blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
8a601949c081b062055a27e792234bc455b070d9
Python
ijhajj/RabbitMQ
/consumer_ack.py
UTF-8
1,082
2.65625
3
[ "MIT" ]
permissive
import pika from ConnectLocal import do_connect def consuming_callback(ch, method, body): message = body.decode() if "reject" in message: #setting basic_nack: "Not acknowledged" : implies message was not consumed # And needs to be requeued, this can be turned On/OFF # Default : Requeue ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True) print("N-acked the message & Requeued") else: ch.basic_ack(delivery_tag=method.delivery_tag) print("Message {0} is received correctly & successfully".format(message)) with do_connect() as channel: value ="" while(value!="q"): #auto_ack: turns off auto acknowledgements and expect Explicit acks. (method, props, body) = channel.basic_get("pika_queue", auto_ack=False) if body: #if body exists consume the message consuming_callback(channel, method, body) #ask user to enter option to continue or quit value=raw_input("any key to continue, q to stop")
true
ee7f19f5829f5e984b1a2c2e34ea2eee80a45ad6
Python
vishwatejn/30DayChallenge
/Integer to Roman.py
UTF-8
477
4
4
[]
no_license
# Integer to Roman a = ["I", "IV", "V", "IX", "X", "XL", "L", "XC", "C", "CD", "D", "CM", "M"] b = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] a = a[::-1] b = b[::-1] def convertRoman(n): op = "" for i in range(len(a)): while n >= b[i]: n -= b[i] op += a[i] return op if __name__ == '__main__': t = int(input()) for i in range(t): n = int(input()) print(convertRoman(n))
true
e3875b49050cf06ba1fb7c0a4ff82601ecad3487
Python
oyasai8910/SourceCodes
/Recomendation.py
UTF-8
4,342
3.046875
3
[]
no_license
#!/usr/bin/env python from __future__ import print_function from pyspark import SparkContext from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating from pyspark.mllib.evaluation import RegressionMetrics import math TRAIN = 8 VALIDATION = 0 TEST = 2 ADJUST = 10 - TRAIN - VALIDATION - TEST SPLIT_LIST = TRAIN, VALIDATION, TEST, ADJUST if __name__ == "__main__": sc = SparkContext(appName="PythonCollaborativeFilteringExample") # $example on$ # Load and parse the data data = sc.textFile("data.csv") # Splitting the data ratings = data.map(lambda l: l.split(','))\ .map(lambda l: Rating(int(l[0]), int(l[1]), float(l[2]))) train, validation, test, adjustment = ratings.randomSplit(SPLIT_LIST) # splitting data into testing data, validation data and training data train.cache() # caching data for quick optimization validation.cache() test.cache() validationForPredict = validation.map(lambda x: (x[0], x[1])) actualReformatted = validation.map(lambda x: ((x[0], x[1]), x[2])) # Build the recommendation model using Alternating Least Squares #rank = 10 #numIterations = 10 #model = ALS.train(train, rank, numIterations) iterations = [5, 7, 10] regularizationParameter = 0.05 ranks = [10, 12, 15] RMSEs = [0, 0, 0, 0, 0, 0, 0, 0, 0] err = 0 tolerance = 0.03 minRMSE = float('inf') bestIteration = -1 bestRank = -1 ptr1 = "output \n" #validating hyper-parameters #for rank in ranks: # for iteration in iterations: # model = ALS.trainImplicit(train, rank, iteration, lambda_=regularizationParameter) # predictedRatings = model.predictAll(validationForPredict) # predictedReformatted = predictedRatings.map(lambda x: ((x[0], x[1]), x[2])) # predictionAndObservations = (predictedReformatted.join(actualReformatted).map(lambda x: x[1])) # # metrics = RegressionMetrics(predictionAndObservations) # RMSE = metrics.rootMeanSquaredError # RMSEs[err] = RMSE # err += 1 # # #print ("For rank %s and iteration %s, the RMSE is %s") % (rank, iteration, RMSE) # ptr1 = ptr1 + "For rank " + str(rank) + " and iterations " + str(iteration) + " the RMSE is " + str(RMSE) + " \n" # print(ptr1) # if RMSE < minRMSE: # minRMSE = RMSE # bestIteration = iteration # bestRank = rank ###print ("The best model was trained with rank %s and iteration %s") % (bestRank, bestIteration) #ptr2 = "The best model was trained with rank " + str(bestRank) + " and iteration " + str(bestIteration) + " \n" #print(ptr2) bestRank = 25 bestIteration = 15 bestModel = ALS.trainImplicit(train, bestRank, iterations=bestIteration, lambda_=regularizationParameter) testForPredicting = test.map(lambda x: (x[0], x[1])) testReformatted = test.map(lambda x: ((x[0], x[1]), x[2])) predictedTest = bestModel.predictAll(testForPredicting) predictedTestReformatted = predictedTest.map(lambda x: ((x[0], x[1]), x[2])) predictionAndObservationTest = (predictedTestReformatted.join(testReformatted). map(lambda x: x[1])) metrics = RegressionMetrics(predictionAndObservationTest) testRMSE = metrics.rootMeanSquaredError print ("The Model had a RMSE on the test set of " + str(testRMSE)) ptr3 = "The Model had a RMSE on the test set of " + str(testRMSE) with open("RMSE_vs_train" + ".csv", "a") as f: f.write(','.join(map(str, SPLIT_LIST + (testRMSE,))) + '\n') # Evaluate the model on training data #testdata = test.map(lambda p: (p[0], p[1])) #predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2])) # Keep the it if there is already a data, if not put in the data camputed by ALS #ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions) #RMSE = math.sqrt(ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean()) #print("Root Mean Squared Error = " + str(RMSE)) # Save and load model bestModel.save(sc, "target/tmp/myCollaborativeFilter") #sameModel = MatrixFactorizationModel.load(sc, "target/tmp/myCollaborativeFilter") # $example off$
true
c48df1c45fc8c495759b37963cf6d20e4a9a239c
Python
tepharju/Code1--Harjoitusteht-v-t
/CODE1_5_6_Collatz.py
UTF-8
338
3.34375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Aug 27 10:17:17 2021 @author: tepha Collatzin konjektuuri """ luku = int(input("Anna luku:")) while luku > 0 and luku != 1: if luku % 2 == 0: luku = luku // 2 print(luku) else: luku = luku *3 +1 print(luku)
true
1b29d4b8a684ddcdc166aadc38051f323695e88c
Python
wangweifeng2018/pyBAC
/removesingleton.py
UTF-8
1,191
3
3
[]
no_license
import pysam bam=pysam.Samfile("filter4-3.sorted.bam",'rb') #Load input file bam_out = pysam.Samfile("filter4-4.bam", 'wb', template=bam) #Create output file names=[] #Keep list of names to match to mate output=[] for read in bam.fetch(): #Loop over all reads in file if read.is_duplicate == False: #Filter out PCR duplicates name=read.query_name names.append(name) #Add read name to list for nam in names: #Loop over each read name, reads with no mate will only have one read for each name, will pairs will have 2 (or more) counter=0 for mate in bam.fetch(): #For each name check BAM-file if mate.query_name==nam: #Match name from list to name from BAM-file counter+=1 if counter!=1: #If more than one read is given for name, put it list output output.append(nam) for out in output: #Convert the raw names in output to the full read and app to new BAM-file for item in bam.fetch(): if item.query_name==out: bam_out.write(item) print "Total number of reads: " + str(len(names)) print "Number of reads after filtering out single reads: " + str(len(output)) bam.close() bam_out.close() print "done"
true
aab6ac585ef5b16979dc30330b48391347697751
Python
Im-Siyoun/algorithm-learning
/graph searching/BFS/2644.py
UTF-8
625
3.125
3
[]
no_license
from collections import deque n = int(input()) matrix = [[0]*(n+1) for _ in range(n+1)] a, b = map(int,input().split()) for i in range(int(input())): x, y = map(int,input().split()) matrix[x][y] = matrix[y][x] = 1 visit = [0]*(n+1) queue = deque() def BFS(start): chone = 0 queue.append(start) visit[start] = chone while queue: node = queue.popleft() chone = visit[node] + 1 for i in range(n+1): if matrix[node][i] and not visit[i]: queue.append(i) visit[i] = chone BFS(a) if not visit[b]: print(-1) else: print(visit[b])
true
3127354bbd290d3f3b1581e655ecb2bc431eb7c7
Python
jithinsarath/python3basics
/fibonacci_03_memoization.py
UTF-8
540
4.09375
4
[ "Unlicense" ]
permissive
# Implementing Memoization in An recursive function to improve performance # reference https://towardsdatascience.com/memoization-in-python-57c0a738179a fibonacci_cache = {} def fibonacci(num): if num in fibonacci_cache: return fibonacci_cache[num] if num == 1: value = 1 elif num == 2: value = 1 elif num > 2: value = fibonacci(num - 1) + fibonacci(num - 2) fibonacci_cache[num] = value return value for i in range(1, 201): print("fibonacci({}) = ".format(i), fibonacci(i))
true
7c76229bb82ee09e23229ef789b560e687ee9423
Python
ghdus4185/SWEXPERT
/N2115-1.py
UTF-8
688
3.546875
4
[]
no_license
# 수도코드 # M개의 원소에서 1개 이상 최대 M개를 고르는 방법 M = 3 arr = [6, 1, 9] # 비트연산을 활용한 부분집합 만들기 maxV = 0 for i in range(1, 2 ** M): # 이진수 생성 for j in range(M): # 0, 1, 2번 비트 s = 0 # 부분집합의 합 ss = 0 if i & (1 << j) != 0 and s + arr[j] <= c: # i 의 j번 비트가 1이고, 제한량 이하면 s += arr[j] ss += arr[i] * arr[j] # 채취한 벌꿀의 가치 if maxV < ss: maxV = ss print(maxV) # 결국 부분집합 합의 최대 값을 구하는 것 #첫째줄을 한사람이 고르고 두번째 사람은 그 아후줄에서 구함
true
ac9f882dc03bcbf725863f49e8a3078045da9d8f
Python
Solomonwisdom/BasicTask
/section_two/python/leetcode/hard/longestconsecutivesequence/Solution.py
UTF-8
594
2.828125
3
[ "Apache-2.0" ]
permissive
""" Solution class problemId 128 @author wanghaogang @date 2018/6/29 """ class Solution: def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ length = len(nums) if not nums or length == 0: return 0 s = set(nums) ans = 0 cur = 0 for x in nums: if not x - 1 in s: cur = 1 i = 1 while x + i in s: cur += 1 i += 1 ans = max(ans, cur) return ans
true
d151cda9176e7e77964d6597f603ec08d711f60e
Python
optirg-39/webflask
/1. mysqlconnector/DDL_Commands.py
UTF-8
945
3.03125
3
[]
no_license
## import library import mysql.connector ## first crete a mysql server on your system or in cloud ## creating connection with credentials conn = mysql.connector.connect(host="localhost", user="root", passwd="password") ## create the cursor mycursor = conn.cursor() ## creating the database mycursor.execute("CREATE DATABASE IF NOT EXISTS test_db") ## show the list of databases mycursor.execute("SHOW DATABASES") for i in mycursor: print(i) ## drop the database # mycursor.execute("DROP TABLE table_name") ## use the database mycursor.execute("USE test_db") ## create table if not exists mycursor.execute('CREATE TABLE IF NOT EXISTS student_table(id INTEGER PRIMARY KEY AUTO_INCREMENT,\ name TEXT, marks INTEGER, group_id INTEGER)') ## DROP TABLE #sql = "DROP TABLE table_name" # show tables mycursor.execute("SHOW TABLES") # print the result for x in mycursor: print(x) # close the connection conn.close()
true
e4ce0443f2eb99953ac599eec36fa92173ddbfa4
Python
JosephLevinthal/Research-projects
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4352/codes/1649_2711.py
UTF-8
499
3.375
3
[]
no_license
# dinheiro total v_disp = int(input("digite seu saldo: ")) # para o RU quant_ru = int(input("digite quantos tickets de ru ce quer: ")) # valor dos tickets do RU v_ru = float(input("digite o valor do ticket do ru: ")) # para os passes de onibus quant_p = int(input("digite quantos passes ce quer: ")) # valor dos passes v_p = float(input("digite o valor do passe: ")) ################################# if v_disp > (quant_ru * v_ru) + (quant_p * v_p): print("SUFICIENTE") else: print("INSUFICIENTE")
true
274fb7b3eab8d75ea265fea07bc96579c4b82fcf
Python
MarkHershey/SATSolver
/2-SAT-Problem/src/cnf_parser.py
UTF-8
1,573
3.15625
3
[]
no_license
from pathlib import Path from typing import List, Tuple from dgraph import DirectedGraph Literal = int Clause = Tuple[Literal] def construct_implication_graph(cnf: str) -> DirectedGraph: cnf = Path(cnf) assert cnf.is_file() formula: List[Clause] = parse_cnf_to_list(cnf) implication_graph = DirectedGraph() for clause in formula: vertex_a, vertex_b = clause implication_graph.add_edge(-vertex_a, vertex_b) implication_graph.add_edge(-vertex_b, vertex_a) return implication_graph def parse_cnf_to_list(cnf: str) -> List[Clause]: cnf = Path(cnf) assert cnf.is_file() with cnf.open() as f: content = f.readlines() formula: List[Clause] = [] clause = [] for line in content: line = line.strip() if line.startswith("c"): continue if line.startswith("p"): continue tokens = line.split() for token in tokens: token = token.strip() if token != "": literal = int(token) else: continue if literal == 0: if len(clause) == 2: formula.append(tuple(clause)) clause = [] else: print(f"WARNING: caluse size != 2; Error clause: {clause}") else: clause.append(literal) return formula if __name__ == "__main__": from pprint import pprint g = construct_implication_graph("CNFs/sample_simple_SAT.cnf") pprint(g.graph)
true
9ae3f4b43764e689fa633b341b8bbcc2ba18d74b
Python
sucman/Python100
/21-30/21.py
UTF-8
514
3.890625
4
[]
no_license
# -*- coding:utf-8 -*- ''' 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾, 又多吃了一个第二天早上又将剩下的桃子吃掉一半,又多吃了一个。 以后每天早上都吃了前一天剩下的一半零一个。到第10天早上想再吃时, 见只剩下一个桃子了。求第一天共摘了多少。 程序分析:采取逆向思维的方法,从后往前推断。 ''' x = 1 for day in range(9, 0, -1): a = (x + 1) * 2 x = a print x
true
f0555a43a5f9832021a78819c4ca6e50f4a1eef0
Python
gouthamgopal/Twitter-Bot
/bots/config.py
UTF-8
811
2.5625
3
[]
no_license
import tweepy import logging import os from auth import CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_SECRET logger = logging.getLogger() """ To run the config file succesfully you need to generate the below 4 keys from the twitter developer account for the app. Just reuse the variables, or replace them with the key generated for succesful authentication and use of twitter api. """ def create_api(): auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) try: api.verify_credentials() except Exception as e: logger.error("Error creating API", exc_info=True) raise e logger.info("API created") return api
true
b0bd918c1717b3cdbc887868171bc3268419d3d1
Python
yanx27/DeepLearning-Study
/Keras_learning/2.初识神经网络.py
UTF-8
1,850
3.6875
4
[]
no_license
''' 第一个神经网络示例''' '''加载 Keras 中的 MNIST 数据集''' from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() '''网络架构''' from keras import models from keras import layers network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) '''编译步骤''' network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy']) ''' 准备图像数据: 在开始训练之前,我们将对数据进行预处理,将其变换为网络要求的形状,并缩放到所有值都在 [0, 1] 区间。 比如,之前训练图像保存在一个 uint8 类型的数组中,其形状为(60000, 28, 28) ,取值区间为 [0, 255] 。 我们需要将其变换为一个 float32 数组,其形状为 (60000, 28 * 28) ,取值范围为 0~1 ''' train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 '''准备标签''' from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) '''在 Keras 中这一步是通过调用网络的 fit 方法来完成的我们在训练数据上拟合(fit)模型''' network.fit(train_images, train_labels, epochs=5, batch_size=128) '''我们很快就在训练数据上达到了 0.989(98.9%)的精度。现在我们来检查一下模型在测试集上的性能''' test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc) '''显示第 4 个数字''' digit = train_images[4] import matplotlib.pyplot as plt plt.imshow(digit.reshape((28,28)), cmap=plt.cm.binary) plt.show()
true
469e81f2995eac651b91f92d65b3fd2e954bc43c
Python
lilharry/project_euler
/python/problem4.py
UTF-8
574
4.25
4
[]
no_license
# -*- coding: utf-8 -*- """ A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. """ def ispalindrome(n): stringy = str(n) stringybackwards = stringy[::-1] if stringy == stringybackwards: return True else: return False a = 100 b = 100 palindromes = [] while a<1000: while b<1000: if ispalindrome(a*b): palindromes.append(a*b) b+=1 b=100 a+=1 print(max(palindromes))
true
94f89d40e78d7e393ebc046f680a72cb8e90c3bb
Python
alok-upadhyay/BITS-mail-relay
/bits-mail.py
UTF-8
1,256
2.6875
3
[]
no_license
#!C:\Python27\python.exe -u #!/usr/bin/env python import smtplib print "You can send mail from any BITS Student ID to any other Student ID of the form f20XXYYY.\n" sndr = raw_input("Enter the sender's email ID (f20XXYYY): ") print rcpt = raw_input("Enter the recepient's email ID (f20XXYYY): ") sndr = sndr.__add__("@bits-goa.ac.in") rcpt = rcpt.__add__("@bits-goa.ac.in") recepients = [] recepients.append(rcpt) op = raw_input("Do you want to add more recepients?(y/n)") if op is "y": rcpt = raw_input("Enter the recepient's email ID (f20XXYYY): ") rcpt = rcpt.__add__("@bits-goa.ac.in") recepients.append(rcpt) #print recepients sub = raw_input("Enter the subject line: ") body = raw_input("Enter the body of the message: ") try: final_body = "From: "+sndr+"\nTo: "+recepients[0]+", "+recepients[1]+"\nSubject: "+sub+"\nBody: "+body except: final_body = "From: "+sndr+"\nTo: "+recepients[0]+", "+"\nSubject: "+sub+"\nBody: "+body #print final_body try: smtpObj = smtplib.SMTP('warrior.bits-goa.ac.in') smtpObj.helo('warrior.bits-goa.ac.in') smtpObj.sendmail(sndr, recepients, final_body) smtpObj.quit() print "Message submitted successfully!" except: print "Could not send the message, there might be some problem with the server!"
true
f623c00432e3de5df8a207f101230269c70ebfda
Python
freephys/blog_examples
/python_multiprocessing_zeromq_vs_queue/multiproc_with_queue.py
UTF-8
570
2.921875
3
[]
no_license
import sys import time from multiprocessing import Process, Queue def worker(q): for task_nbr in range(10000000): message = q.get() sys.exit(1) def main(): send_q = Queue() Process(target=worker, args=(send_q,)).start() for num in range(10000000): send_q.put("MESSAGE") if __name__ == "__main__": start_time = time.time() main() end_time = time.time() duration = end_time - start_time msg_per_sec = 10000000 / duration print "Duration: %s" % duration print "Messages Per Second: %s" % msg_per_sec
true
57936e2d62b0cea71572bee7719f36d95879a835
Python
susan025/myproj01
/day01/day1_strUpLow.py
UTF-8
316
3.9375
4
[]
no_license
if __name__ == '__main__': str = "Gud Lak" #将准备好的字符串转换成大写字符串 upperStr = str.upper() print(upperStr) #将准备好的字符串转换成小写字符串 lowerStr = str.lower() print(lowerStr) #字符串大小写转换-首字母大写 print(str.title())
true
eea5f5622694e053ba7341420a6be776b0c3a556
Python
mayankmikin/ds_algo_prep
/Python 2019/Basics/countOccurence.py
UTF-8
163
2.96875
3
[]
no_license
if __name__ == '__main__': a=input(); Out={} for i in a: if i in Out: Out[i]+=1 else: Out[i]=1 print(Out)
true
d803d62da5614db7df1427977922fd2bb0000ef3
Python
AronZeng/Internet-Traffic
/Data-Mining/Minning.py
UTF-8
7,423
2.75
3
[]
no_license
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot_tree from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.tree import export_graphviz from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix import mysql.connector import csv from six import StringIO from IPython.display import Image import pydotplus def main(): username = input("Enter your username\n") password = input("Enter your password\n") cnx = mysql.connector.connect(username=username, password= password, host='localhost', database='internet_traffic') cursor = cnx.cursor(dictionary=True) print("Fetching data from database...") #query the data we want from the database queryString = "select iat_mean, fwd_packets, bwd_packets, duration, label, bytes_per_second, syn_flag_count, rst_flag_count, psh_flag_count, ack_flag_count, urg_flag_count, cwe_flag_count, ece_flag_count, active_time_mean, idle_time_mean from (((((flow inner join flowbytes on flow.id = flowbytes.flow_id) inner join flowflags on flow.id = flowflags.flow_id) inner join flowiat on flow.id = flowiat.flow_id) inner join flowinfo on flow.id = flowinfo.flow_id) inner join flowpackets on flow.id = flowpackets.flow_id) inner join protocol on flow.protocol_id = protocol.id" cursor.execute(queryString) rows = [] for i in cursor: rows.append(i) with open('mining.csv', 'w', newline='') as f: fieldnames = [] for i in cursor.column_names: fieldnames.append(i) writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() writer.writerows(rows) print("Data successfully fetched and recorded in csv file...") #import the data dataframe = pd.read_csv("mining.csv", header=0) #used to check if the dataframe loaded the data properly dataframe.columns = ['IATMean', 'ForwardPackets', 'BackwardPackets', 'Duration', 'Label', 'BytesPerSecond', 'SYNFlagCount', 'RSTFlagCount', 'PSHFlagCount', 'ACKFlagCount', 'URGFlagCount', 'CWEFlagCount', 'ECEFlagCount', 'ActiveTimeMean', 'IdleTimeMean'] #display the data types print(dataframe.head()) print(dataframe.dtypes) #print unique values for each column for columnName in dataframe.columns: print(columnName + ":") print(dataframe[columnName].unique()) dataframe = dataframe.fillna({columnName: -1}) #split dataframe into independent and dependent X = dataframe.drop('Label', axis=1).copy() y = dataframe['Label'].copy() #build the preliminary clasification tree X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) clf = DecisionTreeClassifier(random_state=42, max_depth=5) clf = clf.fit(X_train, y_train) # plot the preliminary tree dot_data = StringIO() export_graphviz(clf, filled=True, rounded=True, special_characters=True,feature_names = X.columns,class_names=['BENIGN','DDoS'],out_file=dot_data) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png('preliminary.png') Image(graph.create_png()) #create the confusion matrix for the preliminary decision tree disp = plot_confusion_matrix(clf, X_test, y_test, display_labels=["BENIGN", "DDoS"]) plt.show() #cost complexity pruning #goal is to find the best pruning parameter alpha which controls how much pruning happens path = clf.cost_complexity_pruning_path(X_train, y_train) ccp_alphas = path.ccp_alphas ccp_alphas = ccp_alphas[:-1] clfs = [] #we put decisions trees into here print("Cost Complexity Pruning") for ccp_alpha in ccp_alphas: print("make tree for alpha") clf = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha, max_depth=5) clf = clf.fit(X_train, y_train) clfs.append(clf) train_scores = [clf.score(X_train,y_train) for clf in clfs] test_scores = [clf.score(X_test,y_test) for clf in clfs] fig, ax = plt.subplots() ax.set_xlabel("alpha") ax.set_ylabel("Accuracy") ax.set_title("Accuracy vs alpha for training and testing sets") ax.plot(ccp_alphas, train_scores, marker='o', label="train", drawstyle="steps-post") ax.plot(ccp_alphas, test_scores, marker='o', label="test", drawstyle="steps-post") ax.legend() plt.show() #there could have been many ways we divide the training and testing dataset #we use 10-fold cross validation to see if we used the best training and testing dataset #i.e one set of data may have a different optimal alpha #demonstrate using a single alpha with different data sets #we see that this alpha is sensitive to the datasets print("Cross validation") clf = DecisionTreeClassifier(random_state=42, ccp_alpha=0.000005, max_depth=5) scores = cross_val_score(clf, X_train, y_train, cv=10) df = pd.DataFrame(data={'tree': range(10), 'accuracy': scores}) df.plot(x='tree', y='accuracy', marker='o', linestyle='--') plt.show() #use cross validation to find optimal value for ccp_alpha alpha_loop_values = [] print("10-fold for more than one alpha") #for each alpha candidate, we run a 10-fold cross validation for ccp_alpha in ccp_alphas: clf = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha, max_depth=5) scores = cross_val_score(clf, X_train, y_train, cv=10) alpha_loop_values.append([ccp_alpha, np.mean(scores), np.std(scores)]) print("Finished one alpha candidate") #graph the mean and standard deviation of the scores for each candidate alpha alpha_results = pd.DataFrame(alpha_loop_values, columns=['alpha','mean_accuracy', 'std']) alpha_results.plot(x='alpha', y='mean_accuracy', yerr='std', marker='o', linestyle='--') plt.show() #this part is used to find the exact optimal alpha value used to create the optimal pruned classification tree print("optimal alpha value") optimal_alpha = alpha_results[(alpha_results['alpha'] > 0) & (alpha_results['alpha'] < 0.0001)] print(optimal_alpha) #optimal pruned tree clf = DecisionTreeClassifier(random_state=42, ccp_alpha=2.247936 * (10**(-10)), max_depth=5) clf = clf.fit(X_train, y_train) dot_data = StringIO() export_graphviz(clf, filled=True, rounded=True, special_characters=True,feature_names = X.columns,class_names=['BENIGN','DDoS'],out_file=dot_data) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png('best.png') Image(graph.create_png()) #draw a confusion matrix for the optimal pruned tree disp = plot_confusion_matrix(clf, X_test, y_test, display_labels=["BENIGN", "DDoS"]) print(disp) plt.show() main()
true
3d33333fa636668a62bdf09661994cca1b6ab48e
Python
jag-prabhakaran/genetic-algorithm-for-stock-prediction
/.ipynb_checkpoints/nn-checkpoint.py
UTF-8
165
2.6875
3
[]
no_license
import tensorflow as tf mnist = tf.keras.datasets.mnist # (dataset of 28x28 images of handwritten digits 0-9) (x_train, y_train), (x_test, y_test) = mnist.load_data
true
cb153534555e62d1ad773ec541823d1fc519c7cd
Python
amoliu/gpplib
/GliderDataPython/ReadGliderLogfiles.py
UTF-8
5,237
2.59375
3
[ "MIT" ]
permissive
import gpplib from gpplib.Utils import * import re class GliderConsoleLogFileReader(object): def __init__(self,**kwargs): self.LocPattern = re.compile("[ ]*(GPS|DR)[ ]*(TooFar|Location|Invalid)[ :]+([0-9\\.\\-]*) N ([0-9\\.\\-]*) E.*") self.SensorPattern = re.compile("[ ]*sensor:[ ]*([a-z_]+)(?:\\(([a-zA-Z]+)\\))*[ ]*=[ ]*([0-9\\.-]+)[ ]*(lat|lon|enum)*.*") self.MissionPattern = re.compile("MissionName:([a-zA-Z0-9\\.\\-\\_]*) MissionNum:([a-zA-Z0-9\\.\\-\\_]*) \\(([0-9\\.]*)\\)") self.WaypointPattern = re.compile("[ ]*Waypoint: \\(([0-9\\.\\-]*),([0-9\\.\\-]*)\\) Range: ([0-9\\.]*)([a-zA-Z]*), Bearing: ([0-9\\.\\-]*)deg, Age: (.*)") self.BecausePattern = re.compile("[ ]*Because:([a-zA-Z0-9 ]*) \\[(.*)\\]") self.VehiclePattern = re.compile("[ ]*Curr Time: (.*) MT:[ ]*([0-9\\.]*)") self.TimePattern = re.compile("[ ]*Curr Time: (.*) MT:[ ]*([0-9\\.]*)") def getGpsDegree(self,webb_gps_str): p=webb_gps_str.find(".") d=float(webb_gps_str[0:p-2]) return d+cmp(d,0)*float(webb_gps_str[p-2:len(webb_gps_str)])/60 def GetGpsLocation(self,m,locType="Location"): if(m and m.group(1) == "GPS" and m.group(2) == locType ): #print m.groups() lat = self.getGpsDegree(m.group(3)) lon = self.getGpsDegree(m.group(4)) return (lat,lon) else: return None def GetSensorValue(self,m,sensorType="m_battery"): if(m.group(1) == sensorType ): return float(m.group(3)) else: return None def ParseData(self,msg): ''' ParseData = find useful information in the given data file ''' g = {} if len(msg)>0: for line in msg: mL, mS, mM, mW, mB, mV, mT = \ self.LocPattern.match(line), self.SensorPattern.match(line), self.MissionPattern.match(line), \ self.WaypointPattern.match(line),self.BecausePattern.match(line),self.VehiclePattern.match(line), \ self.TimePattern.match(line) if mL: gliderLoc = self.GetGpsLocation(mL) if gliderLoc != None: g['lat'],g['lon']=gliderLoc elif mS: battery = self.GetSensorValue( mS,'m_battery' ) vacuum = self.GetSensorValue( mS, 'm_vacuum' ) if battery: g['battery']=battery if vacuum: g['vacuum'] =vacuum elif mW: g['wp_lat'], g['wp_lon'], g['wp_range'], g['wp_bearing'], g['wp_time'] = \ self.getGpsDegree(mW.group(1)),self.getGpsDegree(mW.group(2)), \ float(mW.group(3)),float(mW.group(5)),0 elif mB: g['because'] = mB.group(1) elif mV: g['name'] = mV.group(1) elif mT: g['time'] = time.strptime(m.group(1),'%a %b %d %H:%M:%S %Y') else: print 'Empty Message/File.' return g def GetLogFileListForGliderBetweenDates(self,glider_name,dt1,dt2): ''' Get a list of all log files after a particular date. ''' self.gftp = GliderFTP('/var/opt/gmc/gliders/'+glider_name+'/logs/') dir_list = self.gftp.GetSimpleDirList('') filtered_list = [] for file in dir_list[0]: m = re.match('%s_modem_([0-9]{4})([0-9]{2})([0-9]{2})T([0-9]{2})([0-9]{2})([0-9]{2}).log'%(glider_name),file) if m: fyy,fmm,fdd,fhr,fmi,fse = \ int(m.group(1)),int(m.group(2)),int(m.group(3)),int(m.group(4)),int(m.group(5)),int(m.group(6)) file_dt = datetime.datetime(fyy,fmm,fdd,fhr,fmi,fse) if file_dt>=dt1 and file_dt<=dt2: filtered_list.append(file) #print self.gftp.f.dir() self.gftp.Close() return filtered_list def ReadLogFileContents(self,glider_name,remoteFileName,tmp_log_file_dir = 'logs/'): self.gftp = GliderFTP('/var/opt/gmc/gliders/'+glider_name+'/logs/') import os, sys try: os.mkdir(tmp_log_file_dir) except OSError as (errno,strerror): pass lines_in_file = None localFileName = tmp_log_file_dir+'%s'%(remoteFileName) print 'Local file: %s'%(localFileName) if self.gftp.DoesFileExist(remoteFileName)==True: self.gftp.ReadFile(localFileName,remoteFileName) f = open(localFileName,'r') lines_in_file = f.readlines() f.close() self.gftp.Close() return lines_in_file gclfr = GliderConsoleLogFileReader() f = open('rusalka_modem_20120719T154158.log','r') msg = f.readlines() f.close() g = gclfr.ParseData(msg) print g download_dir = 'logs/' dt1 = datetime.datetime(2012,7,18,0,0) dt2 = datetime.datetime.utcnow() fileList = gclfr.GetLogFileListForGliderBetweenDates('rusalka', dt1, dt2) for file in fileList: lines = gclfr.ReadLogFileContents('rusalka', file )
true
d193c06ad6135d7989f4f3586d39db29734cb759
Python
SecondToGod/machine-learning
/CV/cvthreshold.py
UTF-8
1,674
2.78125
3
[]
no_license
import cv2 import matplotlib.pyplot as plt import numpy as np img = cv2.imread('./test.jpg',0) ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV) ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC) ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO) ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) imgs = [img,thresh1,thresh2,thresh3,thresh4,thresh5] titles = ['origin','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] # for i in range(6): # plt.subplot(2,3,i+1) # plt.imshow(imgs[i],'gray') # plt.title(titles[i]) # plt.show() # 自适应二值化 # 加上中值滤波平滑图像 img2 = cv2.medianBlur(img,5) # cv2.namedWindow('blur',cv2.WINDOW_NORMAL) # cv2.imshow('blur',img2) th1 = cv2.adaptiveThreshold(img2,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) th2 = cv2.adaptiveThreshold(img2,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2) # plt.subplot(1,3,1),plt.imshow(img2,'gray'),plt.title('medianBlur') # plt.subplot(1,3,2),plt.imshow(th1,'gray'),plt.title('mean') # plt.subplot(1,3,3),plt.imshow(th2,'gray'),plt.title('gaussian') # plt.show() # otsu 二值化 ret,th3 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) img3 = cv2.GaussianBlur(img,(5,5),0) ret,th4 = cv2.threshold(img3,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) plt.figure() plt.subplot(1,3,1),plt.imshow(img3,'gray'),plt.title('GaussianBlur') plt.subplot(1,3,2),plt.imshow(th3,'gray'),plt.title('otsu') plt.subplot(1,3,3),plt.imshow(th4,'gray'),plt.title('gaussian+otsu') plt.show() plt.figure() plt.hist(th4.ravel(),256) plt.show() cv2.waitKey(0)
true
d1f80ebc890605a60df958f1678ad176c603a632
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_121/186.py
UTF-8
630
2.90625
3
[]
no_license
#!/usr/bin/env python n=int(raw_input()) def solver(fulle,e,r,n,v): max=0 if n==1: return e*v[0] else: tempi=0 for i in xrange(0,e+1): if e-i+r>=fulle: temp = solver(fulle,fulle,r,n-1,v[1:])+i*v[0] else: temp = solver(fulle,e-i+r,r,n-1,v[1:])+i*v[0] if temp>max: max=temp return max for i in xrange(0,n): s=raw_input() (e,r,n)=[int(k) for k in s.split(' ')] s=raw_input() v=[int(k) for k in s.split(' ')] print('Case #%d: %d' % (i+1, solver(e,e,r,n,v)))
true
1670c52ac96e3693011daf8e49b9d0a3971cd9fb
Python
Aasthaengg/IBMdataset
/Python_codes/p02260/s739885042.py
UTF-8
407
3.265625
3
[]
no_license
def selection_sort(A): swap = 0 for i in range(len(A)): minj = i for j in range(i,len(A)): if A[j] < A[minj]: minj = j if minj != i: A[i],A[minj] = A[minj],A[i] swap += 1 return swap if __name__=='__main__': N=int(input()) A=list(map(int,input().split())) swap = selection_sort(A) print(*A) print(swap)
true
e9c2222c8c584dabd6ce65202850ab91dbecd2a0
Python
geoxliu/Python_Crash_Course_all
/part_2/name_cases.py
UTF-8
841
3.515625
4
[]
no_license
full_name = "eric" message = "Hello " + full_name + "," + "would you like to learn some Python today?" print(message) full_name = "eric" message = "Hello " + full_name.title() + "," + "would you like to learn some Python today?" print(message) full_name = "eric" message = "Hello " + full_name.upper() + "," + "would you like to learn some Python today?" print(message) fmmous_person = "Albert Einstein " message = fmmous_person + "once said," + " A person who never made a mistake never tried anything new." print(message) full_name = " Felix Zhang " print(full_name) print(full_name.lstrip()) print(full_name.rstrip()) print(full_name.strip()) message = 3 * 2 print(message) message = 3 ** 2 print(message) message = 3 / 2 print(message) message = 3 + 2 print(message) message = 3 + 2 * 4 print(message) message = (3 + 2) * 4 print(message)
true
b8b251cf13b8fda630910dd4a531d38831c2460e
Python
TamNguyenVanTam/ReinforcementLearning
/source/models/framework/actor_critic.py
UTF-8
2,712
2.75
3
[]
no_license
""" Defining Actor Critic Framework Authors: TamNV =============================== """ import tensorflow as tf import tensorflow.contrib.slim as slim class ActorCritic: """ Actor Critic Framework """ def __init__(self, num_obser_dim, num_action_dim, act_backbone, cri_backbone): """ Initial Method + Params: num_obser_dim: Integer + Params: num_action_dim: Integer + act_backbone: Class Name + cri_backbone: Class Name + Returns: None """ self._num_obser_dim = num_obser_dim self._num_action_dim = num_action_dim self._act_backbone = act_backbone self._cri_backbone = cri_backbone self._states = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None, self._num_obser_dim)) self._next_states = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None, self._num_obser_dim)) self._actions = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None, self._num_action_dim)) # One-Hot-Vector Convention self._rewards = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None,)) self._gamma = tf.compat.v1.placeholder(dtype=tf.float32, shape=None) self._cri_lr = tf.compat.v1.placeholder(dtype=tf.float32, shape=None) self._act_lr = tf.compat.v1.placeholder(dtype=tf.float32, shape=None) def init_actor_critic(self): """ Create An Actor and a Critic """ self._actor = self._act_backbone(in_dims=self._num_obser_dim, out_dims=self._num_action_dim, name="actor") self._critic = self._cri_backbone(in_dims=self._num_obser_dim, out_dims=1, name="critic") """ Get Actor's trainable variables and Critic's trainable variables """ self._act_variables = self._actor._train_vars self._cri_variables = self._critic._train_vars print("The Number of Variables for Actor: {}".format(len(self._act_variables))) print("The Number of Variables for Critic: {}".format(len(self._cri_variables))) def inference(self): # Perform Critic Phase gt = self._critic(self._next_states) * self._gamma + self._rewards td_error = (gt - self._critic(self._states)) ** 2 self._cri_loss = tf.reduce_mean(td_error) # Perform Actor Phase self._act_probs = self._actor(self._states) log_action = tf.reduce_sum(tf.nn.log_softmax(self._act_probs, axis=-1) * self._actions, axis=-1) self._act_loss = tf.reduce_mean(-td_error * log_action) self._act_op = tf.compat.v1.train.AdamOptimizer(self._act_lr).minimize(self._act_loss, var_list=self._act_variables) self._cri_op = tf.compat.v1.train.AdamOptimizer(self._cri_lr).minimize(self._cri_loss, var_list=self._cri_variables) self._losses = [self._act_loss, self._cri_loss] self._ops = [self._act_op, self._cri_op]
true
855d11f7e9fd59425b0cb48dea2b53a859e40591
Python
quinkennedy/generative-zine-invite
/script_zine/mixed_test.py
UTF-8
647
2.875
3
[]
no_license
#!/usr/bin/env python from xml.parsers import expat generative = [] elem_stack = [] def start_element(name, attributes): if name == 'var' and elem_stack[-1] == 'command': generative[-1] += attributes['key'].upper() elif name == 'command': generative.append('') elem_stack.append(name) def end_element(name): elem_stack.pop() def char_data(data): if elem_stack[-1] == 'command': generative[-1] += data parser = expat.ParserCreate() parser.StartElementHandler = start_element parser.EndElementHandler = end_element parser.CharacterDataHandler = char_data with open('zine.xml', 'rb') as f: parser.ParseFile(f) print(generative)
true
dca53d7aef775786b56616b95e5747394f0dd738
Python
jakkularamesh/Innomatics_Internship_APR_21
/Day 2/Set .union() Operation.py
UTF-8
196
2.875
3
[]
no_license
# Enter your code here. Read input from STDIN. Print output to STDOUT n=int(input()) n1=set(input().split()) m=int(input()) m1=set(input().split()) u=n1.union(m1) print(len(u))
true
8a42eae59a7871d231b3735a35f442dc565d9291
Python
roadworrier/s_tools
/skyptool.py
UTF-8
5,034
2.640625
3
[]
no_license
#!/usr/bin/python # # This started out as the code from # https://pentesterscript.wordpress.com/2013/08/07/extract-contacts-call-log-message-from-skype-database/ # which required some indentation, and then some other snippets were added to make this do what I needed: # List the date, time, duration of all skype calls, with the initator known. # # What does this do? Prints something like this: # # #Timestamp: 2018-08-01 19:10:41 From live:someones_skypename : # <name>Someone's Actual Name</name> # <name>My Name</name> #Timestamp: 2018-08-01 19:13:54 From my_skype_username : # <name>Someone's Actual Name</name> # <name>my_skype_username</name> #Skype call duration: 0:03:13 import sqlite3 import optparse import os import datetime import xml.etree.cElementTree as et import re from HTMLParser import HTMLParser #https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-beautiful-soup from bs4 import BeautifulSoup def printProfile(skypeDB): conn = sqlite3.connect(skypeDB) c = conn.cursor() c.execute("SELECT fullname, skypename, city, country, \ datetime(profile_timestamp,'unixepoch') FROM Accounts;") for row in c: print '[*] - Found Account -' print '[+] User : '+str(row[0]) print '[+] Skype Username : '+str(row[1]) print '[+] Location : '+str(row[2])+','+str(row[3]) print '[+] Profile Date : '+str(row[4]) def printContacts(skypeDB): conn = sqlite3.connect(skypeDB) c = conn.cursor() c.execute("SELECT displayname, skypename, city, country,\ phone_mobile, birthday FROM Contacts;") for row in c: print '\n[*] - Found Contact -' try: print '[+] User : ' + str(row[0]) except: pass print '[+] Skype Username : ' + str(row[1]) if str(row[2]) !='' and str(row[2]) != 'None': print '[+] Location : ' + str(row[2]) + ',' + str(row[3]) if str(row[4]) != 'None': print '[+] Mobile Number : ' + str(row[4]) if str(row[5]) != 'None': print '[+] Birthday : ' + str(row[5]) def printCallLog(skypeDB): conn = sqlite3.connect(skypeDB) c = conn.cursor() c.execute("SELECT datetime(begin_timestamp,'unixepoch'), \ identity FROM calls, conversations WHERE \ calls.conv_dbid = conversations.id;" ) print '\n[*] - Found Calls -' for row in c: print '[+] Time: '+str(row[0])+\ ' | Partner: '+ str(row[1]) class MyHTMLParser(HTMLParser): def handle_starttag(self, tag, attrs): if tag != 'duration': return #print "Encountered a start tag:", tag #for name, value in attributes def handle_endtag(self, tag): print "Encountered an end tag :", tag def handle_data(self, data): print "Encountered some data :", data def printMessages(skypeDB): conn = sqlite3.connect(skypeDB) c = conn.cursor() c.execute("SELECT datetime(timestamp,'unixepoch'), \ dialog_partner, author, body_xml FROM Messages;") print '\n[*] - Found Messages -' time_text = "Timestamp: " time_int = 0 prev_time_int = 0 for row in c: try: if 'partlist' not in str(row[3]): if str(row[1]) != str(row[2]): msgDirection = 'To ' + str(row[1]) + ': ' else: msgDirection = 'From ' + str(row[2]) + ' : ' if str(row[3]).startswith('<partlist'): soup = BeautifulSoup(str(row[3])) call_length=soup.duration time_int=int(call_length.string) #print "call ln" + call_length.string print time_text + str(row[0]) + ' ' + msgDirection cleaner_string = str(row[3]) cleaner_string = re.sub('.*part.*\n', "", cleaner_string) cleaner_string = re.sub('.*part.*', "", cleaner_string) cleaner_string = re.sub('.*duration.*\n', "", cleaner_string) print cleaner_string.rstrip('\n') if prev_time_int == time_int: print "Skype call duration: " + str(datetime.timedelta(seconds=time_int)) + "\n" prev_time_int = time_int except: pass def main(): parser = optparse.OptionParser("usage %prog "+\ "-p " + """\nSpecify skype profile path after -p\n The locations of the Skype database in different operating systems are\n In windows C:\\Users\user_name\AppData\Roaming\Skype\skype_user_name\n In mac Users/user_name/Library//Application/Support/Skype/skype_user_name\n In Linux /root/.Skype/skype_user_name """) parser.add_option('-p', dest='pathName', type='string',\ help='Specify Skype profile path') (options, args) = parser.parse_args() pathName = options.pathName if pathName == None: print parser.usage exit(0) elif os.path.isdir(pathName) == False: print '[!] Path Does Not Exist: ' + pathName exit(0) else: print "Running skyptool.py found here: https://github.com/roadworrier/s_tools" skypeDB = os.path.join(pathName, 'main.db') if os.path.isfile(skypeDB): printProfile(skypeDB) #printContacts(skypeDB) #printCallLog(skypeDB) printMessages(skypeDB) else: print '[!] Skype Database '+\ 'does not exist: ' + skpeDB if __name__ == '__main__': main()
true
1bed2c4c594e17a90f3fe5153affd68aee7f34d5
Python
michael-lennox-wong/CS50W-Projects
/Project3/add_menu_items.py
UTF-8
3,251
2.625
3
[]
no_license
from orders.models import Salad, Pasta, DinnerPlatter, Sub1, Sub2, Pizza from orders.models import MenuItem for x in Salad.SALAD_CHOICES: f = Salad(salad_type=x[0]) f.save() for x in Pasta.PASTA_CHOICES: f = Pasta(pasta_type=x[0]) f.save() for platter in DinnerPlatter.DINNER_PLATTER_CHOICES: for s in DinnerPlatter.SIZES: f = DinnerPlatter(size=s[0],platter_type=platter[0]) f.save() # Sub1 def bin_str(n): if n > 31: return 'Input is too big' else: s = str(bin(n))[2:] if len(s) < 5: k = 5 - len(s) for i in range(k): s = '0'+s return s def bin_size(s): if s[0]=='0': return 'S' else: return 'L' def bin_mushrooms(s): return bool(int(s[1])) def bin_green_peppers(s): return bool(int(s[2])) def bin_onions(s): return bool(int(s[3])) def bin_extra_cheese(s): return bool(int(s[4])) for n in range(32): s = bin_str(n) for st in Sub1.SUB1_CHOICES: f = Sub1(sub_type=st[0]) f.size = bin_size(s) f.mushrooms = bin_mushrooms(s) f.green_peppers = bin_green_peppers(s) f.onions = bin_onions(s) f.extra_cheese = bin_extra_cheese(s) f.save() # Sub2 for st in ['H', 'C', 'FC', 'V']: for size in ['S', 'L']: for extra_cheese in [False, True]: f = Sub2(sub_type=st) f.size = size f.extra_cheese = extra_cheese f.save() for extra_cheese in [False, True]: f = Sub2(sub_type='SPO') f.size = 'L' f.extra_cheese = extra_cheese f.save() # Pizza TWO_TOPPINGS = [] for i, top1 in enumerate(Pizza.TOPPING_CODES): for j, top2 in enumerate(Pizza.TOPPING_CODES): if j >= i: TWO_TOPPINGS.append(top1 + top2) THREE_TOPPINGS = [] for i, top1 in enumerate(Pizza.TOPPING_CODES): for j, top2 in enumerate(Pizza.TOPPING_CODES): if j >= i: for k, top3 in enumerate(Pizza.TOPPING_CODES): if k >= j: THREE_TOPPINGS.append(top1 + top2 + top3) ALL_TOPS = [''] + Pizza.TOPPING_CODES + TWO_TOPPINGS + THREE_TOPPINGS for top in ALL_TOPS: for size in ['S', 'L']: for p_type in ['R', 'Si']: f = Pizza(pizza_type=p_type,pizza_top=top) f.size = size f.save() for size in ['S', 'L']: for p_type in ['R', 'Si']: f = Pizza(pizza_type=p_type,pizza_top='Spec') f.size = size f.save() ### Add everything to MenuItem for class0 in [Salad, Pasta, DinnerPlatter, Sub1, Sub2, Pizza]: for item in class0.objects.all(): f = MenuItem(name=item, price=item.price()) f.save() ### Forgot to put in type before (use Pizza as default) for symb, class0 in [('Sa', Salad), ('S1', Sub1), ('S2', Sub2), \ ('Pa', Pasta), ('DP', DinnerPlatter)]: for item in class0.objects.all(): f = MenuItem(name=item, price=item.price(), type=symb) f.save() ### Add MenuItem ids to other class instances for class0 in [Pizza, DinnerPlatter, Sub1, Sub2]: for item in class0.objects.all(): item.menu_item_id = MenuItem.objects.get(name=str(item))
true
a78b94962b0930abb59efdfeeaf85ad21acc86f6
Python
doshmajhan/Xenoblast
/receiver.py
UTF-8
4,902
3.453125
3
[]
no_license
import bitarray import time from unitcomp import unitcomp THRESHOLD = 0.009 """ Run unit comp 100 times to establish the average amount of time it should take to run returns the average time taken to run unitcomp """ def initialization(): count = 0 total_time = 0 while(count < 100): total_time += unitcomp() count += 1 print("Total time taken: {}".format(total_time)) avg_time = total_time / count return avg_time """ Runs an indefinite operation to consistently run unitcomp until it is over 0.03 secs of the usual run time. If it is seen to running over the run time for at least 1.5 seconds then it means the sender is about to transmit :param avg_time: the average time unitcomp took to ran to compare against """ def synchronization(avg_time): while(True): start_time = time.time() # Get time taken for unitcomp time_taken = unitcomp() # Check if the time taken is greater than average if time_taken > (avg_time + THRESHOLD): #print("Higher load noticed, checking if sync is in progress") #print(time_taken - (avg_time + THRESHOLD)) # Time is greater than average so # see if it stays that way for at least 1.5s while time_taken > (avg_time + THRESHOLD): time_taken = unitcomp() end_time = time.time() # check if the time it lasted was at least 1.5 seconds if (end_time - start_time) >= 0.007: print("Lasted atleast .007") # time was at least 1.5 seconds so # we can assume the sender is syncing with us # so break out of this function return print("Not synced, only lasted: {}".format(end_time - start_time)) # time was not long enough for sync phase # so keep looking continue """ Confirms that the rise in CPU load occured from the sender. Will determine how many times unitcomp can be run in 1 second. If during this period, any of the execution times of unitcomp is greater than the precalculated average (plus the threshold) then it is determine that something else was causing the CPU load on the system, not the sender. :param avg_time: the average time unitcomp should execute for :returns zero if it finds it was a false, sync otherwise it runs the count of unitcomp execs """ def confirmation(avg_time): count = 0 # Run for 1 second end_time = time.time() + 1 while time.time() <= end_time: time_taken = unitcomp() count += 1 if time_taken > (avg_time + THRESHOLD): print(time_taken) # High CPU load is still occuring meaning # it wasn't the sender creating it return 0 return count """ Attempts to recieve 64 bits of data from sender. Will measure number of unitcomp executions during 1 second. If it is less than 90% of standard number, a 1 is recieved. Otherwise a 0 is recieved. It will pause for 1 second between bits to prevent VCPU state as being viewed as "over". """ def recieve_data(standard_number): num_bits = 0 data = "" while num_bits < 32: # Run for 1 second end_time = time.time() + 1 count = 0 while time.time() <= end_time: unitcomp() count += 1 if count < (standard_number * 0.95): print("Recieved 1") # It was less than 90% so it was a 1 data += "1" else: print("Recieved 0") data += "0" num_bits += 1 # pause for 1 second time.sleep(1) return data if __name__ == '__main__': # INIT print("Starting initialization") avg_time = initialization() print("Average execution time: {}".format(avg_time)) confirmed = False standard_number = 0 while not confirmed: # SYNC print("Listening for synchronization phase") synchronization(avg_time) print("Synchronization complete") # Sleep after sync time.sleep(1) # CONFIRM print("Confirming the higher load is from the sender") standard_number = confirmation(avg_time) print("Standard number: {}".format(standard_number)) if standard_number > 0: confirmed = True # Pause to reset state of vcpus time.sleep(1) print("Recieving data") # RECIEVE DATA data = recieve_data(standard_number) # convert bit string to hex string then to regular string print(data) phrase = bitarray.bitarray(data).tobytes().decode('utf-8') print("Recieved data: {}".format(phrase))
true
3f74bb7d27bc9d1b89aa57792042ea8de9e6f542
Python
murali-kotakonda/PythonProgs
/PythonBasics1/exception1/TestEx22.py
UTF-8
182
2.875
3
[]
no_license
a = False try: while not a: f_n = input("Enter file name") i_f = open(f_n, 'r') except: print("Input file not found") print("Bye")
true
0aca5d152a04dbacf92d3507594764130f330e63
Python
Chouffe/az
/services/data_handling.py
UTF-8
2,988
2.828125
3
[]
no_license
import numpy as np import utils def api_preprocess_datapoint(data): ddata = data.copy() result = ddata.pop('result') return result, ddata # TODO: Test it def dataset_to_matrix(schema, dataset): """Given a schema and a dataset, it returns the training set and target set for the ml fitting eg. schema = { 'a': {'default': 0}, 'b': {'default': 0}, 'c': {'default': 0}} dataset = [ {'a': 0, 'b': 1, '_obj': 3.3}, {'a': 1, 'b': 0, '_obj': 0.3}, {'a': 1, 'b': 0, 'c': 1, '_obj': 7.3}] """ keys = sorted(schema.keys()) defaults = [schema[k]['default'] for k in keys] train = [] target = [] for point in dataset: row = [] point_has_data = False for key, default in zip(keys, defaults): if key in point: point_has_data = True row.append(point[key]) else: row.append(default) # ignoring data for old experiments, # should probably prune if point_has_data: train.append(row) target.append(point["_obj"]) return np.array(train), np.array(target) def datapoints_to_dataset(datapoints): """Given datapoints from the db, it returns the dataset {feature1: value1, ..., featureN: valueN, _obj: mu}""" point_dict = utils.process_datapoints(datapoints) return [dict(d['features'].items() + {'_obj': d['mu']}.items()) for _, d in point_dict.items()] def datapoints_to_graph_results(datapoints, features): point_dict = utils.process_datapoints(datapoints) tmp = [dict(m['features'].items() + {'time': sorted(m['time'])[-1]}.items()) for _, m in point_dict.items()] tmp = sorted(tmp, key=lambda d: d['time']) results = {f: [] for f in features} for e in tmp: for f in features: if f in e: results[f].append(e[f]) else: results[f].append(features[f]['default']) return results def datapoints_to_cost_function_result(datapoints, features, obj_function): point_dict = utils.process_datapoints(datapoints) tmp = [dict(m['features'].items() + {'time': sorted(m['time'])[-1]}.items()) for _, m in point_dict.items()] tmp = sorted(tmp, key=lambda d: d['time']) return [obj_function(**p) for p in tmp] def point_to_vector(point, features): """Given a point {feature1: value1, ..., featureN: valueN} It returns [value1, ..., valueN] sorted by the keys""" return [point[key] for key in sorted(features.keys())] def points_to_vectors(points, features): return map(lambda p: point_to_vector(p, features), points) def vector_to_point(vector, features): """Given a vector [value1, ..., valueN] It returns {feature1: value1, ..., featureN: valueN}""" return {key: vector[i] for i, key in enumerate(sorted(features.keys()))}
true
d6e8c69afc073014ce0cc1854ebf9139e3ee82a9
Python
pighaddt/ITRI_BTconnect
/venv/TouchTaiwan_BT.py
UTF-8
878
2.734375
3
[]
no_license
import bluetooth ### target_name = "LAIRD BL654-CD8A74" target_address = "f00f06cd8a74" # Touch Taiwan Device () nearby_devices = bluetooth.discover_devices() print(nearby_devices) print() for bdaddr in nearby_devices: if target_name == bluetooth.lookup_name(bdaddr): target_address = bdaddr break if target_address is not None: print("Found target bluetooth device with address: ", target_address) else: print("Could not find target bluetooth device nearby") ## import serial portx = "COM4" bps = 9600 A = [] ser = serial.Serial(portx, int(bps), timeout=1, parity=serial.PARITY_NONE, stopbits=1) if (ser.isOpen()): print("open success") while (True): line = ser.readline() # if(line): # a = str(line, 'utf-16') # print(a) # line = 0 else: print("open failed") ser.close()
true
00cbc7ad4f8a3c547408b7dc50d8c069e3c4054d
Python
tmajest/project-euler
/python/p41/prime_tools.py
UTF-8
469
3.921875
4
[]
no_license
# Contains prime generator functions import math def primes_up_to(num): """ Prime sieve: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Implementation """ primes = [True for i in xrange(num)] primes[0] = False primes[1] = False for i in xrange(2, int(math.sqrt(num) + 1)): if primes[i]: for j in xrange(i * i, num, i): primes[j] = False return [pos for pos, is_prime in enumerate(primes) if is_prime]
true
5538687b79e28796bbefa2671f70a872f23619b3
Python
alaadhami/spmblackjack
/blackjack_gui.py
UTF-8
18,989
2.8125
3
[]
no_license
import tkinter as tk from tkinter import * from cards import * from gameplay import * from player import * import random TITLE_FONT = ("Arial", 30, "bold") class BlackJackUI(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) tk.Tk.minsize(self, 400, 400) self.title("EngiMavs BlackJack App") self.geometry("800x600") # the container is where we'll stack a bunch of frames # on top of each other, then the one we want visible # will be raised above the others self.container = tk.Frame(self) self.container.pack(side="top", fill="both", expand=True) self.container.grid_rowconfigure(0, weight=1) self.container.grid_columnconfigure(0, weight=1) self.frames = {} for F in (WelcomeUIPage, MenuPage): page_name = F.__name__ frame = F(self.container, self) self.frames[page_name] = frame # put all of the pages in the same location; # the one on the top of the stacking order # will be the one that is visible. frame.grid(row=0, column=0, sticky="nsew") self.show_frame("WelcomeUIPage") def gridContainerInit(self, *args, **kwargs): self.container.pack_forget() self.container.grid_rowconfigure(10, weight=1) self.container.grid_columnconfigure(10, weight=1) self.container.grid() # Show a frame for the given page name def show_frame(self, page_name): frame = self.frames[page_name] frame.tkraise() def closeApp(self): self.destroy() def okButton(self, controller, name, var, totalCashIn): self.name = str(name.get()) self.option = str(var.get()) getTotalCashIn = totalCashIn.get() param, splitTotalCashIn = getTotalCashIn.split("$", 1) self.userMoney = int(splitTotalCashIn.strip()) self.gridContainerInit(controller) self.once = "1" self.showBetButtons = True self.showGamePlayButtons = False self.showFirstPlayButtons = True #this needs to be known userName = self.name option = self.option self.game = gameplay() game = self.game # Add players to the game - depending on "Select Players" input game.addPlayer("Dealer", "D") self.dealer = game.playerDict["Dealer"] self.dealer.money = 0 if option == "2": game.addPlayer("Player2") self.p2 = game.playerDict["Player2"] self.p2.money = random.randrange(300, 500, 50) elif option == "3": game.addPlayer("Player2") game.addPlayer("Player3") self.p2 = game.playerDict["Player2"] self.p3 = game.playerDict["Player3"] self.p2.money = random.randrange(300, 500, 50) self.p3.money = random.randrange(300, 500, 50) game.addPlayer(userName, "NULL", True) self.user = game.playerDict[userName] self.user.money = controller.userMoney self.refrehGamePage(controller) def betButton(self, controller, bet): self.user.bet += bet self.refrehGamePage(controller) def dealButton(self, controller): self.showGamePlayButtons = True self.showBetButtons = False for i in controller.game.totalPlayers: if (i.dealer != "dealer" and i.userRight == False): i.bet = random.randrange(5, 200, 5) self.refrehGamePage(controller) def replayGame(self, controller): controller.once = "1" self.showBetButtons = True self.showGamePlayButtons = False self.user.bet = 0 controller.game.totalPlayersBet = 0 for i in controller.game.totalPlayers: i.winner = "NULL" self.refrehGamePage(controller) def settingsGame(self, controller): self.show_frame("MenuPage") def hitMeButton(self, controller): self.user.drawCard(controller.deck) self.refrehGamePage(controller) def doneButton(self, controller): controller.game.checkMatch(controller.deck) self.showCard = True self.showBetButtons = False self.showGamePlayButtons = True self.refrehGamePage(controller) def refrehGamePage(self, controller): page_name = MainGamePage.__name__ frame = MainGamePage(self.container, controller) self.frames[page_name] = frame frame.grid(row=0, column=0, sticky="nsew") controller.show_frame("MainGamePage") def passVal2controller(self, controller, deck, host): self.deck = deck self.host = host class WelcomeUIPage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent, bg='orange2') self.controller = controller label = tk.Label(self, text="Welcome to EngiMavs BlackJack", font=TITLE_FONT, fg='blue2') label.pack(side="top", fill="x", pady=30) button1 = tk.Button(self, text="Start Game", bg="green3", fg='snow', command=lambda: controller.show_frame("MenuPage")) button2 = tk.Button(self, text="Quit", bg='red2', fg='snow', command=lambda: controller.closeApp()) button1.pack(ipadx=50, ipady=40) button2.pack(pady=30) button1.config(font=('copper black', 20, 'bold')) class MenuPage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent, bg='green3') self.controller = controller nameLabel = tk.Label(self, text="Enter your name", font=TITLE_FONT, fg='blue2') name = tk.Entry(self, bd =5) var1 = IntVar()#what does this do? nameLabel.pack(side="top", fill="x", pady=10) name.pack(ipadx=10, pady=5) ##----------- #deckLabel = tk.Label(self, text="Enter number of decks", font=TITLE_FONT, fg='blue2') #decks = tk.Entry(self, bd=5) #deckLabel.insert(END,'3') #deckLabel.pack(side="top", fill="x", pady =20) ##-----------###need a GUI input for number of decks on main page label = tk.Label(self, text="How many players will be playing?", font=TITLE_FONT, fg='blue2') var = tk.StringVar() var.set("1") # initial value option = tk.OptionMenu(self, var, "1", "2", "3") label.pack(fill="x", pady=15) option.pack() totalCashLabel = tk.Label(self, text="Enter how much money you're\nbringing into the game:") totalCashIn = tk.Entry(self, bd =5) totalCashIn.insert(END, '$ ' + '500') totalCashLabel.pack() totalCashIn.pack() button = tk.Button(self, text="OK", command=lambda: controller.okButton(controller, name, var, totalCashIn)) button.pack(pady=40) class MainGamePage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent, bg='green3') self.controller = controller # 'controller.once' determines if it's the first init. # If it is (="1"), add players + generate card decks + draw cards, # or else continue with the game with existing players and cards if controller.once == "1": self.gameInit(controller) self.guiInit(controller) ### ====== Generate Cards, shuffle, and start game for the first init ====== ### def gameInit(self, controller):#add argument decks controller.once = "0" controller.showCard = False controller.user.bet = 0 # Get a deck of cards, shuffle them! host = cards() deck = host.generateDeck()#needs an int argument for copies host.shuffleDeck(deck) # game.startGame makes joined players draw 2 cards to begin with, including dealer controller.game.startGame(deck) controller.passVal2controller(controller, deck, host) ### ====== GUI display settings ====== ### def guiInit(self, controller): userName = controller.name option = controller.option game = controller.game totalBet = abs(game.totalPlayersBet) deck = controller.deck dealer = controller.dealer dealerName = dealer.name dealerOnHand = dealer.onHand dealerMoney = str(dealer.money) user = controller.user userOnHand = user.onHand userMoney = str(user.money) if option == "2": p2 = controller.p2 p2name = p2.name p2OnHand = p2.onHand p2Money = str(p2.money) p2Bet = p2.bet elif option == "3": p2 = controller.p2 p2name = p2.name p2OnHand = p2.onHand p2Money = str(p2.money) p2Bet = p2.bet p3 = controller.p3 p3name = p3.name p3OnHand = p3.onHand p3Money = str(p3.money) p3Bet = p3.bet # Default display - Dealer and User display # ===== Dealer Display ===== # if dealer.winner == False: dealerLabel = tk.Label(self, text=dealerName, font=TITLE_FONT, fg="red") elif dealer.winner == True: dealerLabel = tk.Label(self, text=dealerName, font=TITLE_FONT, fg="green") else: dealerLabel = tk.Label(self, text=dealerName, font=TITLE_FONT) dealerLabel.grid(row=2, column=0) for i in range (0, len(dealerOnHand)): if controller.showCard == True: dealerCards = tk.Label(self, text=dealerOnHand[i], bg="white", fg="black") else: if i == 0 and controller.showGamePlayButtons: dealerCards = tk.Label(self, text=dealerOnHand[i], bg="white", fg="black")########################## dealerCards = tk.Label(self, text=dealerOnHand[i], bg="black", fg="black") dealerCards.grid(row=3, column=1+i, padx=(0,5), ipadx=5, ipady=15) dealerMoneyLabel = tk.Label(self, text="Total: $" + dealerMoney) dealerMoneyLabel.grid(row=3, column=0) if controller.showBetButtons == False: if controller.dealer.winner == False: totalBetLabel = tk.Label(self, text="-$" + str(totalBet), fg="red") elif controller.dealer.winner == True: totalBetLabel = tk.Label(self, text="+$" + str(totalBet), fg="green") else: totalBetLabel = tk.Label(self, text="$" + str(totalBet)) totalBetLabel.grid(row=2, column=3, columnspan=4) # If user choose 2 players - add 1 more players (including himself) if option == "2": if p2.winner == False: p2 = tk.Label(self, text=p2name, font=TITLE_FONT, fg="red") elif p2.winner == True: p2 = tk.Label(self, text=p2name, font=TITLE_FONT, fg="green") else: p2 = tk.Label(self, text=p2name, font=TITLE_FONT) p2.grid(row=5, column=0) for i in range (0, len(p2OnHand)): if controller.showCard == True: p2Cards = tk.Label(self, text=p2OnHand[i], bg="black", fg="white") else: p2Cards = tk.Label(self, text=p2OnHand[i], bg="black", fg="black") p2Cards.grid(row=6, column=1+i, padx=(0,5), ipadx=5, ipady=15) p2MoneyLabel = tk.Label(self, text="Total: $" + p2Money) p2MoneyLabel.grid(row=6, column=0) if controller.showBetButtons == False: if controller.p2.winner == False: p2BetLabel = tk.Label(self, text="Bet: -$" + str(p2Bet), fg="red") elif controller.p2.winner == True: p2BetLabel = tk.Label(self, text="Bet: +$" + str(p2Bet), fg="green") else: p2BetLabel = tk.Label(self, text="Bet: $" + str(p2Bet)) p2BetLabel.grid(row=5, column=3, columnspan=4) # If user choose 3 players - add 2 more players (including himself) elif option == "3": # ===== Player 2 Display ===== # if p2.winner == False: p2 = tk.Label(self, text=p2name, font=TITLE_FONT, fg="red") elif p2.winner == True: p2 = tk.Label(self, text=p2name, font=TITLE_FONT, fg="green") else: p2 = tk.Label(self, text=p2name, font=TITLE_FONT) p2.grid(row=5, column=0) for i in range (0, len(p2OnHand)): if controller.showCard == True: p2Cards = tk.Label(self, text=p2OnHand[i], bg="black", fg="white") else: p2Cards = tk.Label(self, text=p2OnHand[i], bg="black", fg="black") p2Cards.grid(row=6, column=1+i, padx=(0,5), ipadx=5, ipady=15) p2MoneyLabel = tk.Label(self, text="Total: $" + p2Money) p2MoneyLabel.grid(row=6, column=0) if controller.showBetButtons == False: if controller.p2.winner == False: p2BetLabel = tk.Label(self, text="Bet: -$" + str(p2Bet), fg="red") elif controller.p2.winner == True: p2BetLabel = tk.Label(self, text="Bet: +$" + str(p2Bet), fg="green") else: p2BetLabel = tk.Label(self, text="Bet: $" + str(p2Bet)) p2BetLabel.grid(row=5, column=3, columnspan=4) # ===== Player 3 Display ===== # if p3.winner == False: p3 = tk.Label(self, text=p3name, font=TITLE_FONT, fg="red") elif p3.winner == True: p3 = tk.Label(self, text=p3name, font=TITLE_FONT, fg="green") else: p3 = tk.Label(self, text=p3name, font=TITLE_FONT) p3.grid(row=7, column=0) for i in range (0, len(p3OnHand)): if controller.showCard == True: p3Cards = tk.Label(self, text=p3OnHand[i], bg="black", fg="white") else: p3Cards = tk.Label(self, text=p3OnHand[i], bg="black", fg="black") p3Cards.grid(row=8, column=1+i, padx=(0,5), ipadx=5, ipady=15) p3MoneyLabel = tk.Label(self, text="Total: $" + p3Money) p3MoneyLabel.grid(row=8, column=0) if controller.showBetButtons == False: if controller.p3.winner == False: p3BetLabel = tk.Label(self, text="Bet: -$" + str(p3Bet), fg="red") elif controller.p3.winner == True: p3BetLabel = tk.Label(self, text="Bet: +$" + str(p3Bet), fg="green") else: p3BetLabel = tk.Label(self, text="Bet: $" + str(p3Bet)) p3BetLabel.grid(row=7, column=3, columnspan=4) # ===== Line ===== # line = tk.Label(self, text="_______________________________", font=TITLE_FONT) line.grid(row=19, column=0, pady=(5), columnspan=10) # ===== User Display ===== # if user.winner == False: userLabel = tk.Label(self, text=userName, font=TITLE_FONT, fg="red") userBetLabel = tk.Label(self, text="Bet: -$" + str(controller.user.bet), fg="red") elif user.winner == True: userLabel = tk.Label(self, text=userName, font=TITLE_FONT, fg="green") userBetLabel = tk.Label(self, text="Bet: +$" + str(controller.user.bet), fg="green") else: userLabel = tk.Label(self, text=userName, font=TITLE_FONT) userBetLabel = tk.Label(self, text="Bet: $" + str(controller.user.bet)) userLabel.grid(row=20, column=0) userBetLabel.grid(row=20, column=3, columnspan=4) for i in range (0, len(userOnHand)): if (controller.showGamePlayButtons == True): userCards = tk.Label(self, text=userOnHand[i], bg="white", fg="black") else: userCards = tk.Label(self, text=userOnHand[i], bg="black", fg="black") userCards.grid(row=21, column=1+i, padx=(0,5), ipadx=5, ipady=15) if (controller.showBetButtons == True): betButton5 = tk.Button(self, text="$5", command=lambda: controller.betButton(controller, 5)) betButton10 = tk.Button(self, text="$10", command=lambda: controller.betButton(controller, 10)) betButton25 = tk.Button(self, text="$25", command=lambda: controller.betButton(controller, 25)) betButton50 = tk.Button(self, text="$50", command=lambda: controller.betButton(controller, 50)) dealButton = tk.Button(self, text="Deal Cards", command=lambda: controller.dealButton(controller)) betButton5.grid(row=21, column=3, pady=(5, 0)) betButton10.grid(row=21, column=4, pady=(5, 0)) betButton25.grid(row=21, column=5, pady=(5,0)) betButton50.grid(row=21, column=6, pady=(5,0)) dealButton.grid(row=22, column=3, columnspan=4, pady=(5,0)) userMoneyLabel = tk.Label(self, text="Total: $" + userMoney) userMoneyLabel.grid(row=21, column=0) # ===== Buttons Display ===== # if (controller.showGamePlayButtons == True): hitMe = tk.Button(self, text="Hit Me", command=lambda: controller.hitMeButton(controller)) done = tk.Button(self, text="Stay", command=lambda: controller.doneButton(controller)) replayButton = tk.Button(self, text="Replay?", command=lambda: controller.replayGame(controller)) settingsButton = tk.Button(self, text="Settings", command=lambda: controller.settingsGame(controller)) closeButton = tk.Button(self, text="Quit", command=lambda: controller.closeApp()) hitMe.grid(row=22, column=1, pady=(25, 0)) done.grid(row=22, column=2, pady=(25, 0)) replayButton.grid(row=23, column=1, pady=(3,0)) settingsButton.grid(row=23, column=2, pady=(3,0)) closeButton.grid(row=24, column=1, columnspan=2, pady=(5,0)) if __name__ == "__main__": app = BlackJackUI() app.mainloop()
true
e260d89de7f309ea34d9348e61acfce8cb6fc320
Python
Jawmo/Hope
/engine/admin.py
UTF-8
7,479
2.75
3
[ "MIT" ]
permissive
from engine.global_config import * import psycopg2 from config import config import json class Admin_Commands(): def __init__(self, name): self.name = name def fill_db(): insert_item = """INSERT INTO items(uuid_id, name, item_desc, base_type, size, weight, capacity, can_attributes, room_target, combines_with, is_open, location, location_body, owner) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, item_desc, base_type, size, weight, capacity, can_attributes, combines_with, room_target, is_open, location, location_body, owner;""" insert_room = """INSERT INTO rooms(uuid_id, room_type, name, description, exits, region, zone, effects, owner) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, room_type, name, description, exits, region, zone, effects, owner;""" insert_player = """INSERT INTO players(uuid_id, name, gender, hp, core_attributes, player_state, conditions, credit, stow_loc, current_room) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, gender, hp, core_attributes, player_state, conditions, credit, stow_loc, current_room;""" insert_npc = """INSERT INTO npcs(uuid_id, base_type, name, race, gender, npc_desc, core_attributes, npc_state, conditions, credit, supply, demand, home_loc, demeanor, current_room) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, base_type, name, race, gender npc_desc, core_attributes, npc_state, conditions, credit, supply, demand, home_loc, demeanor, current_room;""" insert_org = """INSERT INTO orgs(uuid_id, name, org_desc, supply, demand, home) VALUES(%s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, org_desc, supply, demand, home;""" conn = None try: dbparams = config() conn = psycopg2.connect(**dbparams) cur = conn.cursor() # insert a new part # uuid, name, item_desc, base_type, size, weight, capacity, can_attributes, combines_with, is_open, location, location_body, owner cur.execute(insert_item, ("70306652-fbda-479a-a06d-48b411911ed7", "9mm magazine", "It's a 9mm magazine.", "ammo_9mm", 1, 1, 10, None, "", "pistol_9mm", False, "65d56cbe-f276-4055-899c-3244c0c92003", None, "da",)) cur.execute(insert_item, ("035d0c23-fbda-479a-a06d-48b411911ed7", "9mm pistol", "Mmm, shiny.", "pistol_9mm", 2, 2, 10, "is_gun", "", "ammo_9mm", False, "65d56cbe-f276-4055-899c-3244c0c92003", None, "da",)) cur.execute(insert_item, ("6123e586-93c7-4fff-8787-3ca5706ad2a8", "rabbit toy", "Huh, looks real.", "toy", 1, 1, 0, None, "", None, False, "70306652-08cf-4c99-ac7d-c8bd1082220c", None, "da",)) cur.execute(insert_item, ("70306652-08cf-4c99-ac7d-c8bd1082220c", "backpack", "It's a backpack.", "storage_backpack", 2, 2, 0, "is_container", "", None, False, "c93e5db1-fabe-496f-a6a6-6769a1bf1404", "r_hand", "da",)) cur.execute(insert_item, ("e87c6768-0e3d-4f52-92b8-56ad69f63bea", "shuttle", "This shuttle belongs to the S.S. Hope.", "ship", 0, 5000, 0, "is_door", "ba0d6g25-ae3r-43n8-b25c-1f4342chyfd0", None, True, "65d56cbe-f276-4055-899c-3244c0c92003", "", "da",)) cur.execute(insert_room, ("65d56cbe-f276-4055-899c-3244c0c92003", None, "ship_capital_dock", "Shuttle Bay", "The room is simple.", json.dumps({"north": "aa0dd325-ae9e-43b0-b25c-1f4803ceefd0"}), "S.S. Hope", "space", None, "da",)) cur.execute(insert_room, ("aa0dd325-ae9e-43b0-b25c-1f4803ceefd0", None, "ship_capital_dock", "Shuttle Bay", "The room is simple.", json.dumps({"south": "65d56cbe-f276-4055-899c-3244c0c92003"}), "S.S. Hope", "space", None, "aa",)) cur.execute(insert_room, ("ba0d6g25-ae3r-43n8-b25c-1f4342chyfd0", "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "ship_private_main", "Shuttle", "You see the inside of the shuttle.", json.dumps({"out": "65d56cbe-f276-4055-899c-3244c0c92003"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0", None, "planet_forest", "Forest", "There are lots of trees.", json.dumps({"south": "aa0dd234-ab72-32b6-c93c-1f4803ceefd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("34d66jru-f276-2144-384v-3244c0c92003", None, "space", "Space", "Like a back-lit canopy, the stars and galaxies shine across the black.", json.dumps({}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("aa0dd234-ab72-32b6-c93c-1f4803ceefd0", None, "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "planet_landing", "Open Field", "Tall, golden wheat grows wild here. You can see the edge of a dense forest to the north.", json.dumps({"north": "ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("pp2aa543-ab72-93n1-c93c-1f4803ceefd0", None, "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "space_orbit", "Orbit around Oxine", "Green and blue hues decorate the planet of Oxine.", json.dumps({"entry": "aa0dd234-ab72-32b6-c93c-1f4803ceefd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_player, ("c93e5db1-fabe-496f-a6a6-6769a1bf1404", "da", "male", 100, json.dumps({"str": 12, "dex": 8, "con": 15, "ins": 6, "edu": 5, "soc": 6}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_player, ("3563874d-8646-487f-8beb-3c0278d2f292", "ry", "female", 100, json.dumps({"str": 8, "dex": 12, "con": 8, "ins": 12, "edu": 10, "soc": 10}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_player, ("06ce6e88-f666-4cac-9901-698f7464e1c5", "fa", "female", 100, json.dumps({"str": 8, "dex": 12, "con": 8, "ins": 12, "edu": 10, "soc": 10}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_npc, ("c93e5db1-08cf-4cac-a06d-c8bd1082220c", "npc_human", "Lt. Dan", "human", "male", "He looks like he's busy.", json.dumps({"str": 5, "dex": 5, "con": 5, "ins": 5, "edu": 5, "soc": 5}), "standing", None, 100, json.dumps({}), json.dumps({}), "S.S. Hope", "friendly", "65d56cbe-f276-4055-899c-3244c0c92003")) cur.execute(insert_npc, ("c93e5db1-08cf-4cac-a06d-c8bd1082220c", "npc_predator", "Predator", "onxine", "male", "He looks mean.", json.dumps({"str": 5, "dex": 5, "con": 5, "ins": 5, "edu": 5, "soc": 5}), "standing", None, 100, json.dumps({}), json.dumps({}), "Oxine", "Hostile", "ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0")) cur.execute(insert_org, ("6123e586-f276-4c99-a06d-48b411911ed7", "Heiss", "A humanoid race focused heavily on cybernetics and augments.", json.dumps({}), json.dumps({}), "Eroli")) # commit changes conn.commit() print("Done adding objects to DB.") except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def create_instance(self, user, user_input, input_kwargs): print("ADMIN | Creating Instance:", user_input) Room_Procgen(user_input[1])
true
6aebe609a6acb0535a41418d3a1ba43cc937f1d9
Python
fursovia/chatbot_game
/chatgame/classifiers/classifier.py
UTF-8
2,346
2.578125
3
[]
no_license
from typing import Union, Optional, Tuple import torch DISCRIMINATOR_MODELS_PARAMS = { "clickbait": { "path": "models/clickbait_classifier_head.pt", "class_size": 2, "embed_size": 1024, "class_vocab": {"non_clickbait": 0, "clickbait": 1}, "default_class": 1, "pretrained_model": "gpt2-medium", }, "sentiment": { "path": "models/SST_classifier_head.pt", "class_size": 5, "embed_size": 1024, "class_vocab": {"very_positive": 2, "very_negative": 3}, "default_class": 3, "pretrained_model": "gpt2-medium", }, } class ClassificationHead(torch.nn.Module): """Classification Head for transformer encoders""" def __init__(self, class_size: int, embed_size: int): """ :param class_size: number of labels :param embed_size: embeddings vector size """ super(ClassificationHead, self).__init__() self.class_size = class_size self.embed_size = embed_size self.mlp = torch.nn.Linear(embed_size, class_size) def forward(self, hidden_state: torch.Tensor): logits = self.mlp(hidden_state) return logits def get_classifier( name: Optional[str], class_label: Union[str, int], device: str, classifiers_dir: str) -> Tuple[Optional[ClassificationHead], Optional[int]]: if name is None: return None, None params = DISCRIMINATOR_MODELS_PARAMS[name] classifier = ClassificationHead(class_size=params['class_size'], embed_size=params['embed_size']).to(device) resolved_archive_file = classifiers_dir + params["path"] classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device)) classifier.eval() if isinstance(class_label, str): if class_label in params["class_vocab"]: label_id = params["class_vocab"][class_label] else: label_id = params["default_class"] elif isinstance(class_label, int): if class_label in set(params["class_vocab"].values()): label_id = class_label else: label_id = params["default_class"] else: label_id = params["default_class"] return classifier, label_id
true
98454d99e0284ae1c26a72e4d95e93bda4fb8298
Python
fnsisdabast/nuc_bot_remote
/nuc_bot_remote/laser_scan_printer3.py
UTF-8
2,069
2.65625
3
[]
no_license
#!/usr/bin/env python import rospy import numpy as np from std_msgs.msg import Float32MultiArray from sensor_msgs.msg import LaserScan def laser_callback(scan): depths = [] for dist in scan.ranges: #get all of the depths from laser scanner depths.append(dist) depth_octants=[] depth_octants.append(depths[90:112]) #divide them into 16 bins depth_octants.append(depths[112:135]) depth_octants.append(depths[135:157]) depth_octants.append(depths[157:180]) depth_octants.append(depths[180:203]) depth_octants.append(depths[203:225]) depth_octants.append(depths[225:248]) depth_octants.append(depths[248:270]) depth_octants.append(depths[270:293]) depth_octants.append(depths[293:315]) depth_octants.append(depths[315:338]) depth_octants.append(depths[338:360]) depth_octants.append(depths[0:23]) depth_octants.append(depths[23:45]) depth_octants.append(depths[45:68]) depth_octants.append(depths[68:90]) octant_avg=[] for octants in depth_octants: #average each bin if len(octants)>0: depth_running=0 num_depths=0 for depth_vals in octants: if not np.isnan(depth_vals): #if it is a number if not np.isinf(depth_vals): #and is not infinity, add it to the sum depth_running=depth_running+depth_vals else: #otherwise just skip it num_depths=num_depths-1 num_depths=num_depths+1 octant_avg.append(depth_running/num_depths) #append to array of averages array_to_pub=Float32MultiArray(data=octant_avg) #publish array of averages pub.publish(array_to_pub) def laser_subscriber(): rospy.init_node('laser_subscriber') sub=rospy.Subscriber('scan', LaserScan, laser_callback) pub=rospy.Publisher('octant_dist',Float32MultiArray, queue_size=1) rospy.spin() if __name__ == '__main__': laser_subscriber()
true
7353b111bfa7b8510638b639d455a283669eeb04
Python
1224667889/ML_Task
/lesson_5/session_3.py
UTF-8
2,336
2.765625
3
[]
no_license
import matplotlib.pyplot as plt import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split import utils import time from sklearn.neighbors import KNeighborsClassifier as KNN if __name__ == '__main__': X, labels, to_image = utils.createDatabase("17flowers") X = X.reshape(X.shape[0], 200 * 180) X_train, X_test, labels_train, labels_test = train_test_split(X, labels, test_size=0.2, random_state=22) plt.figure() plt.imshow(to_image) plt.show() # from lesson_2.session_3 import KNN PCA_ACCs = [] LDA_ACCs = [] for K in range(1, 10): t0 = time.time() pca = PCA(n_components=K).fit(X_train) x_train_pca = pca.transform(X_train) x_test_pca = pca.transform(X_test) print("|", time.time() - t0, "|") knn = KNN() t1 = time.time() knn.fit(x_train_pca, labels_train) t2 = time.time() PCA_pred = knn.predict(x_test_pca) t3 = time.time() ACC_PCA = np.sum(np.array(PCA_pred) == np.array(labels_test)) / len(PCA_pred) # print(f'PCA K={K} 训练消耗:{t2-t1}s\t预测消耗:{t3-t2}s\t准确率:{ACC_PCA*100}%') # print(f'|K={K}|{t2-t1}s|{t3-t2}s|{ACC_PCA*100}%|') PCA_ACCs.append(ACC_PCA) print("------------------") for K in range(1, 10): t0 = time.time() lda = LDA(n_components=K).fit(X_train, labels_train) x_train_lda = lda.transform(X_train) x_test_lda = lda.transform(X_test) print("|", time.time() - t0, "|") knn = KNN() t1 = time.time() knn.fit(x_train_lda, labels_train) t2 = time.time() LDA_pred = knn.predict(x_test_lda) t3 = time.time() ACC_LDA = np.sum(np.array(LDA_pred) == np.array(labels_test)) / len(LDA_pred) # print(f'LDA K={K} 训练消耗:{t2-t1}s\t预测消耗:{t3-t2}s\t准确率:{ACC_LDA*100}%') # print(f'|K={K}|{t2-t1}s|{t3-t2}s|{ACC_LDA*100}%|') LDA_ACCs.append(ACC_LDA) _, ax = plt.subplots() bar_width = 0.3 index = np.arange(9) ax.bar(index, PCA_ACCs, bar_width, label='PCA') ax.bar(index + bar_width, LDA_ACCs, bar_width, label='LCD') ax.legend() plt.show()
true
1d69c7c59c769d8d8fde5375cc574fbbfdc39eb3
Python
zjhmale/bfx-hf-indicators-py
/bfxhfindicators/stochastic.py
UTF-8
1,966
2.609375
3
[ "Apache-2.0" ]
permissive
from bfxhfindicators.indicator import Indicator from bfxhfindicators.sma import SMA class Stochastic(Indicator): def __init__(self, period, smoothK, smoothD, cache_size=None): self._p = period self._buffer = [] self._kSMA = SMA(smoothK, cache_size) self._dSMA = SMA(smoothD, cache_size) super().__init__({ 'args': [period, smoothK, smoothD, cache_size], 'id': 'stoch', 'name': 'Stoch(%f)' % (period), 'seed_period': period, 'data_type': 'candle', 'data_key': '*' }) def reset(self): super().reset() self._buffer = [] self._kSMA.reset() self._dSMA.reset() def update(self, candle): if len(self._buffer) == 0: self._buffer.append(candle) else: self._buffer[-1] = candle if len(self._buffer) < self._p: return self.v() close = candle['close'] lowestLow = min(map(lambda c: c['low'], self._buffer)) highestHigh = max(map(lambda c: c['high'], self._buffer)) k = 100 * ((close - lowestLow) / (highestHigh - lowestLow)) self._kSMA.update(k) self._dSMA.update(self._kSMA.v()) return super().update({ 'k': self._kSMA.v(), 'd': self._dSMA.v() }) def add(self, candle): self._buffer.append(candle) if len(self._buffer) > self._p: del self._buffer[0] elif len(self._buffer) < self._p: return self.v() close = candle['close'] lowestLow = min(map(lambda c: c['low'], self._buffer)) highestHigh = max(map(lambda c: c['high'], self._buffer)) k = 100 * ((close - lowestLow) / (highestHigh - lowestLow)) self._kSMA.add(k) self._dSMA.add(self._kSMA.v()) return super().add({ 'k': self._kSMA.v(), 'd': self._dSMA.v() })
true
354af68311dc73f144ad529417f3d7db48b1fd61
Python
kyrilkhaletsky/CA117-Programming
/Exercises/test.py
UTF-8
64
2.953125
3
[]
no_license
n = list(range(15)) q = [c for c in n if c % 3 == 0] print(q)
true
61e0608c9d518dfe4439e63901857a127fc59e70
Python
smeets/thesis
/scripts/mdrparser.py
UTF-8
1,950
2.953125
3
[]
no_license
from xml.dom import minidom from datetime import datetime def getText(nodelist): rc = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: rc.append(node.data) return ''.join(rc) # 2019-01-17T14:33:21.738 # yyyy-mm-dd HH:MM:SS.N class MdrParser: """""" def __init__(self, file): self.xmldoc = minidom.parse(file) self.read_head = 0 def FREQUENCIES(self, frequencies): vals = getText(frequencies.childNodes).split('; ') vals.pop() return list(map(lambda k: str(int(int(k)/1e6)), vals)) def VALUES(self, values): vals = getText(values.childNodes).split('; ') vals.pop() return vals def DATE(self, date): return datetime.strptime(getText(date.childNodes), "%Y-%m-%dT%H:%M:%S.%f") def SWEEP(self, sweep): return { 'time' : self.DATE(sweep.getElementsByTagName('StartDate')[0]), 'values': self.VALUES(sweep.getElementsByTagName('Values')[0]) } def SWEEPS(self, sweeps): return [self.SWEEP(sweep) for sweep in sweeps] def all(self): mcs = self.xmldoc sweeps = mcs.getElementsByTagName('Sweep') freqs = sweeps[0].getElementsByTagName('Frequencies')[0] return { "freqs": self.FREQUENCIES(freqs), "sweeps": self.SWEEPS(sweeps) } if __name__ == '__main__': import sys if len(sys.argv) != 2: print("usage: {} datasets/raw/measure.mdr".format(sys.argv[0])) sys.exit(1) a = MdrParser(sys.argv[1]).all() # x1 y1 z1 # x2 y2 z2 # x = time # y = freq # z = value print(len(a["freqs"])) print(len(a["sweeps"])) # print("time," + ','.join(a["freqs"])) # incr = 0 # for s in a["sweeps"]: # vals = [str(incr*4)] # vals.extend(s["values"]) # print(",".join(vals)) # incr = incr + 1
true
3c45ff268112943fcefaf31bf191bdd90eb2f2ea
Python
lidongyin0212/be-atp
/public/database/mysql_api.py
UTF-8
3,475
2.8125
3
[]
no_license
# -*- coding:utf-8 -*- # 导入mysql库 import pymysql import os class MySQLObj(object): def __init__(self, host, port, user, password, db): self.host = host self.port = port self.user = user self.password = password self.db = db self.conn, self.cursor = None, None def connect(self): # 打开数据库连接 try: self.conn = pymysql.Connect( host=self.host, port=self.port, user=self.user, passwd=self.password, db=self.db, charset='utf8' ) self.cursor = self.conn.cursor() except: # 获取一个游标(数据库操作的对象) return {"msg": "error"} # 关闭数据库连接 def close(self): self.cursor.close() self.conn.close() # 增加 # INSERT INTO course(c_name, c_weight) VALUES(%s, %d) def insert(self, sql, param=()): return self.__edit(sql, param) # 删除 def delete(self, sql, param=()): return self.__edit(sql, param) # 修改 def update(self, sql, param=()): return self.__edit(sql, param) # 增删改通用的代码 def __edit(self, sql, param=()): count = 0 try: # 连接数据库 self.connect() # 执行SQL语句 count = self.cursor.execute(sql, param) # 提交数据库事务处理 self.conn.commit() return count, '' except Exception as e: # 如果出现错误就回滚 print(e) self.conn.rollback() return -1, e # 查询所有 def get_all(self, sql, param=()): result = () # 返回的结果是一个元组 try: # 连接数据库 self.connect() # 执行SQL语句 if param: self.cursor.execute(sql, param) else: self.cursor.execute(sql) # 获取查询的内容 result = self.cursor.fetchall() fields = self.cursor.description column_list = [] # 定义字段名的列表 for i in fields: column_list.append(i[0]) # 提交数据库事务处理 self.conn.commit() return result, column_list, "" except Exception as e: # 如果出现错误就回滚 print(e) self.conn.rollback() return -1, None, e # 查询一个 def get_one(self, sql, param=()): result = () # 返回的结果是一个元组 try: # 连接数据库 self.connect() # 执行SQL语句 if param: self.cursor.execute(sql, param) else: self.cursor.execute(sql) # 获取查询的内容 result = self.cursor.fetchone() # 提交数据库事务处理 self.conn.commit() except Exception as e: # 如果出现错误就回滚 print(e) self.conn.rollback() return result def __del__(self): # 关闭数据库连接 self.close() if __name__ == "__main__": print(MySQLObj(host='10.8.214.191', port=3306, user='root', password='123456', db='interface_v03').get_all("select * from userinfo"))
true
aa390b2e521d804333f94ea41b95fb5d02c8ce5a
Python
juantor16/Python
/Calculate_kinetic_energy.py
UTF-8
576
3.859375
4
[]
no_license
# Calculate Kinetic Energy print "this program calculates the kinetic energy of a moving object." m_string = input ("Enter the object's mass in Kilograms: ") m=float(m_string) # m_string = input ("Enter the object's mass in Kilograms: ") # m=float(m_string) # is equal to: #m_string = float(input ("Enter the object's mass in Kilograms: ")) v_string = input ("enter the object's speed in meters per second: ") v=float (v_string) e=0.5*m*v*v print ("The object has "+str(e)+ " Joules of energy.") raw_input ("press enter to exit ") Andrew is friends with a ninja turtle.
true
b47eee704efddac2a0d6deb05a1273850b4bbe7c
Python
ryosuke0825/atcoder_python
/ABC_C/ABC172_C.py
UTF-8
611
2.5625
3
[ "MIT" ]
permissive
import itertools import bisect N, M, K = map(int, input().split()) A = list(map(int, input().split())) B = list(map(int, input().split())) aa = [0] + list(itertools.accumulate(A)) bb = [0] + list(itertools.accumulate(B)) ans = bisect.bisect_left(aa, K)-1 ans = max(ans, bisect.bisect_left(bb, K)-1) for i in reversed(range(N+1)): tmp_K = K-aa[i] if tmp_K == 0: ans = max(ans, i) elif tmp_K < 0: continue if i + M <= ans: continue if tmp_K >= bb[-1]: ans = max(ans, i+M) continue ans = max(ans, bisect.bisect_left(bb, tmp_K)-1+i) print(ans)
true
f2e99d8b270e434aeb3cb242b37f511bb75a55bc
Python
madhavambati/Convolutional-Neural-Network-with-Numpy
/model/functions.py
UTF-8
9,440
3.234375
3
[ "MIT" ]
permissive
import numpy as np import gzip ''' This file contains all the essential functions that are used in the network ''' ''' Getting data ''' #Extract images by reading the file bytestream. #Reshape the read values into a 2D matrix of dimensions [n, h*w] def extract_data(filename, num_images, IMAGE_WIDTH): print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(IMAGE_WIDTH * IMAGE_WIDTH * num_images) data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32) data = data.reshape(num_images, IMAGE_WIDTH*IMAGE_WIDTH) return data #Extract labels by reading the file bytestream. #Reshape the read values into a row matrix of dimensions [n, 1] def extract_labels(filename, num_images): print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(1 * num_images) labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) return labels ''' Initialising weights and biases for all the layers''' #random values for filters in convolution layers def Filter_weights(size): #Initialize filter using a normal distribution with and a #standard deviation inversely proportional the square root of the number of units stddev = 1/np.sqrt(np.prod(size)) return np.random.normal(loc = 0.0, scale = stddev, size = size) #random values for weights in deep layers def deep_weights(size): #Initialize weights with a random normal distribution return np.random.standard_normal(size = size)*0.01 '''convolution function''' def convolution(image, Filter, bias, stride=1): # convolution of input image with a filter of dimensions(n_f,n_c,f,f) # n_f is no.of filters # n_c is no.of channels # f,f are height & width # image dimensions(n_c, image_h, image_w) # n_c is no.of channels in image # img_h is height of image # img_w is width of image (n_c, img_h, img_w) = image.shape (n_f, n_c, f, f) = Filter.shape # output dimensions after convolution out_h = int((img_h - f) / stride) + 1 # height of output matrix out_w = int((img_h - f) / stride) + 1 # width of output matrix # n_f will be the depth of the matrix out = np.zeros((n_f, out_h, out_w)) # convolution of image_array with filter yeilds out_array # for i in range of no.of filters # define a row , out_y variabless to hover along rows of image, out_matrix respectively # define a column , out_x variables to hover along columns of image, out_matrix respectively # convolution is done in the ranges of image_height to image_width for i in range(n_f): row = out_row = 0 while row + f <= img_h: column = out_column = 0 while column + f <= img_w: out[i, out_row, out_column] = np.sum(Filter[i] * image[:, row: row + f, column: column + f]) + bias[i] column += stride out_column += 1 row += stride out_row += 1 return out '''Maxpooling function''' def maxpool(image, f=5, stride=2): (n_c, img_h, img_w) = image.shape # input image dimension out_h = int((img_h - f) / stride) + 1 # output image height out_w = int((img_w - f) / stride) + 1 # output image width max_out = np.zeros((n_c, out_h, out_w)) # matrix to hold maxpooled image(or)array # maxpool of image_array with filter yeilds max_out array # for i in range of no.of channels # define a row , out_y variables to hover along rows of image, out_matrix respectively # define a column , out_x variables to hover along columns of image, out_matrix respectively for i in range(n_c): row = out_row = 0 while row + f <= img_h: # slide the max pooling window vertically(along rows) across the image column = out_column = 0 while column + f <= img_w: # slide the max pooling window vertically(along columns) across the image # choose the maximum value within the window at each step and store it to the output matrix max_out[i, out_row, out_column] = np.max(image[i, row: row + f, column: column + f]) column += stride out_column += 1 row += stride out_row += 1 return max_out '''Softmax function''' def softmax(activations): # activations raised to the power of 'e' activations_raised_exp = np.exp(activations) # divide by sum of all exponentiated activations to get the required probability (0,1) probabilities = activations_raised_exp / np.sum(activations_raised_exp) return probabilities '''Loss function''' def loss_function(pred, label): # loss function for softmaxlayer will be -Σylogŷ # where- y is given label and ŷ is pred output net_loss = -np.sum(label * np.log(pred)) return net_loss '''Convolution during backpropagation''' # back-propagation operations in convolution layers # for convolution_backward we need derivative of convolution in the previous layer # 'dconv_prev' is the derivative of convolution in the previous layer # 'image' is referred to as the input for the current conv layer with which the convolution operation is applied # 'Filter' is the filter used in the current layer # The obtained convoluted matrix will be the 'conv_prev' for the current layer in backpropagation # Backpropagation of the convolution layers is explained in the link below # https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e def convolution_backprop(dconv_prev, image, Filter, stride): (n_f, n_c, f, f) = Filter.shape (n_c, img_h, img_w) = image.shape dimage = np.zeros(image.shape) dFilter = np.zeros(Filter.shape) dbias = np.zeros((n_f, 1)) for i in range(n_f): row = dimage_y = 0 while row + f <= img_h: column = dimage_x = 0 while column + f <= img_w: dFilter[i] += dconv_prev[i, dimage_y, dimage_x] * image[:, row:row + f, column:column + f] dimage[:, row:row + f, column:column + f] += dconv_prev[i, dimage_y, dimage_x] * Filter[i] column += stride dimage_x += 1 row += stride dimage_y += 1 dbias[i] = np.sum(dconv_prev[i]) return dimage, dFilter, dbias '''Maxpooling during backpropagation''' # back-propagation in maxpool layer # 'dpooled' is the derivative of previous layer i.e pooled layer # 'maxpooled' is the maxpool layer's output # 'Filter' will be 2*2 with 'stride' = 2 # save the index of the input image at which the max values are captured in the maxpool layer # use the index to iterate across the output matrix while equating the corresponding higher values in pooledlayer # back propagation in maxpool layers are explained in the link below # https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/pooling_layer.html def maxpool_backprop(dpooled, maxpooled, Filter, stride): (n_c, maxpooled_dim, _) = maxpooled.shape # maxpooled_height = maxpooled_width=maxpooled_dim dmaxpooled = np.zeros(maxpooled.shape) for i in range(n_c): row = dmaxpooled_y = 0 while row + Filter <= maxpooled_dim: column = dmaxpooled_x = 0 while column + Filter <= maxpooled_dim: # obtain index of largest value in input for current window index = np.nanargmax(maxpooled[i, row:row + Filter, column:column + Filter]) (a, b) = np.unravel_index(index, maxpooled[i, row:row + Filter, column:column + Filter].shape) dmaxpooled[i, row + a, column + b] = dpooled[i, dmaxpooled_y, dmaxpooled_x] column += stride dmaxpooled_x += 1 row += stride dmaxpooled_y += 1 return dmaxpooled '''predict function''' # after training the neural net just do the Forward-feed def predict(image, params, conv_stride = 1, pooling_filter = 2, pooling_stride = 2 ): [f1, f2, w3, w4, b1, b2, b3, b4] = params print('done') convolution_1 = convolution(image, f1, b1, conv_stride) # first covolution convolution_1[convolution_1 <= 0] = 0 # pass through ReLU non-linearity convolution_2 = convolution(convolution_1, f2, b2, conv_stride) # second convolution convolution_2[convolution_2 <= 0] = 0 # pass through ReLU non-linearity maxpool_layer = maxpool(convolution_2, pooling_filter, pooling_stride) # maxpooling (nf, dim, _) = maxpool_layer.shape print('done') fc = maxpool_layer.reshape((nf * dim * dim, 1)) # flattened layer print(fc.shape) z1 = w3.dot(fc) + b3 # dense layer_1 z1[z1 <= 0] = 0 # ReLU non-linearity out = w4.dot(z1) + b4 # dense layer_2 probabilities = softmax(out) # pass through softmax function pred = np.argmax(probabilities) prob = np.max(probabilities) #prob = max(probabilities) #for i in range(10): # if(probabilities[i] == max(probabilities)): # pred = i return pred, prob
true
9b413b2d5b2d809e3f548ed780af84eaa831396e
Python
madhu74/deconst-openapi-preparer
/tests/test_tocbuilder.py
UTF-8
7,632
2.953125
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python3 ''' test_tocbuilder ---------------------------------- Tests for `tocbuilder` module. ''' import unittest import subprocess import sys import os import re from os import path from bs4 import BeautifulSoup sys.path.append(path.join(path.dirname(__file__), '..')) from openapipreparer.builders.tocbuilder import tag_it from openapipreparer.builders.tocbuilder import sibs_it from openapipreparer.builders.tocbuilder import parse_it from openapipreparer.builders.tocbuilder import htmlify class TocBuilderTestCase(unittest.TestCase): ''' Tests for the tocbuilder methods ''' def setUp(self): pass def tearDown(self): soup = None tag = None html_sample = None the_method = None the_result = None def test_tag_it_if_id_present(self): ''' Does tag_it provide a string when given good input? ''' soup = BeautifulSoup('<h2 id="yep">heading</h2>', 'html.parser') tag = soup.h2 self.assertEqual('yep', tag_it(tag)) def test_tag_it_if_id_not_present(self): ''' Does tag_it provide a string when given good input without an id field? ''' soup = BeautifulSoup('<h2>yep that is it</h2>', 'html.parser') tag = soup.h2 self.assertEqual('yepthatisit', tag_it(tag)) def test_sibs_it_has_sib(self): ''' If the tag is followed by a sibling, does it provide the right output? ''' soup = BeautifulSoup('<h4>test</h4><h4>test</h4>', 'html.parser') the_method = sibs_it( soup.h4, 'h4', ['current_heading_list'], re.compile( 'h[2,3,4]'), ['toc_builder']) self.assertEqual( (['toc_builder'], ['current_heading_list'], None, '4'), the_method) def test_sibs_h4_followed_by_h3(self): ''' If the h4 tag is followed by an h3 tag, does it provide the right output? ''' soup = BeautifulSoup('<h4>test</h4><h3>test</h3>', 'html.parser') the_method = sibs_it( soup.h4, 'h4', ['current_heading_list'], re.compile( 'h[2,3,4]'), ['toc_builder'], ['h3 list']) self.assertEqual( (['toc_builder'], [], ['h3 list', ['current_heading_list']], '3'), the_method) def test_sibs_h4_followed_by_h2(self): ''' If the h4 tag is followed by an h2 tag, does it provide the right output? ''' soup = BeautifulSoup('<h4>test</h4><h2>test</h2>', 'html.parser') the_method = sibs_it( soup.h4, 'h4', ['current_heading_list'], re.compile( 'h[2,3,4]'), ['toc_builder']) self.assertEqual( (['toc_builder', ['current_heading_list']], [], None, '2'), the_method) def test_parse_it_h2_only(self): ''' Does parse_it work for h2 tags only? ''' self.maxDiff = None html_sample = '<body><h2>Heading 1 h2</h2><h2>Heading 2 h2</h2></body>' the_result = ['<li><a href="#Heading1h2">Heading 1 h2</a></li>', '<li><a href="#Heading2h2">Heading 2 h2</a></li>'] the_method = parse_it(html_sample) self.assertEqual(the_method, the_result) # FIXED: These next two tests make the test_parse_it_h2_only test break. def test_parse_it_h2_and_h3(self): ''' Does parse_it work for h2 and h3 tags? ''' self.maxDiff = None html_sample = ( '<body><h2>Heading 1 h3</h2><h3>Heading 1.1 h3</h3>' '<h3>Heading 1.2 h3</h3><h2>Heading 2 h3</h2>' '<h3>Heading 2.1 h3</h3><h3>Heading 2.2 h3</h3></body>') # BUG: Need to figure out why the double square bracket appears on the # first 2nd level here. the_result = ['<li><a href="#Heading1h3">Heading 1 h3</a></li>', [ ['<li><a href="#Heading1.1h3">Heading 1.1 h3</a></li>', '<li><a href="#Heading1.2h3">Heading 1.2 h3</a></li>']], '<li><a href="#Heading2h3">Heading 2 h3</a></li>', [ '<li><a href="#Heading2.1h3">Heading 2.1 h3</a></li>', '<li><a href="#Heading2.2h3">Heading 2.2 h3</a></li>']] the_method = parse_it(html_sample) self.assertEqual(the_method, the_result) def test_parse_it_pass(self): ''' Does parse_it work for h2, h3, and h4 tags? ''' self.maxDiff = None html_sample = ( '<body><h2>Heading 1 h4</h2><h3>Heading 1.1 h4</h3>' '<h4>Heading 1.1.1 h4</h4><h4>Heading 1.1.2 h4</h4>' '<h3>Heading 1.2 h4</h3><h4>Heading 1.2.1 h4</h4>' '<h2>Heading 2 h4</h2><h3>Heading 2.1 h4</h3>' '<h3>Heading 2.2 h4</h3></body>') the_result = ['<li><a href="#Heading1h4">Heading 1 h4</a></li>', [ '<li><a href="#Heading1.1h4">Heading 1.1 h4</a></li>', [ '<li><a href="#Heading1.1.1h4">Heading 1.1.1 h4</a></li>', '<li><a href="#Heading1.1.2h4">Heading 1.1.2 h4</a></li>'], '<li><a href="#Heading1.2h4">Heading 1.2 h4</a></li>', [ '<li><a href="#Heading1.2.1h4">Heading 1.2.1 h4</a></li>']], '<li><a href="#Heading2h4">Heading 2 h4</a></li>', [ '<li><a href="#Heading2.1h4">Heading 2.1 h4</a></li>', '<li><a href="#Heading2.2h4">Heading 2.2 h4</a></li>']] the_method = parse_it(html_sample) self.assertEqual(the_method, the_result) def test_parse_it_full_pass(self): ''' Does parse_it work for a full sample? ''' self.maxDiff = None html_sample = ( '<body><h2>Heading 1 h4</h2><p>Random text</p>' '<h3>Heading 1.1 h4</h3><p>Random text</p><p>Random text</p>' '<h4>Heading 1.1.1 h4</h4><p>Random text</p><p>Random text</p>' '<h4>Heading 1.1.2 h4</h4><p>Random text</p>' '<h3>Heading 1.2 h4</h3><p>Random text</p><p>Random text</p>' '<h4>Heading 1.2.1 h4</h4><p>Random text</p>' '<h2>Heading 2 h4</h2><p>Random text</p><p>Random text</p>' '<h3>Heading 2.1 h4</h3><p>Random text</p>' '<h3>Heading 2.2 h4</h3><p>Random text</p><p>Random text</p>' '<p>Random text</p></body>') the_result = ['<li><a href="#Heading1h4">Heading 1 h4</a></li>', [ '<li><a href="#Heading1.1h4">Heading 1.1 h4</a></li>', [ '<li><a href="#Heading1.1.1h4">Heading 1.1.1 h4</a></li>', '<li><a href="#Heading1.1.2h4">Heading 1.1.2 h4</a></li>'], '<li><a href="#Heading1.2h4">Heading 1.2 h4</a></li>', [ '<li><a href="#Heading1.2.1h4">Heading 1.2.1 h4</a></li>']], '<li><a href="#Heading2h4">Heading 2 h4</a></li>', [ '<li><a href="#Heading2.1h4">Heading 2.1 h4</a></li>', '<li><a href="#Heading2.2h4">Heading 2.2 h4</a></li>']] the_method = parse_it(html_sample) self.assertEqual(the_method, the_result) def test_htmlify_pass(self): ''' Does htmlify return a list wrapped in <ul></ul>? ''' the_list = ['<li>item1</li>', [ '<li>sub1</li>', '<li>sub2</li>', ['<li>subsub1</li>', '<li>subsub2</li>']], '<li>item2</li>'] the_result = '<ul><li>item1</li><ul><li>sub1</li><li>sub2</li><ul><li>subsub1</li><li>subsub2</li></ul></ul><li>item2</li></ul>' the_method = htmlify(the_list) self.assertEqual(the_method, the_result) if __name__ == '__main__': unittest.main()
true
577a9945956cbc1e29c668adbb1981d87afda2c5
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2445/60595/238455.py
UTF-8
777
3.171875
3
[]
no_license
def Test(): s=input() s=s.replace("s"," ") s=s.replace("t"," ") s=s.replace("\""," ") s=s.replace("="," ") s=s.replace(" ","") q=s.split(",") word1=q[0] word2=q[1] maps1=[] maps2=[] if(len(word1)!=len(word2)): print("false") else: for i in range(0,128): maps1.append(0) maps2.append(0) for i in range(0,len(word1)): maps1[ord(word1[i])]=maps1[ord(word1[i])]+1 maps2[ord(word2[i])]=maps2[ord(word2[i])]+1 if(check(maps1,maps2)): print("true") else: print("false") def check(a,b): for i in range(0,len(a)): if(a[i]!=b[i]): return False return True if __name__ == "__main__": Test()
true
fea97795460b620cb401ec167efeaa90090bfff9
Python
agentnova/LuminarPython
/Luminaarpython/Multitasking/pgm3.py
UTF-8
524
2.90625
3
[]
no_license
from threading import * class Mythread(Thread): def run(self): for i in range(1,10): print(i) print(current_thread().getName()) t=Mythread() t.start() for i in range(1,10): print(i) print(current_thread().getName()) # after connecting print connect:[clnt name] # then message send message:[msg] each of the client # print disconnect:[clnt name] # client # input login name # send connct msg to servr # loop message input # send msg to server # send disconnect message through exit
true
fe0715726349b293c3053026901ba530b7ebfa6b
Python
HenryBalthier/digger
/MY_digger/riskctl.py
UTF-8
785
2.765625
3
[]
no_license
# -*- coding: utf-8 -*- import csv class Riskctl(object): def __init__(self): self.cts = { 'code': 0, 'exchange': 1, 'name': 2, 'spell': 3, 'long_margin_ratio': 4, 'short_margin_ratio': 5, 'price_tick': 6, 'volume_multiple': 7 } #@classmethod def csv_test(self, code=None): n = [] with open('./data/contracts.csv', 'r') as f: reader = csv.reader(f) for row in reader: if row[self.cts['code']] == code: n.append(row) return n if __name__ == '__main__': s = 'I.SHFE-1.Day' r = Riskctl() m = r.csv_test(s.split('.')[0]) print m #assert (len(m) == 1)
true
734024bf4aca1ace692402d5968508fa39e5faba
Python
NatashaMiyaguti/Projeto5_Blue
/classes/personagemCao.py
UTF-8
3,227
3.46875
3
[]
no_license
from sys import exit from fases.fases import fase1 from auxiliar.funcoes_auxiliares import final from classes.relogio import Relogio from classes.carrocinha import Carrocinha def gameOver(): print('Game Over!') final() reiniciar = input('Gostaria de jogar novamente (s/n)? ') if reiniciar == 's': relogio = Relogio() nome = input('Digite o nome do seu cãozinho: ').title() personagem = Personagem(nome) fase1(relogio, personagem) else: print('Obrigado por jogar!') exit() class Personagem: def __init__(self, nome): self.__nome = nome self.__humor = 50 self.__fome = 50 self.__frio = 50 self.__energia = 50 self.__lugar = 'terreno baldio' def __str__(self): # Altera os atributos confome necessidade, sendo valores positivos ou negativos# return f''' Status {self.__nome}: ============================== |{("Humor - " + str(self.__humor) + "%").center(28)}| |{("Fome - " + str(self.__fome) + "%").center(28)}| |{("Frio - " + str(self.__frio) + "%").center(28)}| |{("Energia - " + str(self.__energia) + "%").center(28)}| ============================== ''' def muda_humor(self,humor_novo): humnov = humor_novo if humnov >= 0: print(f'''Humor +{humnov}%''') else: print(f'''Humor -{abs(humnov)}%''') self.__humor += humnov if self.__humor >= 100: self.__humor = 100 elif self.__humor <= 0: print('Humor chegou a Zero.') gameOver() def muda_fome(self,fome_nova): fomnov = fome_nova if fomnov >= 0: print(f'''Fome +{fomnov}%''') else: print(f'''Fome -{abs(fomnov)}%''') self.__fome += fomnov if self.__fome >= 100: self.__fome = 100 elif self.__fome <= 0: print('Fome chegou a Zero.') gameOver() def muda_frio(self,frio_novo): frinov = frio_novo if frinov >= 0: print(f'''Frio +{frinov}%''') else: print(f'''Frio -{abs(frinov)}%''') self.__frio += frinov if self.__frio >= 100: self.__frio = 100 elif self.__frio <= 0: print('Frio chegou a Zero.') gameOver() def muda_energia(self,nova_energia): enenov = nova_energia if enenov >= 0: print(f'''Energia +{enenov}%''') else: print(f'''Energia -{abs(enenov)}%''') self.__energia += enenov if self.__energia >= 100: self.__energia = 100 elif self.__energia <= 0: print('Energia chegou a Zero.') gameOver() def muda_lugar(self,novo_lugar): self.__lugar = novo_lugar @property def nome(self): return self.__nome @property def lugar(self): return self.__lugar def atualizacao_frio(self,relogio,frio = -5): if relogio.noite_fria(): self.muda_frio (frio) else: self.muda_frio(frio * -1)
true
8fa77f4f3b4e6600a278839002f71355bbaa13c2
Python
q-riku/algorithm
/19-3-1 Problem03-1.py
UTF-8
1,882
3.71875
4
[]
no_license
""" #1 from LeetCode Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order. Example 1: Input: nums = [2,7,11,15], target = 9 Output: [0,1] Output: Because nums[0] + nums[1] == 9, we return [0, 1]. Example 2: Input: nums = [3,2,4], target = 6 Output: [1,2] Example 3: Input: nums = [3,3], target = 6 Output: [0,1] =============================================================================== =============================================================================== """ class Solution(object): # A2 def binary_search(self, li, left, right, val): while left <= right: mid = (left + right) // 2 if li[mid][0] == val: return mid elif li[mid][0] > val: right = mid - 1 else: left = mid + 1 else: return None def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ # A1 n = len(nums) for i in range(n): for j in range(i): if nums[i] + nums[j] == target: return sorted([i, j]) # A2 new_nums = [[num, i] for i, num in enumerate(nums)] new_nums.sort(key=lambda x: x[0]) m = len(new_nums) for i in range(m): a = new_nums[i][0] b = target - a if b >= a: j = self.binary_search(new_nums, i + 1, m - 1, b) else: j = self.binary_search(new_nums, 0, i - 1, b) if j: break return sorted([new_nums[i][1], new_nums[j][1]])
true
0d09c4aaf3a2e4d633e891e21f329bfdcf74c4bd
Python
irissooa/Algorithm-with-Python
/Baekjoon/스택큐/BOJ_10828_스택.py
UTF-8
1,021
4.15625
4
[]
no_license
''' 정수를 저장하는 스택, 스택은 LIFO(마지막에 들어간것이 먼저나감) push X : X를 스택에 넣는 연산 pop : 스택에서 가장 위에 있는 정수를 빼고, 그 수를 출력, 만약 스택에 들어있는 정수가 없는 경우 -1 출력 size : 스택에 들어있는 정수의 개수 출력 empty : 스택이 비어있으면 1, 아니면 0 출력 top : 스택의 가장 위에 있는 정수 출력, 만약 없으면 -1 ''' import sys input = sys.stdin.readline N = int(input()) stack = [] for _ in range(N): order = input() if "push" in order: stack.append(int(order[5:])) elif "pop" in order: if stack: print(stack.pop()) else: print(-1) elif "size" in order: print(len(stack)) elif "empty" in order: if stack: print(0) else: print(1) elif "top" in order: if stack: print(stack[-1]) else: print(-1) #print(order,stack)
true
c09f6a251f15f790fab19bfb5184baccc7e69d62
Python
sunsun1001/NASA_Weibull
/weibullDist.py
UTF-8
1,167
3.15625
3
[]
no_license
import numpy as np import pylab as pl import scipy.special as ss import matplotlib.pyplot as plt # a=scale parameter b=shape parameter mew=x(variable) def weib(a,b,mew): e1 = (b/a) e2 = ((mew/a)**(b-1)) e3 = np.exp((-(mew/a)**b)) return e1*e2*e3 def plot_weib(a,b,xmin,xmax): Ly = [] Lx = [] mews = np.mgrid[xmin:xmax:100j] for apple in mews: Lx.append(apple) Ly.append(weib(a, b, apple)) pl.plot(Lx, Ly, label="a=%f, b=%f" %(a,b)) def main(): xmin=0.0 xmax=5.0 a,b = np.loadtxt('data.txt', unpack=True, usecols=[0,1] ) if type(a)==np.ndarray: for k in range(len(a)): plot_weib(a[k],b[k]) elif type(a)==np.float64: plot_weib (a,b,xmin,xmax) #scale=input('Please enter the scale parameter: ') #shape=input('Please enter the shape parameter: ') #plot_weib(scale,shape) plt.title("This is a PDF Graph") plt.xlabel("X") plt.ylabel("Probability Density Function") pl.xlim(xmin, xmax) pl.ylim(0.0, 3) pl.legend() pl.show() if __name__ == "__main__": main()
true
ae6f01ca2a94da6d1c2038c0e7f6263bf6c7a04b
Python
pythrick/drf-cli
/cookiecutters/project/{{cookiecutter.module_name}}/{{cookiecutter.module_name}}/apps/user/managers/user.py
UTF-8
652
2.75
3
[ "MIT" ]
permissive
from django.contrib.auth.base_user import BaseUserManager from django.db import transaction class UserManager(BaseUserManager): @transaction.atomic def create_user(self, name: str, email: str, password: str, **kwargs): user = self.model(name=name, email=email, **kwargs) user.set_password(password) user.save() return user @transaction.atomic def create_superuser(self, name, email, password, **kwargs): user = self.create_user(name, email, password, **kwargs) user.is_active = True user.is_staff = True user.is_superuser = True user.save() return user
true
b1e70af0bca989832f5ca113ca214cd18f2f9803
Python
gshreve01/covid19-flask
/covid19/models.py
UTF-8
5,147
2.65625
3
[]
no_license
from django.db import models # Create your models here. class State(models.Model): geocodeid = models.IntegerField("Geographic Code Identifier",primary_key=True) name = models.CharField("State Name", null=False, max_length=100, unique=True) abbreviation = models.CharField("State Abbreviation", null=False, max_length=2) def __str__(self): return self.name class CensusData(models.Model): state = models.ForeignKey(State, on_delete=models.CASCADE, primary_key=True, unique=True, db_column="geocodeid") population = models.IntegerField("Population", null=False) density = models.FloatField("Population Density", null=True) def __str__(self): return f"{self.name}:{str(self.geocodeid)}" class CoronaVirusTesting(models.Model): state = models.ForeignKey(State, on_delete=models.CASCADE, primary_key=True, unique=True, db_column="geocodeid") percentageoftestingtarget = models.IntegerField("Percentage Of Testing Target", null=True) positivitytestrate = models.IntegerField("Positivity Test Rage", null=True) dailytestsper100k = models.IntegerField("Daily Tests Per 100,000", null=True) hospitalizedper100k = models.IntegerField("Hospitalized Per 100,000", null=True) def __str__(self): return f"{self.name}:{str(self.state.geocodeid)}" class DailyData(models.Model): state = models.ForeignKey(State, on_delete=models.CASCADE, db_column="geocodeid") date = models.DateField("Date Pulled From Feed") positive = models.IntegerField("Positive Test Rate Percentage", null=True) negative = models.IntegerField("Negative Test Rate Percentage", null=True) hospitalizedcurrently = models.IntegerField("Number of People Currently Hospitalized", null=True) hospitalizedcumulative = models.IntegerField("Number of People Hospitalized Cumulative", null=True) inicucurrently = models.IntegerField("Number of People Currently in ICU", null=True) inicucumulative = models.IntegerField("Number of People in ICU Cumulative", null=True) onventilatorcurrently = models.IntegerField("Number of People on Ventilator Currently", null=True) onventilatorcumulative = models.IntegerField("Number of People on Ventilator Cumulative", null=True) recovered = models.IntegerField("Number of People Who Recovered", null=True) death = models.IntegerField("Number of People Who have Died", null=True) deathconfirmed = models.IntegerField("Number of People Who have Confirmed to have Died from COVID-19", null=True) deathprobable = models.IntegerField("Number of People Who have Probably Died from COVID-19", null=True) positiveincrease = models.IntegerField("Number of Positive Test Increases", null=True) negativeincrease = models.IntegerField("Number of Negative Test Increases", null=True) totaltests = models.IntegerField("Number of Total Tests", null=True) newtests = models.IntegerField("Number of New Tests", null=True) newdeaths = models.IntegerField("Number of New Deaths", null=True) newhospitalizations = models.IntegerField("Number of New Hospitalizations", null=True) def __str__(self): return f"{self.name}:{str(self.state.geocodeid)}" class Meta: unique_together=(("state", "date"),) class EconomyState(models.Model): id = models.IntegerField("ID", primary_key=True) state = models.CharField("State", max_length=25, null=False) def __str__(self): return self.state class Event(models.Model): id = models.IntegerField("ID", primary_key=True) eventname = models.CharField("Name of Event", max_length=50, null=False) def __str__(self): return self.eventname class EventDate(models.Model): event = models.ForeignKey(Event, on_delete=models.CASCADE, db_column="eventid") eventdate = models.DateField("Date of Event") def __str__(self): return f"{self.event.eventname}:{self.eventdate.strftime('%Y-%m-%d')}" class Meta: unique_together=(("event", "eventdate"),) class GredeEffDt(models.Model): state = models.ForeignKey(State, to_field='name', db_column='state', primary_key=True, on_delete=models.CASCADE) grade = models.CharField("State Grade", max_length=3, null=False) stayathomedeclaredate = models.DateField("Date Stay At Home was Declared", null=True) stayathomestartdate = models.DateField("Date Stay At Home Started", null=True) def __str__(self): return f"{self.name}:{self.state.name}" class StateReopening(models.Model): state = models.ForeignKey(State, on_delete=models.CASCADE, primary_key=True, unique=True, db_column="geocodeid") economystate = models.ForeignKey(EconomyState, on_delete=models.CASCADE, null=False, db_column="economystateid") stayathomeexpiredate = models.DateField("Date Stay At Home Order Expired", null=True) openbusinesses = models.CharField("Open Businesses Description", null=True, max_length=3000) closedbusinesses = models.CharField("Closed Businesses Description", null=True, max_length=3000) hasstayathomeorder = models.BooleanField("Has Stay At Home Order", null=True)
true
5b4eb891a56836c7ed5187d4b8b3b0847519acc2
Python
AlexKotl/stepik-python-lessons
/3/books_advanced.py
UTF-8
1,233
3.21875
3
[]
no_license
from books import * class AdvancedPerson(Person): def __init__(self, name): super().__init__(name) def search(self, book, name_page): return book.search(name_page) def read(self, book, page): if isinstance(page, int): return super().read(book, page) else: return super().read(book, self.search(book, page)) def write(self, book, page, text): if isinstance(page, int): return super().write(book, page, text) else: return super().write(book, self.search(book, page), text) class NovelWithTable(Novel): """класс - книга с оглавлением""" def __init__(self, author, year, title, content=None, table=None): super().__init__(author, year, title, content) self.table = table or {} def search(self, name_page): if name_page not in self.table: raise PageNotFoundError return self.table[name_page] def add_chapter(self, chapter, page): return self.table.update({ chapter: page }) def remove_chapter(self, chapter): if chapter not in self.table: raise PageNotFoundError del self.table[chapter]
true
d77f13de00222d02eb4e53f873dc73e02b01f0e6
Python
josemscnogueira/disparitypy
/disparitypy/__main__.py
UTF-8
592
2.796875
3
[]
no_license
import argparse import sys from .comparators.comparator import UComparator """ Definition of the main function body """ def main(): """ Argument parsing and initial test """ parser = argparse.ArgumentParser('disparity') parser.add_argument('folder1') parser.add_argument('folder2') arguments = parser.parse_args() ccc = UComparator.from_paths(arguments.folder1, arguments.folder2) print(ccc.compare()) return 0 """ Python binding for main script """ if __name__ == "__main__": sys.exit(main())
true
8916213d2ad46dbb262c6ae1c921e60040c69d78
Python
rajivs15/set_6
/countKinlist.py
UTF-8
154
2.71875
3
[]
no_license
N,K=map(int,(input().split())) m=list(map(int,input().split())) count=0 if len(m)==N: for i in range (0,N): if m[i]==K: count=count+1 print (count)
true
19b3bf62ba0d7133bb8fc73838f360bd4bffb750
Python
Kaitlyn0712/CS106A-Stanford
/lectures/21-Practice/raw/process.py
UTF-8
1,377
2.921875
3
[ "MIT" ]
permissive
import csv NUM_YEARS = 216 IGNORE = set([ 'Dominica', 'Monaco', 'Andorra', 'Turks and Caicos Islands', 'San Marino', 'Bermuda', 'Nauru', 'Cayman Islands', 'Palau', 'Tuvalu', 'St. Kitts and Nevis', 'Marshall Islands', 'Martinique', 'Guam', 'French Polynesia', 'Western Sahara', 'Virgin Islands (U.S.)', 'Croatia', 'Reunion', 'Netherlands Antilles', 'Mayotte', 'New Caledonia', 'Guadeloupe', 'French Guiana' ]) def main(): gdpMap = load('gdpRaw.csv') lifeMap = load('lifeRaw.csv') print len(gdpMap) print len(lifeMap) for key in gdpMap: if not key in lifeMap: print "'" + key + "'," for key in lifeMap: if not key in gdpMap: print "'" +key + "'," saveMap('gdp.csv', gdpMap) saveMap('life.csv', lifeMap) def saveMap(fileName, countryMap): writer = csv.writer(open(fileName, 'wb')) for key in countryMap: row = [key] row += countryMap[key] writer.writerow(row) def load(fileName): reader = csv.reader(open(fileName)) header = reader.next() data = {} for row in reader: countryName = row[0] if countryName in IGNORE: continue if countryName: values = numberize(row[1:]) if len(values) == NUM_YEARS: data[countryName] = values return data def numberize(values): nums = [] for v in values: try: intV = float(v) nums.append(intV) except: pass return nums if __name__ == '__main__': main()
true
c7dc0d5cf67878bcdd281f91b248c0341265dff5
Python
ThomasWilshaw/edlReader
/edl_reader.py
UTF-8
3,694
2.890625
3
[]
no_license
#TODO: #Clean EDL #Recognise EDL features # import helper, os, sys, getopt import edl as edlImp def isInt(s): #suppresses vlue errors try: int(s) return int(s) except ValueError: pass def getPaths(path): #gets path to all mov's in folder paths = [] extensions = tuple(['.mov', '.MOV']) for root, subFolder, files in os.walk(path): for item in files: if item.endswith(extensions): paths.append(str(os.path.join(root,item))) return paths class Shot(object): def __init__(self, shotData): self.shotData = shotData def getAllData(self): return self.shotData def getGlobalStart(self): return self.shotData[0] def getClipStart(self): return self.shotData[1] def getDuration(self): return self.shotData[2] def getName(self): return self.shotData[3] class EDL(object): data = [] lastShot = 0 def __init__(self, data): self.data = data[0] #main data self.path = data[1] self.title = data[1] print ("\n\n\n", data, "\n\n\n") self.lastShot = len(self.data) def getTitle(self): return self.title def getShotInfo(self, number): if (number > self.lastShot or number < 1): #check requested shot is within bounds raise ValueError('Shot %s out of bounds, max = %s, min = 1' % (number, self.lastShot)) return Shot(self.data[number-1]) def createBlenderEDL(self): path = str(input("\nFile path of footage: ")) paths = getPaths(path) clips = [] shotPaths = {} for i in range(1, self.lastShot+1): clip = self.getShotInfo(i).getClipName().strip("\n") if clip not in clips: clips.append(clip) for clip in clips: for path in paths: if path.split('\\')[-1].split('.')[0] == clip.split(".")[0]: shotPaths.update({clip:path}) continue edlPath = str(self.path).strip('.edl') + '_blender.edl' blenderEDL = open(edlPath, 'w') blenderEDL.write("%-150s %8s %8s %8s %8s\n" %("PathToFile", "FileIn", "FileOut", "EditIn", "Shot")) for i in range(1, self.lastShot+1): shot = self.getShotInfo(i) shotPath = shotPaths[shot.getClipName()] blenderEDL.write("%-150s %8s %8s %8s %8d\n" %(str(shotPath)+":", str(shot.getSourceIn()['Frames'])+":", str(shot.getSourceOut()['Frames'])+":", str(shot.getEditIn()['Frames'])+":", i)) blenderEDL.close() return 0 def main(argv): try: opts, args = getopt.getopt(argv,"hi:",["blender"]) except getopt.GetoptError: print ('test.py -i <inputfile> -o <outputfile>') sys.exit(2) for opt, arg in opts: if opt == '-h': print("EDL Tool: Does useful stuff with EDL's") print("Author: Tom Wilshaw") print("Version: 0.1") print('\nUsage:\tpython3 edl_reader_2.py -i <input_edl> <options>\n') print('Options:\n\n\t -blender: Create Blender EDL') elif opt == '-i': input_edl = str(arg) a = edlImp.importEDL(input_edl) edl = EDL(a) elif opt == '--blender': edl.createBlenderEDL() if __name__ == "__main__": a = edlImp.importEDL("C:/Users/Tom/Documents/EDL_reader/testEDL.edl") a = edlImp.createEDLData(a) edl = EDL(a) print(edl.getTitle()) print(edl.getShotInfo(3).getAllData()) print(edl.getShotInfo(3).getName()) #print(edl.createBlenderEDL())
true
868f372e93cac47c257c7bf3fe809aba29a0a107
Python
tlestang/PyBaMM
/pybamm/models/submodels/electrolyte_diffusion/leading_order_diffusion.py
UTF-8
3,698
2.5625
3
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
# # Class for leading-order electrolyte diffusion employing stefan-maxwell # import pybamm from .base_electrolyte_diffusion import BaseElectrolyteDiffusion class LeadingOrder(BaseElectrolyteDiffusion): """Class for conservation of mass in the electrolyte employing the Stefan-Maxwell constitutive equations. (Leading refers to leading order of asymptotic reduction) Parameters ---------- param : parameter class The parameters to use for this submodel reactions : dict Dictionary of reaction terms **Extends:** :class:`pybamm.electrolyte_diffusion.BaseElectrolyteDiffusion` """ def __init__(self, param): super().__init__(param) def get_fundamental_variables(self): c_e_av = pybamm.standard_variables.c_e_av c_e_n = pybamm.PrimaryBroadcast(c_e_av, ["negative electrode"]) c_e_s = pybamm.PrimaryBroadcast(c_e_av, ["separator"]) c_e_p = pybamm.PrimaryBroadcast(c_e_av, ["positive electrode"]) return self._get_standard_concentration_variables(c_e_n, c_e_s, c_e_p) def get_coupled_variables(self, variables): N_e = pybamm.FullBroadcastToEdges( 0, ["negative electrode", "separator", "positive electrode"], "current collector", ) variables.update(self._get_standard_flux_variables(N_e)) c_e_av = pybamm.standard_variables.c_e_av c_e = pybamm.Concatenation( pybamm.PrimaryBroadcast(c_e_av, ["negative electrode"]), pybamm.PrimaryBroadcast(c_e_av, ["separator"]), pybamm.PrimaryBroadcast(c_e_av, ["positive electrode"]), ) eps = variables["Porosity"] variables.update(self._get_total_concentration_electrolyte(c_e, eps)) return variables def set_rhs(self, variables): param = self.param c_e_av = variables["X-averaged electrolyte concentration"] T_av = variables["X-averaged cell temperature"] eps_n_av = variables["X-averaged negative electrode porosity"] eps_s_av = variables["X-averaged separator porosity"] eps_p_av = variables["X-averaged positive electrode porosity"] deps_n_dt_av = variables["X-averaged negative electrode porosity change"] deps_p_dt_av = variables["X-averaged positive electrode porosity change"] div_Vbox_s_av = variables[ "X-averaged separator transverse volume-averaged acceleration" ] sum_j_n_0 = variables[ "Sum of x-averaged negative electrode interfacial current densities" ] sum_j_p_0 = variables[ "Sum of x-averaged positive electrode interfacial current densities" ] sum_s_j_n_0 = variables[ "Sum of x-averaged negative electrode electrolyte reaction source terms" ] sum_s_j_p_0 = variables[ "Sum of x-averaged positive electrode electrolyte reaction source terms" ] source_terms = ( param.l_n * (sum_s_j_n_0 - param.t_plus(c_e_av, T_av) * sum_j_n_0) + param.l_p * (sum_s_j_p_0 - param.t_plus(c_e_av, T_av) * sum_j_p_0) ) / param.gamma_e self.rhs = { c_e_av: 1 / (param.l_n * eps_n_av + param.l_s * eps_s_av + param.l_p * eps_p_av) * ( source_terms - c_e_av * (param.l_n * deps_n_dt_av + param.l_p * deps_p_dt_av) - c_e_av * param.l_s * div_Vbox_s_av ) } def set_initial_conditions(self, variables): c_e = variables["X-averaged electrolyte concentration"] self.initial_conditions = {c_e: self.param.c_e_init}
true
dc69e45bae0c7e9cddd03aecaeebf76bc604296f
Python
mcsheehan/RobotChallenge
/test/robot/command_parser_tests.py
UTF-8
2,239
2.828125
3
[]
no_license
import unittest from robot_challenge import CommandParser from robot_challenge.robot_direction import RobotDirection class CommandParserTests(unittest.TestCase): def test_empty_string_returns_nothing(self): test_input = "" expected_output = [] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_north_string_returns_north(self): test_input = "N" expected_output = [RobotDirection.NORTH] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_south_string_returns_south(self): test_input = "S" expected_output = [RobotDirection.SOUTH] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_east_string_returns_west(self): test_input = "E" expected_output = [RobotDirection.EAST] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_west_string_returns_west(self): test_input = "W" expected_output = [RobotDirection.WEST] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_sequence_N_S_E_W_W(self): test_input = "N S E W W" expected_output = [RobotDirection.NORTH, RobotDirection.SOUTH, RobotDirection.EAST, RobotDirection.WEST, RobotDirection.WEST] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) def test_sequence_N_G_D_E_W(self): test_input = "N G D E W" expected_output = [RobotDirection.NORTH, RobotDirection.GRAB, RobotDirection.DROP, RobotDirection.EAST, RobotDirection.WEST] result = CommandParser.process_string(test_input) self.assertEqual(expected_output, result) # def test_sequence_N_E_returns_N_E_Command(self): # test_input = "N E" # expected_output = [RobotCommand.NORTH_EAST] # result = CommandParser.process_string(test_input) # # self.assertEqual(expected_output, result) if __name__ == '__main__': unittest.main()
true
28d6ae9b1bbdc8d1e16bc761db280ea0a88689e7
Python
Rurril/IT-DA-3rd
/study/Ace/VCWeek4/BOJ_17144_권순규.py
UTF-8
2,448
2.65625
3
[]
no_license
def spread(): global dust tmp_dust = [[0] * C for _ in range(R)] for y in range(R): for x in range(C): if dust[y][x] > 0: n = 4 for i in range(4): ny = y + dy1[i] nx = x + dx1[i] if ny < 0 or nx < 0 or ny == R or nx == C or dust[ny][nx] == -1: n -= 1 continue tmp_dust[ny][nx] += dust[y][x] // 5 tmp_dust[y][x] += dust[y][x] - (dust[y][x]//5)*n dust = tmp_dust def cycle(): global dust tmp_dust = deepcopy(dust) top_y = AirCleaner[0][0] top_x = AirCleaner[0][1] bot_y = AirCleaner[1][0] bot_x = AirCleaner[1][1] # 반시계 회전 y = top_y x = top_x for i in range(4): while True: ny = y + dy1[i] nx = x + dx1[i] if ny < 0 or nx < 0 or ny == R or nx == C or (ny,nx) == AirCleaner[0]: break if dust[ny][nx] != -1: if dust[y][x] == -1: tmp_dust[ny][nx] = 0 else: tmp_dust[ny][nx] = dust[y][x] y = ny x = nx # 시계 회전 y = bot_y x = bot_x for i in range(4): while True: ny = y + dy2[i] nx = x + dx2[i] if ny < 0 or nx < 0 or ny == R or nx == C or (ny,nx) == AirCleaner[1]: break if dust[ny][nx] != -1: if dust[y][x] == -1: tmp_dust[ny][nx] = 0 else: tmp_dust[ny][nx] = dust[y][x] y = ny x = nx tmp_dust[AirCleaner[0][0]][AirCleaner[0][1]] = -1 tmp_dust[AirCleaner[1][0]][AirCleaner[1][1]] = -1 dust = tmp_dust dx1, dy1 = (1,0,-1,0),(0,-1,0,1) # 반시계 dx2, dy2 = (1,0,-1,0),(0,1,0,-1) # 시계 from copy import deepcopy if __name__ == "__main__": R,C,T = map(int,input().split()) dust = [] AirCleaner = [] for y in range(R): tmp = list(map(int,input().split())) for x, n in enumerate(tmp): if n == -1: AirCleaner.append((y,x)) dust.append(tmp) for _ in range(T): spread() cycle() answer = 2 for i in range(R): answer += sum(dust[i]) print(answer)
true
46c3c682a75a384dca193eb949901ed789814cb9
Python
saurabhsood91/advent-of-code
/one.py
UTF-8
356
3.734375
4
[]
no_license
from math import floor def get_fuel_required(mass: int): fuel = floor(mass / 3) - 2 if fuel <= 0: return 0 return fuel + get_fuel_required(fuel) if __name__ == '__main__': total_fuel = 0 file = open('fuel.txt') for line in file: mass = int(line) total_fuel += get_fuel_required(mass) print("Total Fuel: {}".format(total_fuel))
true
dfb31c58548c3e6345d260d8e10090b63033361d
Python
ShwethaDeepak/Text_Summarization
/TEXt Summarization.py
UTF-8
2,075
3.25
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 5 15:43:49 2019 @author: swetu """ #creating an article summarization import bs4 as bs import urllib.request import re import nltk nltk.download('stopwords') import heapq #Getting data Source =urllib.request.urlopen('https://en.wikipedia.org/wiki/Global_warming').read() soup = bs.BeautifulSoup(Source,'lxml') text = "" for paragraph in soup.find_all('p'): text += paragraph.text #preprocessing the text text = re.sub(r'\[[0-9]*\]',' ',text) text = re.sub(r'\s+',' ',text) # clean_text is for hostogram(bag of words) text is for summary clean_text = text.lower() clean_text = re.sub(r'\W',' ',clean_text) clean_text = re.sub(r'\d',' ',clean_text) clean_text = re.sub(r'\s+',' ',clean_text) #Tokenize article into different sentences sentences = nltk.sent_tokenize(text) stop_words = nltk.corpus.stopwords.words('english') # Building the histogram(Basic histogram) word2count = {} for word in nltk.word_tokenize(clean_text): if word not in stop_words: if word not in word2count.keys(): word2count[word] = 1 else: word2count[word] +=1 #weighted histogram for key in word2count.keys(): word2count[key] = word2count[key]/max(word2count.values()) #Calculating sentence scores sent2score = {} for sentence in sentences: for word in nltk.word_tokenize(sentence.lower()): if word in word2count.keys(): if len(sentence.split(' ')) < 25:# less than 30 words are in our summary others are exculded if sentence not in sent2score.keys(): sent2score[sentence] = word2count[word] else: sent2score[sentence] += word2count[word] #finding out the summary (top n sentence from dictory using heapq library) best_sentences = heapq.nlargest(5,sent2score,key = sent2score.get) print('-------------------------------------------------------------') for sentence in best_sentences: print(sentence)
true
cf2a9f2a00518cdf39ed90b0a725a97bf72c8bbd
Python
Ragul-SV/Data-Structures-and-Algorithms
/Array/Easy II/Maximum No. of 1s (Sliding Window).py
UTF-8
483
2.828125
3
[]
no_license
t = int(input()) for cases in range(t): n = int(input()) arr = list(map(int,input().strip().split())) m = int(input()) wL,wR = 0,0 res = 0 zero_count = 0 while wR<n: if zero_count<=m: if arr[wR]==0: zero_count+=1 wR+=1 if zero_count>m: if arr[wL]==0: zero_count-=1 wL+=1 if wR-wL>res and zero_count<=m: res = wR-wL print(res)
true
08c6a9d9701723c2e7a3a7af8bab76a33ffea630
Python
1allan/tower-of-bullets
/TowerofBullets/scenery/room.py
UTF-8
6,292
2.703125
3
[]
no_license
import os import pygame from random import randint, choice from util.functions import load_image from .tile import Tile from character.enemy import Enemy from items.item import Item class Room(pygame.sprite.Sprite): def __init__(self, surface: pygame.Surface, position: tuple, size: tuple, args): pygame.sprite.Sprite.__init__(self) self.width, self.height = size self.surface = surface self.rect = pygame.Rect(position[0], position[1], size[0], size[1]) self.player = None self.spawn_point = args['SPAWN_POINT'] self.portal = None layer1, layer2 = self.__load_layout(args['STRUCTURE']['LAYOUT']) self.overlay = self.__generate_layout(layer2, overlay=True, offset=(0, -15)) self.floors, self.walls = self.__generate_layout(layer1) self.wave_now = 0 self.last_wave = pygame.time.get_ticks() self.waves = args['WAVES'] self.started = False self.rewarded = False self.coins = pygame.sprite.Group() self.energy_orbs = pygame.sprite.Group() self.hearts = pygame.sprite.Group() self.enemies = pygame.sprite.Group() self.enemies_bullets = pygame.sprite.Group() self.start_wave() def __load_layout(self, path): file_ = open(os.path.join(os.path.dirname(__file__), '../assets/scenery/layouts/' + path), 'r') layout = file_.read() file_.close() output = [] for i, matrix in enumerate(layout.split('\n\n')): output.append([]) for line in matrix.split('\n'): output[i].append(line.split(' ')) return output def __generate_layout(self, matrix, overlay=False, offset=None): walls = pygame.sprite.Group() floors = pygame.sprite.Group() offset = (0, 0) if offset is None else offset w = round(self.width/len(matrix[0])) h = round(self.height/len(matrix)) for i in range(len(matrix)): for j in range(len(matrix[i])): group = walls collidable = False convert = not overlay image = '' if matrix[i][j].startswith('wall'): collidable = True image = 'walls/' + matrix[i][j] else: group = floors image = 'floors/' + matrix[i][j] group.add(Tile(self.surface, (w * i + offset[0], h * j + offset[1]), (w, h), collidable, image_file=image, convert=convert)) if overlay: group = pygame.sprite.Group() group.add(floors) group.add(walls) return group else: return floors, walls def start_wave(self): for i in range(self.waves[self.wave_now]['ENEMY_QUANTITY']): enemy_type = choice(self.waves[self.wave_now]['ENEMIES']) chosen = choice(list(self.floors)) position = (chosen.rect.left, chosen.rect.top) self.enemies.add(Enemy(self.surface, position, (70, 70), self.walls, enemy_type, animated=True)) self.wave_now += 1 def spawn_portal(self): image_file = 'misc/portal.png' self.portal = Item(self.surface, self.spawn_point, (32, 64), image_file, 0) def spawn_coins(self, quantity: int): image_file = "misc/coin.png" for _ in range(quantity): chosen = choice(list(self.floors)) position = (chosen.rect.left, chosen.rect.top) self.coins.add(Item(self.surface, position, (20, 20), image_file, 0)) def spawn_energy_orbs(self, quantity: int): image_file = "misc/energy_orb.png" for _ in range(quantity): chosen = choice(list(self.floors)) position = (chosen.rect.left, chosen.rect.top) self.energy_orbs.add(Item(self.surface, position, (20, 20), image_file, 0)) def spawn_hearts(self, quantity: int): image_file = "misc/heart.png" for _ in range(quantity): chosen = choice(list(self.floors)) position = (chosen.rect.left, chosen.rect.top) self.hearts.add(Item(self.surface, position, (30, 30), image_file, 0)) def spawn_player(self, player): player.rect.left, player.rect.top = self.spawn_point self.player = player def update(self): tick = pygame.time.get_ticks() if tick - self.last_wave < 3000 and not self.started: return else: self.started = True self.enemies_bullets.update() if len(self.enemies) == 0: if not self.rewarded: self.spawn_hearts(2) self.spawn_coins(5) self.spawn_energy_orbs(3) self.rewarded = True if self.wave_now < len(self.waves) and tick - self.last_wave > 3000: self.last_wave = tick self.rewarded = False self.start_wave() elif self.wave_now >= len(self.waves) and tick - self.last_wave > 2000: self.last_wave = tick self.spawn_portal() else: self.last_wave = pygame.time.get_ticks() for enemy in self.enemies: bullet = enemy.attack((self.player.x, self.player.y)) if bullet is not None: self.enemies_bullets.add(bullet) enemy.chase((self.player.x, self.player.y)) enemy.weapon.update((self.player.x, self.player.y)) enemy.draw() def draw(self): self.floors.draw(self.surface) self.hearts.draw(self.surface) self.energy_orbs.draw(self.surface) self.coins.draw(self.surface) if self.portal is not None: self.portal.draw() self.enemies_bullets.draw(self.surface) self.walls.draw(self.surface) self.player.draw() self.update()
true
9fea0bf00091806a8e2fe15da0008c1f95fa1421
Python
Altison/code_1021
/main.py
UTF-8
1,146
2.703125
3
[]
no_license
k = 0 value = False def on_button_pressed_a(): global k for I in range(19): k = min(18 - I, I) for j in range(5): if I == 9: basic.pause(1000) break elif I < 9: led.plot(4 - j, 4 - (k - j)) else: led.unplot(4 - j, 4 - (k - j)) basic.pause(100) input.on_button_pressed(Button.A, on_button_pressed_a) def on_button_pressed_ab(): for I2 in range(5): for l in range(5): if I2 % 2 == l % 2: led.plot(I2, l) input.on_button_pressed(Button.AB, on_button_pressed_ab) def on_button_pressed_b(): global value value = True for index in range(2): for x in range(9): for I3 in range(5): for m in range(5): if I3 + m == x: if value: led.plot(4 - I3, 4 - m) else: led.unplot(I3, m) basic.pause(100) value = False basic.pause(1000) input.on_button_pressed(Button.B, on_button_pressed_b)
true
a88f0f9b1ca1566cdd45a7e3636c34f6f9e3d9e3
Python
abandonsea/RandPerson
/generateCode/cc1_createCorlor.py
UTF-8
1,193
3.21875
3
[ "Apache-2.0" ]
permissive
# ********************* # Generate 625 colors # ********************* from PIL import Image import math def hsv2rgb(h, s, v): h = float(h) s = float(s) v = float(v) h60 = h / 60.0 h60f = math.floor(h60) hi = int(h60f) % 6 f = h60 - h60f p = v * (1 - s) q = v * (1 - f * s) t = v * (1 - (1 - f) * s) r, g, b = 0, 0, 0 if hi == 0: r, g, b = v, t, p elif hi == 1: r, g, b = q, v, p elif hi == 2: r, g, b = p, v, t elif hi == 3: r, g, b = p, q, v elif hi == 4: r, g, b = t, p, v elif hi == 5: r, g, b = v, p, q r, g, b = int(r * 255), int(g * 255), int(b * 255) return r, g, b for i in range(0,24): h, s, v = 0, 0, 0 h = i*15 for j in range(2,11,2): s = j*0.1 for k in range(2,11,2): v = k*0.1 color = hsv2rgb(h, s, v) img = Image.new("RGBA", (500, 500), color) img.save("color/" + str(int(h))+"_"+str(int(s*10))+"_"+str(int(v*10))+".png") # black, white, gray for i in range(0,25): color = hsv2rgb(0, 0, i/24) img = Image.new("RGBA", (500, 500), color) img.save("color/" + str(0) + "_" + str(0) + "_" + str(int(i * 10)) + ".png")
true
4d1c6dbfede5d835f47f80b8c28bb76e31d7cf53
Python
dsteinmo/AdventOfCode-2020
/day4/num_valid_passports.py
UTF-8
6,425
3.515625
4
[ "MIT" ]
permissive
#!/usr/bin/python3 class Passport: # Props: # byr (Birth Year) # iyr (Issue Year) # eyr (Expiration Year) # hgt (Height) # hcl (Hair Color) # ecl (Eye Color) # pid (Passport ID) # cid (Country ID, optional) def __init__(self, byr, iyr, eyr, hgt, hcl, ecl, pid, cid): self.byr = byr self.iyr = iyr self.eyr = eyr self.hgt = hgt self.hcl = hcl self.ecl = ecl self.pid = pid self.cid = cid def print(self): print(f"byr: {self.byr}, iyr: {self.iyr}, eyr: {self.eyr}, \ hgt: {self.hgt}, hcl: {self.hcl}, ecl: {self.ecl}, pid: {self.pid}, cid: {self.cid}") def is_valid(self, version=1) -> bool: if version < 2: # version 1 rules: return (self.byr is not None and self.iyr is not None and self.eyr is not None and self.hgt is not None and self.hcl is not None and self.ecl is not None and self.pid is not None) return (self.byr_is_valid() and self.iyr_is_valid() and self.eyr_is_valid() and self.hgt_is_valid() and self.hcl_is_valid() and self.ecl_is_valid() and self.pid_is_valid()) # cid ignored. # version 2 rules: # byr (Birth Year) - four digits; at least 1920 and at most 2002. # iyr (Issue Year) - four digits; at least 2010 and at most 2020. # eyr (Expiration Year) - four digits; at least 2020 and at most 2030. # hgt (Height) - a number followed by either cm or in: # If cm, the number must be at least 150 and at most 193. # If in, the number must be at least 59 and at most 76. # hcl (Hair Color) - a # followed by exactly six characters 0-9 or a-f. # ecl (Eye Color) - exactly one of: amb blu brn gry grn hzl oth. # pid (Passport ID) - a nine-digit number, including leading zeroes. # cid (Country ID) - ignored, missing or not. def byr_is_valid(self): if self.byr is None: return False byr_num = int(self.byr) if (byr_num >= 1920 and byr_num <= 2002): return True print("bad byr") return False def iyr_is_valid(self): if self.iyr is None: return False iyr_num = int(self.iyr) if (iyr_num >= 2010 and iyr_num <= 2020): return True print("bad iyr") return False def eyr_is_valid(self): if self.eyr is None: return False eyr_num = int(self.eyr) if (eyr_num >= 2020 and eyr_num <= 2030): return True print("bad eyr") return False def hgt_is_valid(self): if self.hgt is None: return False if len(self.hgt) < 3: return False meas = self.hgt[-2:] if meas != "in" and meas != "cm": print("height bad units") return False hgt_num = int(self.hgt[:-2]) if meas == "in": if hgt_num >= 59 and hgt_num <= 76: return True else: print("bad inches height") return False # must be "cm": if hgt_num >= 150 and hgt_num <= 193: return True print("bad cm height") return False def hcl_is_valid(self): if self.hcl is None: return False if self.hcl[0] != "#": return False color = self.hcl[1:] if (len(color) != 6): return False valid_chars = set(['a', 'b', 'c', 'd', 'e', 'f', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']) for char in color: if char not in valid_chars: print("bad color string") return False return True def ecl_is_valid(self): if self.ecl is None: return False valid_ecls = set(["amb", "blu", "brn", "gry", "grn", "hzl", "oth"]) if self.ecl not in valid_ecls: print("invalid ecl") return False return True def pid_is_valid(self): if self.pid is None: return False if len(self.pid) != 9: return False valid_chars = set(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']) for char in self.pid: if char not in valid_chars: return False return True passports = [] with open("day4_input.txt", mode="r") as f: eof_reached = False eor_reached = False passport_fields = { "byr": None, "iyr": None, "eyr": None, "hgt": None, "hcl": None, "ecl": None, "pid": None, "cid": None } while(eof_reached == False): line = f.readline().strip() if len(line) == 0 and eor_reached == True: eof_reached = True elif len(line) == 0: # Blank line -- end of record, so add to list of passports. passports.append(Passport(passport_fields["byr"], passport_fields["iyr"], passport_fields["eyr"], passport_fields["hgt"], passport_fields["hcl"], passport_fields["ecl"], passport_fields["pid"], passport_fields["cid"])) # Reset fields for next record. passport_fields = { "byr": None, "iyr": None, "eyr": None, "hgt": None, "hcl": None, "ecl": None, "pid": None, "cid": None } eor_reached = True else: # Data line -- parse what we can, and wait until end-of-record (empty line). eor_reached = False fields = line.split(" ") for field in fields: kv_pair = field.split(":") key = kv_pair[0] val = kv_pair[1] passport_fields[key] = val if __name__ == "__main__": print("Day 4") print("=====") num_valid = 0 for passport in passports: if passport.is_valid(): num_valid += 1 print(f"Part 1: Number of valid passports: {num_valid}") num_valid = 0 for passport in passports: passport.print() if passport.is_valid(version=2): num_valid += 1 print("passport is valid") else: print("not valid") print(f"Part 2: Number of valid passports: {num_valid}")
true
65e9e434fb9c44e542e3cf7eb6bb3dcf6340437a
Python
kevinjycui/Competitive-Programming
/Python/DMOJ/art0.py
UTF-8
325
3.90625
4
[]
no_license
n = int(input()) vowels = ['a', 'e', 'i', 'o', 'u'] words = ['Hi! ', 'Bye! ', 'How are you? ', 'Follow me! ', 'Help! '] for i in range(n): s = input().lower() ans = '' for c in s: if c in vowels: ans += words[vowels.index(c)] elif c.isdigit(): ans += 'Yes! ' print(ans)
true
c6b9826a3907261e0f92935c0e9081405e6a250a
Python
Stefanh18/python_projects
/test/q3.py
UTF-8
256
3.6875
4
[]
no_license
first = int(input("Initial value: ")) steps = int(input("Steps: ")) sum_of_series = 0 count2 = first while count2 <= 100: print(count2, end= ' ') sum_of_series += count2 count2 += steps print(" ") print("Sum of series: ", sum_of_series)
true
8f7c4c7279a7c1b7293fe5a15ceaab07d93d35ae
Python
tea1013/google_brain_ventilator_pressure_prediction
/teads/util/params.py
UTF-8
291
2.78125
3
[]
no_license
import pickle from typing import Dict class Params: def dump_dict(d: Dict, path: str) -> None: with open(path, "wb") as f: pickle.dump(d, f) def load_dict(path: str) -> Dict: with open(path, "rb") as f: d = pickle.load(f) return d
true
8eb19b369146fb5ddefe563e5ff70985095fbbfb
Python
GavinAlison/python-learning
/requestss/fetch_qsbk2.py
UTF-8
6,210
3.296875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-01-03 22:46:00 # @Author : alison # @File : fetch_qsbk2.py # 备注: urllib2在python3.x版本里面,与urllib合并,以后导入urllib2,=import urllib.request # 环境: python3.7.0 # 工具: pycharm2018.3 import urllib import urllib.request import re ## 设计面向对象模式 # page = 1 # url = 'https://www.qiushibaike.com/text/page/' + str(page) + '/' # user_agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML,like Gecko) Chrome/71.0.3578.98 Safari/537.36' # headers = {'User-Agent': user_agent} # 抓取一下糗事百科的热门段子吧 # 抓取的内容为, 用户名, 用户内容,好笑数, 评论数 # regex2 = r'<a href="/users/\d+/".*?<h2>(.*?)</h2>.*?<a href="/article/\d+".*?<span>(.*?)</span>.*?<span class="stats-vote">.*?<i class="number">(.*?)</i>.*?<a href="/article/\d+.*?<i class="number">(.*?)</i>' # try: # request = urllib.request.Request(url, headers=headers) # response = urllib.request.urlopen(request) # content = response.read().decode('utf-8') # # print(content) # pattern = re.compile(regex2, re.S) # items = re.findall(pattern, content) # print(items) # '''items的值为[(,,),(,,),(,,)], []匹配到list, ()为匹配到的元祖,()里面的值为匹配到的(.*?)匹配到的值''' # for item in items: # print('用户名: ', str(item[0]).replace('\n', '')) # print('内容: ', str(item[1]).replace('\n', '').replace('<br/>', '\n')) # print('好笑: ', str(item[2])) # print('评论: ', str(item[3])) # print() # except Exception as e: # print(e) # 糗事百科的爬虫 class QSBK: # 初始化方法,定义一些变量 def __init__(self): self.pageIndex = 1 self.user_agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML,like Gecko) Chrome/71.0.3578.98 Safari/537.36' # 初始化headers self.headers = {'User-Agent': self.user_agent} # 抓取一下糗事百科的热门段子 # 抓取的内容为, 用户名, 用户内容,好笑数, 评论数 self.regex = r'<a href="/users/\d+/".*?<h2>(.*?)</h2>.*?<a href="/article/\d+".*?<span>(.*?)</span>.*?<span class="stats-vote">.*?<i class="number">(.*?)</i>.*?<a href="/article/\d+.*?<i class="number">(.*?)</i>' # 存放段子的变量,每一个元素是每一页的段子们 self.stories = [] # 存放程序是否继续运行的变量 self.enable = False # 传入某一页的索引获得页面代码 def getPage(self, pageIndex): try: url = 'https://www.qiushibaike.com/text/page/' + str(pageIndex) + '/' request = urllib.request.Request(url, headers=self.headers) response = urllib.request.urlopen(request) pageContext = response.read().decode('utf-8') return pageContext except urllib.request.URLError as e: print('connect fail ', e.reason) return None # 传入某一页代码 def getPageItems(self, pageIndex): pageContext = self.getPage(pageIndex) if not pageContext: print('页面加载失败......') return None regex = self.regex pattern = re.compile(regex, re.S) items = re.findall(pattern, pageContext) # 用来存储每页的段子 pageStories = [] for item in items: # item存储的是用户名, 用户内容,好笑数, 评论数 text1 = re.sub(r'\n', '', item[0]) text2 = re.sub(r'\n', '', item[1]) text3 = re.sub(r'\n', '', item[2]) text4 = re.sub(r'\n', '', item[3]) text2 = re.sub(r'<br/>', '\n', text2) t_tuple = (text1, text2, text3, text4) pageStories.append(t_tuple) return pageStories # 加载并提取页面的内容,加入到列表中 def loadPage(self): # 如果当前未看的页数少于2页,则加载新一页 if self.enable == True: if len(self.stories) < 2: # 获取新一页 pageStories = self.getPageItems(self.pageIndex) # 将该页的段子存放到全局list中 if pageStories: self.stories.append(pageStories) # 获取完之后页码索引加一,表示下次读取下一页 self.pageIndex += 1 # 调用该方法,每次敲回车打印输出一个段子 def getOneStory(self, pageStories, page): # 遍历一页的段子 # print(pageStories) for story in pageStories: # print('story===',story) # 等待用户输入 i = input() # 每当输入回车一次,判断一下是否要加载新页面 self.loadPage() # 如果输入1则程序结束 if i == "q": self.enable = False return print("第%d页\n\t发布人:\n\t\t%s\n\t内容:\n\t\t%s\n\t好笑数:\n\t\t%s\n\t评论数:\n\t\t%s\n" % ( page, story[0], story[1], story[2], story[3])) # print("第%d页\t发布人:%s\t内容:%s\t好笑数:%s\t评论数:%s\n" % (page, story[0], story[1], story[2], story[3])) # IndexError: string index out of range def start(self): print(u"正在读取糗事百科,按回车查看新段子,Q退出") # 使变量为True,程序可以正常运行 self.enable = True # 先加载一页内容 self.loadPage() # 局部变量,控制当前读到了第几页 nowPage = 0 while self.enable: if len(self.stories) > 0: # 从全局list中获取一页的段子 pageStories = self.stories[0] # 当前读到的页数加一 nowPage += 1 # 将全局list中第一个元素删除,因为已经取出 del self.stories[0] # 输出该页的段子 self.getOneStory(pageStories, nowPage) spider = QSBK() spider.start()
true
a9cb1f45b1a82647b65fcf04e0d07fb4870a7227
Python
loerac/crypto-hodl
/hodl.py
UTF-8
5,153
2.6875
3
[]
no_license
import config import gspread import json import pandas as pd import pickle import redis import streamlit as st import validationNormalization as vnorm import zlib from crypto_api import IEX from oauth2client.service_account import ServiceAccountCredentials # Google Spreadsheets scope =['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive.file', 'https://www.googleapis.com/auth/drive' ] creds = ServiceAccountCredentials.from_json_keyfile_name("cred.json", scope) client = gspread.authorize(creds) sheet = client.open('crypto-hodl').sheet1 # Set up IEX iex = IEX(config.IEX_TOKEN) # Redis cache cache = redis.Redis(host='localhost', port=6379, db=0) def getHodl(): """ @brief: Either get complete order history from Google Spreadsheets or from cache. If getting from Google Spreadsheets, save JSON to cache and set it to expire in 10 hours @return: Dataframe of order history """ hodl = cache.get('hodl') if hodl: # Decompress dataframe from cache df = pickle.loads(zlib.decompress(hodl)) else: # Compress data to cache data = sheet.get_all_records() df = pd.read_json(json.dumps(data)) cache.setex('hodl', 36000, zlib.compress(pickle.dumps(df))) return df @st.cache def portfolio(df): """ @brief: Calculate the profit/loss (P/L) of each cryptocurrency. @param: df - complete order history dataframe @return: Dataframe of cryptocurrency portfolio """ coins = df.Coin.unique() stat = [] for coin in coins: coin_df = df[df.Coin == coin] total = coin_df.Total.iloc[-1] avg = coin_df.Average.iloc[-1] if total == 0.0: continue ret_price = 'N/A' ret_precent = 'N/A' curr_price = cache.get(f'{coin}') if curr_price: curr_price = float(curr_price) else: curr_price = iex.getCryptoPrice(str.lower(coin)) if curr_price: curr_price = float(curr_price['price']) cache.setex(f'{coin}', 86400, curr_price) if curr_price: avg_num = float(str(avg).replace('$', '').replace(',', '')) total_num = float(str(total).replace(',', '')) ret_price = total_num * (curr_price - avg_num) ret_price = '$' + str(round(ret_price, 5)) ret_precent = ((curr_price / avg_num) - 1 ) * 100 ret_precent = str(round(ret_precent, 5)) + '%' avg_num = round(avg_num, 5) total_num = round(total_num, 5) avg_num = '${:,}'.format(avg_num) total_num = '{:,}'.format(total_num) stat.append([coin, total_num, avg_num, ret_price, ret_precent]) hodl_df = pd.DataFrame(stat, columns=['Coin', 'Total', 'Average', '$ P/L', '% P/L']) return hodl_df.set_index('Coin') @st.cache def orderHistory(df): """ @brief: Extract the columns for the order history. @param: df - complete order history dataframe @return: Dataframe of cryptocurrency order history. """ hist_df = df[['Date', 'Direction', 'Amount', 'Coin', 'Price', 'Exchange']] return hist_df.set_index('Date') @st.cache def newOrder(df, new_order): """ @brief: Check if new submitted order was filled out properly. If value are invalid, send message back to user on error. On success, send new order to Google Spreadsheet. @param: df - complete order history dataframe @param: new_order - new order that was submitted @return: message on submittion, and boolean value True on success, else False """ complete_order = all(value != '' for value in new_order.values()) if not complete_order: return 'All fields need to be filled', False order, msg = vnorm.validateNormalizeOrder(new_order) if order is None: return msg, False order_df = df[df['Coin'] == order['Coin']] order_df = order_df.append(order, ignore_index=True) order_df.Amount = order_df.Amount.astype(str) order_df.iloc[-1, order_df.columns.get_loc('Total')] = \ order_df.Amount.apply(lambda x: x.replace(',', '')).astype(float).sum() _sum = 0 for i in range(order_df.shape[0]): _amount = float(str(order_df.iloc[i]['Amount']).replace(',', '')) _price = float(order_df.iloc[i]['Price'].replace('$', '').replace(',', '')) _sum += (_amount * _price) order_df.iloc[-1, order_df.columns.get_loc('Average')] = \ _sum / order_df.iloc[-1]['Total'] order_df.iloc[-1, order_df.columns.get_loc('Average')] = '$' + \ str(order_df.iloc[-1, order_df.columns.get_loc('Average')]) sheet.insert_row(list(order_df.iloc[-1]), df.shape[0] + 2) df = df.append(order_df.iloc[-1]) cache.setex('hodl', 36000, zlib.compress(pickle.dumps(df))) return f"Order #{df.shape[0] + 2}: {order['Direction']} {order['Amount']} {order['Coin']} has been added", True
true
313eae700ef2d87f9d2bef4b8be3af5280b89787
Python
gelizondomora/python_basico_2_2019
/Semana 1/practica_2.py
UTF-8
298
3.546875
4
[]
no_license
# Esta es al practica para escribir dos lineas # en consola """ Comentario de multiples lineas util para explicar mas detalles """ print("Hola a todos!") print("buenos dias") #Varias lineas en un solo print print("mi primera linea \nmi segunda linea") print("hola de nuevo")
true
a866a5fa90c3a5a59abac228ca8e19a45f091af0
Python
liupy525/Pythontip-OJ
/16_renminbi_example_ck.py
UTF-8
6,095
3.625
4
[]
no_license
# !/usr/bin/env python # -*- coding: utf-8 -*- ''' 注明:数据已于2013-11-19日加强,原来通过的代码可能不能再次通过。 注意:由于中文乱码问题,输出时请先decode("utf8"),例如你要输出ans = "零圆", print ans.decode("utf8"). 银行在打印票据的时候,常常需要将阿拉伯数字表示的人民币金额转换为大写表示,现在请你来完成这样一个程序。 在中文大写方式中,0到10以及100、1000、10000被依次表示为: 零壹贰叁肆伍陆柒捌玖拾佰仟万 以下的例子示范了阿拉伯数字到人民币大写的转换规则: 1 壹圆 11 壹拾壹圆 111 壹佰壹拾壹圆 101 壹佰零壹圆 -1000 负壹仟圆 1234567 壹佰贰拾叁万肆仟伍佰陆拾柒圆 现在给你一个整数a(|a|<100000000), 打印出人民币大写表示 ''' import warnings from decimal import Decimal def cncapital(value, capital=True, prefix=False, classical=None): ''' 人民币数字转汉字表示 Ver 0.03 作者: qianjin(AT)ustc.edu 版权声明: 只要保留本代码最初作者的电子邮件即可,随便用。用得爽的话,不反对请 作者吃一顿。 参数: capital: True 大写汉字金额 False 一般汉字金额 classical: True 圆 False 元 prefix: True 以'人民币'开头 False, 无开头 ''' # 转换为Decimal if isinstance(value, float): msg = ''' 由于浮点数精度问题,请使用考虑使用字符串,或者 decimal.Decimal 类。 因使用浮点数造成误差而带来的可能风险和损失作者概不负责。 ''' warnings.warn(msg, UserWarning) value = Decimal(str(value)) elif isinstance(value, int): value = Decimal(value) elif not isinstance(value, Decimal): try: value = Decimal(str(value)) except: raise TypeError('无法转换为Decimal:%s' % value.__repr__()) # 截断多余小数 value = Decimal(value).quantize(Decimal('0.01')) # 默认大写金额用圆,一般汉字金额用元 if classical is None: classical = True if capital else False # 汉字金额前缀 if prefix is True: prefix = '人民币' else: prefix = '' # 汉字金额字符定义 dunit = ('角', '分') if capital: num = ('零', '壹', '贰', '叁', '肆', '伍', '陆', '柒', '捌', '玖') iunit = [None, '拾', '佰', '仟', '万', '拾', '佰', '仟', '亿', '拾', '佰', '仟', '万', '拾', '佰', '仟'] else: num = ('〇', '一', '二', '三', '四', '五', '六', '七', '八', '九') iunit = [None, '十', '百', '千', '万', '十', '百', '千', '亿', '十', '百', '千', '万', '十', '百', '千'] if classical: iunit[0] = '圆' if classical else '元' # 处理负数 if value < 0: prefix += '负' # 输出前缀,加负 value = - value # 取正数部分,无须过多考虑正负数舍入 # assert - value + value == 0 # 转化为字符串 s = str(value) if len(s) > 19: raise ValueError('金额太大了,不知道该怎么表达。') istr, dstr = s.split('.') # 小数部分和整数部分分别处理 istr = istr[::-1] # 翻转整数部分字符串 so = [] # 用于记录转换结果 # 零 if value == 0: return prefix + unm[0] + iunit[0] haszero = False # 用于标记零的使用 if dstr == '00': haszero = True # 如果无小数部分,则标记加过零,避免出现“圆零整” # 处理小数部分 # 分 if dstr[1] != '0': so.append(dunit[1]) so.append(num[int(dstr[1])]) else: so.append('整') # 无分,则加“整” # 角 if dstr[0] != '0': so.append(dunit[0]) so.append(num[int(dstr[0])]) elif dstr[1] != '0': so.append(num[0]) # 无角有分,添加“零” haszero = True # 标记加过零了 # 无整数部分 if istr == '0': if haszero: # 既然无整数部分,那么去掉角位置上的零 so.pop() so.append(prefix) # 加前缀 so.reverse() # 翻转 return ''.join(so) # 处理整数部分 for i, n in enumerate(istr): n = int(n) if i % 4 == 0: # 在圆、万、亿等位上,即使是零,也必须有单位 if i == 8 and so[-1] == iunit[4]: # 亿和万之间全部为零的情况 so.pop() # 去掉万 so.append(iunit[i]) if n == 0: # 处理这些位上为零的情况 if not haszero: # 如果以前没有加过零 so.insert(-1, num[0]) # 则在单位后面加零 haszero = True # 标记加过零了 else: # 处理不为零的情况 so.append(num[n]) haszero = False # 重新开始标记加零的情况 else: # 在其他位置上 if n != 0: # 不为零的情况 so.append(iunit[i]) so.append(num[n]) haszero = False # 重新开始标记加零的情况 else: # 处理为零的情况 if not haszero: # 如果以前没有加过零 so.append(num[0]) haszero = True # 最终结果 so.append(prefix) so.reverse() return ''.join(so) print cncapital(100000000)
true
cd7e3582f308d417b98d7b49a427c9011a8f2b42
Python
ccnmtl/django-oembed
/oembed/tests.py
UTF-8
1,324
2.78125
3
[ "BSD-3-Clause" ]
permissive
from __future__ import unicode_literals from django.test import TestCase from oembed.core import replace class OEmbedTests(TestCase): fixtures = ['initial_data.json'] noembed = r"This is text that should not match any regex." end = r"There is this great photo at %s" start = r"%s is a photo that I like." middle = r"There is a movie here: %s and I really like it." trailing_comma = r"This is great %s, but it might not work." trailing_period = r"I like this photo, located at %s." loc = 'https://www.flickr.com/photos/ian_ruotsala/39088280250/' embed = '<img src="https://farm5.staticflickr.com/4776/39088280250_01461fee94_n.jpg" alt="living space is shared with this furry little ambush predator"></img>' def testNoEmbed(self): self.assertEquals( replace(self.noembed), self.noembed ) def testEnd(self): for text in (self.end, self.start, self.middle, self.trailing_comma, self.trailing_period): self.assertEqual( replace(text % self.loc), text % self.embed ) def testManySameEmbeds(self): pass text = " ".join([self.middle % self.loc] * 100) resp = " ".join([self.middle % self.embed] * 100) self.assertEqual(replace(text), resp)
true
a0658a310b2b5dd3159a9edc75e71171ea9275e2
Python
in-toto/apt-transport-in-toto
/tests/measure_coverage.py
UTF-8
1,049
2.71875
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/python3 """ <Program Name> measure_coverage.py <Author> Lukas Puehringer <lukas.puehringer@nyu.edu> <Started> December 21, 2018. <Purpose Shim to setup code coverage measurement for a Python script executed in a subprocess. Requires an environment variable COVERAGE_PROCESS_START that points to the .coveragerc file that should be used. This is an alternative to performing coverage setup using`sitecustomize.py` or `.pth` file as suggested in: https://coverage.readthedocs.io/en/coverage-4.2/subprocess.html Usage: python measure_coverage.py <path/to/python/script> """ import sys import coverage # Setup code coverage measurement (will look for COVERAGE_PROCESS_START envvar) coverage.process_startup() # The first argument must be the actual executable exectuable = sys.argv[1] # Patch sys.argv so that the executable thinks it was called directly sys.argv = [exectuable] # Execute executable in this process measuring code coverage with open(exectuable) as f: code = compile(f.read(), exectuable, "exec") exec(code)
true
88f2c7b3c1191c9f23ff3865a4423692cb23eaeb
Python
mad3310/galera-manager
/galera-manager/utils/randbytes.py
UTF-8
284
2.875
3
[]
no_license
# -*- coding: utf-8 -*- import os import binascii from base64 import b64encode def randbytes(bytes): """Return bits of random data as a hex string.""" return binascii.hexlify(os.urandom(bytes)) def randbytes2(bytes=16): return b64encode(randbytes(bytes)).rstrip('=')
true
057c3a81241835dfc3feca40e5b30001a9638af8
Python
muondu/Hotel-sytem
/tryal.py
UTF-8
312
2.546875
3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
from everything_db import * def insert(): pass # c.execute('INSERT INTO hotel_rooms VALUES(30)') def delete(): num = 15 with conn: c.execute('DELETE FROM hotel_rooms WHERE hotelnumber = ?',(num,)) c.execute('SELECT * FROM hotel_rooms') print(c.fetchall()) delete()
true
1aa6991bd1bc6b65215583e3b88a0fe46889649a
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_117/1412.py
UTF-8
1,920
2.578125
3
[]
no_license
filename = "B-large.in" # change later f = open(filename) T = int(f.readline()) for case in range(1,T+1): s = f.readline() tmp = s.split() N = int(tmp[0]) M = int(tmp[1]) lawn = {} for i in range(N): s = f.readline() s = map(int, s.split()) for j in range(M): lawn[M*i+j] = s[j] lawnlist = lawn.items() lawnlist.sort(key = lambda a: a[1]) lawnlist.reverse() lawn_index = 0 forbidden_x = set() forbidden_y = set() impossible_flag = 0 unchecked_flag = 0 while True: ind, biggest = lawnlist[lawn_index] tmp_fob_x = set() tmp_fob_y = set() x = ind / M y = ind % M if (x in forbidden_x) and (y in forbidden_y): impossible_flag = 1 break elif unchecked_flag == 1 and lawn_index == N*M-1: impossible_flag = 0 break else: tmp_fob_x.add(x) tmp_fob_y.add(y) unchecked_flag = 0 while lawn_index < N*M-1: lawn_index += 1 ind, value = lawnlist[lawn_index] if value != biggest: unchecked_flag = 1 break else: x = ind / M y = ind % M if (x in forbidden_x) and (y in forbidden_y): impossible_flag = 1 break else: tmp_fob_x.add(x) tmp_fob_y.add(y) if impossible_flag == 1: break elif lawn_index == N*M-1 and unchecked_flag != 1: break else: forbidden_x |= tmp_fob_x forbidden_y |= tmp_fob_y print "Case #" + str(case) + ": ", if impossible_flag == 1: print "NO" else: print "YES"
true
4d471084b71d4d07d9b1bc6f11a4e5ba65cf7d9b
Python
youfeng243/hackerearth
/Xsquare And Two Arrays/Xsquare And Two Arrays.py
GB18030
2,414
2.984375
3
[]
no_license
#coding=utf-8 def SumA( startA, endA ): if startA == endA: return A[startA] if startA > endA: return 0 #ż if startA % 2 == 0: if startA == 0: return eveA[endA] return eveA[endA] - eveA[startA - 2] if startA == 1: return oddA[endA] return oddA[endA] - oddA[startA - 2] def SumB( startB, endB ): if startB == endB: return B[startB] if startB > endB: return 0 #ż if startB % 2 == 0: if startB == 0: return eveB[endB] return eveB[endB] - eveB[startB - 2] if startB == 1: return oddB[endB] return oddB[endB] - oddB[startB - 2] def main(): global eveA global oddA global eveB global oddB global A global B N,Q = map(int, raw_input().strip().split()) A = map(int, raw_input().strip().split()) B = map(int, raw_input().strip().split()) eveA = [0] * N oddA = [0] * N eveB = [0] * N oddB = [0] * N #żк eveA[0] = A[0] for i in xrange( 2, N, 2 ): eveA[i] += eveA[i - 2] + A[i] if N >= 1: oddA[1] = A[1] for i in xrange( 3, N, 2 ): oddA[i] += oddA[i - 2] + A[i] eveB[0] = B[0] for i in xrange( 2, N, 2 ): eveB[i] += eveB[i - 2] + B[i] if N >= 1: oddB[1] = B[1] for i in xrange( 3, N, 2 ): oddB[i] += oddB[i - 2] + B[i] for _ in xrange( Q ): turn, start, end = map(int, raw_input().strip().split()) start -= 1 end -= 1 Astart = 0 Aend = 0 Bstart = 0 Bend = 0 if turn == 1: #Aͷ Astart = start Bstart = start + 1 if start % 2 == end % 2: Aend = end Bend = end - 1 else: Bend = end Aend = end - 1 if turn == 2: #Bͷ Bstart = start Astart = start + 1 if start % 2 == end % 2: Bend = end Aend = end - 1 else: Aend = end Bend = end - 1 print SumA(Astart, Aend) + SumB( Bstart, Bend ) if __name__ == "__main__": main()
true
659038b1a71205ec2dae7e7f2487e9fc81edcef1
Python
Kraming-linux/arnor
/com vison/class two.py
UTF-8
1,559
3.359375
3
[]
no_license
import cv2 import numpy as np def assess_pictutre(iamge): # 遍历数组的每个像素点 print(iamge.shape) heigh = iamge.shape[0] # 形状的第一维度(高度) width = iamge.shape[1] # 第二维度(宽度) channel = iamge.shape[2] # 通道数 print("heigh", heigh) print("width", width) print("channel", channel) def inverse(img): # 像素取反 dst = cv2.bitwise_not(img) cv2.imshow("img", dst) def create_Image(): img = np.zeros([400, 400, 3], np.uint8) # 生成一张全0三通道的400*400大小的图(全黑) img[:, :, 0] = np.ones([400, 400])*255 # 修改原图生成全蓝色的新图 0 1 2 (三通道顺序) cv2.imshow("newpicture", img) # img = np.ones([400,400,1],np.uint8) # img = img * 127 # cv2.imshow("new2", img) 这些是单通道生成灰色图像的代码 # 早期黑白电视的值是0到255(0是黑色,255是白色) src = cv2.imread("D:/pictures/sunny.jpg") # 引用一下class one的图 cv2.imshow('src', src) # blue,green,red 三通道的顺序(0,1,2) assess_pictutre(src) create_Image() t1 = cv2.getTickCount() # 计算上面所需时间 inverse(src) t2 = cv2.getTickCount() # 同上 time = (t2-t1)/cv2.getTickFrequency() # 两时间差就是inverse所用的时间 print("time is ", time*1000) # 乘以1000转化为毫秒的计数单位 cv2.waitKey(0) # 等待下一个按键触发 cv2.destroyAllWindows() # 关闭窗口
true
d8dfca241d4e289253da036500492b8d41900bf1
Python
lk-greenbird/costar_plan
/costar_task_plan/tests/sampler_test.py
UTF-8
2,138
2.625
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python import unittest import keras.losses as l import keras.backend as K import numpy as np from costar_models import SamplerLoss class SamplerLossTest(unittest.TestCase): def test1(self): A = np.array([[0,1,0],[1,0.7,0.5]]).T B = np.array([[0.001, 1.002, 0.01],[0.001, 0.002, 2.01]]).T print "===========" correct = np.zeros((3,3)) print "A 1\t\t2\t\t3" for i in xrange(3): for j in xrange(3): correct[i,j] = np.sum((B[i] - A[j])**2) print correct print "===========" loss = SamplerLoss() x = K.variable(value=A) y = K.variable(value=B) x2 = K.variable(value=np.array([A])) from keras.layers import Lambda import tensorflow as tf print "---" print x2 print x2.shape print B print K.eval(Lambda(lambda x: tf.gather_nd(tf.transpose(x),[[i] for i in range(2)]))(x2)) print K.eval(Lambda(lambda x: tf.gather_nd(x,[[0,1]]))(x2)) print "---" # Distances from A to B res = K.eval(loss._dists(x,y)) print res self.assertTrue(np.all(np.abs(correct - res) < 1e-5)) # Distances from B to itself res = K.eval(loss._dists(y,y)) print res print "===========" print "Loss" print "===========" # Loss res2 = K.eval(loss(x,y)) print res2 #z = K.dot(x,y) #res = K.eval(z) #print res def test2(self): A = np.array([[0,0,1,0,0]]) B = np.array([[2]]) C = np.array([[3]]) A = K.variable(value=A) B = K.variable(value=B) C = K.variable(value=C) cc = l.get("categorical_crossentropy") print K.eval(cc(A,B)) print K.eval(cc(A,C)) print K.eval(cc(A,A)) if __name__ == '__main__': import tensorflow as tf with tf.device('/cpu:0'): config = tf.ConfigProto( device_count={'GPU': 0} ) sess = tf.Session(config=config) K.set_session(sess) unittest.main()
true
a365db39d07fd7ba358d74ba59e9d21df8ff88f9
Python
minrivertea/laowailai
/questions/split_search.py
UTF-8
1,208
3.203125
3
[]
no_license
#-*- coding: iso-8859-1 -* ## ## Split search string - Useful when building advanced search application ## By: Peter Bengtsson, mail@peterbe.com ## May 2008 ## ZPL ## __version__='1.0' """ split_search(searchstring [str or unicode], keywords [list or tuple]) Splits the search string into a free text part and a dictionary of keyword pairs. For example, if you search for 'Something from: Peter to: Lukasz' this function will return 'Something', {'from':'Peter', 'to':'Lukasz'} It works equally well with unicode strings. Any keywords in the search string that isn't recognized is considered text. """ import re def split_search(q, keywords): params = {} s = [] regex = re.compile(r'\b(%s):' % '|'.join(keywords), re.I) bits = regex.split(q) skip_next = False for i, bit in enumerate(bits): if skip_next: skip_next = False else: if bit in keywords and params: params[bit.lower()] = bits[i+1].strip() skip_next = True elif bit.strip(): s.append(bit.strip()) return ' '.join(s), params
true
0f00c3ee7216ea806a61d16a9f77f481f8035c6e
Python
honzabilek4/artificial-intelligence-examples
/2.5.1_10.py
UTF-8
830
3.203125
3
[]
no_license
#!/usr/bin/env python # encoding=utf-8 (pep 0263) from linked_lists import LinkedList, Cons, Nil def append(xs, ys): if xs == Nil: return ys else: return Cons(xs.head, append(xs.tail, ys)) def qsort(xs): if xs == Nil: return Nil if xs.tail == Nil: return xs ms, vs = divide(xs.head, xs.tail) return append(qsort(ms), Cons(xs.head, qsort(vs))) def divide(h, xs): if xs == Nil: return (Nil, Nil) ms, vs = divide(h, xs.tail) if xs.head <= h: return (Cons(xs.head, ms), vs) else: return (ms, Cons(xs.head, vs)) # demonstracni vypis if __name__ == "__main__": print("Radici algoritmus QuickSort\n") print("qsort(LinkedList([5, 2, 8, 2, 654, 8, 3, 4])): \n\t%s\n" % \ qsort(LinkedList([5, 2, 8, 2, 654, 8, 3, 4])))
true
d62d06b3205eafb58563670844cafe3bf9441a2f
Python
saurabh11308/aws-team3
/lambda.py
UTF-8
1,225
4.5
4
[]
no_license
#!/usr/bin/python # Lambda function example print("\nExample Program 1 - Anonymous Function Lambda\n") total = lambda s1,s2,s3,s4,s5:s1+s2+s3+s4+s5 #Now call total as a function print("Student1 total marks : ",total(90,70,85,80,67)) print("Student2 total marks : ",total(10,30,45,50,78)) def func_ref(list): print("List values before append are : ",list) list.append([90,75,68,54]) print("List values after append are : ",list) return list = [60,70,80] print("Example Program 2: Passby assignment\n") print("List values before function call are : ",list) func_ref(list) print("List values after function call are : ",list) # Pass by value def func_value(obj): # To change passed parameter into function obj = 90 print("Values inside the function: ", obj) return obj = 80 print("Example Program 3: Passby value\n") print("obj values before function call are : ",obj) func_value(obj) print("obj values after function call are : ",obj) #Global and local variables print("Example Program 4 - Global Values\n") sum = 500 def total(s1,s2,s3,s4,s5): sum = s1+s2+s3+s4+s5 print("Inside the function :",sum) return sum total(90,85,95,85,70) print("Outside the function : ",sum)
true
f13544dda3edb0ff7b44d2c294444f14df1be341
Python
womogenes/AoC-2020-solutions
/01/1.2.py
UTF-8
711
3.53125
4
[]
no_license
with open("1-input.txt") as fin: data = fin.read() numbers = [int(i) for i in data.split("\n")[:-1]] print(len(numbers)) def naive(): for i in numbers: for j in numbers: for k in numbers: if i + j + k == 2020: print(i * j * k) break def smarter(): for i in range(len(numbers)): rem = 2020 - numbers[i] seen = set() for j in range(i, len(numbers)): seen.add(numbers[j]) if rem - numbers[j] in seen: product = numbers[i] * numbers[j] * (rem - numbers[j]) print(product) smarter()
true
d9fe5e628635a98692685beddc48544b6b95cfb0
Python
Enokisan/WeatherDatabase
/tendl.py
UTF-8
317
2.671875
3
[]
no_license
import urllib.request as req def download(): # URLや保存ファイル名を指定 url = 'https://www.jma.go.jp/bosai/forecast/data/forecast/010000.json' filename = 'tenki.json' # ダウンロード req.urlretrieve(url, filename) print("[Weather Database] tenki.json has been downloaded!\n")
true
b5b1faf0565fa75e5d01d03001180e3d51f23472
Python
NeerajK23/WeatherForecast
/application.py
UTF-8
2,344
2.78125
3
[]
no_license
from flask import Flask,render_template, request,url_for import pywapi import requests from bs4 import BeautifulSoup app=Flask(__name__) def get_city_name_list(city_name): #this will give you a dictionary of all cities in the world with this city's name Be specific (city, country)! lookup = pywapi.get_location_ids(city_name) return lookup def fetch_data(city_id,forecaste_type): country_code=city_id[0:2] url="https://weather.com/en-IN/weather/{}/l/{}:1:{}".format(forecaste_type,city_id,country_code) page=requests.get(url) soup=BeautifulSoup(page.content,"html.parser") if forecaste_type=="tenday": div_class_name="locations-title ten-day-page-title" elif forecaste_type=="5day": div_class_name="locations-title five-day-page-title" all=soup.find("div",{"class":div_class_name}).find("h1").text table=soup.find_all("table",{"class":"twc-table"}) list_of_data=[] for items in table: for i in range(len(items.find_all("tr"))-1): d = {} d["day"]=items.find_all("span",{"class":"date-time"})[i].text d["date"]=items.find_all("span",{"class":"day-detail"})[i].text d["desc"]=items.find_all("td",{"class":"description"})[i].text d["temp"]=items.find_all("td",{"class":"temp"})[i].text d["precip"]=items.find_all("td",{"class":"precip"})[i].text d["wind"]=items.find_all("td",{"class":"wind"})[i].text d["humidity"]=items.find_all("td",{"class":"humidity"})[i].text list_of_data.append(d) return list_of_data @app.route('/') def name(): return render_template('enterplace.html') @app.route('/place',methods = ['POST', 'GET']) def place(): if request.method == 'POST': city_name = request.form['Name'] list_of_cities=get_city_name_list(city_name) return render_template("list_of_cities.html",list_of_cities = list_of_cities) @app.route('/finalcode',methods = ['POST', 'GET']) def citykey(): forecaste_type=request.form['forecaste_type'] final_city_code = request.form['final_city'] forecasted_data=fetch_data(final_city_code,forecaste_type) return render_template("show_data.html",forecasted_data = forecasted_data) if __name__== '__main__': app.run(debug=True,host='0.0.0.0',port=5002, threaded=True)
true
446992f31bab0c0666d87944c995b2e73386d377
Python
cermegno/Ansible-test
/web.py
UTF-8
400
2.671875
3
[ "MIT" ]
permissive
import os from flask import Flask app = Flask(__name__) @app.route('/') def mainmenu(): return """ <html> <body> <center> <h1>Hi there</h1> <h2>You brought me here with <u>Ansible<u>!</h2><br> </center> </body> </html>""" if __name__ == "__main__": app.run(debug=False,host='0.0.0.0', port=int(os.getenv('PORT', '5000')))
true
8f1ee243aec87332ae296ffe99ee08e231cebca2
Python
fuksi/pyalgorithm
/merge_sort/tests.py
UTF-8
420
3.3125
3
[]
no_license
import unittest from main import merge_sort class MainTest(unittest.TestCase): def test_unordered_list(self): result = merge_sort([1,5,3,4,1]) self.assertEqual([1,1,3,4,5], result) def test_empty_list(self): result = merge_sort([]) self.assertEqual([], result) def test_short_list(self): result = merge_sort([10,1]) self.assertEqual([1,10], result)
true
8d6b47b73adb2b7e22e7a75fc81266a77cefe4e0
Python
kimjane7/numerical_linalg
/homework5/test.py
UTF-8
790
3.25
3
[]
no_license
import os import sys import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams['font.family'] = "serif" # 3 plt.figure(figsize=(8,6)) x = np.arange(1.920,2.081,0.001) p = (x-2)**9 plt.plot(x,p,c='b',label=r'factorized $p(x)=(x-2)^9$') p = x**9-18*x**8+144*x**7-672*x**6+2016*x**5-4032*x**4+5376*x**3-4608*x**2+2304*x-512 plt.plot(x,p,c='r',label=r'expanded $p(x)$') plt.xlabel(r'$x$',fontsize=12) plt.legend(loc='upper left', shadow=True, fontsize=12) plt.title(r'Stability of a polynomial') # save and open figname = 'polynomial.png' plt.savefig(figname, format='png') os.system('okular '+figname) plt.clf() # 4 b = np.float32(1.0) c = np.float32(0.004004) a = 1000*(c/(np.sqrt(b**2+c)-b)-2*b) print(a) a = 1000*c/(np.sqrt(b**2+c)+b) print(a)
true
476b7cd985dffacaa302adb8f7f609fab057a3cd
Python
naorton/Advent-of-Code
/2015/Day 10/day10.py
UTF-8
814
3.421875
3
[]
no_license
#data = [1113222113] #1 = 11 #11 = 21 #21 = 1211 #1211 = 111221 #111221 = 312211 data = [1,1] count = 0 temp = len(data) + 1 final = [] final.append(temp) final += data print(final) def num_count(num_list): temp_list = [] count = 1 temp_num = num_list[0] i = 1 if len(num_list) == 1: temp_list.append(count) temp_list.append(temp_num) return temp_list while i < len(num_list): if num_list[i-1] == num_list[i]: count += 1 elif num_list[i-1] != num_list[i]: temp_list.append(count) temp_list.append(temp_num) temp_num = num_list[i] count = 1 if i+1 == len(num_list): temp_list.append(count) temp_list.append(temp_num) i += 1 return temp_list data = [1,1,1,3,2,2,2,1,1,3] i = 0 new_list = data while i < 50: new_list = num_count(new_list) i +=1 print(len(new_list))
true
efa11152d0055ad60ed85c9132111c28994aed81
Python
Nardri/trisixty-buys-API
/api/utilities/helpers/errors.py
UTF-8
377
2.75
3
[ "MIT" ]
permissive
"""Errors""" # utilities from api.utilities.validations.custom_validations_error import ValidationError def raises(message, status_code): """A helper method for raising exceptions. Args: message (str): Message status_code (int): Status code Raises: ValidationError """ raise ValidationError(dict(message=message), status_code)
true