(collections.namedtuple( 'ColumnSchema', ['logical_column', 'representation'])): """The schema for a single column in a dataset. The schema contains two parts: the logical description of the column, which describes the nature of the actual data in the column (particularly this determines how this will ultimately be represented as a tensor) and the physical representation of the column, i.e. how the column's data is represented in memory or on disk. Fields: logical_column: A `LogicalColumnSchema` that describes the data of the column. representation: A `ColumnRepresentation` that describes how the data is represented. """ def __eq__(self, other): if isinstance(other, self.__class__): return self._asdict() == other._asdict() return NotImplemented def __ne__(self, other): return not self == other def as_feature_spec(self): """Returns a representation of this ColumnSchema as a feature spec. A feature spec (for a specific column) is one of a FixedLenFeature, SparseFeature or VarLenFeature. Returns: A representation of this ColumnSchema as a feature spec. """ return self.representation.as_feature_spec(self.logical_column) def as_batched_placeholder(self): """Returns a representation of this ColumnSchema as a placeholder Tensor. Returns: A representation of this ColumnSchema as a placeholder Tensor. """ return self.representation.as_batched_placeholder(self.logical_column) def merge(self, other): raise NotImplementedError('Merge not implemented yet.') class LogicalColumnSchema(collections.namedtuple( 'LogicalColumnSchema', ['domain', 'shape'])): """A description of the kind of data contained within a single column. Args: domain: a Domain object, providing the dtype and possibly other constraints. shape: a LogicalShape object describing the intrinsic shape of the data, irrespective of its representation as dense or sparse. """ def __eq__(self, other): if isinstance(other, self.__class__): return self._asdict() == other._asdict() return NotImplemented def __ne__(self, other): return not self == other class Domain(object): """A description of the valid values that a column can take.""" __metaclass__ = abc.ABCMeta def __init__(self, dtype): self._dtype = dtype def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return NotImplemented def __ne__(self, other): return not self == other @property def dtype(self): return self._dtype # Serialize the tf.dtype as a string so that it can be unpickled on DataFlow. def __getstate__(self): return self._dtype.name def __setstate__(self, state): self._dtype = tf.as_dtype(state) class FloatDomain(Domain): pass class IntDomain(Domain): pass class StringDomain(Domain): pass class BoolDomain(Domain): pass def dtype_to_domain(dtype): if dtype.is_integer: return IntDomain(dtype) if dtype.is_floating: return FloatDomain(dtype) if dtype == tf.string: return StringDomain(dtype) if dtype == tf.bool: return BoolDomain(dtype) raise ValueError('Schema cannot accommodate dtype: {}'.format(dtype)) class LogicalShape(collections.namedtuple('LogicalShape', ['axes'])): """The logical shape of a column, including axes, sequence nature, etc.""" def __eq__(self, other): if isinstance(other, self.__class__): return self._asdict() == other._asdict() return NotImplemented def __ne__(self, other): return not self == other def tf_shape(self): """Represent this shape as a `TensorShape`.""" if self.axes is None: return tf.TensorShape(None) return tf.TensorShape([axis.size for axis in self.axes]) def is_fixed_size(self): if self.axes is None: return False for axis in self.axes: if axis.size is None: return False return True class Axis(collections.namedtuple('Axis', ['size'])): """An axis representing one dimension of the shape of a column. Elements are: size: integer. The length of the axis. None = unknown. """ def __eq__(self, other): if isinstance(other, self.__class__): return self._asdict() == other._asdict() return NotImplemented def __ne__(self, other): return not self == other class ColumnRepresentation(object): """A description of the representation of a column in memory or on disk.""" __metaclass__ = abc.ABCMeta def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return NotImplemented def __ne__(self, other): return not self == other @abc.abstractmethod def as_feature_spec(self, logical_column): """Returns the representation of this column as a feature spec. Args: logical_column: The logical column to be represented. """ raise NotImplementedError() @abc.abstractmethod def as_batched_placeholder(self, logical_column): """Returns the representation of this column as a placeholder Tensor. Args: logical_column: The logical column to be represented. """ raise NotImplementedError() # note we don't provide tf.FixedLenSequenceFeature yet, because that is # only used to parse tf.SequenceExample. class FixedColumnRepresentation(ColumnRepresentation): """Represent the column using a fixed size.""" def __init__(self, default_value=None): super(FixedColumnRepresentation, self).__init__() self._default_value = default_value @property def default_value(self): """Default value may be None, but then missing data produces an error.""" return self._default_value def as_feature_spec(self, logical_column): if logical_column.shape is None or not logical_column.shape.is_fixed_size(): raise ValueError('A column of unknown size cannot be represented as ' 'fixed-size.') return tf.FixedLenFeature(logical_column.shape.tf_shape().as_list(), logical_column.domain.dtype, self.default_value) def as_batched_placeholder(self, logical_column): if logical_column.shape is None or not logical_column.shape.is_fixed_size(): raise ValueError('A column of unknown size cannot be represented as ' 'fixed-size.') return tf.placeholder(logical_column.domain.dtype, [None] + logical_column.shape.tf_shape().as_list()) class ListColumnRepresentation(ColumnRepresentation): """Represent the column using a variable size.""" def __init__(self): super(ListColumnRepresentation, self).__init__() def as_feature_spec(self, logical_column): return tf.VarLenFeature(logical_column.domain.dtype) def as_batched_placeholder(self, logical_column): return tf.sparse_placeholder( logical_column.domain.dtype, [None] + logical_column.shape.tf_shape().as_list()) class SparseColumnRepresentation(ColumnRepresentation): """Sparse physical representation of a logically fixed-size column.""" def __init__(self, value_field_name, index_fields): super(SparseColumnRepresentation, self).__init__() self._value_field_name = value_field_name self._index_fields = index_fields @property def value_field_name(self): return self._value_field_name @property def index_fields(self): # SparseIndexes return self._index_fields def as_feature_spec(self, logical_column): ind = self.index_fields if len(ind) != 1 or len(logical_column.shape.axes) != 1: raise ValueError('tf.Example parser supports only 1-d sparse features.') index = ind[0] return tf.SparseFeature(index.name, self._value_field_name, logical_column.domain.dtype, logical_column.shape.axes[0].size, index.is_sorted) def as_batched_placeholder(self, logical_column): return tf.sparse_placeholder( logical_column.domain.dtype, [None] + logical_column.shape.tf_shape().as_list()) class SparseIndexField(collections.namedtuple('SparseIndexField', ['name', 'is_sorted'])): pass def from_feature_spec(feature_spec): """Convert a feature_spec to a Schema. Args: feature_spec: a features specification in the format expected by tf.parse_example(), i.e. `{name: FixedLenFeature(...), name: VarLenFeature(...), ...' Returns: A Schema representing the provided set of columns. """ return Schema({ key: _from_parse_feature(parse_feature) for key, parse_feature in feature_spec.items() }) def _from_parse_feature(parse_feature): """Convert a single feature spec to a ColumnSchema.""" # FixedLenFeature if isinstance(parse_feature, tf.FixedLenFeature): logical = LogicalColumnSchema( domain=_dtype_to_domain(parse_feature.dtype), shape=_tf_shape_to_logical_shape( parse_feature.shape)) representation = FixedColumnRepresentation(parse_feature.default_value) return ColumnSchema(logical, representation) # FixedLenSequenceFeature if isinstance(parse_feature, tf.FixedLenSequenceFeature): raise ValueError('DatasetSchema does not support ' 'FixedLenSequenceFeature yet.') # VarLenFeature if isinstance(parse_feature, tf.VarLenFeature): var_len_shape = LogicalShape(axes=[Axis(None)]) logical = LogicalColumnSchema( domain=_dtype_to_domain(parse_feature.dtype), shape=var_len_shape) representation = ListColumnRepresentation() return ColumnSchema(logical, representation) # SparseFeature if isinstance(parse_feature, tf.SparseFeature): sparse_shape = LogicalShape( axes=[Axis(parse_feature.size)]) logical = LogicalColumnSchema( domain=_dtype_to_domain(parse_feature.dtype), shape=sparse_shape) index_field = SparseIndexField(name=parse_feature.index_key, is_sorted=parse_feature.already_sorted) representation = SparseColumnRepresentation( value_field_name=parse_feature.value_key, index_fields=[index_field]) return ColumnSchema(logical, representation) raise ValueError('Cannot interpret feature spec: {}'.format(parse_feature)) def infer_column_schema_from_tensor(tensor): """Infer a ColumnSchema from a tensor.""" if isinstance(tensor, tf.SparseTensor): # For SparseTensor, there's insufficient information to distinguish between # ListColumnRepresentation and SparseColumnRepresentation. So we just guess # the former, and callers are expected to handle the latter case on their # own (e.g. by requiring the user to provide the schema). This is a policy # motivated by the prevalence of VarLenFeature in current tf.Learn code. var_len_shape = LogicalShape(axes=[Axis(None)]) logical = LogicalColumnSchema( domain=_dtype_to_domain(tensor.dtype), shape=var_len_shape) representation = ListColumnRepresentation() else: logical = LogicalColumnSchema( domain=_dtype_to_domain(tensor.dtype), shape=_tf_shape_to_logical_shape( tensor.get_shape(), remove_batch_dimension=True)) representation = FixedColumnRepresentation() return ColumnSchema(logical, representation) _BOOL_TYPES = [tf.bool] _INT_TYPES = [tf.int8, tf.uint8, tf.uint16, tf.int16, tf.int32, tf.int64] _FLOAT_TYPES = [tf.float16, tf.float32, tf.float64] _STRING_TYPES = [tf.string] def _dtype_to_domain(dtype): """Create an appropriate Domain for the given dtype.""" if dtype in _BOOL_TYPES: return BoolDomain(dtype=dtype) if dtype in _INT_TYPES: return IntDomain(dtype=dtype) if dtype in _STRING_TYPES: return StringDomain(dtype=dtype) if dtype in _FLOAT_TYPES: return FloatDomain(dtype=dtype) raise ValueError('DatasetSchema does not yet support dtype: {}'.format(dtype)) def _tf_shape_to_logical_shape(tf_shape, remove_batch_dimension=False): """Create a `LogicalShape` for the given shape. Args: tf_shape: A `TensorShape` or anything that can be converted to a `TensorShape`. remove_batch_dimension: A boolean indicating whether to remove the 0th dimension. Returns: A `LogicalShape` representing the given shape. Raises: ValueError: If `remove_batch_dimension` is True and the given shape does not have rank >= 1. """ if not isinstance(tf_shape, tf.TensorShape): tf_shape = tf.TensorShape(tf_shape) if tf_shape.dims is None: axes = None else: axes = [Axis(axis_size) for axis_size in tf_shape.as_list()] if remove_batch_dimension: if len(axes) < 1: raise ValueError('Expected tf_shape to have rank >= 1') axes = axes[1:] return LogicalShape(axes)
true
cca07c7ea8eb9aedf89dd8e24aa7f3ae92d488cf
Python
mamadyonline/data_engineering
/data_engineering/database/players.py
UTF-8
1,496
3.5
4
[]
no_license
"""Create players class and define its characteristics""" from data_engineering.database.base import Base from sqlalchemy import String, Integer, Column, Boolean class Player(Base): __tablename__ = 'players' id = Column(Integer, primary_key=True) name = Column('name', String) nationality = Column('nationality',String) club = Column('club', String) # current if still active, last club if retired total_scored_goals = Column('total_scored_goals', Integer) total_personal_trophies = Column('total_personal_goals', Integer) active = Column('active', Boolean) def __init__(self, name, nationality, club, total_scored_goals, total_personal_trophies, active): """Initialize without the id component as it is taken care of automatically.""" self.name = name self.nationality = nationality self.club = club self.total_scored_goals = total_scored_goals self.total_personal_trophies = total_personal_trophies self.active = active def __repr__(self): """Prettify when we print a player""" if self.active: to_print = f"<Player({self.name} from {self.nationality}, " \ f"currently playing at {self.club} with {self.total_scored_goals} goals)>" else: to_print = f"<Player({self.name} from {self.nationality}, " \ f"retired while at {self.club}) with {self.total_scored_goals} goals>" return to_print
true
6248db0ba7d34e0059177f3f99279065529d107a
Python
gowthamanniit/python
/for-loop.py
UTF-8
50
3.03125
3
[]
no_license
num=2 for a in range(1,10): print(num*a)
true
629d477314231a4509413a9fb3131668db7bb5f5
Python
SLKyrim/vscode-leetcode
/0213.打家劫舍-ii.py
UTF-8
2,237
3.390625
3
[]
no_license
# # @lc app=leetcode.cn id=213 lang=python3 # # [213] 打家劫舍 II # # https://leetcode-cn.com/problems/house-robber-ii/description/ # # algorithms # Medium (35.58%) # Likes: 234 # Dislikes: 0 # Total Accepted: 28.9K # Total Submissions: 77.5K # Testcase Example: '[2,3,2]' # # # 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 # # 给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。 # # 示例 1: # # 输入: [2,3,2] # 输出: 3 # 解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。 # # # 示例 2: # # 输入: [1,2,3,1] # 输出: 4 # 解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。 # 偷窃到的最高金额 = 1 + 3 = 4 。 # # # @lc code=start class Solution: def rob(self, nums: List[int]) -> int: # 思路:环形,则第一间和最后一间不可同时被偷 # 分别对不包含第一间和不包含最后一间的房屋进行动态规划偷窃,最后取两者较大者 # 这两间房都不偷的可能性已包含在以上两种情况中,故可不用重复计算 if not nums: return 0 if len(nums) == 1: return nums[0] if len(nums) == 2: return max(nums[0],nums[1]) dp1 = [0] * (len(nums) - 1) # 不包含第一间 dp2 = list() dp2[:] = dp1 # 不包含最后一间 dp1[0] = nums[1] dp1[1] = max(nums[1], nums[2]) for i in range(2, len(nums) - 1): dp1[i] = max(dp1[i-2]+nums[i+1], dp1[i-1]) dp2[0] = nums[0] dp2[1] = max(nums[0], nums[1]) for i in range(2, len(nums) - 1): dp2[i] = max(dp2[i-2]+nums[i], dp2[i-1]) return max(dp1[-1], dp2[-1]) # @lc code=end
true
08ac316233c0b6b34dcff7ae505829a4da2dd86e
Python
eyalMDM/MDMthesis
/eaTweetStreamer.py
UTF-8
5,377
3
3
[]
no_license
''' eaStreamTwitter by Eyal Assaf v0.1 Stream tweets based on hashtags and compiles them into a CSV file, to be sent to UE4 ''' # -*- coding: cp1252 -*- # _*_ coding:utf-8 _*_ import sys import io # Import the necessary methods from tweepy library import tweepy from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream import time import json import csv # Variables that contains the user credentials to access Twitter API access_token = "3741374896-nHOo1GxSDXzKOwrGf3zTXuIQ5azENs5RfKQxz2y" access_token_secret = "RiuAq559cr4DDHbt2NxdZVr1AbI7J37wdMa9IQGus8BRJ" consumer_key = "HNDGwz1zOHXKjWhUovAkfHzpd" consumer_secret = "7D2XrKIyWt6uNMB8f2XZgRDMWb2IZlE0l37475nsNvMdQqy8ki" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # prevents unicode errors - I hope sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') # sys.stderr = codecs.getwriter('utf8')(sys.stderr.buffer, 'strict') # confirm login into Twitter api print("Successfully logged in as " + api.me().name + ".") # tell computer where to put CSV outfile_path='D:/GITHUB/MDMthesis/test.csv' # open it up, the w means we will write to it writer = csv.writer(open(outfile_path, 'w')) #create a list with headings for our columns headers = ['user', 'tweet_text'] #write the row of headings to our CSV file writer.writerow(headers) # This is a basic listener that just prints received tweets to stdout. class eaTweetStreamer(StreamListener): ''' def __init__(self): self.startStream() ''' def twitterStart(self): # variable to get user input. Send to get_input() method self.get_input(["s", "p", "q"]) def get_input(self,userChoice): choice="" while choice not in userChoice: print("Twitter client menu - press 's' to search, 'p' to post and 'q' to quit.") choice=input("-->") if choice=="s": self.searchHt() #go to search tweet method elif choice=="p": self.tweetMsg() # go to tweet message method elif choice=="q": print ("goodbye!") return choice def tweetMsg(self): print("tweeting message") self.twitterStart() def searchHt(self): numTweets= input("Number of tweets to iterate (minimum 1):") if len(numTweets)>=1 and numTweets.isdigit(): search = input("Search for a hashtag:") # get user input getHt=api.search(q="#{0}".format(search), count=numTweets) #self.startStream(search) ''' for index,tweet in enumerate(getHt): print(index,tweet.text) ''' # Only iterate through the first 200 statuses for index,tweet in enumerate(tweepy.Cursor(api.search,q=search).items(int(numTweets),)): print(index,tweet.text) print("location: {0}".format(tweet.user.location)) print() print("created: ",tweet.user.created_at) print("Time zone: ", tweet.user.time_zone) print("Place: ", tweet.place) print("============================") print("RAW DATA:") tUser=tweet.user print(tUser) row = [] row.append(tweet.user.screen_name) row.append(tweet.created_at) row.append(tweet.text.encode('utf-8')) #once you have all the cells in there, write the row to your csv writer.writerow(row) self.on_status(tweet) #self.on_data(tweet) print("============================") self.twitterStart() else: print("Enter at least 1 for tweets to search!") self.searchHt() ''' def on_status(self, status): if status.coordinates: print('coords:', status.coordinates) if status.place: print('place:', status.place.full_name) return True on_event = on_status def on_error(self, status): print("ERROR:" ,status) def on_data(self, data): print(data) parsed_json=json.loads(data) return True def startStream(self,search): #This handles Twitter authetification and the connection to Twitter Streaming API l = eaTweetStreamer() auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) stream = Stream(auth, l) #This line filter Twitter Streams to capture data by the keywords: 'python', 'javascript', 'ruby' stream.filter(track=[search]) return True IS THIS EVEN NEEDED? def on_data(self, data): print(data) return True def on_error(self, status): print(status) def startStream(self): #This handles Twitter authetification and the connection to Twitter Streaming API l = eaTweetStreamer() auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) stream = Stream(auth, l) #This line filter Twitter Streams to capture data by the keywords: 'python', 'javascript', 'ruby' stream.filter(track=['zika']) ''' if __name__ == '__main__': eaTweetStreamer().twitterStart()
true
2cb391d72c8980fbc316634b5dc2bd0cbe4d5d87
Python
Max-E/CS361-Reading-App
/UI/UI.py
UTF-8
12,711
2.71875
3
[ "MIT" ]
permissive
import wx, wx.lib.scrolledpanel, wx.lib.newevent import threading # # Library Screen # COLUMN_WIDTH = 150 ROW_HEIGHT = COLUMN_WIDTH*0.75 CELL_PAD = 5 class BookThumbnail (wx.BitmapButton): def __init__ (self, parent, enqueue_callback, bookcover): self.enqueue_callback = enqueue_callback img = wx.Image (bookcover) img.Rescale (COLUMN_WIDTH, ROW_HEIGHT) super(BookThumbnail, self).__init__(parent, wx.ID_ANY, img.ConvertToBitmap(), size = (COLUMN_WIDTH, ROW_HEIGHT)) self.Bind (wx.EVT_BUTTON, self.onClick, self) def onClick (self, evt): self.enqueue_callback () def width_to_numcolumns (width): ret = (width-wx.SystemSettings.GetMetric (wx.SYS_VSCROLL_X))/(COLUMN_WIDTH+2*CELL_PAD) return max (ret, 0) def numcolumns_to_width (numcolumns): return numcolumns*(COLUMN_WIDTH+2*CELL_PAD)+wx.SystemSettings.GetMetric (wx.SYS_VSCROLL_X) def height_to_numrows (height): return height/(ROW_HEIGHT+2*CELL_PAD) def numrows_to_height (numrows): return numrows*(ROW_HEIGHT+2*CELL_PAD) class LibraryScreen (wx.lib.scrolledpanel.ScrolledPanel): def __init__ (self, parent): super(LibraryScreen, self).__init__ (parent) self.parent = parent self.sizer = wx.GridSizer (vgap = CELL_PAD, hgap = CELL_PAD) self.SetSizer (self.sizer) self.Bind (wx.EVT_SIZE, self.onResize) def setSize (self): (w, h) = self.GetSizeTuple () self.sizer.SetCols (width_to_numcolumns(w)) self.sizer.CalcRowsCols () self.SetupScrolling(scroll_x = False, scrollToTop = False) self.sizer.Layout () def onResize (self, evt): self.setSize() evt.Skip () def Show (self): self.parent.SetSize ((numcolumns_to_width (4), numrows_to_height (4))) self.parent.SetMinSize ((numcolumns_to_width (2), numrows_to_height (2))) self.setSize() self.sizer.Layout () super(LibraryScreen, self).Show() def add_book (self, enqueue_callback, bookcover): thumbnail = BookThumbnail (self, enqueue_callback, bookcover) self.sizer.Add (thumbnail, 1, wx.FIXED_MINSIZE) self.setSize() # # Book Page Screen # ICON_WIDTH = 100 ICON_HEIGHT = 75 class PageButton (wx.BitmapButton): def __init__ (self, parent, iconpath): img = wx.Image (iconpath) img.Rescale (ICON_WIDTH, ICON_HEIGHT) super(PageButton, self).__init__(parent, wx.ID_ANY, img.ConvertToBitmap()) class BookPageScreen (wx.Panel): def __init__ (self, parent, quitcallback): super(BookPageScreen, self).__init__ (parent) self.parent = parent self.min_size = (700, 600) self.illustration_path = "test_bookpage.png" self.sizer = wx.BoxSizer (wx.VERTICAL) self.SetSizer (self.sizer) self.onQuit = lambda evt: quitcallback () self.topbar_panel = wx.Panel (self) self.topbar_sizer = wx.BoxSizer (wx.HORIZONTAL) self.topbar_panel.SetSizer (self.topbar_sizer) self.page_title = wx.StaticText (self.topbar_panel, wx.ID_ANY, "insert title here, if any") self.topbar_sizer.AddStretchSpacer () self.topbar_sizer.Add (self.page_title, proportion = 1, flag = wx.ALIGN_CENTER_HORIZONTAL | wx.EXPAND) self.quit_button = PageButton (self.topbar_panel, "test_bookquit.png") self.quit_button.Bind (wx.EVT_BUTTON, self.onQuit) self.topbar_sizer.Add (self.quit_button, proportion = 0, flag = wx.ALIGN_RIGHT) self.sizer.Add (self.topbar_panel, proportion = 0, flag = wx.ALIGN_TOP | wx.EXPAND) self.main_panel = wx.Panel (self) self.main_sizer = wx.BoxSizer (wx.HORIZONTAL) self.main_panel.SetSizer (self.main_sizer) self.back_button = PageButton (self.main_panel, "test_bookprev.png") self.main_sizer.Add (self.back_button, proportion = 0, flag = wx.ALIGN_LEFT | wx.ALIGN_CENTER_VERTICAL) self.illustration = wx.StaticBitmap (self.main_panel, wx.ID_ANY) self.main_sizer.Add (self.illustration, proportion = 1, flag = wx.EXPAND) self.forward_button = PageButton (self.main_panel, "test_booknext.png") self.main_sizer.Add (self.forward_button, proportion = 0, flag = wx.ALIGN_RIGHT | wx.ALIGN_CENTER_VERTICAL) self.main_sizer.InsertSpacer (1, (1,1)) self.sizer.Add (self.main_panel, proportion = 1, flag = wx.EXPAND) self.text_panel = wx.Panel (self) self.text_sizer = wx.BoxSizer (wx.HORIZONTAL) self.text_panel.SetSizer (self.text_sizer) self.sizer.Add (self.text_panel, proportion = 0, flag = wx.ALIGN_BOTTOM | wx.EXPAND) self.bottombar_panel = wx.Panel (self) self.bottombar_sizer = wx.BoxSizer (wx.HORIZONTAL) self.bottombar_panel.SetSizer (self.bottombar_sizer) self.speak_button = PageButton (self.bottombar_panel, "test_speakicon.png") self.bottombar_sizer.Add (self.speak_button, proportion = 0, flag = wx.ALIGN_LEFT) self.sizer.Add (self.bottombar_panel, proportion = 0, flag = wx.ALIGN_BOTTOM | wx.EXPAND) self.Bind (wx.EVT_SIZE, self.onResize) self.clear () def setBitmap (self): (w, h) = self.main_sizer.GetSizeTuple () w = max (w, self.min_size[0]) img = wx.Image (self.illustration_path) old_w = img.GetWidth () old_h = img.GetHeight () if self.forward_button.IsShown (): w -= ICON_WIDTH if self.back_button.IsShown (): w -= ICON_WIDTH new_w = w new_h = (new_w*old_h)/old_w if new_h > h and h > 0: new_h = h new_w = (new_h*old_w)/old_h img.Rescale (new_w, new_h) self.main_sizer.Remove (1) self.main_sizer.InsertSpacer (1, ((w-new_w)/2, 1)) self.illustration.SetBitmap (img.ConvertToBitmap()) def centerText (self): (avail_w, avail_h) = self.text_sizer.GetSizeTuple() self.text_sizer.Remove (0) self.text_sizer.PrependSpacer (((avail_w-self.text_total_width)/2, 1)) def setSize (self): self.setBitmap () self.centerText () self.Layout () def onResize (self, evt): self.setSize () evt.Skip () def Show (self): self.parent.SetMinSize (self.min_size) self.setSize() super(BookPageScreen, self).Show() def clear (self): self.text_sizer.Clear (True) self.text_total_width = 0 self.text_sizer.Add ((1,1)) self.back_button.Hide () self.forward_button.Hide () self.Layout () def add_word (self, word_text, word_color): text = wx.StaticText (self.text_panel, wx.ID_ANY, word_text) text.SetForegroundColour (word_color) text.SetFont (wx.Font (20, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL)) (w, h) = text.GetSize () self.text_total_width += w self.text_sizer.Add (text, 0, wx.ALIGN_LEFT) def set_back (self, enqueue_callback): self.back_button.Bind (wx.EVT_BUTTON, lambda evt: enqueue_callback()) self.back_button.Show () self.Layout () def set_forward (self, enqueue_callback): self.forward_button.Bind (wx.EVT_BUTTON, lambda evt: enqueue_callback()) self.forward_button.Show () self.Layout () def set_illustration_path (self, illustration_path): self.illustration_path = illustration_path self.setSize () # # Main Window # class MainWindow (wx.Frame): def __init__(self, title): super(MainWindow, self).__init__(None, title = title) self.sizer = wx.BoxSizer (wx.VERTICAL) self.SetSizer (self.sizer) self.allscreens = [] def AddScreen (self, screen): self.sizer.Add (screen, 1, wx.EXPAND) screen.Hide () self.allscreens += [screen] def SwitchToScreen (self, screen): for otherscreen in self.allscreens: otherscreen.Hide () screen.Show () self.Layout () self.Show () # # UI Interface # class UI: def __init__ (self): self.callback_queue_lock = threading.Lock () self.callback_queue = [] self.init_lock = threading.Lock () self.init_lock.acquire () self.gui_thread = threading.Thread (target = self.thread_toplevel) self.gui_thread.daemon = True self.gui_thread.start () self.init_lock.acquire () # Called from the same thread as the rest of the program. Used to run # an arbitrary method in the GUI thread. def run_method_in_thread (self, callback): evt = self.RunMethodEvent (callback = callback) #PostEvent is explicitly supposed to be thread-safe. wx.PostEvent (self.window, evt) # runs in the GUI thread def onRunMethod (self, evt): evt.callback () # GUI thread main loop def thread_toplevel (self): self.app = wx.App() self.RunMethodEvent, self.EVT_RUN_METHOD = wx.lib.newevent.NewEvent () self.window = MainWindow(title = 'Reading App') self.libraryscreen = LibraryScreen (self.window) self.window.AddScreen (self.libraryscreen) self.bookpagescreen = BookPageScreen (self.window, self.make_add_callback_callback (self.display_library)) self.window.AddScreen (self.bookpagescreen) self.window.Bind (self.EVT_RUN_METHOD, self.onRunMethod) self.window.Bind (wx.EVT_CLOSE, self.onClose) self.init_lock.release () self.app.MainLoop () # runs in either thread, makes callbacks which will run in GUI thread def make_add_callback_callback (self, callback): def enqueue_callback (): with self.callback_queue_lock: self.callback_queue += [callback] return enqueue_callback # runs in GUI thread def onClose (self, evt): with self.callback_queue_lock: self.callback_queue += [lambda: exit (0)] # Begin methods intended to be public: def display_library (self): self.run_method_in_thread (lambda: self.window.SwitchToScreen (self.libraryscreen)) def add_book_to_library (self, bookcallback, bookcover): enqueue_callback = self.make_add_callback_callback (bookcallback) self.run_method_in_thread (lambda: self.libraryscreen.add_book (enqueue_callback, bookcover)) def clear_bookpage (self): self.run_method_in_thread (lambda: self.bookpagescreen.clear ()) def add_bookpage_word (self, word_text, word_color): self.run_method_in_thread (lambda: self.bookpagescreen.add_word (word_text, word_color)) def set_bookpage_next (self, nextpage_callback): enqueue_callback = self.make_add_callback_callback (nextpage_callback) self.run_method_in_thread (lambda: self.bookpagescreen.set_forward (enqueue_callback)) def set_bookpage_prev (self, prevpage_callback): enqueue_callback = self.make_add_callback_callback (prevpage_callback) self.run_method_in_thread (lambda: self.bookpagescreen.set_back (enqueue_callback)) def set_bookpage_illustration_path (self, illustration_path): self.run_method_in_thread (lambda: self.bookpagescreen.set_illustration_path (illustration_path)) def display_bookpage (self): self.run_method_in_thread (lambda: self.window.SwitchToScreen (self.bookpagescreen)) def flush_callback_queue (self): old_callback_queue = None with self.callback_queue_lock: old_callback_queue = self.callback_queue self.callback_queue = [] for old_callback in old_callback_queue: old_callback ()
true
34e1f4728f7e32d4d1be8491d05a272f14343d3f
Python
proffillipesilva/aulasdelogicaprogramacao
/aula0705/matriz_fundamentos.py
UTF-8
961
4.28125
4
[ "MIT" ]
permissive
from random import randint def cria_matriz(num_linhas, num_colunas): matriz = [] for i in range(num_linhas): linha = [] for j in range(num_colunas): linha.append(randint(0,10)) matriz.append(linha) return matriz def imprime_matriz(matriz): for i in range(len(matriz)): linha = matriz[i] # pega a linha correspondente for j in range(len(linha)): # um for para o numero de elementos da linha (colunas) print(matriz[i][j], end=' ') # da um espaco para cada coluna da linha print() # pula uma linha quando acabar as colunas da linha def imprime_uns(num_linhas, num_colunas): for i in range(num_linhas): for j in range(num_colunas): print('1', end=' ') print() matriz = cria_matriz(3, 4) # cria matriz 3x4 (3L x 4C) print(matriz) # imprime na forma primária (listas) imprime_matriz(matriz) # imprime na forma de matriz #imprime_uns(3, 4)
true
d9e826a062bc52a92e69920bd2f146cbdd763d63
Python
barthap/BPMN
/tests/test_network.py
UTF-8
7,646
2.765625
3
[ "MIT" ]
permissive
import unittest import network_factory from network import Network, NodeType """ Network: A --. .-- E |-- C -- D -- | B --^ ^-- F """ test_network = { 'A': { 'C' }, 'B': { 'C' }, 'C': { 'D' }, 'D': { 'E', 'F' }, } class NodeTests(unittest.TestCase): def setUp(self) -> None: self.net = network_factory.from_simple_direct_succession(test_network) def test_is_split(self): # these are not splits self.assertFalse(self.net.nodes['A'].is_split()) self.assertFalse(self.net.nodes['B'].is_split()) self.assertFalse(self.net.nodes['C'].is_split()) self.assertFalse(self.net.nodes['E'].is_split()) self.assertFalse(self.net.nodes['F'].is_split()) self.assertTrue(self.net.nodes['D'].is_split()) def test_is_merge(self): # these are not splits self.assertFalse(self.net.nodes['A'].is_merge()) self.assertFalse(self.net.nodes['B'].is_merge()) self.assertFalse(self.net.nodes['D'].is_merge()) self.assertFalse(self.net.nodes['E'].is_merge()) self.assertFalse(self.net.nodes['F'].is_merge()) self.assertTrue(self.net.nodes['C'].is_merge()) def test_next(self): a = self.net.nodes['A'] c = self.net.nodes['C'] d = self.net.nodes['D'] self.assertEqual(a.next().name, c.name) self.assertEqual(c.next().name, d.name) def test_prev(self): f = self.net.nodes['F'] c = self.net.nodes['C'] d = self.net.nodes['D'] self.assertEqual(d.prev().name, c.name) self.assertEqual(f.prev().name, d.name) def test_next_throws_on_multiple_successors(self): d = self.net.nodes['D'] with self.assertRaisesRegex(AssertionError, "Node .* must have only one successor .*"): d.next() def test_prev_throws_on_multiple_successors(self): c = self.net.nodes['C'] with self.assertRaisesRegex(AssertionError, "Node .* must have only one predecessor .*"): c.prev() def test_prev_throws_if_no_predecessors(self): a = self.net.nodes['A'] with self.assertRaises(StopIteration): a.prev() def test_remove_successor(self): c = self.net.nodes['C'] d = self.net.nodes['D'] c.remove_successor(d) self.assertSetEqual(c.successors, set()) self.assertSetEqual(d.predecessors, set()) def test_remove_predecessor(self): c = self.net.nodes['C'] d = self.net.nodes['D'] d.remove_predecessor(c) self.assertSetEqual(c.successors, set()) self.assertSetEqual(d.predecessors, set()) def test_remove_all_successors(self): d = self.net.nodes['D'] e = self.net.nodes['E'] f = self.net.nodes['F'] d.remove_all_successors() self.assertSetEqual(d.successors, set()) self.assertSetEqual(e.predecessors, set()) self.assertSetEqual(f.predecessors, set()) def test_remove_all_predecessors(self): a = self.net.nodes['A'] b = self.net.nodes['B'] c = self.net.nodes['C'] c.remove_all_predecessors() self.assertSetEqual(a.successors, set()) self.assertSetEqual(b.successors, set()) self.assertSetEqual(c.predecessors, set()) class NetworkTests(unittest.TestCase): def test_add_node(self): net = Network() net.add_node('abc', cnt=5) self.assertEqual(net.nodes['abc'].name, 'abc') self.assertEqual(net.nodes['abc'].cnt, 5) def test_add_edge(self): net = Network() net.add_node('a') net.add_node('b') net.add_edge('a', 'b', 3) a = net.nodes['a'] b = net.nodes['b'] self.assertSetEqual(a.successors, {b}) self.assertSetEqual(b.predecessors, {a}) self.assertEqual(net.edges['a']['b'].src, a) self.assertEqual(net.edges['a']['b'].target, b) self.assertEqual(net.edges['a']['b'].cnt, 3) def test_delete_node(self): net = network_factory.from_simple_direct_succession(test_network) a = net.nodes['A'] b = net.nodes['B'] c = net.nodes['C'] d = net.nodes['D'] net.delete_node(c) self.assertDictEqual(net.edges['A'], {}) self.assertDictEqual(net.edges['B'], {}) self.assertNotIn('C', net.edges.keys()) self.assertSetEqual(a.successors, set()) self.assertSetEqual(b.successors, set()) self.assertSetEqual(d.predecessors, set()) def test_delete_edge(self): net = network_factory.from_simple_direct_succession(test_network) b = net.nodes['B'] c = net.nodes['C'] net.delete_edge(net.edges['B']['C']) self.assertNotIn('C', net.edges['B'].keys()) self.assertNotIn(c, b.successors) self.assertNotIn(b, c.predecessors) def test_delete_filtered_out_items(self): net = network_factory.from_simple_direct_succession(test_network) a = net.nodes['A'] b = net.nodes['B'] c = net.nodes['C'] d = net.nodes['D'] e = net.nodes['E'] c.is_filtered_out = True net.edges['D']['E'].is_filtered_out = True net.delete_filtered_out_items() self.assertDictEqual(net.edges['A'], {}) self.assertDictEqual(net.edges['B'], {}) self.assertNotIn('C', net.edges.keys()) self.assertSetEqual(a.successors, set()) self.assertSetEqual(b.successors, set()) self.assertSetEqual(d.predecessors, set()) self.assertNotIn(e, d.successors) self.assertNotIn(d, e.predecessors) self.assertNotIn('E', net.edges['D'].keys()) def test_delete_node_merge_edges(self): # Create network a->b->c net = Network() net.add_node('a') net.add_node('b') net.add_node('c') net.add_edge('a', 'b') net.add_edge('b', 'c') a = net.nodes['a'] b = net.nodes['b'] c = net.nodes['c'] net.delete_node_merge_edges(b) edge = net.edges['a']['c'] self.assertSetEqual(a.successors, {c}) self.assertSetEqual(c.predecessors, {a}) self.assertIn('c', net.edges['a'].keys()) self.assertEqual(edge.src, a) self.assertEqual(edge.target, c) def test_insert_dummy_before(self): net = network_factory.from_simple_direct_succession(test_network) c = net.nodes['C'] original_predecessors = set(c.predecessors) net.insert_dummy_before(c, 'dummy1') self.assertIn('dummy1', net.nodes.keys()) dummy = net.nodes['dummy1'] self.assertEqual(dummy.type, NodeType.DUMMY) self.assertSetEqual(dummy.predecessors, original_predecessors) self.assertSetEqual(dummy.successors, {c}) self.assertSetEqual(c.predecessors, {dummy}) # validate edges - im too lazy to write assertions net._validate_structure() def test_insert_dummy_after(self): net = network_factory.from_simple_direct_succession(test_network) d = net.nodes['D'] original_successors = set(d.successors) net.insert_dummy_after(d, 'dummy1') self.assertIn('dummy1', net.nodes.keys()) dummy = net.nodes['dummy1'] self.assertEqual(dummy.type, NodeType.DUMMY) self.assertSetEqual(dummy.successors, original_successors) self.assertSetEqual(dummy.predecessors, {d}) self.assertSetEqual(d.successors, {dummy}) # validate edges - im too lazy to write assertions net._validate_structure()
true
93130729cc1e3635b31fd3025310bf6380feef8e
Python
FurknKOC/Opencv_ve_Python_kullanarak_RaspberryPI3_ile_Yuz_Tanima
/Face REC/Face REC/Ana_Menu.py
UTF-8
413
3.046875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os def secim() : prompt = '> ' print "\n" print "Hoşgeldiniz %s\n" %os.getlogin() print("Islem secimi yapiniz : \n") print("[ 1 ] Grup Oluştur \n[ 2 ] Kişi Oluştur \n[ 3 ] Kişi Yüzü Ekle \n[ 4 ] Kişi Yüzü Ara \n[ 5 ] Yüz Tespiti \n[ 6 ] Yüz Tanı \n\n[ 7 ] Grup Sil\n ") secim.secim = int(raw_input(prompt))
true
01e4a7138f889120d8e3b04c6ecc2c78e898b7a5
Python
joduncan/RaceScoring
/parse-mychiptime.py
UTF-8
319
2.5625
3
[]
no_license
import sys inl = open( sys.argv[1] ).readlines() inl = [ i.split("\t") for i in inl ] for i in range( len( inl ) / 3 ): i1,i2,i3=inl[i*3:i*3+3] number = i1[2] name = i1[3]+" "+i1[4] age='' #i3[6] #print i3[9] sex = sys.argv[2] time = i1[1] print ",".join( [number,name,age,sex] )
true
712d6a0c64485ace27aa0aebda504d4733ed0640
Python
thomasmburke/PersonalizedGreeter
/environment_setup/populate_redis.py
UTF-8
5,843
2.9375
3
[ "MIT" ]
permissive
import redis import os import pickle greetings = {"defaultGreetings" : {"<speak>Greetings and Salutations {}!</speak>", "<speak>Howdy, Howdy, Howdy {}!</speak>", "<speak>Howdy doody {}!</speak>", "<speak>{}, Ahoy, Matey</speak>", "<speak>What's crackin {}?</speak>", "<speak>{}, This may be recorded for training purposes</speak>", "<speak>Why, hello there {}</speak>", "<speak>Konnichiwa {}</speak>", "<speak>Aloha {}</speak>", "<speak>Breaker, Breaker {} has arrived <break time='1s'/> Copy that</speak>", "<speak>{}, I hope you are having a wonderful day</speak>", "<speak>Ciao {}</speak>", "<speak>What's cookin {}?</speak>", "<speak>Beautiful day outside isn't it {}?</speak>", "<speak>Yo, {} its good to see you again</speak>", "<speak>Hey there {}, welcome to the Burke household</speak>", "<speak>Hi, Welcome to McDonalds my name is {}. How can I help you?</speak>", "<speak>Want to hear Victoria's Secret? <break time='1s'/><amazon:effect name='whispered'>She has a crush on {}</amazon:effect></speak>", "<speak>Yo ho, yo ho its a pirates life for {}</speak>", "<speak>What's happenin {}?</speak>", "<speak>Knock, Knock <break time='1s'/> Well, {} why don't you try and find out!</speak>", "<speak>{}, you are not allowed please turn back now!</speak>", "<speak>{}, I told you never to come back here, for what reason have you shown your face</speak>", "<speak>Hello {}, please do not forget to tip the door man</speak>", "<speak>Do you {} take this personalized machine learning greeter as you lawfully wedded wife?</speak>", "<speak>Welcome {}, please feel free to make yourself at home</speak>"}, "christmasGreetings" : {"<speak>Hey, {}. Why does Santa Claus have such a big sack? <break time='1s'/> He only comes once a year!</speak>", "<speak>Hey, {}. Why does Santa always come through the chimney?<break time='1s'/>Because he knows better than to try the back door.</speak>", "<speak>Hey, {}. What’s the difference between snowmen and snowwomen?<break time='1s'/>Snowballs</speak>", "<speak>Hey, {}. What’s the difference between Tiger Woods and Santa?<break time='1s'/>Santa was smart enough to stop at three ho's.</speak>", "<speak>Hey, {}. Why did the Grinch rob the liquor store?<break time='1s'/>He was desperate for some holiday spirit.</speak>", "<speak>Hey, {}. Why does Santa go to strip clubs?<break time='1s'/>To visit all his ho ho ho’s.</speak>", "<speak>Hey, {}. Is your name Jingle Bells?<break time='1s'/>Cause you look ready to go all the way.</speak>"}, "aprilFoolsGreetings" : {"<speak>Hey, {}. Your shoe is untied.<break time='1s'/>April Fools!</speak>", "<speak>Hey, {}. Who is that guy behind you?<break time='1s'/>Just kidding, April Fools!</speak>", "<speak>Hey, {}. Looks like you dropped something<break time='1s'/>April Fools!</speak>"}, "thanksgivingGreetings" : {"<speak>Hey, {}. What does Miley Cyrus eat for Thanksgiving?<break time='1s'/>Twerky</speak>", "<speak>Hey, {}. What kind of music did the Pilgrims like?<break time='1s'/>Plymouth Rock</speak>", "<speak>Hey, {}. Why was the Thanksgiving soup so expensive?<break time='1s'/>It had 24 carrots</speak>", "<speak>Hey, {}. What did baby corn say to mama corn?<break time='1s'/>Where's pop corn</speak>", "<speak>Hey, {}. What did the turkey say before it was roasted?<break time='1s'/>Boy! I'm stuffed.</speak>", "<speak>Hey, {}. What do you call a running turkey?<break time='1s'/>Fast food!</speak>"}, "easterGreetings" : {"<speak>Hey, {}. What did the Easter egg say to the boiling water?<break time='1s'/>It might take me a while to get hard cause I just got laid by some chick.</speak>", "<speak>Hey, {}. Why wouldn't you want to be an Easter egg?<break time='1s'/>You only get laid once.</speak>", "<speak>Hey, {}. Why is Easter an Alzheimer patient's favorite holiday?<break time='1s'/>They get to hide their own eggs.</speak>", "<speak>Hey, {}. How do you make Easter easier?<break time='1s'/>Replace the t with an i.</speak>", "<speak>Hey, {}. Where does the Easter Bunny get his eggs?<break time='1s'/>From egg plants</speak>", "<speak>Hey, {}. How should you send a letter to the Easter Bunny?<break time='1s'/>By hare mail</speak>"}, "saintpatricksdayGreetings" : {"<speak>Hey, {}. break time='1s'/></speak>", "<speak>Hey, {}. Why can't you borrow money from a leprechaun?<break time='1s'/>Because they're always a little short</speak>", "<speak>Hey, {}. Are you from Ireland?<break time='1s'/>Because when I look at you my penis is Dublin</speak>", "<speak>Hey, {}. What do you call a potato that's not Irish?<break time='1s'/>A french fry</speak>"}, "newYearsGreetings" : {"<speak>Hey, {}. A new years resolution is something that goes in one year and out the other.</speak>", "<speak>Hey, {}. hope you popped of this year because tonight will be even crazier.</speak>"}, "laborDayGreetings" : {"<speak>Did you hear about the Labor Day joke? It doesn't work for me.</speak>"}} """ memorial day presidents day MLK day Columbus day independence day / 4th of july Ghandis bday october 2 Diwali """ with open('./greetings/greetings.pkl', 'wb') as defaultPickleFile: pickle.dump(greetings, defaultPickleFile) redisClient = redis.Redis(host=os.getenv('REDIS_INSTANCE_IP'), port=6379, db=0) redisClient.flushall() for key, greeting in greetings.items(): redisClient.sadd(key, *greeting) mems = redisClient.smembers(name=key) rand = redisClient.srandmember(key) print(mems) print(rand)
true
f92f3e98a1fbbc92a2ac9b135b35219284a2d700
Python
AshrithPradeep/PythonT
/Python/TASK 1 AND 2.py
UTF-8
8,609
5.03125
5
[]
no_license
# TASK ONE # 1. Create three variables in a single line and assign values to them in such a manner that each one of # them belongs to a different data type. a,b,c = 1, 2.0, 'ashrith' # 2. Create a variable of type complex and swap it with another variable of type integer. a = 2 +1j b = 1 a,b = b,a #3. Swap two numbers using a third variable and do the same task without using any third variable. #by using third variable a,b = 1,2 temp = a a = b b = temp #without using third variable a,b = b,a #4.Write a program that takes input from the user and prints it using both python 2x. and python 3.x version a = eval(raw_input("enter a number")) print(a) b = eval(raw_input("Enter a number")) print(b) #5. Write a program to complete the task given below: Ask users to enter any 2 numbers in between 1-10 , add the two numbers and keep the sum in #another variable called z. Add 30 to z and store the output in variable result and print result as the final output. a = int(input("enter number 1 :")) b = int(input("enter number 2 :")) print(a,b) z = a+b result = z+30 print(z) #6. Write a program to check the data type of the entered values. a = eval(input("enter the value")) print(type(a)) #7. Create Variables using formats such as Upper CamelCase, Lower CamelCase, SnakeCase and UPPERCASE. UpperCamel = 1 lowerCamel = 2 snake_case = 3 UPPERCASE = 4 #8 If one data type value is assigned to ‘a’ variable and then a different data type value is assigned to ‘a’ #again. Will it change the value? If Yes then Why? # ANSWER : Yes, the value changes as we assign a value of different data type, because the first one is saved in one memory location and the second one in another. # So the variable changes its datatype # TASK TWO #1. Write a python program to perform the following operations: #If a number is divisible by 3 it should print “ConsAd” as a string #If a number is divisible by 5 it should print “Python” as a string #If a number is divisible by both 3 and 5 it should print “ConsAd - Python” as a string x=int(input("Enter a number here :")) if (a%3)==0 and (a%5)==0: print("ConsAd - Python") elif (a%5)==0: print("Python") elif (a%3)==0: print("ConsAd") #2. Write a python program to perform the following operator based task: # Ask user to choose the following option first: #if user enter 1 : Addition #if user enter's 2 : Subtraction #if user enter 3: division #if user enter 4: Multiplication #if user enter 5: Average #Ask user to enter two numbers and keep those numbers in variables num1 and num2 respectively for the first 4 options mentioned above. # Ask the user to enter two more numbers as first and second for calculating the average as soon as the user chooses an option 5. # At the end if the answer of any operation is Negative print a statement saying “NEGATIVE”. print("Choose one of the following operations by their number : 1 for Addition, 2 for Subtraction, 3 for Division, 4 for Multiplication, 5 for Average") a=int(input()) print("Enter the first number :") num1=int(input()) print("Enter the second number :") num2=int(input()) if a == 1: res = float(num1 + num2) print('The result is :', res) elif a == 2: res = float(num1 - num2) print('The result is :', res) elif a == 3: res = float(num1 / num2) print("The result is :", res) elif a == 4: res = float(num1 * num2) print("The result is:", res) elif a == 5: sum = float(num1 + num2) res = float(sum / 2) print("The result is:", res) else: print("choose an option between 1-5") if res < 0: print("Negative Number") #3. Write a program in python to implement the flow chart: a=10 b=20 c=30 average=(a+b+c)/3 print("avg: ",average) while average in range(10,31): if average >((a) and (b) and (c)): print("Average is greater than a,b and c") break elif average > ((a)and (b)): print("Average is greater than a,b and c") break elif average >((a)and (c)): print("The average is greater than a,c") break elif average >((b) and (c)): print("The average is greater than b,c") break elif average > (a): print("The average is just greater than a") break elif average > (b): print ("The average is just greater than b") break elif average > (c): print ("The average is just greater than c") break else: break #4. Write a program in python to break and continue if the following cases occur: # if user enters a negative number just break the loop and print " It's over" # if user enters a positive number just continue the loop and print "good going" a=int(input("Enter a number")) while a in range(-10000,10000): if a <0: print("It's over") break if a>=0: print("Good going") a+=1 continue #5. Write a program in Python which will find all such numbers which are divisible by 7 but are not a multiple of 5, between 2000 and 3200. for i in range(2000,3200): if ((i%7==0) and (i%5!=0)): print(i) #6. What is the output of the following code snippets x=123 for i in x: print(i) ## Type Error - int not iterable. i=0 while i<5: print(i) i+=1 if i==3: break else: print("error") # Break can be used inside the loop and here it is outside it, so it throws an error for the same count=0 while True: print(count) count +=1 if count>=5: break # prints 01234 and then breaks due to the condition #7. Write a program that prints all the numbers from 0 to 6 except 3 and 6. i=0 while i in range(0,7): if i == 3 or i ==6: i+=1 continue print(i) i+=1 #8. Write a program that accepts a string as an input from the user and calculate the number of digits and letters. x = input("enter the string") number, alphabet = 0,0 for y in x: if y.isdigit(): number+=1 elif y.isalpha(): alphabet+=1 else: pass print("alphabets:", alphabet ) print("numbers:", number) #9.Read the two parts of the question below: #Write a program such that it asks users to “guess the lucky number”. If the correct number is guessed the program stops, otherwise it continues forever. #Modify the program so that it asks users whether they want to guess again each time. Use two variables, ‘number’ for the number and ‘answer’ for the answer to the question whether they want #to continue guessing. The program stops if the user guesses the correct number or answers “no”. ( The program continues as long as a user has not answered “no” and has not guessed the correct number) number = int(input("Guess the lucky number here: ")) while number != 9: print("You have not guessed the lucky number") number = int(input("guess the lucky number again: ")) # Modified version again = "yes" number = int(input("Guess the lucky number")) while number != 9: print("You have not guessed the lucky number") again = (input("guess again?")) if again == "no": break else: number = int(input("Guess the lucky number")) if number == 9: print("you win!!!!!!!") #10. Write a program that asks five times to guess the lucky number. Use a while loop and a counter, such as While counter <= 5: print(“Type in the”, counter, “number” counter=counter+1 # The program asks for five guesses (no matter whether the correct number was guessed or not). If the correct number is guessed, the program outputs “Good guess!”, otherwise it outputs “Try again!”. #After the fifth guess it stops and prints “Game over!”. counter = 1 while counter <= 5: if counter == 5: print("sorry your attempts were not successful") break num = int(input("Guess the number")) if num == 5: print ("Good guesss.") break else: print ("try again!") counter +=1 else: print ("game over") #11.In the previous question, insert break after the “Good guess!” print statement. break will terminate #the while loop so that users do not have to continue guessing after they found the number. If the user #does not guess the number at all, print “Sorry but that was not very successful”. counter = 1 while counter <= 5: num = int(input("Guess the number")) if num == 5: print("Good guesss.") break else: if counter == 5: print("sorry your attempts were not successful") break else: print("try again!") counter += 1 print("game over")
true
97283e71227dfc436e35ad27d41122e1758d2dc3
Python
Windrist/UET-CAM-Demo
/captureImage.py
UTF-8
502
2.734375
3
[]
no_license
import time import cv2 if __name__ == "__main__": # Camera configuration cap = cv2.VideoCapture(0) count = 0 cap.set(3, 1280) cap.set(4, 720) while True: ret, image = cap.read() cv2.imshow("Capture", image) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('s'): cv2.imwrite('data/demo/{}.jpg'.format(count), image) count+=1 cap.release() cv2.destroyAllWindows()
true
20a9d93c0a66c511f385ba91cbec00643a4cb8ab
Python
misterbeebee/Games
/Connect/connect.py
UTF-8
7,628
3.34375
3
[]
no_license
#!/bin/env python import random import sys import time def printf(*args): sys.stdout.write(*args) sys.stdout.flush() class Column: SPACE = ' ' def __init__(s, height): s.height=height # Bottom-to-top (aka order of insertion, per gravity) s.content = [s.SPACE]*s.height def full(s): return not (s[s.height-1] == s.SPACE) def insert(s, token): for rowi in range(s.height): if (s[rowi] == s.SPACE) and (rowi == 0 or (not s[rowi-1] == s.SPACE)): s[rowi] = token return True return False def remove(s): for rowi in range(s.height): if (not s[rowi] == s.SPACE) and (rowi == (len(s)-1) or (s[rowi+1] == s.SPACE)): s[rowi] = s.SPACE return True return False def __len__(s): return len(s.content) def __iter__(s): return iter(s.content) def __getitem__(s, i): return s.content[i] def __setitem__(s, i, value): s.content[i] = value class Board: WIN_SIZE = 4 WIDTH = 7 HEIGHT = 6 SPACE = ' ' def __init__(s, tokens): s.cols = [Column(s.HEIGHT) for i in range(s.WIDTH)] s.tokens = tokens def full(s): return all([col.full() for col in s.cols]) def insert(s, colname, token): return s.cols[colname].insert(token) def remove(s, colname): return s.cols[colname].remove() def winner(s): for coli in range(s.WIDTH): for rowi in range(s.HEIGHT): token = s.cols[coli][rowi] offsets = range(s.WIN_SIZE) # Scans everything twice, but OK for token in s.tokens: # horizontal h = all([(coli + offset < s.WIDTH) and (token == s.cols[coli+offset][rowi]) for offset in offsets]) # vertical v = all([(rowi + offset < s.HEIGHT) and (token == s.cols[coli][rowi + offset]) for offset in offsets]) # diagonal d1 = all([(coli + offset < s.WIDTH) and (rowi + offset < s.HEIGHT) and (token == s.cols[coli + offset][rowi + offset]) for offset in offsets]) d2 = all([(coli + offset < s.WIDTH) and (rowi - offset > 0) and (token == s.cols[coli + offset][rowi - offset]) for offset in offsets]) winner = h or v or d2 if winner: return token return winner def legal_move(s, coli): return not s.cols[coli].full() def legal_moves(s): return [coli for coli in range(len(s.cols)) if s.legal_move(coli)] def print(s): printf('\n') for rowi in range(s.HEIGHT-1, -1, -1): printf('|') labels = [s.cols[coli][rowi] for coli in range(s.WIDTH)] printf(' '.join(labels)) printf('|\n') printf('+%s+\n' % '-'.join(('-' * s.WIDTH))) printf(' %s \n' % ' '.join([str(i) for i in range(s.WIDTH)])) class Player(): def __init__(s, name, token): s.name = name s.token = token # Caller must call setup() next! def setup(s, game, board): s.game = game s.board = board def indexof(array, value): for i in range(len(array)): if array[i] == value: return i return None class AI(Player): def __init__(s, token): Player.__init__(s, name="Marvin", token=token) def move(s): # Win or avoid immediate loss if possible tokeni = indexof(s.game.tokens, s.token) # my moves: winning_moves = set() losing_moves = set() this_token = s.game.tokens[tokeni] for colname in s.board.legal_moves(): s.board.insert(colname, this_token) if s.board.winner(): winning_moves.add(colname) # don't break, need to undo insert else: next_token = s.game.tokens[(tokeni + 1) % len(s.game.tokens)] opponent_winning_move = None for next_colname in s.board.legal_moves(): s.board.insert(next_colname, next_token) if s.board.winner(): losing_moves.add(colname) # don't break, need to undo insert s.board.remove(next_colname) s.board.remove(colname) # opponent moves: blocking_moves = set() sacrificial_moves = set() tokeni = (tokeni + 1) % len(s.game.tokens) this_token = s.game.tokens[tokeni] for colname in s.board.legal_moves(): s.board.insert(colname, this_token) if s.board.winner(): # Prevent opponent win. blocking_moves.add(colname) # don't break, need to undo insert else: next_token = s.game.tokens[(tokeni + 1) % len(s.game.tokens)] next_winning_move = None for next_colname in s.board.legal_moves(): s.board.insert(next_colname, next_token) if s.board.winner(): sacrificial_moves.add(next_colname) # don't break, need to undo insert s.board.remove(next_colname) s.board.remove(colname) if winning_moves: #printf("Winning move.\n") return list(winning_moves)[0] if blocking_moves: #printf("Blocking move.\n") return list(blocking_moves)[0] legal_moves = s.board.legal_moves() #print("sacrificial:", sacrificial_moves) #print("losing: ", losing_moves) #print("legal: ", legal_moves) # not-bad moves, or else a move that might let opponent block, or else any move (surrender) possible_moves = ([move for move in legal_moves if (move not in losing_moves) and (move not in sacrificial_moves)] or list(sacrificial_moves) or legal_moves) # random move #printf("Random move.\n") start_movei = int(random.random() * len(possible_moves)) for move_i in possible_moves: move = possible_moves[(start_movei + move_i) % len(possible_moves)] if s.board.legal_move(move): return move raise Exception("Can't move!") class User(Player): def __init__(s, name, token): Player.__init__(s, name, token) def move(s): try: return int(sys.stdin.readline()[0]) except: return None class Game: X = 'X' O = 'O' def __init__(s, tokens, players, board): s.tokens = tokens s.players = players s.board = board s.turni = int(len(s.players)*random.random()) for player in s.players: player.setup(game=s, board=board) def over(s): return (s.board.full(), s.board.winner()) def play(s): s.board.print() while True: s.playturn() (full, winner_token) = s.over() if winner_token or full: printf('\n GAME OVER. ') if winner_token: printf('%s wins!\n\n' % winner_token) else: printf('Draw.') return # time.sleep(1) def playturn(s): player = s.players[s.turni] printf("\n%s %s's turn. Move (column #): \n" % (player.token, player.name)) s.turni = (s.turni+1) % len(s.players) while True: colname = player.move() printf("Move: Column %s\n" % colname) try: if s.board.insert(colname, player.token): break except: pass printf('ILLEGAL MOVE. Try again: ') s.board.print() def main(): tokens = [Game.X, Game.O] players = [] for playeri in range(len(tokens)): printf("%s Player: Enter name, or press [ENTER] for AI: " % tokens[playeri]) name = sys.stdin.readline()[:-1] if name: player = User(token=tokens[playeri], name=name) else: player = AI(token=tokens[playeri]) players.append(player) while True: board = Board(tokens) game = Game(tokens, players, board).play() printf("Play again? [Y/n]: ") again = sys.stdin.readline()[:-1] if again in "NnQq": break main()
true
c090af4139919b65cead84071f21df07c3976026
Python
AnjoliPodder/PracticePython
/8.py
UTF-8
1,867
4.5
4
[]
no_license
''' Solution by: Anjoli Podder December 2016 http://www.practicepython.org/exercise/2014/03/26/08-rock-paper-scissors.html Let’s say I give you a list saved in a variable: a = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]. Write one line of Python that takes this list a and makes a new list that has only the even elements of this list in it. ''' def rps(): print("Welcome to the game! Your move must be rock, paper or scissors.") valid_moves = ["rock", "paper", "scissors"] valid1 = False valid2 = False pl1 = "" pl2 = "" while not(valid1): pl1 = input("Please enter your move, Player 1: ").lower() if not(pl1 in valid_moves): print("That was not a valid move. Try again.") else: valid1 = True while not(valid2): pl2 = input("Please enter your move, Player 2: ").lower() if not(pl2 in valid_moves): print("That was not a valid move. Try again.") else: valid2 = True if pl1 == pl2: print("You both chose", pl1,". It's a tie!") elif (pl1, pl2) == ("rock", "paper"): print("Player 2 Wins! Rock is wrapped by Paper") elif (pl1, pl2) == ("rock", "scissors"): print("Player 1 Wins! Rock breaks Scissors") elif (pl1, pl2) == ("paper", "scissors"): print("Player 2 Wins! Paper is cut by Scissors") elif (pl1, pl2) == ("paper", "rock"): print("Player 1 Wins! Paper wraps Rock") elif (pl1, pl2) == ("scissors", "paper"): print("Player 1 Wins! Scissors cuts Paper") elif (pl1, pl2) == ("scissors", "rock"): print("Player 2 Wins! Scissors is broken by Rock") again = input("Do you want to play again? (Y/N): ").lower() if again == "y": rps() else: print("Thanks for playing!") pass rps()
true
7232b30a5d8032fa83bfd182064edecb8ec19412
Python
evd0kim/poc-threshold-ecdsa-secp256k1
/paillier.py
UTF-8
2,878
3.3125
3
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
#!/usr/bin/env python import struct import utils KEY_LENGHT = 4096 def inverse(a, n): """Find the inverse of a modulo n if it exists""" t = 0 newt = 1 r = n newr = a while newr != 0: quotient = int((r - (r % newr)) / newr) tt = t t = newt newt = tt - quotient * newt rr = r r = newr newr = rr - quotient * newr if r > 1: return "a is not invertible" if t < 0: t = t + n return t def lcm(a, b): """Computing the least common multiple between a and b""" n = a * b if n < 0: n = n * -1 return int(n / utils.nonrec_gcd(a, b)) def L(x, n): return int((x - 1) / n) def key_gen(p, q): if utils.nonrec_gcd(p, q) != 1: # non-distinct exit(1) n = p * q g = n + 1 lmdba = (p-1) * (q-1) mu = utils.invert(lmdba, n) return (n, g), (n, p, q, g, lmdba, mu) def gen_key(): p = utils.getprimeover(KEY_LENGHT>>1) q = utils.getprimeover(KEY_LENGHT>>1) return key_gen(p, q) def R_old(n): with open("/dev/urandom", 'rb') as f: r = struct.unpack(">Q", f.read(8))[0] % n return r def R(n): return utils.randomnumber(n) while True: r = utils.randomnumber(n) if utils.nonrec_gcd(r, n) == 1: return r def encrypt(m, pub): n, g = pub n2 = n * n r = R(n) return (utils.powmod(g, m, n2) * utils.powmod(r, n, n2)) % n2, r def decrypt(c, priv): n, p, q, g, lmdba, mu = priv n2 = n * n return L(utils.powmod(c, lmdba, n2), n) * mu % n def mult(cipher, scalar, n2): return utils.powmod(cipher, scalar, n2) def add(c1, c2, n2): return c1 * c2 % n2 if __name__ == "__main__": # print(KEY_LENGHT>>1) p = utils.getprimeover(KEY_LENGHT>>1) q = utils.getprimeover(KEY_LENGHT>>1) # print(p) # print(q) # http://www.primos.mat.br/primeiros_10000_primos.txt pub, priv = key_gen(p, q) n, p, q, g, lmdba, mu = priv n2 = n * n # print(pub, priv) s1 = 180 s2 = 10 print(s1) print(s2) c1, r1 = encrypt(s1, pub) c2, r2 = encrypt(s2, pub) # print(c1) # print(c2) # Homomorphic properties cadd = c1 * c2 % n2 # print(cadd) cmult = utils.powmod(c1, 20, n2) # print(cmult) # (180 + 10) * 10 + 180 = 2'080 test = add(mult(add(c1, c2, n2), 10, n2), c1, n2) # 180 * 100 + 180 * 100 = 36'000 test2 = add(mult(c1, 100, n2), mult(c1, 100, n2), n2) madd = decrypt(cadd, priv) mmult = decrypt(cmult, priv) mtest = decrypt(test, priv) mtest2 = decrypt(test2, priv) m1 = decrypt(c1, priv) m2 = decrypt(c2, priv) print("add c1 + c2:", madd) print("mult c1 * 20:", mmult) print("test composition:", mtest) print("test composition 2:", mtest2) print(decrypt(encrypt(10, pub)[0], priv))
true
382f48d18d6506a8fdeb77004d642f9947a3be0b
Python
CSSS/csss-site
/csss-site/src/csss/convert_markdown.py
UTF-8
500
2.5625
3
[]
no_license
import markdown def markdown_message(message): """ Marks down the given message using the markdown module Keyword Argument message -- the message to mark down Return message - the marked down message """ return markdown.markdown( message, extensions=[ 'sane_lists', 'markdown_link_attr_modifier' ], extension_configs={ 'markdown_link_attr_modifier': { 'new_tab': 'on', }, } )
true
0cafa77b3197d634b00e72ffb6250fa46a67f3e4
Python
varshanth/Coding_Algorithms
/Linked_Lists/remove_all_occurrences_of_element_from_linked_list.py
UTF-8
1,480
4.09375
4
[]
no_license
''' LeetCode: Remove Element from LinkedList Remove all elements from a linked list of integers that have value val. Example Given: 1 --> 2 --> 6 --> 3 --> 4 --> 5 --> 6, val = 6 Return: 1 --> 2 --> 3 --> 4 --> 5 Solution: O(n) Algorithm: 1) Maintain 2 pointers, fast and slow. Slow will start on dummy_head and fast will start on head 2) Link slow to fast i.e slow.next = fast and update slow as slow.next only if fast.val is not equal to target val. 3) Make sure to take care of the case where the target to be deleted is the last node. If the node at the end was not the target, it would have had its next pointer as None. Hence we just assign slow.next as None because the slow would have the last known node whose value is not the target val. ''' # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def removeElements(self, head, val): """ :type head: ListNode :type val: int :rtype: ListNode """ if head is None: return head dummy_head = ListNode(0) dummy_head.next = head slow = dummy_head fast = dummy_head.next while fast is not None: if fast.val != val: slow.next = fast slow = fast fast = fast.next slow.next = None return dummy_head.next
true
31d766c28f9df0982fd539e6582d7a77bfce64ac
Python
mndesai/Python
/ex16.py
UTF-8
1,244
3.671875
4
[]
no_license
from sys import argv #open python file with script name and file name script, filename = argv print "We're going to erase %r." % filename print "If you don't want that, hit CTRL-C (^C)." #closes script print "If you do want that, hit RETURN." raw_input("?") print "Opening the file..." #I guess this is what happens if you hit return target = open(filename, 'w') #can write to file, file contents assigned to target variable # print "Truncating the file. Goodbye!" # target.truncate() #tell target to truncate, but truncate doesn't matter if you open with "w" print "Now I'm going to ask you for three lines." #gets 3 lines from user line1 = raw_input("line 1: ") line2 = raw_input("line 2: ") line3 = raw_input("line 3: ") print "I'm going to write these to the file." # target.write(line1) #writes new lines to file, each line is its own line # target.write("\n") # target.write(line2) # target.write("\n") # target.write(line3) # target.write("\n") target.write("%s\n%s\n%s\n" % (line1, line2, line3)) target.close() target = open(filename) print target.read() print "And finally, we close it." #closes file target.close() # from sys import argv # script, filename= argv # print open(filename).read() # open(filename).close()
true
7a7c00f304306e438067fd20581b4579fe9e08cc
Python
JasperGan-smile/fileserver
/fs.py
UTF-8
1,231
2.671875
3
[]
no_license
import os,magic import re from genericpath import isdir, isfile from flask import Flask,send_file,render_template,request def show_dir(pwd): files = os.listdir(pwd) return render_template("index.html",files = files,pwd = pwd) def send_to_client(pwd): path = pwd[:-1] return send_file(path,as_attachment=True) def file_or_dir(pwd): if(os.path.isdir(pwd)): return show_dir(pwd) else: return send_to_client(pwd) app = Flask(__name__) @app.route('/edit/<path:dummy>') def editor(dummy): file_path = '/'+str(dummy) with open(file_path,'r',encoding='utf-8') as f: content = f.read() return render_template('editor.html',path = file_path,content = content) @app.route('/save',methods=['POST']) def save(): content = request.form['content'] path = request.form['path'] with open(path,'w') as f: f.write(content) return "saved!" @app.route('/<path:dummy>') def fallback(dummy): if str(dummy).startswith('edit'): return editor(str(dummy)) else: return file_or_dir('/'+str(dummy)+'/') @app.route('/') def index(): html = file_or_dir("/") return html if __name__ == '__main__': app.run(debug=True)
true
1a837d72da20cb51c81b437029624d536cb25a23
Python
uenewsar/nlp100fungos
/chap9/83.py
UTF-8
1,905
2.828125
3
[]
no_license
# -*- coding: utf-8 -*- ''' 83. 単語/文脈の頻度の計測 82の出力を利用し,以下の出現分布,および定数を求めよ. f(t,c): 単語tと文脈語cの共起回数 f(t,∗): 単語tの出現回数 f(∗,c): 文脈語cの出現回数 N: 単語と文脈語のペアの総出現回数 ''' import pickle import sys def write_res(word2idx, idx2word, ftc, ft, fc, N, fn): with open(fn, 'wb') as fw: pickle.dump( (word2idx, idx2word, ftc, ft, fc, N), fw ) ## main # read outcome of 82 fr = open('context.txt', 'r', encoding='utf-8') # initialize variables # f(t,c) ftc = {} # f(t,*) ft = {} # f(*,c) fc = {} # N N = 0 # word id - word # word - word id idx2word = {} word2idx = {} for line in fr: # there are some cases that line doesn't have two colums, so use strip (not rstrip) # to remove all unnecessary spaces line = line.strip() # split to words tab = line.split('\t') if len(tab) != 2: continue t = tab[0] c = tab[1] # register word id if t not in word2idx: word2idx[t] = len(word2idx) idx2word[ word2idx[t] ] = t if c not in word2idx: word2idx[c] = len(word2idx) idx2word[ word2idx[c] ] = c # convert to word id t = word2idx[t] c = word2idx[c] # count f(t,c) if t not in ftc: ftc[t] = {} if c not in ftc[t]: ftc[t][c] = 0 ftc[t][c] += 1 # count f(t,*) if t not in ft: ft[t] = 0 ft[t] += 1 # count f(*,c) if c not in fc: fc[c] = 0 fc[c] += 1 N += 1 if N % 10000000 == 0: sys.stderr.write(' N={}\n'.format(N)) #if N % 100000000 == 0: # break fr.close() # write final result sys.stderr.write(' writing final result ...\n') write_res(word2idx, idx2word, ftc, ft, fc, N, 'context_count.pickle') sys.stderr.write(' end\n')
true
4dbf77fc15640c98b89990cc35c6bbaca2347bca
Python
Setugekka/Finance-Investment-Analysis-System
/webapp/Library/pyalgotrade_custom/plotter.py
UTF-8
2,153
2.75
3
[]
no_license
#encoding:utf-8 from pyalgotrade import broker from backtestOrder import backtestOrder as Order class StrategyPlotter(object): """Class responsible for plotting a strategy execution. :param strat: The strategy to plot. :type strat: :class:`pyalgotrade.strategy.BaseStrategy`. """ def __init__(self, strat): self.__dateTimes = [] self.__tradehistory=[] self.__portfolio=[] self.__startdate=strat.getStartdate() strat.getBarsProcessedEvent().subscribe(self.__onBarsProcessed) strat.getBroker().getOrderUpdatedEvent().subscribe(self.__onOrderEvent) def getTradehistory(self): self.__tradehistory.reverse() return self.__tradehistory def getPortfolio(self): point=None for i in self.__dateTimes: if i>=self.__startdate: point=i break num=self.__dateTimes.index(point) return {"date":self.__dateTimes[num:],"data":self.__portfolio[num:]} def __onBarsProcessed(self, strat, bars): dateTime = bars.getDateTime() self.__dateTimes.append(dateTime) self.__portfolio.append(strat.getBroker().getEquity()) # 可以返回市值变化 def __onOrderEvent(self, broker_, orderEvent): order = orderEvent.getOrder() if orderEvent.getEventType() in (broker.OrderEvent.Type.PARTIALLY_FILLED,broker.OrderEvent.Type.FILLED): code=order.getInstrument() action = order.getAction() execInfo = orderEvent.getEventInfo() if action in [broker.Order.Action.BUY, broker.Order.Action.BUY_TO_COVER]: historder = Order(code,'buy',execInfo.getPrice(),execInfo.getQuantity(),execInfo.getCommission(),execInfo.getDateTime()) self.__tradehistory.append(historder) elif action in [broker.Order.Action.SELL, broker.Order.Action.SELL_SHORT]: historder = Order(code, 'sell', execInfo.getPrice(), execInfo.getQuantity(), execInfo.getCommission(), execInfo.getDateTime()) self.__tradehistory.append(historder)
true
32e47048d19132ce0a69f18498972258512f9f24
Python
zhigang0529/PythonLearn
/src/main/operation/RSSSum.py
UTF-8
294
2.578125
3
[]
no_license
#!/usr/bin/python # !coding=utf-8 import os list = [] sum = 0 pslines = os.popen('ps aux', 'r').readlines() for line in pslines: str2 = line.split() new_rss = str2[5] list.append(new_rss) for i in list[1:-1]: num = int(i) sum = sum + num print '%s:%s' % (list[0], sum)
true
de90b59e1acff18c0704a821bdd58c02a3a0b382
Python
NiyazUrazaev/SummerPractice
/practice/models.py
UTF-8
3,244
2.671875
3
[]
no_license
import datetime from django.db import models class BaseDiaryDay(models.Model): """Базовый класс для одного дня у всех аппов""" date = models.DateField( default=datetime.datetime.today(), ) work_info = models.CharField( max_length=5000, default='', ) is_complete = models.BooleanField( default=False, ) class Meta: abstract = True class BaseAppsDiaryDay(BaseDiaryDay): """ Базовый класс для аппов gamification и mindfullness одного дня у дневника """ LIKE = 1 DISLIKE = 2 NEUTRAL = 3 EVALUATION = ( (LIKE, 'Понравилось'), (DISLIKE, 'Не понравилось'), (NEUTRAL, 'Нейтрально'), ) liked_things = models.TextField( default='', ) disliked_things = models.TextField( default='', ) day_evaluation = models.IntegerField( choices=EVALUATION, verbose_name='Day evaluation', null=True, blank=True, ) class Meta: abstract = True class BasePractice(models.Model): """Базовы класс для практик всех аппов""" STUDY = 'Учебная' WORK = 'Производственная' TYPE = ( (STUDY, 'Учебная'), (WORK, 'Производственная'), ) teacher = models.ForeignKey( 'user.Teacher', on_delete=models.CASCADE, null=True, ) practice_type = models.CharField( max_length=30, choices=TYPE, verbose_name='Тип практики' ) practice_addres = models.CharField( max_length=500, default='', ) date_start=models.DateField( default=datetime.datetime.today(), ) date_end=models.DateField( default=datetime.datetime.today(), ) class Meta: abstract = True class ClassicPractice(BasePractice): """Практика без gamification и без mindfullness""" class Meta: verbose_name = "Практика без gamification и без mindfullness" verbose_name_plural = "Практики без gamification и без mindfullness" class ClassicDiaryDay(BaseDiaryDay): """День практики в дневнике без gamification и без mindfullness""" class Meta: verbose_name = ( "День практики в дневнике без gamification и без mindfullness" ) verbose_name_plural = ( "Дни практики в дневнике без gamification и без mindfullness" ) class ClassicDiary(models.Model): """Дневник без gamification и без mindfullness""" diary_days = models.ManyToManyField( ClassicDiaryDay ) practice = models.ForeignKey( ClassicPractice, on_delete=models.CASCADE, null=True, blank=True, ) class Meta: verbose_name = "Дневник без gamification и без mindfullness" verbose_name_plural = "Дневники без gamification и без mindfullness"
true
0b8391aa4fbbb308e9b1c41cead7b427302e157f
Python
FZKeehn/Sunlight-Data-Exploration-Project
/Association_Rules.py
UTF-8
2,094
3.265625
3
[]
no_license
# -*- coding: utf-8 -*- """ Frank Zebulon Keehn Sunlight Data Exploration Project Written in Python (x,y) with Python 2.7.10 """ """Orange is a Python data mining and visualization library that I installed for its association rules functions""" import Orange #save the basket file in a data table the association rules functions can use data = Orange.data.Table("Phrases_2015.basket") """function that generates the set association rules for given constraints, in this case support = 0.4.""" rules = Orange.associate.AssociationRulesSparseInducer(data, support = 0.4) """" Next, these rules are written to another text file for exploration and interpretation. """ rules_file = open('rules_2015.txt','w+') for item in rules: rules_file.write("%5.3f %5.3f %s\n" % (item.support, item.confidence, item)) rules_file.close() """This code is for if you want to explore the frequent itemsets themselves, instead of just the association rules.""" inducer = Orange.associate.AssociationRulesSparseInducer(support = 0.4, store_examples = True) itemsets = inducer.get_itemsets(data) """The following section provides another text file with automatically generated examples of basic interpretations of some of the association rules. """ interpretation = [] for item in rules: interpretation.append([item.support,item.confidence, str(item).split(" -> ")]) interpretation_file = open('interpretation.txt','w+') for item in interpretation: part1 = "The itemset '%s' occurs in %1.0f%% of cases in the dataset.\n" % \ (item[2][0], item[0]*100) part2 = "The rule '%s -> %s' holds in %1.0f%% these cases.\n\n" % \ (item[2][0], item[2][1], item[1]*100) interpretation_file.write(part1) interpretation_file.write(part2) interpretation_file.close()
true
a93eed488a88d5d46c1844e082867a6253020248
Python
thomasgibson/tabula-rasa
/verification/LDGH/LDGH.py
UTF-8
14,676
3.171875
3
[ "MIT" ]
permissive
""" This module runs a convergence history for a hybridized-DG discretization of a model elliptic problem (detailed in the main function). The method used is the LDG-H method. """ from firedrake import * from firedrake.petsc import PETSc from firedrake import COMM_WORLD import numpy as np import pandas as pd def run_LDG_H_problem(r, degree, tau_order, write=False): """ Solves the Dirichlet problem for the elliptic equation: -div(grad(u)) = f in [0, 1]^2, u = g on the domain boundary. The source function f and g are chosen such that the analytic solution is: u(x, y) = sin(x*pi)*sin(y*pi). This problem was crafted so that we can test the theoretical convergence rates for the hybridized DG method: LDG-H. This is accomplished by introducing the numerical fluxes: u_hat = lambda, q_hat = q + tau*(u - u_hat). The Slate DLS in Firedrake is used to perform the static condensation of the full LDG-H formulation of the Poisson problem to a single system for the trace u_hat (lambda) on the mesh skeleton: S * Lambda = E. The resulting linear system is solved via a direct method (LU) to ensure an accurate approximation to the trace variable. Once the trace is solved, the Slate DSL is used again to solve the elemental systems for the scalar solution u and its flux q. Post-processing of the scalar variable, as well as its flux, is performed using Slate to form and solve the elemental-systems for new approximations u*, q*. Depending on the choice of tau, these new solutions have superconvergent properties. The post-processed scalar u* superconverges at a rate of k+2 when two conditions are satisfied: (1) q converges at a rate of k+1, and (2) the cell average of u, ubar, superconverges at a rate of k+2. The choice of tau heavily influences these two conditions. For all tau > 0, the post-processed flux q* has enhanced convervation properties! The new solution q* has the following three properties: (1) q* converges at the same rate as q. However, (2) q* is in H(Div), meaning that the interior jump of q* is zero! And lastly, (3) div(q - q*) converges at a rate of k+1. The expected (theoretical) rates for the LDG-H method are summarized below for various orders of tau: ----------------------------------------------------------------- u q ubar u* q* div(p*) ----------------------------------------------------------------- tau = O(1) (k>0) k+1 k+1 k+2 k+2 k+1 k+1 tau = O(h) (k>0) k k+1 k+2 k+2 k+1 k+1 tau = O(1/h) (k>0) k+1 k k+1 k+1 k k+1 ----------------------------------------------------------------- Note that the post-processing used for the flux q only holds for simplices (triangles and tetrahedra). If someone knows of a local post-processing method valid for quadrilaterals, please contact me! For these numerical results, we chose the following values of tau: tau = O(1) -> tau = 1, tau = O(h) -> tau = h, tau = O(1/h) -> tau = 1/h, where h here denotes the facet area. This demo was written by: Thomas H. Gibson (t.gibson15@imperial.ac.uk) """ if tau_order is None or tau_order not in ("1", "1/h", "h"): raise ValueError( "Must specify tau to be of order '1', '1/h', or 'h'" ) assert degree > 0, "Provide a degree >= 1" # Set up problem domain mesh = UnitSquareMesh(2**r, 2**r, quadrilateral=False) x = SpatialCoordinate(mesh) n = FacetNormal(mesh) # Set up function spaces U = VectorFunctionSpace(mesh, "DG", degree) V = FunctionSpace(mesh, "DG", degree) T = FunctionSpace(mesh, "HDiv Trace", degree) # Mixed space and test/trial functions W = U * V * T s = Function(W, name="solutions").assign(0.0) q, u, uhat = split(s) v, w, mu = TestFunctions(W) # Analytical solutions for u and q V_a = FunctionSpace(mesh, "DG", degree + 3) U_a = VectorFunctionSpace(mesh, "DG", degree + 3) u_a = Function(V_a, name="Analytic Scalar") a_scalar = sin(pi*x[0])*sin(pi*x[1]) u_a.interpolate(a_scalar) q_a = Function(U_a, name="Analytic Flux") a_flux = -grad(a_scalar) q_a.project(a_flux) Vh = FunctionSpace(mesh, "DG", degree + 3) f = Function(Vh).interpolate(-div(grad(a_scalar))) # Determine stability parameter tau if tau_order == "1": tau = Constant(1) elif tau_order == "1/h": tau = 1/FacetArea(mesh) elif tau_order == "h": tau = FacetArea(mesh) else: raise ValueError("Invalid choice of tau") # Numerical flux qhat = q + tau*(u - uhat)*n # Formulate the LDG-H method in UFL a = ((dot(v, q) - div(v)*u)*dx + uhat('+')*jump(v, n=n)*dS + uhat*dot(v, n)*ds - dot(grad(w), q)*dx + jump(qhat, n=n)*w('+')*dS + dot(qhat, n)*w*ds # Transmission condition + mu('+')*jump(qhat, n=n)*dS) L = w*f*dx F = a - L PETSc.Sys.Print("Solving using static condensation.\n") params = {'snes_type': 'ksponly', 'mat_type': 'matfree', 'pmat_type': 'matfree', 'ksp_type': 'preonly', 'pc_type': 'python', # Use the static condensation PC for hybridized problems # and use a direct solve on the reduced system for u_hat 'pc_python_type': 'firedrake.SCPC', 'pc_sc_eliminate_fields': '0, 1', 'condensed_field': {'ksp_type': 'preonly', 'pc_type': 'lu', 'pc_factor_mat_solver_type': 'mumps'}} bcs = DirichletBC(W.sub(2), Constant(0.0), "on_boundary") problem = NonlinearVariationalProblem(F, s, bcs=bcs) solver = NonlinearVariationalSolver(problem, solver_parameters=params) solver.solve() PETSc.Sys.Print("Solver finished.\n") # Computed flux, scalar, and trace q_h, u_h, uhat_h = s.split() # Now we compute the various metrics. First we # simply compute the L2 error between the analytic # solutions and the computed ones. scalar_error = errornorm(a_scalar, u_h, norm_type="L2") flux_error = errornorm(a_flux, q_h, norm_type="L2") # We keep track of all metrics using a Python dictionary error_dictionary = {"scalar_error": scalar_error, "flux_error": flux_error} # Now we use Slate to perform element-wise post-processing # Scalar post-processing: # This gives an approximation in DG(k+1) via solving for # the solution of the local Neumman data problem: # # (grad(u), grad(w))*dx = -(q_h, grad(w))*dx # m(u) = m(u_h) for all elements K, where # # m(v) := measure(K)^-1 * int_K v dx. # NOTE: It is currently not possible to correctly formulate this # in UFL. However, we can introduce a Lagrange multiplier and # transform the local problem above into a local mixed system: # # find (u, psi) in DG(k+1) * DG(0) such that: # # (grad(u), grad(w))*dx + (psi, grad(w))*dx = -(q_h, grad(w))*dx # (u, phi)*dx = (u_h, phi)*dx, # # for all w, phi in DG(k+1) * DG(0). DGk1 = FunctionSpace(mesh, "DG", degree + 1) DG0 = FunctionSpace(mesh, "DG", 0) Wpp = DGk1 * DG0 up, psi = TrialFunctions(Wpp) wp, phi = TestFunctions(Wpp) # Create mixed tensors: K = Tensor((inner(grad(up), grad(wp)) + inner(psi, wp) + inner(up, phi))*dx) F = Tensor((-inner(q_h, grad(wp)) + inner(u_h, phi))*dx) E = K.inv * F PETSc.Sys.Print("Local post-processing of the scalar variable.\n") u_pp = Function(DGk1, name="Post-processed scalar") assemble(E.blocks[0], tensor=u_pp) # Now we compute the error in the post-processed solution # and update our error dictionary scalar_pp_error = errornorm(a_scalar, u_pp, norm_type="L2") error_dictionary.update({"scalar_pp_error": scalar_pp_error}) # Post processing of the flux: # This is a modification of the local Raviart-Thomas projector. # We solve the local problem: find 'q_pp' in RT(k+1)(K) such that # # (q_pp, v)*dx = (q_h, v)*dx, # (q_pp.n, gamma)*dS = (qhat.n, gamma)*dS # # for all v, gamma in DG(k-1) * DG(k)|_{trace}. The post-processed # solution q_pp converges at the same rate as q_h, but is HDiv # conforming. For all LDG-H methods, # div(q_pp) converges at the rate k+1. This is a way to obtain a # flux with better conservation properties. For tau of order 1/h, # div(q_pp) converges faster than q_h. qhat_h = q_h + tau*(u_h - uhat_h)*n local_RT = FiniteElement("RT", triangle, degree + 1) RTd = FunctionSpace(mesh, BrokenElement(local_RT)) DGkn1 = VectorFunctionSpace(mesh, "DG", degree - 1) # Use the trace space already defined Npp = DGkn1 * T n_p = TrialFunction(RTd) vp, mu = TestFunctions(Npp) # Assemble the local system and invert using Slate A = Tensor(inner(n_p, vp)*dx + jump(n_p, n=n)*mu*dS + dot(n_p, n)*mu*ds) B = Tensor(inner(q_h, vp)*dx + jump(qhat_h, n=n)*mu*dS + dot(qhat_h, n)*mu*ds) PETSc.Sys.Print("Local post-processing of the flux.\n") q_pp = assemble(A.inv * B) # And check the error in our new flux flux_pp_error = errornorm(a_flux, q_pp, norm_type="L2") # To verify our new flux is HDiv conforming, we also # evaluate its jump over mesh interiors. This should be # approximately zero if everything worked correctly. flux_pp_jump = assemble(jump(q_pp, n=n)*dS) error_dictionary.update({"flux_pp_error": flux_pp_error}) error_dictionary.update({"flux_pp_jump": np.abs(flux_pp_jump)}) PETSc.Sys.Print("Post-processing finished.\n") PETSc.Sys.Print("Finished test case for h=1/2^%d.\n" % r) # If write specified, then write output if write: if tau_order == "1/h": o = "hneg1" else: o = tau_order File("results/LDGH_tauO%s_deg%d.pvd" % (o, degree)).write(q_a, u_a, q_h, u_h, u_pp) # Return all error metrics return error_dictionary, mesh def compute_conv_rates(u): """Computes the convergence rate for this particular test case :arg u: a list of errors. Returns a list of convergence rates. Note the first element of the list will be empty, as there is no previous computation to compare with. '---' will be inserted into the first component. """ u_array = np.array(u) rates = list(np.log2(u_array[:-1] / u_array[1:])) rates.insert(0, '---') return rates def run_single_test(r, degree, tau_order, write=False): # Run a quick test given a degree, tau order, and resolution resolution_param = r PETSc.Sys.Print("Running LDG-H method (triangles) of degree %d with tau=O('%s') " "and mesh parameter h=1/2^%d." % (degree, tau_order, resolution_param)) error_dict, _ = run_LDG_H_problem(r=resolution_param, degree=degree, tau_order=tau_order, write=write) PETSc.Sys.Print("Error in scalar: %0.8f" % error_dict["scalar_error"]) PETSc.Sys.Print("Error in post-processed scalar: %0.8f" % error_dict["scalar_pp_error"]) PETSc.Sys.Print("Error in flux: %0.8f" % error_dict["flux_error"]) PETSc.Sys.Print("Error in post-processed flux: %0.8f" % error_dict["flux_pp_error"]) PETSc.Sys.Print("Interior jump of post-processed flux: %0.8f" % np.abs(error_dict["flux_pp_jump"])) def run_LDG_H_convergence(degree, tau_order, start, end): PETSc.Sys.Print("Running convergence test for LDG-H method (triangles) " "of degree %d with tau order '%s'" % (degree, tau_order)) # Create arrays to write to CSV file r_array = [] scalar_errors = [] scalar_pp_errors = [] flux_errors = [] flux_pp_errors = [] flux_pp_jumps = [] num_cells = [] # Run over mesh parameters and collect error metrics for r in range(start, end + 1): r_array.append(r) error_dict, mesh = run_LDG_H_problem(r=r, degree=degree, tau_order=tau_order, write=False) # Extract errors and metrics scalar_errors.append(error_dict["scalar_error"]) scalar_pp_errors.append(error_dict["scalar_pp_error"]) flux_errors.append(error_dict["flux_error"]) flux_pp_errors.append(error_dict["flux_pp_error"]) flux_pp_jumps.append(error_dict["flux_pp_jump"]) num_cells.append(mesh.num_cells()) # Now that all error metrics are collected, we can compute the rates: scalar_rates = compute_conv_rates(scalar_errors) scalar_pp_rates = compute_conv_rates(scalar_pp_errors) flux_rates = compute_conv_rates(flux_errors) flux_pp_rates = compute_conv_rates(flux_pp_errors) PETSc.Sys.Print("Error in scalar: %0.13f" % scalar_errors[-1]) PETSc.Sys.Print("Error in post-processed scalar: %0.13f" % scalar_pp_errors[-1]) PETSc.Sys.Print("Error in flux: %0.13f" % flux_errors[-1]) PETSc.Sys.Print("Error in post-processed flux: %0.13f" % flux_pp_errors[-1]) PETSc.Sys.Print("Interior jump of post-processed flux: %0.13f" % np.abs(flux_pp_jumps[-1])) if COMM_WORLD.rank == 0: degrees = [degree] * len(r_array) data = {"Mesh": r_array, "Degree": degrees, "NumCells": num_cells, "ScalarErrors": scalar_errors, "ScalarConvRates": scalar_rates, "PostProcessedScalarErrors": scalar_pp_errors, "PostProcessedScalarRates": scalar_pp_rates, "FluxErrors": flux_errors, "FluxConvRates": flux_rates, "PostProcessedFluxErrors": flux_pp_errors, "PostProcessedFluxRates": flux_pp_rates} if tau_order == "1/h": o = "hneg1" else: o = tau_order df = pd.DataFrame(data) result = "results/LDG-H-d%d-tau_order-%s.csv" % (degree, o) df.to_csv(result, index=False, mode="w")
true
fe095267b52ebecf582f19f64c9886966d6af7ed
Python
uzdpe/german_credit_risk_xai
/backend/data_preprocessing/data_loading.py
UTF-8
9,415
2.890625
3
[]
no_license
"""Sources: dataset: https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 """ import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder from backend.util.static import PATHS, dataset, params from backend.util.helper_functions import get_ct_feature_names from backend.util.util import clean_folder import plotly.express as px import plotly.offline as py german_credit_dataset = dataset[params["dataset"]] def initialize(): """This is for the first initialization (splitting dataset and setting paths / folders) """ # clean preprocessed and output folder clean_folder(folder=PATHS["02_data_preprocessed"]) clean_folder(folder=PATHS["03_data_outputs"]) clean_folder(folder=PATHS["04_trained_models"]) # load the data df_credit = load_data() # Small preparation df_credit = data_preparation(df_credit) # Encode into lime format df_credit, categorical_encoding, categorical_encoding_label = encoding(df_credit) # Split the data into training and testing create_training_split(df_credit) def load_data(type="raw"): """Loads the data, type can be raw, training, testing.""" if type == "raw": df_credit = pd.read_excel(PATHS["01_data_raw"] + "credit_risk.xls", index_col=0) return df_credit elif type == "training": X_train = pd.read_csv(PATHS["02_data_preprocessed"] + "X_train.csv", index_col=0) y_train = pd.read_csv(PATHS["02_data_preprocessed"] + "y_train.csv", index_col=0) return X_train, y_train elif type == "testing": X_test = pd.read_csv(PATHS["02_data_preprocessed"] + "X_test.csv", index_col=0) y_test = pd.read_csv(PATHS["02_data_preprocessed"] + "y_test.csv", index_col=0) return X_test, y_test else: raise AssertionError("Error in if-else statement") def explore_data(df_credit): """Explore the data.""" print("Shape of the data") print(df_credit.info()) #print("Looking unique values") #print(df_credit.nunique()) print("Header") print(df_credit.head()) # Prints unique data values # print("Checking account : ", df_credit['Checking account'].unique()) # print("Credit history : ", df_credit['Credit history'].unique()) # print("Saving accounts : ", df_credit['Saving accounts'].unique()) # print("Length of current employment : ", df_credit['Length of current employment'].unique()) # print("Purpose : ", df_credit.Purpose.unique()) # print("Sex : ", df_credit['Sex'].unique()) # print("Marital status : ", df_credit['Marital status'].unique()) # print("Other debtors / guarantors : ", df_credit['Other debtors / guarantors'].unique()) # print("Property ", df_credit['Property'].unique()) # print("Other installment plans : ", df_credit['Other installment plans'].unique()) # print("Housing : ", df_credit.Housing.unique()) # print("Job : ", df_credit.Job.unique()) # print("Telephone : ", df_credit.Telephone.unique()) # print("Foreign Worker : ", df_credit['Foreign Worker'].unique()) # print("Risk : ", df_credit['Risk'].unique()) def create_training_split(df_credit): """Creates the train, val, and test split.""" y = df_credit["Risk"] # .map({"bad": 0, "good": 1}) X = df_credit.drop("Risk", axis=1) # Splitting X and y into train and test version X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42) # test size of 100 # Save train and test set pd.DataFrame(X_train).to_csv(PATHS["02_data_preprocessed"] + "X_train.csv") pd.DataFrame(X_test).to_csv(PATHS["02_data_preprocessed"] + "X_test.csv") pd.DataFrame(y_train).to_csv(PATHS["02_data_preprocessed"] + "y_train.csv") pd.DataFrame(y_test).to_csv(PATHS["02_data_preprocessed"] + "y_test.csv") return X_train, X_test, y_train, y_test def data_preparation(df_credit): """Small dataset fixes""" # df_credit.loc[(df_credit.Job == 0), 'Job'] = "unskilled and non-resident" # df_credit.loc[(df_credit.Job == 1), 'Job'] = "unskilled and resident" # df_credit.loc[(df_credit.Job == 2), 'Job'] = "skilled" # df_credit.loc[(df_credit.Job == 3), 'Job'] = "highly skilled" # df_credit["Saving accounts"] = df_credit["Saving accounts"].astype(str) # df_credit["Checking account"] = df_credit["Checking account"].astype(str) # interval = (18, 25, 35, 60, 120) # categories = ['Student', 'Young', 'Adult', 'Senior'] # df_credit["Age_cat"] = pd.cut(df_credit.Age, interval, labels=categories) # df_credit['Credit amount'] = np.log(df_credit['Credit amount']) return df_credit def analyze_dataset(): """Analyze the datasest and give back which columns contains which type of features""" df_credit = load_data() categorical_features_names = [col for col in df_credit.columns if df_credit[col].dtype == 'object'] categorical_features_indices = german_credit_dataset["categorical_features_indices"] feature_names = df_credit.columns.tolist() return categorical_features_names, categorical_features_indices, feature_names def encoding(df_credit): """Preprocessing: Encodes the categorical labels into the LIME format. This format should not be used for training since it is not one-hot-encoded (high multicollinearity)""" categorical_encoding = {} for col in german_credit_dataset["categorical_features_indices"]: label_encoder = preprocessing.LabelEncoder() df_credit.iloc[:, col] = label_encoder.fit_transform(df_credit.iloc[:, col]) categorical_encoding[col] = label_encoder.classes_ categorical_encoding_label = {} for col in german_credit_dataset["label_indices"]: label_encoder = preprocessing.LabelEncoder() df_credit.iloc[:, col] = label_encoder.fit_transform(df_credit.iloc[:, col]) categorical_encoding_label = label_encoder.classes_ return df_credit, categorical_encoding, categorical_encoding_label def load_encoded_data(): """Load lime-encoded training and testing data and return one-hot-encoded data.""" X_train, y_train = load_data(type="training") X_test, y_test = load_data(type="testing") # one-hot-encode the data X_train_encoded, encoder, columns, encoder = build_and_fit_one_hot_encoder(X_train) X_test_encoded = pd.DataFrame(encoder.transform(X_test), columns=columns) return X_train_encoded, y_train, X_test_encoded, y_test, encoder def build_and_fit_one_hot_encoder(X_train): """Returns a one hot encoder and an encoded dataset.""" numeric_features = german_credit_dataset["num_features"] numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_features = german_credit_dataset["cat_features"] categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='error', drop="first"))]) encoder = ColumnTransformer( transformers=[ ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)], remainder="passthrough") encoder.fit(X_train) X_train_encoded = encoder.transform(X_train) columns = get_ct_feature_names(encoder) X_train_encoded = pd.DataFrame(X_train_encoded, columns=columns) return X_train_encoded, encoder, columns, encoder def one_hot_encoder_old(df_credit, nan_as_category=False): """OLD """ original_columns = list(df_credit.columns) categorical_columns = [col for col in df_credit.columns if df_credit[col].dtype == 'object'] df_credit = pd.get_dummies(df_credit, columns=categorical_columns, dummy_na=nan_as_category, drop_first=True) new_columns = [c for c in df_credit.columns if c not in original_columns] return df_credit, new_columns def data_exploration(df_credit): """Data exploration with seaborn""" ax = sns.countplot(x="Risk",hue="Risk", data=df_credit) plt.show() # ax = sns.countplot(data=df_credit, x="Sex", hue="Risk") # plt.show() # ax = sns.histplot(data=df_credit, x="Credit amount", hue="Risk", element="step") # plt.show() # ax = sns.histplot(data=df_credit, x="Age", hue="Risk", element="step") # plt.show() # ax = sns.histplot(data=df_credit, x="Duration", hue="Risk", element="step") # plt.show() # ax = sns.countplot(data=df_credit, x="Purpose", hue="Risk") # plt.show() # ax = sns.countplot(data=df_credit, x="Saving accounts", hue="Risk") # plt.show() #ax = sns.countplot(data=df_credit, x="Checking account", hue="Risk") #plt.show() # ax = sns.pairplot(data=df_credit, hue="Risk", kind="kde") # ax.savefig("pairplot_all.png") # plt.show() # Takes a while to plot # plt.figure(figsize=(14, 12)) # sns.heatmap(df_credit.astype(float).corr(),linewidths=0.1,vmax=1.0, # square=True, linecolor='white', annot=True) # plt.show() # sns.countplot(x="Housing", hue="Risk", data=df_credit) #plt.show()
true
267aade8227f528d948078718884cceb55adfb7a
Python
damaresende/USP
/SCC5900/pj2/algorithms/Kruskal.py
UTF-8
3,445
3.8125
4
[]
no_license
''' Uses union find data structure with ranking and path reduction to build a MST based on Kruskal's algorithm. The algorithm runs V - 1 - K - 1 times, where V is the number of vertices and K the number of clusters to be found. @author: Damares Resende @contact: damaresresende@usp.br @since: May 26, 2019 @organization: University of Sao Paulo (USP) Institute of Mathematics and Computer Science (ICMC) Project of Algorithms Class (SCC5000) ''' class Kruskal: def __init__(self, nclusters): ''' Initializes the number of clusters @param nclusters: number of clusters @return None ''' self.nclusters = nclusters def build_mst(self, graph, npoints): ''' Builds the MST for Kruskal's algorithm. It runs until all clusters are found. @param graph: List of nodes in the graph. Each node is like [s, v, w] were s is the source, v the destination and w the weight @param npoints: number of points in the graph @return list of nodes in Minimum Spanning Tree. Each node is like [s, v, w] were s is the source, v the destination and w the weight ''' i = 0 e = 0 rank = [] # stores the rank of each set result = [] # stores the MST formed parent = [] # stores the parent of each set graph = sorted(graph, key=lambda item: item[2]) # sorts the graph so the smallest edges # are picked first. This guarantees that the K largest edges will not be considered # initializes rank and parent arrays for node in range(npoints): parent.append(node) rank.append(0) # while I do not reach the number of vertices minus the root minus the number of clusters minus one while e < (npoints - 1) - (self.nclusters - 1): u, v, w = graph[i] # gets source, destination and weight of the graph node i = i + 1 x = self.find(parent, u) # finds the node parent y = self.find(parent, v) # finds the node parent # if the inclusion of the edge does not form a circle if x != y: e += 1 result.append([u, v, w]) self.union(parent, rank, x, y) # add the set to the MST return result def find(self, parent, i): ''' Finds the set of an element i by using the path compression method @param parent: parent set id @param i: node id @return the set connected to i ''' if parent[i] == i: return i return self.find(parent, parent[i]) def union(self, parent, rank, x, y): ''' Performs the union of two sets by using the rank of them @param parent: parent set @param rank: set rank @param x: set x @param y: set y @return None ''' xroot = self.find(parent, x) yroot = self.find(parent, y) # Attach smaller rank tree under root of high rank tree if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: # If ranks are same, then make one as root and increment its rank by one parent[yroot] = xroot rank[xroot] += 1
true
adaea801ae00faf6413a2fdc6a05d678f7b3b809
Python
bespoke-silicon-group/hb_starlite
/torch-sparse-example.py
UTF-8
1,656
3.09375
3
[]
no_license
"""Some useful utilities for working with sparse tensors using the `torch.sparse` library. """ import torch.sparse import torch_sparse import scipy.sparse import numpy def sparse_scipy2torch(matrix): """Convert a matrix from *any* `scipy.sparse` representation to a sparse `torch.tensor` value. """ coo_matrix = matrix.tocoo() return torch.sparse.FloatTensor( torch.LongTensor(numpy.vstack((coo_matrix.row, coo_matrix.col))), torch.FloatTensor(coo_matrix.data), torch.Size(coo_matrix.shape), ) def sparse_torch2scipy(tensor): """Convert a sparse `torch.tensor` matrix (which must be two-dimensional, i.e., a matrix) to a `scipy.sparse` matrix. The result uses the COO representation, but you can convert it to any other sparse representation you need. """ coalesced = tensor.coalesce() values = coalesced.values() rows, cols = coalesced.indices() return scipy.sparse.coo_matrix(( values.numpy(), (rows.numpy(), cols.numpy()), )) def sparse_sparse_mm(a, b): """Sparse/sparse matrix multiply for `torch.sparse` tensors. Requires the supplemental `torch_sparse` library. """ assert a.shape[1] == b.shape[0], "dimension mismatch for multiply" a_coalesced = a.coalesce() b_coalesced = b.coalesce() c_indices, c_values = torch_sparse.spspmm( a_coalesced.indices(), a_coalesced.values(), b_coalesced.indices(), b_coalesced.values(), a.shape[0], a.shape[1], b.shape[1], ) return torch.sparse.FloatTensor( c_indices, c_values, torch.Size([a.shape[0], b.shape[1]]), )
true
41618c8341326df432c3f6b8ebebb4f43845fca1
Python
andersonms1/python-brasil
/strings/9_validade_cpr.py
UTF-8
1,116
3.609375
4
[]
no_license
valid = True sum = 0 cpf = input('Digite o CPF desejado: ') counter = 10 second_sum = 0 second_counter = 11 # verifica o tamanho if len(cpf) != (11 + 3): print('Invalid size!') valid = False # verifica os digitos elif not cpf[-2:].isdigit() or not cpf[4:7].isdigit() or not cpf[8:11].isdigit() or not cpf[-2:].isdigit(): print('Digite numeros!') valid = False # verifica formato elif cpf[3] != '.' or cpf[7] != '.' or cpf[11] != '-': print('Digite no formato correto') valid = False for w in cpf[:11]: if w.isdigit(): sum = sum + int(w) * counter counter = counter - 1 for w in cpf[:13]: if w.isdigit(): second_sum = second_sum + int(w) * second_counter second_counter = second_counter - 1 def valid_digits (any_sum, digit): v = False if any_sum % 11 == 0 or any_sum % 11 == 1: v = (digit == 0) else: v = (11 - (any_sum % 11) == digit) return v if valid_digits(sum, cpf[len(cpf)-2]) or valid_digits(second_sum, cpf[len(cpf)-1]): valid = False print(valid) # https://www.somatematica.com.br/faq/cpf.php
true
818ba842af171b6e52aa02435fcf8982e1c2c6b7
Python
ReubenBond/serverless-orleans
/loadtest/locustfile.py
UTF-8
597
2.65625
3
[]
no_license
import string import random from locust import HttpUser, task, between class MessageActorUser(HttpUser): wait_time = between(0.5, 2) @task(2) def add_message(self): actor_id = random.randint(1, 100) self.client.post(f"/messages/{actor_id}", json=self.__get_random_text()) @task def get_messages(self): actor_id = random.randint(1, 100) self.client.get(f"/messages/{actor_id}") def __get_random_text(self): length = random.randint(10, 50) return ''.join(random.choices(string.ascii_uppercase + string.digits, k = length))
true
aec2c3424a24e051c12c131d6099d04567dff97c
Python
boyoonc/stackathon
/workspace/csvs/datamanip_guide.py
UTF-8
864
2.828125
3
[]
no_license
arr = [comp1:{name: 1, size:5}, comp2:{name:2, size:10}, ... ] level2dict = { 1A: {name: bucket1a, childern:[]}, 1B: {name: bucket1b, childern:[]}, 2A: {name: bucket1b, childern:[]} } level1dict = { 1: {name: bucket1, children:[]}, 2: {name: bucket1, children:[]}, } root = { name: root, children:[] } map = {comp1:1A, comp2:2A} for key in arr: company = key targetValue = map[key] targetDict = level2dict[targetValue] targetDict[children].append(array[company]) //figure out nextTargetValue = targetValue[:-1] nextTargetDict = level1dict[nextTargetValue] nextTargetDict[children].append(targetDict) for each in level1dict: root[children].append(level1dict[each]) //got this level2dict = { 1A: {name: bucket1a, childern:[comp1:{name: 1, size:5}]}, 1B: {name: bucket1b, childern:[]}, 2A: {name: bucket1b, childern:[comp2:{name:2, size:10}]} }
true
446ec42fccc72d32f67b60e250237b9549882c10
Python
mlvfx/vfxAssetBox
/assetbox/base/host_manager.py
UTF-8
2,928
2.546875
3
[ "CC0-1.0" ]
permissive
""" HostManager reads the plugins directory, loads all plugins, and registers their actions. """ import os import imp from assetbox.base.plugins.host import BaseHost from assetbox.base.plugins import actions PROJECT_FOLDER = os.path.dirname(os.path.dirname(__file__)) def find_plugins(): """Query the plugin folder for plugins to load. Yields found locations.""" plugins_folder = os.path.join(PROJECT_FOLDER, 'plugins').replace('\\', '/') def full_path(p): return os.path.join(plugins_folder, p).replace('\\', '/') if os.path.isdir(plugins_folder): plugins = [full_path(p) for p in os.listdir(plugins_folder) if os.path.isdir(full_path(p)) and is_plugin(full_path(p))] if plugins: for plugin in plugins: yield plugin def is_plugin(plugin): """ Query whether the plugin has required files. Plugin folder must have actions and host files. Args: plugin (str): path to a plugin folder. """ files = os.listdir(plugin) plugin_files = set(['actions.py', 'host.py']) return plugin_files.issubset(set(files)) class HostManager(object): """Primary hostmanager class, loads and stores all plugins.""" def __init__(self): """Initialise the class, load the plugins.""" plugins = find_plugins() self.host_app = None self.host_actions = actions.register_actions() self.host_filetypes = [] for p in plugins: try: host_path = os.path.join(p, 'host.py').replace('\\', '/') name, ext = os.path.splitext(host_path) host = imp.load_source(name, host_path) host_app = host.HostApp() if host_app.inhost: self.host_app = host_app self.host_filetypes = self.host_app.filetypes try: action_path = os.path.join(p, 'actions.py').replace('\\', '/') name, ext = os.path.splitext(action_path) action = imp.load_source(name, action_path) self.host_actions += action.register_actions() except IOError: print 'HostManager:IOError -- No actions found' except IOError, ioe: print 'HostManager:IOError -- ', ioe, p except ImportError, ime: print 'HostManager:ImportError -- ', ime, p def get_hostapp(self): """Return the host application.""" if not self.host_app: self.host_app = BaseHost() return self.host_app def get_actions(self): """Return the actions associated with this host.""" return self.host_actions def get_filetypes(self): """Return what filetypes this host supports.""" return self.host_filetypes
true
5e130fb37a03149bdab242df468d0a3e8b036279
Python
joehigh/COMSW4771
/HW 2/q5/adadelta.py
UTF-8
940
2.671875
3
[]
no_license
import random from jax import grad import jax.numpy as np def adadelta(f, start, step, max_iter, prec): x_hist = [] y_hist = [] x = start iters = 0 delta_x = 0 eps = 1e-8 rho = .95 print(x.shape) eg = np.zeros(x.shape[0]) ed = np.zeros(x.shape[0]) while True: l = [x for x in range(500)] #random.shuffle(l) for i in l: print(x) last_x = x g = grad(f(i))(x) eg = rho * eg + (1 - rho)*g**2 cur_delta = np.sqrt(ed + eps) / np.sqrt(eg + eps) * g ed = rho * ed + (1 - rho) * cur_delta**2 x -= cur_delta delta_x = x - last_x #if np.linalg.norm(delta_x) < prec or iters > max_iter: if iters > max_iter: return x_hist, y_hist x_hist.append(x) y_hist.append(f(i)(x)) iters += 1 return x_hist, y_hist
true
eeded8e15175153813131f9c88234392b3a42737
Python
dheerajgm/daily-coding-problem
/solutions/problem_340.py
UTF-8
850
3.296875
3
[ "MIT" ]
permissive
import sys class Point: def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return "[x={},y={}]".format(self.x, self.y) def get_distance(p1, p2): return ((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2) ** 0.5 def get_closest(point_tuples): points = [Point(x, y) for (x, y) in point_tuples] min_dist, min_dist_pts = sys.maxsize, None for i in range(len(points) - 1): for j in range(i + 1, len(points)): dist = get_distance(points[i], points[j]) if dist < min_dist: min_dist = dist min_dist_pts = ((points[i].x, points[i].y), (points[j].x, points[j].y)) return min_dist_pts # Tests assert get_closest([(1, 1), (-1, -1), (3, 4), (6, 1), (-1, -6), (-4, -3)]) == \ ((1, 1), (-1, -1))
true
5546c56aa0bc5afdc62e4290046d856cb92c1f3b
Python
JohnDoneth/cis457-project2
/src/ftp/ftp_server.py
UTF-8
3,877
2.53125
3
[]
no_license
import common from asyncio import StreamReader, StreamWriter import asyncio import os import base64 from typing import Dict # filter out files with *.py extensions def filter_files(path): _, extension = os.path.splitext(path[0]) if extension == ".py": return False else: return True class FTPServer: async def handle_file_request( self, request: Dict, reader: StreamReader, writer: StreamWriter ): filename = request["filename"] if not os.path.exists(filename): common.send_json(writer, {"error": "file does not exist"}) return with open(filename, "rb") as infile: contents = infile.read() # base64 encode the binary file contents = base64.b64encode(contents).decode("utf-8") common.send_json(writer, {"filename": filename, "content": contents}) async def run_forever(self, local_port): server = await asyncio.start_server( self.handle_request, "127.0.0.1", local_port ) addr = server.sockets[0].getsockname() print("Server started") print(f"Waiting for file requests on {addr}") async with server: await server.serve_forever() async def handle_request(self, reader: StreamReader, writer: StreamWriter): while True: request = await common.recv_json(reader) print(request) if request is None: break if not request["method"]: print("Invalid Request: missing method field.") if request["method"].upper().startswith("LIST"): files = [f for f in os.listdir(".") if os.path.isfile(f)] file_sizes = [ common.sizeof_fmt(os.path.getsize(f)) for f in os.listdir(".") if os.path.isfile(f) ] files = list(zip(files, file_sizes)) files = filter(filter_files, files) files = list(files) await common.send_json(writer, {"files": files,}) elif request["method"].upper().startswith("RETRIEVE"): filename = request["filename"] if not os.path.exists(filename): await common.send_json(writer, {"error": "file does not exist"}) return with open(filename, "rb") as infile: contents = infile.read() # base64 encode the binary file contents = base64.b64encode(contents).decode("utf-8") await common.send_json( writer, {"filename": filename, "content": contents} ) elif request["method"].upper().startswith("STORE"): filename = request["filename"] with open(filename, "wb") as outfile: # base64 decode from the request body contents = base64.b64decode(request["content"]) outfile.write(contents) # threaded_print("-> Store Complete") elif request["method"].upper().startswith("QUIT"): # threaded_print("-> Client disconnected via QUIT") pass elif request["method"].upper().startswith("DELETE"): filename = request["filename"] if not os.path.exists(filename): await common.send_json(writer, {"error": "file does not exist"}) else: os.remove(filename) await common.send_json(writer, {"success": "file removed"}) else: await common.send_json(writer, {"error": "Unsupported command"}) writer.close() await writer.wait_closed()
true
30c7f1dfdcd19f43939f915fe25f518ffdf6c2b7
Python
jwodder/doapi
/doapi/tag.py
UTF-8
9,742
2.828125
3
[ "MIT" ]
permissive
from six import iteritems, string_types from six.moves import map # pylint: disable=redefined-builtin from .base import Resource from .droplet import Droplet from .floating_ip import FloatingIP from .image import Image resource_types = { "droplets": Droplet, # Not supported by DO yet, but it's good to be prepared: "images": Image, "floating_ips": FloatingIP, } class Tag(Resource): r""" .. versionadded:: 0.2.0 A tag resource, representing a label that can be applied to other resources. New tags are created via the :meth:`doapi.create_tag` method and can be retrieved with the :meth:`doapi.fetch_tag` and :meth:`doapi.fetch_all_tags` methods. The DigitalOcean API specifies the following fields for tag objects: :var name: the name of the tag :vartype name: string :var resources: a `dict` mapping resource types (e.g., ``"droplets"``) to sub-`dict`\ s containing fields ``"count"`` (the number of resources of the given type with the given tag) and ``"last_tagged"`` (the resource of the given type to which the tag was most recently applied) """ def __init__(self, state=None, **extra): if isinstance(state, string_types): state = {"name": state} super(Tag, self).__init__(state, **extra) self.setdefault('resources', dict()) for name, cls in iteritems(resource_types): if isinstance(self.resources.get(name), dict): last_tagged = self.resources[name].get("last_tagged") if last_tagged is not None and not isinstance(last_tagged, cls): self.resources[name]["last_tagged"] = \ cls(last_tagged, doapi_manager=self.doapi_manager) @property def url(self): """ The endpoint for general operations on the individual tag """ return self._url('/v2/tags/' + self.name) def fetch(self): """ Fetch & return a new `Tag` object representing the tag's current state :rtype: Tag :raises DOAPIError: if the API endpoint replies with an error (e.g., if the tag no longer exists) """ api = self.doapi_manager return api._tag(api.request(self.url)["tag"]) def __str__(self): """ Convert the tag object to its name """ return self.name def update_tag(self, name): # The `_tag` is to avoid conflicts with MutableMapping.update. """ Update (i.e., rename) the tag :param str name: the new name for the tag :return: an updated `Tag` object :rtype: Tag :raises DOAPIError: if the API endpoint replies with an error """ api = self.doapi_manager return api._tag(api.request(self.url, method='PUT', data={"name": name})["tag"]) def delete(self): """ Delete the tag :return: `None` :raises DOAPIError: if the API endpoint replies with an error """ self.doapi_manager.request(self.url, method='DELETE') def add(self, *resources): """ Apply the tag to one or more resources :param resources: one or more `Resource` objects to which tags can be applied :return: `None` :raises DOAPIError: if the API endpoint replies with an error """ self.doapi_manager.request(self.url + '/resources', method='POST', data={"resources": _to_taggable(resources)}) def remove(self, *resources): """ Remove the tag from one or more resources :param resources: one or more `Resource` objects to which tags can be applied :return: `None` :raises DOAPIError: if the API endpoint replies with an error """ self.doapi_manager.request(self.url + '/resources', method='DELETE', data={"resources": _to_taggable(resources)}) def fetch_all_droplets(self): r""" Returns a generator that yields all of the droplets to which the tag is currently applied :rtype: generator of `Droplet`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.doapi_manager.fetch_all_droplets(tag_name=self.name) def delete_all_droplets(self): """ Delete all of the droplets to which the tag is applied :return: `None` :raises DOAPIError: if the API endpoint replies with an error """ self.doapi_manager.request('/v2/droplets', method='DELETE', params={"tag_name": self.name}) def act_on_droplets(self, **data): r""" Perform an arbitrary action on all of the droplets to which the tag is applied. ``data`` will be serialized as JSON and POSTed to the proper API endpoint. All currently-documented actions require the POST body to be a JSON object containing, at a minimum, a ``"type"`` field. :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ api = self.doapi_manager return map(api._action, api.request('/v2/droplets/actions', method='POST', params={"tag_name": self.name}, data=data)["actions"]) def power_cycle(self): r""" Power cycle all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='power_cycle') def power_on(self): r""" Power on all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='power_on') def power_off(self): r""" Power off all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='power_off') def shutdown(self): r""" Shut down all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='shutdown') def enable_private_networking(self): r""" Enable private networking on all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='enable_private_networking') def enable_ipv6(self): r""" Enable IPv6 networking on all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='enable_ipv6') def enable_backups(self): r""" Enable backups on all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='enable_backups') def disable_backups(self): r""" Disable backups on all of the droplets to which the tag is applied :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='disable_backups') def snapshot(self, name): r""" Create snapshot images of all of the droplets to which the tag is applied :param str name: the name for the new snapshots :return: a generator of `Action`\ s representing the in-progress operations on the droplets :rtype: generator of `Action`\ s :raises DOAPIError: if the API endpoint replies with an error """ return self.act_on_droplets(type='snapshot', name=name) def _to_taggable(resources): res = [] for r in resources: try: res.append(r._taggable()) except (AttributeError, TypeError): if isinstance(r, Resource): raise TypeError('Tagging {0!r} objects is not supported' .format(r._class())) else: # Assume `r` is a "primitive" type res.append(r) return res
true
d9ce5be78cb22c14c503cca4d6fa615d01366506
Python
SIGMAOON/Greedy
/20300.py
UTF-8
363
2.96875
3
[]
no_license
# 서강근육맨 import sys input = sys.stdin.readline n = int(input()) muscle = list(map(int,input().split())) muscle.sort() if n%2 == 1: hap = 0 for i in range((n-1)//2): hap = max(hap,muscle[i]+muscle[-i-2]) print(max(hap,muscle[-1])) else: hap = 0 for i in range(n//2): hap = max(hap,muscle[i]+muscle[-i-1]) print(hap)
true
86c867bcc57c186136f640753c039f06fdea30d9
Python
PriyanshuChatterjee/30-Days-of-Python
/day_14/Question_16.py
UTF-8
161
3.21875
3
[]
no_license
from functools import reduce numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] def add(num1, num2): return num1 + num2 total = reduce(add, numbers) print(total)
true
929217201936de4bdaa29e6147fcfd4a78560f41
Python
aokirae/mobaPquestionnaire
/src/checkNotation.py
UTF-8
4,456
2.96875
3
[]
no_license
# アイドルの表記ゆれをみる import csv import sys import numpy as np import pandas as pd import mojimoji def openIdolData(): df = pd.read_csv("../data/アイドルデータ.csv", header = 0, index_col=None) df = df.dropna(how='all') names = df['名前'].tolist() return names def openQuestionnaireIdolname(): df = pd.read_csv("../data/アンケートアイドル名一覧.csv", header = None, index_col=None) names = [] for i in range(len(df.columns.tolist())): names.extend(df.iloc[:,i]) names = [str(i) for i in names] names = [[i] for i in names] names.sort() return names # 完全一致しなかったものだけを返す def notPerfectMatching(questionnaire, idolname): not_perfect_match = [] for iq in range(len(questionnaire)): try: for jq in range(len(questionnaire[iq])): idolname.index(questionnaire[iq][jq]) except Exception as e: not_perfect_match.append(questionnaire[iq]) return not_perfect_match # 'nan'を消しとばす def eraseNan(names): list = [] for i in range(len(names)): if names[i][0] != 'nan': list.append(names[i]) return list # "さん","ちゃん","。"を消しとばす def eraseHonorific(names): for i in range(len(names)): for j in range(len(names[i])): if names[i][j].find('さん') != -1: names[i][j] = names[i][j][0:names[i][j].find('さん')] if names[i][j].find('ちゃん') != -1: if names[i][j].find('ちゃんみお') == -1: names[i][j] = names[i][j][0:names[i][j].find('ちゃん')] if names[i][j].find('。') != -1: names[i][j] = names[i][j][0:names[i][j].find('。')] return names # 性のみ、名のみのアイドルを姓名にする def plusLastFirstName(names, idolname): for i in range(len(names)): for j in range(len(names[i])): # 候補アイドル candidate = [] for ii in idolname: if ii.find(names[i][j]) != -1: candidate.append(ii) if len(candidate) == 1: names[i][j] = candidate[0] return names # "性 名"となってるアイドルをどうにかする # 1. 空白を区切り文字として文字列分解 # 2. リスト長が2のとき、性と名で部分一致検索。それぞれでアイドル名が一致したらそのアイドル # 3. それ以外は元に戻す def compareFirstLastName(names, idolname): for i in range(len(names)): for j in range(len(names[i])): splits = names[i][j].split(' ') splits = [x for x in splits if x != ''] if len(splits) == 1: names[i][j] = splits[0] if len(splits) != 2: continue candidate_firstname = [] candidate_lastname = [] for ii in idolname: if ii.find(splits[0]) != -1: candidate_firstname.append(ii) if ii.find(splits[1]) != -1: candidate_lastname.append(ii) for icf in candidate_firstname: for icl in candidate_lastname: if icf == icl: names[i][j] = icf return names # 複数連なってるアイドルをどうにかする def splitIdol(names): splits = [] for i in range(len(names)): split_name = [names[i]] if len(split_name) == 1: # 半角空白 split_name = names[i][0].split(' ') if len(split_name) == 1: # 全角空白 split_name = names[i][0].split(' ') if len(split_name) == 1: split_name = names[i][0].split('、') if len(split_name) == 1: split_name = names[i][0].split('・') if len(split_name) == 1: split_name = names[i][0].split(',') if len(split_name) == 1: split_name = names[i][0].split('とか') split_name = [i for i in split_name if i != ''] names[i] = split_name return names if __name__ == '__main__': names = openQuestionnaireIdolname() idolname = openIdolData() # 半角を全角にする idolname = [mojimoji.han_to_zen(i) for i in idolname] names = notPerfectMatching(names, idolname) names = eraseNan(names) names = eraseHonorific(names) names = notPerfectMatching(names, idolname) names = plusLastFirstName(names, idolname) names = notPerfectMatching(names, idolname) names = compareFirstLastName(names, idolname) names = notPerfectMatching(names, idolname) names = splitIdol(names) names = eraseHonorific(names) names = plusLastFirstName(names, idolname) names = compareFirstLastName(names, idolname) names = notPerfectMatching(names, idolname) with open('../data/表記ゆれ.csv', mode='w') as f: for i in range(len(names)): f.write(names[i][0]) for j in range(1,len(names[i])): f.write('_') f.write(names[i][j]) f.write('\n')
true
2a265122875d3349595394bb04895151f66ce5f2
Python
Horta-IoT/horta-iot
/client-sub/sub.py
UTF-8
1,645
2.59375
3
[]
no_license
#!/usr/bin/env python # Source: https://pypi.python.org/pypi/paho-mqtt/1.3.0 import paho.mqtt.client as mqtt import sys HOSTNAME = "mosquitto" # HOSTNAME = "10.73.21.215" PORT = 1883 TOPIC = 'temp/random' def log(topic, payload): sys.stderr.write("[sub][{}] < {:.1f}\n".format(topic, payload)) sys.stderr.flush() def info(message): sys.stderr.write("[sub][info] {}\n".format(message)) sys.stderr.flush() def error(message): sys.stderr.write("[sub][err] {}\n".format(message)) sys.stderr.flush() # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): if rc != 0: error("Connected with result code " + str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. # client.subscribe("$SYS/#") client.subscribe(TOPIC) # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): log(msg.topic, float(msg.payload)) def main(): client = mqtt.Client() import logging logging.basicConfig(level=logging.DEBUG) client.enable_logger() client.on_connect = on_connect client.on_message = on_message client.connect(HOSTNAME, PORT, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. try: client.loop_forever() except KeyboardInterrupt: pass if __name__ == "__main__": main()
true
f239fdff7c8a9c2509c20b14c44b164d3f7ce474
Python
Mauricio1xtra/Revisar_Python_JCAVI
/Proj_class7/modulo_prog.py
UTF-8
344
3.6875
4
[]
no_license
##Funções no Modulo def soma(x,y): return x + y def calculaMaximo(x,y,z): lista = [x,y,z] print(max(lista)) ##Tudo daqui para baixo será executado apenas em modo iterativo #Ou quando executado o script do módulo diretamente if __name__ == "__main__": print(soma(2,3)) print("Executei Sozinho") nome = "Mauricio"
true
8c61c022e973ec5715367411b0de962e3db2cb65
Python
wanghaibo1996/PytestAuto_Security_WZ_Test
/util/clipboard.py
UTF-8
591
2.71875
3
[]
no_license
import win32con import win32clipboard as WC class ClipBoard(object): '''设置剪切板内容和获取剪切板内容''' @staticmethod def getText(): '''获取剪切板内容''' WC.OpenClipboard() value = WC.GetClipboardData(win32con.CF_TEXT) WC.CloseClipboard() return value @staticmethod def setText(value): '''设置剪切板内容''' WC.OpenClipboard() WC.EmptyClipboard() WC.SetClipboardData(win32con.CF_UNICODETEXT, value) WC.CloseClipboard() if __name__ == '__main__': pass
true
ca7bf68c607564bb40286df2d82079d14df511cb
Python
jzengler/IN1000
/Innlevering 4/egen_oppgave.py
UTF-8
2,423
4.53125
5
[]
no_license
''' Lag et program som lar brukeren administrere biler og registreringsnummer. Brukeren skal kunne legge til, slette eller skrive ut en oversikt. Bruk løkker og lister for å løse oppgaven ''' # Liste til å holde registreringsnummer, bilmerke, modell og farge # kan skrives/fra fil hvis det skal lagres mellom ekskeveringer av programmet regNummer = [] # funksjon for å legge til bil i listen def leggTilBil(): # lokal variabel for å holde brukerinput bil = [] # legg til RegNr, merke, modell og farge bil.append( input("Skriv inn registreringsnummer: ").upper() ) bil.append( input("Skriv inn bilmerke: ").title() ) bil.append( input("Skriv inn bilmodell: ").upper() ) bil.append( input("Skriv inn farge: ").lower() ) # returner hele listen return bil # funskjon for å slette bil fra liste def slettBil(regNummer): # be bruker om registreringsnummer på bilen hen ønsker å slette slettReg = input("Skriv inn registreringsnummer på bilen du vil slette: ").upper() # løkke for for å sjekke om regnummer finnes i de nøstede listene for bil in regNummer: # hvis regnr finnes slett listen for den bilen if slettReg in bil: regNummer.remove(bil) print(bil[1], "med registreringsnummer", slettReg, "ble slettet!") # returner den oppdaterte listen return regNummer # prosedyre for å skrive ut en oversikt over biler def printOversikt(regNummer): # løkke som skriver ut hver bil med kjennetegn for bil in regNummer: print("RegNr:", bil[0], "er en", bil[3], bil[1], bil[2]) # prosedyre for å printe meny og kalle andre funksjoner def meny(regNummer): # skriv ut meny til bruker print("\n1: Legg til bil") print("2: Slett bil") print("3: Skriv ut oversikt") print("9: Avslutt program\n") # lagre brukerens menyvalg valg = int(input("Skriv inn menyvalg: \n")) # kall funksjon iht brukerens valg # lagrer resultatet av funksjonen i samme liste som funksjonens parameter if valg == 1: regNummer.append( leggTilBil() ) elif valg == 2: regNummer = slettBil(regNummer) elif valg == 3: printOversikt(regNummer) elif valg == 9: exit() else: print("Ugyldig menyvalg!") # løkke for å kalle meny-prosedyren frem til brukeren avslutter programmet gjennom menyvalg 9 while True: meny(regNummer)
true
3dbe7b36da796347f3e5f65a231c2f6918f212b0
Python
dmmfix/amath-352
/h6/tabular.py
UTF-8
678
3.59375
4
[]
no_license
#!/usr/local/bin/python3 import math vals = [2, 4, 8, 16, 64, 512] fns = [ [lambda x: x, 'n'], [lambda x: x * math.log2(x), 'n\log_2(n)'], [lambda x: x ** 2, 'n^2'], [lambda x: x ** 3, 'n^3'], [lambda x: 2 ** x, '2^n'], [lambda x: math.factorial(x), 'x!'] ] for f in fns: print('\\hline') print('${}$'.format(f[1]), end='') for v in vals: n = f[0](v) if n < 100000: print(' & {}'.format(math.floor(n)), end='') else: log10n = math.floor(math.log10(n)) strn = str(n) print(' & ${}.{} \\times 10^{{{}}}$'.format(strn[0], strn[1:4], log10n), end='') print(' \\\\')
true
e674af34d0abdba51912907fdef58bf30e224447
Python
oucsealee/scipysample
/test/testPandasReadExcel.py
UTF-8
273
2.5625
3
[]
no_license
#-*- coding:utf-8 -*- import pandas as pd import pandasReadExcel def main(): data_frame = pandasReadExcel.read_from_excel() print(data_frame) last_data = pandasReadExcel.get_last_red_data(data_frame) print (last_data) if __name__ == '__main__': main()
true
b1c41114752aa0aa23e004031fcefafd4f91d83a
Python
plee0117/LC
/238.py
UTF-8
368
2.75
3
[]
no_license
class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: left = [1] right = [1] for i in range(len(nums) - 1): left.append(left[i] * nums[i]) right.append(right[i] * nums[-1 - i]) out = [] for j in range(len(nums)): out.append(left[j] * right[-1 - j]) return out
true
2a8028e176e1013a49931aebef967331e6b31afd
Python
wangpanqiao/Circos_python_config
/Pylomaker3.py
UTF-8
3,527
2.734375
3
[]
no_license
#!/usr/bin/env python from optparse import OptionParser import sys import subprocess from Bio.Blast.Applications import NcbiblastpCommandline from Bio import SeqIO import os from Bio.Align.Applications import ClustalwCommandline def dowhat(): print "Gives you an iterative mutations made from germline starting with most conserved.\n" def call_clustal(string): cline = ClustalwCommandline("clustalw2", infile=string) process = subprocess.Popen(str(cline), shell=(sys.platform!="win32"), stdout=subprocess.PIPE) return process.communicate()[0] def get_scores(logfile): for line in logfile.split("\n"): if "Score:" in line: return int(line.split(":")[-1]) def main(): ####Parser options#### parser = OptionParser() parser.add_option("-i", "--input", action="store", dest="input", help="input file to make phylotree") parser.add_option("-g", "--germline", action="store", dest="germline", help="germline fasta") parser.add_option("-o", "--output" , action="store", dest="output", help="the file where you want all your data") (options,args) = parser.parse_args() if len(sys.argv) < 2: dowhat() parser.print_help() exit() ####Begin Declarations### #start an output file fileout = open(options.output, 'w').write("Your Sequence Results:\n\n") #parse germline sequence germobject = SeqIO.read(options.germline, "fasta") #parsexs target sequences SO = list(SeqIO.parse(options.input, "fasta")) #while there are sequences in the file # while SO: #clustal score holder #highestscore = 0 #find best score method with current germline for sequence in SO: #open and write clustalhandle = open("clustalentry.fasta" , 'w') SeqIO.write(germobject, clustalhandle, "fasta") SeqIO.write(sequence, clustalhandle, "fasta") clustalhandle.close #close and reopen for reading by clustal clustalhandle = open("clustalentry.fasta" , 'r') #call clust all and return the log (the log contains the score) current_log = call_clustal(clustalhandle.name) clustalhandle.close #get score from clustal log current_score = get_scores(current_log) #reopen the clustal handle for one last iteration clustalhandle = open("clustalentry.fasta" , 'w') #add current germobject and highest scoring SeqIO.write(germobject, clustalhandle, "fasta") SeqIO.write(sequence, clustalhandle, "fasta") clustalhandle.close #open for reading by clustal clustalhandle = open("clustalentry.fasta") current_log = call_clustal(clustalhandle.name) current_score = get_scores(current_log) #append to output for line in open("clustalentry.aln"): open(options.output, 'a').write(line) open(options.output, 'a').write("With Score of : " + str(current_score) + "\n") #remove best scorer # SO.remove(sequence_in_question) #set germobject to best scorer # germobject = sequence_in_question def cleanup(): os.remove("clustalentry.aln") os.remove("clustalentry.fasta") os.remove("clustalentry.dnd") if __name__ == "__main__": main() cleanup()
true
c24ca456ac22dd9cedb67c1336e1e1ca0930be54
Python
DaiJitao/algorithm
/solution/binary.py
UTF-8
906
3.84375
4
[]
no_license
def binaryVal(arr, e): minIndex = 0 maxIndex = len(arr) - 1 while minIndex <= maxIndex: midd = minIndex + ((maxIndex - minIndex) >> 1) if e < arr[midd]: maxIndex = midd - 1 elif e > arr[midd]: minIndex = midd + 1 elif midd < len(arr) and arr[midd] == e: return midd return -1 def binFind(arr, p): if len(arr) == 0: return -1 if len(arr) == 1: return 0 if arr[0] == p else -1 left = 0 right = len(arr) - 1 while left <= right: midd = left + ((right-left) >> 1) if p < arr[midd]: right = midd - 1 elif p > arr[midd]: left = midd + 1 else: return midd return -1 if __name__ == '__main__': arr = [1, 4, 5, 6, 7, 9] res = binaryVal(arr, 6) res = binFind(arr, p=6) print(res)
true
465fbdc4d672c7a9268e221698cf591d12c4f6c6
Python
lyleaf/sound-fun
/tempo_sync_animation_demo.py
UTF-8
2,400
2.671875
3
[]
no_license
import cv2 import librosa import librosa.display import wave import pyaudio from cv2 import VideoWriter, VideoWriter_fourcc VIDEO_PATH = 'Demo_Full_1.mp4' video = cv2.VideoCapture(VIDEO_PATH) # Read a video to get FPS fps = video.get(cv2.CAP_PROP_FPS) print('Image frames per second is %d' % fps) video.release() # Create audio mp3 from mp4 # ffmpeg -i holdon.mp4 holdon.mp3 not the same length # ffmpeg -i holdon.mp4 -async 1 holdon.wav AUDIO_PATH = 'Demo_Full_1.wav' # difference between wav and mp3 seconds = 5 y, sr = librosa.load(AUDIO_PATH) print(int(len(y))) print('Sample rate %d' % sr) time = int(len(y)/sr) print('Song time %d' % time) interval = [] for i in range(time): sample_frames = sr * seconds sample = y[i*sr:i*sr+sample_frames] tempo, beat_frames = librosa.beat.beat_track(y=sample, sr=sr) #y should be audio time series np.ndarray [shape=(n,)] or None #print('Estimated tempo: {:.2f} beats per minute'.format(tempo)) interval.append(60/tempo) print(interval) downtempo = [] #in seconds downtempo.append(5) while(downtempo[-1] <= time): downtempo.append(interval[int(downtempo[-1])-5]+downtempo[-1]) print(downtempo) uptempo = [] for i in range(len(downtempo)-1): uptempo.append((downtempo[i]+downtempo[i+1])/2) tempo = [] for i in range(len(uptempo)): tempo.append(downtempo[i]) tempo.append(uptempo[i]) tempo_frames = np.multiply(tempo,fps).astype(int) print(tempo_frames) # Create output video with animation width = 1280 height = 720 FPS = fps radius = 150 paint_h = int(height/2) paint_x = int(width/2) fourcc = VideoWriter_fourcc(*'MP42') video = VideoWriter('./Demo_Full_1_noises.avi', fourcc, float(FPS), (width, height)) index = 0 black = False for timestamp in range(int(FPS)*time): frame = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) if ((index+2 < len(tempo_frames)-1) and (timestamp >= tempo_frames[index]) and (timestamp < tempo_frames[index+2])): print(timestamp) if (timestamp < tempo_frames[index+1]): cv2.circle(frame, (paint_x, paint_h), radius, (0, 0, 0), -1) print('add frame') elif ((index+2 < len(tempo_frames)-1) and (timestamp >= tempo_frames[index+2])): index = index+2 video.write(frame) video.release() # ffmpeg -i Demo_Full_1_noises.avi NOISES.mp4
true
b6a13fc6df55777f31afe900bb6ec6d38c517d59
Python
bernease/Mmani
/benchmarks/bench_laplacian_dense_temp.py
UTF-8
5,374
2.734375
3
[]
no_license
#!/usr/bin/env python """ Benchmarks of geometry functions (distance_matrix, affinity_matrix, graph_laplacian) in sparse vs dense representation. First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. TODO: generate the data -- what should it be with precomputing of the index? (todo next: benchmarks for rmetric, for spectral embedding, for other methods like isomap) """ import gc #the garbage collector from time import time import numpy as np from sklearn.datasets.samples_generator import make_swiss_roll def compute_bench(n_samples, n_features, rad0, dim, quiet = False): dense_d_results = [] dense_a_results = [] dense_l_results = [] it = 0 for ns in n_samples: # make a dataset X, t = make_swiss_roll( ns, noise = 0.0 ) X = np.asarray( X, order="C" ) for nf in n_features: it += 1 rad = rad0/ns**(1./(dim+6)) #check the scaling if not quiet: print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') print( 'rad=', rad, 'ns=', ns ) if nf < 3: raise ValueError('n_features must be at least 3 for swiss roll') else: # add noise dimensions up to n_features n_noisef = nf - 3 noise_rad_frac = 0.1 noiserad = rad/np.sqrt(n_noisef) * noise_rad_frac Xnoise = np.random.random((ns, n_noisef)) * noiserad X = np.hstack((X, Xnoise)) rad = rad*(1+noise_rad_frac) # add a fraction for noisy dimensions gc.collect() if not quiet: print("- benchmarking dense") tstart = time() dists = distance_matrix(X, flindex = None, mode='radius_neighbors', neighbors_radius=rad*1.5 ) dense_d_results.append(time() - tstart) A = affinity_matrix( dists, rad ) dense_a_results.append(time() - tstart) lap = graph_laplacian(A, normed='geometric', symmetrize=False, scaling_epps=rad, return_lapsym=False) dense_l_results.append(time() - tstart) gc.collect() return dense_d_results, dense_a_results, dense_l_results if __name__ == '__main__': import sys import os path = os.path.abspath('..') sys.path.append(path) # path = os.path.abspath('../..') # sys.path.append(path) from Mmani.embedding.geometry import * import pylab as pl import scipy.io is_save = True if sys.argv.__len__() > 1: is_save = bool(sys.argv[1]) rad0 = 2.5 dim = 2 n_features = 100 # list_n_samples = np.linspace(500, 1000, 2).astype(np.int) list_n_samples = np.logspace(4, 6, 7).astype(np.int) dense_d_results, dense_a_results, dense_l_results = compute_bench(list_n_samples, [n_features], rad0, dim, quiet=False) save_dict = { 'ns_dense_d_results':dense_d_results, 'ns_dense_a_results':dense_a_results, 'ns_dense_l_results':dense_l_results } if is_save: scipy.io.savemat( 'results_bench_laplacian_dense.mat', save_dict ) pl.figure('Mmani.embedding benchmark results') pl.subplot(211) pl.plot(list_n_samples, dense_d_results, 'b-', label=' distance matrix') pl.plot(list_n_samples, dense_a_results, 'b:', label=' affinity matrix') pl.plot(list_n_samples, dense_l_results, 'b-.', label=' laplacian') pl.title(' %d features' % (n_features)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') pl.yscale( 'log' ) pl.xscale( 'log' ) n_samples = 2000 # list_n_features = np.linspace(50, 1000, 2).astype(np.int) list_n_features = np.logspace(1,4,10).astype(np.int) dense_d_results, dense_a_results, dense_l_results = compute_bench([n_samples], list_n_features, rad0, dim, quiet=False) nf_dict = { 'nf_dense_d_results':dense_d_results, 'nf_dense_a_results':dense_a_results, 'nf_dense_l_results':dense_l_results } save_dict.update( nf_dict ) if is_save: scipy.io.savemat( 'results_bench_laplacian_dense.mat', save_dict ) pl.subplot(212) pl.plot(list_n_features, dense_d_results, 'b-', label='distance matrix') pl.plot(list_n_features, dense_a_results, 'b:', label='affinity matrix') pl.plot(list_n_features, dense_l_results, 'b-.', label='laplacian') pl.title('data index built every step, %d samples' % (n_samples)) pl.legend(loc='upper left') pl.xlabel('number of featureses') pl.ylabel('Time (s)') pl.axis('tight') pl.yscale( 'log' ) pl.xscale( 'log' ) if is_save: pl.savefig('results_bench_laplacian_dense'+'.png', format='png') else: pl.show()
true
341b95915298fe3c1249fd55c8288e35ca7e2b51
Python
tabatafeeh/URI
/python/2867.py
UTF-8
191
3.171875
3
[]
no_license
v = int(input()) i = 0 while i < v: n, m = input().split(" ") n = int(n) m = int(m) tam = n ** m tam = str(tam) tam = list(tam) print(len(tam)) i = i + 1
true
f38f34b2a53658dad12051d3e347c090cfe9dc25
Python
TakahiroSono/atcoder
/practice/python/dpcontest/D.py
UTF-8
918
2.703125
3
[]
no_license
# N, W = map(int, input().split()) # W_V = [list(map(int, input().split())) for _ in range(N)] # dp = [[0] * (W+1) for _ in range(N+1)] # for n in range(1, N+1): # for w in range(W+1): # dp[n][w] = dp[n-1][w] # if(w - W_V[n-1][0] >= 0): # dp[n][w] = max(dp[n][w], dp[n-1][w - W_V[n-1][0]] + W_V[n-1][1]) # print(dp[-1][-1]) # import numpy as np # N, W = map(int, input().split()) # items = [tuple(map(int, input().split())) for _ in range(N)] # dp = np.zeros(shape=W + 1, dtype=np.int64) # for weight, value in items: # dp[weight:] = np.maximum(dp[weight:], dp[:-weight] + value) # print(dp[-1]) # print(dp) N, W = map(int, input().split()) dp = [[0] * (W+1) for _ in range(N+1)] for i in range(1, N+1): w, v = map(int, input().split()) for j in range(W+1): dp[i][j] = dp[i-1][j] if w <= j: dp[i][j] = max(v + dp[i-1][j-w], dp[i][j]) print(dp[-1][-1])
true
567caf26aa33e46aaa95d831ff4b5ea1f4b126eb
Python
rado9818/TV-programs
/TimeUtil.py
UTF-8
428
3.40625
3
[]
no_license
from datetime import datetime from Constants import SECONDS_IN_MINUTE import time def getDifference(start, end): a = start b = end time1 = datetime.strptime(a,"%H:%M") # convert string to time time2 = datetime.strptime(b,"%H:%M") diff = time1 -time2 return diff.total_seconds()/SECONDS_IN_MINUTE def getCurrentTime(): hour, minute = time.strftime("%H,%M").split(',') return "%s:%s"%(hour,minute)
true
48052e8ced5575fa301fe2e428440549fe744427
Python
Bulgakoff/hws_PyQt
/lesson_6/codes_6/03_pycrypto_encrypt.py
UTF-8
3,599
3.234375
3
[]
no_license
# ========================= Аспекты безопасности ============================== # ------------- Модуль PyCrypto для криптографических функций в Питоне -------- # ------------------------- Шифрование сообщений ------------------------------ # Библиотека PyCrypto реализует криптографические примитивы и функции на Питоне. # Однако данная библиотека не обновляется с 2014 года. # PyCryptodome (PyCryptoDomeEx) - это fork библиотеки PyCrypto, развивается. # Код проекта: https://github.com/Legrandin/pycryptodome # Установка: pip install pycryptodome # PyCryptodome совместима по API с PyCrypto, # PyCryptoDomeEx - дополняет/изменяет исходный API. from binascii import hexlify from Cryptodome.Cipher import AES from icecream import ic # Для шифрования данных в PyCryptodome есть поддержка нескольких алгоритмов: # - блочные шифры: AES, DES, 3DES, Blowfish # - поточные шифры: Salsa20, ChaCha20 plaintext = b"The rain in Spain" def padding_text(text): """ Выравнивание сообщения до длины кратной 16 байтам. В данном случае исходное сообщение дополняется пробелами. """ pad_len = (16 - len(text) % 16) % 16 return text + b" " * pad_len def _encrypt(plaintext, key): """ Шифрование сообщения plaintext ключом key. Атрибут iv - вектор инициализации для алгоритма шифрования. Если не задаётся явно при создании объекта-шифра, то генерируется случайно. Его следует добавить в качестве префикса к финальному шифру, чтобы была возможность правильно расшифровать сообщение. """ cipher = AES.new(key, AES.MODE_CBC) ciphertext = cipher.iv + cipher.encrypt(plaintext) return ciphertext def _decrypt(ciphertext, key): """ Расшифровка шифра ciphertext ключом key Вектор инициализации берётся из исходного шифра. Его длина для большинства режимов шифрования всегда 16 байт. Расшифровываться будет оставшаяся часть шифра. """ cipher = AES.new(key, AES.MODE_CBC, iv=ciphertext[:16]) msg = cipher.decrypt(ciphertext[16:]) return msg # Осуществим шифрование сообщения алгоритмом AES # key (строка байтов) - секретный ключ для симметричного шифрования. # Ключ должен быть длиной 16 (AES-128), 24 (AES-192) или 32 (AES-256) байта. key = b"Super Secret Key" # Длина сообщения должна быть кратна 16, поэтому выполним выравнивание. ic(plaintext) plaintext = padding_text(plaintext) ic(plaintext) # Выполним шифрование encryped_data = _encrypt(plaintext, key) ic(encryped_data) # Выполним расшифрование msg = _decrypt(encryped_data, key) ic(msg)
true
b4382c17d4b50a12515d327dbc3c93bfc6c99e4a
Python
MacJim/CMPT-762-Assignment-3-Code
/helper/segmentation_path.py
UTF-8
1,105
3.140625
3
[]
no_license
""" Segmentation path helpers. """ import typing import copy def fit_segmentation_path_in_crop_box(path: typing.List[int], crop_box_x0, crop_box_y0, crop_box_w, crop_box_h, set_outside_values_to_boundary_value=True): return_value = copy.copy(path) crop_box_x1 = crop_box_x0 + crop_box_w crop_box_y1 = crop_box_y0 + crop_box_h def get_cropped_x_value(x: int) -> int: if (set_outside_values_to_boundary_value): if (x < crop_box_x0): return 0 elif (x > crop_box_x1): return crop_box_x1 return (x - crop_box_x0) def get_cropped_y_value(y: int) -> int: if (set_outside_values_to_boundary_value): if (y < crop_box_y0): return 0 elif (y > crop_box_y1): return crop_box_y1 return (y - crop_box_y0) for i in range(0, len(return_value), 2): return_value[i] = get_cropped_x_value(return_value[i]) for j in range(1, len(return_value), 2): return_value[j] = get_cropped_y_value(return_value[j]) return return_value
true
194d7ef18596e430a96576c5748de088c081a6f6
Python
tyler-fishbone/data-structures-and-algorithms
/challenges/print-level-order/print_level_order.py
UTF-8
870
3.640625
4
[ "MIT" ]
permissive
from queue import Queue from k_tree import Node, KTree def print_level_order(input_tree): """ takes in a k-ary tree and returns a string that contains a listing of all values in the tree, with new lines in-between each level of the tree """ output_lst = [] queue = Queue() if input_tree._size > 0: queue.enqueue(input_tree.root) queue.enqueue(Node('/n')) while len(queue) > 0: current = queue.dequeue() if current.val == '/n': queue.enqueue(Node('/n')) else: for child in current.children: queue.enqueue(child) output_lst.append(current.val) if queue._size <= 1: break print(output_lst) output_string = ''.join(str(x) for x in output_lst) return output_string
true
e2a15e87b18c46d8f2168560a59a5fda68aaf2ac
Python
cstapler/pythice
/big_sorting.py
UTF-8
550
4.09375
4
[]
no_license
def main(): """Implement Bucktsort on an array with really big numbers Puts numbers into buckets based on their length """ number_input = int(input()) buckets = {} for _ in range(number_input): item = input().strip() item_len = len(item) if item_len not in buckets: buckets[item_len] = [] buckets[item_len].append(item) for bucket_key in sorted(buckets): for number in sorted(buckets[bucket_key]): print(number) if __name__ == "__main__": main()
true
4fd78761d52660c43bcd785bc048f3f6f946f563
Python
frc3512/Robot-2020
/tools/flywheel_ols.py
UTF-8
2,833
3.046875
3
[ "BSD-3-Clause" ]
permissive
#!/usr/bin/env python3 """Runs OLS on flywheel velocity recordings generated from step voltage inputs. """ import math import matplotlib.pyplot as plt import numpy as np filename = "Flywheel characterization.csv" # Get labels from first row of file with open(filename) as f: labels = [x.strip('"') for x in f.readline().rstrip().split(",")] # Retrieve data from remaining rows of file print(f"Plotting {filename}") data = np.genfromtxt(filename, delimiter=",", skip_header=1, skip_footer=1) ts = data[:, 0] us = data[:, 1] xs = np.zeros((len(ts), 1)) for i in range(len(ts)): xs[i, 0] = data[i, 2] y = np.zeros((len(ts) - 1, 1)) for i in range(y.shape[0]): y[i, 0] = xs[i + 1, 0] X = np.zeros((len(ts) - 1, 3)) for i in range(X.shape[0]): X[i, 0] = xs[i, 0] X[i, 1] = us[i] X[i, 2] = np.sign(xs[i, 0]) # Calculate b = β that minimizes u'u. b = np.linalg.solve(X.T @ X, X.T) @ y alpha = b[0, 0] beta = b[1, 0] gamma = b[2, 0] n = X.shape[0] sse = np.linalg.norm(y - X @ b, ord=2) ssto = ((y.T @ y) - (1 / n) * (y.T @ y))[0, 0] r2 = (ssto - sse) / ssto adjR2 = 1 - (1 - r2) * ((n - 1.0) / (n - 3)) print(f"R^2={adjR2}") dts = [] for i in range(1, len(ts)): dt = ts[i] - ts[i - 1] if dt > 0.0 and dt < 1.0: dts.append(dt) T = sum(dts) / len(dts) print(f"T = {T}") Ks = -gamma / beta Kv = (1.0 - alpha) / beta Ka = (alpha - 1.0) * T / (beta * math.log(alpha)) print(f"Ks={Ks}") print(f"Kv={Kv}") print(f"Ka={Ka}") # First label is x axis label (time). The remainder are dataset names. plt.figure() plt.title("Flywheel inputs") plt.xlabel("Time (s)") plt.ylabel("Inputs") plt.plot(ts, us, label="Input voltage (V)") plt.legend() plt.figure() plt.title("Flywheel outputs") plt.xlabel("Time (s)") plt.ylabel("Measurements") plt.plot(ts, xs, label="Angular velocity measurements (rad/s)") plt.legend() plt.figure() plt.title("Flywheel simulation") plt.xlabel("Time (s)") plt.plot(ts, xs, label="Angular velocity measurements (rad/s)") A = -Kv / Ka B = 1.0 / Ka c = -Ks / Ka pxs = [] pys = [] # Get data list and initialize model state pxs.append(ts[0]) pys.append(xs[0, 0]) x = xs[0, 0] t = ts[0] for j in range(1, xs.shape[0]): dt = ts[j] - ts[j - 1] t += dt # If there's a large gap or the time went backwards, it's a new # section of data, so reset the model state if dt < 0.0 or dt > 1.0: plt.plot(pxs, pys, label="Angular velocity (rad/s)") pxs = [] pys = [] x = xs[j] continue # Given dx/dt = Ax + Bu + c, # x_k+1 = e^(AT) x_k + A^-1 (e^(AT) - 1) (Bu + c) Ad = math.exp(A * dt) Bd = 1.0 / A * (Ad - 1) * B x = Ad * x + Bd * us[j - 1] + 1.0 / A * (Ad - 1) * c * np.sign(x) pxs.append(t) pys.append(x) plt.plot(pxs, pys, label="Angular velocity estimate (rad/s)") plt.legend() plt.show()
true
648a1a412b0277b107aa54da3a8aaeafcefde22a
Python
Cafolkes/keedmd
/core/controllers/fb_lin_controller.py
UTF-8
1,120
3.015625
3
[ "MIT" ]
permissive
from numpy.linalg import solve from .controller import Controller class FBLinController(Controller): """Class for linearizing feedback policies.""" def __init__(self, fb_lin_dynamics, linear_controller): """Create an FBLinController object. Policy is u = (act)^-1 * (-drift + aux), where drift and act are components of drift vector and actuation matrix corresponding to highest-order derivatives of each output coordinate and aux is an auxilliary linear controller. Inputs: Feedback linearizable dynamics, fb_lin_dynamics: FBLinDynamics Auxilliary linear controller, linear_controller: LinearController """ Controller.__init__(self, fb_lin_dynamics) self.linear_controller = linear_controller self.select = fb_lin_dynamics.select self.permute = fb_lin_dynamics.permute def eval(self, x, t): drift = self.select(self.permute(self.dynamics.drift(x, t))) act = self.select(self.permute(self.dynamics.act(x, t))) return solve(act, -drift + self.linear_controller.eval(x, t))
true
9003a3a3d76fdc44670c146dd707efc61a96621e
Python
Markus28/multiresolution_algorithms_code
/fixed_point_algorithm/visualize.py
UTF-8
4,443
2.859375
3
[]
no_license
import numpy as np from scipy.ndimage.filters import laplace import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib.patches as patches import os def read_grid(file_name): with open(file_name) as f: N, M = f.readline().split(",") data = np.zeros((int(N), int(M))) for line in f: i, j, num = line.split(",") data[int(i), int(j)] = float(num) return data def transform_for_imshow(A): return A.T[::-1] def visualize_forward(): location = "data/forward" grid_files = [] for file_name in os.listdir(location): if os.path.splitext(file_name)[1] == ".txt": grid_files.append(os.path.join(location, file_name)) grid_files = sorted(grid_files, key = lambda f: int(f.split('_')[1].split('.')[0])) print(f"Found {len(grid_files)} files...") print("Plotting...") grids = [transform_for_imshow(read_grid(file_name)) for file_name in grid_files] grids = [grid-grids[0] for grid in grids] mini = min([np.min(grid) for grid in grids]) maxi = max([np.max(grid) for grid in grids]) fig,ax = plt.subplots(1) rect = patches.Rectangle(((3*grids[0].shape[0])/8, (3*grids[0].shape[1])/8), grids[0].shape[0]/4, grids[0].shape[1]/4, linewidth=1,edgecolor='r',facecolor='none') dot = patches.Circle(((1+np.cos(2.3))*grids[0].shape[0]/2, (1-np.sin(2.3))*grids[0].shape[0]/2), radius = grids[0].shape[0]/100, facecolor='r') ims = [] h_r = 2.0/(len(grids) - 1) for j, grid in enumerate(grids): circle = patches.Circle(((1+np.cos(2.3))*grids[0].shape[0]/2, (1-np.sin(2.3))*grids[0].shape[0]/2), radius = j*h_r*(grids[0].shape[0])/2, linewidth=1, edgecolor='b',facecolor='none') ims.append([ax.imshow(grid, vmin = mini, vmax = maxi, animated = True, cmap="coolwarm"), ax.add_patch(rect), ax.add_patch(circle), ax.add_patch(dot)]) ax.axis("off") ani = animation.ArtistAnimation(fig, ims, interval=5000/len(grids), blit=True, repeat_delay=0) ani.save('visualization.mp4') plt.title(r'$\phi - \phi_{*}$') plt.show() #We want to generate a static plot: begin_frame = 67 frame_skip = 22 num_frames = 4 fig, ax = plt.subplots(ncols = num_frames) frames = [grids[i*frame_skip + begin_frame] for i in range(num_frames)] mini_stat = min([np.min(grid) for grid in frames]) maxi_stat = max([np.max(grid) for grid in frames]) for i, frame in enumerate(frames): rect = patches.Rectangle(((3*grids[0].shape[0])/8, (3*grids[0].shape[1])/8), grids[0].shape[0]/4, grids[0].shape[1]/4, linewidth=1,edgecolor='r',facecolor='none') dot = patches.Circle(((1+np.cos(2.3))*grids[0].shape[0]/2, (1-np.sin(2.3))*grids[0].shape[0]/2), radius = grids[0].shape[0]/100, facecolor='r') circle = patches.Circle(((1+np.cos(2.3))*grids[0].shape[0]/2, (1-np.sin(2.3))*grids[0].shape[0]/2), radius = (i*frame_skip + begin_frame)*h_r*(grids[0].shape[0])/2, linewidth=1, edgecolor='b',facecolor='none') ax[i].add_patch(circle) ax[i].add_patch(rect) ax[i].add_patch(dot) ax[i].axis("off") ax[i].imshow(frame, vmin = mini_stat, vmax = maxi_stat, cmap="coolwarm") fig.tight_layout() plt.savefig("forward_problems.pdf", dpi=1200, bbox_inches='tight') plt.show() def visualize_psi(): location = "data/psi.txt" psi = transform_for_imshow(read_grid(location)) laplace_psi = np.zeros_like(psi) laplace_psi[100:300, 100:300] = laplace(psi)[100:300, 100:300] fig, ax = plt.subplots(ncols = 2) ax[1].imshow(laplace_psi, cmap="coolwarm") ax[0].imshow(psi, cmap="coolwarm") ax[0].axis("off") ax[1].axis("off") ax[0].set_title("$\\psi$", verticalalignment='top', y=-0.15) ax[1].set_title(f"$\\Delta \\psi$""", verticalalignment='top', y=-0.15) fig.tight_layout() plt.savefig("psi.pdf", dpi = 1200, bbox_inches='tight') plt.show() def visualize_reconstruction(): location = "data/absorption.txt" reconstruction = transform_for_imshow(read_grid(location)) plt.imshow(reconstruction, cmap="coolwarm") plt.axis("off") plt.savefig("reconstruction.pdf", dpi = 1200, bbox_inches='tight') plt.show() if __name__=="__main__": visualize_reconstruction() visualize_psi() visualize_forward()
true
76d70b8cdd44bfceb98f62219d496c1db7d0afce
Python
priya192/guvi--priya.github.io
/ans9.py
UTF-8
152
3.515625
4
[]
no_license
data = input("Please enter the input") count = 0 for i in data: if i in "0,1,2,3,4,5,6,7,8,9": count = count + 1 print("Count is:", count)
true
9f4d75ab9d873c22e0b5575c3a44af6d61235fbe
Python
WinnieJiangHW/Carry-lookahead_RNN
/Benchmarks/char_cnn/char_cnn_test.py
UTF-8
7,243
2.59375
3
[ "MIT" ]
permissive
import argparse import torch.nn as nn import torch.optim as optim from utils import * from model import CL_RNN import time import math import warnings warnings.filterwarnings("ignore") # Suppress the RunTimeWarning on unicode parser = argparse.ArgumentParser(description='Sequence Modeling - Character Level Language Model') parser.add_argument('--batch_size', type=int, default=32, metavar='N', help='batch size (default: 32)') parser.add_argument('--cuda', action='store_false', help='use CUDA (default: True)') parser.add_argument('--dropout', type=float, default=0.1, help='dropout applied to layers (default: 0.1)') parser.add_argument('--emb_dropout', type=float, default=0.1, help='dropout applied to the embedded layer (0 = no dropout) (default: 0.1)') parser.add_argument('--clip', type=float, default=0.15, help='gradient clip, -1 means no clip (default: 0.15)') parser.add_argument('--epochs', type=int, default=100, help='upper epoch limit (default: 100)') parser.add_argument('--ksize', type=int, default=3, help='kernel size (default: 3)') parser.add_argument('--levels', type=int, default=3, help='# of levels (default: 3)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='report interval (default: 100') parser.add_argument('--lr', type=float, default=4, help='initial learning rate (default: 4)') parser.add_argument('--emsize', type=int, default=100, help='dimension of character embeddings (default: 100)') parser.add_argument('--optim', type=str, default='SGD', help='optimizer to use (default: SGD)') parser.add_argument('--nhid', type=int, default=450, help='number of hidden units per layer (default: 450)') parser.add_argument('--validseqlen', type=int, default=320, help='valid sequence length (default: 320)') parser.add_argument('--seq_len', type=int, default=400, help='total sequence length, including effective history (default: 400)') parser.add_argument('--seed', type=int, default=1111, help='random seed (default: 1111)') parser.add_argument('--dataset', type=str, default='ptb', help='dataset to use (default: ptb)') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") print(args) file, file_len, valfile, valfile_len, testfile, testfile_len, corpus = data_generator(args) n_characters = len(corpus.dict) train_data = batchify(char_tensor(corpus, file), args.batch_size, args) val_data = batchify(char_tensor(corpus, valfile), 1, args) test_data = batchify(char_tensor(corpus, testfile), 1, args) print("Corpus size: ", n_characters) num_chans = [args.nhid] * (args.levels - 1) + [args.emsize] k_size = args.ksize dropout = args.dropout emb_dropout = args.emb_dropout model = CL_RNN(args.emsize, n_characters, num_chans, kernel_size=k_size, dropout=dropout, emb_dropout=emb_dropout) if args.cuda: model.cuda() criterion = nn.CrossEntropyLoss() lr = args.lr optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr) def evaluate(source): model.eval() total_loss = 0 count = 0 source_len = source.size(1) with torch.no_grad(): for batch, i in enumerate(range(0, source_len - 1, args.validseqlen)): if i + args.seq_len - args.validseqlen >= source_len: continue inp, target = get_batch(source, i, args) output = model(inp) eff_history = args.seq_len - args.validseqlen final_output = output[:, eff_history:].contiguous().view(-1, n_characters) final_target = target[:, eff_history:].contiguous().view(-1) loss = criterion(final_output, final_target) total_loss += loss.data * final_output.size(0) count += final_output.size(0) val_loss = total_loss.item() / count * 1.0 return val_loss def train(epoch): model.train() total_loss = 0 start_time = time.time() losses = [] source = train_data source_len = source.size(1) for batch_idx, i in enumerate(range(0, source_len - 1, args.validseqlen)): if i + args.seq_len - args.validseqlen >= source_len: continue inp, target = get_batch(source, i, args) optimizer.zero_grad() output = model(inp) eff_history = args.seq_len - args.validseqlen final_output = output[:, eff_history:].contiguous().view(-1, n_characters) final_target = target[:, eff_history:].contiguous().view(-1) loss = criterion(final_output, final_target) loss.backward() if args.clip > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() total_loss += loss.item() if batch_idx % args.log_interval == 0 and batch_idx > 0: cur_loss = total_loss / args.log_interval losses.append(cur_loss) elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | ' 'loss {:5.3f} | bpc {:5.3f}'.format( epoch, batch_idx, int((source_len-0.5) / args.validseqlen), lr, elapsed * 1000 / args.log_interval, cur_loss, cur_loss / math.log(2))) total_loss = 0 start_time = time.time() return sum(losses) * 1.0 / len(losses) def main(): global lr try: print("Training for %d epochs..." % args.epochs) all_losses = [] best_vloss = 1e7 for epoch in range(1, args.epochs + 1): loss = train(epoch) vloss = evaluate(val_data) print('-' * 89) print('| End of epoch {:3d} | valid loss {:5.3f} | valid bpc {:8.3f}'.format( epoch, vloss, vloss / math.log(2))) test_loss = evaluate(test_data) print('=' * 89) print('| End of epoch {:3d} | test loss {:5.3f} | test bpc {:8.3f}'.format( epoch, test_loss, test_loss / math.log(2))) print('=' * 89) if epoch > 5 and vloss > max(all_losses[-3:]): lr = lr / 10. for param_group in optimizer.param_groups: param_group['lr'] = lr all_losses.append(vloss) if vloss < best_vloss: print("Saving...") save(model) best_vloss = vloss except KeyboardInterrupt: print('-' * 89) print("Saving before quit...") save(model) # Run on test data. test_loss = evaluate(test_data) print('=' * 89) print('| End of training | test loss {:5.3f} | test bpc {:8.3f}'.format( test_loss, test_loss / math.log(2))) print('=' * 89) # train_by_random_chunk() if __name__ == "__main__": main()
true
fd684597bc545a23afc18b49d8760149a5ab8eb6
Python
giselabelen/redes2020
/Taller1-Wiretapping/fuenteInfoEntropia.py
UTF-8
902
2.890625
3
[]
no_license
#!/usr/bin/python from math import * from scapy.all import * frames = 0 S1 = {} def mostrar_fuente(S): global frames frames += 1 N = sum(S.values()) simbolos = sorted(S.iteritems(), key=lambda x: -x[1]) entropia = 0 for d,k in simbolos: prob = k/N # k/N es la prob de ese simbolo info = - math.log(prob,2) # info de ese simbolo entropia += prob*info # acumulo para la entropia print "\n %s : %.5f --- %s %.5f" % (d,prob,"Info: ",info) print "\n %s : %.5f" % ("Entropia: ",entropia) print "\n%d frames" % (frames) print "\n -----------" def callback(pkt): if pkt.haslayer(Ether): dire = "BROADCAST" if pkt[Ether].dst=="ff:ff:ff:ff:ff:ff" else "UNICAST" proto = pkt[Ether].type # El campo type del frame tiene el protocolo s_i = (dire, proto) # Aca se define el simbolo de la fuente if s_i not in S1: S1[s_i] = 0.0 S1[s_i] += 1.0 mostrar_fuente(S1) sniff(prn=callback)
true
a8d8482f1e811a8125bea971b1bb72eba82f983b
Python
magnuspedro/gateCrawler
/AmazonCrawler/spiders/scraper_americanas.py
UTF-8
1,380
2.65625
3
[]
no_license
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector import hashlib from ..items import AmericanasItem class BotAmericanasSraper(scrapy.Spider): name = "botamericanas" allowed_domain = 'www.amazon.com.br' start_urls = [ 'https://www.americanas.com.br/busca/xiaomi', ] def parse(self, response): items = AmericanasItem() products = response.css('.product-grid-item') for product in products: product_name = product.css('.gYIWNc::text').extract() price = product.css('.dHyYVS::text').extract() link = products.css( '.Link-bwhjk3-2').xpath('@href').extract() unique_code = hashlib.md5(product_name[0].encode()) items['code'] = unique_code.hexdigest() items['product'] = self.clear_text(product_name[0]) if product else '' items['price'] = price[1] items['link'] = self.clear_text(link[0]) if link else '' yield items next_page = response.css('#content-middle li:nth-child(10) a').xpath('@href').extract_first() if next_page is not None: yield response.follow(next_page, callback=self.parse) def clear_text(self, text): return text.replace(' ', '').replace('\n', '').replace('R$','')
true
0e60a917a1e70ce05902674b59dd2d8b479bcc21
Python
Renato0402/Uri-Online-Judge
/python/uri1001.py
UTF-8
92
3.34375
3
[]
no_license
if __name__ == '__main__': n1 = int(input()) n2 = int(input()) print(f'X = {n1+n2}')
true
450e8f9cb380b1539efdee94b89c93ce60d7c85b
Python
kutaybuyukkorukcu/Codewars
/6 kyu/NthFibonacci.py
UTF-8
212
3.171875
3
[]
no_license
# https://www.codewars.com/kata/522551eee9abb932420004a0 def nth_fib(n): if n==1: return 0 elif n==2: return 1 else: return nth_fib(n-1)+nth_fib(n-2) # 🧙‍♂️👍
true
0769366c4c520892c0f8ca5d54c14264eec70a2e
Python
Pradeepnataraj/pradeep
/alphabet.py
UTF-8
117
3.09375
3
[]
no_license
cht = input() if((cht>='a' and cht<= 'z') or (cht>='A' and cht<='Z')): print( "Alphabet") else: print( "no")
true
5c719bee992a818b2f531a743698cae1558f4c4e
Python
Sabrout/cantal_cryptocurrency
/src/structure/crypto.py
UTF-8
2,695
3.09375
3
[]
no_license
from ecdsa import SigningKey from ecdsa import VerifyingKey from ecdsa import BadSignatureError import os import binascii class Crypto(): """ This class encapsulate the ecdsa library """ def __init__(self, path=os.getcwd()): """ We load in the constructor the private and the public key """ # We create the path for the private and the public key in the hard # drive private_path = os.path.normpath(os.path.join(path, "private.pem")) public_path = os.path.normpath(os.path.join(path, "public.pem")) # We get (or generate) the private key if(os.path.exists(private_path)): private_file = open(private_path, "rb") self.private = SigningKey.from_pem(private_file.read()) private_file.close() else: self.private = SigningKey.generate() private_file = open(private_path, "wb") private_file.write(self.private.to_pem()) private_file.close() # We get (or generate) the public key if(os.path.exists(public_path)): public_file = open(public_path, "rb") self.public = VerifyingKey.from_pem(public_file.read()) public_file.close() else: self.public = self.private.get_verifying_key() public_file = open(public_path, "wb") public_file.write(self.public.to_pem()) public_file.close() def get_public(self): """ We get the public key """ return binascii.hexlify(self.public.to_string()).decode("utf-8") def sign(self, message): """ The function sign a message """ # We turn the message into bytes if the message is in string if isinstance(message, str): message = message.encode("utf-8") return binascii.hexlify(self.private.sign(message)).decode("utf-8") def verify(public, signature, message): """ The function verify if a signature correspond to a message """ # We turn the message into bytes if the message is in string if isinstance(message, str): message = message.encode("utf-8") # We transform the signature in a signature with bytes if isinstance(signature, str): signature = binascii.unhexlify(signature) # We create an object for the public key public = binascii.unhexlify(public) public = VerifyingKey.from_string(public) # We verify the key try: public.verify(signature, message) return True except BadSignatureError: return False
true
bae59598b2f9982ac97067d65c55bf8bb5c71563
Python
kefirzhang/algorithms
/leetcode/python/easy/p1037_isBoomerang.py
UTF-8
528
3.21875
3
[ "Apache-2.0" ]
permissive
class Solution: def isBoomerang(self, points) -> bool: if points[2][0] == points[1][0] and points[2][1] == points[1][1]: return False if points[1][0] == points[0][0] and points[1][1] == points[0][1]: return False if (points[2][0] - points[0][0]) * (points[1][1] - points[0][1]) == (points[1][0] - points[0][0]) * ( points[2][1] - points[0][1]): return False return True slu = Solution() print(slu.isBoomerang([[1, 1], [2, 3], [3, 2]]))
true
5524ecd8c318551c6e1ee7a4202c995aae3b0d11
Python
JeffryHermanto/Python-Programming
/05 Data Structures/16_swapping_variables.py
UTF-8
103
3.3125
3
[]
no_license
# Swapping Variables x = 10 y = 11 # z = x # x = y # y = z x, y = y, x print("x", x) print("y", y)
true
c40629dcad9853bdedc406eb61bee257c91731b2
Python
DenkSchuldt/MasAllaDelEspacio
/ProyectoPython/src/Boton.py
UTF-8
641
3.25
3
[]
no_license
import pygame class Boton(pygame.sprite.Sprite): def __init__(self,imagen_01,imagen_02,x=200,y=200): self.imagen_normal = imagen_01 self.imagen_seleccion = imagen_02 self.imagen_actual = self.imagen_normal self.rect = self.imagen_actual.get_rect() self.rect.left,self.rect.top = (x,y) def update(self,pantalla,cursor): if cursor.colliderect(self.rect): self.imagen_actual = self.imagen_seleccion else: self.imagen_actual = self.imagen_normal pantalla.blit(self.imagen_actual,self.rect)
true
8103c96ce81121092b81f81e0023bfb81f6c115b
Python
fairviewrobotics/Python-Knight-Armor
/env/lib/python3.6/site-packages/wpilib/command/subsystem.py
UTF-8
6,147
2.640625
3
[]
no_license
# validated: 2018-01-06 TW 8346caed9cbf edu/wpi/first/wpilibj/command/Subsystem.java #---------------------------------------------------------------------------- # Copyright (c) FIRST 2008-2012. All Rights Reserved. # Open Source Software - may be modified and shared by FRC teams. The code # must be accompanied by the FIRST BSD license file in the root directory of # the project. #---------------------------------------------------------------------------- import logging from .scheduler import Scheduler from ..livewindow import LiveWindow from ..sendablebase import SendableBase __all__ = ["Subsystem"] class Subsystem(SendableBase): """This class defines a major component of the robot. A good example of a subsystem is the driveline, or a claw if the robot has one. All motors should be a part of a subsystem. For instance, all the wheel motors should be a part of some kind of "Driveline" subsystem. Subsystems are used within the command system as requirements for Command. Only one command which requires a subsystem can run at a time. Also, subsystems can have default commands which are started if there is no command running which requires this subsystem. .. seealso:: :class:`.Command` """ def __init__(self, name=None): """Creates a subsystem. :param name: the name of the subsystem; if None, it will be set to the name to the name of the class. """ super().__init__() # The name if name is None: name = self.__class__.__name__ self.setName(name) Scheduler.getInstance().registerSubsystem(self) self.logger = logging.getLogger(__name__) # Whether or not getDefaultCommand() was called self.initializedDefaultCommand = False # The current command self.currentCommand = None self.currentCommandChanged = True # The default command self.defaultCommand = None def initDefaultCommand(self): """Initialize the default command for a subsystem By default subsystems have no default command, but if they do, the default command is set with this method. It is called on all Subsystems by CommandBase in the users program after all the Subsystems are created. """ pass def periodic(self): """When the run method of the scheduler is called this method will be called. """ func = self.periodic.__func__ if not hasattr(func, "firstRun"): self.logger.info("Default Subsystem.periodic() method... Overload me!") func.firstRun = False def setDefaultCommand(self, command): """Sets the default command. If this is not called or is called with None, then there will be no default command for the subsystem. :param command: the default command (or None if there should be none) .. warning:: This should NOT be called in a constructor if the subsystem is a singleton. """ if command is None: self.defaultCommand = None else: if self not in command.getRequirements(): raise ValueError("A default command must require the subsystem") self.defaultCommand = command def getDefaultCommand(self): """Returns the default command (or None if there is none). :returns: the default command """ if not self.initializedDefaultCommand: self.initializedDefaultCommand = True self.initDefaultCommand() return self.defaultCommand def getDefaultCommandName(self): """ Returns the default command name, or empty string is there is none. :returns: the default command name """ defaultCommand = self.getDefaultCommand() if defaultCommand is not None: return defaultCommand.getName() return "" def setCurrentCommand(self, command): """Sets the current command :param command: the new current command """ self.currentCommand = command self.currentCommandChanged = True def confirmCommand(self): """Call this to alert Subsystem that the current command is actually the command. Sometimes, the Subsystem is told that it has no command while the Scheduler is going through the loop, only to be soon after given a new one. This will avoid that situation. """ if self.currentCommandChanged: self.currentCommandChanged = False def getCurrentCommand(self): """Returns the command which currently claims this subsystem. :returns: the command which currently claims this subsystem """ return self.currentCommand def getCurrentCommandName(self): """ Returns the current command name, or empty string if no current command. :returns: the current command name """ currentCommand = self.getCurrentCommand() if currentCommand is not None: return currentCommand.getName() return "" def addChild(self, child, name=None): """ Associate a :class:`.Sendable` with this Subsystem. Update the child's name if provided :param child: sendable :param name: name to give child """ if name is not None: child.setName(self.getSubsystem(), name) else: child.setSubsystem(self.getSubsystem()) LiveWindow.add(child) def __str__(self): return self.getSubsystem() def initSendable(self, builder): builder.setSmartDashboardType("Subsystem") builder.addBooleanProperty(".hasDefault", lambda: self.defaultCommand is not None, None) builder.addStringProperty(".default", self.getDefaultCommandName, None) builder.addBooleanProperty(".hasCommand", lambda: self.defaultCommand is not None, None) builder.addStringProperty(".command", self.getCurrentCommandName, None)
true
6c444f40bc74180c6ee6f9550fd1b2b55137401c
Python
honyacho/atcoder_excercise
/abc070/d.py
UTF-8
521
2.53125
3
[]
no_license
import sys sys.setrecursionlimit(10**7) N=int(input()) NODES={} for i in range(N-1): a,b,c=map(int,input().split()) if not a in NODES: NODES[a] = [] if not b in NODES: NODES[b] = [] NODES[a].append((b, c)) NODES[b].append((a, c)) Q,K=map(int,input().split()) MP=[-1]*(N+1) MP[K]=0 def dfs(k): for i, c in NODES[k]: if MP[i] == -1: MP[i] = MP[k] + c dfs(i) dfs(K) # print(MP) for l,r in [tuple(map(int,input().split())) for _ in range(Q)]: print(MP[l]+MP[r])
true
312f51e5fb5aca37df5ae91e89657034099ab023
Python
gianv9/CursoDeIntroduccionAPythonYterminalLinux
/Python/pygame/cuadrado/cuadradoConSaltoFunciones.py
UTF-8
3,874
3.53125
4
[]
no_license
# importamos la libreria import pygame def dibujar(ventana, R1): # para evitar que mi rectangulo deje una marca dibujo el fondo nuevamente ventana["juego"].fill((0,0,0)) # aca el 255,0,0 es un color RGBpygame.event.get() # rect es para dibujar un rectangulo # hay mas funciones para mas figuras geometricas... pygame.draw.rect(ventana["juego"],(255,0,0),(R1["x"],R1["y"],R1["ancho"],R1["alto"])) # si comento esto no se vuelve a dibujar mi rectangulo pygame.display.update() # mueve al jugador a la nueva posicion # si salto, devuelve su posiion en el aire (indicadores de salto) def moverJugador(teclas, saltando, contadorSaltos): if not(saltando): # si no esta saltando puede empezar a hacerlo... # Comentamos esto para que no pueda subir, solo saltar # if teclas[pygame.K_UP]: # ejes[0], ejes[1], ejes[2], ejes[3] = True, False, False, False # if teclas[pygame.K_DOWN]: # ejes[0], ejes[1], ejes[2], ejes[3] = False, True, False, False # si quiere empezar a saltar if teclas[pygame.K_SPACE]: saltando = True else: # si aun esta saltando... if contadorSaltos >= -10: direccion = 1 if contadorSaltos < 0: direccion = -1 R1["y"] -= (contadorSaltos ** 2) * 0.3 * direccion contadorSaltos -= 1 else: # cuando termine de saltar, resetea las variables de salto... saltando = False contadorSaltos = 10 if teclas[pygame.K_LEFT]: ejes[0], ejes[1], ejes[2], ejes[3] = False, False, True, False if teclas[pygame.K_RIGHT]: ejes[0], ejes[1], ejes[2], ejes[3] = False, False, False, True # añadimos restricciones al momento de mover # verificando si sale de la pantalla en alguno de los ejes... # Comentamos esto para que no pueda subir, solo saltar # if ejes[0] and R1["y"] > R1["velocidad"]: # R1["y"] -= R1["velocidad"] # if ejes[1] and R1["y"] < ( ventana["alto"] - R1["alto"] - R1["velocidad"] ) : # R1["y"] += R1["velocidad"] if ejes[2] and R1["x"] > R1["velocidad"]: R1["x"] -= R1["velocidad"] if ejes[3] and R1["x"] < ( ventana["ancho"] - R1["ancho"] - R1["velocidad"] ): R1["x"] += R1["velocidad"] return [saltando, contadorSaltos] # indicadores del salto saltando = False contadorSaltos = 10 # atributos de la ventana ventana = {"juego": None, "alto": 500, "ancho": 500, "titulo": "Mi primer juego en python!"} # atributos del rectangulo R1 = {"x": 50, "y": 300, "ancho": 50, "alto": 60, "velocidad": 5} ventana["juego"] = pygame.display.set_mode( (ventana["alto"], ventana["ancho"]) ) pygame.display.set_caption( ventana["titulo"] ) ejes = [False, False, False, False] # inicializamos el juego pygame.init() # cada juego debe tener un bucle principal jugando = True while jugando: # hago una pausa de 0.1 segundo pygame.time.delay(20) # esto evita que el juagador se siga moviendo # si una tecla no es presionada ejes[0], ejes[1], ejes[2], ejes[3] = False, False, False, False # chequeo los eventos del juego for evento in pygame.event.get(): # esto devuelve una lista de los eventos y su estado if evento.type == pygame.QUIT: # si la tecla esc se presiona jugando = False # finaliza el bucle # ver documentacion en --> https://www.pygame.org/docs/ref/key.html # esto obtiene el estado de TODAS las teclas teclas = pygame.key.get_pressed() # le paso el estado de las teclas a la funcion que # mueve el jugador indicadoresSalto = moverJugador(teclas, saltando, contadorSaltos) saltando = indicadoresSalto[0] contadorSaltos = indicadoresSalto[1] # paso la ventana y el jugador a la funcion que dibuja dibujar(ventana,R1) pygame.quit() # termina el juego
true
841cfc9743d5f62c13c999a9aa68f4ca7a98b6e4
Python
Ash515/PyDataStructures
/Non Linear Structures/Binary Heap/PriorityQueue.py
UTF-8
242
4.0625
4
[ "MIT" ]
permissive
''' Heap in priority representation ''' import heapq list_=[(1,"Python"),(2,"JAVA"),(3,"C++")] heapq.heapify(list_) print(list_) for i in range(len(list_)): print(heapq.heappop(list_)) ''' Output (1, 'Python') (2, 'JAVA') (3, 'C++') '''
true
17a2fb8c4b88d9aaa71ba5c2ff508d975a80b07b
Python
ordikhan/Data-cleansing
/feature selection.py
UTF-8
1,141
2.640625
3
[]
no_license
import pandas as pd import numpy as np from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score import random from sklearn.feature_selection import VarianceThreshold random.seed(2002) iris = datasets.load_iris() X = iris.data Y = iris.target #Xnew = VarianceThreshold(0.8 * (1-0.8)).fit_transform(X) #print(X.shape, Xnew.shape) from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectPercentile from sklearn.feature_selection import chi2 from sklearn.feature_selection import f_classif Xnew = SelectKBest(chi2, k=2).fit_transform(X,Y) print(X.shape, Xnew.shape) Xnew = SelectKBest(f_classif, k=2).fit_transform(X,Y) print(X.shape, Xnew.shape) Xnew = SelectPercentile(chi2, percentile=75).fit_transform(X,Y) print(X.shape, Xnew.shape) from sklearn.feature_selection import RFE treemodel = DecisionTreeClassifier() selector = RFE(treemodel, 3) Xnew = selector.fit_transform(X,Y) print(X.shape, Xnew.shape)
true
e80685991c7ef7b4cf95f1d4dd78528b43b0239a
Python
mcuv3/recipie-api-django
/app/core/test/test_models.py
UTF-8
1,313
2.984375
3
[ "MIT" ]
permissive
from django.contrib.auth import get_user_model from django.test import TestCase class ModelTest(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with the email successful """ email = "test@mcuve.com" password = "123456" user = get_user_model().objects.create_user( email=email, password=password) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_new_user_email_normalized(self): """Test the email for new user is normilzed """ email = 'test@SDFSD.COM' user = get_user_model().objects.create_user(email, '2233433') self.assertEqual(user.email, email.lower()) def test_new_user_invalid_email(self): """Test creating user with no email raises error """ with self.assertRaises(ValueError): # this should raise the value error if not this test fails get_user_model().objects.create_user(None, '21233') def test_create_new_superuser(self): """Test creating a new superuser """ user = get_user_model().objects.create_superuser( "email@email.com", '232311') self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
true
d968710afe83a84f2d8736d575c8b0e54ade95bb
Python
infotechaji/GeneralCodes
/Other-Modules/TimeDelta.py
UTF-8
863
3.125
3
[]
no_license
import datetime import time #from time import sleep current_time=datetime.datetime.now() print 'current time :',current_time timeout=datetime.timedelta(minutes=1)# seconds=1 print 'datetime.timedelta(minutes=5) :',timeout timeout_expiration = datetime.datetime.now() + timeout print 'next time out expiration :',timeout_expiration while True: current_time=datetime.datetime.now() print 'current time :',current_time print ('sleeeping 30 seconds ...............') time.sleep(30) if current_time>timeout_expiration: print 'time crossed :!!' timeout=datetime.timedelta(minutes=1) timeout_expiration = datetime.datetime.now() + timeout print 'next time out expiration :',timeout_expiration # if elapsed > datetime.timedelta(minutes=1): # print "Slept for > 1 minute" # if elapsed > datetime.timedelta(seconds=1): # print "Slept for > 1 second"
true
9acdf09e5472dc68550696e775a7969603f9d467
Python
thecodevillageorg/intro-to-python
/Python Day 8/for_loops.py
UTF-8
2,031
4.96875
5
[]
no_license
# Loops """ Loops in Python - "for loop" and "while loop" Loops allow us to rerun the same lines of code several times. Loops will always run until a condition is met. Each time a loop runs is known as iteration. """ # For Loop - used to loop a set number of times """ syntax: for num in range(5): range(start,stop,step) (0,100+1,2) range(0,5,1) range(6) range(2,10) for - keyword that begins loop num - temp variable, also known as counter or index in - keyword range function - allows us to count from one number to another while being able to define the start and end """ # ex for num in range(5+1): # range counts up to but not including print(f"Value: {num}") for greeting in range(10): print("hello world") for i in range(0,101,2): print(i) for j in range(0,101,5): print(j) # Looping By Element strings, lists, dictionaries, sets """ When working with data types that are iterable, meaning they have a collection of elements that can be looped over, we can write the for loop differently: """ name = "John Smith" for letter in name: print(f"Value: {letter}") # Continue Statement """ Once a continue statement is hit, the current iteration stops and goes back to the top of the loop. # """ for num in range(7): if num == 3: continue print(num) # Break Statement """ It allows us to break out of a loop at any point in time # """ for num in range(5): if num == 3: break print(num) # Pass Statement """ The pass statement is simply just a placeholder so that the program does not break """ for i in range(5): # TODO: add code to print number pass """ Note: Using "TODO" is a general practice for setting a reminder """ # Nested loop (x,y) """ A loop within a loop. When using nested loops, the inner loop must always finish running, before all outer loop can continue. """ for x in range(2): # outer loop 0 1 for y in range(3): # inner loop 0 1 2 for z in range(3): print(f"X: {x}, Y: {y} Z: {z}")
true
bc82463970195798588581474431badef4d8057a
Python
abndnc/CS5590-Python-DeepLearning
/ICP5/ICP5-2.py
UTF-8
1,346
3.296875
3
[]
no_license
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import linear_model from sklearn.metrics import mean_squared_error # read data train2 = pd.read_csv('winequality-red.csv') # get the top 3 most correlated features corr = train2.corr() plt.imshow(corr, cmap="YlGnBu") plt.colorbar() plt.xticks(range(len(corr)),corr.columns, rotation=20) plt.yticks(range(len(corr)),corr.index) plt.show() print(corr['quality'].sort_values(ascending=False)[:5], '\n') # print out total nulls nulls = pd.DataFrame(train2.isnull().sum().sort_values(ascending=False)) nulls.columns = ['Null Count'] nulls.index.name = 'Features' print(nulls) # delete the null values data = train2.select_dtypes(include=[np.number]).interpolate().dropna() print() print('Now, total nulls in data is: ', sum(data.isnull().sum() != 0)) # build the linear model y = np.log(train2.quality) x = data.drop(['quality'], axis=1) # split data into test and train x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=42, test_size=.2) # create the model lrl = linear_model.LinearRegression() model = lrl.fit(x_train, y_train) # R2 value print('R^2 value is:',model.score(x_test, y_test)) # RMSE value pred = model.predict(x_test) print('RMSE value is: ', mean_squared_error(y_test, pred))
true