blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
0ec685d0c4d508ff04896dfaba15cb82f823c41d
Python
SimonSlominski/Pybites_Exercises
/Pybites/375/test_combinations.py
UTF-8
2,256
3.328125
3
[]
no_license
from itertools import product import pytest from combinations import generate_letter_combinations @pytest.mark.parametrize( "digits, expected", [ ("2", ["a", "b", "c"]), ("23", ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]), ( "79", [ "pw", "px", "py", "pz", "qw", "qx", "qy", "qz", "rw", "rx", "ry", "rz", "sw", "sx", "sy", "sz", ], ), ( "234", [ "adg", "adh", "adi", "aeg", "aeh", "aei", "afg", "afh", "afi", "bdg", "bdh", "bdi", "beg", "beh", "bei", "bfg", "bfh", "bfi", "cdg", "cdh", "cdi", "ceg", "ceh", "cei", "cfg", "cfh", "cfi", ], ), ], ) def test_generate_letter_combinations(digits, expected): assert generate_letter_combinations(digits) == expected def test_generate_letter_combinations_repeated_digits(): assert generate_letter_combinations("222") == [ "aaa", "aab", "aac", "aba", "abb", "abc", "aca", "acb", "acc", "baa", "bab", "bac", "bba", "bbb", "bbc", "bca", "bcb", "bcc", "caa", "cab", "cac", "cba", "cbb", "cbc", "cca", "ccb", "ccc", ] def test_generate_letter_combinations_long_input(): assert generate_letter_combinations("23") == [ "ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf", ]
true
a2e4b400e69f8296aad93f6f5e17879198980241
Python
coucoulesr/advent-of-code-2019
/01-Rocket-Equation/01-2-Soln.py
UTF-8
472
3.40625
3
[]
no_license
import math def moduleFuelReq(mass): output = math.floor(mass/3) - 2 return output if output > 0 else 0 def main(): fuel_required = 0 next_fuel = 0 with open("01-input") as file: for line in file: next_fuel = moduleFuelReq(int(line)) while next_fuel > 0: fuel_required += next_fuel next_fuel = moduleFuelReq(next_fuel) print(fuel_required) if __name__ == "__main__": main()
true
fe7b4f771154bfc36367868e72707786673ab66f
Python
covidwatchorg/CircuitPythonExperimenter
/ble_print.py
UTF-8
1,481
2.734375
3
[]
no_license
# printing advertising packets and support formatting import _bleio import ble_gaen_scanning # ====================================================== # Functions to help with printing a generic advertising packet. def hex_of_bytes(bb): s = "" count = 0 for b in bb: s += (" {:02x}".format(b)) count += 1 if count % 8 == 0: s += " " return s.strip() def print_scan_entry_type(scan_entry): if scan_entry.scan_response: print("Scan Response", end='') else: print("Advertisement", end='') if scan_entry.connectable: print(", connectable") else: print("") def print_address(address): print("address =", address, end=" ") t = address.type print("address type =", end=" ") if t == address.PUBLIC: print("PUBLIC") elif t == address.RANDOM_STATIC: print("RANDOM_STATIC") elif t == address.RANDOM_PRIVATE_RESOLVABLE: print("RANDOM_PRIVATE_RESOLVABLE") elif t == address.RANDOM_PRIVATE_NON_RESOLVABLE: print("RANDOM_PRIVATE_NON_RESOLVABLE") else: print("unknown") def print_advertisement_bytes(scan_entry): adv_bytes = bytearray(scan_entry.advertisement_bytes) if len(adv_bytes) != 0: print("advertisement bytes = ", hex_of_bytes(adv_bytes)) def print_scan_entry(scan_entry): print_scan_entry_type(scan_entry) print_address(scan_entry.address) print_advertisement_bytes(scan_entry)
true
0c2c327bb3597ac06e474286d05d0ac908fb7de0
Python
whigg/HyperHeuristicKnapsack
/knapsack/genetic.py
UTF-8
1,587
3.09375
3
[ "MIT" ]
permissive
import random as rnd import algorithms as algs import knapsack.hyper.single.problem as ksp def simple_state_generator_ksp(dimension): state = [] for i in range(0, dimension): random_boolean = False if rnd.randint(0, 1) == 0 else True state.append(random_boolean) return state def initial_population_generator_ksp(amount, dimension, validator=ksp.validate, state_generator=simple_state_generator_ksp, **kwargs): population = [] while len(population) < amount: population_candidate = state_generator(dimension) if validator(population_candidate, **kwargs): population.append(population_candidate) return population def compare_state_ksp(state1, state2): for i in range(0, len(state1)): if state1 != state2: return True return False def crossover_func_ksp(first_parent, second_parent, **kwargs): iteration = 0 while iteration < len(first_parent) ** 2: # TODO: try other genetic operators (different types of crossover, for example) # nor first allel nor last allel crossover_index = rnd.randint(1, len(first_parent) - 1) child_candidate = first_parent[:crossover_index + 1] + second_parent[crossover_index + 1:] if ksp.validate(child_candidate, **kwargs): return child_candidate return None def minimize(dimension, **kwargs): return algs.genetic.minimize(dimension, initial_population_generator_ksp, crossover_func_ksp, ksp.solve, **kwargs)
true
c008e73eeb247c527a1008a5a7563944d6ce77ee
Python
void-memories/APS-Code-Base
/Assignment/20_camelCase.py
UTF-8
145
2.953125
3
[]
no_license
import re def main(): patt = re.compile(r'[A-Z]') string = input() print(len(patt.findall(string))+1) if __name__ == "__main__": main()
true
c5e588c192a1d754e192b46a9dd1717437f45d8f
Python
fisch321/uband-python-s2
/homeworks/B20769/homework1/B20769_feiyu_day5_homework.py
UTF-8
5,694
3.546875
4
[]
no_license
# -*- coding: utf-8 -*- import codecs import os import sys reload(sys) sys.setdefaultencoding('utf8') #1. 读取文件 #根据“-”再次划分单词:['aa', 'aaa-bbb-sds'] => ['aa', 'aaa', 'bbb', 'sds'] def word_split(words): new_list = [] for word in words: if '-' not in word: new_list.append(word) else: lst = word.split('-') new_list.extend(lst) return new_list #读取单个文件,输出问由文件中所有单词组成的列表 def read_file(file_path): f = codecs.open(file_path, 'r', "utf-8") #打开文件 lines = f.readlines() #按段落(行)读取文件,输出为n行数据 word_list = [] for line in lines: line = line.strip()#去掉行首尾的空格 words = line.split(" ") #用空格分割 words = word_split(words) #用”-“分割 word_list.extend(words) return word_list #读取文件夹中所有文件的路径,输出为一组文件路径 def get_file_from_folder(folder_path): file_paths = [] for root, dirs, files in os.walk(folder_path): for file in files: file_path = os.path.join(root, file) file_paths.append(file_path) return file_paths #读取多个文件里的单词,输出问所有单词的一个列表 def read_files(file_paths): final_words = [] for path in file_paths: final_words.extend(read_file(path)) return final_words #2.获取格式化之后的单词 #格式化一个单词,并输出 def format_word(word): fmt = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-' for char in word: if char not in fmt: word = word.replace(char, '') return word.lower() #格式化一串单词,并输出为一个新的列表 def format_words(words): word_list = [] for word in words: wd = format_word(word) if wd:#判断该单词是否为空格,若为空格则略过 word_list.append(wd) return word_list #3. 统计单词数目 # {'aa':4, 'bb':1} #统计每个单词出现的次数 def statictcs_words(words): s_word_dict = {} for word in words: if s_word_dict.has_key(word): s_word_dict[word] = s_word_dict[word] + 1 else: s_word_dict[word] = 1 #根据单词出现的频次排序,, sorted_dict = sorted(s_word_dict.iteritems(), key=lambda d: d[1], reverse=True) return sorted_dict #将元组转变为列表,(将字典转化为以小列表为元素的列表) def tup2list(volcaulay_list_tup): volcaulay_list_lst = [] for val in volcaulay_list_tup: volcaulay_list_lst.append(list(val)) return volcaulay_list_lst #4.输出成csv def print_to_csv(volcaulay_list, to_file_path): nfile = open(to_file_path, 'w+') for val in volcaulay_list: nfile.write("%s,%s,%0.2f,%s \n" % (val[0], str(val[1]), val[2], val[3])) nfile.close() #计算单词比例 def word_rate(volcaulay_list,total_count): word_rates_dict = [] current_count = 0 for val in volcaulay_list: current_count = current_count + val[1] word_rate = (float(current_count) / total_count) * 100 val.append(word_rate) word_rates_dict.append(val) return word_rates_dict #截取累积频次在一定范围的单词 def select_word(word_percent_list, rate_range): word_list_recite = [] start = rate_range[0] * 100 end = rate_range[1] * 100 for val in word_percent_list: if val[2] >= start and val[2] <= end: word_list_recite.append(val)###列表中的元素就是列表 return word_list_recite #读取释义 def read_meaning(file_path): f = codecs.open(file_path, 'r', "utf-8") #打开文件 lines = f.readlines() #按段落(行)读取文件,输出为n行数据 words_meaning_list = [] for line in lines: line = line.strip()#去掉行首尾的空格 word, space, meaning = line.partition(" ")#partition 和 split分割得到的结果不一样 meaning = meaning.strip() word_meaning = [word,meaning] words_meaning_list.append(word_meaning) return words_meaning_list #给单词配上解释 def meanging_word(volcaulay_list,words_meaning): words_meaning_dict = {} meanings2words = [] for word in words_meaning: words_meaning_dict[word[0]] = word[1] for val in volcaulay_list: if words_meaning_dict.has_key(val[0]): val.append(words_meaning_dict[val[0]]) else: val.append('没有该单词的解释') meanings2words.append(val) return meanings2words def main(): #读取文本 words = read_files(get_file_from_folder('data2')) print '获取了未格式化的单词 %d 个' % (len(words)) #清洗文本 f_words = format_words(words) total_word_count = len(f_words) print '获取了已经格式化的单词 %d 个' %(len(f_words)) # 统计单词和排序 word_list = statictcs_words(f_words) #将字典变成以列表为元素的列表 word_list_lst = tup2list(word_list) #计算单词的累积频率并将其加到单词频数列表中 word_rates_dict = word_rate(word_list_lst,total_word_count) #截取单词 start_and_end = [0.3, 0.7] #截取这一部分的单词 s_word_list = select_word(word_rates_dict,start_and_end) #读取单词解释文件 words_meaning = read_meaning("8000-words.txt") #单词解释和经济学人中抽取的单词配对 meanings_words = meanging_word(s_word_list, words_meaning) # 输出文件 print_to_csv(meanings_words, 'output/words_meanings.csv') if __name__ == "__main__": main()
true
f2453a83c9d38086702c4e3fec2a9b8486dd0657
Python
wangyendt/LeetCode
/Hard/297. Serialize and Deserialize Binary Tree/Serialize and Deserialize Binary Tree.py
UTF-8
1,577
3.453125
3
[]
no_license
#!/usr/bin/env python # encoding: utf-8 """ @author: Wayne @contact: wangye.hope@gmail.com @software: PyCharm @file: Serialize and Deserialize Binary Tree @time: 2019/8/29 16:53 """ import sys sys.path.append('..') from Tools.BinaryTree import * class Codec: def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ if not root: return '[]' ret = [] def helper(tree: TreeNode, ind=0): if not tree: return ret.append({ind: tree.val}) helper(tree.left, 2 * ind + 1) helper(tree.right, 2 * ind + 2) helper(root) return str(ret) def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ ele_dict = {} data = data.replace('[', '').replace(']', '').replace('{', '').replace('}', '').split(',') if '' in data: return None for d in data: k, v = d.split(':') ele_dict[int(k)] = int(v) def helper(ind=0): if ind in ele_dict: tree = TreeNode(ele_dict[ind]) tree.left = helper(2 * ind + 1) tree.right = helper(2 * ind + 2) return tree return None return helper() encoder = Codec() tree = parseTreeNode([1, 2, 3, 'null', 'null', 6, 7]) # tree = parseTreeNode([]) res = encoder.serialize(tree) print(res) decoded_tree = encoder.deserialize(res) print(showTreeNode(decoded_tree))
true
22dc659f188c63a22baac9d0638212917ee58d0c
Python
ankaan/dice
/dice_probability/die_test.py
UTF-8
9,759
2.703125
3
[]
no_license
from dice_probability.die import Die, LazyDie from dice_probability.die import DieParseException, from_string, pool_from_string, fastsum from django.test import TestCase class TestDie(TestCase): def test_init(self): for d in (Die,LazyDie): self.assertEquals(d(0).probability(),[1.0]) self.assertEquals(d(4).probability(),[0.0, 0.25, 0.25, 0.25, 0.25]) self.assertEquals(d([]).probability(),[1.0]) self.assertEquals(d([0,0.5,0.5,0]).probability(),[0,0.5,0.5]) self.assertEquals(d([0,0.5,0.5,0]),d([0,0.5,0.5])) self.assertEquals(d([0,1,1,1,1]),d([0,0.25,0.25,0.25,0.25])) self.assertEquals(d([0,1,1,1,1]).probability(),d(4).probability()) self.assertEquals(d([0,1,1,1,1,0,0,0]).probability(),d(4).probability()) seq = [0.0, 0.2, 0.3, 0.5] self.assertEquals(d(seq).probability(),seq) self.assertEquals(d(5),d([0.0, 0.2, 0.2, 0.2, 0.2, 0.2])) self.assertEquals(d(d(3)),d(3)) self.assertRaises(TypeError,d,(1,2,3)) self.assertRaises(ValueError,d,-1) self.assertEquals(d([d(4), d(6)]), d(4)+d(6)) self.assertEquals(LazyDie([Die(4), Die(6)]), LazyDie(4)+LazyDie(6)) def test_const(self): for d in (Die,LazyDie): self.assertEquals(d.const(0).probability(),[1.0]) self.assertEquals(d.const(1).probability(),[0.0,1.0]) self.assertEquals(d.const(2).probability(),[0.0,0.0,1.0]) def test_add(self): for d in (Die,LazyDie): die = d(2)+d(2) self.assertEquals(die.probability(),[0.0, 0.0, 0.25, 0.5, 0.25]) die = d(2)+d(4) self.assertEquals( die.probability(), [0.0, 0.0, 1./2/4, 1./4, 1./4, 1./4, 1./2/4]) left = (d(2) + d(10)) + d(20) right = d(2) + (d(10) + d(20)) self.assertEquals(left,right) inc = d(8) + d(12) dec = d(12) + d(8) self.assertEquals(inc, dec) a = d(10) + d(10) b = d(12) + d(8) self.assertNotEqual(a, b) a = d(20) b = d(10) + d(10) self.assertNotEqual(a, b) def test_eq(self): for d in (Die,LazyDie): self.assertEqual(d(2),d(2)) self.assertEqual(d(2),d([0,0.5,0.5])) self.assertNotEqual(d(2),d(4)) self.assertNotEqual(d(4),d(2)) self.assertEqual(d([0.0,1,1]),d([0,0.5,0.5])) self.assertEqual(d([0.0,1,1])+d(10),d([0,0.5,0.5])+d(10)) def test_cmp(self): for d in (Die,LazyDie): self.assertEqual(d(2).__cmp__(None),cmp(1,None)) self.assertEqual(d(2).__cmp__(d(2)),0) self.assertEqual(d(2).__cmp__(d([0,0.5,0.5])),0) self.assertEqual(d(2).__cmp__(d(4)),1) self.assertEqual(d(4).__cmp__(d(2)),-1) self.assertEqual(d([0.0,1,1]).__cmp__(d([0,0.5,0.5])),0) self.assertEqual((d([0.0,1,1])+d(10)).__cmp__(d([0,0.5,0.5])+d(10)),0) self.assertEqual(d(2),d(2)) self.assertNotEqual(d(4),d(2)) def test_duplicate(self): for d in (Die,LazyDie): self.assertEqual(d(20).duplicate(0), d.const(0)) self.assertEqual(d(20).duplicate(1), d(20)) self.assertEqual(d(20).duplicate(2), d(20)+d(20)) self.assertEqual(d(8).duplicate(3), d(8)+d(8)+d(8)) self.assertEquals(d(5).duplicate(20), d(5)+d(5).duplicate(19)) a = (d(5) + d(10)).duplicate(3) b = d(5).duplicate(3) + d(10).duplicate(3) self.assertEquals(a,b) def test_probability(self): for d in (Die,LazyDie): self.assertEquals(d(4).probability(),[0.0, 0.25, 0.25, 0.25, 0.25]) self.assertEquals(d(5),d([0.0, 0.2, 0.2, 0.2, 0.2, 0.2])) self.assertEqual(d([0.0,1,1]),d([0,0.5,0.5])) def test_probability_reach(self): for d in (Die,LazyDie): self.assertEquals(d(4).probability_reach(),[1.0,1.0,0.75,0.5,0.25]) def test_probability_vs(self): for d in (Die,LazyDie): p = 0.5*0.75 + 0.5*0.5 self.assertEquals(d(4).probability_vs(d(2)),p) d0 = d(4)+d(6)+d(8)+d(8) d1 = d(4)+d(6)+d(8)+d(10)+d(8) p = d0.probability_vs(d1) + d1.probability_vs(d0) + d0.probability_eq(d1) self.assertEquals(round(p,7),1.0) def test_probability_eq(self): for d in (Die,LazyDie): self.assertEquals(d(4).probability_eq(d(4)),0.25) p = 0.5*0.25 self.assertEquals(d(4).probability_eq(d(8)),p) self.assertEquals(d(8).probability_eq(d(4)),p) def test_roll(self): for d in (Die,LazyDie): self.assertTrue(d(10).roll() in range(1,11)) self.assertEquals(d(10).roll(0.09),1) self.assertEquals(d(10).roll(0.59),6) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0),1) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.000001),1) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.199999),1) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.200001),2) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.899999),2) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.900001),3) self.assertEquals(d([0.0,0.2,0.7,0.1]).roll(0.999999),3) self.assertRaises(ValueError,d(10).roll,-0.2) self.assertRaises(ValueError,d(10).roll,1.0) def test_from_string(self): for d in (Die,LazyDie): self.assertEquals(from_string(d,""),(None,[])) self.assertEquals(from_string(d," "),(None,[])) self.assertEquals(from_string(d,"d4"),(d(4),["d4"])) self.assertEquals(from_string(d,"2d6"),(d(6).duplicate(2),["2d6"])) self.assertEquals(from_string(d," D12"),(d(12),["D12"])) self.assertEquals(from_string(d,"13 "),(d.const(13),["13"])) self.assertEquals(from_string(d,"13 2"),(d.const(13)+d.const(2),["13","2"])) self.assertEquals(from_string(d,"d20 d8 d4"),(d(20)+d(8)+d(4),["d20","d8","d4"])) self.assertEquals(from_string(d,"d4-d4"),(d(4),["d4-d4"])) self.assertEquals( from_string(d,"d4-d20"), (d(4) + d(6) + d(8) + d(10) + d(12) + d(20),["d4-d20"])) self.assertRaises(DieParseException,from_string,d,"12e3") self.assertRaises(DieParseException,from_string,d,"h") self.assertRaises(DieParseException,from_string,d,"3d3d2") self.assertEquals( from_string(d,"5d10",max_dice=5,max_sides=10), (d(10).duplicate(5),["5d10"])) self.assertEquals( from_string(d,"2d10 3d10",max_dice=5,max_sides=10), (d(10).duplicate(2) + d(10).duplicate(3),["2d10","3d10"])) self.assertRaises(DieParseException, from_string, d, "6d10", max_dice=5, max_sides=10) self.assertRaises(DieParseException, from_string, d, "2d2 4d3", max_dice=5, max_sides=10) self.assertRaises(DieParseException, from_string, d, "2d11", max_dice=5, max_sides=10) pool = d([7,4,1]) self.assertEquals(from_string(d,"3p p"),(pool.duplicate(3) + pool,["3p","p"])) self.assertEquals(from_string(d,"3p d4"),(pool.duplicate(3) + d(4),["3p","d4"])) def test_fastsum(self): self.assertEquals(fastsum([Die(10)]), Die(10)) self.assertEquals(fastsum([Die(4),Die(6)]), Die(4)+Die(6)) self.assertEquals(fastsum([Die(6),Die(4)]), Die(4)+Die(6)) def test_pool_from_string(self): for d in (Die,LazyDie): pool = d([7,4,1]) self.assertEquals(pool_from_string(d,""),([],[])) self.assertEquals(pool_from_string(d," "),([],[])) self.assertEquals(pool_from_string(d,"0"),([d([1])],["0"])) self.assertEquals(pool_from_string(d,"1"),([pool],["1"])) self.assertEquals(pool_from_string(d,"5"),([pool.duplicate(5)],["5"])) self.assertEquals(pool_from_string(d,"3 4"),([pool.duplicate(3), pool.duplicate(4)],["3","4"])) self.assertEquals(pool_from_string(d,"4-6"),([pool.duplicate(4), pool.duplicate(5), pool.duplicate(6)],["4","5","6"])) self.assertEquals(pool_from_string(d,"3-3"),([pool.duplicate(3)],["3"])) self.assertEquals(pool_from_string(d,"1-30"),( [pool.duplicate(i) for i in range(1,31)], [str(i) for i in range (1,31)])) self.assertEquals(pool_from_string(d,"5",max_dice=5),([pool.duplicate(5)],["5"])) self.assertRaises(DieParseException, pool_from_string, d, "-1") self.assertRaises(DieParseException, pool_from_string, d, "6", max_dice=5) self.assertRaises(DieParseException, pool_from_string, d, "4p") self.assertRaises(DieParseException, pool_from_string, d, "p") self.assertRaises(DieParseException, pool_from_string, d, "3-2") self.assertRaises(DieParseException, pool_from_string, d, "1-31") def test_percentile_reach(self): for d in (Die,LazyDie): self.assertEquals(d(4).percentile_reach([0.5]),[3.0]) self.assertEquals(d(4).percentile_reach([0.75]),[2.0]) self.assertEquals(d(4).percentile_reach([0.25]),[4.0]) self.assertEquals(d(4).percentile_reach([1.0]),[1.0]) self.assertEquals(d(4).percentile_reach([0.0]),[4.0]) self.assertEquals(d(4).percentile_reach([0.001]),[4.0]) self.assertEquals(d(4).percentile_reach([0.999]),[1.0]) self.assertEquals(d([0,0,0,0,1,1,0,0,0,0]).percentile_reach([1.0]),[4.0]) self.assertEquals(d([0,1,1,0,0,0,0]).percentile_reach([0.5]),[2.0]) self.assertEquals(d([0,1,2,1]).percentile_reach([0.5]),[2.5]) self.assertEquals(d([0,1,1,0,1,1]).percentile_reach([0.5]),[3.0]) self.assertEquals(d([0,0,1,0,1]).percentile_reach([0.5]),[3.0]) self.assertEquals(d(4).percentile_reach([1]),d(4).percentile_reach([1.0])) self.assertEquals(d(4).percentile_reach([0]),d(4).percentile_reach([0.0])) self.assertRaises(ValueError, d(4).percentile_reach, [-0.1]) self.assertRaises(ValueError, d(4).percentile_reach, [1.1]) self.assertEquals(round(d(10).percentile_reach([0.5])[0],7),6.0) self.assertEquals(round(d(10).percentile_reach([0.75])[0],7),3.5) self.assertEquals(d(4).percentile_reach([0.75,0.5,0.25]),[2.0, 3.0, 4.0])
true
6674f364967428f01b295eb4386e8002fedf37d7
Python
nbnbhattarai/qpapers
/qpapers/scienceopen.py
UTF-8
3,027
2.625
3
[]
no_license
import requests import json from datetime import datetime from .article import Article class ScienceOpenSearch(object): NAME = 'SCIENCEOPEN' ROOT_URL = 'https://www.scienceopen.com' def __init__(self, *args, **kwargs): self.url = self.ROOT_URL + '/search-servlet' self.keyword = kwargs.get('keyword', '') self.page = 0 self.result = 5 def set_keyword(self, keyword): self.keyword = keyword def set_results(self, results): self.result = results @property def params(self): filters = [ { 'kind': 48, 'query': self.keyword, }, { 'kind': 39, 'disciplines': [ { 'kind': 23, 'id': '79f00046-6f95-11e2-bcfd-0800200c9a66', }, ] }, { 'kind': 46, 'record': False, 'abstract': True, 'authorSummary': True, 'article': True, } ] params = { 'kind': 61, 'itemsToGet': self.result, 'firstItemIndex': self.page * self.result, 'getFacets': False, 'getFilters': False, 'search': { 'v': 3, 'id': '', 'isExactMatch': True, 'context': None, 'kind': 77, 'order': 3, 'orderLowestFirst': False, 'query': '', 'filters': filters, } } return { 'q': json.dumps(params) } def search(self): return requests.get(self.url, params=self.params) def get_articles(self): response = self.search() response_json = response.json() # print('response: ', response_json) articles = [] for result in response_json.get('result', {'results': []}).get('results', []): title = ' '.join(result.get('_titleSafe', '').replace( '\n', ' ').strip().split()) abstract = ' '.join(result.get('_abstractTextSafe', '').replace('\n', ' ').strip().split()) authors = result.get('_authors', []) authors = [author.get('_displayNameSafe') for author in authors] _date = result.get('_date', 0) _date = datetime.utcfromtimestamp(_date//1000) submitted_date = _date.strftime('%d %B, %Y') href = self.ROOT_URL + result.get('_url') article = Article( title=title, summary=abstract, authors=authors, submitted_date=submitted_date, link=href, source=self.NAME) articles.append(article) return articles if __name__ == '__main__': sos = ScienceOpenSearch() sos.set_keyword('Machine Learning') sos.get_articles()
true
a33212c98531a033578232a74aa84a9e79d3c69c
Python
steven0301/Translate-and-Summarize-Text
/start.py
UTF-8
3,271
2.609375
3
[]
no_license
from gensim.summarization.summarizer import summarize from newspaper import Article from flask import Flask, render_template, request, jsonify from googletrans import Translator import json import pdftotext import urllib from urllib.error import URLError, HTTPError import io from pathlib import Path import tempfile class CustomFlask(Flask): jinja_options = Flask.jinja_options.copy() jinja_options.update(dict( variable_start_string='[[', variable_end_string=']]', )) app = CustomFlask(__name__) translator = Translator() @app.route("/") def main(): return render_template('index.html') @app.route("/news", methods=['POST']) def news(): # retrieve articel from URL url = request.args['url'] text = "" # for PDF extension if Path(url).suffix == '.pdf': try : # pretend not to crawl req = urllib.request.Request(url, headers={'User-Agent' : "Magic Browser"}) con = urllib.request.urlopen(req) remoteFile = con.read() momoryFile = io.BytesIO(remoteFile) pdf = pdftotext.PDF(momoryFile) for page in pdf : text += page except HTTPError as e : err = e.read() code = e.getCode() # for normal URL else : news = Article(url) news.download() news.parse() text = news.text # remove multiple whitespaces in the article text = ' '.join(text.split()) response = app.response_class( response=json.dumps(text), status=200, mimetype='application/json' ) return response @app.route("/abridge", methods=['POST']) def abridge(): origin = request.args['origin'] summarizeRate = request.args['summarizerate'] length = len(origin.split()) * (int(summarizeRate)/100) summarized = summarize(origin, word_count=length) response = app.response_class( response=json.dumps(summarized.replace("\n", "\n\n")), status=200, mimetype='application/json' ) return response @app.route("/translate", methods=['POST']) def translate(): text = "" try : summarized = request.args['summarized'] translated = translator.translate(summarized, dest='ko') text = translated.text except Exception as e: text = "3900 characters limit exceeded !!!" response = app.response_class( response=json.dumps(text), status=200, mimetype='application/json' ) return response @app.route("/upload", methods=['POST']) def upload(): file = request.files['file'] text = "" tempDir = tempfile.TemporaryDirectory() filepath = tempDir.name + '/temp.pdf' file.save(filepath) con = urllib.request.urlopen('file://'+filepath) remoteFile = con.read() momoryFile = io.BytesIO(remoteFile) pdf = pdftotext.PDF(momoryFile) for page in pdf : text += page tempDir.cleanup() text = ' '.join(text.split()) response = app.response_class( response=json.dumps(text), status=200, mimetype='application/json' ) return response if __name__ == '__main__': app.run(host="127.0.0.1", port="8080")
true
7b5543d3cc0b3e732ee78ad86ee6ce8c8b8582ac
Python
raykunal2021/SDET_Selenium
/alerts.py
UTF-8
1,529
3.015625
3
[]
no_license
from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.common.by import By import time driver=webdriver.Chrome(ChromeDriverManager().install()) driver.get("https://testautomationpractice.blogspot.com/") driver.maximize_window() #Click on the "Alert" button to generate the Simple Alert driver.find_element_by_xpath("//button[normalize-space()='Click Me']").click() #Switch the control to the Alert window obj=driver.switch_to.alert time.sleep(5) #Retrieve the message on the Alert window message=obj.text print("Alert shows following message: "+ message) time.sleep(5) #use the accept() method to accept the alert obj.accept() #get the text returned when OK Button is clicked. txt=driver.find_element_by_css_selector("#demo") print(" Clicked on the OK Button in the Alert Window : ",txt.text) # Section 2 # Re-generate the Confirmation Alert button = driver.find_element_by_xpath("//button[normalize-space()='Click Me']") button.click() time.sleep(2) #Switch the control to the Alert window obj1 = driver.switch_to.alert # Dismiss the Alert using obj1.dismiss() #get the text returned when Cancel Button is clicked. txt1=driver.find_element_by_css_selector("#demo") print(" Clicked on the Cancle Button in the Alert Window : ",txt1.text) driver.switch_to.default_content()#use it to come back to default page time.sleep(2) driver.close()
true
916894d40ad8c18b4af1d39580e233120a8c04da
Python
jawozele/Python_Files
/Lists.py
UTF-8
376
3.984375
4
[]
no_license
# A program that stores a List of cars. The output is displayed with all cars saved on cars = ['Mercedes Benz', 'Toyota', 'BMW', 'Hyundai', 'Mitsubishi', 'Land Rover', 'Audi', 'Ford Focus'] #print(cars[0]) #print(cars[1:4]) #print(len(cars)) cars.sort() cars.append('Chrysler') cars.remove('Hyundai') print (cars)
true
fcd65a1995c8e7ffa79dd1aaf83ee314e54f297b
Python
neurospin/pySnpImpute
/pysnpimpute/imputation.py
UTF-8
3,873
2.53125
3
[ "LicenseRef-scancode-cecill-b-en" ]
permissive
# -*- coding: utf-8 -*- """ Defines a set of functions to run the imputation using Impute2. The module requires Impute2 to be installed. """ import os import pysnpimpute from pysnpimpute.utils import (check_installation_of_required_softwares, check_chromosome_name, check_existence_of_paths, run_cmd_and_check) def impute(chromosome, from_bp, to_bp, hap, sample, ref_hap, ref_legend, recombination_map, outdir=None, to_impute=None, Ne=20000, buffer_kb=250, allow_large_regions=False, basename=None, suffix=None, impute2_exe="impute2", logger=None): """ Run imputation using Impute2 Parameters ---------- chromosome: str Name of chromosome or X chromosome region. Accepted names: "1", ..., "22", "X_PAR1", "X_nonPAR" and "X_PAR2". from_bp, to_bp: int The interval in basepair position to impute. hap: str Path to the phased data to impute in Impute2 format. sample: str Path to samples to impute in Impute2 format. ref_hap, ref_legend: str Path to reference panel file in Shapeit2/Impute2 format. recombination_map: str Path to the recombination map required by Shapeit2 and Impute2. outdir: str Path to directory where to output. to_impute: str, default None Path to the list of variants to impute. By default imputation is done for all variants of the reference panel. Ne: int, default 20000 Impute2 'Ne' paraemter. buffer_kb: int, default 250 Impute2 '-buffer' parameter. Length of buffer region in kb (NOT IN BASEPAIR) to include on each side of the analysis interval. allow_large_regions: bool, default False By default Impute2 does not allow imputation on a region of size > 7Mb. To force imputation on a bigger region, set this option to True. basename, suffix: str, default None. Output path is <outdir>/<basename><suffix>. By default basename is <hap> filename without .hap.gz extension and suffix is '.impute2.<from_bp>_<to_bp>'. impute2_exe: str, default "minimac3" Path to the impute2 executable or alias if it's in $PATH. logger: logging object, defaut None. To activate logging, pass a logging object. """ # Check that Impute2 is installed check_installation_of_required_softwares(dict(Impute2=impute2_exe)) check_chromosome_name(chromosome) if outdir is None: outdir = os.path.dirname(hap) # Check existence of input files paths_to_check = [hap, sample, ref_hap, ref_legend, recombination_map, outdir] if to_impute is not None: paths_to_check += [to_impute] check_existence_of_paths(paths_to_check) if basename is None: basename = os.path.basename(hap).split(".gz")[0].split(".hap")[0] if suffix is None: suffix = ".impute2.{}_{}".format(from_bp, to_bp) imputed_hap = os.path.join(outdir, basename + suffix) cmd = [impute2_exe, "-use_prephased_g", "-known_haps_g", hap, "-sample_g", sample, "-h", ref_hap, "-l", ref_legend, "-m", recombination_map, "-Ne", str(Ne), "-int", str(from_bp), str(to_bp), "-buffer", str(buffer_kb), "-o", imputed_hap] if to_impute is not None: cmd += ["-include_snps", to_impute] if allow_large_regions: cmd += ["-allow_large_regions"] if chromosome in pysnpimpute.X_REGIONS: cmd += ["-chrX"] if chromosome.startswith("X_PAR"): cmd += ["-Xpar"] run_cmd_and_check(cmd, logger=logger) return imputed_hap
true
453cd742d0933bee7d1ca3baa27e65e1013f4a8a
Python
homebysix/grahamgilbert-recipes
/ShardOverTimeProcessor/ShardOverTimeProcessor.py
UTF-8
7,078
2.703125
3
[ "Apache-2.0" ]
permissive
#!/usr/local/autopkg/python # """See docstring for ShardOverTimeProcessor class""" from __future__ import absolute_import, division, print_function import datetime import sys from autopkglib import Processor, ProcessorError __all__ = ["ShardOverTimeProcessor"] DEFAULT_CONDITION = "shard" DEFAULT_DELAY_HOURS = 0 DEFAULT_SHARD_DAYS = 5 DEFAULT_WORKING_HOURS = True class ShardOverTimeProcessor(Processor): """This processor will add an installable condition to Munki pkginfo files to roll updates out over a period of time based on a integer value of a configurable condition.""" description = __doc__ input_variables = { "condition": { "required": False, "description": "The condition to use to divide devices. Defaults to \"{}\"".format(DEFAULT_CONDITION) }, "delay_hours": { "required": False, "description": "Number of hours to delay the initial rollout by. Defaults to \"{}\"".format(DEFAULT_DELAY_HOURS) }, "shard_days": { "required": False, "description": "The number of days the rollout will be rolled over. Defaults to \"{}\"".format(DEFAULT_SHARD_DAYS) }, "working_hours": { "required": False, "description": "Restrict rollout times to 9am-6pm (local time). Defaults to \"{}\"".format(DEFAULT_WORKING_HOURS) } } output_variables = { "installable_condition": { "description": "The installable condition" } } def next_working_day(self, the_date): try: if the_date.weekday() == 5: # It's a saturday return the_date.replace(hour=9, minute=00) + datetime.timedelta(days=2) elif the_date.weekday() == 6: # It's a sunday return the_date.replace(hour=9, minute=00) + datetime.timedelta(days=1) elif the_date.hour not in range(9,18): print(("{} is not between 9 and 18".format(the_date))) print(("Sending {} back to next_working_day".format(the_date.replace(hour=9, minute=00) + datetime.timedelta(days=1)))) # The time is not in working hours, call ourself with tomorrow as the date return self.next_working_day(the_date.replace(hour=9, minute=00) + datetime.timedelta(days=1)) else: return the_date except BaseException as err: # handle unexpected errors here exc_type, exc_obj, exc_tb = sys.exc_info() error_string = "error: {}, line: {}".format(err, exc_tb.tb_lineno) raise ProcessorError(error_string) def main(self): try: condition = self.env.get("condition", DEFAULT_CONDITION) delay_hours = int(self.env.get("delay_hours", DEFAULT_DELAY_HOURS)) shard_days = int(self.env.get("shard_days", DEFAULT_SHARD_DAYS)) working_hours = bool(self.env.get("working_hours", DEFAULT_WORKING_HOURS)) output_string = "" now = datetime.datetime.now() target_date = now + datetime.timedelta(days=shard_days) start_date = now + datetime.timedelta(hours=delay_hours) date_format = "%Y-%m-%dT%H:%M:%SZ" # We also only deploy monday to friday if working_hours: # If working hours, we only have 9 hours a day. # We are only going to start deploying (or more if delay_hours > 24) at 9am if delay_hours > 24: start_date = now + datetime.timedelta(hours=delay_hours) if start_date.hour > 18 and start_date.hour < 9: start_date = start_date.replace(hour=9, minute=00) + datetime.timedelta(days=1) else: start_date = start_date.replace(hour=9, minute=00) # make sure it's a working day start_date = self.next_working_day(start_date) # how many working hours between now and end of shard_days increment = datetime.timedelta(minutes= (9 * shard_days * 60) / 10) current_deploy_date = start_date output_string += "(" for group in range(0, 10): group = (group + 1) * 10 deploy_time = self.next_working_day(current_deploy_date + increment) print(("group: {} deploy_time: {}".format(group, deploy_time))) output_string += "({} <= {} AND date > CAST(\"{}\", \"NSDate\")) OR ".format(condition, group, deploy_time.strftime(date_format)) current_deploy_date = deploy_time output_string = output_string[:-4] output_string += ")" else: # How many do we increment by for each group? deploy_time = target_date - start_date time_increment = deploy_time / 10 time_10 = start_date # if working_hours is true, make sure the start time is between 9 and 6 time_20 = start_date + (time_increment * 2) time_30 = start_date + (time_increment * 3) time_40 = start_date + (time_increment * 4) time_50 = start_date + (time_increment * 5) time_60 = start_date + (time_increment * 6) time_70 = start_date + (time_increment * 7) time_80 = start_date + (time_increment * 8) time_90 = start_date + (time_increment * 9) time_100 = start_date + (time_increment * 10) output_string = """({} <= 10 AND date > CAST("{}", "NSDate")) OR {} <= 20 AND date > CAST("{}", "NSDate")) OR {} <= 30 AND date > CAST("{}", "NSDate")) OR {} <= 40 AND date > CAST("{}", "NSDate")) OR {} <= 50 AND date > CAST("{}", "NSDate")) OR {} <= 60 AND date > CAST("{}", "NSDate")) OR {} <= 70 AND date > CAST("{}", "NSDate")) OR {} <= 80 AND date > CAST("{}", "NSDate")) OR {} <= 90 AND date > CAST("{}", "NSDate")) OR {} <= 100 AND date > CAST("{}", "NSDate")) """.format(condition, time_10.strftime(date_format), condition, time_20.strftime(date_format), condition, time_30.strftime(date_format), condition, time_40.strftime(date_format), condition, time_50.strftime(date_format), condition, time_60.strftime(date_format), condition, time_70.strftime(date_format), condition, time_80.strftime(date_format), condition, time_90.strftime(date_format), condition, time_100.strftime(date_format)) # print(output_string) self.env["installable_condition"] = output_string except BaseException as err: # handle unexpected errors here exc_type, exc_obj, exc_tb = sys.exc_info() error_string = "error: {}, line: {}".format(err, exc_tb.tb_lineno) raise ProcessorError(error_string) if __name__ == "__main__": PROCESSOR = ShardOverTimeProcessor() PROCESSOR.execute_shell()
true
a4cadb46aaa9304168c671497ce34605c3854f5c
Python
manoelsslima/datasciencedegree
/tarefas/tarefa01/e01q03.py
UTF-8
285
4.09375
4
[]
no_license
''' Faça um programa que peça um número para o usuário (string), converta-o para float e depois imprima-o na tela. Você consegue fazer a mesma coisa, porém convertendo para int? ''' numero_str = input('Informe um número: ') numero_float = float(numero_str) print(numero_float)
true
96a0fde6393b2d792fc17543720ba0414c621f10
Python
Yangqqiamg/Python-text
/基础学习/python_work/Chapter 9/text.py
UTF-8
3,527
4.03125
4
[]
no_license
#one class Dog(): """docstring for dog""" def __init__(self, name, age): self.name = name self.age = age def sit(self): print(self.name.title() + " is now sitting. ") pass def roll_over(self): print(self.name.title() + " rolled over! ") pass #two my_dog = Dog('willie', 7) print("My dog's name is " + my_dog.name.title() + '.') print("My dog is " + str(my_dog.age) + ' years old. ') print('') #three my_dog.sit() my_dog.roll_over() print('') #four my_dog = Dog('red', 9) your_dog = Dog('green', 12) print("My dog's name is " + my_dog.name.title() + '.') print("My dog is " + str(my_dog.age) + ' years old. ') my_dog.sit() my_dog.roll_over() print("\nyour dog's name is " + your_dog.name.title() + '.') print("your dog is " + str(your_dog.age) + ' years old. ') your_dog.sit() your_dog.roll_over() print('') #five class Car(): def __init__(self, make, model, year): self.make = make self.model = model self.year = year self.odmeter_reading = 0 def get_descripitve_name(self): long_name = str(self.year) + ' ' + self.make + ' ' + self.model return long_name def read_odmeter(self): print("This car has " + str(self.odmeter_reading) + " miles on it. ") def update_odmeter(self, mileage): if mileage >=self.odmeter_reading: self.odmeter_reading = mileage else: print("you can't do it !") def inc_odmeter(self, miles): self.odmeter_reading += miles def fill_gas_tank(self): print("This full !") pass my_new_car = Car('mike', 'aeg0', 8462) print(my_new_car.get_descripitve_name()) #six my_new_car.read_odmeter() #seven my_new_car.odmeter_reading = 292 my_new_car.read_odmeter() #eight my_new_car.update_odmeter(84) my_new_car.read_odmeter() my_new_car.update_odmeter(56) my_new_car.read_odmeter() my_new_car.inc_odmeter(15) my_new_car.read_odmeter() #nine and "homework 9-9" '''from car (five)''' class Battery(): def __init__(self,battery_size=70): self.battery_size = battery_size def describe_battery(self): print("This car has a " + str(self.battery_size) + "-kWh battery. ") pass def get_range(self): if self.battery_size == 70: range = 240 elif self.battery_size == 85: range = 270 message = "This car can go approximately " + str(range) message += " miles on a full charge." print(message) pass def upgrade(self): if self.battery_size != 85: self.battery_size = 85 pass class ElectricCar(Car): def __init__(self, make, model, year): super().__init__(make, model, year) self.battery = Battery() def fill_gas_tank(self): print("This car doesn's have a gas tank! ") pass my_tesla = ElectricCar('tesla', 'model s', 2006) print(my_tesla.get_descripitve_name()) my_tesla.battery.describe_battery() my_tesla.fill_gas_tank() my_tesla.battery.get_range() my_tesla.battery.upgrade() my_tesla.battery.get_range() # my_tesla.battery.battery_size = 85 # my_tesla.battery.get_range() #thirteen from collections import OrderedDict flavor_languages = OrderedDict() flavor_languages['joe'] = 'python' flavor_languages['mary'] = 'c' flavor_languages['make'] = 'ruby' flavor_languages['phil'] = 'python' for name ,language in flavor_languages.items(): print(name.title() + "'s favorite language is " + language.title())
true
8353697b7d39a0ce64c99db7e0eb8752fae0c9be
Python
nijjumon/py
/basic/math.py
UTF-8
496
3.796875
4
[]
no_license
import math a=input("enter length") b=input("enter base") c=input("enter hypotenuse") a=float(a) b=float(b) c=float(c) if a==0 or b==0 or c==0: print("invalid input") elif a+b>c and b+c>a and a+c>b: perimeter=a+b+c s=perimeter/2 area=math.sqrt(s*(s-a)*(s-b)*(s-c)) # print("the area and perimeter of your triangle is {} and {}".format(area,perimeter)) print("the area and perimeter of your triangle is %f and %f" %(area,perimeter)) else: print("invalid triangle")
true
165e1011593a8b974cff25dbee6fff1f9384f878
Python
ultrajedinotreal/pprac
/helloworld.py
UTF-8
184
3.3125
3
[]
no_license
a = int(input("Enter the number of hellos you need to fuck off")) i=0 for i in range ( a): print("HELLO THERE") print("General Kenobi") print("You are a bold one")
true
0af065722bb5dc739a4cdaefc91613f3dcceb025
Python
MohammedAlJaff/1MD120_Deep_Learning_for_Image_Analysis_Assignments
/assignment_1/.ipynb_checkpoints/ex_1_4_model_1-checkpoint.py
UTF-8
2,009
3.171875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from maj_linear_model import LinearRegressionModel, standarize_data from load_auto import load_auto if __name__ =='__main__': # Load automobile data-set Xraw, y = load_auto() # Standardize data matrix X = standarize_data(Xraw) horsepower_column_j = 2 X1 = X[:,horsepower_column_j].reshape([np.size(X[:,horsepower_column_j]),1]) ### learning_rates = [1, 1e-1, 1e-2, 1e-3, 1e-4] training_curves = [] for i in range(len(learning_rates)): #define model maj_1_model = LinearRegressionModel(data_X=X1, true_label_Y=y) # fit model with learning rate lr = learning_rates[i] w1, b1, j1 = maj_1_model.train_linear_model(X=X1, y_true=y, nr_iter=1000, learning_rate=lr) training_curves.append(j1) # same and append trainng cost trajectories plt.figure(figsize=[15,5]) for i in range(len(learning_rates)): plt.plot(training_curves[i], label='$\\alpha$ = '+str(learning_rates[i])) plt.legend() plt.legend() plt.xlabel('iterations') plt.ylabel('Training Cost/Emperical Risk') plt.title('Model 1: Using only "Horsepower" as the input data feature') lr = 0.01 maj_1_model = LinearRegressionModel(data_X=X1, true_label_Y=y) w1, b1, j1 = maj_1_model.train_linear_model(X=X1, y_true=y, nr_iter=1000, learning_rate=lr) y_pred = maj_1_model.predict(X1) plt.figure(figsize=[12,5]) plt.scatter(X1, y) plt.plot(X1, y_pred, 'kx', label = 'data-point predictions') plt.plot(X1, y_pred, '-r', label = 'line eq: '+str(w1[0,0])[:6]+'x + ' + str(b1)[:5]) plt.legend() plt.title(f'Model 1: Horsepower v. MPG a & best-fit line from grad-decent optimization - lr = {lr}') plt.ylabel('miles per gallon (mpg) ') plt.xlabel('horsepower (Standardized values)') plt.savefig('ex_1_4_Model1_horsepower_vs_mpg.png') plt.show()
true
766c810eacbf2826e62dd8e2c9c4c7c327f14991
Python
nymwa/ante2
/tunimi/tokenizer.py
UTF-8
811
2.984375
3
[]
no_license
import re from .vocabulary import Vocabulary class Tokenizer: def __init__(self): self.vocab = Vocabulary() self.proper_pattern = re.compile(r'^([AIUEO]|[KSNPML][aiueo]|[TJ][aueo]|W[aie])n?(([ksnpml][aiueo]|[tj][aueo]|w[aie])n?)*$') def convert(self, x): if x in self.vocab.indices: return self.vocab.indices[x] elif x.isdecimal(): return self.vocab.number_id elif self.proper_pattern.match(x) and ('nm' not in x) and ('nn' not in x): return self.vocab.proper_id else: return self.vocab.unk_id def __call__(self, x, as_str=False): x = x.split() x = [self.convert(token) for token in x] if as_str: x = ' '.join([self.vocab[token] for token in x]) return x
true
bbbd7dc7131651d5d571194b058f8373c5ffe86a
Python
superwj1990/AdCo
/VOC_CLF/dataset.py
UTF-8
1,855
3.03125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- """ Created on Tue Mar 12 23:23:51 2019 @author: Keshik """ import torchvision.datasets.voc as voc class PascalVOC_Dataset(voc.VOCDetection): """`Pascal VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`_ Detection Dataset. Args: root (string): Root directory of the VOC Dataset. year (string, optional): The dataset year, supports years 2007 to 2012. image_set (string, optional): Select the image_set to use, ``train``, ``trainval`` or ``val`` download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. (default: alphabetic indexing of VOC's 20 classes). transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, required): A function/transform that takes in the target and transforms it. """ def __init__(self, root, year='2012', image_set='train', download=False, transform=None, target_transform=None): super().__init__( root, year=year, image_set=image_set, download=download, transform=transform, target_transform=target_transform) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is the image segmentation. """ return super().__getitem__(index) def __len__(self): """ Returns: size of the dataset """ return len(self.images)
true
b9f79d7608c0882f7c3f01e64711067438048f94
Python
kamillk/Homework2
/resistance.py
UTF-8
2,212
2.734375
3
[]
no_license
import sys import xml.dom.minidom import time from matrixops import floyd_warshall from copy import deepcopy doc = xml.dom.minidom.parse(sys.argv[1]) elements = doc.getElementsByTagName('net') number = elements.length; d = [[float("+inf") for x in range(number+1)] for y in range(number+1)] for i in range(1,number+1): d[i][i] = 0; capactor = doc.getElementsByTagName('capactor') resistor = doc.getElementsByTagName('resistor') diode = doc.getElementsByTagName('diode') for i in range(capactor.length): res = float(capactor[i].attributes['resistance'].value) a = int(capactor[i].attributes['net_from'].value) b = int(capactor[i].attributes['net_to'].value) d[a][b] = 1/ (1/d[a][b] + 1/res) d[b][a] = 1/ (1/d[b][a] + 1/res) for i in range(resistor.length): res = float(resistor[i].attributes['resistance'].value) a = int(resistor[i].attributes['net_from'].value) b = int(resistor[i].attributes['net_to'].value) d[a][b] = 1/ (1/d[a][b] + 1/res) d[b][a] = 1/ (1/d[b][a] + 1/res) for i in range(diode.length): res = float(diode[i].attributes['resistance'].value) res_rev = float(diode[i].attributes['reverse_resistance'].value) a = int(diode[i].attributes['net_from'].value) b = int(diode[i].attributes['net_to'].value) d[a][b] = 1/ (1/d[a][b] + 1/res) d[b][a] = 1/ (1/d[b][a] + 1/res_rev) cur_d = deepcopy(d) start_python = time.time() for k in range(1,number+1): for i in range(1,number+1): for j in range(1,number+1): if d[i][j] == 0 or d[i][k] == 0 and d[k][j] == 0: d[i][j] = 0 elif d[i][j] == float("+inf") and d[i][k] == float("+inf") or d[i][j] == float("+inf") and d[k][j] == float("+inf"): d[i][j] = float("+inf") else: d[i][j] = 1/ (1/d[i][j]+ 1/(d[i][k]+d[k][j])) finish_python = time.time() start_c = time.time() d = floyd_warshall(cur_d) finish_c = time.time() cur_f = sys.argv[2] f = open(cur_f, 'w') for i in range(1,number+1): for j in range(1,number+1): f.write("{},".format(round(d[i][j],6))) f.write("\n") f.close() print((finish_python - start_python)/(finish_c - start_c))
true
5d9cc23c0f49805122d8bfdf4c39154df281af1b
Python
MoShrank/code-design-python-task
/zahlenraten.py
UTF-8
309
4.03125
4
[]
no_license
goal_number = 100 def check_number(x): if x == goal_number: print("congratulations. You won, Your number is right") elif goal_number < x: print("the number is lower") else: print("the number is higher") inp = input("guess the number: ") inp = int(inp) check_number(inp)
true
472b600312d435e2476fe5977a407e08a6fe5c33
Python
MiekoHayasaka/Python_Training
/day0210/lesson3.py
UTF-8
143
3.546875
4
[]
no_license
def sumof(n): if n <= 1: return n else: return n*sumof(n-1) num=int(input('正の整数>')) ans=sumof(num) print(ans)
true
bf8f3c2c8176999a747f9f27bf1ff7891a9c8f80
Python
csun87/dworp
/tests/test_agent.py
UTF-8
1,592
2.8125
3
[ "BSD-3-Clause" ]
permissive
# Copyright 2018, The Johns Hopkins University Applied Physics Laboratory LLC # All rights reserved. # Distributed under the terms of the Modified BSD License. from dworp.agent import * import unittest class IdentifierHelperTest(unittest.TestCase): def test(self): # trivial test that serves as an example id_gen = IdentifierHelper.get(50) self.assertEqual(50, next(id_gen)) self.assertEqual([51, 52, 53], [next(id_gen) for x in range(3)]) class AgentTest(unittest.TestCase): class MockAgent(Agent): def step(self, now, env): pass def test_creation_with_size(self): a = AgentTest.MockAgent("name", 5) self.assertEqual(5, a.state.shape[0]) def test_creation_without_size(self): a = AgentTest.MockAgent("name", 0) self.assertIsNone(a.state) class SelfNamingAgentTest(unittest.TestCase): class MockAgent(SelfNamingAgent): def step(self, now, env): pass def test_id(self): a1 = SelfNamingAgentTest.MockAgent(5) a2 = SelfNamingAgentTest.MockAgent(5) self.assertEqual(1, a1.agent_id) self.assertEqual(2, a2.agent_id) class TwoStageAgentTest(unittest.TestCase): class MockAgent(TwoStageAgent): def step(self, now, env): self.next_state[1] = 42 def test_state_switch_on_complete(self): agent = TwoStageAgentTest.MockAgent(agent_id=1, size=5) agent.step(0, None) agent.complete(0, None) self.assertEqual(0, agent.state[0]) self.assertEqual(42, agent.state[1])
true
6e42a3363e6a3f4e04f0a9d0d3706fa7d4a313d0
Python
mlarkin00/mslarkin-experiments
/gae-budget-alert/main.py
UTF-8
2,782
2.65625
3
[]
no_license
import base64 import json import os import logging from googleapiclient import discovery from oauth2client.client import GoogleCredentials PROJECT_ID = os.getenv('GCP_PROJECT') APP_NAME = f"{PROJECT_ID}" #Which alert threshold should trigger the shutdown (e.g. 100% of set budget) TRIGGER_THRESHOLD = 1.0 def check_app(data, context): """ Checks Budget Alert Pub/Sub message and disables App Engine if costs have exceeded the desired budget """ #Extract relevant Pub/Sub message content - (Message format: https://cloud.google.com/billing/docs/how-to/budgets#notification_format) pubsub_data = base64.b64decode(data['data']).decode('utf-8') pubsub_json = json.loads(pubsub_data) cost_amount = pubsub_json['costAmount'] budget_amount = pubsub_json['budgetAmount'] budget_name = pubsub_json['budgetDisplayName'] alert_threshold = pubsub_json['alertThresholdExceeded'] # Check if we've hit the set limit (alert_threshold = .8 for 80%, 1.0 for 100%, etc.) if alert_threshold < TRIGGER_THRESHOLD: print( f'No action necessary at {alert_threshold} for {budget_name}.\n' f'Current Cost: {cost_amount}\n' f'Budget Amount: {budget_amount}' ) return # Get the Apps object (http://googleapis.github.io/google-api-python-client/docs/dyn/appengine_v1.apps.html) appengine = discovery.build( 'appengine', 'v1', cache_discovery=False, credentials=GoogleCredentials.get_application_default() ) apps = appengine.apps() # Get the current servingStatus current_status = __get_app_status(APP_NAME, apps) print(f'Current servingStatus: {current_status}') # If app is serving, disable it if current_status == "SERVING": logging.warning( f'Budget threshold exceeded, disabling app {APP_NAME}\n' f'Budget Alert: {budget_name}\n' f'Budget Threshold: {alert_threshold}\n' f'Budget Amount: {budget_amount}\n' f'Current Cost: {cost_amount}' ) __toggle_app(APP_NAME, apps, "USER_DISABLED") else: print( f'Budget threshold exceeded, but {APP_NAME} is already disabled\n' f'Budget Alert: {budget_name}' ) return return def __get_app_status(app_name, apps): """ Get the current serving status of the app """ app = apps.get(appsId=app_name).execute() return app['servingStatus'] def __toggle_app(app_name, apps, set_state): """ Enables or Disables the app, depending on set_state """ body = {'servingStatus': set_state} app = apps.patch(appsId=app_name, updateMask='serving_status', body=body).execute() return
true
69c5fd7d6874709e24f44ed06c4fd3a008502806
Python
AngelLiang/programming-in-python3-2nd-edition
/py3book31/py31eg/findduplicates-m.py
UTF-8
2,969
2.515625
3
[ "MIT", "GPL-3.0-only", "GPL-1.0-or-later", "LGPL-2.0-or-later" ]
permissive
#!/usr/bin/env python3 # Copyright (c) 2008-11 Qtrac Ltd. All rights reserved. # This program or module is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. It is provided for educational # purposes and is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. import locale locale.setlocale(locale.LC_ALL, "") import collections import hashlib import optparse import os import multiprocessing def main(): opts, path = parse_options() data = collections.defaultdict(list) if opts.verbose: print("Creating file list...") for root, dirs, files in os.walk(path): for filename in files: fullname = os.path.join(root, filename) try: key = (os.path.getsize(fullname), filename) except EnvironmentError: continue if key[0] == 0: continue data[key].append(fullname) items = [] for key in sorted(data): if len(data[key]) > 1: items.append((key[0], tuple(data[key]))) if items: pool = multiprocessing.Pool() pool.map_async(check_one_item, items, 1, print_result) pool.close() pool.join() def check_one_item(item): filenames = item[1] md5s = collections.defaultdict(set) for filename in filenames: try: md5 = hashlib.md5() with open(filename, "rb") as fh: md5.update(fh.read()) md5 = md5.digest() md5s[md5].add(filename) except EnvironmentError: continue results = [] for filenames in md5s.values(): if len(filenames) == 1: continue results.append("Duplicate files ({0:n} bytes):\n\t{1}".format( item[0], "\n\t".join(sorted(filenames)))) return "\n".join(results) def print_result(results): for result in results: if result: print(result) def parse_options(): parser = optparse.OptionParser( usage=("usage: %prog [options] [path]\n" "outputs a list of duplicate files in path " "using the MD5 algorithm\n" "ignores zero-length files\n" "path defaults to .")) parser.add_option("-v", "--verbose", dest="verbose", default=False, action="store_true") parser.add_option("-d", "--debug", dest="debug", default=False, action="store_true") opts, args = parser.parse_args() return opts, args[0] if args else "." if __name__ == "__main__": # This is *vital* on Windows! main()
true
6678465514f55498980a1f70ab70d669d8ea8815
Python
Johanjimenez97/Estructura-de-Datos-1
/tabla2.py
UTF-8
1,139
2.640625
3
[]
no_license
class Generador: def generaTabla(self, tabla): codigo = "" for t in tabla: codigo = codigo + "<tr>" for j in t.split(","): if j == 'Oro': j= '<img src="static/img/Oro.jpg" width="50px" heigth="50px">' elif j== 'Plata': j = '<img src="static/img/Plata.jpg" width="50px" heigth="50px">' elif j== 'Bronce': j = '<img src="static/img/Bronce.jpg" width="50px" heigth="50px">' elif j== 'Cobre': j = '<img src="static/img/Cobre.jpg" width="50px" heigth="50px">' if j == '1': j= '<img src="static/img/Rugal.jpg" width="50px" heigth="50px">' codigo = codigo + "<td>" + j + "</td>" codigo = codigo + "</tr>" codigo = "<table>" + codigo + "</table>" return codigo def generarTituloParrafo(self, titulo, parrafo): titulo = "<h1 >" + titulo + "</h1>" parrafo = "<p>" + parrafo + "</p>" return titulo + parrafo
true
f5714a6f0eff91cbb48a8d20a6409ae100eecf4e
Python
chishu-amenomoriS/wiktionary-tools
/python/research/countlines-BytesIO.py
UTF-8
406
2.75
3
[ "CC0-1.0" ]
permissive
import bz2, io with open("streamlen.tsv") as f: target = f.readline().strip() slen = [int(line) for line in f.readlines()] lines = 0 with open(target, "rb") as f: for length in slen: with io.BytesIO(f.read(length)) as b: with bz2.open(b, "rt", encoding="utf-8") as t: while (line := t.readline()): lines += 1 print(f"lines: {lines:,}")
true
8c7a52caf91014fcce8fab8139b0368e0492e748
Python
surferek/Machine-Learning
/cleaning_data.py
UTF-8
2,469
3.71875
4
[]
no_license
# -*- coding: utf-8 -*- # Examples of cleaning data methods in Python and some introduction into preprocessing # Libraries import numpy as np import pandas as pd # And also sklearn # Reading data to DataFrame =================================================== dataFrame = pd.read_csv("MyData") # Detecting missing data ====================================================== pd.isnull(dataFrame) # Replacing specific data into new one dataFrame.replace(to_replace="New_value", value="Old_value") # Removing all missing data dataFrame.dropna() # Removing missing data from specific columns dataFrame.dropna(subset=['Column_1']) # Interpolating data by placing mean values from sklearn.preprocessing import Imputer imput = Imputer(missing_values='NaN', strategy='mean', axis=0) imput = imput.fit(dataFrame) imputedData = imput.transform(dataFrame.values) # Dealing with outliers ======================================================= # Get the 98th and 2nd percentile as the limits of our outliers upperBoundary = np.percentile(dataFrame.values, 98) lowerBoundary = np.percentile(dataFrame.values, 2) # Filter the outliers from the dataframe AnotherDataFrame["ColName"].loc[dataFrame["ColName"]>upperBoundary] = upperBoundary AnotherDataFrame["ColName"].loc[dataFrame["ColName"]<lowerBoundary] = lowerBoundary # Handling with categorical data ============================================== # Unificate names of categorical data # Whole string lower case [i.lower() for i in dataFrame["ColName"]] # First letter capitalised [i.Capitalize() for i in dataFrame["ColName"]] # Convert categorical data into integers from sklearn.preprocessing import LabelEncoder target_feature = 'Some feature name' # Using encoder and transform encoder = LabelEncoder() enc_Values = encoder.fit_transform(dataFrame[target_feature].values) dataFrame[target_feature] = pd.Series(enc_Values, index=dataFrame.index) # Convert categorical data into integers from sklearn.preprocessing import OneHotEncoder oneHotEncoder = OneHotEncoder(categorical_features=[0]) dataFrame = oneHotEncoder.fit_transform(dataFrame).toarray() # Creating dummy features dataFrame = pd.get_dummies(dataFrame) # Scaling features ============================================================ from sklearn.preprocessing import StandardScaler sc = StandardScaler() train_dataFrame= sc.fit_transform(train_dataFrame) test_dataFrame= sc.transform(test_dataFrame)
true
7df38c62717b882f6a93c359a9771b8fc576c87c
Python
c0mmand3r3/twitter_covid19
/examples/data_split_example.py
UTF-8
1,987
2.78125
3
[]
no_license
""" - Author : Anish Basnet - Email : anishbasnetworld@gmail.com - Date : Tuesday, July 13, 2021 """ import os import pandas as pd from tweeter_covid19.utils import mkdir TOTAL_SET = 10 if __name__ == '__main__': read_path = os.path.join('data', 'original', 'covid19_tweets_refactor.csv') write_path = os.path.join('data', 'fold_dataset') data = pd.read_csv(read_path) positive_label_data = data.query('Label == 1') negative_label_data = data.query('Label == -1') neutral_label_data = data.query('Label == 0') for fold in range(TOTAL_SET): joiner_path = os.path.join(write_path, 'set_' + str(fold + 1)) mkdir(joiner_path) # positive split pos_train_data = positive_label_data.sample(frac=0.7) pos_test_data = positive_label_data.drop(pos_train_data.index) # negative split neg_train_data = negative_label_data.sample(frac=0.7) neg_test_data = negative_label_data.drop(neg_train_data.index) # neutral split neu_train_data = neutral_label_data.sample(frac=0.7) neu_test_data = neutral_label_data.drop(neu_train_data.index) train_data = [pos_train_data, neg_train_data, neu_train_data] test_data = [pos_test_data, neg_test_data, neu_test_data] train_df = pd.concat(train_data) test_df = pd.concat(test_data) train_df.to_csv(os.path.join(joiner_path, 'train.csv')) test_df.to_csv(os.path.join(joiner_path, 'test.csv')) print('FOLD - {} // Successfully Created ! Train tweets - {} :: Test tweets - {} -- Pos -' ' {}/{} Neg - {}/{} Neu - {}/{}.'.format(fold + 1, train_df.shape[0], test_df.shape[0], pos_train_data.shape[0], pos_test_data.shape[0], neg_train_data.shape[0], neg_test_data.shape[0], neu_train_data.shape[0], neu_test_data.shape[0]))
true
096ae6b9cf256dc77d1b9ceda8990e03a63e3d15
Python
ye-spencer/RunTracker
/src/runner.py
UTF-8
7,661
2.578125
3
[]
no_license
from os import path from os import rename from os import mkdir from os import listdir from re import match from platform import system FIELDEVENTS = ["Long Jump", "Triple Jump", "Pole Vault", "Discus", "Shotput", "High Jump"] global NoneType NoneType = 56725649176543423.456215 #return None #param String, String, String, String def writeToFile(name, event, eType, text): myFile = open("Runners\\%s\\%s\\%s.txt" % (name,event, eType), "a") myFile.write(text) myFile.close() #return List<String> #param String, String, String def readFileLBL(name, event, eType): myFile = open("Runners\\%s\\%s\\%s.txt" % (name, event, eType), "r") lines = myFile.readlines() myFile.close() return lines #return boolean #param String def fileExists(directs): return path.exists(getFileName(directs)) #return String #param String def getFileName(directs): fileName = "Runners" for direct in directs: fileName += "\\%s" % direct return fileName #return String #param String def getNotVersion(fileName): ind = fileName.rindex("\\") + 1 return fileName[:ind] + "!" + fileName[ind:] class Runner (object): #return None #param String def __init__(self, name): self.name = name if not fileExists([self.name]): mkdir(getFileName([self.name])) def __str__(self): return self.name + " does the events " + str(self.getEvents()) def __repr__(self): return self.__str__() #return String #param String def newEvent(self, eventName): fileName = getFileName([self.name, eventName]) notV = getNotVersion(fileName) if self.hasEvent(eventName): return "Event Already Exists" elif path.exists(notV): rename(notV, fileName) else: mkdir(fileName) open(getFileName([self.name, eventName, "goal.txt"]), "x").close() open(getFileName([self.name, eventName, "time.txt"]), "x").close() return "Event Added" #return String #param String def removeEvent(self, eventName): fileName = getFileName([self.name, eventName]) if not self.hasEvent(eventName): return "Event Already Gone" rename(fileName, getNotVersion(fileName)) return "Event Removed" #return List<String> #param None def getEvents(self): return [event for event in listdir(getFileName([self.name])) if "!" not in event] #return boolean #param String def hasEvent(self, eventName): return eventName in self.getEvents() #return String #param String, double def newTime(self, eventName, time): if self.hasEvent(eventName): if ("%.2f" % time) not in self.getTimesEvent(eventName): writeToFile(self.name, eventName, "time", "%.2f\n" % time) return "Time Added" return "Time Already Exists" return "No Such Event" #return None #param String, double def removeTime(self, eventName, time): oldTimes = self.getTimesEvent(eventName) self.clearEvent(eventName, "time") for oldTime in oldTimes: print(str(oldTime + 1) + " : " + str(time)) if not oldTime == time: self.newTime(eventName, oldTime) #return None #param String, String def clearEvent(self, eventName, portion): myFile = open("Runners\\%s\\%s\\%s.txt" % (self.name, eventName, portion), "w") myFile.close() #return String #param String, double def newGoal(self, eventName, goal): if self.hasEvent(eventName): if goal not in self.getGoalsEvent(eventName): writeToFile(self.name, eventName, "goal", "%.2f\n" % goal) return "Goal Added" return "Goal Already Exists" return "No Such Event" #return None #param String, double def removeGoal(self, eventName, goal): goals = self.getGoalsEvent(eventName) self.clearEvent(eventName, "goal") for oldGoal in goals: if oldGoal != goal: writeToFile(self.name, eventName, "goal", "%.2f\n" % goal) #return List<double> #param String def getGoalsEvent(self, eventName): return [float(goal.strip()) for goal in readFileLBL(self.name, eventName, "goal")] #return List<double> #param String def getTimesEvent(self, eventName): return [float(time.strip()) for time in readFileLBL(self.name, eventName, "time")] #return double #param String def getPRFieldEvent(self, eventName): times = self.getTimesEvent(eventName) return NoneType if len(times) == 0 else max(times) #return double #param String def getPREvent(self, eventName): times = self.getTimesEvent(eventName) if eventName in FIELDEVENTS: return self.getPRFieldEvent(eventName) return NoneType if len(times) == 0 else min(times) #return int #param String def getGoalsPassedEvent(self, eventName): return len([goal for goal in self.getGoalsEvent(eventName) if self.getPREvent(eventName) <= goal]) #return int #param None def getAllGoalsPassed(self): return sum(self.getGoalsPassedEvent(event) for event in self.getEvents()) #return double #param None def getAveragePoints(self): try: return self.getTotalPoints() / len([event for event in self.getEvents() if self.getPREvent(event) != NoneType]) except ZeroDivisionError: return 0 #return int #param None def getTotalPoints(self): return sum([self.getPointsEvent(event) for event in self.getEvents()]) #return double #param double, double, double, double def calculatePoints(self, a, b, c, time): if time == NoneType: score = 0 else: score = a * pow((b - time), c) try: return max(score, 0) except TypeError: return 0 #return double #param String def getPointsEvent(self, event): if event == "100m": return self.calculatePoints(25.43471, 18, 1.81, self.getPREvent("100m")) elif event == "200m": return self.calculatePoints(3.32725, 42.5, 1.81, self.getPREvent("200m")) elif event == "300m": return self.calculatePoints(2.21152, 61, 1.81, self.getPREvent("300m")) elif event == "400m": return self.calculatePoints(1.53775, 82, 1.81, self.getPREvent("400m")) elif event == "800m": return self.calculatePoints(0.07462, 254, 1.88, self.getPREvent("800m")) elif event == "1600m": return self.calculatePoints(0.029828, 512, 1.85, self.getPREvent("1600m")) return 0 #return String #param None def getAllPoints(self): text = "" for event in self.getEvents(): text += "%s: %d\n" % (event, self.getPointsEvent(event)) return text #return String #param String def getAllInfoEvent(self, eventName): toPrint = "" pr = self.getPREvent(eventName) if pr != NoneType: toPrint += "PR: %.2f\n\n" % pr else: toPrint += "PR: N/A\n\n" toPrint += "Points: %d\n\n" % self.getPointsEvent(eventName) goals = self.getGoalsEvent(eventName) goals.sort() passed = self.getGoalsPassedEvent(eventName) toPrint += "Goals: %d Passed: %d\n\n" % (len(goals), passed) times = self.getTimesEvent(eventName) times.sort() toPrint += "\nTimes: %d\n" % len(times) for time in times: toPrint += "%.2f\n" % time return toPrint #return String #param String def toHTMLEvent(self, eventName): text = "<h3> %s </h3>\n\n" % eventName pr = self.getPREvent(eventName) if pr != NoneType: text += "<h5> PR: %s </h5>\n\n" % pr else: text += "<h5> PR: N/A </h5>\n\n" goals = self.getGoalsEvent(eventName) goals.sort() text += "<h4> Goals: %d Passed: %d</h4>\n\n" % (len(goals), self.getGoalsPassedEvent(eventName)) for goal in goals: text += "<p> %.2f </p>\n" % goal text += "<h4> Times </h4>\n\n" times = self.getTimesEvent(eventName) times.sort() for time in times: text += "<p> %.2f </p>\n" % time return text
true
7c6207f137d9b410ee0dacb36ea4eeb281885a9a
Python
gonzalezcjj/andsp
/andsp_dwb_dump.py
UTF-8
986
2.75
3
[]
no_license
import sqlite3 import json import codecs conn = sqlite3.connect('content.sqlite') cur = conn.cursor() cur.execute('''SELECT d.year, d.population_value FROM Country AS c, Indicator AS i, Data AS d WHERE i.indicator_id = d.indicator_id AND c.country_id = d.country_id ORDER BY d.year''') fhand = codecs.open('andsp_dwb_sppopt.js', 'w', "utf-8") fhand.write("sppopt = [ \n") fhand.write("['Year','Population'],\n") count = 0 for data_row in cur : val = str(data_row[0]) data = val,data_row[1] try: js = json.dumps(data) count = count + 1 if count > 1 : fhand.write(",\n") output = js fhand.write(output) except: continue fhand.write("\n];\n") cur.close() fhand.close() print(count, "Output written to andsp_dwb_sppopt.js") print("Open andsp_dwb_view.htm to visualize the data in a browser")
true
aef56cccf3fb49eab9e9a7d705769bf4d35b1f8c
Python
ljm516/python-repo
/algorithm/knn/knn_algorithm.py
UTF-8
3,439
3.515625
4
[ "Apache-2.0" ]
permissive
import csv import math import operator import sys from random import random ''' 实现 knn 算法: 1. 数据处理: 打开 csv 文件获取数据,将原始数据分为测试数据和训练数据 2. 相似性度量: 计算每两个数据实例之间的距离 3. 近邻查找: 找到 k 个与当前数据最近的邻居 4. 结果反馈: 从近邻实例反馈结果 5. 精度评估: 统计预测精度 ''' # 从文件加载数据集 def load_data_set(data_file, split_rate): training_set = [] test_set = [] with open(data_file, 'r') as fr: lines = csv.reader(fr) data_set = list(lines) for x in range(len(data_set) - 1): iter_time = len(data_set[x]) - 1 for y in range(iter_time): data_set[x][y] = float(data_set[x][y]) # data = [float(d) for d in data_set[x]] if random() < split_rate: training_set.append(data_set[x]) # training_set.append(data) else: test_set.append(data_set[x]) # test_set.append(data) return training_set, test_set # 获取两点间的欧氏距离 def euclidean_distance(instace_1, instace_2, length): distance = 0 for x in range(length): distance += pow((instace_1[x] - instace_2[x]), 2) return math.sqrt(distance) # 获取测试样本的k个最近邻居 def get_neighbors(training_set, test_instance, k): distance = [] length = len(test_instance) - 1 for x in range(len(training_set)): dist = euclidean_distance(instace_1=test_instance, instace_2=training_set[x], length=length) distance.append((training_set[x], dist)) distance.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distance[x][0]) return neighbors # 获取预测结果,从邻居点中提取数量最多的那个邻居 def get_response(neighbors): class_votes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in class_votes: class_votes[response] += 1 else: class_votes[response] = 1 sorted_votes = sorted(class_votes.items(), key=operator.itemgetter(1), reverse=True) return sorted_votes[0][0] # 准确度 def get_accuracy(test_set, predictions): correct = 0 for x in range(len(test_set)): if test_set[x][-1] == predictions[x]: correct += 1 return (correct / float(len(test_set))) * 100.0 if __name__ == '__main__': data_file = sys.argv[1] split_rate = 0.8 training_set, test_set = load_data_set(data_file=data_file, split_rate=split_rate) print('training set: {s}'.format(s=len(training_set))) print('test set: {s}'.format(s=len(test_set))) predictions = [] k = 3 for x in range(len(test_set)): neighbors = get_neighbors(training_set=training_set, test_instance=test_set[x], k=k) print('neighbors: {n}'.format(n=neighbors)) result = get_response(neighbors=neighbors) print('result: {r}'.format(r=result)) predictions.append(result) print('predict: {p}, actual: {a}'.format(p=int(float(result)), a=int(float(test_set[x][-1])))) print('predictions: {p}'.format(p=predictions)) accuracy = get_accuracy(test_set=test_set, predictions=predictions) print('accuracy: {a}'.format(a=accuracy)) print('+Done')
true
6e506a56c67263268fdaedd54e8387c66b5e0808
Python
Emerson53na/exercicios-python-3
/029 Radar eletrônico.py
UTF-8
288
3.78125
4
[]
no_license
n = float(input('Qual é a velocidade atual do carro? km/h')) valor = n*7-80*7 if n <= 80: print('\033[32m Tenha um bom dia! Dirija com segurança.\033[m') elif n >= 81: print('\033[33m Você está indo muito rápido.\n\033[31mSua multa é de R${:.2f}\033[m'.format(valor))
true
224586cac64daa3ad807d60cdd46ea31c526ea5c
Python
Voprzybyo/Python
/Classes/Calculator/ComplexCalculator_V1.py
UTF-8
2,795
4.28125
4
[]
no_license
#! /usr/bin/env python import math class Complex: # Constructor def __init__(self, realpart=0.0, imagpart=0.0): self.r = realpart self.i = imagpart # Conjugate of complex number (imaginary part negation) def conjugate(self): self.i = -self.i # Method that returns complete form of complex number def val(self): return '{} + ({})j'.format(self.r, self.i) # Method adding two complex numbers def add(self, other): return Complex(self.r + other.r, self.i + other.i) # Method subtracting two complex numbers def sub(self, other): return Complex(self.r - other.r, self.i - other.i) # Method multiply two complex numbers def mul(self, other): return Complex(self.r*other.r - self.i*other.i, self.i*other.r + self.r*other.i) # Method returns absolute value of complex number def abs(self): return math.sqrt(self.r**2 + self.i**2) # Create object of Complex class x = Complex(2.0, -1.0) y = Complex(2.0, -2.0) # Test val method (get full form of complex number) print("Complex number: ", x.val()) # Test add method z = x.add(y) print("Complex number adding: (", x.val(), ") + (", y.val(), ") =", z.val()) # Test subtracting method z = x.sub(y) print("Complex number adding: (", x.val(), ") - (", y.val(), ") =", z.val()) # Test multiplication method z = x.mul(y) print("Complex number multiplication: (", x.val(), ") * (", y.val(), ") =", z.val()) # Test abs method z = x.abs() print("Absolute value of ", x.val(), " is: ", z) print("Starting calculator mode!") # Enter first complex number complex_num = input("Enter first complex number(f.e. 1.0 -3.5j) : ") complex_num = complex_num.split() complex_num[1] = complex_num[1].replace('j', '') # No matter if user put "j" at imaginary part or not p = Complex(float(complex_num[0]), float(complex_num[1])) print(p.val()) # Enter second complex number complex_num = input("Enter second complex number(f.e. 2.0 -4.25j) : ") complex_num = complex_num.split() complex_num[1] = complex_num[1].replace('j', '') # No matter if user put "j" at imaginary part or not q = Complex(float(complex_num[0]), float(complex_num[1])) print(q.val()) # Choose operation on given complex numbers complex_oper = input("Enter operation( \"+\" \"-\" \"*\" ) : ") if complex_oper == '+': z = p.add(q) print("Complex number adding: (", p.val(), ") + (", q.val(), ") =", z.val()) if complex_oper == '-': z = p.sub(q) print("Complex number subtracting: (", p.val(), ") - (", q.val(), ") =", z.val()) if complex_oper == '*': z = p.mul(q) print("Complex number multiplication: (", p.val(), ") * (", q.val(), ") =", z.val())
true
5cdc90a578a8ba5e2c362ab7ff84242cb90c3109
Python
mbouthemy/datathon-energy
/src/get_score.py
UTF-8
541
3.46875
3
[]
no_license
# Calculate the score of the index of each dataframe # Assign the score A+ for the top 20%, A for 30%, B for 30% and C for 20% def get_score_column(df, column_name): """ Get the score of the dataframe based on the column name. """ # Get the rank of the consumption. rank = 'Rank' + column_name df_2 = df.copy() df[rank] = df[column_name].rank(ascending=False) df_2['Score_' + column_name] = ((df.shape[0] + 1 - df[rank]) / df.shape[0]) * 100 df_2 = df_2.drop(columns=column_name) return df_2
true
9ae875fe31bbefc35e35ce1ca97afd447c7c82e1
Python
Impresee/lar-annotator
/pai/utils.py
UTF-8
5,199
2.71875
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 2 13:20:00 2018 @author: jsaavedr """ from . import basic from . import bw import skimage.measure as measure import skimage.morphology as morph import cv2 import numpy as np #%% def extractLAR(check_image): """ check_image must come in grayscale format """ image = cv2.resize(check_image, (1200, 510)) #this values are estimating fromr real checks lar_image = image[210:300, 80:1150] #reduce noise by median filter lar_image = cv2.medianBlur(lar_image,3) bw_image= cv2.adaptiveThreshold(lar_image,1,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,31,15) bw_image[0:20, :] = 0 #estimating the beste row representing the center of the lar text #Computing profile using the 10% of the lar width sub_width = int(0.10 * lar_image.shape[1]) sub_image = bw_image[:, 0:sub_width] v_profile = basic.getVerticalProfile(sub_image) bin_v_profile = basic.threshold(v_profile, sub_width*0.4) bin_v_profile = np.reshape(bin_v_profile, (1, len(bin_v_profile))) cc_profile = bw.getCC(bin_v_profile) # list_comps = [] for idx, comp in enumerate(cc_profile) : list_comps.append((idx, comp['size'])) #max_comp = max (list_comps, key = lambda x : x[1]) best_row = int(cc_profile[0]['center_x']) lar_image = lar_image[max(0,best_row-40):best_row+20, sub_width-10::] return lar_image #%% def findCandidateWords(cc_gaps, minimum_gap_size = 2, minimum_word_size = 60): """ This function detect spliting points based on the separation between words that are called gaps input: a list of gaps, each one represented as a ccomponent output: a list of candidate regions in the form of (start, end) """ #1. compose a list of gap_size list_of_gap_size = [] for idx, gap in enumerate(cc_gaps) : list_of_gap_size.append((idx, gap['size'])) #2. looking for regions stack=[(0,len(cc_gaps)-1)] candidate_words = [] while len(stack) > 0 : p=stack.pop() _start=p[0] _end=p[1] print(p) if (cc_gaps[_end]['center_x'] - cc_gaps[_start]['center_x']) > minimum_word_size and (_end - _start) > 0 : p_max=max(list_of_gap_size[_start:_end+1], key = lambda x: x[1]) split_gap_id = p_max[0] split_gap_size = p_max[1] if split_gap_size > minimum_gap_size : if split_gap_id - _start > 1 : stack.append((_start, split_gap_id-1)) candidate_words.append((cc_gaps[_start]['center_x'],cc_gaps[split_gap_id]['min_x'])) if _end - split_gap_id > 1 : stack.append((split_gap_id+1,_end)) candidate_words.append((cc_gaps[split_gap_id]['max_x'], cc_gaps[_end]['center_x'])) return candidate_words #%% def createSetOfGaps(lar_image) : """ This is based on the horizontal profile of the binary lar_image we compute the gap components using ccomponentes function from basic We consider as a non-gap component that with height > 0.1 of the lar's height """ th_otsu = basic.getOtsu(lar_image) bw_image = 1 - basic.threshold(lar_image, th_otsu) bw_image[0:10, :] = 0 #bw_image[-10::, :] = 0 for i in range(1) : bw_image = morph.dilation(bw_image, morph.square(3)) labels = measure.label(bw_image) regionprops = measure.regionprops(labels) for ccomp in regionprops : if ccomp['area'] < 30 : rows, cols = zip(*ccomp['coords']) bw_image[rows, cols] = 0 #cv2.imshow("binaria", bw_image*255) h_profile = basic.getHorizontalProfile(bw_image) h_profile = 1 - basic.threshold(h_profile, 0.1*bw_image.shape[0]) #reshap h_profile in order it be a 2D array h_profile = np.reshape(h_profile, [1, -1]) cc_profile = bw.getCC(h_profile) return cc_profile #%% def filterCandidateWords(candidate_words, minimum_size, maximum_size) : """ filtered candidate words with respect to the size, we can also incorporate constraints about the content like the proportion of text in each word. In that case we will need the lar_image """ filtered_list = [] for word in candidate_words: word_size = word[1] - word[0] if word_size > minimum_size and word_size < maximum_size : filtered_list.append(word) return filtered_list def getCandidateWordsFromLAR(check_image): """ check_image must come in grayscale format output 1: lar_image output 2: tuples (start, end) defining each candidate word in lar_image """ lar_image = extractLAR(check_image) cc_gaps = createSetOfGaps(lar_image) candidate_words = findCandidateWords(cc_gaps) candidate_words = filterCandidateWords(candidate_words, minimum_size = lar_image.shape[1]*0.05, maximum_size = lar_image.shape[1]*0.5) return lar_image, candidate_words
true
817a7fcd4bb1f71b21e68150b9d4543d08b8bd79
Python
yenertuz/push_swap
/checker.py
UTF-8
674
3.03125
3
[]
no_license
#!/usr/local/bin/python3.7 import ps_functions as ps try: f = open("numbers") numbers_string = f.read() f.close() except: print("checker.py: could not open \"numbers\"") exit(-1) try: f = open("ops") ops_string = f.read() f.close except: print("checker.py: could not open \"ops\"") exit(-1) numbers_list = numbers_string.split(" ") ops_list = ops_string.split(" ") stack_a = [] stack_b = [] try: for x in numbers_list: stack_a.append(int(x)) except: print("checker.py: failed to read number strings") for x in ops_list: ps.run_command(x, stack_a, stack_b) if ps.is_sorted(stack_a) and len(stack_b) == 0: print("OK") else: print("KO") print(stack_a)
true
bd5459fbe7edd3564b4b9aedc604456976ee7a3c
Python
junpenglao/Planet_Sakaar_Data_Science
/Miscellaneous/twitter_demo.py
UTF-8
2,120
2.5625
3
[ "MIT" ]
permissive
""" https://twitter.com/junpenglao/status/928206574845399040 """ import pymc3 as pm import numpy as np import matplotlib.pylab as plt L = np.array([[2, 1]]).T Sigma = L.dot(L.T) + np.diag([1e-2, 1e-2]) L_chol = np.linalg.cholesky(Sigma) with pm.Model() as model: y = pm.MvNormal('y', mu=np.zeros(2), chol=L_chol, shape=2) tr0 = pm.sample(500, chains=1) tr1 = pm.fit(method='advi').sample(500) tr2 = pm.fit(method='fullrank_advi').sample(500) tr3 = pm.fit(method='svgd').sample(500) plt.figure() plt.plot(tr0['y'][:,0], tr0['y'][:,1], 'o', alpha=.1, label='NUTS') plt.plot(tr1['y'][:,0], tr1['y'][:,1], 'o', alpha=.1, label='ADVI') plt.plot(tr2['y'][:,0], tr2['y'][:,1], 'o', alpha=.1, label='FullRank') plt.plot(tr3['y'][:,0], tr3['y'][:,1], 'o', alpha=.1, label='SVGD') plt.legend(); """ https://twitter.com/junpenglao/status/930826259734638598 """ import matplotlib.pylab as plt from mpl_toolkits import mplot3d import numpy as np import pymc3 as pm def cust_logp(z): return -(1.-z[0])**2 - 100.*(z[1] - z[0]**2)**2 grid = np.mgrid[-2:2:100j,-1:3:100j] Z = -np.asarray([cust_logp(g) for g in grid.reshape(2, -1).T]) fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(grid[0], grid[1], Z.reshape(100,100), cmap='viridis', linewidth=0, antialiased=False) with pm.Model(): pm.DensityDist('pot1', logp=cust_logp, shape=(2,)) tr1 = pm.sample(500, step=pm.NUTS())['pot1'] tr2 = pm.sample(500, step=pm.Metropolis())['pot1'] tr3 = pm.fit (n=50000, method='fullrank_advi').sample(500)['pot1'] #VI, cause whynot import matplotlib.pylab as plt _, ax = plt.subplots(1,3,figsize=(15,5), sharex=True, sharey=True) ax[0].imshow(Z.reshape(100,100), extent=[-1,3,-2,2,]); ax[0].plot(tr1[:,1], tr1[:,0], 'ro-',alpha=.1) ax[1].imshow(Z.reshape(100,100), extent=[-1,3,-2,2,]); ax[1].plot(tr2[:,1], tr2[:,0], 'ro-',alpha=.1) ax[2].imshow(Z.reshape(100,100), extent=[-1,3,-2,2,]); ax[2].plot(tr3[:,1], tr3[:,0], 'ro', alpha=.1) plt.tight_layout() with pm.Model(): pm.DensityDist('pot1', logp=cust_logp, shape=(2,)) minimal=pm.find_MAP()
true
cab2d5f6fc61c42887737cee1361004ee4fe5b06
Python
Busymeng/MyPython
/Python for Research/2.2_NumPy-Student.py
UTF-8
8,870
3.96875
4
[]
no_license
##################################################################### ## Introduction to NumPy Arrays ## """ * NumPy is a Python module designed for scientific computation. * NumPy arrays are n-dimensional array objects. - They are used for representing vectors and matrices. - NumPy arrays have a size that is fixed when they are constructed. - Elements of NumPy arrays are also all of the same data type leading to more efficient and simpler code than using Python's standard data types. * np.zeros(), np.ones(), np.empty() * Linear algebra, Fourier transform, random number capabilities * Building block for other packages (e.g. Scipy) """ ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##################################################################### ## Slicing NumPy Arrays ## """ * With one-dimension arrays, we can index a given element by its position, keeping in mind that indices start at 0. * With two-dimensional arrays, the first index specifies the row of the array and the second index specifies the column of the array. * With multi-dimensional arrays, you can use the colon character in place of a fixed value for an index, which means that the array elements corresponding to all values of that particular index will be returned. * For a two-dimensional array, using just one index returns the given row which is consistent with the construction of 2D arrays as lists of lists, where the inner lists correspond to the rows of the array. """ ##------------------------------------------------------------------- ##################################################################### ## Indexing NumPy Arrays ## """ * NumPy arrays can also be indexed with other arrays or other sequence-like objects like lists. * Index can be defined as a Python list, but we could also have defined that as a NumPy array. * When you slice an array using the colon operator, you get a view of the object. - This means that if you modify it, the original array will also be modified. - This is in contrast with what happens when you index an array, in which case what is returned to you is a copy of the original data. """ ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##################################################################### ## Building and Examining NumPy Arrays ## """ * To construct an array of 10 linearly spaced elements starting with 0 and ending with 100, we can use the NumPy linspace function. * To construct an average of 10 logarithmically spaced elements between 10 and 100, we can use the NumPy logspace command. """ ##------------------------------------------------------------------- ##------------------------------------------------------------------- ##------------------------------------------------------------------- # Finds whether x is prime ##------------------------------------------------------------------- # save to file # read from file ##################################################################### ## Datatypes ## """ * Every numpy array is a grid of elements of the same type. * Numpy provides a large set of numeric datatypes that you can use to construct arrays. * Numpy tries to guess a datatype when you create an array, but functions that construct arrays usually also include an optional argument to explicitly specify the datatype. """ ##------------------------------------------------------------------- ##################################################################### ## Array math ## """ * Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads and as functions in the numpy module. """ ##------------------------------------------------------------------- ##------------------------------------------------------------------- """ * We use the dot() function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply matrices. - dot() is available both as a function in the numpy module and as an instance method of array objects. """ ##------------------------------------------------------------------- # Inner product of vectors # Matrix / vector product # Matrix / matrix product ##------------------------------------------------------------------- # Vector Operations ##------------------------------------------------------------------- """ * Operations along axes """ ##------------------------------------------------------------------- ##################################################################### ## Broadcasting ## """ * Broadcasting is a powerful mechanism that allows numpy to work with arrays of different shapes when performing arithmetic operations. * Frequently we have a smaller array and a larger array, and we want to use the smaller array multiple times to perform some operation on the larger array. """ ##------------------------------------------------------------------- ##------------------------------------------------------------------- # Real Numpy broadcasting """ * Rule of broadcasting 1. If the arrays do not have the same rank, prepend the shape of the lower rank array with 1s until both shapes have the same length. 2. The two arrays are said to be compatible in a dimension if they have the same size in the dimension, or if one of the arrays has size 1 in that dimension. 3. The arrays can be broadcast together if they are compatible in all dimensions. 4. After broadcasting, each array behaves as if it had shape equal to the elementwise maximum of shapes of the two input arrays. 5. In any dimension where one array had size 1 and the other array had size greater than 1, the first array behaves as if it were copied along that dimension """ ##------------------------------------------------------------------- ##################################################################### ## Other Matrix Operations ## """ * import numpy.linalg eye(3) #Identity matrix trace(A) #Trace column_stack((A,B)) #Stack column wise row_stack((A,B,A)) #Stack row wise * Linear Algebra import numpy.linalg qr Computes the QR decomposition cholesky Computes the Cholesky decomposition inv(A) Inverse solve(A,b) Solves Ax = b for A full rank lstsq(A,b) Solves arg minx kAx − bk2 eig(A) Eigenvalue decomposition eig(A) Eigenvalue decomposition for symmetric or hermitian eigvals(A) Computes eigenvalues. svd(A, full) Singular value decomposition pinv(A) Computes pseudo-inverse of A * Fourier Transform import numpy.fft fft 1-dimensional DFT fft2 2-dimensional DFT fftn N-dimensional DFT ifft 1-dimensional inverse DFT (etc.) rfft Real DFT (1-dim) ifft Imaginary DFT (1-dim) * Random Sampling import numpy.random rand(d0,d1,...,dn) Random values in a given shape randn(d0, d1, ...,dn) Random standard normal randint(lo, hi, size) Random integers [lo, hi) choice(a, size, repl, p) Sample from a shuffle(a) Permutation (in-place) permutation(a) Permutation (new array) * Distributions in Random import numpy.random The list of distributions to sample from is quite long, and includes beta binomial chisquare exponential dirichlet gamma laplace lognormal pareto poisson power """ ##-------------------------------------------------------------------
true
015edec03648055fb46698e036e9c1d3829135e2
Python
itsolutionscorp/AutoStyle-Clustering
/all_data/exercism_data/python/hamming/631c999c8eae43dba437e8ef0ba97c7d.py
UTF-8
321
3.671875
4
[]
no_license
def hamming(first, second): hamming = 0 if(len(first) < len(second)): a = first b = second elif(len(first) > len(second)): b = first a = second else: a = first b = second hamming = len(b) - len(a) for i in range(len(a)): if(a[i] != b[i]): hamming += 1 return hamming
true
7b023de700615ef82a8f8d968652cd3eba2b250e
Python
belenalegre/Santander
/src/EjercicioPython.py
UTF-8
1,399
3.21875
3
[]
no_license
import csv class Parser(): def __init__(self, srcPath): self.srcPath = srcPath self.filename = srcPath.split('.')[0] def analyseLines(self, lines): cols = len(lines[0]) correct_lines = [ l for l in lines if len(l)==cols] wrong_lines = [l for l in lines if len(l) != cols] return correct_lines, wrong_lines def readTSV(self): with open(self.srcPath,'rb') as tsv_file: self.lines = tsv_file.read().decode("utf-16-le").encode("utf-8") return def convertTSVtoCSV(self): lines = [l.split('\t') for l in self.lines.split('\n')] self.lines, self.wrong_lines = self.analyseLines(lines) return def exportCSV(self, dstPath=None, expWrongLines=False, errPath=None): if dstPath == None: dstPath='{0}.csv'.format(self.filename) with open(dstPath, 'wb') as f: write = csv.writer(f, delimiter='|') write.writerows(self.lines) if expWrongLines: with open(errPath, 'wb') as f: write = csv.writer(f, delimiter='|') write.writerows(self.wrong_lines) return def runParser(self, output_path=None): self.readTSV() self.convertTSVtoCSV() self.exportCSV(output_path) return
true
eb32f2c307eb4c18721b072bdb30a61754fedfc6
Python
MrTrustworthy/game_of_life
/gol/grid.py
UTF-8
3,674
3.234375
3
[ "MIT" ]
permissive
__author__ = 'MrTrustworthy' from gol.x_utils import Position from typing import List, Union class Field: def __init__(self, position: Position, passable: bool, passing_cost: Union[int, None], objects): self.passable = passable self.passing_cost = passing_cost if passable else None if not isinstance(position, Position): raise ValueError("position must be a Position-object") if not isinstance(objects, list): raise ValueError("Objects must be a list") self.objects = objects if isinstance(objects, list) else [objects] self.position = position class Grid: def __init__(self, fields: List[List[Field]]) -> None: self.fields = fields def get(self, *args: List[Union[Position, tuple, int]]) -> Field: """ Returns a given field based on a X-Y value or tuple :return: """ if len(args) == 1: if isinstance(args[0], Position): x, y = args[0].tuple else: x, y = args[0] else: x, y = (args[0], args[1]) return self.fields[x][y] def get_path(self, pos_a: Position, pos_b: Position) -> List[Field]: """ Calculates a passable path between the two given positions :param pos_a: :param pos_b: :return: """ class Node: def __init__(self, node, cost, expected, parent): self.node = node # same position reference that Field-Object has self.pos = node.position self.cost = cost self.expected = expected self.total = self.cost + self.expected self.parent = parent def __eq__(self, other): return self.pos == other.pos current_field = Node(self.get(pos_a.tuple), 0, pos_a.distance_to(pos_b), None) path = [current_field] already_checked = [] while current_field.pos != pos_b: valid_neighbours = filter( lambda x: x.passable, self._get_neighbours(current_field.pos) ) for field in valid_neighbours: # calculate the values of each field cost = current_field.pos.distance_to(field.position) h = field.position.distance_to(pos_b) node = Node(field, cost, h, current_field) # dont want duplicates if node not in path and node not in already_checked: already_checked.append(node) already_checked.sort(key=lambda x: x.total) current_field = already_checked[0] already_checked.remove(current_field) path.append(current_field) ordered_path = [] while current_field is not None: ordered_path.append(current_field.node) current_field = current_field.parent ordered_path.reverse() return ordered_path def _get_neighbours(self, position: Position) -> List[Field]: """ Calculates and returns a list of all Fields right next to the given position :param position: :return: List(Field) List of neighbouring fields """ x, y = (position.x, position.y) neighbours = [] for i in [x - 1, x, x + 1]: for j in [y - 1, y, y + 1]: if i < 0 or j < 0: continue if i == x and j == y: continue else: neighbours.append(self.get(i, j)) return neighbours
true
8b83d67fc90e20e95da8fb3e166c7bf1fe2926ae
Python
jobby/project-euler
/python/problem56.py
UTF-8
144
2.96875
3
[]
no_license
def digitsum(n): return sum(map(lambda s:int(s), str(n))) print max(map(digitsum, [(a ** b) for a in range(1,100) for b in range(1,100)]))
true
051bdb55ec8ca1b1fee7886c0b2f8b9935dc4799
Python
frairefm/UOC_DataScience_TipologiaCicleDades
/PRAC1_code.py
UTF-8
7,998
2.78125
3
[]
no_license
from bs4 import BeautifulSoup, NavigableString import requests import pandas as pd def get_soup(url): page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') return soup # Extracts the links to every review edition def get_links(): links = list() h2s = soup.findAll('h2', class_='teaser_title') for h2 in h2s: links.append(h2.a['href']) return links # Gets into each review edition and into every single article to draw their data out def extract_items(links): for link in links: soup = get_soup(link) ## html structure of 'quaderns' pages if("QuadernsICA" not in link): # get review title print() review_title = soup.find('div', class_='page page_issue').h1 print(review_title.text.strip()) # Gets review description review_description = soup.find('div', class_='description').p # Gets url articles & pages ref = soup.findAll('div', class_='title') pages = soup.findAll('div', class_='pages') for a, pag in zip(ref, pages): # Appends review_title & review_description to their respective lists for each article review_title_list.append(review_title.text.strip()) review_description_list.append(review_description.text.strip()) # Appends article pages to article_pages_list article_pages_list.append(pag.text.strip()) # Explores page article inner_soup = get_soup(a.a['href']) # Gets article title article_title = inner_soup.find('h1', class_='page_title') article_title_list.append(article_title.text.strip()) # Get article authors authors = list() article_authors = inner_soup.findAll('span', class_='name') for author in article_authors: authors.append(author.text.strip()) joined_string = ",".join(authors) article_authors_list.append(joined_string) # Get article keywords article_keywords = inner_soup.find('span', class_='value') if(article_keywords): joined_string = " ".join(article_keywords.text.split()) article_keywords_list.append(joined_string) else: article_keywords_list.append(None) # Get article abstract article_abstract = inner_soup.find('div', class_='item abstract') article_abstract = article_abstract.text.replace('Resum', '').strip() article_abstract_list.append(article_abstract) # Get article pdf article_pdf=inner_soup.find('a', class_='obj_galley_link pdf')['href'] article_pdf_list.append(article_pdf) print("-" + article_title.text.strip()) ## html structure of 'QuadernsICA' pages elif ("QuadernsICA" in link): # Gets review title print() review_title = soup.find('li', class_='active') print(review_title.text.strip()) # Gets review description review_description = soup.find('div', class_='description') # Gets url articles & pages ref = soup.findAll('h3', class_='media-heading') pages = soup.findAll('p', class_='pages') # ok for a, pag in zip(ref, pages): # Appends review_title to review_title_list for each article if(review_title): review_title_list.append(review_title.text.strip()) else: review_title_list.append(None) # Appends review_description to review_description_list for each article if(review_description): review_description_list.append(review_description.text.strip()) else: review_description_list.append(None) # Appends article pages to article_pages_list article_pages_list.append(pag.text.strip()) # Explores page article inner_soup = get_soup(a.a['href']) # Gets article title article_title = inner_soup.find('h1', class_='page-header') if(article_title): article_title_list.append(article_title.text.strip()) else: article_title_list.append(None) # Gets article authors authors = list() article_authors = inner_soup.findAll('div', class_='author') if(article_authors): for author in article_authors: authors.append(author.find('strong').text) joined_string = ",".join(authors) article_authors_list.append(joined_string) else: article_authors_list.append(None) # Gets article abstract & keywords article_abstract = inner_soup.find('div', class_='article-abstract') if(article_abstract): article_abstract_list.append(article_abstract.text.strip()) article_keywords_list.append(article_abstract.text.strip().partition("Keywords: ")[2]) else: article_abstract_list.append(None) article_keywords_list.append(None) # Gets article pdf article_pdf=inner_soup.find('a', class_='galley-link btn btn-primary pdf') if(article_pdf): article_pdf_list.append(article_pdf['href']) else: article_pdf_list.append(None) print("-" + article_title.text.strip()) # initialization of fields lists review_title_list = list() review_description_list = list() article_title_list = list() article_pages_list = list() article_authors_list = list() article_keywords_list = list() article_abstract_list = list() article_pdf_list = list() print("Start") # first page url_page="https://www.antropologia.cat/publicacions-ica/quaderns/" soup = get_soup(url_page) links = get_links() extract_items(links) next_page = soup.find('a', class_='next page-numbers') # following pages loop while(next_page): url_page = next_page['href'] soup = get_soup(url_page) links = get_links() extract_items(links) next_page = soup.find('a', class_='next page-numbers') # ok print("Extraction done") print("Setting dataset\n") print(str(len(article_title_list)) + " articles from " + str(len(set(review_title_list))) + " were retrieved") # Creates a dataset creation and populates it with field lists data df = pd.DataFrame({'Review title':review_title_list, 'Review description':review_description_list, 'Article title':article_title_list, 'Article pages':article_pages_list, 'Article authors':article_authors_list, 'Article keywords':article_keywords_list, 'Article abstract':article_abstract_list, 'Article pdf':article_pdf_list}) # Writes the files df.to_csv('Quaderns_ICA.csv', sep='|') df.to_excel('Quaderns_ICA.xlsx') print("Dataset written into 'Quaderns_ICA.csv' file") print("Dataset written into 'Quaderns_ICA.xlsx' file") print("\nEnd")
true
fabcd7adde7d619666b4b9b2566c1e83d628d7d2
Python
gleisonbs/trackings-report
/reports/mau_report.py
UTF-8
1,285
2.84375
3
[]
no_license
from trackings import Trackings from utils.date import get_date_range, get_month_from_date, get_months from utils.logger import log_error from dateutil.relativedelta import relativedelta from pprint import pprint from time import sleep from datetime import datetime from collections import defaultdict class MAUReport: def __init__(self): self.trackings = Trackings() self.rows = [] def add_header(self, rows): updated_at = f'Atualizado em: {datetime.now().strftime("%d/%m/%Y %H:%M:%S")}' empty_line = [] rows.insert(0, empty_line) rows.insert(0, [updated_at]) return rows def generate(self): print('Running the "MAU" report...') begin_date, end_date = get_date_range() months = get_months(begin_date.month, end_date.month) oneMonth = relativedelta(months = +1) oneDay = relativedelta(days = +1) for month_name, month_number in months: total_MAU = self.trackings.getMAU(begin_date, (begin_date + oneMonth) - oneDay) begin_date += oneMonth self.rows.append([month_name] + [total_MAU]) print(f'{month_name}: {total_MAU}') self.rows = self.add_header(self.rows) return self.rows
true
35a8ae6d20ebc0d2e05f8f3f469c358a6761485e
Python
anandav/NSE-OptionChain-Importer
/mydatabase.py
UTF-8
2,088
2.6875
3
[]
no_license
import sqlite3 import os import database import configparser from config import AppConfig class databaseprovider: def __init__(self, data): self.data = data # self.config = configparser.ConfigParser() # self.config.read("config.ini") def GetConnection(self): conn = sqlite3.connect(AppConfig().ConnectionString()) return conn def CreateOptionChainTable(self, tableName): fl = open(AppConfig().ScriptCreateOptionChainTable(), "r") tblcontent = fl.read() tblname = AppConfig().TableName() tblcontent = tblcontent.replace("TABLENAME", tblname) conn = self.GetConnection() conn.execute(tblcontent) conn.close() def SaveOptionChainData(self): data = self.PrepareData() conn = self.GetConnection() fl = open(AppConfig().ScriptInsertOptionChain(), "r") tbl = fl.read() fl.close() if(len(data) > 0): print("Writing to database") conn.executemany(tbl, data) conn.commit() conn.close() def GetData(self, query): conn = self.GetConnection() def PrepareData(self): result = [] for item in self.data["OptionChain"]: result.append((self.data["Symbol"], self.data["Date"], self.data["SpotPrice"], 'call', item["StrikePrice"], item["Calls"]["AskPrice"], item["Calls"]["AskQty"], item["Calls"] ["BidPrice"], item["Calls"]["BidQty"], item["Calls"]["Chng in OI"], item["Calls"]["IV"], item["Calls"]["LTP"], item["Calls"]["Net Chng"], item["Calls"]["OI"], item["Calls"]["Volume"])) result.append((self.data["Symbol"], self.data["Date"], self.data["SpotPrice"], 'put', item["StrikePrice"], item["Puts"]["AskPrice"], item["Puts"]["AskQty"], item["Puts"]["BidPrice"], item["Puts"]["BidQty"], item["Puts"]["Chng in OI"], item["Puts"]["IV"], item["Puts"]["LTP"], item["Puts"]["Net Chng"], item["Puts"]["OI"], item["Puts"]["Volume"])) return result
true
3299ad33b4c616d338a11c74af5763850507dfba
Python
rafaelbaur/SistemaPPGI
/ppgi/util.py
UTF-8
1,062
2.625
3
[]
no_license
from django.utils.datetime_safe import datetime def getPeriodo(mes): if mes >= 1 and mes <= 3: periodo = 1 elif mes >= 4 and mes <=6: periodo = 2 elif mes >= 7 and mes <= 9: periodo = 3 elif mes >= 10 and mes <= 12: periodo = 4 return periodo def getPeriodosDecorridos(anoIngresso, periodoIngresso): mesAtual = datetime.now().month anoAtual = datetime.now().year periodosAnoAtual = getPeriodo(mesAtual) #desconsiderar periodoAtual numPeriodosDecorridos = ((anoAtual - anoIngresso)*4 - (periodoIngresso-1) + (periodosAnoAtual-1)) return numPeriodosDecorridos def htmlIconTrue(): return "<center> <img src='/static/admin/img/icon-yes.gif' alt='True' /> </center>" def htmlIconFalse(): return "<center> <img src='/static/admin/img/icon-no.gif' alt='False' /> </center>" def handle_uploaded_file(f, dest): destino = open(dest+'/'+f.name, 'wb+') for chunk in f.chunks(): destino.write(chunk) destino.close()
true
03a755dc1b00735e2f659ccc6aa0314e7342f0eb
Python
bhatiakomal/pythonpractice
/Udemy/Hierarchical_Inheritance.py
UTF-8
869
3.3125
3
[]
no_license
'''class Father: def showF(self): print("Father Class method") class Son(Father): def showS(self): print("Son Class method") class Daughter(Father): def showD(self): print("Daughter Class method") s=Son() s.showS() s.showF() d=Daughter() d.showF() d.showD()''' class Father: def __init__(self): print('Father class Constructor') def showF(self): print("Father Class method") class Son(Father): def __init__(self): super().__init__() #Calling Father Class Constructor print('Son class Constructor') def showS(self): print("Son Class method") class Daughter(Father): def __init__(self): super().__init__() print('Daughter class Constructor') def showD(self): print("Daughter Class method") s=Son() print() d=Daughter()
true
82d2d58bd1b45e852647f892abc365ebd46e869b
Python
ophidianwang/PyWorkspace
/od_package/od_module01.py
UTF-8
1,104
3.5625
4
[]
no_license
# encoding: utf-8 class od_class01(object): """Summary of class here. Longer class information.... Longer class information.... Attributes: likes_spam: A boolean indicating if we like SPAM or not. eggs: An integer count of the eggs we have laid. name: name of instance """ count = 0 def __init__(self, name): """Inits SampleClass with blah.""" self.name = name od_class01.count += 1 def __str__(self): return str(self.name) def go(self): "test, print go! and self.__str__" print("go! " + self.__str__()) @classmethod def getX(cls): "get how many class instance is created" return cls.count @classmethod def class_foo(cls,x): "testing classmethod" print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x): "testing staticmethod" print "executing static_foo(%s)"%x @classmethod def oInstanceByClass(cls,name): "testing get instance with classmethod" return od_class01(name) @staticmethod def oInstanceByStatic(name): "testing get instance with staticmethod" return od_class01(name)
true
8114270c6aad87ac9ea7891791ff58fa37427f8d
Python
kkrauss2/qbb2016-answers
/week-11/comparison.py
UTF-8
3,045
2.546875
3
[]
no_license
#!/usr/bin/env python from __future__ import division import sys from matplotlib import pyplot as plt from scipy.cluster.hierarchy import dendrogram, linkage, cophenet, leaves_list from scipy.cluster.hierarchy import leaves_list as leafy from scipy.spatial.distance import pdist from scipy.cluster.vq import kmeans2 as kmeans from scipy.stats import ttest_ind, ttest_ind_from_stats from scipy.special import stdtr from scipy import stats import itertools import numpy as np import csv import pydendroheatmap as pdh try: import cPickle as pickle except: import pickle import pandas as pd from statsmodels.stats.weightstats import ttest_ind as ttest data = sys.argv[1] f = open(data) ##Early stages - CFU, mys ##Late stages - Poly, unk gene_names = [] gene_positions = [] cfu = [] mys = [] poly = [] unk = [] genes = {} for i, line in enumerate(f): if i == 0: continue else: field = line.split('\t') gene_names.append(field[0]) cfu.append(field[1]) mys.append(field[5]) poly.append(field[2]) unk.append(field[3]) gene_positions.append(i) genes = dict(itertools.izip(gene_positions, gene_names)) # print genes early = [] late = [] cfu_array = np.array(cfu, dtype = np.float) mys_array = np.array(mys, dtype = np.float) avg_early = (cfu_array + mys_array)/2 early.append(avg_early) poly_array = np.array(poly, dtype = np.float) unk_array = np.array(unk, dtype = np.float) avg_late = (poly_array + unk_array)/2 late.append(avg_late) early_array = np.array(early, dtype = np.float) late_array = np.array(late, dtype = np.float) ratio = [] temp_ratio = (early_array / late_array) ratio.append(temp_ratio) # print ratio up_genes = [] up_genes_position = [] down_genes = [] down_genes_positions = [] not_sig_genes = [] not_sig_genes_positions = [] for position, value in enumerate(np.nditer(ratio)): if value >= 2.0: up_genes.append(value) up_genes_position.append(position) elif value <= 0.5: down_genes.append(value) down_genes_positions.append(position) else: not_sig_genes.append(value) not_sig_genes_positions.append(position) # print up_genes up_genes_array = np.array(up_genes, dtype = np.float) down_genes_array = np.array(down_genes, dtype = np.float) # print up_genes_array up_gene_names = [] down_gene_names = [] not_sig_names = [] for position, gene, in genes.items(): if position in up_genes_position: up_gene_names.append(gene) elif position in down_genes_positions: down_gene_names.append(gene) else: not_sig_names.append(gene) # print up_gene_names t, p = ttest_ind(early_array, late_array, equal_var=False) print t ##I have been trying to get this t-test to work. I know that the problem is that I am giving it an array of averages and it wants to be able to find the averages on its own, but I cannot figure out how to get around this. Since I couldn't get past this, I couldn't perform the Panther part of this exercise.
true
9fc4f0028a8ecdf623b1459246d9ee431f992fe4
Python
Muskelbieber/PS2_remote_to_arduino
/PS2_remote_turtle.py
UTF-8
1,834
3.5
4
[]
no_license
############## ## Script listens to serial port and does stuff ############## ## requires pySerial to be installed import serial import turtle from PS2_remote_data import serial_port,\ baud_rate,\ button_to_signal,\ signal_to_button, signal_to_int ser = serial.Serial(serial_port, baud_rate) #The Information function to print all button uses def info(): print('OPEN/CLOSE: Terminate the whole programm by exit()') print('PLAY: Activates/deactivates Turtle gamemode') print('Triangle: Display Turtle shape') print('Up arrow: Turtle move 25 in forward facing direction') print('Left arrow: Turtle rotates left 5 degrees') print('Right arrrow: Turtle rotates right 5 degrees') print('Display: Shows this information again in the terminal') turtle_val=False; info(); while(True): line = ser.readline(); #ser.readline returns a binary, convert to string line = line.decode("utf-8"); #Terminal output of what one pressed print(line); print(signal_to_button[line]); print(signal_to_int[line]); #System commands #if(signal_to_int[line]==int('0x68B5B', 0)):exit();#OPEN/CLOSE if(signal_to_int[line]==signal_to_int[button_to_signal['OPEN/CLOSE']]): exit();#OPEN/CLOSE #Help Information again displaying if(signal_to_int[line]==signal_to_int[button_to_signal['DISPLAY']]): info(); #Draw play Turtle if(signal_to_int[line]==signal_to_int[button_to_signal['PLAY']]): turtle_val = not turtle_val; if(turtle_val==True): if(signal_to_int[line]==signal_to_int[button_to_signal['Triangle']]): turtle.shape("turtle") if(signal_to_int[line]==signal_to_int[button_to_signal['Up arrow']]): turtle.forward(25); if(signal_to_int[line]==signal_to_int[button_to_signal['Right arrow']]): turtle.right(5); if(signal_to_int[line]==signal_to_int[button_to_signal['Left arrow']]): turtle.left(5);
true
2af04bd9ccaa403694885001514b96d2adb256d4
Python
devkumar24/30-Days-of-Code
/Day 6 Review/code.py
UTF-8
399
3.4375
3
[]
no_license
# Enter your code here. Read input from STDIN. Print output to STDOUT test_cases = int(input()) for i in range(test_cases): input_str = input() for j in range(len(input_str)): if j%2 == 0: print(input_str[j],end = "") print(end = " ") for j in range(len(input_str)): if j%2 != 0: print(input_str[j],end = "") print(end = "\n")
true
9f69c856885d9b39cc390da189f61b1674c9a63c
Python
MariaLitvinova/autotesting-with-python
/module2/test7_explicit_wait.py
UTF-8
949
3.140625
3
[]
no_license
from selenium import webdriver import time import math from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By def calc(x): return str(math.log(abs(12*math.sin(int(x))))) try: link = "http://suninjuly.github.io/explicit_wait2.html" browser = webdriver.Chrome() browser.get(link) text = WebDriverWait(browser, 20).until( EC.text_to_be_present_in_element((By.ID, "price"), "100") ) button = browser.find_element_by_id("book") button.click() x_element = WebDriverWait(browser, 5).until( EC.presence_of_element_located((By.ID, "input_value")) ) x = x_element.text y = calc(x) y_element = browser.find_element_by_id("answer") y_element.send_keys(y) button = browser.find_element_by_id("solve") button.click() finally: time.sleep(20) browser.quit()
true
ec70c6d087b91c4f0b4f253849950fa4c4308236
Python
jacklisp/motion-planning-playground
/algorithms/Probablistics Planners/rrt_family_algorithms.py
UTF-8
10,489
3.390625
3
[ "MIT" ]
permissive
import random import numpy as np import math import copy import matplotlib.pyplot as plt show_animation = True class RRTFamilyPlanners(): def __init__(self, start, goal, obstacleList, randArea, expandDis=0.5, goalSampleRate=10, maxIter=200): self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) self.minrand = randArea[0] self.maxrand = randArea[1] self.expandDis = expandDis self.goalSampleRate = goalSampleRate self.maxIter = maxIter self.obstacleList = obstacleList ################################################################################## def RRTSearch(self, animation=True): self.nodeList = [self.start] while True: # get random point in the free space rnd = self.sampleFreeSpace() # find closest node in the tree nind = self.getNearestListIndex(self.nodeList, rnd) nearestNode = self.nodeList[nind] theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) # compute the position of the new node newNode = self.getNewNode(theta, nind, nearestNode) # collision check if not self.__CollisionCheck(newNode, self.obstacleList): continue # if collision doesn't happen in extending the nearest node to the new node # add it to the tree self.nodeList.append(newNode) #check if we reached the goal if self.isNearGoal(newNode): break if animation: self.drawGraph(rnd) # compute the path lastIndex = len(self.nodeList) -1 path = self.getFinalCourse(lastIndex) return path def sampleFreeSpace(self): if random.randint(0,100) > self.goalSampleRate: rnd = [random.uniform(self.minrand, self.maxrand), random.uniform(self.minrand, self.maxrand)] else: rnd = [self.goal.x, self.goal.y] return rnd def getNearestListIndex(self, nodes, rnd): dList = [(node.x - rnd[0])**2 + (node.y - rnd[1])**2 for node in nodes] minIndex = dList.index(min(dList)) return minIndex def getNewNode(self, theta, nind, nearestNode): newNode = copy.deepcopy(nearestNode) newNode.x += self.expandDis * math.cos(theta) newNode.y += self.expandDis * math.sin(theta) newNode.cost += self.expandDis newNode.parent = nind return newNode def __CollisionCheck(self, newNode, obstacleList): for (ox, oy, size) in obstacleList: dx = ox - newNode.x dy = oy - newNode.y d = dx * dx + dy * dy if d <= 1.1 * size**2: return False #collision return True # safe def isNearGoal(self, node): d = self.lineCost(node, self.goal) if d < self.expandDis: return True return False ################################################################################## def RRTStarSearch(self, animation=True): self.nodeList = [self.start] iter = 1 while True: rnd = self.sampleFreeSpace() nind = self.getNearestListIndex(self.nodeList, rnd) nearestNode = self.nodeList[nind] # steer theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.getNewNode(theta, nind, nearestNode) if self.__CollisionCheck(newNode, self.obstacleList): nearinds = self.findNearNodes(newNode) newNode = self.chooseParent(newNode, nearinds) self.nodeList.append(newNode) self.rewire(newNode, nearinds) iter += 1 if(iter == self.maxIter): break if animation: self.drawGraph(rnd) if self.isNearGoal(newNode): break # get path lastIndex = len(self.nodeList) -1 path = self.getFinalCourse(lastIndex) return path def rewire(self, newNode, nearInds): nnode = len(self.nodeList) for i in nearInds: nearNode = self.nodeList[i] d = math.sqrt((nearNode.x - newNode.x)**2 + (nearNode.y - newNode.y)**2) scost = newNode.cost + d if nearNode.cost > scost: theta = math.atan2(newNode.y - nearNode.y , newNode.x - nearNode.x) if self.check_collision_extend(nearNode, theta, d): nearNode.parent = nnode - 1 nearNode.cost = scost def check_collision_extend(self, nearNode, theta, d): tmpNode = copy.deepcopy(nearNode) for i in range(int(d / self.expandDis)): tmpNode.x += self.expandDis * math.cos(theta) tmpNode.y += self.expandDis * math.sin(theta) if not self.__CollisionCheck(tmpNode, self.obstacleList): return False return True def findNearNodes(self, newNode): nnode = len(self.nodeList) r = 50.0 * math.sqrt((math.log(nnode) / nnode)) dlist = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 for node in self.nodeList] nearinds = [dlist.index(i) for i in dlist if i <= r ** 2] return nearinds def chooseParent(self, newNode, nearInds): if len(nearInds) == 0: return newNode dList = [] for i in nearInds: dx = newNode.x - self.nodeList[i].x dy = newNode.y - self.nodeList[i].y d = math.sqrt(dx ** 2 + dy ** 2) theta = math.atan2(dy, dx) if self.check_collision_extend(self.nodeList[i], theta, d): dList.append(self.nodeList[i].cost + d) else: dList.append(float('inf')) minCost = min(dList) minInd = nearInds[dList.index(minCost)] if minCost == float('inf'): print("mincost is inf") return newNode newNode.cost = minCost newNode.parent = minInd return newNode def getFinalCourse(self, lastIndex): path = [[self.goal.x, self.goal.y]] while self.nodeList[lastIndex].parent is not None: node = self.nodeList[lastIndex] path.append([node.x, node.y]) lastIndex = node.parent path.append([self.start.x, self.start.y]) return path def getBestLastIndex(self): disgList = [self.calcDistToGoal(node.x, node.y) for node in self.nodeList] goalInds = [disgList.index(i) for i in disgList if i <= self.expandDis] if len(goalInds) == 0: return None minCost = min([self.nodeList[i].cost for i in goalInds]) for i in goalInds: if self.nodeList[i].cost == minCost: return i return None def calcDistToGoal(self, x, y): return np.linalg.norm([x - self.goal.x, y - self.goal.y]) ################################################################################## def InformedRRTStarSearch(self, animation=True): self.nodeList = [self.start] # max length we expect to find in our 'informed' sample space, starts as infinite cBest = float('inf') pathLen = float('inf') treeSize = 0 pathSize = 0 solutionSet = set() path = None # Computing the sampling space cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) + pow(self.start.y - self.goal.y, 2)) xCenter = np.matrix([[(self.start.x + self.goal.x) / 2.0], [(self.start.y + self.goal.y) / 2.0], [0]]) a1 = np.matrix([[(self.goal.x - self.start.x) / cMin], [(self.goal.y - self.start.y) / cMin], [0]]) id1_t = np.matrix([1.0, 0.0, 0.0]) # first column of idenity matrix transposed M = np.dot(a1 , id1_t) U, S, Vh = np.linalg.svd(M, 1, 1) C = np.dot(np.dot(U, np.diag([1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), Vh) for i in range(self.maxIter): # Sample space is defined by cBest # cMin is the minimum distance between the start point and the goal # xCenter is the midpoint between the start and the goal # cBest changes when a new path is found rnd = self.sample(cBest, cMin, xCenter, C) nind = self.getNearestListIndex(self.nodeList, rnd) nearestNode = self.nodeList[nind] # steer theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) newNode = self.getNewNode(theta, nind, nearestNode) d = self.lineCost(nearestNode, newNode) if self.__CollisionCheck(newNode, self.obstacleList) and self.check_collision_extend(nearestNode, theta, d): nearInds = self.findNearNodes(newNode) newNode = self.chooseParent(newNode, nearInds) self.nodeList.append(newNode) self.rewire(newNode, nearInds) if self.isNearGoal(newNode): solutionSet.add(newNode) lastIndex = len(self.nodeList) -1 tempPath = self.getFinalCourse(lastIndex) tempPathLen = self.getPathLen(tempPath) if tempPathLen < pathLen: path = tempPath cBest = tempPathLen if animation: self.drawGraph(rnd) return path def sample(self, cMax, cMin, xCenter, C): if cMax < float('inf'): r = [cMax /2.0, math.sqrt(cMax**2 - cMin**2)/2.0, math.sqrt(cMax**2 - cMin**2)/2.0] L = np.diag(r) xBall = self.sampleUnitBall() rnd = np.dot(np.dot(C, L), xBall) + xCenter rnd = [rnd[(0,0)], rnd[(1,0)]] else: rnd = self.sampleFreeSpace() return rnd def sampleUnitBall(self): a = random.random() b = random.random() if b < a: a, b = b, a sample = (b * math.cos(2 * math.pi * a / b), b * math.sin(2 * math.pi * a / b)) return np.array([[sample[0]], [sample[1]], [0]]) def getPathLen(self, path): pathLen = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i-1][0] node2_y = path[i-1][1] pathLen += math.sqrt((node1_x - node2_x)**2 + (node1_y - node2_y)**2) return pathLen def lineCost(self, node1, node2): return math.sqrt((node1.x - node2.x)**2 + (node1.y - node2.y)**2) ################################################################################## def drawGraph(self, rnd=None): plt.clf() if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") for node in self.nodeList: if node.parent is not None: if node.x or node.y is not None: plt.plot([node.x, self.nodeList[node.parent].x], [ node.y, self.nodeList[node.parent].y], "-g") for (ox, oy, size) in self.obstacleList: plt.plot(ox, oy, "ok", ms = 30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") plt.axis([-2, 15, -2, 15]) plt.grid(True) plt.pause(0.01) class Node(): def __init__(self, x, y): self.x = x self.y = y self.cost = 0.0 self.parent = None def main(): print("Start rrt planning") # ====Search Path with RRT==== obstacleList = [ (5, 5, 0.5), (9, 6, 1), (7, 5, 3), (1, 5, 1), (2, 2, 1), (7, 9, 1) ] # [x,y,size(radius)] # Set Initial parameters rrt = RRTFamilyPlanners(start = [0, 0], goal = [5, 10], randArea = [-2, 15], obstacleList = obstacleList) path = rrt.RRTStarSearch(animation = show_animation) # Draw final path if show_animation: rrt.drawGraph() plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') plt.grid(True) plt.pause(0.01) # Need for Mac plt.show() if __name__ == '__main__': main()
true
49a96a36ac7a962c1e0d00b5747699f62f4d9999
Python
MarioMiranda98/Curso-Python
/Interfaces/PrimeraInterfaz.pyw
UTF-8
344
3.0625
3
[]
no_license
from tkinter import * #primero construir la raiz (frame) raiz = Tk() raiz.title("Ventana de prueba") #Asignar titulo raiz.resizable(0, 0) #Evitar que sea redimensionable #raiz.iconbitmap("Ruta") //Para poner otro icono raiz.geometry("650x350") #Para dar medidas raiz.config(bg = "blue") #Para cambiar el fondo raiz.mainloop() #Bucle infinito
true
5caf6e3dfee856906d3c146afcd31f475d5f2b8f
Python
MrShashankBisht/Python-basics-
/control_Statement/nestedForloop.py
UTF-8
67
2.953125
3
[]
no_license
for i in range(1,50,5): for j in range(i,30): print (j)
true
728d8ddf06cb13b425684e1fb57ac904bf5938f0
Python
wanghq/oss-copy
/functions/initMultipartUpload/test_index.py
UTF-8
1,034
2.71875
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import logging import os import string import unittest from .index import calc_groups class TestIndex(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestIndex, self).__init__(*args, **kwargs) def test_calc_groups(self): cases = [ # total_size, part_size, max_total_part_size [[100, 10, 40], [10, 3, 4]], [[100, 10, 50], [10, 2, 5]], [[101, 10, 40], [11, 3, 4]], [[101, 10, 50], [11, 3, 5]], [[99, 10, 40], [10, 3, 4]], [[99, 10, 50], [10, 2, 5]], [[100, 15, 40], [7, 4, 2]], [[100, 15, 50], [7, 3, 3]], ] for c in cases: input = c[0] expected = c[1] t, g, p = calc_groups(input[0], input[1], input[2]) self.assertEqual(t, expected[0], input) self.assertEqual(g, expected[1], input) self.assertEqual(p, expected[2], input) if __name__ == '__main__': unittest.main()
true
29c20047994da6047c4e916c44b267bf35cdc3c7
Python
Denisov-AA/Python_courses
/HomeWork/Lection8_TestWork/Task_2.py
UTF-8
135
3.609375
4
[]
no_license
def my_reversed(somelist:list): reversed_list = somelist[::-1] return reversed_list print(my_reversed([1, 2, 3, 4, 5, 6, 7]))
true
0ef54a279c101714b03f23beb739734dc5cee4de
Python
Yeshwanthyk/algorithms
/leetcode/253-meeting-rooms/253_meeting_rooms_ii.py
UTF-8
824
3.96875
4
[]
no_license
"""Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required. Example 1: Input: [[0, 30],[5, 10],[15, 20]] Output: 2 Example 2: Input: [[7,10],[2,4]] Output: 1 """ import heapq def meeting_room(intervals): if len(intervals) < 1: return 0 intervals = sorted(intervals, key=lambda x: x[0]) heap = [] for interval in intervals: start_time = interval[0] end_time = interval[1] if not heap: heapq.heappush(heap, end_time) elif heap[0] > start_time: heapq.heappush(heap, end_time) else: heapq.heapreplace(heap, end_time) return len(heap) intervals = [[7, 10], [2, 4]] ans = meeting_room(intervals) print(ans)
true
f3882cde49fef82cd62c84d33c14936580b0a0c5
Python
ammumal/2021-1_Learning_Study
/Stack과 Queue/9012 괄호.py
UTF-8
797
3.453125
3
[]
no_license
#testcase 입력받기 n = int(input()) PS = [input() for i in range(n)] #괄호 검사와 답 저장을 위한 list생성 stack = [] answer = [] #괄호 검사 for i in range(n): for j in range(len(PS[i])): #PS가 (면 스택에 저장 if PS[i][j] == '(': stack.append('(') #PS가 )일 경우 stack에 저장되어있던 ( 삭제, stack이 비어있을 경우 break해서 NO에 걸릴 수 있도록 ) 추가 else: if not stack: stack.append(')') break else: del stack[-1] #stack이 비어있으면 VPS if not stack: answer.append('YES') stack = [] else: answer.append('NO') stack = [] #출력 for i in range(n): print(answer[i])
true
a5e5c80ed38558f08ecb7c3eb1c4a166a1bed0d0
Python
RShveda/pygame-practice
/catch-ball-game/catch_ball.py
UTF-8
658
2.53125
3
[]
no_license
import pygame from models import load_scores from views import blank_screen from controllers import user_controller_tick, system_controller_tick import constants as cons def main(): """ Main function of the module which is responsible for variables initialisation and game event loop. """ pygame.init() clock = pygame.time.Clock() load_scores() is_finished = False while not is_finished: clock.tick(cons.FPS) is_finished = user_controller_tick(is_finished) system_controller_tick() pygame.display.update() blank_screen() pygame.quit() if __name__ == '__main__': main()
true
03cd03a9253731fec3e7f3745e841a8e537c3f7f
Python
efvaldez1/Advanced-Deep-Learning-with-Keras
/chapter9-drl/dqn-cartpole-9.3.1.py
UTF-8
8,505
3.140625
3
[ "MIT" ]
permissive
"""Trains a DQN to solve CartPole-v0 problem """ from keras.layers import Dense, Input from keras.models import Model from keras.optimizers import Adam, RMSprop from collections import deque import heapq import numpy as np import random import argparse import sys import gym from gym import wrappers, logger class DQNAgent(object): def __init__(self, state_space, action_space, args): self.action_space = action_space self.state_space = state_space self.build_model() self.memory = [] self.gamma = 0.9 # discount rate self.epsilon = 1.0 # exploration rate self.epsilon_min = 0.1 self.epsilon_decay = 0.99 self.q_model = self.build_model() optimizer = Adam() self.weights_file = 'dqn_cartpole.h5' self.q_model = self.build_model() self.q_model.compile(loss='mse', optimizer=optimizer) self.target_q_model = self.build_model() self.update_weights() self.replay_counter = 0 self.enable_ddqn = True if args.enable_ddqn else False self.prioritized_replay = True if args.prioritized_replay else False if self.enable_ddqn: print("DDQN---------------------------------------------------") else: print("----------------------------------------------------DQN") if self.prioritized_replay: print("PRIORITIZED REPLAY-------------------------------------") self.priority = 0 def build_model(self): inputs = Input(shape=(self.state_space.shape[0], ), name='state') x = Dense(256, activation='relu')(inputs) x = Dense(256, activation='relu')(x) x = Dense(256, activation='relu')(x) x = Dense(self.action_space.n, activation='linear', name='action')(x) q_model = Model(inputs, x) q_model.summary() return q_model def save_weights(self): self.q_model.save_weights(self.weights_file) def update_weights(self): self.target_q_model.set_weights(self.q_model.get_weights()) def act(self, state): if np.random.rand() <= self.epsilon: # explore - do random action return self.action_space.sample() # exploit q_values = self.q_model.predict(state) # select the action with max acc reward (Q-value) return np.argmax(q_values[0]) def get_td_error(self, next_state): eps = random.uniform(1e-4, 1e-3) q_value = self.get_target_q_value(next_state) q_value -= self.q_model.predict(state)[0][action] return abs(q_value) + eps def remember(self, state, action, reward, next_state, done): # self.memory.append([state, action, reward, next_state, done]) self.priority += 1 if self.prioritized_replay: self.priority = self.get_td_error(next_state) item = (self.priority, state, action, reward, next_state, done) heapq.heappush(self.memory, item) def get_target_q_value(self, next_state): # TD(0) Q-value using Bellman equation # to deal with non-stationarity, model weights are fixed if self.enable_ddqn: # DDQN # current q network selects the action action = np.argmax(self.q_model.predict(next_state)[0]) # target q network evaluate the action q_value = self.target_q_model.predict(next_state)[0][action] else: # DQN chooses the q value of the action with max value q_value = np.amax(self.target_q_model.predict(next_state)[0]) q_value *= self.gamma q_value += reward return q_value def replay(self, batch_size): """Experience replay removes correlation between samples that is causing the neural network to diverge """ # get a random batch of sars from replay memory # sars = state, action, reward, state' (next_state) if self.prioritized_replay: self.memory = heapq.nlargest(len(self.memory), self.memory, key=lambda m:m[0]) indexes = np.random.choice(min(len(self.memory), 16*batch_size), batch_size, replace=False) sars_batch = [] for index in indexes: sars_batch.append(self.memory[index]) else: sars_batch = random.sample(self.memory, batch_size) state_batch, q_values_batch = [], [] index = 0 for _, state, action, reward, next_state, done in sars_batch: # policy prediction for a given state q_values = self.q_model.predict(state) q_value = self.get_target_q_value(next_state) # correction on the Q-value for the given action q_values[0][action] = reward if done else q_value # collect batch state-q_value mapping state_batch.append(state[0]) q_values_batch.append(q_values[0]) if self.prioritized_replay: priority = self.get_td_error(next_state) i = indexes[index] self.memory[i] = (priority, state, action, reward, next_state, done) index += 1 # train the Q-network self.q_model.fit(np.array(state_batch), np.array(q_values_batch), batch_size=batch_size, epochs=1, verbose=0) # update exploration-exploitation probability if self.replay_counter % 4 == 0: self.update_epsilon() # copy new params on old target after every x training updates if self.replay_counter % 2 == 0: self.update_weights() self.replay_counter += 1 def update_epsilon(self): if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay if __name__ == '__main__': parser = argparse.ArgumentParser(description=None) parser.add_argument('env_id', nargs='?', default='CartPole-v0', help='Select the environment to run') parser.add_argument("-d", "--enable-ddqn", action='store_true', help="Enable double DQN") parser.add_argument("-p", "--prioritized-replay", action='store_true', help="Enable prioritized experience replay") args = parser.parse_args() if args.enable_ddqn: print("Using DDQN") else: print("Using default DQN") win_trials = 100 win_reward = { 'CartPole-v0' : 195.0 } scores = deque(maxlen=win_trials) # You can set the level to logging.DEBUG or logging.WARN if you # want to change the amount of output. logger.setLevel(logger.ERROR) env = gym.make(args.env_id) outdir = "/tmp/dqn-%s" % args.env_id env = wrappers.Monitor(env, directory=outdir, force=True) env.seed(0) agent = DQNAgent(env.observation_space, env.action_space, args) episode_count = 3000 state_size = env.observation_space.shape[0] batch_size = 64 for i in range(episode_count): state = env.reset() state = np.reshape(state, [1, state_size]) t = 0 done = False while not done: # in CartPole, action=0 is left and action=1 is right action = agent.act(state) next_state, reward, done, _ = env.step(action) # in CartPole: # state = [pos, vel, theta, angular speed] next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, done) state = next_state t += 1 if len(agent.memory) >= batch_size: agent.replay(batch_size) scores.append(t) mean_score = np.mean(scores) if mean_score >= win_reward[args.env_id] and i >= win_trials: print("Solved in episode %d: Mean survival = %0.2lf in %d episodes" % (i, mean_score, win_trials)) print("Epsilon: ", agent.epsilon) agent.save_weights() break if i % win_trials == 0: print("Episode %d: Mean survival = %0.2lf in %d episodes" % (i, mean_score, win_trials)) # close the env and write monitor result info to disk env.close()
true
f567e81824b0485212695e4e5f0fff322cdce0ec
Python
WihlkeJulius/JWLTcolab
/m_engine.py
UTF-8
2,154
3.203125
3
[]
no_license
# # Mongoengine är det paket som hanterar kopplingen till MongoDB from mongoengine import * # Det här skapar en koppling till databasen 'systemet2' lokalt på din dator connect('systemet2') #Det här är en definition av hur ett dokument av typen Vara ser ut, jag har valt sju saker av de 30 som finns i filen class Vara(Document): nr= StringField() Artikelid = StringField() Varunummer = StringField() Namn = StringField() Namn2 = StringField() Prisinklmoms = StringField() Volymiml = StringField() PrisPerLiter = StringField() # det här monstret öppnar filen 'testfil.txt' sen läser den rad för rad och kollar först om artikelidt redan finns # i databasen, gör den inte det så skapar den ett nytt dokument i databasen och sparar det. Finns det redan ett dokument # med samma artikelid så kollar den om priset i databasen är annat än det som är i textfilen, isf skriver den ut # diffen i consolfönstret, sedan sparas det nya värdet i databasen. Ifall priset är samma som i databasen går den bara vidare till nästa rad. def load_file(): testdata = open('testfil.txt','r', encoding='utf-8', errors='ignore') # här kan du ändra namnet på den fil du vill öppna just nu är det 'testfil.txt' for rad in testdata: radlista = rad.split('\t') found_doc = Vara.objects(Artikelid=radlista[1]) if not found_doc: newdoc = Vara( nr=radlista[0], Artikelid=radlista[1], Varunummer=radlista[2], Namn=radlista[3], Namn2=radlista[4], Prisinklmoms=radlista[5], Volymiml=radlista[7], PrisPerLiter=radlista[8] ) newdoc.save() elif found_doc: if found_doc[0].Prisinklmoms != radlista[5]: print('Nytt Pris') print(str(found_doc[0]['Namn'])+', Prisförändring: '+(str(float(found_doc[0]['Prisinklmoms']) - float(radlista[5])))) found_doc.update(Prisinklmoms=radlista[5]) testdata.close()
true
06877c1852dd0e363395a63ce8ba0d671398d49b
Python
CSUBioinformatics1801/Python_Bioinformatics_ZYZ
/Exp6/list_test.py
UTF-8
561
3.25
3
[ "MIT" ]
permissive
a=input('input multinums splitted ori_listy ",":') ori_list=a.split(',') n=0 for c in ori_list: ori_list[n]=int(c) n+=1 print("origin list:",ori_list) x=eval(input('input a num:')) x_index=ori_list.index(x) if 0<x_index<len(ori_list): print('max adjcent num:',ori_list[x_index-1],ori_list[x_index+1]) if x in ori_list: print(x,"'s index of the list is",ori_list.index(x)) ori_list.remove(x) print("Delete %s successfully!"%x) else: ori_list.append(x) print("%s has ori_listeen added"%x) ori_list.sort() print("Sorted:",ori_list)
true
08bbbdcba129130a0f20af201af09a256bcf9461
Python
Amada91/Valentines-with-Python
/valentine.py
UTF-8
4,172
2.984375
3
[ "MIT" ]
permissive
# ===================================================================== # Title: Valentines with Python # Author: Niraj Tiwari # ===================================================================== import os import numpy as np from wordcloud import WordCloud, STOPWORDS import imageio import matplotlib.pyplot as plt from PIL import Image import glob # ===================================================================== # required variables WORD_CLOUD_PNG = 'word_cloud.png' WORD_CLOUD_GIF = 'word_cloud.gif' HEART_IMAGE = 'heart1.png' HEART_X_COORDS = np.array([ 0, 44, 115, 170, 209, 250, 263, 245, 183, 123, 68, 0]) HEART_Y_COORDS = np.array([ 145, 178, 195, 184, 161, 126, 73, -25, -91, -149, -187, -223]) TEXT_POS = (-110, -254) DRAW_SPEED = 3 # from 0 to 10 DRAW_WIDTH = 5 # width of the pen SCREEN_SIZE = (720, 576) # size of the screen # ===================================================================== # convert png image to gif and save def to_gif(gif_file_name, png_file_name): # Create the frames frames = [] imgs = glob.glob(png_file_name) for i in imgs: new_frame = Image.open(i) frames.append(new_frame) # Save into a GIF file that loops forever frames[0].save(gif_file_name, format='GIF', append_images=frames[1:], save_all=True, duration=300, loop=0) # ===================================================================== # random color for word cloud def random_red_color_func(word=None, font_size=None, position=None, orientation=None, font_path=None, random_state=None): h = 0 s = 100 l = int(50 * (float(random_state.randint(60, 120))/100.0)) return "hsl({}, {}%, {}%)".format(h, s, l) # ===================================================================== # generate word cloud def generate_word_cloud(words, image_file, saved_name, gif_file_name): mask = imageio.imread(image_file) word_cloud = WordCloud(width = 400, height = 400, color_func = random_red_color_func, background_color = 'white', stopwords = STOPWORDS, mask = mask, repeat=True).generate(words) plt.figure(figsize = (10,8), facecolor = 'white', edgecolor='blue') plt.imshow(word_cloud) plt.axis('off') plt.tight_layout(pad=0) plt.savefig(saved_name) to_gif(gif_file_name, saved_name) # ===================================================================== # draw animation def draw_boundary(): from turtle import Turtle, Screen, bye, getcanvas, ontimer t = Turtle() t.speed(1) s = Screen() s.setup(SCREEN_SIZE[0], SCREEN_SIZE[1]) s.bgpic('word_cloud.gif') # t.shape('circle') xs = HEART_X_COORDS ys = HEART_Y_COORDS xs = np.flip(xs) ys = np.flip(ys) t.penup() t.speed(0) t.left(135) t.pensize(DRAW_WIDTH) t.goto(xs[0], ys[0]) t.pendown() t.speed(DRAW_SPEED) for i in range(12): t.color("red") # t.fd(20) t.goto(xs[i], ys[i]) xs = -np.flip(xs) ys = np.flip(ys) for i in range(12): t.color("red") # t.fd(20) t.goto(xs[i], ys[i]) t.penup() t.speed(0) t.pensize(DRAW_WIDTH) t.goto(TEXT_POS[0], TEXT_POS[1]) t.pendown() t.speed(DRAW_SPEED) t.write("HAPPY VALENTINE'S DAY", font=('Arial', 16, 'bold')) s.exitonclick() bye() # ===================================================================== if __name__ == '__main__': name = input('Enter your valentines name: ') words = ', '.join(name.split()) generate_word_cloud(words, HEART_IMAGE, WORD_CLOUD_PNG, WORD_CLOUD_GIF) draw_boundary() os.remove(WORD_CLOUD_GIF) os.remove(WORD_CLOUD_PNG)
true
19cebd43cf45d31d4ddd4e2fa926ea32265b3290
Python
cltrudeau/purdy
/purdy/colour/urwidco.py
UTF-8
5,657
2.640625
3
[ "MIT" ]
permissive
from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace, Punctuation, Text, Literal from purdy.parser import FoldedCodeLine, token_ancestor # ============================================================================= # Urwid Colourizer _code_palette = { # urwid colour spec supports both 16 and 256 colour terminals # fg16 bg16 fg256 bg256 Token: ('', '', '', '', ''), Whitespace: ('', '', '', '', ''), Comment: ('dark cyan', '', '', '#6dd', ''), Keyword: ('brown', '', '', '#d8d', ''), Operator: ('brown', '', '', '#aaa', ''), Punctuation: ('dark cyan', '', '', '#8df', ''), Text: ('dark cyan', '', '', '#ddd', ''), Name: ('light gray', '', '', '#ddd', ''), Name.Builtin: ('dark cyan', '', '', '#8af', ''), Name.Builtin.Pseudo:('dark cyan', '', '', '#a66,bold', ''), Name.Function: ('dark cyan', '', '', '#adf', ''), Name.Class: ('dark cyan', '', '', '#adf', ''), Name.Exception: ('dark green', '', '', '#fd6,bold', ''), Name.Decorator: ('dark cyan', '', '', '#fd6,bold', ''), String: ('dark magenta', '', '', '#ddd', ''), Number: ('dark magenta', '', '', '#f86', ''), Generic.Prompt: ('dark blue', '', '', '#fff,bold', ''), Generic.Error: ('dark green', '', '', '#fd6,bold', ''), Generic.Traceback: ('', '', '', '#ddd', ''), Error: ('dark green', '', '', '#fd6,bold', ''), } _xml_palette = dict(_code_palette) _xml_palette.update({ Name.Attribute: ('brown', '', '', 'brown', ''), Keyword: ('dark cyan', '', '', '#8af', ''), Name.Tag: ('dark cyan', '', '', '#8af', ''), Punctuation: ('dark cyan', '', '', '#8af', ''), }) _doc_palette = dict(_code_palette) _doc_palette.update({ Name.Tag: ('brown', '', '', 'brown', ''), Name.Attribute: ('brown', '', '', 'brown', ''), Literal: ('dark cyan', '', '', '#8af', ''), Generic.Heading:('brown', '', '', 'brown', ''), Generic.Subheading:('brown', '', '', 'brown', ''), Generic.Emph: ('dark blue', '', '', 'dark blue', ''), Generic.Strong: ('dark green', '', '', 'dark green', ''), String: ('dark magenta', '', '', 'dark magenta', ''), }) class UrwidColourizer: palettes = { 'code':_code_palette, 'xml':_xml_palette, 'doc':_doc_palette, } @classmethod def create_urwid_palette(cls): """Returns a list of colour tuples that Urwid uses as its palette. The list is based on the UrwidColourizer.colours with a couple extra items """ urwid_palette = [] for name, palette in cls.palettes.items(): for key, value in palette.items(): # for each item in our colours hash create a tuple consisting of # the token name and its values item = (f'{name}_{key}', ) + value urwid_palette.append( item ) # do it again for highlighted tokens, for 16 colour mode change # both the fg and bg colour, for 256 colour mode just change the # background item = (f'{name}_{key}_highlight', 'black', 'light gray', '', value[3], 'g23') urwid_palette.append( item ) # add miscellaneous other palette items urwid_palette.extend([ ('reverse', 'black', 'white', '', 'black', 'white'), ('bold', 'white,bold', '', '', 'white,bold', ''), ('title', 'white,underline', '', '', 'white,underline', ''), ('folded', 'white', '', '', 'white', ''), ('line_number', 'dark gray', '', '', 'dark gray', ''), ('empty', '', '', '', '', ''), ('empty_highlight', '', 'light gray', '', '', 'g23'), ]) return urwid_palette @classmethod def colourize(cls, code_line): """Returns a list containing markup tuples as used by urwid.Text widgets. :param code_line: a :class:`CodeLine` object to colourize """ if isinstance(code_line, FoldedCodeLine): return ('folded', ' ⋮') palette = code_line.lexer.palette ancestor_list = cls.palettes[palette].keys() output = [] if code_line.line_number >= 0: output.append( cls.line_number(code_line.line_number) ) for part in code_line.parts: ancestor = token_ancestor(part.token, ancestor_list) key = f'{palette}_{ancestor}' if code_line.highlight: key += '_highlight' # Urwid uses a palette which has been built as a hash using the # names of the ancestor tokens as keys and the fg/bg colour # choices as values, each piece of marked up text is a tuple of # the palette key and the text to display markup = (key, part.text) output.append(markup) return output @classmethod def line_number(cls, num): """Returns a colourized version of a line number""" return ('line_number', f'{num:3} ')
true
64a15837d59be63689799da54c288c3ee7aaa988
Python
zhy0/dmarket_rl
/dmarket/agents.py
UTF-8
8,913
3.734375
4
[ "MIT" ]
permissive
import numpy as np class MarketAgent: """ Market agent implementation to be used in market environments. Attributes ---------- role: str, 'buyer' or 'seller' reservation_price: float Must be strictly positive. name: str, optional (default=None) Name of the market agent. If not given, a random one will be generated. Note: this will usually not be the agent id used in the market engine. """ def __init__(self, role, reservation_price, name=None): if not role in ['buyer', 'seller']: raise ValueError("Role must be either buyer or seller") if reservation_price <= 0: raise ValueError("Reservation price must be positive") self.role = role self.reservation_price = reservation_price if not name: randstring = "%04x" % np.random.randint(16**4) cls = type(self).__name__[0:4] letter = role[0].upper() name = f"{cls}_{letter}{reservation_price}_{randstring}" self.name = name def get_offer(self, observation): """ Returns offer given an observations. Parameters ---------- observation: array_like An element of some observation space defined by the used information setting. Returns ------- offer: float Offer to made to the market. """ raise NotImplementedError class ConstantAgent(MarketAgent): """Agent that always offers its reservation price.""" def get_offer(self, observation): return self.reservation_price class FactorAgent(MarketAgent): """ Abstract agent class that determines an offer range based on a multiplicative factor. Children of this class will take an argument ``max_factor`` and use this together with its reservation price to determine an interval to offer in. For a seller, the agent will have the range ``[r, (1+max_factor)*r]`` with ``r`` the reservation price. For a buyer, this interval would be ``[(1-max_factor)*r, r]``. Parameters ---------- max_factor: float, optional (default=0.5) Must be between 0 and 1. Attributes ---------- _s: int A sign derived from the role of the agent, +1 means seller, -1 means buyer. _c: float A factor used to compute the interval range. _a: float Lower bound of the offer range. _b: float Upper bound of the offer range. """ def __init__(self, role, reservation_price, name=None, max_factor=0.5): self.max_factor = max_factor super().__init__(role, reservation_price, name) r = reservation_price self._s = (-1 if role == 'buyer' else 1) self._c = (1 + self._s * max_factor) self._a = min(r, self._c*r) # minimum agent can offer self._b = max(r, self._c*r) # maximum agent can offer class UniformRandomAgent(FactorAgent): """ Random agent that offers uniformly random prices. This agent will take an argument ``max_factor`` and use this together with its reservation price to determine the interval to use for sampling offers. For a seller, the agent will make uniform random offers in the range ``[r, (1+max_factor)*r]`` with ``r`` the reservation price. For a buyer, this interval would be ``[(1-max_factor)*r, r]``. Parameters ---------- max_factor: float, optional (default=0.5) Must be between 0 and 1. """ def get_offer(self, observation): return np.random.uniform(self._a, self._b) class TimeDependentAgent(FactorAgent): """ Abstract helper class to create agents that have time-dependent strategies. """ def get_offer(self, observation): if not isinstance(observation, tuple): raise ValueError("Expected tuple observation!") obs = observation[0] time = observation[1] return self.compute_offer(obs, time) def compute_offer(self, observation, time): """ Compute the offer based on observation and time. """ raise NotImplementedError class TimeLinearAgent(TimeDependentAgent): """ Agent that linearly decreases/increases its offer price. This agent starts with a high offer and linearly decreases/increases its price until it reaches its reservation price. Parameters ---------- max_factor: float, optional (default=0.5) Must be between 0 and 1, determines the offer range of the agent. noise: float, optional (default=1.0) The standard deviation of the noise added to the computed price. max_steps: int, optional (default=20) Number of steps until the agent offers its reservation price. This determines how quickly the agent lowers/increases his price. """ def __init__(self, role, reservation_price, name=None, max_factor=0.5, noise=1.0, max_steps=20): super().__init__(role, reservation_price, name, max_factor) self.max_steps = max_steps self.noise = noise self._slope = -self._s * (self._b - self._a)/self.max_steps def compute_offer(self, observation, time): t = min(time, self.max_steps) noise = np.random.normal(scale=self.noise) return self._c*self.reservation_price + t*self._slope + noise class GymRLAgent(FactorAgent): """ A market agent with reinforcement learning model. This class serves as a wrapper for gym RL models and serves two purposes: 1. Standardize action space for RL models; 2. Make trained RL models applicable under different market situations. The second point is achieved through normalization of input observations. This makes it possible for an agent that was trained as a seller to operate as a buyer. It also enables agents to function properly across markets with different price scales. Parameters ---------- model: object, optional (default=None) Trained baselines model to use for predictions. It needs to have the method ``predict(observation) -> (action, state)``. discretization: int, optional (default=20) The number of different offers the agent can make. This determines the action space of the agent. max_factor: int A factor of the reservation price that determines the range of prices the agent can offer. See ``UniformRandomAgent``. """ def __init__(self, role, reservation_price, name=None, model=None, discretization=20, max_factor=0.5): self.model = model self.discretization = discretization self._N = discretization super().__init__(role, reservation_price, name, max_factor) def get_offer(self, observation): if not self.model: raise RuntimeError("Current agent does not have a model") action = self.model.predict(self.normalize(observation))[0] return self.action_to_price(action) def normalize(self, observation): """ Normalize the prices in observations according to reservation price. This function will serve to scale all observations based on the agent's reservation price and role. An observation should contain nonnegative prices. A small value corresponds to prices close to the agent's reservation price, while large values correspond to attractive offers. To preserve symmetry between sellers and buyers, this function is discontinuous in 0, since the information settings represent no offers/no information with zero. Parameters ---------- observation: array_like An element of the observation space determined by the information setting. Returns ------- normalized_observation: array_like Scaled observation based on agent's reservation price and role. """ return np.heaviside(observation, 0) * self._s * \ (observation - self.reservation_price)/self.reservation_price def action_to_price(self, action): """ Convert an action in the action space of the agent to a market price. This function uniformly discretizes the price range of the agent. An action close to zero should yield a conservative offer, i.e., close to the reservation price, while a large value for action gives more aggressive offers. Parameters ---------- action: int The action is an integer ``0 <= action < discretization``. Returns ------- price: float The price corresponding to the action. """ l = action - self._N/2 m = self._N/2 return ((m - l*self._s)*self._a + (m + l*self._s)*self._b)/self._N
true
daa11d5d9354b5a92e86165000b5cd0d5ab4465f
Python
yufengvac/one
/test/one.py
UTF-8
148
3.109375
3
[]
no_license
# -*- coding: utf-8 -*- file = open("test.txt", "r") count = 0 for line in file.readlines(): count = count + 1 print(count) print(line)
true
5d83caf939bbb00d2ff85f7c63dd60e956b3ccb7
Python
ym0179/bit_seoul
/ml/m13_kfold_estimators2.py
UTF-8
5,037
2.890625
3
[]
no_license
#Day12 #2020-11-24 # 리그레서 모델들 추출 import pandas as pd from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.metrics import r2_score from sklearn.utils.testing import all_estimators import warnings warnings.filterwarnings('ignore') boston = pd.read_csv('./data/csv/boston_house_prices.csv', header=1, index_col=0) x = boston.iloc[:,0:12] y = boston.iloc[:,12] x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.2,random_state=44) allAlgorithms = all_estimators(type_filter='regressor') #리그레서 모든 모델들을 추출 for (name, algorithm) in allAlgorithms: #모든 모델들의 알고리즘 try: kfold = KFold(n_splits=7, shuffle=True) model = algorithm() scores = cross_val_score(model, x_train, y_train, cv=kfold) print(name,' : ',scores, " / ", scores.mean()) # print(name,' : ',scores) # model.fit(x_train,y_train) # y_pred = model.predict(x_test) # print(name, '의 정답률 : ', r2_score(y_test,y_pred)) except: pass import sklearn print(sklearn.__version__) #0.22.1 버전에 문제 있어서 출력이 안됨 -> 버전 낮춰야함 ''' ARDRegression : [0.63472339 0.73699293 0.72638401 0.65501959 0.69614065] AdaBoostRegressor : [0.81182737 0.83379332 0.84245069 0.77756577 0.85166409] BaggingRegressor : [0.79138811 0.88575358 0.82851186 0.73332175 0.87658863] BayesianRidge : [0.69691645 0.71099764 0.67201277 0.70536539 0.68568366] CCA : [0.5806552 0.48904534 0.70327595 0.62285991 0.79428391] DecisionTreeRegressor : [0.80223336 0.7540664 0.5059052 0.4440844 0.65935755] DummyRegressor : [-0.00137973 -0.00129879 -0.04407133 -0.00123083 -0.0159433 ] ElasticNet : [0.59493706 0.56272884 0.73365092 0.69541029 0.69606088] ElasticNetCV : [0.60860904 0.67915763 0.57426626 0.62888366 0.73562787] ExtraTreeRegressor : [0.86450746 0.74297366 0.53432261 0.59945686 0.64678139] ExtraTreesRegressor : [0.85225421 0.90500975 0.86617287 0.85753211 0.87393061] GammaRegressor : [-0.02701651 -0.00030033 -0.08118306 -0.00745336 -0.01016455] GaussianProcessRegressor : [-6.78859393 -6.07186421 -7.37628514 -4.80213878 -6.2481255 ] GeneralizedLinearRegressor : [0.54524608 0.7250886 0.62371454 0.68799271 0.61748805] GradientBoostingRegressor : [0.92940103 0.7175701 0.87544309 0.7556643 0.87608506] HistGradientBoostingRegressor : [0.87467476 0.87732726 0.75257654 0.7248113 0.89037996] HuberRegressor : [0.69471431 0.67857872 0.70739335 0.65091386 0.47298981] IsotonicRegression : [nan nan nan nan nan] KNeighborsRegressor : [0.5832549 0.2546547 0.39651904 0.52064014 0.5169459 ] KernelRidge : [0.43205815 0.73256777 0.78110944 0.64994815 0.58164087] Lars : [0.79477887 0.75460525 0.58492768 0.76527814 0.60013652] LarsCV : [0.49319365 0.81419339 0.79302459 0.53879881 0.72506674] Lasso : [0.73905339 0.70775097 0.64044895 0.59981717 0.50907817] LassoCV : [0.74348116 0.67173894 0.67785273 0.51023048 0.58180958] LassoLars : [-0.00796666 -0.00699375 -0.00058403 -0.00392075 -0.00127822] LassoLarsCV : [0.56913906 0.77362298 0.70654728 0.76041944 0.73332494] LassoLarsIC : [0.7244167 0.7158275 0.69406338 0.75834145 0.57829223] LinearRegression : [0.771467 0.64618242 0.70935878 0.64652762 0.69451981] LinearSVR : [0.49898865 0.41101108 0.57294219 0.60247352 0.7069553 ] MLPRegressor : [ 0.66048977 -0.35963132 0.47638036 0.49526194 0.29457928] MultiTaskElasticNet : [nan nan nan nan nan] MultiTaskElasticNetCV : [nan nan nan nan nan] MultiTaskLasso : [nan nan nan nan nan] MultiTaskLassoCV : [nan nan nan nan nan] NuSVR : [0.1371885 0.22346531 0.21508614 0.09388968 0.25175281] OrthogonalMatchingPursuit : [0.56054326 0.55417602 0.52423729 0.53617177 0.46495364] OrthogonalMatchingPursuitCV : [0.65705797 0.64562383 0.78680437 0.55099728 0.55431573] PLSCanonical : [-2.47160649 -0.79342764 -2.41959199 -1.97057166 -2.41194385] PLSRegression : [0.66585045 0.59597438 0.68465931 0.73627246 0.70289204] PassiveAggressiveRegressor : [ 0.12602799 -0.02234138 0.17265532 0.18889428 -0.08999591] PoissonRegressor : [0.7531553 0.70513508 0.8252041 0.73214539 0.68064051] RANSACRegressor : [0.55351915 0.53909779 0.57947924 0.60876912 0.75013641] RandomForestRegressor : [0.80693943 0.91920546 0.65201945 0.90496118 0.89685453] Ridge : [0.66198069 0.6906941 0.65923349 0.7292856 0.72547757] RidgeCV : [0.69031587 0.73322112 0.73959015 0.62832114 0.65868779] SGDRegressor : [-1.74841079e+24 -4.33056960e+26 -6.08606957e+26 -2.10602576e+27 -1.83006918e+26] SVR : [0.1462815 0.18366299 0.03295133 0.21950759 0.36641889] TheilSenRegressor : [0.61424655 0.60865322 0.75293689 0.73932156 0.619508 ] TransformedTargetRegressor : [0.73375329 0.67349494 0.7734167 0.56167802 0.702008 ] TweedieRegressor : [0.60150164 0.69212087 0.67875117 0.67929497 0.56801638] _SigmoidCalibration : [nan nan nan nan nan] '''
true
1d057bc95b84a9bd20c65312b9932a3788e21286
Python
kanwalbir/poker_sols
/main.py
UTF-8
3,545
3.859375
4
[]
no_license
#-----------------------------------------------------------------------------# # PACKAGE AND MODULE IMPORTS # #-----------------------------------------------------------------------------# """ Other Python file imports. """ from create_deck import create_deck from deal import deal_cards from wild_hand import best_wild_hand #-----------------------------------------------------------------------------# """ Check if the cards have been provided beforehand. If not, then create a deck of cards and let the system deal some cards to the players. Find the rank of every hand and print out some information about the hand. Determine the winner of the poker match. Args: (i) Dealt hand (optional) - if absent, system will deal cards (ii) Number of players (optional) - default is 4 players (iii) Deck of cards (optional) - default is 'standard' 52 deck - or 'joker' which adds 2 jokers to 'standard' - see create_deck.py for more details Returns: (i) Winner of the poker round """ def poker(deal=[], num_players=4, deck='standard'): if deal: newdeal = deal else: if num_players > 10: # Maximum 10 players can play using 1 deck of cards num_players = 10 mydeck = create_deck(deck) newdeal = deal_cards(mydeck, num_players, 5) print '\n', 'Following hands were dealt:' poker_results, winner, max_value, i = {}, [], (), 0 for hand in newdeal: poker_results[i] = [hand, best_wild_hand(hand)] print poker_results[i][0], '---->', poker_results[i][1][1] if poker_results[i][1][0] > max_value: max_value = poker_results[i][1][0] winner = [poker_results[i][0]] win_type = poker_results[i][1][1] elif poker_results[i][1][0] == max_value: if poker_results[i][0] not in winner: winner += [poker_results[i][0]] i += 1 if len(winner) == 1: winner = winner[0] print '\n', 'The winner is:', winner, '---->', win_type print '---------------------------------------------------------------' return winner #-----------------------------------------------------------------------------# """ Test values and assert statements for above function. """ def test1(): sf = ['6C', '7C', '8C', '9C', 'TC'] # Straight Flush fk = ['9C', '9D', '9H', '9S', '7D'] # Four of a Kind fh = ['TC', 'TD', 'TH', '7C', '7D'] # Full House sf1 = ['6C', '7C', '8C', '9C', 'TC'] # Straight Flush sf2 = ['6D', '7D', '8D', '9D', 'TD'] # Straight Flush sf3 = ['6S', '7S', '8S', '9S', 'TS'] # Straight Flush assert poker([sf] + 99*[fh]) == sf assert poker([sf, fk, fh]) == sf assert poker([fk, fh]) == fk assert poker([fh, fh]) == fh assert poker([sf]) == sf assert poker([sf1, sf2, fk, fh]) == [sf1, sf2] assert poker([sf1, sf2, sf3, fk, fh]) == [sf1, sf2, sf3] return 'All Tests 1 Passed' def test2(): bj1 = ['7C', '8C', '9D', 'TD', '?B'] # Straight rj1 = ['7C', '8C', '9D', 'TD', '?R'] # Straight brj1 = ['TC', 'TD', '7C', '?R', '?B'] # Four of a Kind assert poker([bj1, rj1, brj1]) == brj1 return 'All Tests 2 Passed' print poker() print poker([]) print poker([], 2) print poker([], 8, 'standard') print poker([], 8, 'joker') print poker([], 11, 'standard') print test1() print test2() #-----------------------------------------------------------------------------#
true
ed51c7733c5c43339625e26a53329df0e2c05fbe
Python
rodolforicardotech/pythongeral
/pythonparazumbis/Lista01/PPZ01.py
UTF-8
208
4.09375
4
[]
no_license
# 1) Faça um programa que peça dois # números inteiros e imprima a soma desses dois números n1 = int(input('Informe o primeiro número: ')) n2 = int(input('Informe o segundo número: ')) print(n1 + n2)
true
c8acbf969aa0275cbfd9291653e79cb07e2cd365
Python
rodrigodg1/redes
/Sockets/Python/TCP-Server.py
UTF-8
1,263
3.671875
4
[]
no_license
from socket import * # Define a porta do servidor serverPort = 12000 # Cria um novo socket do tipo TCP (SOCK_STREAM) e endereçamento IPv4 (AF_INET) serverSocket = socket(AF_INET, SOCK_STREAM) # Associa o socket ao endereço IP e porta especificados serverSocket.bind(("10.62.9.237", serverPort)) # Define o socket para ouvir conexões, com uma fila de no máximo 1 conexão pendente serverSocket.listen(1) print("O servidor está pronto para receber conexões") # Loop infinito para lidar com conexões de clientes while True: # Aceita uma nova conexão de cliente e retorna um novo socket e o endereço do cliente connectionSocket, addr = serverSocket.accept() print("Conectado com: [", addr[0], "Porta:", addr[1], "]") # Recebe até 1024 bytes de dados do cliente e decodifica a mensagem como string sentence = connectionSocket.recv(1024).decode() # Converte a mensagem recebida para letras maiúsculas capitalizedSentence = sentence.upper() # Envia a mensagem em maiúsculas de volta ao cliente, codificando-a como bytes connectionSocket.send(capitalizedSentence.encode()) # Fecha a conexão com o cliente connectionSocket.close() print("Conexão com: [", addr[0], "Porta:", addr[1], "] foi fechada")
true
bb354cf209cf2120bbda46c37c51e1a8893d15c2
Python
NewWisdom/Algorithm
/파이썬으로 시작하는 삼성 SW역량테스트/2. 정렬/11651.py
UTF-8
839
3.75
4
[]
no_license
""" 문제 2차원 평면 위의 점 N개가 주어진다. 좌표를 y좌표가 증가하는 순으로, y좌표가 같으면 x좌표가 증가하는 순서로 정렬한 다음 출력하는 프로그램을 작성하시오. 입력 첫째 줄에 점의 개수 N (1 ≤ N ≤ 100,000)이 주어진다. 둘째 줄부터 N개의 줄에는 i번점의 위치 xi와 yi가 주어진다. (-100,000 ≤ xi, yi ≤ 100,000) 좌표는 항상 정수이고, 위치가 같은 두 점은 없다. 출력 첫째 줄부터 N개의 줄에 점을 정렬한 결과를 출력한다. 예제 입력 1 5 0 4 1 2 1 -1 2 2 3 3 예제 출력 1 1 -1 1 2 2 2 3 3 0 4 """ import sys input = lambda : sys.stdin.readline() n = int(input()) arr = [list(map(int,input().split())) for _ in range(n)] arr.sort(key = lambda x: (x[1],x[0])) for i in arr: print(i[0],i[1])
true
b34bbd88665e2959f184a80fe461ce314895b2e1
Python
Richard-D/python_excrise
/类和实例.py
UTF-8
1,273
3.6875
4
[]
no_license
class Student(object): def __init__(self,name,score): self.name = name self.score = score def print_score(self): print("%s: %s" %(self.name, self.score)) bart = Student("denghuang","97") print("我们来看看未实例化的信息 ", Student) #一个类 print("我们来看看实例化后的信息 ", bart) #一个对象 lisa = Student("lisa","99") bart.print_score() print("我们来看看类中方法的地址:" ,Student("denghuang","97").print_score) ##我想打印出方法的地址 ## 访问限制与数据封装 # 外部无法访问的name与score class Student_fix(object): def __init__(self,name,score): self.__name = name self.__score = score def print_score(self): print('%s: %s' % (self.__name, self.__score)) def get_name(self): return self.__name def get_score(self): return self.__score def set_score(self,score): if 0 <= score <= 100: self.__score = score else: raise ValueError("Bad Score") bart = Student_fix("J",99) bart.set_score(80) print(bart.get_name()) print(bart.get_score()) print(bart._Student_fix__name) # 还是可以通过这种方式访问 bart._Student_fix__name = "K" print(bart._Student_fix__name)
true
562acf55734f4d1215d5100d24027565b2079038
Python
davidvaguilar/FundamentosPython
/src/basico/ejercicio020/Ejercicio020.py
UTF-8
378
3.53125
4
[]
no_license
''' Created on 05-05-2016 @author: David ''' if __name__ == '__main__': print ("ESTE PROGRAMA CALCULA SU SALARIO SEMANAL ") print ("Ingrese el valor hora") valorHora = int(input()) print("Ingrese la cantidad de Horas trabajadas") cantidadHora = int(input()) salario = valorHora * cantidadHora print ("Su salario semanal es : ",salario)
true
cb2ea93b9fe8a8db3234d14e1b7b25219996b733
Python
mkachuee/sentiment-discovery
/model/model.py
UTF-8
14,186
2.546875
3
[]
no_license
import pdb import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from apex import RNN class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.decoder = nn.Linear(nhid, ntoken) self.rnn=getattr(RNN, rnn_type)(ninp, nhid, nlayers, dropout=dropout) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.decoder.bias.data.fill_(0) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def forward(self, input, reset_mask=None): emb = self.drop(self.encoder(input)) self.rnn.detach_hidden() output, hidden = self.rnn(emb, reset_mask=reset_mask) output = self.drop(output) decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden def state_dict(self, destination=None, prefix='', keep_vars=False): sd = {} sd['encoder'] = self.encoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd['rnn'] = self.rnn.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd = {'encoder': sd} sd['decoder'] = self.decoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) return sd def load_state_dict(self, state_dict, strict=True): if 'decoder' in state_dict: self.decoder.load_state_dict(state_dict['decoder'], strict=strict) self.encoder.load_state_dict(state_dict['encoder']['encoder'], strict=strict) self.rnn.load_state_dict(state_dict['encoder']['rnn'], strict=strict) class RNNModelNoEmbed(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModelNoEmbed, self).__init__() self.drop = nn.Dropout(dropout) #self.encoder = nn.Embedding(ntoken, ninp) self.decoder = nn.Linear(nhid, ntoken) self.rnn=getattr(RNN, rnn_type)(ntoken, nhid, nlayers, dropout=dropout) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: raise ValueError('Not supported!') self.decoder.bias.data.fill_(0) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def forward(self, input, reset_mask=None): #emb = self.drop(self.encoder(input)) self.rnn.detach_hidden() #input = input.type(torch.FloatTensor).cuda() emb = one_hot(input, 256).type(torch.FloatTensor).cuda() #pdb.set_trace() output, hidden = self.rnn(emb, reset_mask=reset_mask) output = self.drop(output) decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden def state_dict(self, destination=None, prefix='', keep_vars=False): sd = {} #sd['encoder'] = self.encoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd['rnn'] = self.rnn.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd = {'encoder': sd} sd['decoder'] = self.decoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) return sd def load_state_dict(self, state_dict, strict=True): if 'decoder' in state_dict: self.decoder.load_state_dict(state_dict['decoder'], strict=strict) #self.encoder.load_state_dict(state_dict['encoder']['encoder'], strict=strict) self.rnn.load_state_dict(state_dict['encoder']['rnn'], strict=strict) class RNNModelPreTrain(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False, nvec=300): super(RNNModelPreTrain, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) #self.decoder = nn.Linear(nhid, ntoken) self.decoder_vec = nn.Linear(nhid, nvec) self.rnn=getattr(RNN, rnn_type)(ninp, nhid, nlayers, dropout=dropout) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: raise ValueError('Not Supported: When using the tied flag, nhid must be equal to emsize') self.decoder_vec.bias.data.fill_(0) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers self.nvec = nvec self.hidden = self.init_hidden() def forward(self, input_seq, reset_mask=None): emb = self.drop(self.encoder(input_seq)) #self.rnn.detach_hidden() output, self.hidden = self.rnn(emb, self.hidden)#, reset_mask=reset_mask) output = self.drop(output) decoded = self.decoder_vec(output.view(output.size(0)*output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), self.hidden def state_dict(self, destination=None, prefix='', keep_vars=False): sd = {} sd['encoder'] = self.encoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd['rnn'] = self.rnn.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd = {'encoder': sd} sd['decoder_vec'] = self.decoder_vec.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) return sd def load_state_dict(self, state_dict, strict=True): if 'decoder' in state_dict: self.decoder.load_state_dict(state_dict['decoder'], strict=strict) self.encoder.load_state_dict(state_dict['encoder']['encoder'], strict=strict) self.rnn.load_state_dict(state_dict['encoder']['rnn'], strict=strict) def init_hidden(self): self.hidden = (torch.zeros(1, 1, self.nhid), torch.zeros(1, 1, self.nhid)) class RNNFeaturizer(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, all_layers=False): super(RNNFeaturizer, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.rnn=getattr(RNN, rnn_type)(ninp, nhid, nlayers, dropout=dropout) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers self.all_layers = all_layers self.output_size = self.nhid if not self.all_layers else self.nhid * self.nlayers def forward(self, input, seq_len=None): self.rnn.detach_hidden() if seq_len is None: for i in range(input.size(0)): emb = self.drop(self.encoder(input[i])) _, hidden = self.rnn(emb.unsqueeze(0), collectHidden=True) cell = self.get_cell_features(hidden) else: last_cell = 0 for i in range(input.size(0)): emb = self.drop(self.encoder(input[i])) _, hidden = self.rnn(emb.unsqueeze(0), collectHidden=True) cell = self.get_cell_features(hidden) if i > 0: cell = get_valid_outs(i, seq_len, cell, last_cell) last_cell = cell return cell def get_cell_features(self, hidden): cell = hidden[1] #get cell state from layers if self.all_layers: cell = torch.cat(cell, -1) else: cell = cell[-1] return cell[-1] def state_dict(self, destination=None, prefix='', keep_vars=False): sd = {} sd['encoder'] = self.encoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd['rnn'] = self.rnn.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) return sd def load_state_dict(self, state_dict, strict=True): self.encoder.load_state_dict(state_dict['encoder'], strict=strict) self.rnn.load_state_dict(state_dict['rnn'], strict=strict) class RNNFeaturizerHist(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, all_layers=False): super(RNNFeaturizerHist, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.rnn=getattr(RNN, rnn_type)(ninp, nhid, nlayers, dropout=dropout) self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers self.all_layers = all_layers self.output_size = self.nhid if not self.all_layers else self.nhid * self.nlayers def forward(self, input, seq_len=None, frame_width=64): self.rnn.detach_hidden() #pdb.set_trace() hist = [] if seq_len is None: for i in range(input.size(0)): emb = self.drop(self.encoder(input[i])) _, hidden = self.rnn(emb.unsqueeze(0), collectHidden=True) cell = self.get_cell_features(hidden) else: last_cell = 0 for i in range(input.size(0)): emb = self.drop(self.encoder(input[i])) _, hidden = self.rnn(emb.unsqueeze(0), collectHidden=True) cell = self.get_cell_features(hidden) if i > 0: cell = get_valid_outs(i, seq_len, cell, last_cell) last_cell = cell if i % (input.size(0)//frame_width) == 0: hist.append(cell) #pdb.set_trace() hist = torch.stack(hist[-frame_width:]).permute(1, 2, 0).view(cell.size(0), 1, cell.size(1), -1) #pdb.set_trace() return cell, hist def get_cell_features(self, hidden): cell = hidden[1] #get cell state from layers if self.all_layers: cell = torch.cat(cell, -1) else: cell = cell[-1] return cell[-1] def state_dict(self, destination=None, prefix='', keep_vars=False): sd = {} sd['encoder'] = self.encoder.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) sd['rnn'] = self.rnn.state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) return sd def load_state_dict(self, state_dict, strict=True): self.encoder.load_state_dict(state_dict['encoder'], strict=strict) self.rnn.load_state_dict(state_dict['rnn'], strict=strict) class LRClassifier(nn.Module): def __init__(self): super(LRClassifier, self).__init__() self.fc1 = nn.Linear(4096, 1) self.out_act = nn.Sigmoid() def forward(self, x): x = x[:,0,:,-1] logits = self.fc1(x) out = self.out_act(logits).view(-1) return out class LSTMClassifier(nn.Module): def __init__(self, nhid=32, batch_size=128): super(LSTMClassifier, self).__init__() self.nhid = nhid self.batch_size = batch_size #self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=11) self.lstm = nn.LSTM(4096, nhid) self.hidden = self.init_hidden() self.fc1 = nn.Linear(nhid, 1) self.out_act = nn.Sigmoid() def forward(self, x): self.batch_size = x.size(0) self.hidden = self.init_hidden() self.hidden[0].detach_() self.hidden[1].detach_() x = x.permute(3,0,2,1)[:,:,:,0] #torch.randn(128, 4096, requires_grad=True) #x.contiguous().view(-1)#x[:,0,:,-1] lstm_out, self.hidden = self.lstm(x, self.hidden) logits = self.fc1(lstm_out[-1]) out = self.out_act(logits).view(-1) #pdb.set_trace() return out def init_hidden(self): return (torch.zeros(1, self.batch_size, self.nhid).cuda(), torch.zeros(1, self.batch_size, self.nhid).cuda()) def get_valid_outs(timestep, seq_len, out, last_out): invalid_steps = timestep >= seq_len if (invalid_steps.long().sum() == 0): return out return selector_circuit(out, last_out, invalid_steps) def selector_circuit(val0, val1, selections): selections = selections.type_as(val0.data).view(-1, 1).contiguous() return (val0*(1-selections)) + (val1*selections) def one_hot(seq_batch,depth): # seq_batch.size() should be [seq,batch] or [batch,] # return size() would be [seq,batch,depth] or [batch,depth] out = torch.zeros(seq_batch.size()+torch.Size([depth]), dtype=torch.long).cuda() dim = len(out.size()) - 1 #pdb.set_trace() index = seq_batch.view(seq_batch.size()+torch.Size([1])) return out.scatter_(dim,index,1)
true
667a8cd5709651c9a48e02dbe9fafd57d7648c1f
Python
maddox/home-assistant
/tests/helpers/test_entity.py
UTF-8
2,258
2.65625
3
[ "MIT" ]
permissive
""" tests.test_helper_entity ~~~~~~~~~~~~~~~~~~~~~~~~ Tests the entity helper. """ # pylint: disable=protected-access,too-many-public-methods import unittest import homeassistant.core as ha import homeassistant.helpers.entity as entity from homeassistant.const import ATTR_HIDDEN class TestHelpersEntity(unittest.TestCase): """ Tests homeassistant.helpers.entity module. """ def setUp(self): # pylint: disable=invalid-name """ Init needed objects. """ self.entity = entity.Entity() self.entity.entity_id = 'test.overwrite_hidden_true' self.hass = self.entity.hass = ha.HomeAssistant() self.entity.update_ha_state() def tearDown(self): # pylint: disable=invalid-name """ Stop down stuff we started. """ self.hass.stop() entity.Entity.overwrite_attribute(self.entity.entity_id, [ATTR_HIDDEN], [None]) def test_default_hidden_not_in_attributes(self): """ Test that the default hidden property is set to False. """ self.assertNotIn( ATTR_HIDDEN, self.hass.states.get(self.entity.entity_id).attributes) def test_setting_hidden_to_true(self): self.entity.hidden = True self.entity.update_ha_state() state = self.hass.states.get(self.entity.entity_id) self.assertTrue(state.attributes.get(ATTR_HIDDEN)) def test_overwriting_hidden_property_to_true(self): """ Test we can overwrite hidden property to True. """ entity.Entity.overwrite_attribute(self.entity.entity_id, [ATTR_HIDDEN], [True]) self.entity.update_ha_state() state = self.hass.states.get(self.entity.entity_id) self.assertTrue(state.attributes.get(ATTR_HIDDEN)) def test_overwriting_hidden_property_to_false(self): """ Test we can overwrite hidden property to True. """ entity.Entity.overwrite_attribute(self.entity.entity_id, [ATTR_HIDDEN], [False]) self.entity.hidden = True self.entity.update_ha_state() self.assertNotIn( ATTR_HIDDEN, self.hass.states.get(self.entity.entity_id).attributes)
true
64051e1b30d8065f8b47acb58fa10ff65011d094
Python
VictorCastao/Curso-em-Video-Python
/Desafio01.py
UTF-8
112
3.390625
3
[ "MIT" ]
permissive
print ("============Desafio 1============") nome = input ("Digite seu nome: ") print ("Seja bem vindx," , nome)
true
a3e023676f2702aaf8d3907eca310462ecc45403
Python
luvkrai/learnings
/custom_exceptions.py
UTF-8
224
3.6875
4
[]
no_license
class myexception(Exception): def __init__(self, message, errors): super().__init__(message) self.errors = errors try: raise myexception("hello","my error") except myexception as e: print(e) print(e.errors)
true
24e27095d424238016503bf239e515f5e70765be
Python
flyteorg/flytesnacks
/examples/type_system/type_system/typed_schema.py
UTF-8
1,939
3.546875
4
[ "Apache-2.0" ]
permissive
# %% [markdown] # (typed_schema)= # # # Typed Columns in a Schema # # ```{eval-rst} # .. tags:: DataFrame, Basic, Data # ``` # # This example explains how a typed schema can be used in Flyte and declared in flytekit. # %% import pandas from flytekit import kwtypes, task, workflow # %% [markdown] # Flytekit consists of some pre-built type extensions, one of them is the FlyteSchema type # %% from flytekit.types.schema import FlyteSchema # %% [markdown] # FlyteSchema is an abstract Schema type that can be used to represent any structured dataset which has typed # (or untyped) columns # %% out_schema = FlyteSchema[kwtypes(x=int, y=str)] # %% [markdown] # To write to a schema object refer to `FlyteSchema.open` method. Writing can be done # using any of the supported dataframe formats. # # ```{eval-rst} # .. todo:: # # Reference the supported dataframe formats here # ``` # %% @task def t1() -> out_schema: w = out_schema() df = pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]}) w.open().write(df) return w # %% [markdown] # To read a Schema, one has to invoke the `FlyteSchema.open`. The default mode # is automatically configured to be `open` and the default returned dataframe type is {py:class}`pandas.DataFrame` # Different types of dataframes can be returned based on the type passed into the open method # %% @task def t2(schema: FlyteSchema[kwtypes(x=int, y=str)]) -> FlyteSchema[kwtypes(x=int)]: assert isinstance(schema, FlyteSchema) df: pandas.DataFrame = schema.open().all() return df[schema.column_names()[:-1]] @workflow def wf() -> FlyteSchema[kwtypes(x=int)]: return t2(schema=t1()) # %% [markdown] # Local execution will convert the data to and from the serialized representation thus, mimicking a complete distributed # execution. # # %% if __name__ == "__main__": print(f"Running {__file__} main...") print(f"Running wf(), returns columns {wf().columns()}")
true
85a8b55ea656520d8c6b904cf39af474bf2cfc83
Python
ZCCFighting/picture
/Pca.py
UTF-8
2,656
2.6875
3
[]
no_license
import cv2 as cv import numpy as np img=cv.imread('DJI_0024binary0.tif') h, w, _ = img.shape gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY) image, contours, hierarchy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE) #cv.drawContour(image,contours,-1,(0,255,0),3) def eigValPct(eigVals,percentage): sortArray=np.sort(eigVals) #使用numpy中的sort()对特征值按照从小到大排序 sortArray=sortArray[-1::-1] #特征值从大到小排序 arraySum=sum(sortArray) #数据全部的方差arraySum tempSum=0 num=0 for i in sortArray: tempSum+=i num+=1 if tempSum>=arraySum*percentage: return num '''pca函数有两个参数,其中dataMat是已经转换成矩阵matrix形式的数据集,列表示特征; 其中的percentage表示取前多少个特征需要达到的方差占比,默认为0.9''' def pca(dataMat,percentage=0.9): #print(dataMat.shape) dataMat_re=np.reshape(dataMat,(-1,2)) meanVals=np.mean(dataMat_re,axis=0) #对每一列求平均值,因为协方差的计算中需要减去均值 #print(meanVals) meanRemoved=dataMat_re-meanVals covMat=np.cov(meanRemoved) #cov()计算方差 eigVals,eigVects=np.linalg.eig(np.mat(covMat)) #利用numpy中寻找特征值和特征向量的模块linalg中的eig()方法 k=eigValPct(eigVals,percentage) #要达到方差的百分比percentage,需要前k个向量 eigValInd=np.argsort(eigVals) #对特征值eigVals从小到大排序 eigValInd=eigValInd[:-(k+1):-1] #从排好序的特征值,从后往前取k个,这样就实现了特征值的从大到小排列 redEigVects=eigVects[:,eigValInd] #返回排序后特征值对应的特征向量redEigVects(主成分) lowDDataMat=meanRemoved.T*redEigVects #将原始数据投影到主成分上得到新的低维数据lowDDataMat reconMat=(lowDDataMat*redEigVects.T).T+meanVals #得到重构数据reconMat return lowDDataMat,reconMat k=0 rec=[] for i in range(len(contours)): cnt = contours[i] area = cv.contourArea(cnt) # 处理掉小的轮廓区域,这个区域的大小自己定义。 if(area <1e2 or 1e5 <area): continue # thickness不为-1时,表示画轮廓线,thickness的值表示线的宽度。 cv.drawContours(img,contours,i,(255,0,0),2,8,hierarchy,0) lowDDataMat,reconMat=pca(contours[i],percentage=0.9) recon_mean=np.mean(reconMat,axis=0) print(recon_mean) rec.append(recon_mean) k+=1 #print(rec) pos=np.mean(recon_mean) #cv.circle(img,(a,b),3,(255,0,0),2,lineType=8,shift=0) img=cv.line(img,(3210,1649),(1243,325),(0,0,255),2) cv.imshow('img',img) cv.imwrite('res.jpg',img) cv.waitKey(1000)
true
4b14803e4fa4e38ddaf6e3c95bf3d742309916f5
Python
lakshmana8121/hire_lakshman
/Basepage/basepage01.py
UTF-8
1,501
2.578125
3
[]
no_license
from selenium import webdriver import time class base: Select_vaccination_service_xpath="//button[text()='Vaccination Services']" Select_search_vaccination_center_xpath='//*[@id="mat-menu-panel-0"]/div/ul/li[2]/a' search_District_id='mat-tab-label-0-1' select_state_button_id="mat-select-0" Select_state_xpath='//*[text()=" Andhra Pradesh "]' Select_District_button_xpath="//*[@id='mat-select-2']" Select_districts_xpath="//span[text()=' Anantapur ']" Select_Search_button_xpath="//*[text()='Search']" def __init__(self,driver): self.driver=driver def clickvaccineservice(self): self.driver.find_element_by_xpath(self.Select_vaccination_service_xpath).click() def clicksearchvaccine(self): self.driver.find_element_by_xpath(self.Select_search_vaccination_center_xpath).click() def clickDistrict(self): self.driver.find_element_by_id(self.search_District_id).click() def clickstatebutton(self): self.driver.find_element_by_id(self.select_state_button_id).click() def clickstate(self): self.driver.find_element_by_xpath(self.Select_state_xpath).click() def clickDistrictbutton(self): self.driver.find_element_by_xpath(self.Select_District_button_xpath).click() def clickdistrict(self): self.driver.find_element_by_xpath(self.Select_districts_xpath).click() def clicksearchbutton(self): self.driver.find_element_by_xpath(self.Select_Search_button_xpath).click()
true
3d4e2407c8a4699373293d01861a06912a19e31c
Python
TaigoKuriyama/atcoder
/problem/abc150/c/main.py
UTF-8
331
3
3
[]
no_license
#!/usr/bin/env python3 import itertools l = list(range(1, int(input()) + 1)) p = list(map(int, input().split())) q = list(map(int, input().split())) cnt_a = 1 cnt_b = 1 for i in itertools.permutations(l): if list(i) == p: a = cnt_a if list(i) == q: b = cnt_b cnt_a += 1 cnt_b += 1 print(abs(a - b))
true
1ccb54f74d7fa36a0e2f4aadb2a80b4b90fbf57a
Python
alpha-kwhn/Baekjun
/GONASOO/8611.py
UTF-8
346
3.203125
3
[]
no_license
def conv(k,m): r = "" while True: a = k % m k //= m r = str(a) + r if k < m: r = str(k) + r if k//m < 1: return int(r) n = int(input()); flag = True for i in range(2,11): t = str(conv(n, i)) if t[::-1] == t: print(i, t) flag = False if flag: print("NIE")
true
386b576c4da9740e1ba7a7fc58b4152d81bfd1c3
Python
globocom/dojo
/2021_01_06/dojo_test.py
UTF-8
2,098
3.234375
3
[ "MIT" ]
permissive
import unittest from dojo import get_dimensions, build_matrix class DojoTest(unittest.TestCase): def test_get_dimensions1(self): self.assertEquals(get_dimensions("ifmanwasmeanttostayonthegroundgodwouldhavegivenusroots"), (7,8)) def test_get_dimensions2(self): self.assertEquals(get_dimensions("feedthedog"), (3,4)) def test_get_dimensions2(self): self.assertEquals(get_dimensions("chillout"), (3,3)) def test_build_matrix(self): self.assertEquals(build_matrix("if man was me ant to stay on the ground god would have given us roots"), [ ['i','f','m','a','n','w','a','s'], ['m','e','a','n','t','t','o','s'], ['t','a','y','o','n','t','h','e'], ['g','r','o','u','n','d','g','o'], ['d','w','o','u','l','d','h','a'], ['v','e','g','i','v','e','n','u'], ['s','r','o','o','t','s','',''] ]) def test_build_matrix2(self): self.assertEqual(build_matrix("feed the dog"), [ ['f','e','e','d'], ['t','h','e','d'], ['o','g','',''], ]) def test_build_matrix3(self): self.assertEqual(build_matrix("chill out"), [ ['c','h','i'], ['l','l','o'], ['u','t',''] ]) if __name__ == '__main__': unittest.main() # Allan - Carreira - Elen - Lucas - Bruna - Lara - Mateus - TiagoDuarte - Ighor ''' 'm','e','a','n','t','t','o','s' 't','a','y','o','n','t','h','e' 'g','r','o','u','n','d','g','o' 'd','w','o','u','l','d','h','a' 'v','e','g','i','v','e','n','u' 's','r','o','o','t','s' ',' feed the dog [ ['f','e','e','d'], ['t','h','e','d'], ['o','g','',''], ] ['c','h','i'] ['l','l','o'] ['u','t','] ' ' def bla(str): ''' # EU JÁ TE SUPEREEEEI, EU JÁ TE SUPEREEEEEEEEEEI # mas nao manda mensagem outra vez SE NAO RECAIREEEI (HINO!) #amo # 1 - Tirar os espaçoes da string # 2 - Dimensões da matriz com base na string (sem espaços) - FEITO # 3 - Construir a matriz # 4 - Montar a string
true
ffd68ef1dc65319700d680a038714eb3ae2d0fd9
Python
qmnguyenw/python_py4e
/geeksforgeeks/python/easy/29_5.py
UTF-8
2,677
3.40625
3
[]
no_license
Program to calculate the Round Trip Time (RTT) **Round trip time(RTT)** is the length of time it takes for a signal to be sent plus the length of time it takes for an acknowledgement of that signal to be received. This time therefore consists of the propagation times between the two point of signal. On the Internet, an end user can determine the RTT to and from an IP(Internet Protocol) address by pinging that address. The result depends on various factors :- * The data rate transfer of the source’s internet connection. * The nature of transmission medium. * The physical distance between source and destination. * The number of nodes between source and destination. * The amount of traffic on the LAN(Local Area Network) to which end user is connected. * The number of other requests being handled by intermediate nodes and the remote server. * The speed with which intermediate node and the remote server function. * The presence of Interference in the circuit. Examples: Input : www.geeksforgeeks.org Output : Time in seconds : 0.212174892426 Input : www.cricbuzz.com Output : Time in seconds : 0.55425786972 ## Recommended: Please try your approach on **__{IDE}__** first, before moving on to the solution. __ __ __ __ __ __ __ # Python program to calculate RTT import time import requests # Function to calculate the RTT def RTT(url): # time when the signal is sent t1 = time.time() r = requests.get(url) # time when acknowledgement of signal # is received t2 = time.time() # total time taken tim = str(t2-t1) print("Time in seconds :" + tim) # driver program # url address url = "http://www.google.com" RTT(url) --- __ __ Output: Time in seconds :0.0579478740692 This article is contributed by **Pramod Kumar**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
true
19013691b0f53d265f11ecfe850f1af6d15e0c6e
Python
ajstocchetti/apartment-temps
/test.py
UTF-8
1,893
2.96875
3
[]
no_license
import time import board import adafruit_dht from influxdb import InfluxDBClient # Initial the dht device, with data pin connected to: DHT_TYPE = adafruit_dht.DHT22 DHT_PIN = board.D4 dhtDevice = DHT_TYPE(DHT_PIN) minF = 65 lowFreq = 30 # seconds regFreq = 240 # seconds errorFreq = 6 # seconds client = InfluxDBClient(host='127.0.0.1', port=8086, database='apartmenttemp') def getFrequency(tempReading, isValid): if isValid is not True: return errorFreq elif tempReading > minF: return regFreq else: return lowFreq def getVals(): resp = { "temp": None, "humidity": None } try: # Print the values to the serial port temperature_c = dhtDevice.temperature temperature_f = temperature_c * (9 / 5) + 32 temperature_f = round(temperature_f, 3) resp["temp"] = temperature_f humidity = dhtDevice.humidity resp["humidity"] = humidity except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going print(error.args[0]) finally: return resp def handleResp(vals, isValid): try: if isValid: insertTsdb(vals) print("Temp: {:.1f} F - Humidity: {}% " .format(vals.get("temp"), vals.get("humidity"))) except: pass def run(): vals = getVals() temp = vals.get("temp") isValidRead = temp is not None handleResp(vals, isValidRead) nextFreq = getFrequency(temp, isValidRead) print("Sleeping for", nextFreq, "seconds") time.sleep(nextFreq) def insertTsdb(vals): body = [ { "measurement": "climate", "tags": { "location": "bedroom", "device": "pi3b" }, "fields": vals } ] client.write_points(body) while True: run()
true
2eb81e2e3046ca036f17160fd83ea4ddd906dfcb
Python
Eomys/SciDataTool
/SciDataTool/Methods/DataND/_set_values.py
UTF-8
532
2.671875
3
[ "Apache-2.0", "LicenseRef-scancode-proprietary-license" ]
permissive
from SciDataTool.Classes._check import check_dimensions, check_var from numpy import squeeze, array def _set_values(self, value): """setter of values""" if type(value) is int and value == -1: value = array([]) elif type(value) is list: try: value = array(value) except: pass check_var("values", value, "ndarray") # Check dimensions if value is not None: value = squeeze(value) value = check_dimensions(value, self.axes) self._values = value
true
f3a714916f77449708e44052e23162373c2daad1
Python
YunHao-Von/Mathematical-Modeling
/手写代码/第2章 数据处理与可视化/Pex2_48_1.py
UTF-8
268
2.609375
3
[]
no_license
from scipy.stats import binom import matplotlib.pyplot as plt import numpy as np n,p=5,0.4 x=np.arange(6);y=binom.pmf(x,n,p) plt.subplot(1,2,1);plt.plot(x,y,'ro') plt.vlines(x,0,y,'k',lw=3,alpha=0.5) plt.subplot(1,2,2);plt.stem(x,y,use_line_collection=True) plt.show()
true
4950661cd5b799efb99e2f6717f21e3ce1a804cb
Python
kaphka/catconv
/catconv/stabi.py
UTF-8
4,337
2.609375
3
[ "Apache-2.0" ]
permissive
"""This modules provides functions to process the music catalog provided by the Staatsbibliothek Berlin""" import copy import os import re import ocrolib import ujson import glob as g import os.path as op # import ujson TIF_PAGES_GLOB = "{name}{batch}/TIF/????????{ext}" PAGES_GLOB = "{name}{batch}/????????{ext}" class Catalog(object): """collection of catalog cards""" def __init__(self, path): self.name = op.basename(path) self.path = path def split_path(path): """splits path into data_dir, cat_name, batch_name, page_name""" norm = os.path.normpath(path) # -> /catalogs/S/S001/00001.tif pages_dir, file_name = op.split(norm) # -> /catalogs/S/S001/TIF/ 00001.tif # -> /catalogs/S/S001 00001.tif # page file names may contain multiple dots page_name = re.sub(r"(\.\w+)+$", "", file_name) batch_dir, batch_name = op.split(pages_dir) # -> /catalogs/S/S001 TIF # -> /catalogs/S S001 if batch_name == "TIF": batch_dir, batch_name = op.split(batch_dir) data_dir, cat_name = op.split(batch_dir) # -> /catalogs S return data_dir, cat_name, batch_name, page_name def change_path(path, cat=None, ext="", remove_type=False, rel_path=None, to_cat=None): """change catalog paths to a simpler folder structure""" data_dir, cat_name, batch_name, page_name = split_path(path) if cat: cat_name = cat batch_name = cat_name + batch_name[-3:] if to_cat: data_dir = to_cat changed_path = op.join(data_dir, cat_name, batch_name, page_name + ext) if rel_path: return op.relpath(changed_path, op.normpath(rel_path)) else: return changed_path def convert_page_path(page, conversion): """create a copy of a page and changes the path""" new_path = change_path(page['path'], **conversion) new_page = copy.deepcopy(page) new_page['path'] = new_path return new_page def page_dir(page_path): """directory named like the image""" pagename = op.basename(change_path(page_path)) return op.join(op.split(page_path)[0], pagename) def catalog_pages(cat_path, batch='*', ext='.png', amount=None): # pattern = op.join(cat_path, '{}/????????{}'.format(batch, ext)) path, name = op.split(cat_path) if ext == ".tif": pattern = TIF_PAGES_GLOB else: pattern = PAGES_GLOB page_glob = op.join(path, name, pattern.format(name=name, batch=batch, ext=ext)) return g.glob(page_glob) def batches(cat_path): pattern = op.join(cat_path, '*') batches = sorted(map(op.basename,g.glob(pattern))) return batches def line_index_to_name(idx): return '0'+hex((0x010000+(idx)))[2:] def read_line_boxes(page): """read the dimensions of each text line""" path = change_path(page['path'], ext='.pseg.png') path = path.encode() try: pseg = ocrolib.read_page_segmentation(path) except IOError: return [] regions = ocrolib.RegionExtractor() regions.setPageLines(pseg) lines = [] for i in range(1, regions.length()): y0, x0, y1, x1 = regions.bboxMath(i) lines.append({'name': line_index_to_name(i), 'position': [x0, y0, x1, y1]}) return lines def load_box_positions(page): segments = read_line_boxes(page) page['lines'] = segments return page def page_from_path(path): return {'path': path} def read_text(page): if not 'lines' in page: return page text_dir = page_dir(page['path']) for line in page['lines']: path = op.join(text_dir, line['name']) + '.txt' text = "" if op.isfile(path): with open(path, 'rb') as sfile: text = sfile.read() line['text'] = text def get_cat_name(batch_name): return re.match('([A-S]+)', batch_name).group(0) def load_catalog(path, selection={}, text_box=False, text=False): name = op.basename(path) pages = sorted(map(page_from_path, catalog_pages(path, **selection)),key=lambda page: page['path']) for page in pages: if text_box: load_box_positions(page) if text: read_text(page) return {'name': name, 'path': path, 'pages': pages} def change_paths(cat, conv): cat['pages'] = map(lambda page: convert_page_path(page,conv), cat['pages'])
true
6894e381690c5f063c351917c8f9edaf6603c778
Python
process-intelligence-research/SFILES2
/Flowsheet_Class/nx_to_sfiles.py
UTF-8
40,844
2.921875
3
[ "MIT" ]
permissive
import random import networkx as nx import re import numpy as np random.seed(1) """ Exposes functionality for writing SFILES (Simplified flowsheet input line entry system) strings Based on - d’Anterroches, L. Group contribution based process flowsheet synthesis, design and modelling, Ph.D. thesis. Technical University of Denmark, 2006. - Zhang, T., Sahinidis, N. V., & Siirola, J. J. (2019). Pattern recognition in chemical process flowsheets. AIChE Journal, 65(2), 592-603. - Weininger, David (February 1988). "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules". Journal of Chemical Information and Computer Sciences. 28 (1): 31–6. """ def nx_to_SFILES(flowsheet, version, remove_hex_tags, canonical=True): """Converts a networkx graph to its corresponding SFILES notation. Parameters ---------- flowsheet: networkx graph Process flowsheet as networkx graph. version: str, default='v1' SFILES version, either 'v1' or 'v2'. remove_hex_tags: bool Whether to show the 'he' tags in the SFILES_v2 (Conversion back and merging of hex nodes is not possible if this is set to true). Returns ---------- sfiles_gen: list [str] Generalized SFILES representation of the flowsheet (parsed). sfiles_string_gen: str Generalized SFILES representation of flowsheet. """ # Signal edges are removed from flowsheet graph as they are inserted later with recycle notation to SFILES. # Remove signal nodes before ranking, otherwise interoperability with SFILES2.0 cannot be ensured. # Edges of signals connected directly to the next unit operation shall not be removed, since they represent both # material stream and signal connection. flowsheet_wo_signals = flowsheet.copy() edge_information = nx.get_edge_attributes(flowsheet, 'tags') edge_information_signal = {k: flatten(v['signal']) for k, v in edge_information.items() if 'signal' in v.keys() if v['signal']} edges_to_remove = [k for k, v in edge_information_signal.items() if v == ['not_next_unitop']] flowsheet_wo_signals.remove_edges_from(edges_to_remove) # Calculation of graph invariant / node ranks ranks = calc_graph_invariant(flowsheet_wo_signals) # Find initial nodes of graph. Initial nodes are determined by an in-degree of zero. init_nodes = [n for n, d in flowsheet_wo_signals.in_degree() if d == 0] # Sort the possible initial nodes for traversal depending on their rank. init_nodes = sort_by_rank(init_nodes, ranks, canonical=True) # Add an additional virtual node, which is connected to every initial node. Thus, one graph traversal is sufficient # to access every node in the graph. flowsheet_wo_signals.add_node('virtual') virtual_edges = [('virtual', i) for i in init_nodes] flowsheet_wo_signals.add_edges_from(virtual_edges) current_node = 'virtual' ranks['virtual'] = 0 # Nodes in cycle-processes are not determined since their in_degree is greater than zero. # Thus, as long as not every node of flowsheet is connected to the virtual node, the node with the lowest rank # (which is not a outlet node) is connected to the virtual node. flowsheet_undirected = nx.to_undirected(flowsheet_wo_signals) connected_to_virtual = set(nx.node_connected_component(flowsheet_undirected, 'virtual')) not_connected = set(flowsheet_wo_signals.nodes) - connected_to_virtual while not_connected: rank_not_connected = sort_by_rank(not_connected, ranks, canonical=True) rank_not_connected = [k for k in rank_not_connected if flowsheet_wo_signals.out_degree(k) > 0] flowsheet_wo_signals.add_edges_from([('virtual', rank_not_connected[0])]) connected_to_virtual = set(nx.node_connected_component(flowsheet_undirected, 'virtual')) not_connected = set(flowsheet_wo_signals.nodes) - connected_to_virtual # Initialization of variables. visited = set() sfiles_part = [] nr_pre_visited = 0 nodes_position_setoffs = {n: 0 for n in flowsheet_wo_signals.nodes} nodes_position_setoffs_cycle = {n: 0 for n in flowsheet_wo_signals.nodes} special_edges = {} # Graph traversal (depth-first-search dfs). sfiles_part, nr_pre_visited, node_insertion, sfiles = dfs(visited, flowsheet_wo_signals, current_node, sfiles_part, nr_pre_visited, ranks, nodes_position_setoffs, nodes_position_setoffs_cycle, special_edges, edge_information_signal, first_traversal=True, sfiles=[], node_insertion='', canonical=canonical) # Flatten nested list of sfile_part sfiles = flatten(sfiles) # SFILES Version 2.0: if version == 'v2': sfiles = SFILES_v2(sfiles, special_edges, edge_information, remove_hex_tags) # Generalization of SFILES (remove node numbering) as last step sfiles_gen = generalize_SFILES(sfiles) sfiles_string_gen = ''.join(sfiles_gen) return sfiles_gen, sfiles_string_gen def dfs(visited, flowsheet, current_node, sfiles_part, nr_pre_visited, ranks, nodes_position_setoffs, nodes_position_setoffs_cycle, special_edges, edge_information, first_traversal, sfiles, node_insertion, canonical=True): """Depth first search implementation to traverse the directed graph from the virtual node. Parameters ---------- visited: set Keeps track of visited nodes. flowsheet: networkx graph Process flowsheet as networkx graph. current_node: str Current node in depth first search. edge_information: dict Stores information about edge tags. sfiles_part: list [str] SFILES representation of a single traversal of the flowsheet. nr_pre_visited: int Counter variable for cycles. ranks: dict Ranks of nodes required for branching decisions. nodes_position_setoffs: dict Counts the occurrences of outgoing and incoming cycles per node. nodes_position_setoffs_cycle: dict Counts the occurrences only of outgoing cycles per node. special_edges: dict Saves, whether an edge (in, out) is a cycle (number>1) or not (number=0). first_traversal: bool Saves, whether the graph traversal is the first (True) or a further traversal (False). sfiles: list [str] SFILES representation of the flowsheet (parsed). node_insertion: str Node of previous traversal(s) where branch (first) ends, default is an empty string. canonical: bool, default=True Whether the resulting SFILES should be canonical (True) or not (False). Returns ------- sfiles: list SFILES representation of the flowsheet (parsed). sfiles_part: list SFILES representation of the flowsheet of a single traversal. node_insertion: list Node of previous traversal(s) where branch (first) ends. nr_pre_visited: int Counter variable for cycles. """ if current_node == 'virtual': visited.add(current_node) # Traversal order according to ranking of nodes. neighbours = sort_by_rank(flowsheet[current_node], ranks, visited, canonical=True) for neighbour in neighbours: # Reset sfiles_part for every new traversal starting from 'virtual', since new traversal is started. sfiles_part = [] sfiles_part, nr_pre_visited, node_insertion, sfiles = dfs(visited, flowsheet, neighbour, sfiles_part, nr_pre_visited, ranks, nodes_position_setoffs, nodes_position_setoffs_cycle, special_edges, edge_information, first_traversal, sfiles, node_insertion='', canonical=canonical) # First traversal: sfiles_part is equal to sfiles. # Further traversals: traversals, which are connected to the first traversal are inserted with '<&|...&|' # and independent subgraphs are inserted with 'n|'. if first_traversal: sfiles.extend(sfiles_part) first_traversal = False else: if not node_insertion == '': sfiles_part.append('|') sfiles_part.insert(0, '<&|') pos = position_finder(nodes_position_setoffs, node_insertion, sfiles, nodes_position_setoffs_cycle, cycle=False) # Insert the branch next to node_insertion. insert_element(sfiles, pos, sfiles_part) else: sfiles.append('n|') sfiles.extend(sfiles_part) # After last traversal, insert signal connections with recycle notation. if neighbour == neighbours[-1]: sfiles = insert_signal_connections(edge_information, sfiles, nodes_position_setoffs_cycle, nodes_position_setoffs, special_edges) if current_node not in visited and not current_node == 'virtual': successors = list(flowsheet.successors(current_node)) # New branching if current_node has more than one successor. if len(successors) > 1: sfiles_part.append('(' + current_node + ')') visited.add(current_node) # Branching decision according to ranking of nodes. neighbours = sort_by_rank(flowsheet[current_node], ranks, visited, canonical) for neighbour in neighbours: if not neighbour == neighbours[-1]: sfiles_part.append('[') if neighbour not in visited: sfiles_part, nr_pre_visited, node_insertion, sfiles = dfs(visited, flowsheet, neighbour, sfiles_part, nr_pre_visited, ranks, nodes_position_setoffs, nodes_position_setoffs_cycle, special_edges, edge_information, first_traversal, sfiles, node_insertion, canonical=canonical) if not neighbour == neighbours[-1]: sfiles_part.append(']') # If neighbor is already visited, that's a direct cycle. Thus, the branch brackets can be removed. elif first_traversal: if sfiles_part[-1] == '[': sfiles_part.pop() # A material cycle is represented using the recycle notation with '<#' and '#'. nr_pre_visited, special_edges, sfiles_part, sfiles = insert_cycle(nr_pre_visited, sfiles_part, sfiles, special_edges, nodes_position_setoffs, nodes_position_setoffs_cycle, neighbour, current_node, inverse_special_edge=False) elif not first_traversal: # Neighbour node in previous traversal. if sfiles_part[-1] == '[': sfiles_part.pop() # Only insert sfiles once. If there are multiple backloops to previous traversal, # treat them as cycles. Insert a & sign where branch connects to node of previous traversal. if node_insertion == '' and '(' + neighbour + ')' not in flatten(sfiles_part): node_insertion = neighbour pos = position_finder(nodes_position_setoffs, current_node, sfiles_part, nodes_position_setoffs_cycle, cycle=True) insert_element(sfiles_part, pos, '&') # Additional info: edge is a new incoming branch edge in SFILES. special_edges[(current_node, neighbour)] = '&' else: nr_pre_visited, special_edges, sfiles_part, sfiles = insert_cycle(nr_pre_visited, sfiles_part, sfiles, special_edges, nodes_position_setoffs, nodes_position_setoffs_cycle, neighbour, current_node, inverse_special_edge=False) # Node has only one successor, thus no branching. elif len(successors) == 1: sfiles_part.append('(' + current_node + ')') visited.add(current_node) sfiles_part, nr_pre_visited, node_insertion, sfiles = dfs(visited, flowsheet, successors[0], sfiles_part, nr_pre_visited, ranks, nodes_position_setoffs, nodes_position_setoffs_cycle, special_edges, edge_information, first_traversal, sfiles, node_insertion, canonical=canonical) # Dead end. elif len(successors) == 0: visited.add(current_node) sfiles_part.append('(' + current_node + ')') # Nodes of previous traversal, this elif case is visited when there is no branching but node of previous traversal. elif not current_node == 'virtual': # Incoming branches are inserted at mixing point in SFILES surrounded by '<&|...&|'. # Only insert sfiles once. If there are multiple backloops to previous traversal, treat them as cycles. if node_insertion == '' and '(' + current_node + ')' in flatten(sfiles) and not first_traversal: # Insert a & sign where branch connects to node of previous traversal. node_insertion = current_node last_node = last_node_finder(sfiles_part) pos = position_finder(nodes_position_setoffs, last_node, sfiles_part, nodes_position_setoffs_cycle, cycle=True) insert_element(sfiles_part, pos, '&') # Additional info: edge is a new incoming branch edge in SFILES. special_edges[(last_node, current_node)] = '&' else: # Incoming branches are referenced with the recycle notation, if there already is a node_insertion. nr_pre_visited, special_edges, sfiles_part, sfiles = insert_cycle(nr_pre_visited, sfiles_part, sfiles, special_edges, nodes_position_setoffs, nodes_position_setoffs_cycle, current_node, node2='last_node', inverse_special_edge=False) return sfiles_part, nr_pre_visited, node_insertion, sfiles def insert_cycle(nr_pre_visited, sfiles_part, sfiles, special_edges, nodes_position_setoffs, nodes_position_setoffs_cycle, node1, node2, inverse_special_edge, signal=False): """Inserts the cycle numbering of material recycles and signal connections according to the recycle notation. Parameters ---------- nr_pre_visited: int Counter variable for cycles. sfiles_part: list [str] SFILES representation of a single traversal of the flowsheet. sfiles: list [str] SFILES representation of the flowsheet (parsed). special_edges: dict Saves, whether an edge (in, out) is a cycle (number>1) or not (number=0). nodes_position_setoffs: dict Counts the occurrences of outgoing and incoming cycles per node. nodes_position_setoffs_cycle: dict Counts the occurrences only of outgoing cycles per node. node1: str Node name of connection to incoming cycle. node2: str Node name of connection to outgoing cycle. inverse_special_edge: bool Inverts the entry in special_edges. signal: bool, default=False If true signal connection notation ('<_#' and '_#')is used. Returns ---------- nr_pre_visited: int Counter variable for cycles. special_edges: dict Saves, whether an edge (in, out) is a cycle (number>1) or not (number=0). sfiles_part: list [str] SFILES representation of a single traversal of the flowsheet. sfiles: list [str] SFILES representation of the flowsheet (parsed). """ # Check if incoming cycle is connected to node of current traversal or previous traversal. if '(' + node1 + ')' not in flatten(sfiles_part): pos1 = position_finder(nodes_position_setoffs, node1, sfiles, nodes_position_setoffs_cycle, cycle=False) nr_pre_visited += 1 insert_element(sfiles, pos1, '<' + ('_' if signal else '') + str(nr_pre_visited)) else: pos1 = position_finder(nodes_position_setoffs, node1, sfiles_part, nodes_position_setoffs_cycle, cycle=False) nr_pre_visited += 1 insert_element(sfiles_part, pos1, '<' + ('_' if signal else '') + str(nr_pre_visited)) if node2 == 'last_node': node2 = last_node_finder(sfiles_part) pos2 = position_finder(nodes_position_setoffs, node2, sfiles_part, nodes_position_setoffs_cycle, cycle=True) # According to SMILES notation, for two digit cycles a % sign is put before the number (not required for signals). if nr_pre_visited > 9 and not signal: insert_element(sfiles_part, pos2, '%' + str(nr_pre_visited)) else: insert_element(sfiles_part, pos2, ('_' if signal else '') + str(nr_pre_visited)) # Additional info: edge is marked as a cycle edge in SFILES. if inverse_special_edge: special_edges[(node1, node2)] = ('%' if nr_pre_visited > 9 else '') + str(nr_pre_visited) else: special_edges[(node2, node1)] = ('%' if nr_pre_visited > 9 else '') + str(nr_pre_visited) return nr_pre_visited, special_edges, sfiles_part, sfiles def SFILES_v2(sfiles, special_edges, edge_information, remove_hex_tags=False): """Method to construct the SFILES 2.0: Additional information in edge attributes regarding connectivity (Top or bottom in distillation, absorption, or extraction columns, signal connections) Parameters ---------- sfiles: list [str] SFILES representation of the flowsheet (parsed). special_edges: dict Contains edge and cycle number>0 -> different notation of tags. edge_information: dict Stores information about edge tags. remove_hex_tags: bool Whether to show the 'he' tags in the SFILES_v2 (Conversion back and merging of hex nodes is not possible if this is set to true). Returns ------- sfiles_v2: list [str] SFILES representation (2.0) of the flowsheet (parsed). """ sfiles_v2 = sfiles.copy() if remove_hex_tags: # Only save the column related tags. edge_information = {k: {'col': v['col']} for k, v in edge_information.items() if 'col' in v.keys()} edge_information = {k: flatten(v.values()) for k, v in edge_information.items()} # Merge he and col tags. edge_information = {k: v for k, v in edge_information.items() if v} # Filter out empty tags lists. if edge_information: # First assign edge attributes to nodes. for e, at in edge_information.items(): # e: edge-tuple (in_node name, out_node name); at: attribute if type(at) == str: at = [at] in_node = e[0] out_node = e[1] if e in special_edges: edge_type = str(special_edges[e]) else: edge_type = 'normal' tags = '{' + '}{'.join(at) + '}' # Every single tag of that stream inserted in own braces. # Search position where to insert tag. if edge_type == 'normal': for s_idx, s in enumerate(sfiles_v2): if s == '(' + out_node + ')': sfiles_v2.insert(s_idx, tags) break # Search the right & sign. elif edge_type == '&': search_and = False for s_idx, s in enumerate(sfiles_v2): if s == '(' + in_node + ')': search_and = True counter = 0 if search_and: if s == '&' and counter == 0: # No second branch within branch with <&| notation. sfiles_v2.insert(s_idx, tags) break if s == '&' and counter > 0: counter -= 1 if s == '<&|': counter += 1 else: # Edge_type > 0 recycle edge, so we search for the corresponding recycle number. for s_idx, s in enumerate(sfiles_v2): if s == edge_type: sfiles_v2.insert(s_idx, tags) break # Heat integration tags: Heat integration is noted with a mix between recycle and connectivity notation, # e.g. (hex){1}...(hex){1}. Networkx node names indicate heat integration with slash, e.g. hex-1/1 and hex-1/2. HI_eqs = [] # Heat integrated heat exchangers for s_idx, s in enumerate(sfiles_v2): if 'hex' in s and '/' in s: heatexchanger = s.split(sep='/')[0][1:] if heatexchanger not in HI_eqs: HI_eqs.append(heatexchanger) _HI_counter = 1 for heatexchanger in HI_eqs: indices = [i for i, x in enumerate(sfiles_v2) if x.split(sep='/')[0][1:] == heatexchanger] for i in indices: previous = sfiles_v2[i] sfiles_v2[i] = [previous, '{' + str(_HI_counter) + '}'] sfiles_v2 = flatten(sfiles_v2) _HI_counter += 1 # Store information about control structure in stream tag. for s_idx, s in enumerate(sfiles_v2): if 'C' in s and '/' in s: insert_element(sfiles_v2, [s_idx], '{' + str(s.split(sep='/')[1][:-1]) + '}') sfiles_v2[s_idx] = s.split(sep='/')[0] + ')' return sfiles_v2 def generalize_SFILES(sfiles): """Method to construct the generalized SFILES 2.0: Unit numbers (necessary in graph node names) are removed. Parameters ---------- sfiles: list [str] SFILES representation of the flowsheet. Returns ------- sfiles_gen: list [str] Generalized SFILES representation of the flowsheet. """ sfiles_gen = sfiles.copy() for i, s in enumerate(sfiles_gen): if bool(re.match(r'\(.*?\)', s)): sfiles_gen[i] = s.split(sep='-')[0] + ')' return sfiles_gen def sort_by_rank(nodes_to_sort, ranks, visited=[], canonical=True): """Method to sort the nodes by their ranks. Parameters ---------- nodes_to_sort: list [str] List of nodes which will be sorted according to their rank. ranks: dict Node ranks calculated in calc_graph_invariant(). visited: set List of already visited nodes. canonical: bool, default=True Whether the resulting SFILES should be canonical (True) or not (False). Returns ------- nodes_sorted: list [str] Contains certain neighbour nodes in a sorted manner. """ nodes_sorted_dict = {} nodes_sorted_dict_cycle = {} for n in nodes_to_sort: if n in ranks: if n in visited: nodes_sorted_dict_cycle[n] = ranks[n] else: nodes_sorted_dict[n] = ranks[n] nodes_sorted_dict = dict(sorted(nodes_sorted_dict.items(), key=lambda item: item[1])) nodes_sorted_dict_cycle = dict(sorted(nodes_sorted_dict_cycle.items(), key=lambda item: item[1])) # Concatenate -> direct cycle nodes are visited first. all_nodes_sorted = dict(nodes_sorted_dict_cycle, **nodes_sorted_dict) # Only take the sorted keys as list. nodes_sorted = list(all_nodes_sorted.keys()) if not canonical: random.shuffle(nodes_sorted) return nodes_sorted def calc_graph_invariant(flowsheet): """Calculates the graph invariant, which ranks the nodes for branching decisions in graph traversal. 1. Morgan Algorithm based on: Zhang, T., Sahinidis, N. V., & Siirola, J. J. (2019). Pattern recognition in chemical process flowsheets. AIChE Journal, 65(2), 592-603. 2. Equal ranks (e.g. two raw material nodes) are ranked by additional rules in function rank_by_dfs_tree. Parameters ---------- flowsheet: networkx graph Process flowsheet as networkx graph. Returns ------- Ranks: dict Ranks of graph nodes. """ # First generate subgraphs (different mass trains in flowsheet). _sgs = [flowsheet.subgraph(c).copy() for c in nx.weakly_connected_components(flowsheet)] # Sort subgraphs, such that larger subgraphs are used first. _sgs.sort(key=lambda x: -len(list(x.nodes))) rank_offset = 0 all_unique_ranks = {} for sg in _sgs: # Morgan algorithm # Elements of the adjacency matrix show whether nodes are connected in the graph (1) or not (0). # Summing over the rows of the adjacency matrix results in the connectivity number of each node. # The Morgan algorithm is performed via a matrix multiplication of the connectivity and the adjacency matrix. # This equals a summing of the connectivity values of the neighbour nodes for each node in a for-loop. undirected_graph = nx.to_undirected(sg) adjacency_matrix = nx.to_numpy_array(undirected_graph, dtype=np.int64) connectivity = sum(adjacency_matrix) node_labels = list(sg) unique_values_temp = 0 counter = 0 morgan_iter_dict = {} morgan_iter = connectivity @ adjacency_matrix # Morgan algorithm is stopped if the number of unique values is stable. while counter < 5: morgan_iter = morgan_iter @ adjacency_matrix unique_values = np.unique(morgan_iter).size if unique_values > unique_values_temp: unique_values_temp = unique_values morgan_iter_dict = dict(zip(node_labels, morgan_iter)) else: counter += 1 # Assign ranks based on the connectivity values. r = {key: rank for rank, key in enumerate(sorted(set(morgan_iter_dict.values())), 1)} ranks = {k: r[v] for k, v in morgan_iter_dict.items()} # Use rank as keys. Nodes with the same rank are appended to a list. k_v_exchanged = {} for key, value in ranks.items(): if value not in k_v_exchanged: k_v_exchanged[value] = [key] else: k_v_exchanged[value].append(key) # 1. We first sort (ascending) the dict and afterwards create a nested list. k_v_exchanged_sorted = {k: k_v_exchanged[k] for k in sorted(k_v_exchanged)} ranks_list = [] for key, value in k_v_exchanged_sorted.items(): ranks_list.append(value) edge_information = nx.get_edge_attributes(flowsheet, 'tags') edge_information_col = {k: flatten(v['col']) for k, v in edge_information.items() if 'col' in v.keys() if v['col']} # 2. We afterwards sort the nested lists (same rank). This is the tricky part of breaking the ties. for pos, eq_ranked_nodes in enumerate(ranks_list): # eq_ranked_nodes is a list itself. They are sorted, so the unique ranks depend on their names. dfs_trees = [] # Sorting rules to achieve unique ranks are described in the SFILES documentation. if len(eq_ranked_nodes) > 1: for n in eq_ranked_nodes: # Construct depth first search tree for each node. dfs_tr = nx.dfs_tree(sg, source=n) dfs_trees.append(dfs_tr) # Edges of DFS tree are sorted alphabetically. The numbering of the nodes is removed first (since it # should not change the generalized SFILES). sorted_edges = [] for k in range(0, len(eq_ranked_nodes)): edges = sorted(list(dfs_trees[k].edges), key=lambda element: (element[0], element[1])) edges = [(k.split(sep='-')[0], v.split(sep='-')[0]) for k, v in edges] sorted_edge = sorted(edges, key=lambda element: (element[0], element[1])) sorted_edge = [i for sub in sorted_edge for i in sub] edge_tags = [] for edge, tag in edge_information_col.items(): if edge[0] == eq_ranked_nodes[k] or edge[1] == eq_ranked_nodes[k]: edge_tags.append(tag[0]) edge_tags = ''.join(sorted(edge_tags)) if edge_tags: sorted_edge.insert(0, edge_tags) sorted_edges.append(sorted_edge) dfs_trees_generalized = {eq_ranked_nodes[i]: sorted_edges[i] for i in range(0, len(eq_ranked_nodes))} # We sort the nodes by 4 criteria: Input/output/signal/other node, number of successors in dfs_tree, # successors names (without numbering), node names with numbering. sorted_eq_ranked_nodes = rank_by_dfs_tree(dfs_trees_generalized) else: sorted_eq_ranked_nodes = sorted(eq_ranked_nodes) ranks_list[pos] = sorted_eq_ranked_nodes # 3. We flatten the list and create the new ranks dictionary with unique ranks # (form: node:rank) starting with rank 1. flattened_ranks_list = flatten(ranks_list) unique_ranks = {n: r + 1 + rank_offset for r, n in enumerate(flattened_ranks_list)} # All unique ranks in separate dict. all_unique_ranks.update(unique_ranks) # Change rank offset in case there are subgraphs. rank_offset += len(list(sg.nodes)) return all_unique_ranks def position_finder(nodes_position_setoffs, node, sfiles, nodes_position_setoffs_cycle, cycle=False): """Returns position where to insert a certain new list element in sfiles list, adjusted by position setoffs. Parameters ---------- nodes_position_setoffs: dict Counts the occurrences of outgoing and incoming cycles per node. node: str Node name for which position is searched. sfiles: list [str] SFILES representation of the flowsheet. nodes_position_setoffs_cycle: dict Counts the occurrences only of outgoing cycles per node. cycle: boolean, default=False Whether the format is of form # (outgoing cycle) Returns ---------- pos: int Position where to insert new element. """ # If the node is not found, it is in a nested list: Function to find positions in nested list is utilized. indices = find_nested_indices(sfiles, '(' + node + ')') if cycle: # This ensures that # are always listed before <#. indices[-1] += nodes_position_setoffs_cycle[node] # This updates the node position setoffs for cycles only. nodes_position_setoffs_cycle[node] += 1 # This updates the overall node position setoffs. nodes_position_setoffs[node] += 1 else: indices[-1] += nodes_position_setoffs[node] # This updates the overall node position setoffs. nodes_position_setoffs[node] += 1 return indices def last_node_finder(sfiles): """Returns the last node in the sfiles list. Parameters ---------- sfiles: list [str] SFILES representation of the flowsheet. Returns ---------- last_node: str Name of last node. """ last_node = '' for element in reversed(sfiles): if element.startswith('(') and element.endswith(')'): last_node = element[1:-1] break return last_node def flatten(nested_list): """Returns a flattened list. Parameters ---------- nested_list: list List of lists. Returns ---------- l_flat: list Flat list without nested lists. """ flat_list = [] for i in nested_list: if isinstance(i, list): flat_list.extend(flatten(i)) else: flat_list.append(i) return flat_list def find_nested_indices(nested_list, node): """Returns index of node in nested list. Parameters ---------- nested_list: list List of lists. node: str Name of node. Returns ---------- indices: list Flat list without nested lists. """ temp_list = nested_list.copy() indices = [] if node not in flatten(nested_list): raise KeyError('Node not in nested list!') while True: try: pos = temp_list.index(node) indices.append(pos) break except: for idx, i in enumerate(temp_list): if node in flatten(i): temp_list = i.copy() indices.append(idx) return indices def insert_element(lst, indices, value): if len(indices) == 1: lst.insert(indices[0] + 1, value) else: insert_element(lst[indices[0]], indices[1:], value) def rank_by_dfs_tree(dfs_trees_generalized): """Sorts the nodes with equal ranks (after application of morgan algorithm) according to the following criteria: 1. Ranks: Signal node < Output node < Input node < All other nodes 2.1. Input nodes: The higher the number of successors in dfs_tree the lower the rank. First build long SFILES parts. (if 1. did not yield unique ranks) 2.2. Other nodes: The lower the number of successors in dfs_tree the lower the rank. Short branches in brackets. (if 1. did not yield unique ranks) 3. Alphabetical comparison of successor names (if 1. & 2. did not yield unique ranks). 4. Unit operations of equally ranked nodes are the same. Considering node numbers of equally ranked nodes. (if 1. & 2. & 3. did not yield unique ranks) Note: Criteria 4 implies that the node numbering matters in SFILES construction. Nevertheless, if we remove the numbers in SFILES (generalized SFILES), the SFILES will be independent of numbering. This is based on criteria 3, which implies that all the successors are the same. Parameters ---------- dfs_trees_generalized: dict Equally ranked nodes with their respective dfs_trees (node names without unit numbers) in the flowsheet graph. Returns ------- sorted_nodes: list List of sorted nodes with previously equal ranks. """ output_nodes = {} input_nodes = {} signal_nodes = {} other_nodes = {} for n, s in dfs_trees_generalized.items(): succ_str = ''.join(list(s)) if 'prod' in n: output_nodes[n] = (len(dfs_trees_generalized[n]), succ_str) elif 'raw' in n: input_nodes[n] = (len(dfs_trees_generalized[n]), succ_str) elif bool(re.match(r'C-\d+', n)): signal_nodes[n] = (len(dfs_trees_generalized[n]), succ_str) else: other_nodes[n] = (len(dfs_trees_generalized[n]), succ_str) # Sort all dicts first according list length (input/output: long is better, other nodes: short is better-> # less in brackets), then generalized string alphabetically, then real node name (i.e. node number). # Real node name with numbering is only accessed if the generalized string (graph structure) is the same. sorted_nodes = [] for d in [signal_nodes, output_nodes, input_nodes]: # 3 sort criteria in that order list length (- sign), then generalized string alphabetically, then node number. sorted_nodes_sub = sorted(d, key=lambda k: (-d[k][0], d[k][1], int(re.split('[-/]', k)[1]))) sorted_nodes.extend(sorted_nodes_sub) # Implies the order of first signal then output and input nodes. # Other nodes: 3 sort criteria in that order list length (+ sign), then generalized string alphabetically, # then node number sorted_nodes_sub = sorted(other_nodes, key=lambda k: (other_nodes[k][0], other_nodes[k][1], int(re.split('[-/]', k)[1]))) sorted_nodes.extend(sorted_nodes_sub) # Implies the order of first signal, then output, input, and other nodes. return sorted_nodes def insert_signal_connections(edge_infos_signal, sfiles, nodes_position_setoffs_cycle, nodes_position_setoffs, special_edges): """Inserts signal connections in SFILES. Parameters ---------- edge_infos_signal: dict Contains information about signal edges. sfiles: list [str] SFILES representation of the flowsheet (parsed). nodes_position_setoffs: dict Counts the occurrences of outgoing and incoming cycles per node. nodes_position_setoffs_cycle: dict Counts the occurrences only of outgoing cycles per node. special_edges: dict Saves, whether an edge (in,out) is a cycle (number>1) or not (number=0). Returns ---------- sfiles: list SFILES list including signal connections. """ nr_pre_visited_signal = 0 signal_nodes = [k[0] for k in edge_infos_signal.keys()] sfiles_flattened = flatten(sfiles) pos = {} if signal_nodes: nodes_position_setoffs_temp = nodes_position_setoffs.copy() nodes_position_setoffs_cycle_temp = nodes_position_setoffs_cycle.copy() for k in signal_nodes: pos.update({position_finder(nodes_position_setoffs, k, sfiles_flattened, nodes_position_setoffs_cycle)[0]: k}) # Reset node_position_setoffs since they are manipulated by position_finder. nodes_position_setoffs_cycle = nodes_position_setoffs_cycle_temp.copy() nodes_position_setoffs = nodes_position_setoffs_temp.copy() # TODO: Check if this works! #nodes_position_setoffs_cycle = nodes_position_setoffs_cycle.fromkeys(nodes_position_setoffs_cycle, 0) #nodes_position_setoffs = nodes_position_setoffs_cycle.fromkeys(nodes_position_setoffs, 0) for k, v in special_edges.items(): if v == '&': nodes_position_setoffs[k[1]] = 0 # Sort the signal nodes according to their position in the SFILES. signal_nodes_sorted = dict(sorted(pos.items())) signal_nodes_sorted = list(signal_nodes_sorted.values()) edge_infos_signal = dict(sorted(edge_infos_signal.items(), key=lambda x: signal_nodes_sorted.index(x[0][0]))) for k, v in edge_infos_signal: nr_pre_visited_signal, special_edges, sfiles_part, sfiles = insert_cycle(nr_pre_visited_signal, sfiles, sfiles, special_edges, nodes_position_setoffs, nodes_position_setoffs_cycle, v, k, inverse_special_edge=False, signal=True) return sfiles
true
7777a0c5b220d4aa3a7c2664f562c8890c3f1287
Python
AdamZhouSE/pythonHomework
/Code/CodeRecords/2847/60724/237142.py
UTF-8
198
3
3
[]
no_license
s=int(input()) numbers=input().split() numbers=[int(x) for x in numbers] rank=input().split() rank=[int(y) for y in rank] res=0 for k in range(rank[0]-1,rank[1]-1): res=res+numbers[k] print(res)
true
598ea3382cef27b48e73ecb7985ffa521221b402
Python
irvalchev/3MW-Simple-App
/site_summary/views.py
UTF-8
1,594
2.578125
3
[]
no_license
from django.shortcuts import render from site_summary.models import Site, SiteEntry def sites(request): sites_list = Site.objects.all() context = {'sites_list': sites_list} return render(request, 'sites.html', context) def site_details(request, site_id): site = Site.objects.filter(id=site_id) site_entries = None if site: site_entries = SiteEntry.objects.filter(site=site) context = {'site': site, 'site_entries': site_entries} return render(request, 'site_details.html', context) def summary_sum(request): aggregation = "sum" all_entries = SiteEntry.objects.all() summary_entries = [] for site in Site.objects.all(): summary_entry = SiteEntry() summary_entry.site = site summary_entry.a_value = sum(entry.a_value for entry in all_entries if entry.site == site) summary_entry.b_value = sum(entry.b_value for entry in all_entries if entry.site == site) summary_entries.append(summary_entry) context = {'summary_entries': summary_entries, "aggregation": aggregation} return render(request, 'summary.html', context) def summary_average(request): aggregation = "average" summary_entries = SiteEntry.objects.raw(""" SELECT 0 as id, site_id, null as date, avg(a_value) a_value, avg(b_value) b_value FROM site_entries GROUP BY site_id""") context = {'summary_entries': summary_entries, "aggregation": aggregation} return render(request, 'summary.html', context)
true
575ef4a34c23afaf7ded8c466559f5ca371a7799
Python
correosdelbosque/tsl
/utils/distances.py
UTF-8
17,477
2.8125
3
[]
no_license
#!/usr/bin/env python import json import math import matplotlib.pyplot as plt import networkx as nx import numpy import os import sys # Read in movie JSON files. movies_dir = "../example-scripts/parsed" outdir = "/wintmp/movie/graph5/" def get_movies( movies_dir ): '''Returns a hash keyed on movie title whose body is the Python data structure made up of the _metrics.json for this film in the movies_dir.''' movies = {} for dirpath, dirnames, filenames in os.walk( movies_dir): for directory in dirnames: metrics_files = [ x for x in os.listdir( os.path.join( dirpath, directory ) ) if x.endswith( '_metrics.json' ) ] if len( metrics_files ) == 0: print "Skipping %s/%s" % ( dirpath, directory ) continue metrics = json.load( open( os.path.join( dirpath, directory, metrics_files[0] ) ) ) movies[metrics['title']] = metrics return movies def default_dist( a, b ): return abs( a-b ) def register_dist_funcs( dist_funcs ): def log_dist( a, b ): return abs( math.log( a ) - math.log( b ) ) dist_funcs[ dimensions[2] ] = log_dist dist_funcs[ dimensions[7] ] = log_dist def five_vect( a, b, lookup ): result_dist = 0 for i in range( 0, 5 ): a_val = None if i >= len( a ): a_val = 0 else: if i == 0: a_val = 3*a[i][lookup] else: a_val = a[i][lookup] b_val = None if i >= len( b ): b_val = 0 else: if i == 0: b_val = 3*b[i][lookup] else: b_val = b[i][lookup] result_dist += default_dist( a_val, b_val )**2 return result_dist**0.5 def character_x_speakers( a, b ): return five_vect( a, b, 'speakers' ) dist_funcs[ dimensions[9] ] = character_x_speakers def scenes_percentage_for_characters( a, b ): return five_vect( a, b, 'percentage_of_scenes' ) dist_funcs[ dimensions[10] ] = scenes_percentage_for_characters def percent_dialog_by_character( a, b ): return five_vect( a, b, 'percent_dialog' ) dist_funcs[ dimensions[11] ] = percent_dialog_by_character def dialog_words_score( a, b ): return ( ( a[0] - b[0] )**2 + ( a[1] - b[1] )**2 )**0.5 dist_funcs[ dimensions[13] ] = dialog_words_score ''' def mcic( a, b ): return abs( a-b ) dist_funcs[ dimensions[0] ] = mcic def poswmc( a, b ): return 50*abs( a-b ) dist_funcs[ dimensions[1] ] = poswmc ''' def cartesian_distance( dists ): '''Takes in an array of distances between coordinates, and aggregates them into a single distance function. Here we use Cartesian distance.''' total_dist = 0 for dist in dists: total_dist += dist**2 return total_dist**0.5 def compute_distances( movies, dist_funcs, distance_func ): '''Returns a hash of hash. The keys are every pair of movies, and the value is distance between them.''' distances = {} for k1 in sorted( movies.keys() ): for k2 in sorted( movies.keys() ): m1 = movies[k1] m2 = movies[k2] dists = [] for dim in dimensions: if dim in dist_funcs: dists.append( dist_funcs[dim]( m1[dim], m2[dim] ) ) else: dists.append( default_dist( m1[dim], m2[dim] ) ) distance = distance_func( dists ) if k1 in distances: distances[k1][k2] = distance else: distances[k1] = { k2 : distance } return distances def eccentricity( distances ): '''A hash of movie, eccentricity.''' result = {} denominator = len( distances.keys() ) for k1 in sorted( distances.keys() ): numerator = 0 for k2, distance in distances[k1].items(): numerator += distance result[k1] = numerator / denominator return result def density( distances ): '''A hash of movie, density.''' result = {} for k1 in sorted( distances.keys() ): numerator = 0 for k2, distance in distances[k1].items(): try: numerator += 1 / math.e**( distance**2 ) except: # If we have an overflow don't worry about it, just # add nothing. pass result[k1] = numerator return result def compute_projection( distances, projection_func ): return projection_func( distances ) def get_inverse_covering( projection, covering ): '''Given a covering, which is defined as an array of tuples, the elements a, b of which define the interval: [a, b], and a projection data structure, return: An array of hashes, the i'th element of which corresponds to the inverse image of the things in the projection for the i'th tuple. The format of these hashes is: { range: ( a, b ), movies: { 'Movie 1': True, 'Movie 2': True, ... } }''' inverse_covering = [] for interval in covering: start = interval[0] end = interval[1] current_inverse = { 'range' : interval, 'movies' : {} } for movie, value in projection.items(): if start <= value and value <= end: current_inverse['movies'][movie] = True inverse_covering.append( current_inverse ) return inverse_covering def get_clusters( movies_input, distances, epsilon ): '''Given a hash of movie keys, the distances data structure, and epsilon threshold distance, returns an array of hashes of movie keys where each hash is a cluster is a subset of the input movies containing the points which are within a transitive closure of episolon of one another.''' # Don't change the input value. movies = {} for movie in movies_input.keys(): movies[movie] = True clusters = [] #import pdb #pdb.set_trace() while len( movies ): current_cluster = {} cluster_changed = True while cluster_changed: cluster_changed = False movie_keys = movies.keys() for movie in movie_keys: if len( current_cluster ) == 0: cluster_changed = True current_cluster[movie] = True del movies[movie] else: for cluster_movie in current_cluster.keys(): if distances[cluster_movie][movie] <= epsilon: cluster_changed = True current_cluster[movie] = True if movie in movies: del movies[movie] #for movie in movie_keys: # if len( current_cluster ) == 0: # current_cluster[movie] = True # del movies[movie] # else: # for cluster_movie in current_cluster.keys(): # if distances[cluster_movie][movie] <= epsilon: # current_cluster[movie] = True # if movie in movies: # del movies[movie] clusters.append( current_cluster ) return clusters def cluster_epsilon_finder( movies, distances ): '''Calculates epsilon via the following algorithm: 1. Clusters are defined to be a non-empty set of points, initially we have one cluster per point. 2. Distance between clusters is defined to be the minimum distance between any two points in either cluster. 3. We iteratively aggregate the two clusters having the minimum distance until there is only one cluster, while recording the distances involved. 4. We select the median distance recorded in step 3. ''' # Handle pathological cases if not len( movies ): raise Exception("Expected at least one movie in cluster_epsilon_finder.") elif len( movies ) == 1: return [0] cluster_distances = [] # Create the initial cluster. min_i = None min_j = None min_dist = None for i in movies.keys(): for j in movies.keys(): if i == j: continue else: if min_dist is None or distances[i][j] < min_dist: min_dist = distances[i][j] min_i = i min_j = j clusters = [ { min_i : True, min_j : True } ] cluster_distances.append( distances[min_i][min_j] ) for movie in movies.keys(): if movie != min_i and movie != min_j: clusters.append( { movie : True } ) # Process the rest of the points. while len( clusters ) > 1: min_dist = None min_i = None min_j = None for i_idx, cluster_i in enumerate( clusters ): for j_idx, cluster_j in enumerate( clusters ): if i_idx == j_idx: continue else: for i in cluster_i.keys(): for j in cluster_j.keys(): if min_dist is None or distances[i][j] < min_dist: min_dist = distances[i][j] min_i_idx = i_idx min_j_idx = j_idx min_cluster_i = cluster_i min_cluster_j = cluster_j min_i = i min_j = j # There are a few cases: # # 1. min_cluster_i and j are in singleton clusters := make a # new cluster of the two of them. # # 2. min_cluster_i or j is a singleton, but the other is not # := add the singleton to the larger cluster. # # 3. Neither min_cluster_i or j is a singleton := merge the # two. cluster_distances.append( min_dist ) if len( min_cluster_i.keys() ) == 1 and len( min_cluster_j.keys() ) == 1: min_cluster_i[min_j] = True clusters = clusters[:min_j_idx] + clusters[min_j_idx+1:] elif len( min_cluster_i.keys() ) == 1 and len( min_cluster_j.keys() ) > 1: min_cluster_j[min_i] = True clusters = clusters[:min_i_idx] + clusters[min_i_idx+1:] elif len( min_cluster_i.keys() ) > 1 and len( min_cluster_j.keys() ) == 1: min_cluster_i[min_j] = True clusters = clusters[:min_j_idx] + clusters[min_j_idx+1:] else: for j_point in min_cluster_j.keys(): min_cluster_i[j_point] = True clusters = clusters[:min_j_idx] + clusters[min_j_idx+1:] return cluster_distances movies = get_movies( movies_dir ) # Dimensions # # Don't change the order of things here unless you also change the # dist_funcs key lookups in register_dist_funcs #dimensions = [ 'main_character_interlocutor_count', 'percentage_of_scenes_with_main_character' ] dimensions = [ 'named_characters', 'distinct_locations', 'location_changes', 'percent_dialog', 'distinct_words', 'dramatic_units', 'adj-adv_noun-verb_ratio', 'supporting_characters', 'hearing', 'character_x_speakers', 'scenes_percentage_for_characters', 'percent_dialog_by_character', 'scene_dialog_score', 'dialog_words_score' ] dist_funcs = {} register_dist_funcs( dist_funcs ) import pprint pp = pprint.PrettyPrinter( indent=4 ) # We could in principle have difference means of calculating our # distance. distance_func = cartesian_distance distances = compute_distances( movies, dist_funcs, distance_func ) print "Distances:" pp.pprint( distances ) projection_func = eccentricity #projection_func = density projection = compute_projection( distances, projection_func ) print "Eccentricities:" pp.pprint( projection ) def make_covering( low, high, width, overlap ): step = float( width ) / overlap current = low covering = [] while current < high: covering.append( ( current, current + width ) ) current += step return covering def output_d3( filename, vertices, edges, header ): f = open( outdir+filename+".json", 'w' ) json.dump( { "nodes" : vertices, "links" : edges }, f ) f.close() f = open( outdir+"graphs.html", 'a' ) html_body = ''' <p> %s </p> <script> script_graph( "%s", width=768, height=432 ); </script> ''' % ( header, filename+".json" ) f.write( html_body ) f.close() def make_graph( low, high, width, overlap, epsilon ): covering = make_covering( low, high, width, overlap ) print "Covering is:", covering inverse_covering = get_inverse_covering( projection, covering ) # Array of { "name":"Foo","group":cluster_idx } vertices = [] # Array of { "source":idx of thing in vertices, "target":idx of thing in vertices", value:1 } edges = [] graph = nx.Graph() label_to_vertex = {} for p_idx, partition in enumerate( inverse_covering ): partition_clusters = get_clusters( partition['movies'], distances, epsilon ) print "Range from %s to %s had %s movies, which formed the following clusters:" % ( partition['range'][0], partition['range'][1], len( partition['movies'].keys() ) ) for idx, cluster in enumerate( partition_clusters ): print "\tCluster %s" % idx label = 'Cover %s: ' % ( p_idx ) + ', '.join( sorted( cluster.keys() ) ) #graph.add_node( label ) #vertices.append( { "name" : label, "group" : p_idx } ) #label_to_vertex[label] = len( vertices ) - 1 #import pdb #pdb.set_trace() add_to_graph = True for node, data in graph.nodes( data=True ): same_as_existing = True for movie in cluster.keys(): if movie not in data: same_as_existing = False for movie in data.keys(): if movie not in cluster: same_as_existing = False if same_as_existing: add_to_graph = False print "Skipping cluster: %s as identical to %s" % ( label, node ) break if add_to_graph: graph.add_node( label ) vertices.append( { "name" : label, "group" : p_idx, "elements" : len( cluster.keys() ), "shading" : float( partition['range'][0] ) / high } ) label_to_vertex[label] = len( vertices ) - 1 for movie in sorted( cluster.keys() ): if add_to_graph: graph.node[label][movie] = True print "\t\t%s" % movie for node, data in graph.nodes( data=True ): if movie in data and node != label and add_to_graph: graph.add_edge( node, label ) edges.append( { "source" : label_to_vertex[node], "target" : label_to_vertex[label], "value" : 1 } ) #nx.write_dot( graph, 'file.dot' ) #positions = nx.graphviz_layout( graph, prog='neato' ) #positions = nx.spring_layout( graph ) #nx.draw( graph, pos=positions ) #nx.draw_random( graph ) #plt.show() #nx.draw_circle( graph ) ''' positions = nx.spring_layout( graph, scale=1024 ) plt.figure( 1, figsize=(16,16) ) nx.draw( graph, positions, font_size=8 ) plt.show() #plt.figure( num=None, figsize=( 8, 8 ), facecolor='w', edgecolor='k' ) #plt.savefig( "8x8_cover_width_%s_overlap_%s_epsilon_%0.02f.png" % ( width, overlap, epsilon ) ) #plt.figure( num=None, figsize=( 16, 16 ) ) #plt.savefig( "16x16_cover_width_%s_overlap_%s_epsilon_%0.02f.png" % ( width, overlap, epsilon ) ) ''' #import pdb #pdb.set_trace() plt.clf() positions = nx.spring_layout( graph, k=.1, iterations=100 ) plt.figure( figsize=(16,9) ) nx.draw( graph, pos=positions ) filename = "cover_width_%s_overlap_%s_epsilon_%0.02f" % ( width, overlap, epsilon ) plt.savefig( outdir+"%s.png" % ( filename ) ) output_d3( filename, vertices, edges, "Cover width: %s, Overlap: %s, Epsilon: %0.02f" % ( width, overlap, epsilon ) ) epsilon_candidates = cluster_epsilon_finder( movies, distances ) print "Cluster epsilon candidates", epsilon_candidates epsilon = numpy.median( epsilon_candidates )*1.01 #epsilon = 10 print "Epsilon selected as: (multiplied by 1.01 to handle rounding errors)", epsilon f = open( outdir+"graphs.html", 'w' ) html_front = ''' <!DOCTYPE html> <meta charset="utf-8"> <style> .node { stroke: #fff; stroke-width: 1.5px; } .link { stroke: #999; stroke-opacity: .6; } </style> <body> <script src="http://d3js.org/d3.v3.min.js"></script> <script src="graph.js"></script> ''' f.write( html_front ) f.close() #epsilon = 10 for width in [65536, 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128]: #for width in [ 128, 64, 32, 16, 8, 4, 2, 1, .5, .25 ]: # make_graph( 0, 74, width, 2, epsilon ) make_graph( 13000, 33950, width, 4, epsilon ) f = open( outdir+"graphs.html", 'a' ) html_back = ''' </body> ''' f.write( html_back ) f.close()
true
fc91d4a9f06a02e3cd50fe9df396376898dd4bdb
Python
ricard0ff/stuffy
/random/compare and sum.py
UTF-8
634
3.84375
4
[]
no_license
alist1 = [1,4,5,6] alist2 = [1,10,3,4,5,6] def get_sum(alist,number_sum): item = set() alist.sort() for index, valueouter in enumerate(alist): try: item.add(valueouter) if (number_sum - valueouter) in item: #then we have an item that will get us to the sum print ("we have found the number") print ("the number is %d that can be used with %d" %(valueouter,(number_sum - valueouter))) except IndexError: print ("oops out of the range") def main(): get_sum(alist2, 6) if __name__ == "__main__": main()
true
b5130fca37f06040a0061eb7989f426c1324bd25
Python
nimbis/cmsplugin-tabs
/cmsplugin_tabs/tests.py
UTF-8
411
2.546875
3
[]
no_license
from django.test import TestCase from models import Tab, TabHeader class TabsTest(TestCase): """ Simple CRUD test for cmsplugin-tabs """ def setUp(self): self.tab = Tab() self.tab.title = "Test Tab" self.header = TabHeader() def test_plugin(self): self.assertEquals(unicode(self.header), "0 tabs") self.assertEquals(unicode(self.tab), "Test Tab")
true
511cb208914563a65538d1bb00da1d6d4b297901
Python
windorchidwarm/py_test_project
/hugh/cyan/test/test_fun.py
UTF-8
406
3.609375
4
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # File : test_fun.py # Author: chen # Date : 2020-04-27 def adder(x): def wrapper(y): return x + y return wrapper adder5 = adder(5) print(adder5(adder5(6))) def f(): pass print(type(f())) s = "I love Python" ls = s.split() ls.reverse() print(ls) mytuple=3,4,5 print(mytuple) x,y,z=mytuple print(x+y+z) print((10) // (-3)) print(2 ** 2.4)
true
03300abbd0cc6571b4180aab1a83cca8eece40d7
Python
nextdesusu/Learn-Python
/SICP/examples/ex1_27.py
UTF-8
2,078
3.296875
3
[]
no_license
from random import randrange def fast_prime(n, times): even = lambda x: x % 2 == 0 remainder = lambda x, y: x % y square = lambda x: x * x random = randrange(1, n) test_it = lambda func, a, n: func(a, n, n) == a def check(n, start): if start < n: if test_it(expmod, start, n): check def fermat_test(n): try_it = lambda func, a: func(a, n, n) == a return try_it(expmod, random) def expmod(base, exp, m): if exp == 0: return 1 if even(exp): return remainder(square(expmod(base, exp / 2, m)), m) else: return remainder(base * (expmod(base, exp - 1, m)), m) if times == 0: return True if fermat_test(n): checker(num, random) return fast_prime(n, times - 1) else: return False def tester(n): even = lambda x: x % 2 == 0 remainder = lambda x, y: x % y square = lambda x: x * x random = randrange(1, n) test_it = lambda func, a, n: func(a, n, n) == a def expmod(base, exp, m): if exp == 0: return 1 if even(exp): return remainder(square(expmod(base, exp / 2, m)), m) else: return remainder(base * (expmod(base, exp - 1, m)), m) def test(a, n): return expmod(a, n, n) == a def test_all_from_start(n, start): if start < n: if test(start, n): return test_all_from_start(n, start+1) return False return True return test_all_from_start(n, 1) Karmikle_numbers = [561, 1105, 1729, 2465, 2821, 6601] Simple_numbers = [3, 5, 7, 11, 13, 17] print("*** Karmikle_numbers ***") for num in Karmikle_numbers: print(tester(num)) print("*** Karmikle_numbers ***") print("*** Simple_numbers ***") for num in Simple_numbers: print(tester(num)) print("*** Simple_numbers ***")
true