blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
911ee00602ee009a5e848976af8fc8d642d673c0
Python
menhuan/notes
/code/python/python_study/six/iterated.py
UTF-8
159
3.171875
3
[ "Apache-2.0" ]
permissive
result = map(lambda x:x*2,[1,2,3,4,5]) print(result) print(list(result)) result = map(lambda x,y:x*y,[1,2,3,4,5],[2,3,4,5]) print(result) print(list(result))
true
ed7a3213009cb968346bbcefced23cfeacb92aef
Python
ahua010/Restrooms-Finder
/Google.py
UTF-8
3,118
2.796875
3
[]
no_license
import urllib, urllib2, webbrowser, json import os import logging from _dbus_bindings import String ### Utility functions you may want to use def pretty(obj): return json.dumps(obj, sort_keys=True, indent=2) def safeGet(url): try: return urllib2.urlopen(url) except urllib2.HTTPError, e: print "The server couldn't fulfill the request." print "Error code: ", e.code except urllib2.URLError, e: print "We failed to reach a server" print "Reason: ", e.reason return None #### Main Assignment ############## ## Don't forget, you need to get your own api_key from Flickr, following the #procedure in session 10 slides. Put it in the file flickr_key.py # Then, UNCOMMENT the api_key line AND the params['api_key'] line in the function below. def googleREST(address = '1600 Amphitheatre Parkway, Mountain View, CA'): params = {} api_key = 'AIzaSyC5GSGKfO66jFfdjBVE-QNd0c8tKYPBMQU' params['address'] = address params['key']=api_key baseurl = 'https://maps.googleapis.com/maps/api/geocode/json?' url = baseurl+urllib.urlencode(params) print url return safeGet(url) #print googleREST() print '\n=========== Break 1 ===========\n' def searchGeocode(address = '1600 Amphitheatre Parkway, Mountain View, CA'): result = googleREST(address) jsresult = result.read() dict = json.loads(jsresult) print pretty(dict) if dict['status'] == 'OK': lat = dict['results'][0]['geometry']['location']['lat'] long = dict['results'][0]['geometry']['location']['lng'] location = {'lat':lat,'long':long} return location return dict['status'] # print pretty(searchGeocode("nonexistent address")) result = searchGeocode('11657 14th Ave SW, Burien, WA') if type(result) is not dict: print "can't find that address" else: print "result is: " + str(type(result)) print pretty(result) print '\n========== Break 2 =============\n' def refugeREST(location_dict, ada='false'): params={} params['lat'] = location_dict['lat'] params['lng'] = location_dict['long'] params['ada'] = ada baseurl = 'http://www.refugerestrooms.org:80/api/v1/restrooms/by_location.json?' url = baseurl + urllib.urlencode(params) print url return safeGet(url) location_dict = searchGeocode() # print refugeREST(location_dict) print '\n========== Break 3 ============\n' def searchRefuge(): result = refugeREST(location_dict, ada='true') jresult = result.read() wc_list = json.loads(jresult) return wc_list wc_list = searchRefuge() print pretty(wc_list) print len(wc_list) #filter restroom within 5 miles short_list = [] for wc in wc_list: if wc['distance'] < 5: short_list.append(wc) print pretty(short_list) print "there are " + str(len(short_list)) + " restrooms in 5 miles radius of your search" def writeFile(): f = open('myRestrooms.csv', 'w') f.write ('name, latitude, longitude, directions\n') rest = searchRefuge() for rs in rest: f.write('"%s","%s",%s,"%s"\n'%(rs['name'], rs['latitude'], rs['longitude'], rs['directions'])) f.close()
true
49a3c0f1764a014a067521c74d71a27b492123dd
Python
Connor-Harkness/Kiara
/cogs/selfmanage.py
UTF-8
8,351
2.53125
3
[]
no_license
import asyncio import traceback import discord from discord.ext import commands from cogs.utils.cooldowns import basic_cooldown def get_color_role(member): for role in member.roles: if role.color == member.color: return role GUILD_ID = 215424443005009920 base_colors = [ ("Red", 424579184216506368, 30), ("Yellow", 424579315066208276, 30), ("Green", 424579385983762432, 30), ("Orange", 424579446578872332, 30), ("Cyan", 424579523363733507, 30), ("Blue", 424579641802752000, 30), ("Purple", 424579707573633024, 30), ("Pink", 424579770240466951, 30), ("Charcoal", 424579833994149888, 30), ("Light Grey", 488187345565122565, 30), ] class Selfmanage: """A cog for managing yourself""" all_roles = [ 353019520983629824, 347689132908085248, 371251751564869632, 389376686745059329, 549542288020471808 ] legal = "Welcome to Waifu Worshipping, the home of all your lewd socialising needs! " \ "Please make sure to read over #information and #rules to learn the essentials.\n" \ "Also understand that due to the content of the server, all users are required to be over the age of 18.\n"\ "By continuing with these questions, you confirm that you are of legal age.\n\n" \ "**When you're ready to receive your roles, please reply with the following: **`begin`" questions = [ ('Are you happy to receive messages from other users in the server?', 353019520983629824), ('Are you interested in being informed about all future server-wide events? (Movie nights, gaming events, and other fun activities)', 347689132908085248), ('Are you interested in seeing NSFW content?', 371251751564869632), ('Are you interested in roleplay channels?', 389376686745059329), ("Are you interested in the 'Weekly Waifu' channels? These are channels dedicated to posting images of the chosen waifu of the week, who is used for the server icon.", 549542288020471808) ] def __init__(self, bot): self.bot = bot self.active_intros = [] self.profiles = bot.get_cog("Economy") async def on_member_join(self, member): if member.guild.id == GUILD_ID: try: msg = await self.bot.wait_for('message', check=lambda m: m.author.id == member.id, timeout=300) if 'intro' in msg.content: return except asyncio.TimeoutError: pass await self.questionare(member.guild, member) @commands.command() async def intro(self, ctx): if ctx.author.id in self.active_intros: return await ctx.send("You're already doing the intro.") guild = self.bot.get_guild(GUILD_ID) or ctx.guild if not guild: return if ctx.guild: await ctx.send(f'{ctx.author.mention} I sent you a DM!') await self.questionare(guild, guild.get_member(ctx.author.id)) async def questionare(self, guild, member): if member.id in self.active_intros: return else: try: await member.send(self.legal) except discord.errors.Forbidden: return self.active_intros += [member.id] roles_to_add = [] fresh = discord.utils.get(member.roles, id=373122164544765953) is None try: await self.bot.wait_for('message', check=lambda m: m.content.lower() == 'begin' and m.author == member, timeout=300) for question, role in self.questions: if await self.ask_question(member, question): roles_to_add.append(discord.utils.get(guild.roles, id=role)) # If the user hasn't claimed a free color if not await self.bot.redis.exists(f"claimedcolor:{member.id}"): if await self.ask_question(member, 'Would you like a colored name for on the server?'): owned = [r[0] for r in await self.bot.db.fetch(f'SELECT color FROM colors WHERE user_id={member.id}')] await member.send("Which of the following colors would you like?\n" f"{', '.join([i[0] for i in base_colors])} or `none`") c = await self.bot.wait_for('message', check=lambda m: m.author.id == member.id and m.guild is None, timeout=120) for name, color_code, price in base_colors: if c.content.lower() == name.lower() and color_code not in owned: await self.bot.db.execute(f"INSERT INTO colors (user_id, color) VALUES ({member.id}, {color_code})") await self.bot.redis.set(f"claimedcolor:{member.id}", f"{name}") roles_to_add.append(discord.utils.get(guild.roles, id=color_code)) break except asyncio.TimeoutError: try: await member.send('Sorry, you took too long to answer. Use `~intro` if you want to start over.') except discord.errors.Forbidden: pass self.active_intros.remove(member.id) else: try: roles_to_add.append(discord.utils.get(guild.roles, id=373122164544765953)) await member.send("Please give me a few seconds to finalize everything.") await member.remove_roles(*[discord.utils.get(guild.roles, id=x) for x in self.all_roles]) await member.add_roles(*roles_to_add) await member.send('Thank you for answering, the appropriate roles have been assigned to you! If there are any issues, please contact a staff member and they will happily assist you.') if fresh: monitorlog = self.bot.get_cog('Monitor') await monitorlog.post_member_log(member) except Exception as e: traceback.print_tb(e.__traceback__) self.active_intros.remove(member.id) async def ask_question(self, user, question): def check(m): return isinstance(m.channel, discord.DMChannel) and m.author == user and is_answer(m.content) def is_answer(c): return 'y' in c.lower() or 'n' in c.lower() await user.send(question+' `yes / no`') m = await self.bot.wait_for('message', check=check, timeout=120) if 'y' in m.content.lower(): await m.add_reaction('✅') return True else: return False @commands.command(aliases=['tributes'], hidden=True) @commands.guild_only() @basic_cooldown(60) async def tribute(self, ctx): rolename = "Tributes" if discord.utils.get(ctx.author.roles, name=rolename) is None: await ctx.author.add_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I gave you the {rolename} role.') else: await ctx.author.remove_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I removed your {rolename} role.') @commands.command(hidden=True) @commands.guild_only() @basic_cooldown(60) async def pokemon(self, ctx): rolename = "Pokemon" if discord.utils.get(ctx.author.roles, name=rolename) is None: await ctx.author.add_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I gave you the {rolename} role.') else: await ctx.author.remove_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I removed your {rolename} role.') @commands.command(hidden=True) @commands.guild_only() @basic_cooldown(60) async def waifu(self, ctx): rolename = "Waifu" if discord.utils.get(ctx.author.roles, name=rolename) is None: await ctx.author.add_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I gave you the {rolename} role.') else: await ctx.author.remove_roles(discord.utils.get(ctx.guild.roles, name=rolename)) await ctx.send(f'I removed your {rolename} role.') def setup(bot): bot.add_cog(Selfmanage(bot))
true
bdef305829ed5339b1a78d4f649b3d773527072f
Python
nabazar/obstacle-avoidance
/depth.py
UTF-8
1,341
2.796875
3
[ "MIT" ]
permissive
import cv2 import numpy as np import math from threading import Thread from time import time from utils import debug class DepthCalcThread(Thread): def __init__(self, matches, name, config): super(DepthCalcThread, self).__init__(name=name) self.pts_1 = matches['pts_1'] self.pts_2 = matches['pts_2'] self.config = config self.results = [] def run(self): distances = [] length = len(self.pts_1) start_time = time() for i in range(0, length): x_1 = self.pts_1[i][0] y_1 = self.pts_1[i][1] x_2 = self.pts_2[i][0] y_2 = self.pts_2[i][1] distance = math.sqrt((x_1 - x_2)**2 + (y_1 - y_2)**2) distances.append(distance) debug("Depth computation time: {} seconds." . format(time() - start_time)) if self.config.get('normalize_points'): distances = cv2.normalize(np.array(distances), 0, 255, norm_type=cv2.NORM_MINMAX) for i in range(0, length): self.results.append((int(self.pts_2[i][0]), int(self.pts_2[i][1]), round(distances[i], 2))) if self.config.get('sort_points'): self.results.sort(key=lambda x: x[2]) def join(self, timeout=None): super(DepthCalcThread, self).join(timeout) return self.results
true
073f46fe685389a314c03dbf87e3f9f64ecf0673
Python
oskin1/torch_practice
/torch_grad.py
UTF-8
128
2.53125
3
[]
no_license
import torch x = torch.ones(2, 2, requires_grad=True) y = x + 2 z = y ** 2 * 3 out = z.mean() out.backward() print(x.grad)
true
bf16942c3068d69d05a1e77fbb9499f4c63f95d9
Python
hyejinHong0602/BOJ
/silver/[WEEK8] 1475 - 방 번호.PY
UTF-8
335
3.5625
4
[]
no_license
n = input() sixnine=0 others=0 for i in range(len(n)): if n[i]=='6' or n[i]=='9': sixnine+=1 else: if others < n.count(n[i]): others = n.count(n[i]) if sixnine%2==1: sixnine=sixnine//2+1 elif sixnine%2==0: sixnine=sixnine//2 if sixnine < others: print(others) else: print(sixnine)
true
df39c041d79fd25bc6c06018ffde7cf3a0803a1f
Python
AnthonyHadfield/Neural-Networks
/reconstitute_data.py
UTF-8
663
3.421875
3
[]
no_license
import numpy as np from decimal import * data = np.array([[1, 5], [2, 6], [3, 7], [4, 8], [1.1, 5.5], [2.2, 6.6], [3.3, 7.7], [4.4, 8.8]], dtype=float) def Reconstitute_DataSets(): X = []; y = [] print('') for i in range(0, 8): index_0 = data[i, 0] index_1 = data[i, 1] X.append(index_0) X = [float(Decimal("%.2f" % e)) for e in X] y.append(index_1) y = [float(Decimal("%.2f" % e)) for e in y] X = [X] y = [y] print('New expanded X np.arrray data =') print(X) print('') print('New expanded y np.arrray data =') print(y) print(Reconstitute_DataSets())
true
f494000e5f8df0a19dd379f77613cd085f859197
Python
antoinemadec/vim-verilog-instance
/plugin/verilog_instance.py
UTF-8
4,394
2.546875
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 """this script is a basic script for doing verilog editing it parses the variables from stdin and generate a verilog name instantiation of the variables""" import re import sys skip_last_coma = 0 keep_comment = 1 keep_empty_line = 1 if len(sys.argv) > 1: skip_last_coma = int(sys.argv[1]) if len(sys.argv) > 2: keep_comment = int(sys.argv[2]) keywords = [] keywords.extend(["input", "output", "inout", "ref", "parameter", "localparam"]) keywords.extend(["reg", "logic", "wire", "bit", "integer", "int", "string", "type"]) keywords.extend(["const", "unsigned"]) patterns = [] patterns.append(re.compile(r'\[[^\[\]]*\]')) # port size, array size patterns.append(re.compile(r'=.*')) # assignment patterns.append(re.compile(r'//.*') ) patterns.append(re.compile(r'\w+\.\w+')) # interfaces with modport for kw in keywords: # match keywords patterns.append(re.compile("\\b%s\\b" % kw)) pattern_empty_line = re.compile(r'^\s*$') pattern_open_comment = re.compile(r'/\*.*') pattern_close_comment = re.compile(r'.*\*/') pattern_open_to_close_comment = re.compile(r'/\*.*\*/') pattern_punctuation = re.compile(r'[,;]') pattern_two_words_no_coma = re.compile(r'^\s*(\w+)\s+(\w+.*)') pattern_spaces = re.compile(r'\s+') pattern_inline_comment_kept = re.compile(r'.*\w+.*(//.*)') # comment in port define pattern_comment_kept = re.compile(r'\s*(//.*)') # one line comment ports = [] ports_comments = {} # save comment for every port contents = [] # save ports and single line comments wait_to_close_comment = 0 indent_len = -1 for line in sys.stdin: # get indentation length from 1st non empty line if indent_len == -1 and not(pattern_empty_line.match(line)): indent_len = len(re.match(r'^\s*', line).group(0)) # handle empty line if pattern_empty_line.match(line) is not None: contents.append('') # handle comments if wait_to_close_comment: if pattern_close_comment.search(line): line = pattern_close_comment.sub(' ', line) wait_to_close_comment = 0 else: continue if pattern_open_comment.search(line): if pattern_close_comment.search(line): line = pattern_open_to_close_comment.sub(' ', line) else: wait_to_close_comment = 1 continue # handle port comment port_comment = pattern_inline_comment_kept.match(line) if port_comment is not None: port_comment = port_comment.group(1) # handle single line comment line_comment = pattern_comment_kept.match(line) if line_comment is not None: line_comment = line_comment.group(1) # handle all other patterns for pattern in patterns: line = pattern.sub(' ', line) # handle typedef, class and interfaces line = pattern_two_words_no_coma.sub('\\2', line) line = pattern_punctuation.sub(' ', line) line = pattern_spaces.sub(' ', line) # finally, get port names line = line.strip() if line != "": port_names = line.split(' ') ports.extend(port_names) contents.extend(port_names) for port in port_names: ports_comments[port] = port_comment else: # add single line comment to port if line_comment is not None: contents.append(line_comment) ports_nb = len(ports) i = 0 if ports_nb > 0: max_str_len = len(max(ports, key=len)) indent_str = " " * indent_len for content in contents: if len(content) > 0: if content[:2] == "//": if keep_comment == 1: print(f'{indent_str}{content}') continue else: # empty line if keep_empty_line == 1: print('') continue port = content skip_coma = skip_last_coma and i == (ports_nb - 1) space_str = " " * (max_str_len - len(port)) output_line_port = "%s.%s%s (%s%s)%s" % ( indent_str, port, space_str, port, space_str, (",", "")[skip_coma]) if ports_comments.get(port) is not None and keep_comment == 1: # add port comment output_line = f"{output_line_port} {ports_comments.get(port)}" else: output_line = output_line_port print(output_line) i = i + 1
true
5020e492327f41d892ea7ccf03ccc19aef5b928d
Python
Introspectibles/tobe-misc
/processing/python_sinus_generator.py
UTF-8
3,306
2.703125
3
[]
no_license
import numpy # Sinus generator from OpenViBE tutorial, here we can set the frequency of the mother wave (1st channel), the frequency of others will be a multiple (by 2, 3, and so on). # values between 0 and 1 class MyOVBox(OVBox): def __init__(self): OVBox.__init__(self) self.channelCount = 0 self.samplingFrequency = 0 self.epochSampleCount = 0 self.startTime = 0. self.endTime = 0. self.dimensionSizes = list() self.dimensionLabels = list() self.timeBuffer = list() self.signalBuffer = None self.signalHeader = None # this time we also re-define the initialize method to directly prepare the header and the first data chunk def initialize(self): # settings are retrieved in the dictionary self.channelCount = int(self.setting['Channel count']) self.samplingFrequency = int(self.setting['Sampling frequency']) self.epochSampleCount = int(self.setting['Generated epoch sample count']) self.sinusFrequency = float(self.setting['Sinus Frequency']) #creation of the signal header for i in range(self.channelCount): self.dimensionLabels.append( 'Sinus'+str(i) ) self.dimensionLabels += self.epochSampleCount*[''] self.dimensionSizes = [self.channelCount, self.epochSampleCount] self.signalHeader = OVSignalHeader(0., 0., self.dimensionSizes, self.dimensionLabels, self.samplingFrequency) self.output[0].append(self.signalHeader) #creation of the first signal chunk self.endTime = 1.*self.epochSampleCount/self.samplingFrequency self.signalBuffer = numpy.zeros((self.channelCount, self.epochSampleCount)) self.updateTimeBuffer() self.updateSignalBuffer() def updateStartTime(self): self.startTime += 1.*self.epochSampleCount/self.samplingFrequency def updateEndTime(self): self.endTime = float(self.startTime + 1.*self.epochSampleCount/self.samplingFrequency) def updateTimeBuffer(self): self.timeBuffer = numpy.arange(self.startTime, self.endTime, 1./self.samplingFrequency) # crop number of chunks in case it is not a multiple of frequency self.timeBuffer = self.timeBuffer[0:self.epochSampleCount] def updateSignalBuffer(self): for rowIndex, row in enumerate(self.signalBuffer): self.signalBuffer[rowIndex,:] = numpy.sin( 2.*numpy.pi*(rowIndex+1.)*self.sinusFrequency*self.timeBuffer )/2 + 0.5 def sendSignalBufferToOpenvibe(self): start = self.timeBuffer[0] end = self.timeBuffer[-1] + 1./self.samplingFrequency bufferElements = self.signalBuffer.reshape(self.channelCount*self.epochSampleCount).tolist() self.output[0].append( OVSignalBuffer(start, end, bufferElements) ) # the process is straightforward def process(self): start = self.timeBuffer[0] end = self.timeBuffer[-1] if self.getCurrentTime() >= end: self.sendSignalBufferToOpenvibe() self.updateStartTime() self.updateEndTime() self.updateTimeBuffer() self.updateSignalBuffer() # this time we also re-define the uninitialize method to output the end chunk. def uninitialize(self): end = self.timeBuffer[-1] self.output[0].append(OVSignalEnd(end, end)) box = MyOVBox()
true
5f8629edfadd12f25f9f6dc8f2706cfb9ab3a4d6
Python
LugonesM/FisicaPy
/FuerzayPresion/volumenHierroVsCorcho.py
UTF-8
1,816
4.21875
4
[]
no_license
import sys import math #Ejercicio del libro: #¿Cuantos centimetros cubicos de corcho pesan lo mismo que 200cm³ de hierro? #peso especifico del hierro es 7,85 g/cm³ #peso especifico corcho 0,22 g/cm³ PEH = 7.85 #peso especifico del hierro en g/cm³ PEC = 0.22 #peso especifico del corcho en g/cm³ def check( value ) : """Chequea si puede convertir las cadena a float: Si puede la convierte y retorna eso, Si no puede cierra el programa con un mensaje de: pone solo numeros """ try: float(value) except ValueError: print( "pone solo numeros") sys.exit() return def strToFloat( cadena ): """Toma un avariable, si es de tipo str reemplaza sus comas, si las tiene, por puntos. Chequea si puede convertir las cadena a float( mediante funcion check) : Si puede la convierte y retorna eso, Si no puede cierra el programa con un mensaje """ if type(cadena) == str: cadena = cadena.replace(",",".") #encuentra las comas en el str y las reemplaza por un punto if check(cadena) != 1 : cadena=float(cadena) return cadena def calculoPeso(vol, pE ): """calcula el peso en gramos de un material tomando su volumen (cm³) y peso especifico (g/cm³)""" return vol * pE def calculoVol(peso , pE ): """calcula el volumen en cm³ de un material tomando su peso en gramos y su peso especifico (g/cm³)""" return peso / pE if __name__ == '__main__': print("¿Cuanto volumen de corcho hay que juntar para igualar el peso de tanto volumen de hierro? (poner decimales detras de un punto)") volH = input("volumen de hierro en cm³ : ") volH = strToFloat(volH) pesoH = calculoPeso(volH , PEH ) volC = calculoVol(pesoH , PEC ) print("El volumen de corcho tendria que ser igual a : ") print(volC, "cm³") sys.exit()
true
b8ae4004e78674f63228da4a5d3f6a60ea478eab
Python
KarchinLab/CHASMplus
/scripts/snvbox/update_uniprot_ppi.py
UTF-8
3,626
2.671875
3
[]
no_license
""" File: update_exon_feat.py Author: Collin Tokheim Email: ctokheim@jhu.edu Github: ctokheim Description: Add ppi feature to uniprot_features table """ import MySQLdb import csv import argparse def parse_arguments(): info = 'Add uniprot features to Exon_Features table' parser = argparse.ArgumentParser(description=info) parser.add_argument('-i', '--input', type=str, required=True, help='Text file containing uniprot density feature') parser.add_argument('-mh', '--mysql-host', type=str, default='karchin-db01.icm.jhu.edu', help='Host name for mysql') parser.add_argument('-mdb', '--mysql-db', type=str, default='SNVBox_dev_sandbox', help='Database name for snvbox') parser.add_argument('--mysql-user', type=str, required=True, help='MySQL user name') parser.add_argument('--mysql-passwd', type=str, required=True, help='MySQL password') args = parser.parse_args() return vars(args) def main(opts): # connect to mysql db = MySQLdb.connect(host=opts['mysql_host'], user=opts['mysql_user'], passwd=opts['mysql_passwd'], db=opts['mysql_db']) cursor = db.cursor() with open(opts['input']) as handle: myreader = csv.reader(handle, delimiter='\t') header = next(myreader) uniprot_ix, pos_ix, count_ix = header.index('uniprot_id'), header.index('residue'), header.index('count') # run mysql command to reset to zero myquery = ( 'UPDATE Uniprot_features ' ' SET insider_ppi=0 ' ) cursor.execute(myquery) # commit changes db.commit() # iterate over each line of the file for line in myreader: # get the relevant columns uniprot, pos, count = line[uniprot_ix], line[pos_ix], line[count_ix] # run mysql command myquery = ( 'UPDATE Uniprot_features ' ' SET insider_ppi={count} ' 'WHERE Acc=\'{uniprot_id}\' AND Pos={pos}' ).format(count=count, uniprot_id=uniprot, pos=int(pos)) cursor.execute(myquery) # commit changes db.commit() num_rows_affected = cursor.rowcount if num_rows_affected == 0: colnames = ( 'Acc', 'Pos', 'BINDING', 'ACT_SITE', 'SITE', 'LIPID', 'METAL', 'CARBOHYD', 'DNA_BIND', 'NP_BIND', 'CA_BIND', 'DISULFID', 'SE_CYS', 'MOD_RES', 'PROPEP', 'SIGNALP', 'TRANSMEM', 'COMPBIAS', 'REP', 'MOTIF', 'ZN_FING', 'REGIONS', 'PPI', 'RNABD', 'TF', 'LOC', 'MMBRBD', 'Chrom', 'PostModRec', 'PostModEnz', 'insider_ppi' ) # run mysql command myquery = ( 'INSERT INTO Uniprot_features ({colnames}) ' 'VALUES (\'{uniprot_id}\', {pos}, {zeros}, {count})' ).format(colnames=', '.join(colnames), uniprot_id=uniprot, pos=int(pos), zeros=', '.join(['0']*(len(colnames)-3)), count=count) cursor.execute(myquery) # commit changes db.commit() if __name__ == '__main__': opts = parse_arguments() main(opts)
true
1220d06e7db3e96590c7f82832dd2f98cffd477e
Python
sheena-fernandez/sdr
/sortin/merge.py
UTF-8
672
3.390625
3
[]
no_license
#!/usr/bin/env python3 import random n = random.randint(5, 20) lista = [ random.randint(0, n * 2) for x in range(0, n) ] print(lista) def mergesort(lista): if len(lista) <= 1: return lista h = len(lista) // 2 # Ordena cada metade a = mergesort(lista[0:h]) b = mergesort(lista[h:]) # Mescla as metades em ordem i = 0 j = 0 nova = [] while i < len(a) and j < len(b): if a[i] < b[j]: nova.append(a[i]) i += 1 else: nova.append(b[j]) j += 1 while i < len(a): nova.append(a[i]) i += 1 while j < len(b): nova.append(b[j]) j += 1 return nova lista = mergesort(lista) print(lista) if lista != sorted(lista): raise Exception("foo")
true
cc529ce9a5c1acde4d34e05eff54c2d29fa0d8dd
Python
Ufuk-a/Space-invaders
/space_invaders/lib/human_ship.py
UTF-8
1,731
3.140625
3
[]
no_license
from space_invaders.lib.bullet import Bullet from space_invaders.res.glob import * player_image = pygame.image.load("space_invaders\\res\\images\\human_ship.png") class HumanShip(pygame.sprite.Sprite): def __init__(self, hp): pygame.sprite.Sprite.__init__(self) self.image = player_image self.rect = self.image.get_rect() self.x = 300 self.rect.center = (self.x + 32, 500) self.hp = hp self.score = 0 def update(self, bullets, screen): key = pygame.key.get_pressed() #health logic if self.hp < 0: self.hp = 0 if self.hp == 0: end_score = FONT.render(f"You died! Your score was: {self.score}", False, colors.white) screen.blit(end_score,(200,300)) if key[pygame.K_SPACE]: pygame.display.quit() #Movement speed = 3 if self.hp != 0: if key[pygame.K_LEFT]: self.x -= speed self.rect.x = self.x elif key[pygame.K_RIGHT]: self.x += speed self.rect.x = self.x #Boundary if self.rect.left < 0: self.rect.left = 0 self.x = 0 elif self.rect.right > 600: self.rect.right = 600 self.x = 536 #shoot if key[pygame.K_SPACE]: shoot = Bullet(self.x + 32, 468, "up") bullets.add(shoot) #score score_text = FONT.render(f"Score: {self.score}", False, colors.white) screen.blit(score_text,(0,0))
true
c7c619f402ad2ec9380fcd0a040bb04d8a0b7bbd
Python
TannhauserGate42/pandas
/pandas/core/layout.py
UTF-8
5,311
3.671875
4
[ "BSD-3-Clause" ]
permissive
""" Implements ArrayLayout copy factory to change memory layout of `numpy.ndarrays`. Depending on the use case, operations on DataFrames can be much faster if the appropriate memory layout is set and preserved. The implementation allows for changing the desired layout. Changes apply when copies or new objects are created, as for example, when slicing or aggregating via groupby ... This implementation tries to solve the issue raised on GitHub https://github.com/pandas-dev/pandas/issues/26502 """ import numpy as np class ArrayLayout(object): """ Array layout management for numpy.ndarrays. Singleton implementation. Example: >>> from pandas.core.layout import array_layout >>> array_layout.order = 'K' # >>> # K ... keep array layout from input >>> # C ... set to c-contiguous / column order >>> # F ... set to f-contiguous / row order >>> array = array_layout.apply(array) >>> array = array_layout.apply(array, 'C') >>> array = array_layout.copy(array) >>> array = array_layout.apply_on_transpose(array) """ _order = None _instance = None @property def order(self): """ Return memory layout ordering. :return: `str` """ if self.__class__._order is None: raise AssertionError("Array layout order not set.") return self.__class__._order @order.setter def order(self, order): """ Set memory layout order. Allowed values are 'C', 'F', and 'K'. Raises AssertionError when trying to set other values. :param order: `str` :return: `None` """ assert order in ['C', 'F', 'K'], "Only 'C', 'F' and 'K' supported." self.__class__._order = order def __new__(cls): """ Create only one instance throughout the lifetime of this process. :return: `ArrayLayout` instance as singleton """ return cls._instance if cls._instance is not None \ else super(ArrayLayout, cls).__new__(ArrayLayout) def __init__(self): """ Kind of a singleton implementation for the memory layout order in use. Works together with the __new__ definition. Returns initialized singleton instance of ArrayLayout :return: `ArrayLayout` instance, singleton, the one and only. """ if self._instance is None: self._instance = self @staticmethod def get_from(array): """ Get memory layout from array Possible values: 'C' ... only C-contiguous or column order 'F' ... only F-contiguous or row order 'O' ... other: both, C- and F-contiguous or both not C- or F-contiguous (as on empty arrays). :param array: `numpy.ndarray` :return: `str` """ if array.flags.c_contiguous == array.flags.f_contiguous: return 'O' return {True: 'C', False: 'F'}[array.flags.c_contiguous] def apply(self, array, order=None): """ Apply the order set or the order given as input on the array given as input. Possible values: 'C' ... apply C-contiguous layout or column order 'F' ... apply F-contiguous layout or row order 'K' ... keep the given layout :param array: `numpy.ndarray` :param order: `str` :return: `np.ndarray` """ order = self.__class__._order if order is None else order if order == 'K': return array array_order = ArrayLayout.get_from(array) if array_order == order: return array return np.reshape(np.ravel(array), array.shape, order=order) def copy(self, array, order=None): """ Return a copy of the input array with the memory layout set. Layout set: 'C' ... return C-contiguous copy 'F' ... return F-contiguous copy 'K' ... return copy with same layout as given by the input array. :param array: `np.ndarray` :return: `np.ndarray` """ order = order if order is not None else self.__class__._order return array.copy(order=self.get_from(array)) if order == 'K' \ else array.copy(order=order) def copy_transposed(self, array): """ Return a copy of the input array in order that its transpose has the memory layout set. Note: numpy simply changes the memory layout from row to column order instead of reshuffling the data in memory. Layout set: 'C' ... return F-contiguous copy 'F' ... return C-contiguous copy 'K' ... return copy with oposite (C versus F) layout as given by the input array. :param array: `np.ndarray` :return: `np.ndarray` :param array: :return: """ if self.__class__._order == 'K': return array.copy( order={'C': 'C', 'F': 'F', 'O': None}[self.get_from(array)]) else: return array.copy( order={'C': 'F', 'F': 'C'}[self.__class__._order]) def __str__(self): return str(self.__class__._order) array_layout = ArrayLayout() # Singleton
true
c9e9d8b1b05149e3cd3d392ec9b70e3c6183316b
Python
HansZimmer5000/LensComparison
/webcrawler/tests/crawledlenstestsuite.py
UTF-8
3,404
2.59375
3
[ "Apache-2.0" ]
permissive
import unittest from webcrawler.tests.testdata import generalexamples from webcrawler.lenses.crawledlens import CrawledLens class CrawledLensTestsuite(unittest.TestCase): #\\\\\\\\\\\\ # setUp & tearDown #//////////// def setUp(self): self.__class__.CRAWLED_LENS1_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS1_LENS_DICT self.__class__.CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT_LENS_DICT self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS1_OLD_MOUNT_LENS_DICT self.__class__.CRAWLED_LENS1_WITH_NEW_MOUNT_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS1_NEW_MOUNT_LENS_DICT self.__class__.CRAWLED_LENS2_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS2_LENS_DICT self.__class__.CRAWLED_LENS2_WITHOUT_SENSOR_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS2_WITHOUT_SENSOR_LENS_DICT self.__class__.CRAWLED_LENS3_LENS_DICT = generalexamples.TESTDATA_CRAWLED_LENS3_LENS_DICT self.__class__.ALL_CRAWLED_LENSES_WITH_MISSING_INFO_LENS_DICTS = generalexamples.TESTDATA_ALL_CRAWLED_LENSES_WITH_MISSING_INFO_LENS_DICTS self.__class__.ALL_CRAWLED_LENSES_WITH_FULL_INFO_LENS_DICTS = generalexamples.TESTDATA_ALL_CRAWLED_LENSES_WITH_FULL_INFO_LENS_DICTS self.__class__.CRAWLED_LENS1 = CrawledLens(self.__class__.CRAWLED_LENS1_LENS_DICT) self.__class__.CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT = CrawledLens(self.__class__.CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT_LENS_DICT) self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT = CrawledLens(self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT_LENS_DICT) self.__class__.CRAWLED_LENS2 = CrawledLens(self.__class__.CRAWLED_LENS2_LENS_DICT) print("\n\nsetup Done\n" + self._testMethodName) #End of setUp def tearDown(self): print("tearDown Done, next Line E(Error), F(Failure) or .(Passed)") #End of tearDown #\\\\\\\\\\\\ # Test cases #//////////// def test_pos_lens_data_exists_update_mount_and_weight(self): self.__class__.CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT.update(self.__class__.CRAWLED_LENS1_LENS_DICT) self.assertTrue(self.__class__.CRAWLED_LENS1_WITHOUT_MOUNT_AND_WEIGHT.equals(self.__class__.CRAWLED_LENS1)) def test_pos_lens_data_exists_update_sensor(self): lens_to_be_updated = CrawledLens(self.__class__.CRAWLED_LENS2_WITHOUT_SENSOR_LENS_DICT.copy()) lens_to_be_updated.update(self.__class__.CRAWLED_LENS2_LENS_DICT) self.assertTrue(lens_to_be_updated.equals(self.__class__.CRAWLED_LENS2)) def test_pos_lens_data_exists_update_but_nothing_new_to_add(self): self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT.update(self.__class__.CRAWLED_LENS1_WITH_NEW_MOUNT_LENS_DICT) self.assertTrue(self.__class__.CRAWLED_LENS1.equals(self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT)) def test_pos_lens_data_exists_update_but_no_new_mount_to_add(self): self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT.update(self.__class__.CRAWLED_LENS1_WITH_NEW_MOUNT_LENS_DICT) self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT.update(self.__class__.CRAWLED_LENS1_WITH_NEW_MOUNT_LENS_DICT) self.assertTrue(self.__class__.CRAWLED_LENS1.equals(self.__class__.CRAWLED_LENS1_WITH_OLD_MOUNT))
true
a9b8f73258619c3bcb61faa60c4691cf8c380b65
Python
morepath/morepath
/morepath/request.py
UTF-8
11,760
2.671875
3
[]
permissive
"""Morepath request implementation. Entirely documented in :class:`morepath.Request` and :class:`morepath.Response` in the public API. """ from webob import BaseRequest, Response as BaseResponse from dectate import Sentinel from .reify import reify from .traject import create_path, parse_path from .error import LinkError from .authentication import NO_IDENTITY SAME_APP = Sentinel("SAME_APP") class Request(BaseRequest): """Request. Extends :class:`webob.request.BaseRequest` """ path_code_info = None view_code_info = None def __init__(self, environ, app, **kw): super().__init__(environ, **kw) # parse path, normalizing dots away in # in case the client didn't do the normalization path_info = self.path_info segments = parse_path(path_info) # optimization: only if the normalized path is different from the # original path do we set it to the webob request, as this is # relatively expensive. Webob updates the environ as well new_path_info = create_path(segments) if new_path_info != path_info: self.path_info = new_path_info # reverse to get unconsumed segments.reverse() self.unconsumed = segments """Stack of path segments that have not yet been consumed. See :mod:`morepath.publish`. """ self._root_app = app self.app = app """:class:`morepath.App` instance currently handling request. """ self._after = [] self._link_prefix_cache = {} def reset(self): """Reset request. This resets the request back to the state it had when request processing started. This is used by ``more.transaction`` when it retries a transaction. """ self.make_body_seekable() segments = parse_path(self.path_info) segments.reverse() self.unconsumed = segments self.app = self._root_app self._after = [] @reify def identity(self): """Self-proclaimed identity of the user. The identity is established using the identity policy. Normally this would be an instance of :class:`morepath.Identity`. If no identity is claimed or established, or if the identity is not verified by the application, the identity is the the special value :attr:`morepath.NO_IDENTITY`. The identity can be used for authentication/authorization of the user, using Morepath permission directives. """ result = self.app._identify(self) if result is None or result is NO_IDENTITY: return NO_IDENTITY if not self.app._verify_identity(result): return NO_IDENTITY return result def link_prefix(self, app=None): """Prefix to all links created by this request. :param app: Optionally use the given app to create the link. This leads to use of the link prefix configured for the given app. This parameter is mainly used internally for link creation. """ app = app or self.app cached = self._link_prefix_cache.get(app.__class__) if cached is not None: return cached prefix = self._link_prefix_cache[app.__class__] = app._link_prefix(self) return prefix def view(self, obj, default=None, app=SAME_APP, **predicates): """Call view for model instance. This does not render the view, but calls the appropriate view function and returns its result. :param obj: the model instance to call the view on. :param default: default value if view is not found. :param app: If set, change the application in which to look up the view. By default the view is looked up for the current application. The ``defer_links`` directive can be used to change the default app for all instances of a particular class. :param predicates: extra predicates to modify view lookup, such as ``name`` and ``request_method``. The default ``name`` is empty, so the default view is looked up, and the default ``request_method`` is ``GET``. If you introduce your own predicates you can specify your own default. """ if app is None: raise LinkError("Cannot view: app is None") if app is SAME_APP: app = self.app predicates["model"] = obj.__class__ def find(app, obj): return app.get_view.by_predicates(**predicates).component view, app = app._follow_defers(find, obj) if view is None: return default old_app = self.app self.app = app # need to use value as view is registered as a function, not # as a wrapped method result = view.func(obj, self) self.app = old_app return result def link(self, obj, name="", default=None, app=SAME_APP): """Create a link (URL) to a view on a model instance. The resulting link is prefixed by the link prefix. By default this is the full URL based on the Host header. You can configure the link prefix for an application using the :meth:`morepath.App.link_prefix` directive. If no link can be constructed for the model instance, a :exc:`morepath.error.LinkError` is raised. ``None`` is treated specially: if ``None`` is passed in the default value is returned. The :meth:`morepath.App.defer_links` or :meth:`morepath.App.defer_class_links` directives can be used to defer link generation for all instances of a particular class (if this app doesn't handle them) to another app. :param obj: the model instance to link to, or ``None``. :param name: the name of the view to link to. If omitted, the the default view is looked up. :param default: if ``None`` is passed in, the default value is returned. By default this is ``None``. :param app: If set, change the application to which the link is made. By default the link is made to an object in the current application. """ if obj is None: return default if app is None: raise LinkError("Cannot link: app is None") if app is SAME_APP: app = self.app info, app = app._get_deferred_mounted_path(obj) if info is None: raise LinkError("Cannot link to: %r" % obj) return info.url(self.link_prefix(app), name) def class_link(self, model, variables=None, name="", app=SAME_APP): """Create a link (URL) to a view on a class. Given a model class and a variables dictionary, create a link based on the path registered for the class and interpolate the variables. If you have an instance of the model available you'd link to the model instead, but in some cases it is expensive to instantiate the model just to create a link. In this case `class_link` can be used as an optimization. The :meth:`morepath.App.defer_class_links` directive can be used to defer link generation for a particular class (if this app doesn't handle them) to another app. Note that the :meth:`morepath.App.defer_links` directive has **no** effect on ``class_link``, as it needs an instance of the model to work, which is not available. If no link can be constructed for the model class, a :exc:`morepath.error.LinkError` is raised. This error is also raised if you don't supply enough variables. Additional variables not used in the path are interpreted as URL parameters. :param model: the model class to link to. :param variables: a dictionary with as keys the variable names, and as values the variable values. These are used to construct the link URL. If omitted, the dictionary is treated as containing no variables. :param name: the name of the view to link to. If omitted, the the default view is looked up. :param app: If set, change the application to which the link is made. By default the link is made to an object in the current application. """ if variables is None: variables = {} if app is None: raise LinkError("Cannot link: app is None") if app is SAME_APP: app = self.app info = app._get_deferred_mounted_class_path(model, variables) if info is None: raise LinkError("Cannot link to class: %r" % model) return info.url(self.link_prefix(), name) def resolve_path(self, path, app=SAME_APP): """Resolve a path to a model instance. The resulting object is a model instance, or ``None`` if the path could not be resolved. :param path: URL path to resolve. :param app: If set, change the application in which the path is resolved. By default the path is resolved in the current application. :return: instance or ``None`` if no path could be resolved. """ if app is None: raise LinkError("Cannot path: app is None") if app is SAME_APP: app = self.app request = Request(self.environ.copy(), app, path_info=path) # try to resolve imports.. from .publish import resolve_model return resolve_model(request) def after(self, func): """Call a function with the response after a successful request. A request is considered *successful* if the HTTP status is a 2XX or a 3XX code (e.g. 200 OK, 204 No Content, 302 Found). In this case ``after`` *is* called. A request is considered *unsuccessful* if the HTTP status lies outside the 2XX-3XX range (e.g. 403 Forbidden, 404 Not Found, 500 Internal Server Error). Usually this happens if an exception occurs. In this case ``after`` is *not* called. Some exceptions indicate a successful request however and their occurrence still leads to a call to ``after``. These exceptions inherit from either :class:`webob.exc.HTTPOk` or :class:`webob.exc.HTTPRedirection`. You use `request.after` inside a view function definition. It can be used explicitly:: @App.view(model=SomeModel) def some_model_default(self, request): def myfunc(response): response.headers.add('blah', 'something') request.after(my_func) or as a decorator:: @App.view(model=SomeModel) def some_model_default(self, request): @request.after def myfunc(response): response.headers.add('blah', 'something') :param func: callable that is called with response :return: func argument, not wrapped """ self._after.append(func) return func def _run_after(self, response): """Run callbacks registered with :meth:`morepath.Request.after`.""" # if we don't have anything to run, don't even check status if not self._after: return # run after only if it's not a 2XX or 3XX response if response.status[0] not in ("2", "3"): return for after in self._after: after(response) def clear_after(self): self._after = [] class Response(BaseResponse): """Response. Extends :class:`webob.response.Response`. """
true
8de5900f692194fe6f6741fb02cced1fe2243e21
Python
Aasthaengg/IBMdataset
/Python_codes/p03046/s847893958.py
UTF-8
530
2.78125
3
[]
no_license
def main(): m,k=map(int,input().split()) if 2**m<=k: print(-1) elif m==0: if k==0: print(0,0) else: print(-1) elif m==1: if k==0: print(1,0,0,1) else: print(-1) else: ans=[] for i in range(2**m-1,-1,-1): if i!=k: ans.append(i) ans.append(k) for i in range(2**m): if i!=k: ans.append(i) ans.append(k) print(*ans) main()
true
66e112ccaf17b8d3038b446bad54495a74a7301c
Python
Metallicow/wxPythonDemos
/SplashScreen.py
UTF-8
1,922
2.859375
3
[]
no_license
#!/usr/bin/env python2.4 # I Always specify the python version in the #! line, it makes it much # easier to have multiple versions on your system import wxversion wxversion.select("2.6") ## Note: it may well work with other versions, but it's been tested on 2.6. import wx import os, time class MySplashScreen(wx.SplashScreen): def __init__(self,imageFileName): bmp = wx.Bitmap(imageFileName) wx.SplashScreen.__init__(self, bitmap = bmp, splashStyle = wx.SPLASH_CENTRE_ON_SCREEN | wx.SPLASH_TIMEOUT, milliseconds = 5000, parent = None) #self.Bind(wx.EVT_CLOSE, self.OnClose) #self.fc = wx.FutureCall(2000, self.ShowMain) def OnClose(self, evt): print "OnClose Called" # Make sure the default handler runs too so this window gets # destroyed #evt.Skip() #self.Hide() # if the timer is still running then go ahead and show the # main frame now #if self.fc.IsRunning(): # self.fc.Stop() self.ShowMain() def ShowMain(self): print "ShowMain called" frame = MainFrame(None, title="An Empty Frame") frame.CenterOnScreen() frame.Show() #if self.fc.IsRunning(): # self.Raise() class MainFrame(wx.Frame): """ this is an empty frame, just to have something to show """ pass class App(wx.App): def OnInit(self): """ This gets called when the App Starts up """ Splash = MySplashScreen(SplashImageFile) frame = MainFrame(None, title = "Main Frame") frame.Show() #Splash.Show(True) return True if __name__ == "__main__": SplashImageFile = "Images/cute_close_up.jpg" app = App(0) app.MainLoop()
true
41502d04d0d2433a41ea2740f492d30882c52b12
Python
cybersaksham/Python-Tutorials
/24_recursion.py
UTF-8
795
4.6875
5
[]
no_license
""" Recursion is just calling a function in itself. But if we not declare some base values to end the recursion, then it would calling the function infinite times & will give error. Recursion is not a good technique because it process in reverse manner hence line of code increase rapidly. """ def fac_itr(n): # This is for iteration i.e. looping fac = 1 for i in range(n): fac = fac * (i + 1) return fac def fac_rec(n): # This is for recursion if n == 0 or n == 1: return 1 elif n > 1: return n * fac_rec(n - 1) else: print("Entered incorrect value") number = int(input("Enter a number = ")) print("Factorial of", number, "using iteration is", fac_itr(number)) print("Factorial of", number, "using recursion is", fac_itr(number))
true
7e601e8a69d95cef4ef233b44d04bf75b1e83e1c
Python
stjordanis/autogluon
/core/tests/unittests/scheduler/test_seq_scheduler.py
UTF-8
4,599
2.515625
3
[ "Apache-2.0" ]
permissive
import pytest from autogluon.common import space from autogluon.core.scheduler.seq_scheduler import LocalSequentialScheduler cls = LocalSequentialScheduler def test_get_average_trial_time_(): running_time = cls.get_average_trial_time_(0, avg_trial_run_time=None, trial_start_time=100, time_end=102) assert running_time == 2 running_time = cls.get_average_trial_time_(1, avg_trial_run_time=running_time, trial_start_time=110, time_end=114) assert running_time == 3.0 running_time = cls.get_average_trial_time_(2, avg_trial_run_time=running_time, trial_start_time=120, time_end=126) assert running_time == 4.0 def test_has_enough_time_for_trial__enough_time__no_avg_time(): # Enough time - no average time assert cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=106, avg_trial_run_time=None) def test_has_enough_time_for_trial__enough_time__avg_time_allows_trials(): # Enough time - average time allows more trial assert cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=106, avg_trial_run_time=1) def test_has_enough_time_for_trial__enough_time__avg_time_not_allows_trials(): # Enough time - average time does not allow more trial assert not cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=106, avg_trial_run_time=5) def test_has_enough_time_for_trial__time_exceeded_no_avg_time(): # Time exceeded - no average time assert not cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=116, avg_trial_run_time=None) def test_has_enough_time_for_trial__avg_time(): # Time exceeded - no average time assert not cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=116, avg_trial_run_time=0) def test_has_enough_time_for_trial__enough_time__avg_time_not_allows_trials_by_fill_factor(): # Enough time - average time does not allow more trial assert not cls.has_enough_time_for_trial_(time_out=10, time_start=100, trial_start_time=105, trial_end_time=106, avg_trial_run_time=1, fill_factor=5) def test_LocalSequentialScheduler_no_criteria(): search_space = {"lr": space.Real(1e-2, 1e-1, log=True)} def _train_fn_(): pass with pytest.raises(AssertionError, match="Need stopping criterion: Either num_trials or time_out"): LocalSequentialScheduler(train_fn=_train_fn_, search_space=search_space, reward_attr="reward_attr", resource={}) def test_search_space(): search_space = dict( a=space.Real(1e-3, 1e-2, log=True), b=space.Real(1e-3, 1e-2), c=space.Int(1, 10), d=space.Categorical("a", "b", "c", "d"), e=space.Bool(), ) def train_fn(args, reporter): a, b, c, d, e = args["a"], args["b"], args["c"], args["d"], args["e"] assert a <= 1e-2 and a >= 1e-3 assert b <= 1e-2 and b >= 1e-3 assert c <= 10 and c >= 1 assert d in ["a", "b", "c", "d"] assert e in [True, False] reporter(epoch=1, accuracy=0) scheduler = LocalSequentialScheduler( train_fn, search_space=search_space, resource={"num_cpus": "all", "num_gpus": 0}, num_trials=10, reward_attr="accuracy", time_attr="epoch", checkpoint=None, ) scheduler.run() def test_scheduler_can_handle_failing_jobs(): trails_outcomes = [] best_result = [-1] search_space = dict(a=space.Real(0, 1)) def train_fn(args, reporter): test_should_fail = args["a"] > 0.7 trails_outcomes.append(test_should_fail) if test_should_fail: raise Exception("Failed Trial") elif args["a"] > best_result[0]: best_result[0] = args["a"] reporter(epoch=1, accuracy=args["a"]) scheduler = LocalSequentialScheduler( train_fn, search_space=search_space, resource={"num_cpus": "all", "num_gpus": 0}, num_trials=10, reward_attr="accuracy", time_attr="epoch", checkpoint=None, ) scheduler.run() actual_runs = [] for trial in scheduler.training_history.values(): is_failed = False for i in trial: if "traceback" in i: is_failed = True break actual_runs.append(is_failed) assert trails_outcomes == actual_runs assert scheduler.get_best_reward() == best_result[0] assert scheduler.get_best_config() == {"a": best_result[0]}
true
f2821f0ed33bdc448d0a7e46e6eec447f9eeab87
Python
benjamincorcoran/SASDocumentation
/SASDocumentation/SASObjects/SASDataObjectParser.py
UTF-8
1,768
3.078125
3
[ "MIT" ]
permissive
import re from .SASBaseObject import SASBaseObject from .SASDataObject import SASDataObject class SASDataObjectParser(SASBaseObject): ''' SAS Data Object Parser Class Factory for creating DataObjects from text string ''' def __init__(self): SASBaseObject.__init__(self) def parseDataObjects(self, objectText, startLine=None, endLine=None): ''' Takes object text and parses out Data Objects Parameters: objectText - Raw text with DataObject defined within startLine (optional) - Starting line of specified text endLine (optional) - Ending line of specified text Returns: list - List of validated SASDataObjects found in objectText ''' rawObjectList = self.splitDataObjects(objectText) objectList = [] for dataObject in rawObjectList: library = dataObject[0] dataset = re.findall( r'([^(]+)[.]*', dataObject[1], self.regexFlags) if len(dataset) == 0: dataset='' else: dataset=dataset[0] condition = re.findall(r'\((.*)\)', dataObject[1], self.regexFlags) if len(library) > 0: library = library else: library = None if len(condition) > 0: condition = condition[0] else: condition = None if len(dataset) > 0: objectList.append( SASDataObject( library, dataset, condition, startLine, endLine)) return objectList
true
a2945a82c36cb5157a364979aba9d6671c9be41c
Python
daylightPL/Instrumenty_Finansowe
/Modelgui.py
UTF-8
3,858
3.484375
3
[]
no_license
from sklearn.linear_model import LinearRegression import numpy import time import pandas import datetime import dateutil.relativedelta def Prediction (data_xy, date_for_prediction): #Obrobka dat (Lista X) train_list_x = data_xy[0] train_list_y = data_xy[1] for i in range(0, len(train_list_x)): train_list_x[i] = int(time.mktime(time.strptime(train_list_x[i], '%Y-%m-%d'))) train_list_x = numpy.array(train_list_x).reshape(-1, 1) #Obrobka wartosci (Lista y) train_list_y = numpy.array(train_list_y) #Uczenie Modelu model = LinearRegression() model.fit(train_list_x, train_list_y) #Obrobka daty dla predykcji date_for_prediction = int(time.mktime(time.strptime(date_for_prediction[0], '%Y-%m-%d'))) date_for_prediction = numpy.array(date_for_prediction).reshape(-1, 1) #Predykcja predicted_value = model.predict(date_for_prediction) #Zwrocenie wartosci return float(predicted_value) def Select_Data(duration, date_today): #Switch zaleznie od zakresu danych if duration == 'year': #Wczytaj dane z pliku csv_file = './data/data_store/selected_data.csv' df = pandas.read_csv(csv_file) #Wykorzystuje wszystko wczytane - nie ma potrzeby filtracji #Utworz listy i je zwroc x = df.data.tolist() y = df.cena.tolist() return x, y elif duration == 'month': #Wczytaj dane z pliku csv_file = './data/data_store/selected_data.csv' df = pandas.read_csv(csv_file) #Filtracja targettime = datetime.datetime.strptime(date_today, '%Y-%m-%d') targettime = targettime - dateutil.relativedelta.relativedelta(months=1) targettime = str(targettime) #print(date_today) #print(targettime) df = df[(df.data > targettime)] #print(df) #Utworz listy i je zwroc x = df.data.tolist() y = df.cena.tolist() return x, y elif duration == 'week': #Wczytaj dane z pliku csv_file = './data/data_store/selected_data.csv' df = pandas.read_csv(csv_file) #Filtracja targettime = datetime.datetime.strptime(date_today, '%Y-%m-%d') targettime = targettime - dateutil.relativedelta.relativedelta(days=7) targettime = str(targettime) #print(date_today) #print(targettime) df = df[(df.data > targettime)] #print(df) #Utworz listy i je zwroc x = df.data.tolist() y = df.cena.tolist() return x, y def model_licz(period, predict_for ): #today = '2019-01-13' #period = 'month' or 'week' or 'year' today = '2019-01-15' #TODO: str(datetime.datetime.today()) data = Select_Data(period, today) prediction = str(Prediction(data, predict_for)) return prediction #period = 'month' #predict_for = ['2019-01-15'] #wyliczone = model_licz(period, predict_for) #print(wyliczone) #Ponizej przykład zastosowania obu funkcji #predict_for = ['2019-01-13'] #today = '2019-01-13' #prediction = [0, 0, 0] #data = Select_Data('year', today) #prediction[0] = Prediction(data, predict_for) #data = Select_Data('month', today) #prediction[1] = Prediction(data, predict_for) #data = Select_Data('week', today) #prediction[2] = Prediction(data, predict_for) #print('Prognoza na: ' + str(predict_for[0])) #print('Rok: '+ str(prediction[0])) #print('Miesiac: '+ str(prediction[1])) #print('Tydzien: '+ str(prediction[2])) #Ponizej przykład zastosowania samej funkcji predict #Inicjalizacja danych #x = ['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04', '2019-01-05'] #print(x) #y = [1, 2, 3, 4, 5] #predict_for = ['2019-01-30'] #Wywolanie funkcji #prediction = Prediction(x, y, predict_for) #Wyswietlenie danych i wyniku #print(x) #print(y) #print(predict_for) #print(prediction)
true
d4bd3413f804236ad7706ccb09bbebf52f4f0316
Python
nagyist/mapd-core
/QueryEngine/scripts/generate_TableFunctionsFactory_init.py
UTF-8
21,916
2.65625
3
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
"""Given a list of input files, scan for lines containing UDTF specification statements in the following form: UDTF: function_name(<arguments>) -> <output column types> (, <template type specifications>)? where <arguments> is a comma-separated list of argument types. The argument types specifications are: - scalar types: Int8, Int16, Int32, Int64, Float, Double, Bool, TextEncodingDict, etc - column types: ColumnInt8, ColumnInt16, ColumnInt32, ColumnInt64, ColumnFloat, ColumnDouble, ColumnBool, etc - column list types: ColumnListInt8, ColumnListInt16, ColumnListInt32, ColumnListInt64, ColumnListFloat, ColumnListDouble, ColumnListBool, etc - cursor type: Cursor<t0, t1, ...> where t0, t1 are column or column list types - output buffer size parameter type: RowMultiplier<i>, ConstantParameter<i>, Constant<i>, TableFunctionSpecifiedParameter<i> where i is a literal integer. The output column types is a comma-separated list of column types, see above. In addition, the following equivalents are suppored: Column<T> == ColumnT ColumnList<T> == ColumnListT Cursor<T, V, ...> == Cursor<ColumnT, ColumnV, ...> int8 == int8_t == Int8, etc float == Float, double == Double, bool == Bool T == ColumnT for output column types RowMultiplier == RowMultiplier<i> where i is the one-based position of the sizer argument when no sizer argument is provided, Constant<1> is assumed Argument types can be annotated using `|' (bar) symbol after an argument type specification. An annotation is specified by a label and a value separated by `=' (equal) symbol. Multiple annotations can be specified by using `|` (bar) symbol as the annotations separator. Supported annotation labels are: - name: to specify argument name - input_id: to specify the dict id mapping for output TextEncodingDict columns. - default: to specify a default value for an argument (scalar only) If argument type follows an identifier, it will be mapped to name annotations. For example, the following argument type specifications are equivalent: Int8 a Int8 | name=a Template type specifications is a comma separated list of template type assignments where values are lists of argument type names. For instance: T = [Int8, Int16, Int32, Float], V = [Float, Double] """ # Author: Pearu Peterson # Created: January 2021 import os import sys import warnings import TableFunctionsFactory_transformers as transformers import TableFunctionsFactory_parser as parser import TableFunctionsFactory_declbracket as declbracket import TableFunctionsFactory_util as util import TableFunctionsFactory_linker as linker # fmt: off separator = '$=>$' def line_is_incomplete(line): # TODO: try to parse the line to be certain about completeness. # `$=>$' is used to separate the UDTF signature and the expected result return line.endswith(',') or line.endswith('->') or line.endswith(separator) or line.endswith('|') # fmt: off def find_signatures(input_file): """Returns a list of parsed UDTF signatures.""" signatures = [] last_line = None for line in open(input_file).readlines(): line = line.strip() if last_line is not None: line = last_line + ' ' + line last_line = None if not line.startswith('UDTF:'): continue if line_is_incomplete(line): last_line = line continue last_line = None line = line[5:].lstrip() i = line.find('(') j = line.find(')') if i == -1 or j == -1: sys.stderr.write('Invalid UDTF specification: `%s`. Skipping.\n' % (line)) continue expected_result = None if separator in line: line, expected_result = line.split(separator, 1) expected_result = expected_result.strip().split(separator) expected_result = list(map(lambda s: s.strip(), expected_result)) ast = parser.Parser(line).parse() if expected_result is not None: # Treat warnings as errors so that one can test TransformeWarnings warnings.filterwarnings("error") # Template transformer expands templates into multiple lines try: result = transformers.Pipeline( transformers.TemplateTransformer, transformers.AmbiguousSignatureCheckTransformer, transformers.FieldAnnotationTransformer, transformers.TextEncodingDictTransformer, transformers.DefaultValueAnnotationTransformer, transformers.SupportedAnnotationsTransformer, transformers.RangeAnnotationTransformer, transformers.FixRowMultiplierPosArgTransformer, transformers.RenameNodesTransformer, transformers.AstPrinter)(ast) except (transformers.TransformerException, transformers.TransformerWarning) as msg: result = ['%s: %s' % (type(msg).__name__, msg)] assert len(result) == len(expected_result), "\n\tresult: %s \n!= \n\texpected: %s" % ( '\n\t\t '.join(result), '\n\t\t '.join(expected_result) ) assert set(result) == set(expected_result), "\n\tresult: %s != \n\texpected: %s" % ( '\n\t\t '.join(result), '\n\t\t '.join(expected_result), ) else: signature = transformers.Pipeline( transformers.TemplateTransformer, transformers.AmbiguousSignatureCheckTransformer, transformers.FieldAnnotationTransformer, transformers.TextEncodingDictTransformer, transformers.DefaultValueAnnotationTransformer, transformers.SupportedAnnotationsTransformer, transformers.RangeAnnotationTransformer, transformers.FixRowMultiplierPosArgTransformer, transformers.RenameNodesTransformer, transformers.DeclBracketTransformer)(ast) signatures.extend(signature) return signatures def format_function_args(input_types, output_types, uses_manager, use_generic_arg_name, emit_output_args): cpp_args = [] name_args = [] if uses_manager: cpp_args.append('TableFunctionManager& mgr') name_args.append('mgr') for idx, typ in enumerate(input_types): cpp_arg, name = typ.format_cpp_type(idx, use_generic_arg_name=use_generic_arg_name, is_input=True) cpp_args.append(cpp_arg) name_args.append(name) if emit_output_args: for idx, typ in enumerate(output_types): cpp_arg, name = typ.format_cpp_type(idx, use_generic_arg_name=use_generic_arg_name, is_input=False) cpp_args.append(cpp_arg) name_args.append(name) cpp_args = ', '.join(cpp_args) name_args = ', '.join(name_args) return cpp_args, name_args def build_template_function_call(caller, called, input_types, output_types, uses_manager): cpp_args, name_args = format_function_args(input_types, output_types, uses_manager, use_generic_arg_name=True, emit_output_args=True) template = ("EXTENSION_NOINLINE int32_t\n" "%s(%s) {\n" " return %s(%s);\n" "}\n") % (caller, cpp_args, called, name_args) return template def build_preflight_function(fn_name, sizer, input_types, output_types, uses_manager): def format_error_msg(err_msg, uses_manager): if uses_manager: return " return mgr.error_message(%s);\n" % (err_msg,) else: return " return table_function_error(%s);\n" % (err_msg,) cpp_args, _ = format_function_args(input_types, output_types, uses_manager, use_generic_arg_name=False, emit_output_args=False) if uses_manager: fn = "EXTENSION_NOINLINE int32_t\n" fn += "%s(%s) {\n" % (fn_name.lower() + "__preflight", cpp_args) else: fn = "EXTENSION_NOINLINE int32_t\n" fn += "%s(%s) {\n" % (fn_name.lower() + "__preflight", cpp_args) for typ in input_types: if isinstance(typ, declbracket.Declaration): ann = typ.annotations for key, value in ann: if key == 'require': err_msg = '"Constraint `%s` is not satisfied."' % (value[1:-1]) fn += " if (!(%s)) {\n" % (value[1:-1].replace('\\', ''),) fn += format_error_msg(err_msg, uses_manager) fn += " }\n" if sizer.is_arg_sizer(): precomputed_nrows = str(sizer.args[0]) if '"' in precomputed_nrows: precomputed_nrows = precomputed_nrows[1:-1] # check to see if the precomputed number of rows > 0 err_msg = '"Output size expression `%s` evaluated in a negative value."' % (precomputed_nrows) fn += " auto _output_size = %s;\n" % (precomputed_nrows) fn += " if (_output_size < 0) {\n" fn += format_error_msg(err_msg, uses_manager) fn += " }\n" fn += " return _output_size;\n" else: fn += " return 0;\n" fn += "}\n\n" return fn def must_emit_preflight_function(sig, sizer): if sizer.is_arg_sizer(): return True for arg_annotations in sig.input_annotations: d = dict(arg_annotations) if 'require' in d.keys(): return True return False def format_annotations(annotations_): def fmt(k, v): # type(v) is not always 'str' if k == 'require' or k == 'default' and v[0] == "\"": return v[1:-1] return v s = "std::vector<std::map<std::string, std::string>>{" s += ', '.join(('{' + ', '.join('{"%s", "%s"}' % (k, fmt(k, v)) for k, v in a) + '}') for a in annotations_) s += "}" return s def is_template_function(sig): i = sig.name.rfind('_template') return i >= 0 and '__' in sig.name[:i + 1] def uses_manager(sig): return sig.inputs and sig.inputs[0].name == 'TableFunctionManager' def is_cpu_function(sig): # Any function that does not have _gpu_ suffix is a cpu function. i = sig.name.rfind('_gpu_') if i >= 0 and '__' in sig.name[:i + 1]: if uses_manager(sig): raise ValueError('Table function {} with gpu execution target cannot have TableFunctionManager argument'.format(sig.name)) return False return True def is_gpu_function(sig): # A function with TableFunctionManager argument is a cpu-only function if uses_manager(sig): return False # Any function that does not have _cpu_ suffix is a gpu function. i = sig.name.rfind('_cpu_') return not (i >= 0 and '__' in sig.name[:i + 1]) def parse_annotations(input_files): counter = 0 add_stmts = [] cpu_template_functions = [] gpu_template_functions = [] cpu_function_address_expressions = [] gpu_function_address_expressions = [] cond_fns = [] for input_file in input_files: for sig in find_signatures(input_file): # Compute sql_types, input_types, and sizer sql_types_ = [] input_types_ = [] input_annotations = [] sizer = None if sig.sizer is not None: expr = sig.sizer.value sizer = declbracket.Bracket('kPreFlightParameter', (expr,)) uses_manager = False for i, (t, annot) in enumerate(zip(sig.inputs, sig.input_annotations)): if t.is_output_buffer_sizer(): if t.is_user_specified(): sql_types_.append(declbracket.Bracket.parse('int32').normalize(kind='input')) input_types_.append(sql_types_[-1]) input_annotations.append(annot) assert sizer is None # exactly one sizer argument is allowed assert len(t.args) == 1, t sizer = t elif t.name == 'Cursor': for t_ in t.args: input_types_.append(t_) input_annotations.append(annot) sql_types_.append(declbracket.Bracket('Cursor', args=())) elif t.name == 'TableFunctionManager': if i != 0: raise ValueError('{} must appear as a first argument of {}, but found it at position {}.'.format(t, sig.name, i)) uses_manager = True else: input_types_.append(t) input_annotations.append(annot) if t.is_column_any(): # XXX: let Bracket handle mapping of column to cursor(column) sql_types_.append(declbracket.Bracket('Cursor', args=())) else: sql_types_.append(t) if sizer is None: name = 'kTableFunctionSpecifiedParameter' idx = 1 # this sizer is not actually materialized in the UDTF sizer = declbracket.Bracket(name, (idx,)) assert sizer is not None ns_output_types = tuple([a.apply_namespace(ns='ExtArgumentType') for a in sig.outputs]) ns_input_types = tuple([t.apply_namespace(ns='ExtArgumentType') for t in input_types_]) ns_sql_types = tuple([t.apply_namespace(ns='ExtArgumentType') for t in sql_types_]) sig.function_annotations.append(('uses_manager', str(uses_manager).lower())) input_types = 'std::vector<ExtArgumentType>{%s}' % (', '.join(map(util.tostring, ns_input_types))) output_types = 'std::vector<ExtArgumentType>{%s}' % (', '.join(map(util.tostring, ns_output_types))) sql_types = 'std::vector<ExtArgumentType>{%s}' % (', '.join(map(util.tostring, ns_sql_types))) annotations = format_annotations(input_annotations + sig.output_annotations + [sig.function_annotations]) # Notice that input_types and sig.input_types, (and # similarly, input_annotations and sig.input_annotations) # have different lengths when the sizer argument is # Constant or TableFunctionSpecifiedParameter. That is, # input_types contains all the user-specified arguments # while sig.input_types contains all arguments of the # implementation of an UDTF. if must_emit_preflight_function(sig, sizer): fn_name = '%s_%s' % (sig.name, str(counter)) if is_template_function(sig) else sig.name check_fn = build_preflight_function(fn_name, sizer, input_types_, sig.outputs, uses_manager) cond_fns.append(check_fn) if is_template_function(sig): name = sig.name + '_' + str(counter) counter += 1 t = build_template_function_call(name, sig.name, input_types_, sig.outputs, uses_manager) address_expression = ('avoid_opt_address(reinterpret_cast<void*>(%s))' % name) if is_cpu_function(sig): cpu_template_functions.append(t) cpu_function_address_expressions.append(address_expression) if is_gpu_function(sig): gpu_template_functions.append(t) gpu_function_address_expressions.append(address_expression) add = ('TableFunctionsFactory::add("%s", %s, %s, %s, %s, %s, /*is_runtime:*/false);' % (name, sizer.format_sizer(), input_types, output_types, sql_types, annotations)) add_stmts.append(add) else: add = ('TableFunctionsFactory::add("%s", %s, %s, %s, %s, %s, /*is_runtime:*/false);' % (sig.name, sizer.format_sizer(), input_types, output_types, sql_types, annotations)) add_stmts.append(add) address_expression = ('avoid_opt_address(reinterpret_cast<void*>(%s))' % sig.name) if is_cpu_function(sig): cpu_function_address_expressions.append(address_expression) if is_gpu_function(sig): gpu_function_address_expressions.append(address_expression) return add_stmts, cpu_template_functions, gpu_template_functions, cpu_function_address_expressions, gpu_function_address_expressions, cond_fns if len(sys.argv) < 3: input_files = [os.path.join(os.path.dirname(__file__), 'test_udtf_signatures.hpp')] print('Running tests from %s' % (', '.join(input_files))) add_stmts, _, _, _, _, _ = parse_annotations(input_files) print('Usage:\n %s %s input1.hpp input2.hpp ... output.hpp' % (sys.executable, sys.argv[0], )) sys.exit(1) input_files, output_filename = sys.argv[1:-1], sys.argv[-1] cpu_output_header = os.path.splitext(output_filename)[0] + '_cpu.hpp' gpu_output_header = os.path.splitext(output_filename)[0] + '_gpu.hpp' assert input_files, sys.argv add_stmts = [] cpu_template_functions = [] gpu_template_functions = [] cpu_address_expressions = [] gpu_address_expressions = [] cond_fns = [] canonical_input_files = [input_file[input_file.find("/QueryEngine/") + 1:] for input_file in input_files] header_file = ['#include "' + canonical_input_file + '"' for canonical_input_file in canonical_input_files] dirname = os.path.dirname(output_filename) if dirname and not os.path.exists(dirname): try: os.makedirs(dirname) except OSError as e: import errno if e.errno != errno.EEXIST: raise for input_file in input_files: stmts, cpu_fns, gpu_fns, cpu_addr, gpu_addr, cond_funcs = parse_annotations([input_file]) add_stmts.extend(stmts) cpu_template_functions.extend(cpu_fns) gpu_template_functions.extend(gpu_fns) cpu_address_expressions.extend(cpu_addr) gpu_address_expressions.extend(gpu_addr) cond_fns.extend(cond_funcs) header_file = input_file[input_file.find("/QueryEngine/") + 1:] add_tf_generated_files = linker.GenerateAddTableFunctionsFiles(dirname, stmts, header_file) if add_tf_generated_files.should_generate_files(): add_tf_generated_files.generate_files() if len(cpu_fns): cpu_generated_files = linker.GenerateTemplateFiles(dirname, cpu_fns, header_file, 'cpu') cpu_generated_files.generate_files() if len(gpu_fns): gpu_generated_files = linker.GenerateTemplateFiles(dirname, gpu_fns, header_file, 'gpu') gpu_generated_files.generate_files() def call_methods(add_stmts): n_add_funcs = linker.GenerateAddTableFunctionsFiles.get_num_generated_files() return [ 'table_functions::add_table_functions_%d();' % (i) for i in range(n_add_funcs+1) ] content = ''' /* This file is generated by %s. Do no edit! */ #include "QueryEngine/TableFunctions/TableFunctionsFactory.h" /* Include the UDTF template initiations: */ %s // volatile+noinline prevents compiler optimization #ifdef _WIN32 __declspec(noinline) #else __attribute__((noinline)) #endif #ifndef NO_OPT_ATTRIBUTE #if defined(__clang__) #define NO_OPT_ATTRIBUTE __attribute__((optnone)) #elif defined(__GNUC__) || defined(__GNUG__) #define NO_OPT_ATTRIBUTE __attribute__((optimize("O0"))) #elif defined(_MSC_VER) #define NO_OPT_ATTRIBUTE #endif #endif #if defined(_MSC_VER) #pragma optimize("", off) #endif volatile NO_OPT_ATTRIBUTE bool avoid_opt_address(void *address) { return address != nullptr; } NO_OPT_ATTRIBUTE bool functions_exist() { bool ret = true; ret &= (%s); return ret; } extern bool g_enable_table_functions; extern bool functions_exist_geo_column(); // Each table function initialization module needs its own AddTableFunctions struct definition, // otherwise, when calling an initialization function at runtime, symbol name conflicts will // cause the wrong struct to be instantiated. namespace { struct AddTableFunctions { NO_OPT_ATTRIBUTE void operator()() { %s } }; } // anonymous namespace namespace table_functions { // Each table function initialization module should have its own init flag static std::once_flag init_flag; static const char filename[] = __FILE__; template<const char *filename> void TableFunctionsFactory::init() { if (!g_enable_table_functions) { return; } if (!functions_exist() && !functions_exist_geo_column()) { UNREACHABLE(); return; } std::call_once(init_flag, AddTableFunctions{}); } extern "C" void init_table_functions() { TableFunctionsFactory::init<filename>(); } #if defined(_MSC_VER) #pragma optimize("", on) #endif // conditional check functions %s } // namespace table_functions ''' ##### content = content % ( sys.argv[0], '\n'.join(map(lambda x: '#include "%s"' % x, linker.BaseGenerateFiles.generated_header_files())), ' &&\n'.join(cpu_address_expressions), '\n '.join(call_methods(add_stmts)), ''.join(cond_fns)) if not (os.path.exists(output_filename) and \ content == linker.get_existing_file_content(output_filename)): with open(output_filename, 'w') as f: f.write(content)
true
d69c703aa9727f00104d864902f92555a7bca525
Python
feng-li/Distributed-Statistical-Computing
/book-examples/16-recommendation-systems/mapper2.py
UTF-8
676
3.46875
3
[]
no_license
#!/usr/bin/python3 from itertools import combinations import sys while True: try: line=sys.stdin.readline()9. if not line: break line=line.strip() values=line.split('|') #combinations(values,2) get all the combinations of 2 films for item1, item2 in combinations(values,2): #check if the items are empty if len(item1)>1 and len(item2)>1: item1,item2=item1.split('*'),item2.split('*') print((item1[0],item2[0]),end='') print('|',end='') print(item1[1]+','+item2[1]) #output of map2: (film1,film2)|(score of film1,score of film2) except: continue
true
0abec71f386b206a72983a6a5015a937ac1ffadd
Python
H-E-L-P/dmu_products
/dmu12/Q0_calc.py
UTF-8
3,614
2.671875
3
[ "MIT" ]
permissive
import numpy as np from astropy.table import Table from astropy import units as u from astropy.coordinates import SkyCoord, search_around_sky from IPython.display import clear_output from pymoc import MOC from pymoc.util.catalog import catalog_to_moc from mltier import Field, Q_0, parallel_process, describe, gen_rand_cat_inMOC ''' Finds Q0 (see Flueren et al 2012 for a definition of this parameter and the method used to calculate it) for the given catalogues as well as the optimum radius for crossmatching INPUTS ------------ cat1 - the radio catalogue cat2 - the masterlist cat1ra - column name of the ra column for cat1 cat1dec - column name of the dec column for cat1 cat2ra - column name of the ra column for cat2 cat2dec - column name of the dec column for cat2 cat2flux - column name of the flux of the sources in cat2 in the band that is being used for the crossmatching ra_down - the ra that defines the left side of a rectangle encompasing the area the crossmatching will be done in (this parameter is redundant if a moc is provided) ra_up - the ra that defines the right side of a rectangle encompasing the area the crossmatching will be done in (this parameter is redundant if a moc is provided) dec_down - the dec that defines the bottom side of a rectangle encompasing the area the crossmatching will be done in (this parameter is redundant if a moc is provided) dec_up - the dec that defines the upper side of a rectangle encompassing the area the crossmatching will be done in (this parameter is redundant if a moc is provided) radius_low - lower radius that Q0 is computed for in arcseconds. Value given must be >0 and if too small may cause the code to crash (would advise >=0.01) radius_high - upper radius that Q0 is computed forcin arcseconds steps - the number of intermediate radii that Q0 is computed for moc - a moc defining the area the crossmatching will be done in OUTPUTS ------------ Q0 - the maximum value of Q0 rads - the radius at which the maximum value of Q0 is found in arcseconds ''' def Q0_calc(cat1,cat2,cat1ra,cat1dec,cat2ra,cat2dec,cat2flux,ra_down,ra_up,dec_down,dec_up,radius_low,radius_up,steps,moc=None): field = Field(ra_down, ra_up, dec_down, dec_up, moc) radio = cat1 masterlist_data = cat2 radio = field.filter_catalogue(radio, colnames=(cat1ra,cat1dec)) masterlist = field.filter_catalogue(masterlist_data, colnames=(cat2ra,cat2dec)) coords_masterlist = SkyCoord(masterlist[cat2ra], masterlist[cat2dec], unit=(u.deg, u.deg), frame='icrs') coords_radio = SkyCoord(radio[cat1ra], radio[cat1dec], unit=(u.deg, u.deg), frame='icrs') n_iter = 10 rads = np.linspace(radius_low,radius_up,steps) q_0_comp_i = Q_0(coords_radio, coords_masterlist, field) q_0_rad_i = [] print('starting to find Q0. This will take a while') for radius in rads: print('finding Q0 with radius = {} arcseconds'.format(radius)) q_0_rad_aux = [] for i in range(n_iter): out = q_0_comp_i(radius=radius) q_0_rad_aux.append(out) q_0_rad_i.append(np.mean(q_0_rad_aux)) #print("{:7.5f} {:7.5f} +/- {:7.5f} [{:7.5f} {:7.5f}]".format(radius, # np.mean(q_0_rad_aux), np.std(q_0_rad_aux), # np.min(q_0_rad_aux), np.max(q_0_rad_aux))) mask = q_0_rad_i == max(q_0_rad_i) return(q_0_rad_i,rads)
true
49a7bb1d3539e8deb963f751178c7861f79b15fc
Python
danabaxia/stockAnalysis
/stockAnalysis/indicators.py
UTF-8
11,135
3
3
[ "MIT" ]
permissive
import robin_stocks as r import trading_algorithms as m import financial as f import pandas as pd import matplotlib.pyplot as plt import numpy as np import stockstats import time from datetime import datetime import csv import itertools #import talib ######################### #stock tikers grabbing #download data def get_stocks(): data = pd.DataFrame(f.requestAllStocks()) data.to_csv('stock_list.csv',index=True) #read from csv #return tikers that in nyse and nasdaq def clean_stocks(): data = pd.read_csv('stock_list.csv') stock_exchanges = ['NYSE','Nasdaq','NYSE Arca', 'Nasdaq Global Select','New York Stock Exchange', 'NASDAQ Capital Market','NYSE American', 'NASDAQ Global Market','NasdaqCM','NasdaqGM','NasdaqGS'] df = data[data['exchange'].isin(stock_exchanges)] #remove funds: name contains 'Fund' df = df.drop(df[df['name'].str.contains('Fund', na=False)].index) #check if the price can be requested df1 = df.copy() change = [] for index, row in df1.iterrows(): try: #result = f.getPricePercent(row['symbol'],30) result = f.getPriceCurrent(row['symbol']) print(row['symbol'],result) change.append(result) except Exception as exc: change.append(np.nan) df1.loc[:,'close'] = change #remove nan rows df2 = df1.dropna(how='any') #save to cvs df2.to_csv('stock_list_clean1.csv',index=False) def get_all_tickers(): tkers = [] data = pd.read_csv('stock_list_clean.csv') for index, row in data.iterrows(): if row['price'] > 5: #get rid of penny stock tkers.append(row['symbol']) return tkers ######################### #create binary data def get_binary(x): current_value = 0.1 current_state = 0 state = [] i = 0 for value in x: trend = value - current_value if trend > 0: current_state = 1 elif trend <= 0: current_state = 0 else: if i == 0: current_state = 0 else: current_state = state[-1] current_value = value state.append(current_state) i += 1 return state def get_binary_angle(x, angle=0.05): current_value = 0.1 current_state = 0 state = [] i = 0 for value in x: trend = (value - current_value)/(current_value+0.0001) #print(trend) if trend > angle: current_state = 1 elif trend <= -angle: current_state = 0 else: if i == 0: current_state = 0 else: current_state = state[-1] current_value = value state.append(current_state) i += 1 return state def get_binary_np(x): current_value = 0 current_state = 0 state = [] for value in x: if value >= current_value: current_state = 1 elif value < current_value: current_state = 0 current_value = value state.append(current_state) return np.array(state) def load_stock(tker,day): X = f.requestHistoryStockPriceByDay(tker,day) Data = pd.DataFrame(X) Data = pd.concat([Data['date'][::-1],Data['open'][::-1], Data['high'][::-1],Data['low'][::-1], Data['close'][::-1],Data['volume'][::-1], Data['adjClose'][::-1]],axis=1) Data.columns = ['date','open','high','low','close','volume','adjClose'] Data = Data.reset_index(drop=True) #inverse the index number return Data def load_stock_from(tker,end,day): start = f.calDatesFrom(end,day).strftime("%Y-%m-%d") X = f.requestHistoryStockPrice(tker, start, end) Data = pd.DataFrame(X) Data = pd.concat([Data['date'][::-1],Data['open'][::-1], Data['high'][::-1],Data['low'][::-1], Data['close'][::-1],Data['volume'][::-1], Data['adjClose'][::-1]],axis=1) Data.columns = ['date','Open','High','Low','Close','Volume','adjClose'] Data = Data.reset_index(drop=True) #inverse the index number return Data #load stock data from start day to end day: #fox example load_stock_from_to('NIO', '2020-04-30', '2020-08-01') def load_stock_from_to(tker,start,end): X = f.requestHistoryStockPrice(tker, start, end) Data = pd.DataFrame(X) Data = pd.concat([Data['date'][::-1],Data['open'][::-1], Data['high'][::-1],Data['low'][::-1], Data['close'][::-1],Data['volume'][::-1], Data['adjClose'][::-1]],axis=1) Data.columns = ['date','Open','High','Low','Close','Volume','adjClose'] Data = Data.reset_index(drop=True) #inverse the index number return Data def load_stock_30min(tker): X = f.request30minStockPrice(tker) Data = pd.DataFrame(X) Data = pd.concat([Data['date'][::-1],Data['open'][::-1], Data['high'][::-1],Data['low'][::-1], Data['close'][::-1],Data['volume'][::-1]],axis=1) Data.columns = ['date','Open','High','Low','Close','Volume'] Data = Data.reset_index(drop=True) #inverse the index number return Data def load_stock_15min(tker): X = f.request15minStockPrice(tker) Data = pd.DataFrame(X) Data = pd.concat([Data['date'][::-1],Data['open'][::-1], Data['high'][::-1],Data['low'][::-1], Data['close'][::-1],Data['volume'][::-1]],axis=1) Data.columns = ['date','Open','High','Low','Close','Volume'] Data = Data.reset_index(drop=True) #inverse the index number return Data def cal_stock(data): stock = stockstats.StockDataFrame.retype(data) stock['cross_kd'] = stock['kdjk'] - stock['kdjd'] #cross kd stock['macdh_b']=get_binary(stock['macdh']) #macdh binary stock['kdjd_b']=get_binary(stock['kdjd']) #kdjd binary stock['kdjk_b']=get_binary(stock['kdjk']) #kdjk binary stock['cross_kd_b']=get_binary(stock['cross_kd']) #cross kd binary return stock #kd rules: #current D < average D #last kd_cross < 0 and current kd_cross > 0 #current D up trend def kd_buy_long(stock): last_kd_cross = stock.iloc[-2]['cross_kd'] curr_kd_cross = stock.iloc[-1]['cross_kd'] curr_kdjd = stock.iloc[-1]['kdjd'] curr_kdjd_b = stock.iloc[-1]['kdjd_b'] kdjd_ave = stock['kdjd'].mean() if curr_kdjd < kdjd_ave and last_kd_cross < 0 and curr_kd_cross > 0 and curr_kdjd_b == 1: return True else: return False #ma rules: #30ma up trend def ma_buy_long(stock): last_ma30 = stock['close_30_sma'].iloc[-2] curr_ma30 = stock['close_30_sma'].iloc[-1] if curr_ma30 > last_ma30: return True else: return False #ma rules: #30ma up trend def ma_buy_short(stock): last_ma30 = stock['close_30_sma'].iloc[-2] curr_ma30 = stock['close_30_sma'].iloc[-1] if curr_ma30 > last_ma30: return True else: return False #macd rules: #last three macdh up trend #last macdh > 0 def macd_buy_long(stock): curr_macdh = stock.iloc[-1]['macdh'] win = [1,1,1] if list(stock['macdh_b'].tail(3)) == win and curr_macdh > - 0.5: return True else: return False #macd rules: #last three macdh up trend def macd_buy_short(stock): curr_macdh = stock.iloc[-1]['macdh'] win = [1,1,1] if list(stock['macdh_b'].tail(3)) == win and curr_macdh > - 0.1: return True else: return False #kd rules: #current D < average D #last kd_cross < 0 and current kd_cross > 0 #current D up trend def kd_buy_short(stock): last_kd_cross = stock.iloc[-2]['cross_kd'] curr_kd_cross = stock.iloc[-1]['cross_kd'] curr_kdjd = stock.iloc[-1]['kdjd'] curr_kdjd_b = stock.iloc[-1]['kdjd_b'] kdjd_ave = stock['kdjd'].mean() if curr_kdjd < kdjd_ave and last_kd_cross < 0 and curr_kd_cross > 0 and curr_kdjd_b == 1: print('d_ave',kdjd_ave) print('d',curr_kdjd) return True else: return False #this function returns stock tikers watch list def algo_watch(): watch = [] tikers = ['AAPL','MSFT','NIO'] for tker in get_all_tickers(): try: day = 100 data = load_stock(tker,day) stock = cal_stock(data) print(tker) if kd_buy_long(stock) == True and ma_buy_long(stock)==True and macd_buy_long(stock) == True: print('buy ',tker) watch.append(tker) except Exception as ex: print('error', ex) return watch #buy signal def buy_signal(stock): if kd_buy_short(stock) == True and macd_buy_short(stock) == True and ma_buy_short(stock): return True else: return False def watch_list(): watch = algo_watch() now = datetime.now().strftime("%d/%m/%Y %H:%M:%S") with open('watch_list.csv', 'a') as csvfile: writer = csv.writer(csvfile) writer.writerow([now,watch]) return watch def save_to_csv(tker,day): data = load_stock(tker,day) data.to_csv(tker+'.csv',index=True) # up and down trends example with winodw = 1 #1, 1, 1 up #0, 0, 0 down #1, 1, 0 up to down #0, 0, 1 down to up def up_trend(data, window=1): b = get_binary(data) #print(b) w = [1]* window if list(b[-window:]) == w: return True else: return False def down_trend(data, window=1): b = get_binary(data) w = [0]* window if list(b[-window:]) == w: return True else: return False def up_to_down_trend(data, left_window=2,right_window=1): assert left_window >= 0, 'windown size must be >= 0' assert right_window >= 0, 'windown size must be >= 0' b = get_binary_angle(data) #print(b) w = [1]*left_window + [0]*right_window #print(w) if list(b[-(left_window+right_window):]) == w: return True else: return False def down_to_up_trend(data, left_window=2, right_window=1): assert left_window >= 0, 'windown size must be >= 0' assert right_window >= 0, 'windown size must be >= 0' b = get_binary_angle(data) #print(b) w = [0]*left_window + [1]*right_window #print(w) if list(b[-(left_window+right_window):]) == w: return True else: return False #generator combinatons def parameteras_generator(*arg): pool = {'SMA_short': range(2,14), 'SMA_mid': range(15,29), 'SMA_long': range(30,91), 'rsi_low': range(2,20), 'rsi_hi': range(65,90), 'boll': range(5,15)} #check if the arguments in the pool assert all(name in pool for name in arg), 'arguments contain error(s)' output = [] for key in arg: output.append(pool[key]) return itertools.product(*output) if __name__ == "__main__": data = pd.DataFrame([5,2,1,0.5,5],columns=['A']) print(down_to_up_trend(data['A'])) print(up_to_down_trend(data['A']))
true
c2e8770c869d9071e73cf71b9fd3fadbc5a03e14
Python
jiguifang904/DSSM
/layers/activation.py
UTF-8
1,045
2.84375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Sep 30 14:34:53 2021 @author: jiguifang """ # 激活函数 import torch.nn as nn class Identity(nn.Module): def __init__(self, **kwargs): super(Identity, self).__init__() def forword(self, X): return X def activation_layer(act_name, hidden_size=None, dice_dim=2): if isinstance(act_name, str): if act_name.lower() == 'sigmoid': act_layer = nn.Sigmoid() elif act_name.lower() == 'linear': act_layer = Identity() elif act_name.lower() == 'relu': act_layer = nn.ReLU(inplace=True) elif act_name.lower() == 'dice': assert dice_dim # act_layer = Dice(hidden_size, dice_dim) elif act_name.lower() == 'prelu': act_layer = nn.PReLU() elif issubclass(act_name, nn.Module): act_layer = act_name() else: raise NotImplementedError return act_layer
true
3c2c4fc5bad7f323eb70e01656e0bb6eec30166a
Python
PanMaster13/Python-Programming
/Week 9/Sample Files/Sample 7.py
UTF-8
158
2.796875
3
[]
no_license
#Sample7.py import random def randomLine(fname): lines = open(fname).read().splitlines() return random.choice(lines) print(randomLine("write.txt"))
true
9e8e1dbd634accbe01259d72c25664cfee8ad9db
Python
Vladislav29/neural-lab
/Lab2/neural.py
UTF-8
1,055
3.09375
3
[]
no_license
import math class neural: n = 1 def __init__(self): self.w = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] def point(self, a, b): x = [] l = (float(abs(b)) + float(abs(2 * b - a))) / float(40) e = float(2 * b - a) while float(b) < e: b += l x.append(b) return x def func_activation(self, t): return math.exp(t - 1) def etalon(self, x): y = [] for i in range(0, 20): b = self.func_activation(x[i]) y.append(b) return y def hoff(self, x, b, j, k): for i in range(j, k): self.w[i] += self.n * x[i] * b def window(self, x, j, k): window = 0 for i in range(j, k): window += x[i] * self.w[i] return window def check_error(self, x, h): return h - x != 0 def net(self, w, x): for i in range(0, 10): net = w[i] * x[i] + w[21] return net def get_w(self): return self.w
true
95a336838d5e38dd59cfdb6a416e7362d634a6c4
Python
w3cp/coding
/python/python-3.5.1/5-data-structures/6-del.py
UTF-8
129
3.109375
3
[]
no_license
a = [-1, 1, 66.25, 333, 333, 1234.5] del a[0] a del a[2:4] a del a[:] a # del can also be used to delete entire variables: del a
true
f44f3012420dcb13edd1a979d6ceccf58e9fdd90
Python
clovisdanielcosta/python-dio
/aula3_if_elif_else.py
UTF-8
533
4.4375
4
[ "MIT" ]
permissive
a = int(input('Primeiro valor: ')) b = int(input('Segundo valor: ')) if a > b: print('O maior valor é: {}'.format(a)) else: print('O maior valor é: {}'.format(b)) print('Fim do programa') #Usando Elif (Else If) a = int(input('Primeiro valor: ')) b = int(input('Segundo valor: ')) c = int(input('Terceiro valor: ')) if a > b and a > c: print('O maior valor é: {}'.format(a)) elif b > a and b > c: print('O maior valor é: {}'.format(b)) else: print('O maior valor é: {}'.format(c)) print('Fim do programa')
true
36f9d0c0b52b40115bb870c3fc56b4b7a10f70fc
Python
ryankupyn/eulerprobs
/euler12/main.py
UTF-8
333
3.34375
3
[]
no_license
triangnum = 0 adder = 1 divisors = 0 while divisors < 500: divisors = 0 triangnum += adder adder += 1 for divider in range(1, triangnum/2): if triangnum % divider == 0: divisors += 1 divisors += 1 if divisors > 250: print(triangnum) if divisors >= 500: print triangnum
true
62596ab283b592cccb1b4b9f5a91d74bd02ad365
Python
Nilanshrajput/SyferText
/syfertext/pointers/span_pointer.py
UTF-8
2,660
2.75
3
[ "Apache-2.0" ]
permissive
from syft.generic.pointers.object_pointer import ObjectPointer from syft.workers.base import BaseWorker import syft as sy from typing import List from typing import Union class SpanPointer(ObjectPointer): """An Object Pointer that points to the Span Object at remote location""" def __init__( self, location: BaseWorker = None, id_at_location: Union[str, int] = None, owner: BaseWorker = None, id: Union[str, int] = None, ): """Create a Span Pointer from `location` where the `Span` object resides and `id_at_location`, the id of the `Span` object at that location. Args: location (BaseWorker): the worker where the `Span` object resides that this SpanPointer will point to. id_at_location (int or str): the id of the `Span` object at the `location` worker. owner (BaseWorker): the owner of the this object ie. `SpanPointer` Returns: A `SpanPointer` object """ super(SpanPointer, self).__init__( location=location, id_at_location=id_at_location, owner=owner, id=id, garbage_collect_data=True, # Always True ) def __len__(self): # Send the command length = self.owner.send_command( recipient=self.location, cmd_name="__len__", target=self, args_=tuple(), kwargs_={} ) return length def __getitem__(self, item: Union[slice, int]): # if item is int, so we are trying to access to token assert isinstance( item, slice ), "You are not authorised to access a `Token` from a `SpanPointer`" # Send the command obj_id = self.owner.send_command( recipient=self.location, cmd_name="__getitem__", target=self, args_=(item,), kwargs_={} ) # we create a SpanPointer from the obj_id span = SpanPointer(location=self.location, id_at_location=obj_id, owner=self.owner) return span def as_doc(self): """Create a `Doc` object with a copy of the `Span`'s tokens. Returns: The new `Doc` copy (or id to `Doc` object) of the span. """ # Avoid circular imports from .doc_pointer import DocPointer # Send the command doc_id = self.owner.send_command( recipient=self.location, cmd_name="as_doc", target=self, args_=tuple(), kwargs_={} ) # Create a DocPointer from doc_id doc = DocPointer(location=self.location, id_at_location=doc_id, owner=sy.local_worker) return doc
true
33b6c6f27bcc2cea48c3537844e64223486a258d
Python
XyK0907/for_work
/LeetCode/Stack/20_Stack_valid_parentheses.py
UTF-8
1,928
3.171875
3
[]
no_license
from pythonds.basic import Stack class Solution(object): def isValid_stack(self, s): #导入栈模块 """ :type s: str :rtype: bool """ opens = '([{' closes = ')]}' parstack = Stack() balance = True for each in s: if each in '([{': parstack.push(each) else: if parstack.isEmpty(): balance = False else: top = parstack.pop() if opens.index(top) != closes.index(each): balance = False if balance and parstack.isEmpty(): return True else: return False def isValid(self, s): #没有栈模块 """ :type s: str :rtype: bool """ # opens = '([{' # closes = ')]}' pairs = {'(':')', '[':']', '{':'}'} parstack = [] for each in s: if each in '([{': parstack.append(each) else: if len(parstack) == 0: return False else: # if opens.index(top) != closes.index(each): if pairs[parstack.pop()] != each: return False return len(parstack) == 0 def isValid_similar(self, s): """ time O(n) space O(n) :param s: :return: """ stack = [] dict = {"]":"[", "}":"{", ")":"("} for char in s: if char in dict.values(): stack.append(char) elif char in dict.keys(): if stack == [] or dict[char] != stack.pop(): return False else: return False return stack == [] if __name__=="__main__": solution = Solution() print(solution.isValid("{[]}"))
true
c6ca73895fcc0314d19c3713f2b02fcdbb29dfe1
Python
JiahongHe/WeCare
/Pulse.py
UTF-8
876
2.921875
3
[]
no_license
import mraa import time import math #Initialization led_pin_number=6 led = mraa.Gpio(led_pin_number) led.dir(mraa.DIR_OUT) last_signal = [0] current_signal = [0] last_time = [0] current_time = [0] BPM = [0] #Set heart rate test function def test_pulse(): #Read raw data from pulse sensor Pulse = float(PulSensor.read()) current_signal[0] = Pulse #Calculate BPM (Beat per minute) if current_signal[0]>550 and last_signal[0] <550: current_time[0] = int(time.time()*1000) BPM[0] = 60000/(current_time[0]-last_time[0]) last_time[0] = current_time[0] last_signal[0] = current_signal[0] if Pulse > 550: led.write(1) else: led.write(0) time.sleep(0.02) print(BPM[0]) #set Pulse senor PulSensor = mraa.Aio(1) try: while(1): test_pulse() except KeyboardInterrupt: led.write(0) exit
true
7a2e8e0aca37985458dc15e106d25b56cc4af93f
Python
ykumards/Algorithms
/arrays/ZeroMatrix.py
UTF-8
738
3.921875
4
[ "WTFPL" ]
permissive
def clearZeros(Mat, row, col): """ Given a matrix and the row and column index This will clear out all the elements in the row and column. Returns the matrix in the end """ M = len(Mat) N = len(Mat[0]) Mat[row][:] = [0 for _ in xrange(N)] for i in xrange(M): Mat[i][col] = 0 return Mat if __name__ == "__main__": zero_arr = [] Mat = [[1,2,0], [4,5,6],[0,2,3]], print "Original Matrix: " print Mat M = len(Mat) N = len(Mat[0]) for i in xrange(M): for j in xrange(N): if Mat[i][j] == 0: zero_arr.append((i,j)) for idx in zero_arr: Mat = clearZeros(Mat, idx[0], idx[1]) print "Cleared Matrix: ", print Mat
true
22db792793b36e0fa61ba1f92ea32ab8d69f0ea3
Python
abhishektayal/casebook
/parse2.py
UTF-8
4,261
2.5625
3
[]
no_license
import cass import re import time from threading import Thread from Queue import Queue from urllib import urlopen q = Queue() workers = [] dict_photo_url={} def user_frnd_post(name): #print "in function" file = open('file.txt', 'r') for line in file: #print "line is:",line match = line.split(' ', 1) #print match[0],"------->",match[1] if match: if not match[0] in 'photo': #print"in not photo- extracted:",match[0] if match[0] in 'user': #print "in user" stat= {} MATCH= match[1].split(' ',1) NEW=MATCH[1].split('"',4) #print NEW password= NEW[3] stat['actual_name']=NEW[1] stat['password']=password #print 'actual name is:',NEW[1] #print 'password is:',password #print 'user name is:',MATCH[0] cass.save_user(MATCH[0],stat) if match[0] in 'wallpost': stat1 ={} #print 'in wallpost(), val is ',val MATCH= match[1].split(' ',1) #print 'user is',MATCH[0] post= MATCH[1].split('\n',1) stat1['body']=post[0][1:-1] #print 'body is:',stat1['body'] cass.save_post(MATCH[0],stat1) else: MATCH= match[0].split(' ',1) cass.add_friend(match[0],match[1][0:-1]) def downloader(worker_number): #print "starting thread",worker_number while True: url = q.get() #print q.qsize() data = urlopen(url).read() data_uri = data.encode("base64").replace("\n", "") dict_photo_url[url]=data_uri #print "I am worker ",worker_number,"- downloaded image from url :" #print"data is :",dict_photo_url[url] q.task_done() def forking(num): t_pool = Thread(target=downloader(1)) t.daemon=True t_pool.start() def photo_main(name): #print "111111111" file = open('file.txt', 'r') file2 = open('file.txt', 'r') #print 'in photo()' for line in file: #print "line is:",line match = line.split(' ', 1) if match[0] in 'photo': MATCH= match[1].split(' ',1) photo_url=MATCH[1].split('\n',1) #print "url is:",photo_url[0] if photo_url[0] in dict_photo_url.keys(): #print"found url in dict no need to download" continue else: dict_photo_url[photo_url[0]]='url' #print"sending to worker, q length is",q.qsize() q.put(photo_url[0]) q.join() #q.join() #print "before going in saving photo................." for line in file2: match = line.split(' ', 1) #print "For main aa gaya....." if match[0] in 'photo': #print "Aaja mamu....." MATCH= match[1].split(' ',1) photo_url=MATCH[1].split('\n',1) #print 'url is:',MATCH[0], dict_photo_url[photo_url[0]] cass.save_photo(MATCH[0], dict_photo_url[photo_url[0]] ,photo_url[0] ) def main(): print time.asctime() u = urlopen('http://enl.usc.edu/~cs694/casebook/config.txt') FILE_local = open('file.txt', 'w') FILE_local.write(u.read()) FILE_local.close() t1=Thread(target=user_frnd_post,args=("thread 1",)) t2=Thread(target=photo_main,args=("thread 2",)) t3=Thread(target=forking,args=("thread 3",)) t3.start() #print"there!!!!!!!!!!" t1.start() t2.start() #print workers #print dict_photo_url.keys() #user_frnd_post(f) #print"i am here" t1.join() #print "in b/w" t2.join() t3.join() print time.asctime() return if __name__ == "__main__": main()
true
ebed81e100b25012e1c6808b886763d9fc26c525
Python
wmpg/WesternMeteorPyLib
/wmpl/Utils/OptimizePointingsFOV.py
UTF-8
15,219
2.734375
3
[ "MIT" ]
permissive
""" Given the locations and pointings of camera, optimize their pointings so they have a maximum overlap at the given range of heights. """ from __future__ import print_function, division, absolute_import import copy import datetime import multiprocessing import numpy as np import matplotlib.pyplot as plt import scipy.optimize from wmpl.TrajSim.ShowerSim import initStationList, plotStationFovs from wmpl.Utils.TrajConversions import datetime2JD from wmpl.Utils.Math import estimateHullOverlapRatio from wmpl.Utils.PyDomainParallelizer import domainParallelizer # def _volumeRun(pointings, station_list, fixed_cameras, jd, max_height, min_height, niter=1): # """ Given the ooptimization parameters, calculate the common volume. The functions returns a negative # value for the volume because the minimum is being searched. # """ # # Pointings index # k = 0 # # Set the estimated FOV centre for moving cameras # for i, stat in enumerate(station_list): # if not fixed_cameras[i]: # # Set the azimuth # stat.azim_centre = pointings[k] # k += 1 # # Set the elevation # stat.elev_centre = pointings[k] # k += 1 # volumes = [] # # Calculate the mean of several common volume runs # for i in range(niter): # vol = stationsCommonVolume(station_list, fixed_cameras, jd, max_height, min_height) # volumes.append(vol) # vol_mean = np.mean(volumes) # print() # print(np.degrees(pointings)) # print(vol_mean) # return -vol_mean def stationsCommonVolume(station_list, fixed_cameras, jd, max_height, min_height): """ Calculates the common volume between the stations FOVs. """ common_volume = 0 # Go through all fixed stations for i, stat_fixed in enumerate(station_list): # Check if this is the fixed camera if fixed_cameras[i]: # Go through all non-fixed stations for j, stat_moving in enumerate(station_list): # Check if this is the moving camera if not fixed_cameras[j]: ### CALCULATE ECI COORDINATES OF FIXED STATION ### ########################################################################################## # Get ECI coordinates of the FOV at the given maximum height fixed_top_eci_corners = stat_fixed.fovCornersToECI(jd, max_height) # Get ECI coordinates of the FOV at the given minimum height fixed_bottom_eci_corners = stat_fixed.fovCornersToECI(jd, min_height) fixed_eci_corners = np.array(fixed_top_eci_corners + fixed_bottom_eci_corners) ########################################################################################## ### CALCULATE ECI COORDINATES OF MOVING STATION ### ########################################################################################## # Get ECI coordinates of the FOV at the given maximum height moving_top_eci_corners = stat_moving.fovCornersToECI(jd, max_height) # Get ECI coordinates of the FOV at the given minimum height moving_bottom_eci_corners = stat_moving.fovCornersToECI(jd, min_height) moving_eci_corners = np.array(moving_top_eci_corners + moving_bottom_eci_corners) ########################################################################################## # Calculate the common volume between the fixed and the moving camera common_v = estimateHullOverlapRatio(fixed_eci_corners, moving_eci_corners, volume=True, niter=1000) common_volume += common_v return common_volume # def optimizePointingsFOV(station_list, fixed_cameras, min_height, max_height): # """ Optimize the pointings of the cameras by finding the pointings where the common volume of the sky at # given height is maximized. It is assumed that one of the cameras are fixes, while all other can be # moved. # """ # # Check that at least one camera is fixed # if not (True in fixed_cameras): # print("""At least one camera must be fixed! Check the fixed_cameras variable, at least one entry # there should be True.""") # return station_list # # Check that at least one camera can be moved # if not (False in fixed_cameras): # print("""At least one camera must be non-fixed! Check the fixed_cameras variable, at least one entry # there should be False.""") # return station_list # # Use the current Julian date as the reference time (this is just used to convert the coordinated to ECI, # # it has no operational importance whatsoever). # jd = datetime2JD(datetime.datetime.now()) # # Construct the initial parameters list # p0 = np.array([[stat.azim_centre, stat.elev_centre] for (i, stat) in enumerate(station_list) \ # if not fixed_cameras[i]]).ravel() # # Set the bounds for every parameter (azimuth from 0 to 2pi, elevation from 0 to pi) # bounds = [[0, np.pi] if i%2 else [0, 2*np.pi] for i in range(len(p0))] # # Find the pointings with the largest common volume # res = scipy.optimize.minimize(_volumeRun, p0, bounds=bounds, args=(station_list, fixed_cameras, jd, max_height, min_height)) # print(res) # print(np.degrees(res.x)) def _computePointing(azim_centre_orig, elev_centre_orig, stat_moving, i, jd, \ d_range, elev_ind, d_elev, azim_ind, d_azim): # Calculate the azimuth of centre azim = (azim_centre_orig + d_azim)%(2*np.pi) # Calculate the elevation of the centre elev = elev_centre_orig + d_elev if elev > np.pi/2: elev = (np.pi/2 - elev)%(np.pi/2) if elev < 0: elev = np.abs(elev) # Set the new centre to the station stat_moving.azim_centre = azim stat_moving.elev_centre = elev # Assign the changed parameter to the moving camera station_list[i] = stat_moving # Estimate the volume only for this moving camera fix_cam = [True]*len(station_list) fix_cam[i] = False # Estimate the intersection volume vol = stationsCommonVolume(station_list, fix_cam, jd, max_height, min_height) # Print status messages print() print('Azim: {:d}/{:d}, elev: {:d}/{:d}'.format(azim_ind + 1, \ len(d_range), elev_ind + 1, len(d_range))) print('Azim {:.2f} elev {:.2f} vol {:e}'.format(np.degrees(azim), np.degrees(elev), vol)) return [azim, elev, vol] def explorePointings(station_list, fixed_cameras, min_height, max_height, moving_ranges, steps, parallel_jobs = 1): """ Given the list of cameras, a range of heights and a range of possible movements for the camera, construct a map of volume overlaps for each camera position. The map will be saves as an image. Arguments: station_list: [list] A list of SimStation objects. fixed_cameras: [list] A list of bools indiciating if the camera is fixed or it can be moved to optimize the overlap. min_height: [float] Minimum height of the FOV polyhedron (meters). max_height: [float] Maximum height of the FOV polyhedron (meters). moving_ranges: [list] A list of possible movement for each non-fixed camera (degrees). steps: [int] Steps to take inside the moving range. The map will thus have a resolution of range/steps. parallel_jobs: [int] number of parallel jobs. Default: 1 Return: None """ station_list = copy.deepcopy(station_list) k = 0 # Use the current Julian date as the reference time (this is just used to convert the coordinated to ECI, # it has no operational importance whatsoever). jd = datetime2JD(datetime.datetime.now()) # Go through all moving cameras for i, stat_moving in enumerate(station_list): if not fixed_cameras[i]: # Original centre pointing azim_centre_orig = stat_moving.azim_centre elev_centre_orig = stat_moving.elev_centre # Get the range of movements for this camera mv_range = np.radians(moving_ranges[k]) k += 1 volume_results = [] d_range = np.linspace(-mv_range/2.0, +mv_range/2, steps) # Make a grid of movements in list of parameters that will be passed to each # _computePointing parallel instance pointings = [] for elev_ind, d_elev in enumerate(d_range): for azim_ind, d_azim in enumerate(d_range): pointings.append([azim_centre_orig, elev_centre_orig, stat_moving, i, jd, \ d_range, elev_ind, d_elev, azim_ind, d_azim]) print() print("-> Pointings to compute: {:d}".format(len(pointings))) # run parallel jobs to compute pointings volume_results = domainParallelizer(pointings, _computePointing, cores=parallel_jobs) print() print("-> Pointings computed: {:d}".format(len(volume_results))) volume_results = np.array(volume_results) azims = volume_results[:, 0].reshape(len(d_range), len(d_range)) elevs = volume_results[:, 1].reshape(len(d_range), len(d_range)) # Select only the volumes vols = volume_results[:, 2].reshape(len(d_range), len(d_range)) # Find the index of the largest volume vol_max = np.unravel_index(vols.argmax(), vols.shape) # Print the largest overlapping volume print('MAX OVERLAP:') print('Azim {:.2f} elev {:.2f} vol {:e}'.format(np.degrees(azims[vol_max]), np.degrees(elevs[vol_max]), vols[vol_max])) plt.figure() plt.imshow(vols/1e9, extent=np.degrees([azim_centre_orig + np.min(d_range), azim_centre_orig + np.max(d_range), elev_centre_orig + np.max(d_range), \ elev_centre_orig + np.min(d_range)])) plt.gca().invert_yaxis() plt.xlabel('Azimuth (deg)') plt.ylabel('Elevation (deg)') plt.colorbar(label='Common volume (km^3)') plt.savefig('fov_map_' + stat_moving.station_id + '_ht_range_' + str(min_height) + '_' + str(max_height) + '.png', dpi=300) #plt.show() plt.clf() plt.close() if __name__ == "__main__": ### STATION PARAMETERS ### ########################################################################################################## # Number of stations in total n_stations = 2 # Geographical coordinates of stations (lat, lon, elev, station_id) in degrees and meters stations_geo = [ [43.26420, -80.77209, 329.0, 'tavis'], # Tavis [43.19279, -81.31565, 324.0, 'elgin'] # Elgin ] ### CAMO WIDE ### ################# # Azimuths of centre of FOVs (degrees) azim_fovs = [326.75, 344.34] # Elevations of centre of FOVs (degrees) elev_fovs = [45.62, 44.6] # # Azimuths of centre of FOVs (degrees) # azim_fovs = [338.823, 1.891] # # Elevations of centre of FOVs (degrees) # elev_fovs = [45.104, 46.344] # Cameras FOV widths (degrees) fov_widths = [33.9, 33.6] # Cameras FOV heights (degrees) fov_heights = [33.9, 33.6] # If the camera FOV is fixed, it should have True at its index, and False if it can be moved to optimize # the overlap fixed_cameras = [True, False] # Height range to optimize for (kilometers) min_height = 70 max_height = 120 ################# # ### CAMO MIRRORS ### # ################# # # Azimuths of centre of FOVs (degrees) # azim_fovs = [335.29, 358.3] # # Elevations of centre of FOVs (degrees) # elev_fovs = [43.912, 46.643] # # Cameras FOV widths (degrees) # fov_widths = [40.0, 39.0] # # Cameras FOV heights (degrees) # fov_heights = [40.0, 39.0] # # If the camera FOV is fixed, it should have True at its index, and False if it can be moved to optimize # # the overlap # fixed_cameras = [False, True] # # Height range to optimize for (kilometers) # min_height = 70 # max_height = 120 # ################# # ### EMCCD ### # ################# # # Azimuths of centre of FOVs (degrees) # azim_fovs = [315, 16.75] # # Elevations of centre of FOVs (degrees) # elev_fovs = [63.5, 65.5] # # Cameras FOV widths (degrees) # fov_widths = [14.5, 14.5] # # Cameras FOV heights (degrees) # fov_heights = [14.5, 14.5] # # If the camera FOV is fixed, it should have True at its index, and False if it can be moved to optimize # # the overlap # fixed_cameras = [False, True] # # Height range to optimize for (kilometers) # min_height = 80 # max_height = 100 # ################# # ### ROMULAN ### # ################# # # Azimuths of centre of FOVs (degrees) # azim_fovs = [327.0, 4.0] # # Elevations of centre of FOVs (degrees) # elev_fovs = [56.5, 60.75] # # Cameras FOV widths (degrees) # fov_widths = [29.5, 29.5] # # Cameras FOV heights (degrees) # fov_heights = [23.77, 23.77] # # If the camera FOV is fixed, it should have True at its index, and False if it can be moved to optimize # # the overlap # fixed_cameras = [False, True] # # Height range to optimize for (kilometers) # min_height = 70 # max_height = 120 # ################# # How much each non-fixed camera can be moved on each axis (degrees) moving_ranges = [40] # Steps of movement to explore steps = 21 # How many parallel jobs computing pointings parallel_jobs = multiprocessing.cpu_count() # use all available CPUs ########################################################################################################## # Calculate heights in meters min_height *= 1000 max_height *= 1000 # Init stations data to SimStation objects station_list = initStationList(stations_geo, azim_fovs, elev_fovs, fov_widths, fov_heights) # Show current FOV overlap plotStationFovs(station_list, datetime2JD(datetime.datetime.now()), min_height, max_height) # Do an assessment for the whole range of given rights explorePointings(station_list, fixed_cameras, min_height, max_height, moving_ranges, steps, parallel_jobs) # # Do the anaysis for ranges of heights # # Height step in kilometers # height_step = 5 # height_step *= 1000 # for ht_min in range(min_height, max_height - height_step + 1, height_step): # print(ht_min, ht_min + height_step) # # Make a map of pointings and common volumes for all given steps in the moving range # explorePointings(station_list, fixed_cameras, ht_min, ht_min + height_step, moving_ranges, steps)
true
58312fc909e172788f4cfcfeccb8177b8994dcd6
Python
MReneBrown/Python-Course
/Sorted_Function.py
UTF-8
516
3.484375
3
[]
no_license
sales_prices = [ 100, 83, 220, 40, 100, 400, 10, 1, 3 ] # sales_prices.sort() # print(sales_prices) # [1, 3, 10, 40, 83, 100, 100, 220, 400] # sorted_list = sales_prices.sort() # print(sorted_list) # None # sorted_list = sorted(sales_prices) # print(sorted_list) # print(sales_prices) # [1, 3, 10, 40, 83, 100, 100, 220, 400] # [100, 83, 220, 40, 100, 400, 10, 1, 3] sorted_list = sorted(sales_prices, reverse=True) print(sorted_list) # [400, 220, 100, 100, 83, 40, 10, 3, 1]
true
6f9a6d82248fb0522753330c9ce7c7bc9ceb3412
Python
rlawjdghks7/HistoDram
/utils/Logger.py
UTF-8
2,770
2.515625
3
[]
no_license
""" Implements Logger class for tensorflow experiments. """ import tensorflow as tf import os class Logger(object): def __init__(self, log_dir='/home/aamomeni/research/momena/tests/experiments', sess=None, summary_ops={}, var_list=[], global_step=None, eval_ops={}, n_verbose=10): self.session = sess # folders self.log_dir = log_dir self.checkpoint_path, self.summary_path = self.create_directories(log_dir) # file writers self.writers = { 'train': tf.summary.FileWriter(os.path.join(self.summary_path,'train'),self.session.graph, flush_secs= 120), 'test': tf.summary.FileWriter(os.path.join(self.summary_path,'test')), 'val': tf.summary.FileWriter(os.path.join(self.summary_path,'val')) } # saver self.global_step = global_step if var_list == []: self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=1) else: self.saver = tf.train.Saver(var_list, keep_checkpoint_every_n_hours=1) # summaries self.summary_ops = summary_ops self.eval_ops = eval_ops self.merged_op = tf.summary.merge_all() # step counter self.step = 0 self.n_verbose = n_verbose def log(self, writer_id, feed_dict): """ Logs performance using either 'train', 'test' or 'val' writer""" summaries = self.session.run(self.merged_op, feed_dict=feed_dict) self.writers[writer_id].add_summary(summaries,self.step) # print ('\n------ Step %s ------' % (self.step)) # for key in self.eval_ops.keys(): # val = self.session.run(self.eval_ops[key],feed_dict) # print ('%s \t %s' %(key,val)) def create_directories(self, log_dir): checkpoint_path = os.path.join(log_dir, 'checkpoints') summary_path = os.path.join(log_dir, 'summaries') if not os.path.exists(log_dir): os.mkdir(log_dir) os.mkdir(checkpoint_path) os.mkdir(summary_path) print ('\n\nLogging to <<%s>>.\n\n' % log_dir ) return checkpoint_path, summary_path def save(self): self.saver.save(self.session, os.path.join(self.checkpoint_path,'checkpoint'), global_step=self.global_step) def restore(self, checkpoint_dir): ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: print (ckpt) self.saver.restore(self.session, ckpt.model_checkpoint_path)
true
51b504e622b5f91b5997b887108e9e8e3972fddb
Python
yuliasimanenko/Python
/lab5/functions.py
UTF-8
1,109
3.0625
3
[]
no_license
import requests import random from lxml import html def get_names(count): try: with open('names/names.txt', 'r', encoding="utf-8") as file_open: list_of_words = file_open.read().split("\n") random.shuffle(list_of_words) return list_of_words[:count] except FileNotFoundError: print("Can't open the file. File not found") return -1 except PermissionError as e: print(f"Permission denied. You have no rights. {e}") return -1 except Exception as e: print(f"Can't open the file with {e}.") return -1 def choose_name(list_names): return random.choice(list_names) def get_img_link(name): headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:45.0) Gecko/20100101 Firefox/45.0'} url = f'https://yandex.ru/images/search?text={name}' r = requests.get(url, headers=headers) tree = html.fromstring(r.text.encode('utf-8')) list_of_img = ['http:' + a for a in tree.xpath("//img[@class='serp-item__thumb justifier__thumb']/@src")] return random.choice(list_of_img)
true
f20813a0df43b91d2b8479b961e8ebbccbff5a59
Python
ZoltanMG/holbertonschool-higher_level_programming
/0x0A-python-inheritance/1-my_list.py
UTF-8
283
3.921875
4
[]
no_license
#!/usr/bin/python3 """ class MyList that inherits from list """ class MyList(list): """ My subclass """ def print_sorted(self): """ Print sorted """ new_list = MyList() for i in self: new_list.append(i) print(sorted(new_list))
true
dcf5afae43e6ebfa72c15f3eee329d56952ceb4c
Python
nish235/PythonPrograms
/Nov09/02String1st2Last2.py
UTF-8
123
3.171875
3
[]
no_license
def string(st1): if len(st1) < 2: return '' return st1[0:2] + st1[-2:] print(string('Nishant'))
true
49d1f591fd2ca2620b019497bcce9b5fb3eaa42f
Python
ECMora/SoundLab
/sound_lab_core/Segmentation/SegmentManager.py
UTF-8
15,477
2.609375
3
[]
no_license
from PyQt4.QtCore import QObject, pyqtSignal import numpy as np from duetto.audio_signals import AudioSignal from sound_lab_core.Segmentation.Adapters import ManualDetectorAdapter from sound_lab_core.Clasification.Adapters import ManualClassifierAdapter from sound_lab_core.Elements.OneDimensionalElements.OneDimensionalElement import OneDimensionalElement from utils.Utils import SegmentationThread, MeasurementThread class SegmentManager(QObject): """ Manage the parameter measurement ad classification over a group of segments. Provide a table interface for segments parameter measurement and classification. Allow to save on db the measurements made on segments. """ # region SIGNALS # signal raised when a parameter is measured on a segment # raise the segment index and the list of visual items associated segmentVisualItemAdded = pyqtSignal(int, list) # signal raised when the segmentation has finished segmentationFinished = pyqtSignal() # signal raised when the measurement of parameters and classification has finished measurementsFinished = pyqtSignal() # signal raised while detection is been made. Raise the percent of detection progress. detectionProgressChanged = pyqtSignal(int) # endregion def __init__(self): QObject.__init__(self) # the classifier object that would be used on segments classification self._classifier = None # the detector adapter object that would be used on segments detection self._detector = None # the parameter measurer list self._measurerList = [] # the detected elements self._elements = [] # the segmentation_thread to perform the segmentation with self.segmentation_thread = SegmentationThread(parent=None) self.segmentation_thread.finished.connect(self._get_elements) # the thread to perform the measurements with self.measurement_thread = MeasurementThread(segment_manager=self) self.measurement_thread.finished.connect(lambda: self.measurementsFinished.emit()) # the signal in which would be detected the elements self._signal = None # stores the measured parameters of the detected elements # has dimensions len(elements) * len(measurerList) self.measuredParameters = np.array([]) # stores the classification data that are present in the table of parameters # list of ClassificationData self.classificationTableData = [] # region Properties @property def elements(self): return self._elements @elements.setter def elements(self, elements_list): """ :param elements_list: Accepts a list of One dimensional elements or a list of tuples :return: """ self._elements = elements_list self.recompute_element_table() @property def parameters(self): return self._measurerList @parameters.setter def parameters(self, new_parameter_measurers): self._measurerList = new_parameter_measurers self.recompute_element_table() self.measure_parameters() self.measurementsFinished.emit() def recompute_element_table(self): """ Recompute the shape of the elements parameter table when a change is made on the amount of elements or the amount of measured parameters :return: """ # clear the parameters rows, cols = len(self.elements), len(self.parameters) self.measuredParameters = np.zeros(rows * cols).reshape((rows, cols)) self.classificationTableData = [None for _ in self._elements] self.measurementsFinished.emit() @property def classificationColumnNames(self): """ The names of the columns of classification data :return: """ return [self.tr(u"Family"), self.tr(u"Genera"), self.tr(u"Specie")] @property def parameterColumnNames(self): """ The names of the columns of parameters. :return: """ return [x.getName() for x in self.parameters] @property def columnNames(self): return self.parameterColumnNames + self.classificationColumnNames @property def detector_adapter(self): return self._detector if self._detector is not None else ManualDetectorAdapter() @detector_adapter.setter def detector_adapter(self, value): self._detector = value @property def signal(self): return self._signal @signal.setter def signal(self, new_signal): """ Modify and update the internal variables that uses the signal. :param new_signal: the new AudioSignal :raise Exception: If signal is not of type AudioSignal """ if new_signal is None or not isinstance(new_signal, AudioSignal): raise Exception("Invalid assignation value. Must be of type AudioSignal") self._signal = new_signal @property def classifier_adapter(self): return self._classifier if self._classifier is not None else ManualClassifierAdapter() @classifier_adapter.setter def classifier_adapter(self, classifier): self._classifier = classifier @property def rowCount(self): return len(self.elements) @property def columnCount(self): return len(self.parameters) + len(self.classificationColumnNames) # endregion # region Classification def get_segment_classification(self, segment_index): """ Returns the classification value of the segment at index segment_index :param segment_index: the index of the segment to ask for classification value :return: """ if not 0 <= segment_index < len(self.elements): raise Exception("Index out of range") return self.classificationTableData[segment_index] def set_manual_elements_classification(self, indexes_list, classification): """ Set the elements classification manually. :param indexes_list: the indexes of classified elements :param classification: the value for classification Data. the values are applied to all the elements that have indexes in indexes_list. :return: """ indexes_list = [index for index in indexes_list if 0 <= index < self.rowCount] for i in indexes_list: self.update_elements_visual_items(self.classifier_adapter, i, classification) self.classificationTableData[i] = classification self.measurementsFinished.emit() def classify_elements(self): """ Execute the automatic classification for all the detected elements with the current selected classifier. :return: """ # get the classification parameters and classifier classifier = self.classifier_adapter.get_instance() classifier.parameters = self.parameters # classify each element for i in xrange(len(self.elements)): # parameter adapter, value parameter_vector = [self.measuredParameters[i, j] for j, x in enumerate(self.parameters)] self._classify_element(element_index=i, classifier=classifier, parameter_vector=parameter_vector) self.measurementsFinished.emit() def _classify_element(self, element_index, classifier=None, parameter_vector=None): """ Helper method that classify a single element. :param element_index: The index of the element to classify :param classifier: the classifier instance if any (If None the classifier would be computed) :param parameter_vector: the vector of parameters to supply to the classifier (If None the vector would be computed) :return: """ classifier = classifier if classifier is not None else self.classifier_adapter.get_instance() parameter_vector = parameter_vector if parameter_vector is not None else \ [self.measuredParameters[element_index, j] for j in xrange(len(self.parameters))] classification_value = classifier.classify(self.elements[element_index], parameter_vector) self.classificationTableData[element_index] = classification_value # update visualization self.update_elements_visual_items(self.classifier_adapter, element_index, classification_value) def update_elements_visual_items(self, parameter, element_index, value): """ Method that raises the signal segmentVisualItemAdded with the according visual items founded for an specific detected element. :return: """ visual_items = parameter.get_visual_items() if not visual_items: return # copy the visual items list to add every item on each detected element copied_visual_items = [x.clone() for x in visual_items] for item in copied_visual_items: item.set_data(self.signal, parameter, self.elements[element_index], value) self.segmentVisualItemAdded.emit(element_index, copied_visual_items) # endregion # region Detection def delete_elements(self, start_index, end_index): """ Removes elements from the detected :param start_index: start index of removed elements :param end_index: end index of removed elements :return: """ self.measuredParameters = np.concatenate((self.measuredParameters[:start_index], self.measuredParameters[end_index + 1:])) self.classificationTableData = self.classificationTableData[:start_index] +\ self.classificationTableData[end_index + 1:] self._elements = self.elements[:start_index] + self.elements[end_index+1:] self.measurementsFinished.emit() def add_element(self, index, index_from, index_to): """ Add a new element at index supplied. Execute the parameter measurement over it :type index_from: the start index of the new element in signal data values :type index_to: the end index of the new element in signal data values :param element: the element to add :param index: the index to insert the element at :return: """ # index could be equal to rowCount if insert after all previous elements if not 0 <= index <= self.rowCount: raise IndexError() element = OneDimensionalElement(self.signal, index_from, index_to) if self.rowCount == 0: # the property would update the other variables self.elements = [element] else: # add the element self.classificationTableData.insert(index, None) self._elements.insert(index, element) self.measuredParameters = np.concatenate((self.measuredParameters[:index], np.array([np.zeros(len(self.parameters))]), self.measuredParameters[index:])) # measure parameters self._measure(element, index, raise_visual_items=True) self._classify_element(index) self.measurementsFinished.emit() def detect_elements(self): """ Detect elements in the signal using the detector """ if self.segmentation_thread.isRunning(): return detector = self.detector_adapter.get_instance(self.signal) detector.detectionProgressChanged.connect(lambda x: self.detectionProgressChanged.emit(x)) self.segmentation_thread.detector = detector self.segmentation_thread.start() def _get_elements(self): """ update the elements when the segmentation thread finish :return: """ self.elements = self.segmentation_thread.detector.elements self.segmentationFinished.emit() # endregion # region Measurements def measure_parameters_and_classify(self): """ Measure the parameters over the detected elements and performs the classification of them :return: """ if not self.measurement_thread.isRunning(): self.measurement_thread.start() def measure_parameters(self): """ :param tableParameterOscilogram: :param paramsTomeasure: :param elements: :return: """ if len(self.parameters) == 0: return for i in xrange(self.rowCount): self._measure(self.elements[i], i, raise_visual_items=True) def _measure(self, element, index, measure_methods=None, raise_visual_items=False): """ Measure the list of parameters over the element supplied :param update_visual_items_and_db: True if the visual items of measurements and the db session would be updated False otherwise. Efficiency improvement :param element: The element to measure :param index: The element index on the table of parameters :return: """ if not 0 <= index < self.rowCount: raise IndexError() if measure_methods is None: measure_methods = self.parameters for j, parameter in enumerate(self.parameters): try: # measure param self.measuredParameters[index, j] = measure_methods[j].measure(element) # raise the parameter visual item if any if raise_visual_items: self.update_elements_visual_items(parameter, index, self.measuredParameters[index, j]) except Exception as e: # if some error is raised do not set value print("Error measure params " + e.message) # endregion def stop_processing(self): """ Stop the current on going processing if any. The process could be a Segmentation or a Measurement :return: """ if self.segmentation_thread.isRunning(): self.segmentation_thread.terminate() if self.measurement_thread.isRunning(): self.measurement_thread.terminate() def save_data_on_db(self): """ Save on db the data of detected segments, measurements and classification made. :return: """ pass def __getitem__(self, item): if not isinstance(item, tuple) or not len(item) == 2: raise Exception("Invalid Argument exception") row, col = item if row < 0 or row >= self.rowCount: raise IndexError() if col < len(self.parameters): return self.measuredParameters[row, col] # the order of the classification taxonomy may change classification = self.classificationTableData[row] if classification is None: return self.tr(u"No Identified") index = col - len(self.parameters) if index == 0 and classification.family is not None: return classification.family elif index == 1 and classification.genus is not None: return classification.genus # specie return self.tr(u"No Identified") if classification.specie is None else classification.specie
true
45ca50a9e95e0b5580d163057a430ceedcf59eb0
Python
netogalindo/blog
/tests/unit/post_test.py
UTF-8
1,326
3.578125
4
[]
no_license
from unittest import TestCase from post import Post class PostTest(TestCase): def test_create_post(self): p = Post("Test Title", "Test content.") self.assertEqual("Test Title", p.title, "The title is not valid for the test") # self is TestCase # This is checking if the defined title is equal to p.title # self.assertEqual("Testx", p.title) This would make the test fail self.assertEqual("Test content.", p.content, "The content is not valid for the test") # The same, but with the content # This seems like an idiotic test, but, if you would change the __init__ method, this test would fail, and this # would remind you that you have to check other parts of your software as well, to make sure nothing is broken # Something else that would result in an "Test failed" would be if a programmer would have added an initial # value to one of the parameters self.assertIsInstance(p.title, str, "Test Title should be a string") self.assertIsInstance(p.content, str, "Test Content should be a string") def test_json(self): p = Post("Test Title", "Test content.") expected = {"title": "Test Title", "content": "Test content."} self.assertDictEqual(expected, p.json(), "The json was not created")
true
30951416f39c023c0911ea0fb1ef2df1c804a652
Python
mkristien/trading_playground
/src/predictor/exponential_mean.py
UTF-8
1,534
3.359375
3
[]
no_license
from predictor.model_interface import AbstractPredictor class ExponentialMeanParametric(AbstractPredictor): """ Compute running exponential mean as: mean = mean * L + new_value * (1-L) for alpha parameter L being 0 < L < 0 The alpha parameter determines how fast should the mean adapt to new prices. High values of Alpha is slower to respond to changes """ def __init__(self, price_history, alpha): super().__init__(price_history) self.alpha = alpha self.mean = 0 # set initial mean as arithmetic average sum = 0 for price in price_history: sum += price self.mean = sum / len(price_history) def __str__(self): return "ExpMean alpha={}".format(self.alpha) def feed_price(self, price): self.price_history.append(price) self.mean = self.mean * self.alpha + price * (1 - self.alpha) def predicted_price(self): """ Assume stock price will regress to the running exponential mean """ return self.mean class ExponentialMean9(ExponentialMeanParametric): def __init__(self, price_history): super().__init__(price_history, 0.9) class ExponentialMean8(ExponentialMeanParametric): def __init__(self, price_history): super().__init__(price_history, 0.8) class ExponentialMean99(ExponentialMeanParametric): def __init__(self, price_history): super().__init__(price_history, 0.99)
true
f3d23c09228bc453b79af482ee1e86cbe0642f5d
Python
DorDob/rest-api-training-v
/test_greeting.py
UTF-8
634
3.3125
3
[]
no_license
import requests import pytest NAME = "Doroa" # stała def test_greeting(): r = requests.get(pytest.HOST +'/greeting') assert r.status_code == 200 # sprawdza czy otrzymamy rzeczywiście 200, assert r.json()['content'] == 'Hello, Stranger!' def test_greeting_by_name(): r = requests.get( pytest.HOST + '/greeting', params = {'name' : NAME} # wysylam query params, ktore chce dodac do URL {klucz : wartosc} ) assert r.status_code == 200 assert r.json()['content'] == f"Hello, {NAME}!" #zeby operowac zawsze na obiekcie
true
13248f1c6b4b232f1520b5e7a07b47bd9ec24a1c
Python
sebastienliu/leetcode_puzzles
/217_contain_duplicates.py
UTF-8
210
2.75
3
[]
no_license
class Solution: def containsDuplicate(self, nums): d_nums = set() for val in nums: if val in d_nums: return True d_nums.add(val) return False
true
97548bd46fcde818fc78affa77171d9fdd86218b
Python
J-Gottschalk-NZ/FRC_Panda
/06_round_up.py
UTF-8
350
4.09375
4
[]
no_license
import math # rounding function def round_up(amount, round_to): # rounds amount UP to the specified amount (round_to) return int(round_to * round(math.ceil(amount) / round_to)) # Main Routine starts here to_round = [2.75, 2.25, 2] for item in to_round: rounded = round_up(item, 1) print("${:.2f} --> ${:.2f}".format(item,rounded))
true
218e80dd74fbd67c992a9245fc936116349cf64d
Python
TheWewokaChronicle/downstream-node
/tests/test_utils.py
UTF-8
5,160
3
3
[ "MIT" ]
permissive
import unittest from downstream_node import utils class TestDistribution(unittest.TestCase): def setUp(self): self.list0 = [10, 10, 20, 20, 30, 30] self.list1 = [20, 30] self.list2 = [10, 10, 20, 30] self.list3 = [10, 10, 20, 20, 20, 30, 30, 30] self.dist0 = utils.Distribution(from_list=self.list0) self.dist1 = utils.Distribution(from_list=self.list1) def tearDown(self): pass def test_subtract(self): dist2 = self.dist0.subtract(self.dist1) self.assertEqual(sorted(dist2.get_list()), sorted(self.list2)) def test_subtract_negative(self): dict4 = self.dist1.subtract(self.dist0) self.assertEqual(dict4.counts[10], -2) self.assertEqual(dict4.counts[20], -1) self.assertEqual(dict4.counts[30], -1) def test_add(self): dist3 = self.dist0.add(self.dist1) self.assertEqual(sorted(dist3.get_list()), sorted(self.list3)) def test_repr(self): self.assertEqual(str(self.dist0), '{10: 2, 20: 2, 30: 2}') def test_total(self): self.assertEqual(sum(self.list0), self.dist0.get_total()) class TestMonopolyDistribution(unittest.TestCase): def setUp(self): self.distribution_base2_10000 = utils.MonopolyDistribution( 1024, 8192, 10000, 2) self.distribution_base2_10000000000 = utils.MonopolyDistribution( 1024, 1000000000, 10000000000, 2) self.distribution_base10_100000 = utils.MonopolyDistribution( 1000, 10000, 100000, 10) self.distribution_base10_100000000000 = utils.MonopolyDistribution( 1000, 10000000000, 100000000000, 10) def tearDown(self): pass def distribution_generic_test(self, distribution_object=None): if (distribution_object is None): return dist = distribution_object.get_list() possible_chunks = distribution_object.get_possible_chunks() all_so_far_in = True for possibility in possible_chunks: if (possibility not in possible_chunks): all_so_far_in = False else: if (all_so_far_in is False): # we are missing a chunk size self.fail('A chunk size was skipped in the distribution') self.assertLessEqual(sum(dist), distribution_object.total) self.assertGreater( sum(dist), distribution_object.total - distribution_object.min) def test_monopoly_distribution(self): # what are we actually trying to accomplish here? # we want as wide a range of chunk sizes as possible # we also don't want too many of one chunk size # ok so what if we have a list of desired chunk sizes # just the powers of 10 are simple. that will be our base # with a minimum, obviously. # so, total: 25,000 # min: 100 # the posibilitites will then be all the powers of 10 # between 100 and 25,000, or # [100, 1000, 10000] # the result will be # [10000, 1000, 100, 10000, 1000, 100, 1000, # 100, 1000, 100, 100, 100, 100, 100, 100, 100] # there should not be any skipped values, so it should probably start # iterating from the # lowest value and then go up to increase the number of chunks # the total should be less than the specified total by less than the # smallest chunk self.distribution_generic_test(self.distribution_base2_10000) self.distribution_generic_test(self.distribution_base10_100000) self.distribution_generic_test(self.distribution_base10_100000000000) def test_get_possible_chunks(self): class TestPossibleChunkVector(object): def __init__(self, distribution, result): self.distribution = distribution self.result = result vectors = [ TestPossibleChunkVector( self.distribution_base2_10000, [ 1024, 2048, 4096, 8192]), TestPossibleChunkVector( self.distribution_base10_100000, [ 1000, 10000]), TestPossibleChunkVector( self.distribution_base10_100000000000, [ 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000])] for v in vectors: self.assertEqual(v.distribution.get_possible_chunks(), v.result) def test_get_missing(self): fresh = self.distribution_base2_10000.get_list() left = fresh.pop(0) right = fresh.pop() missing = self.distribution_base2_10000.get_missing(fresh).get_list() self.assertIn(left, missing) self.assertIn(right, missing) self.assertEqual(len(missing), 2) fresh = self.distribution_base10_100000.get_list() left = fresh.pop(0) right = fresh.pop() missing = self.distribution_base10_100000.get_missing(fresh).get_list() self.assertIn(left, missing) self.assertIn(right, missing) self.assertEqual(len(missing), 2)
true
63276a2186d7195fd89f64846d25bc5b435260ce
Python
k-harada/AtCoder
/ABC/ABC101-150/ABC139/A.py
UTF-8
226
3.046875
3
[]
no_license
def main(): s = list(input()) t = list(input()) assert len(s) == len(t) res = 0 for i, ss in enumerate(s): if ss == t[i]: res += 1 print(res) if __name__ == "__main__": main()
true
71bbe30c6f5c82448da4e0da711819f30a3df535
Python
GanatheVyshnavi/Vyshnavi
/7th.py
UTF-8
74
3.53125
4
[]
no_license
s=float(input('enter value of s')) a=4*s print("perimeter of square is",a)
true
92f6026283faf20d4496a71234b3ef1ff81a2ab0
Python
sebastianedholme/DevOps18
/programmering_systemering/egna_ovningar/rate_calc.py
UTF-8
202
3.609375
4
[]
no_license
print('Enter hours: ', end="") hours = int(input()) print('Enter hours: ', end="") rate = int(input()) #print(type(hours)) #print(type(rate)) pay = hours * rate print("\nYour pay is: {}".format(pay))
true
5375e70b4946efec1214f9e7d33c3c0e17f0a61a
Python
pengfeiyan/fluent_python
/three/3.5.py
UTF-8
976
3.953125
4
[]
no_license
# -*- coding: utf-8 -*- # @Author : yanpengfei # @time : 2018/11/20 下午5:03 # @File : 3.5.py # 字典的变种 from collections import OrderedDict ''' python3.6以后dict都是保持顺序的,但使用OrderedDict能返回最开始或者最后添加的元素。dict默认没有这两个方法 OrderedDict中popitem()默认删除并返回最后一个添加的元素,popitem(last=False)默认删除并返回第一个添加的元素 ''' d = OrderedDict(dict(zip(['one','two','three'],[1,2,3]))) print(d) print(d.popitem()) print(d) from collections import Counter l = [1,2,4,6,2,5,8,4,6,9,2,4,8] ct = Counter(l) print(ct) ''' Counter的init >>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping >>> c = Counter(a=4, b=2) # a new counter from keyword args '''
true
3e718163297a3f2a2b072943fd0a4e58a838dedc
Python
vonzhou/Core-Python-Programming
/chapter8/For.py
UTF-8
295
3.515625
4
[]
no_license
#P195 for eachLetter in 'vonzhou': print 'current letter:', eachLetter nameList = ['vonzhou', 'luyna', 'Yet', 'chown'] for name in nameList: print name, 'is right' for nameIndex in range(len(nameList)): print 'By index:', nameList[nameIndex] print len(nameList) print range(len(nameList))
true
4064169bb318d893e445ccd78dfe47d4d1985ad1
Python
Anand191/Thesis-Results
/Scripts/ch_plot.py
UTF-8
799
2.75
3
[]
no_license
import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np width = [8.5, 6, 4, 2.2] height = [6.0, 4.5, 3.0, 1.5] xy = (0,0) ch = ['recursively enumerable', 'context-sensitive', 'context-free', 'regular'] h_offset = [0.35,0.35,0.35,0.5] w_offset = [-1.72, -1.4, -1.01, -0.45] ells = [Ellipse(xy, w, height[i]) for i, w in enumerate(width)] #a = plt.subplot(111, aspect='equal') fig, ax = plt.subplots(subplot_kw={'aspect': 'equal'}) for j, e in enumerate(ells): e.set_clip_box(ax.bbox) e.set_alpha(0.4) e.set_facecolor(np.random.rand(3)) ax.add_artist(e) ax.text(w_offset[j], (height[j]/2.17)-h_offset[j], ch[j]) plt.xlim(-5, 5) plt.ylim(-4, 4) plt.axis('off') plt.savefig('../Plots/chomsky_h.eps', format='eps', bbox_inches='tight') plt.show()
true
d4845241475eacc80f47ef6794528d184bf26db4
Python
SleepwalkerCh/Leetcode-
/45_2.py
UTF-8
1,483
3.375
3
[]
no_license
#45. Jump Game II #简单的贪心递归,将之前那一版的递归改成了递推就过了 #好像是BFS来着,其实改进的地方可以直接把前面数据初始化给删了 class Solution: def jump(self, nums: List[int]) -> int: ''' record=[] if len(nums)==1: return 0 for i in range(len(nums)): if nums[i]+i>len(nums)-1: target=len(nums)-1 else: target=nums[i]+i record.append(target) ''' i=0 step=1 while i<len(nums): tmax,imax=-1,-1 if record[i]==len(nums)-1: break if nums[i]+i>len(nums)-1: target=len(nums)-1 else: target=nums[i]+i for j in range(i+1,target+1): if nums[j]+j>len(nums)-1: target1=len(nums)-1 else: target1=nums[i]+i if tmax<target1: tmax=target1 imax=j i=imax step+=1 return step #Runtime: 72 ms, faster than 13.54% of Python3 online submissions for Jump Game II. #Memory Usage: 15.5 MB, less than 7.02% of Python3 online submissions for Jump Game II. #Ver 2.0 #Runtime: 60 ms, faster than 34.72% of Python3 online submissions for Jump Game II. #Memory Usage: 14.7 MB, less than 20.92% of Python3 online submissions for Jump Game II.
true
8ca8e675bfce7c69ece866e888c06ddde2758139
Python
nilanjanchakraborty87/py-learn
/introduction/functions.py
UTF-8
583
3.796875
4
[]
no_license
def greet(*args, **kwargs): """ docstring this function takes a message and greets you """ print("Hello ", args[0], args[1], args[2]) print("Kwargs ", kwargs["message"]) # greet("Cts", "Macy", "IBM", message = "Nilanjan") print(greet.__doc__) # lambda # multipler_3 = """ def random11111(x): print(x) func = random11111 """ for i in range(1, 11): #print((lambda x: 3 * x)(i)) pass # dunder __repr__/__str__ # object func = lambda msg = "World": print("Hello, ", msg) func() func("Naga") func = lambda : print("Example lambda") func()
true
010ffe7aec1fc164d3541d4d927feceffdc06b40
Python
bjellesma/chatchord
/models/models.py
UTF-8
1,825
2.65625
3
[]
no_license
# NOTE importing the mongobase alone is enough to initiate the connection import models.mongobase from mongoengine import Document from mongoengine.fields import ( StringField, ListField, BooleanField ) from mongoengine.errors import DoesNotExist #Error Handling from flask_login import UserMixin # user logins from werkzeug.security import generate_password_hash, check_password_hash #password hashing from app import login import pprint class UsersModel(UserMixin, Document): # Note: everything is camelcased in graphql so first_name becomes firstName no matter what it is in the database meta = {'collection': 'users'} username = StringField(required=True) password_hash = StringField(required=True) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) def find_user_by_username(self, username): try: return UsersModel.objects.get(username=username) except DoesNotExist as err: print('No user exists with that name') return None # def register(self, username, password, confirmPassword): # Execute the graphql mutation to register the user # mutation { # createUser(username: "some_dude", password: "123"){ # user{ # id # username # } # } # } @login.user_loader def load_user(id): return UsersModel.objects.get(id=id) class RoomsModel(Document): meta = {'collection': "rooms"} name = StringField() requiresAuth = BooleanField() class BotsModel(Document): meta = {'collection': "bots"} name = StringField() phrases = ListField(StringField())
true
a6c4fb1f05dfb53112d7a71084fe91271b684cad
Python
theRemix/linkchecker
/linkchecker.py
UTF-8
1,368
2.96875
3
[]
no_license
#!/usr/bin/env python import sys import requests from bs4 import BeautifulSoup from texttable import Texttable domain = sys.argv[-1] omit = {'/','#'} links = {} colors = { 'reset': '\033[0m', 'red': '\033[31m' } def color(text, c): return "{c}{text}{r}".format(c=colors[c], text=text, r=colors['reset']) print("checking links in {}".format(domain)) def recursivelyCheckLinks(link): res = requests.get(link) links[link] = res.status_code if res.status_code != 200: return soup = BeautifulSoup(res.text, "html.parser") for link in soup.find_all("a"): l = link.get("href") if l != None: l = l.split('#')[0] checkLink = domain + l if checkLink not in links and checkLink not in omit and l.startswith('/'): recursivelyCheckLinks(checkLink) recursivelyCheckLinks(domain) table = Texttable() table.set_deco(Texttable.HEADER) table.set_cols_dtype(['t','t',]) table.set_cols_align(["l", "r"]) for link in filter(lambda l: l != '', links): label = link.replace(domain,'') status = links[link] statusLabel = str(links[link]) if status >= 400: label += " ❌" statusLabel = color(statusLabel, 'red') table.add_row([ label, statusLabel ]) print(table.draw()) print("checked {} links".format(len(links)))
true
1611dac3d06f949c48d55002dd7c66fa06f45eba
Python
gfbenatto/Simple-tests-in-Python
/files2.py
UTF-8
99
3.265625
3
[]
no_license
file = open('numeros.txt', 'r') for line in file.readlines(): print(line.rstrip()) file.close()
true
fd5814bbc5bff9db236736b2ca2cc02b36591dc4
Python
lucocozz/Labyrinthe_python
/ft/game.py
UTF-8
1,407
3.40625
3
[]
no_license
from ft.display import * from ft.file import * from classe.map import * def roboc(map): """Lance le jeu""" end = False while end is False: clear() print(map) entry = get_input() end = do_entry(map, entry) save_game(map) def get_input(): """recupere l'input""" good = False while good is False: try: entry = input("\n> ").strip().lower(). assert good_format(entry) is True except AssertionError: print_error("Erreur de saisie.") else: good = True return entry def good_format(entry): """Verifie si l'input correspond a un bon format""" if len(entry) < 1 or len(entry) > 2: return False if entry[0] not in "qneso": return False if len(entry) == 2 and entry[1].isdigit() == False: return False if len(entry) == 2 and entry[0] == 'q': return False return True def do_entry(map, entry): """Execute les actions en fonction de l'input""" if entry == 'q': return True if len(entry) == 1: entry += '1' if entry[0] == 'n': end = map.move_up(int(entry[1])) if entry[0] == 's': end = map.move_down(int(entry[1])) if entry[0] == 'e': end = map.move_left(int(entry[1])) if entry[0] == 'o': end = map.move_right(int(entry[1])) return end
true
739a51a645f0e63d521480bf23f40e082a6f9044
Python
redX1/vaanah_back
/vaana_app/orders/utils.py
UTF-8
400
2.734375
3
[]
no_license
import random import string from .models import Order class Util: def getOrderNumber(): letters = string.ascii_uppercase digits = string.digits strn = 'OR' + str(len(Order.objects.all()) + 1) rand_nb = ''.join(random.choice(digits) for i in range(2)) rand_str = ''.join(random.choice(letters) for i in range(3)) return strn + rand_nb + rand_str
true
94fb12248c44e70d7df664147cc35343f9577387
Python
throwawwwwway/haptiq
/app/view.py
UTF-8
9,076
2.6875
3
[]
no_license
import tkinter as tk import app.logconfig as lc from tkinter import Canvas, Menu from app.device import Point from functools import partial from app.network import Network def motion(event, device): x, y = event.x, event.y device.position = Point(x, y) # def update_pressed_key(event, listener): # listener.update_pressed_key(repr(event.char)) # print("pressed {}".format()) def focus(event, canvas): canvas.focus_set() def color_from_level(level): '''return a hex black depth color depending on the level''' intensity = 255 - int(level * 2.55) % 256 return '#%02x%02x%02x' % (intensity, intensity, intensity) class View(object): def __init__(self, device, **opts): self.root = tk.Tk() self.networks = opts['networks'] if 'networks' in opts else [] self.interacts = opts['interacts'] if 'interacts' in opts else [] self._network = None self._interaction = None menubar = Menu(self.root) self.root.config(menu=menubar) if self.networks != []: newtwork_menu = Menu(menubar) menubar.add_cascade(label="Networks", menu=newtwork_menu) for key, network in sorted(self.networks.items()): partial_command = partial(self.load_network, key) newtwork_menu.add_command( label=key, command=partial_command) if self.interacts != []: interaction_menu = Menu(menubar) menubar.add_cascade(label="Interactions", menu=interaction_menu) for key, interaction in sorted(self.interacts.items()): interaction.device = device interaction.view = self partial_command = partial( self.load_interaction, key) interaction_menu.add_command( label=key, command=partial_command) if 'mouse_tracking' in opts: mouse_tracking = opts['mouse_tracking'] else: mouse_tracking = False self.scene = Scene(self.root, device, mouse_tracking) if 'default_network' in opts: self.load_network(opts['default_network']) if 'default_interact' in opts: self.load_interaction(opts['default_interact']) @property def network(self): return self._network @network.setter def network(self, value): self._network = value self.scene.draw_network(value) lc.log.info(str(value)) def load_network(self, key): lc.log.info("network: {}".format(key)) if (key[:3] == 'gen'): print(key[4]) self.network = Network.generate(int(key[4])) else: self.network = self.networks[key] @property def interaction(self): return self._interaction @interaction.setter def interaction(self, value): self._interaction = value def load_interaction(self, key): lc.log.info("interaction: {}".format(key)) self.interaction = self.interacts[key] def activate_key_listening(self, listener): self.scene.activate_key_listening(listener) def desactivate_key_listening(self): self.scene.desactivate_key_listening() def on_exit(self): self.root.destroy() def loop(self): self.root.mainloop() class Scene(object): def __init__(self, master, device, mouse_tracking=False): self.master = master self.device = device self.frame = tk.Frame(master) self.feedbackButton = tk.Button( self.frame, text="Feedback window", width=25, command=self.open_feedback ) self.feedbackButton.pack() self.explore_canvas = Canvas(master, width=500, height=500) self.explore_canvas.pack() if mouse_tracking: self.explore_canvas.bind( '<Motion>', lambda event, device=device: motion(event, device)) self.enable_position_feedback() self.network_drawings = [] self.frame.pack() self.app = None self.update() def activate_key_listening(self, listener): # Will focus frame, needed for key binding self.explore_canvas.bind( "<Button-1>", lambda event, frame=self.explore_canvas: focus(event, frame) ) self.explore_canvas.bind( "<Key>", lambda event: listener.update_pressed_key(str(event.char)) ) def desactivate_key_listening(self): self.explore_canvas.unbind("<Button-1>") self.explore_canvas.unbind("<Key>") def enable_position_feedback(self): self.device_cursor = self.explore_canvas.create_oval( self.device.position.x - 2.5, self.device.position.y - 2.5, self.device.position.x + 2.5, self.device.position.y + 2.5) def draw_network(self, network): self.explore_canvas.delete('all') self.enable_position_feedback() for node in network.nodes: pos_x = node.x - 5 pos_y = node.y - 5 self.explore_canvas.create_oval( pos_x, pos_y, pos_x + 10, pos_y + 10, fill="blue") for link in network.links: pt_a = link.first pt_b = link.sec self.explore_canvas.create_line( pt_a.x, pt_a.y, pt_b.x, pt_b.y) def update(self): coords = self.explore_canvas.coords(self.device_cursor) if len(coords) <= 3: self.master.after(50, self.update) return center = ((coords[0] + coords[2]) / 2, (coords[1] + coords[3]) / 2) self.explore_canvas.move( self.device_cursor, self.device.position.x - center[0], self.device.position.y - center[1]) if self.app and not self.app.closed: self.app.update() self.master.after(50, self.update) def open_feedback(self): self.feedbackWindow = tk.Toplevel(self.master) self.app = Feedback(self.feedbackWindow, self.device) class Feedback(object): def __init__(self, master, device): self.master = master self.device = device self.frame = tk.Frame(master) self.on_update = False self.mapped_actuators = {} self.quitButton = tk.Button( self.frame, text='Quit', width=25, command=self.close_window) self.quitButton.pack() self.master.protocol("WM_DELETE_WINDOW", self.close_window) self.canvas = Canvas(master, width=250, height=250) self.canvas.pack() self.set_mapping() lc.log.debug("device actuators: {}".format(self.device.actuators)) self.frame.pack() self.closed = False def set_mapping(self): cntr_x = 250 / 2 cntr_y = 250 / 2 straight = 90 wd = 8 self.north = self.canvas.create_line( cntr_x, cntr_y - 8, cntr_x, cntr_y - straight, width=wd) self.east = self.canvas.create_line( cntr_x + 8, cntr_y, cntr_x + straight, cntr_y, width=wd) self.south = self.canvas.create_line( cntr_x, cntr_y + 8, cntr_x, cntr_y + straight, width=wd) self.west = self.canvas.create_line( cntr_x - 8, cntr_y, cntr_x - straight, cntr_y, width=wd) if len(self.device.actuators) == 8: diag = straight * 0.75 self.north_east = self.canvas.create_line( cntr_x + 8, cntr_y - 8, cntr_x + diag, cntr_y - diag, width=wd) self.south_east = self.canvas.create_line( cntr_x + 8, cntr_y + 8, cntr_x + diag, cntr_y + diag, width=wd) self.south_west = self.canvas.create_line( cntr_x - 8, cntr_y + 8, cntr_x - diag, cntr_y + diag, width=wd) self.north_west = self.canvas.create_line( cntr_x - 8, cntr_y - 8, cntr_x - diag, cntr_y - diag, width=wd) self.mapped_actuators = { self.device.actuators[0]: self.east, self.device.actuators[1]: self.north_east, self.device.actuators[2]: self.north, self.device.actuators[3]: self.north_west, self.device.actuators[4]: self.west, self.device.actuators[5]: self.south_west, self.device.actuators[6]: self.south, self.device.actuators[7]: self.south_east } else: self.mapped_actuators = { self.device.actuators[0]: self.east, self.device.actuators[1]: self.north, self.device.actuators[2]: self.west, self.device.actuators[3]: self.south, } def update(self): for actuator in self.mapped_actuators: self.canvas.itemconfig( self.mapped_actuators[actuator], fill=color_from_level(actuator.level)) def close_window(self): self.closed = True self.master.destroy()
true
416c95ee8abf504bd181f8e7ec8c8ecc3dbf66ec
Python
doguhanyeke/leetcode-sol
/Sort/k-closest-points-to-origin.py
UTF-8
437
3.234375
3
[]
no_license
import math from typing import List import heapq class Solution: def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]: return sorted(points, key=lambda x: math.pow(x[0], 2) + math.pow(x[1], 2))[:K] class Solution2: def kClosest(self, points: List[List[int]], K: int) -> List[List[int]]: heapq.heapify(points) return heapq.nsmallest(K, points, key=lambda x: x[0] * x[0] + x[1] * x[1])
true
7f66064302a48ef735480d00011ea63769bdde62
Python
IrekKarimov/11419
/Lab_04.py
UTF-8
914
4.5
4
[]
no_license
# 4. Пользователь вводит две буквы. # Определить, на каких местах алфавита они стоят, и сколько между ними находится букв. print("====================================================") print("Определение места буквы в английском алфавите") print("====================================================") s1 = input("Введите букву: ").upper() s2 = input("Введите букву: ").upper() n1 = ord(s1) n2 = ord(s2) if(n1 > 64 & n1 < 91): m1 = n1 - 64 if(n2 > 64 & n2 < 91): m2 = n2 - 64 print(f'Буква {s1} в алфавите под номером {m1}. ') print(f'Буква {s2} в алфавите под номером {m2}. ') print(f'Между ними {m2-m1-1} букв(ы)') print("====================================================")
true
56bb3a7aacad88dff2488c7825c24c00c9c7ab76
Python
gotutiyan/nlp100_knock
/source/chapter1/004.py
UTF-8
787
3.671875
4
[]
no_license
#"Hi He Lied Because Boron Could Not Oxidize Fluorine. New Nations Might Also Sign Peace Security Clause. Arthur King Can."という文を単語に分解し, # 1, 5, 6, 7, 8, 9, 15, 16, 19番目の単語は先頭の1文字,それ以外の単語は先頭に2文字を取り出し, # 取り出した文字列から単語の位置(先頭から何番目の単語か)への連想配列(辞書型もしくはマップ型)を作成せよ. sentence = "Hi He Lied Because Boron Could Not Oxidize Fluorine. New Nations Might Also Sign Peace Security Clause. Arthur King Can." words = sentence.split() index = (1, 5, 6, 7, 8, 9, 15, 16, 19) dic = {} for i,word in enumerate(words,1): if i in index: dic[word[0:1]] = i else: dic[word[0:2]] = i print(dic)
true
72feb95a9fe6f0e1e5a022883b8883cc2759cb86
Python
jmichalicek/django-fractions
/djfractions/__init__.py
UTF-8
8,666
3.25
3
[]
permissive
__version__ = "5.0.0" import fractions import re from decimal import Decimal from typing import Any, Union from djfractions.exceptions import InvalidFractionString, NoHtmlUnicodeEntity __all__ = [ "quantity_to_decimal", "is_number", "is_fraction", "get_fraction_parts", "get_fraction_unicode_entity", ] # Aligns with https://docs.python.org/3/library/fractions.html#fractions.Fraction.limit_denominator DEFAULT_MAX_DENOMINATOR = 1000000 # Enttities from https://dev.w3.org/html5/html-author/charref HTML_ENTITIES = [ "&frac12;", "&frac13;", "&frac23;", "&frac14;", "&frac34;", "&frac15;", "&frac25;", "&frac35;", "&frac45;", "&frac16;", "&frac56;", "&frac17;", "&frac18;", "&frac38;", "&frac58;", "&frac78;", ] def is_number(s: Any) -> bool: """ Determine if the input value is numeric - an int, float, decimal.Decimal, or a string such as '1', '1.23', etc. :param s: A string value to check to see if it represents a float or int. """ try: int(s) return True except ValueError: pass try: float(s) return True except ValueError: pass return False def is_fraction(s: Any) -> bool: """ Determine if the input string appears to represent a fraction. This does not include mixed numbers such as 1 1/3 :param s: A string value to check if it is formatted as a fraction. """ return bool(re.match(r"^-?\d+/\d+$", s)) def coerce_to_thirds(value: fractions.Fraction) -> fractions.Fraction: """ takes a :class:`fractions.Fraction` and forces it to thirds if it is one that is frequently the result of taking a number such as 1/3, converting to decimal/float, then back to a fraction. """ temp_decimal = Decimal(value.numerator / value.denominator).quantize(Decimal("0.00")) if ( temp_decimal % 1 == Decimal(".33") or temp_decimal % 1 == Decimal(".3") or temp_decimal % 1 == Decimal(".67") or temp_decimal % 1 == Decimal(".6") ): value = value.limit_denominator(3) return value def quantity_to_decimal(quantity_string: str) -> Decimal: """ Take a quantity string and return a decimal. Handles one hundred, two hundred, three hundred twenty five, 1, 1 1/4, 1 and 1/4, 1.25, .25. Negative values should have the negative sign first, such as -1/4 or -1 1/4 :param quantity_string: String to convert to a :class:`decimal.Decimal` """ # get actual fraction-like strings to be N/N with no spaces quantity_string = quantity_string.strip() quantity_string = re.sub(r"\b(\d+)\s+/\s+(\d+)\b", r"\1/\2", quantity_string) if is_number(quantity_string): return Decimal(quantity_string) if is_fraction(quantity_string): return _fraction_string_to_decimal(quantity_string) # assume the a hyphen between a whole value and fraction such as 1-1/4 # is a separator and not a negative fraction. # If the negative is first though, then we need to keep it negative. positive_or_negative = -1 if quantity_string.startswith("-") else 1 quantity_string = quantity_string.replace("-", " ") parts = quantity_string.split() parts_length = len(parts) # it must be a mixed number like 1 1/4 number_stack = [] # for storing the entire number to return in parts for part in parts: if is_fraction(part): number_stack.append(_fraction_string_to_decimal(part)) elif is_number(part): number_stack.append(Decimal(part)) return Decimal(sum(number_stack)) * positive_or_negative def quantity_to_fraction(quantity_string: str) -> fractions.Fraction: """ Take a quantity string and return a :class:`fractions.Fraction`. Handles one hundred, two hundred, three hundred twenty five, 1, 1 1/4, 1 and 1/4, 1-1/4, 1.25, .25. Negative values should have the negative sign first, such as -1/4 or -1 1/4 :param quantity_string: String to convert to a :class:`fractions.Fraction` """ # get actual fraction-like strings to be N/N with no spaces quantity_string = quantity_string.strip() quantity_string = re.sub(r"\b(\d+)\s+/\s+(\d+)\b", r"\1/\2", quantity_string) if is_number(quantity_string): return fractions.Fraction(quantity_string) if is_fraction(quantity_string): return _fraction_string_to_fraction(quantity_string) # it must be a something like 1 1/4 # assume that a hyphen between a whole value and fraction such as 1-1/4 # is a separator and not a negative fraction. # If the negative is first though, then we need to keep it negative. # Cannot just keep the fraction on the int or we end up subtraction. # -1 1/4 becomes -3/4 when what is meant is -5/4 positive_or_negative = -1 if quantity_string.startswith("-") else 1 # non-capturing group in the middle handls just a space, hyphen with # optional spaces, or the word and. Examples: # 1 1/4, 1-1/4, 1 - 1/4, 1 and 1/4 parts = re.match(r"^-?(\d+)(?:\s+|\s*-?\s*|\s+and\s+)(\d+\/\d+)", quantity_string) if not parts: raise InvalidFractionString("%s is not a valid fraction" % quantity_string) # parts.group(0) is the entire string, 1 is the whole number bit f = fractions.Fraction(parts.group(2)) f = (f + int(parts.group(1))) * positive_or_negative return f def _fraction_string_to_fraction(fraction: str) -> fractions.Fraction: """ Convert a string representing a fraction to a :class:`fractions.Fraction` """ parts = fraction.split("/") numerator = int(parts[0]) denominator = int(parts[1]) return fractions.Fraction(numerator, denominator) def _fraction_string_to_decimal(fraction: str) -> Decimal: """ Convert strings such as '1/4' to a Decimal """ parts = fraction.split("/") numerator = int(parts[0]) denominator = int(parts[1]) return Decimal(numerator / denominator) def get_fraction_parts( value: Union[fractions.Fraction, float, Decimal, int, str], allow_mixed_numbers: bool = True, limit_denominator: int = DEFAULT_MAX_DENOMINATOR, coerce_thirds: bool = True, ): """ Takes an `int`, `float`, or :class:`decimal.Decimal` and returns a tuple of (whole_number, numerator, denominator). If allow_mixed_numbers is not True, then whole_number will be None. :param value: The value to convert to parts of a fraction. :param bool allow_mixed_numbers: Defaults to True. If True, then parts for mixed numbers will be created, otherwise improper fractions with a whole_number of 0 will be created. In the case where value is a whole number such as 4, if allow_mixed_numbers is True, then a tuple of (4, 0, 1) would be returned, otherwise (0, 4, 1) would be returned. :param bool limit_denominator: Limit the denominator to this value. Defaults to 1000000, which is the same as :meth:`fractions.Fraction.limit_denominator()` default max_denominator :param bool coerce_thirds: Defaults to True. If True then .3 repeating is forced to 1/3 rather than 3/10, 33/100, etc. and .66 and .67 are forced to 2/3. """ f = fractions.Fraction(value) whole_number = 0 if allow_mixed_numbers and f.numerator >= f.denominator: # convert to complex number # whole_number = f.numerator // f.denominator whole_number, numerator = divmod(f.numerator, f.denominator) # f = fractions.Fraction(f.numerator - (whole_number * f.denominator), f.denominator) f = fractions.Fraction(numerator, f.denominator) if limit_denominator: f = f.limit_denominator(limit_denominator) if coerce_thirds and (not limit_denominator or limit_denominator > 3): # if denominator is limited to less than 3, this would be in opposition to that. # if denominator is limited to 3 then this has naturally already been done. f = coerce_to_thirds(f) return (whole_number, f.numerator, f.denominator) def get_fraction_unicode_entity(value: Union[fractions.Fraction, float, Decimal, int, str]) -> str: """ Returns the html unicode entity for the fraction if one exists or None :param value: The value to get the entity for. """ if not isinstance(value, fractions.Fraction): value = fractions.Fraction(value) entity = "&frac%d%d;" % (value.numerator, value.denominator) if entity not in HTML_ENTITIES: raise NoHtmlUnicodeEntity("No valid HTML entity exists for %s" % value) return entity
true
49975842383b40aab822968740f504d1b8f04db0
Python
aleksartamonov/BPL_Stats
/parser/parser.py
UTF-8
1,597
2.859375
3
[]
no_license
from service.match import FootballMatch __author__ = 'aleksart' from bs4 import BeautifulSoup def parse_document(filename): f = open(filename) content = f.read() f.close() soup = BeautifulSoup(content) tour_results = parse_tour_results(soup) tour_num = 1 matches_html = [] all_matches = [] for tour in tour_results: matches = tour.find_all('tr') for match in matches: info = parse_match_results(match, tour_num) football_match = FootballMatch(info) all_matches.append(football_match) matches_html.append(match) tour_num += 1 return all_matches def parse_tour_results(soup): headers = soup.find_all('h3', 'titleH3 bordered mB10') # print result tour_result = [] for head in headers: tour_result.append(head.find_next_sibling('div').find('tbody')) return tour_result def parse_match_results(match, tour_num): info = dict() info['tour'] = tour_num time_info = match.find('td', 'name-td alLeft') time_info = time_info.text.encode("utf-8").split('|') info['date'] = time_info[0] info['time'] = time_info[1] host_info = match.find('td', 'owner-td') info['host'] = host_info.text.encode("utf-8").strip() guest_info = match.find('td', 'guests-td') info['guest'] = guest_info.text.encode("utf-8").strip() score_info = match.find('td', 'score-td') info['score'] = score_info.text.encode("utf-8").strip() info['visitors'] = match.find('td', 'padR alRight').text.encode("utf-8").strip() return info
true
126013d2c3d77eb7375fe7e415ed297c4953dd9d
Python
the-argus/pyweek31
/core/GameResource.py
UTF-8
7,592
2.578125
3
[]
no_license
import math import os import random import arcade from constants.camera import FOLLOW, IDLE, LERP_MARGIN, LERP_SPEED from constants.enemies import SPAWN_RADIUS from constants.game import ( GRID_SIZE, PLAYER_DEFAULT_START, ROOM_HEIGHT, ROOM_WIDTH, SCREEN_HEIGHT, SCREEN_WIDTH, SPRITE_SCALING, TILE_SPRITE_SCALING, ) from core.Enemies import Default, Jetpack from core.EnemyManager import EnemyManager from core.lerp import lerp from core.MouseCursor import MouseCursor from core.PlayerCharacter import PlayerCharacter from core.Bullet import Bullet class GameResources: """ All resource handling like maps and sprites and rendering """ def __init__(self, game_instance): self.game_instance = game_instance # sets relative path to where this file is file_path = os.path.abspath(os.getcwd()) os.chdir(file_path) # keep track of camera location self.view_bottom = 0 self.view_left = 0 # keep track of mouse self.mouse_x = 0 self.mouse_y = 0 # mouse cursor self.mouse_cursor = MouseCursor() # camera behavior and follow location self.behavior = FOLLOW self.follow_x = PLAYER_DEFAULT_START[0] self.follow_y = PLAYER_DEFAULT_START[1] # screenshake self.shake_remain = 0 self.shake_strength = 1 self.shake_x = 0 self.shake_y = 0 # list initilization self.wall_list = arcade.SpriteList( use_spatial_hash=True, spatial_hash_cell_size=16 ) # contains all static objects which should have collision self.floor_list = arcade.SpriteList() self.player_list = arcade.SpriteList() self.enemy_list = EnemyManager(self) self.gui_list = arcade.SpriteList() self.bullet_list = arcade.SpriteList() # player self.player_sprite = PlayerCharacter(PLAYER_DEFAULT_START, self) self.player_sprite.register_sprite_list(self.player_list) self.player_list.append(self.player_sprite) self.load_level() # enemies for i in range(3): self.enemy_list.spawn_enemy() self.gui_list.append(self.mouse_cursor) self.mouse_cursor.register_sprite_list(self.gui_list) def on_draw(self): # draw all the lists self.floor_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) self.wall_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) self.player_sprite.on_draw() self.player_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) self.bullet_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) self.enemy_list.enemy_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) self.gui_list.draw(filter=(arcade.gl.NEAREST, arcade.gl.NEAREST)) """ for enemy in self.enemy_list.enemy_list: enemy.draw_path() """ def on_update(self, delta_time): # mouse cursor self.mouse_cursor.center_x = self.mouse_x + self.view_left self.mouse_cursor.center_y = self.mouse_y + self.view_bottom # camera scrolling self.follow_x = self.player_sprite.center_x self.follow_y = self.player_sprite.center_y dist = math.sqrt( ((self.view_left + (SCREEN_WIDTH / 2)) - self.follow_x) ** 2 + ((self.view_bottom + (SCREEN_HEIGHT / 2)) - self.follow_y) ** 2 ) if dist >= LERP_MARGIN: self.view_left = int( lerp(self.view_left, self.follow_x - (SCREEN_WIDTH / 2), LERP_SPEED) ) self.view_bottom = int( lerp(self.view_bottom, self.follow_y - (SCREEN_HEIGHT / 2), LERP_SPEED) ) self.player_sprite.on_update(delta_time) for enemy_sprite in self.enemy_list.enemy_list: enemy_sprite.on_update(delta_time) for bullet_sprite in self.bullet_list: bullet_sprite.on_update(delta_time) # screenshake and camera updates if self.shake_remain > 0: self.shake_x = random.randrange(-self.shake_strength, self.shake_strength) self.shake_y = random.randrange(-self.shake_strength, self.shake_strength) self.shake_remain -= 1 else: self.shake_x = 0 self.shake_y = 0 self.shake_strength = 0 # clamp viewport to room rightside_clamp = ROOM_WIDTH leftside_clamp = 0 topside_clamp = ROOM_HEIGHT bottom_clamp = 0 if not (0 < self.view_left + self.shake_x < rightside_clamp - SCREEN_WIDTH): self.view_left = min( rightside_clamp - SCREEN_WIDTH - self.shake_x, self.view_left ) self.view_left = max(self.view_left, leftside_clamp - self.shake_x) if not (0 < self.view_bottom + self.shake_y < topside_clamp - SCREEN_HEIGHT): self.view_bottom = min( topside_clamp - SCREEN_HEIGHT - self.shake_y, self.view_bottom ) self.view_bottom = max(self.view_bottom, bottom_clamp - self.shake_y) arcade.set_viewport( self.view_left + self.shake_x, (SCREEN_WIDTH) + self.view_left + self.shake_x, self.view_bottom + self.shake_y, (SCREEN_HEIGHT) + self.view_bottom + self.shake_y, ) def screenshake(self, length, strength): self.shake_remain = int(abs(length)) self.shake_strength = int(abs(strength)) def on_key_press(self, key, modifiers): if key == arcade.key.F: self.game_instance.window.set_fullscreen( not self.game_instance.window.fullscreen ) arcade.set_viewport( self.view_left + self.shake_x, self.view_left + self.shake_x + SCREEN_WIDTH, self.view_bottom + self.shake_y, self.view_bottom + self.shake_y + SCREEN_HEIGHT, ) def create_bullet(self, pos, vel, damage, speed_falloff, damage_falloff): new_bullet = Bullet(pos, vel, damage, speed_falloff, damage_falloff, self.game_instance.physics_engine, self) new_bullet.register_sprite_list(self.bullet_list) self.bullet_list.append(new_bullet) def calculate_distance_from_player(self, enemy_x, enemy_y): player_x = self.player_sprite.center_x player_y = self.player_sprite.center_y return math.sqrt(abs(enemy_x - player_x) ** 2 + abs(enemy_y - player_y) ** 2) def on_mouse_motion(self, x, y, dx, dy): self.mouse_x = x self.mouse_y = y def load_level(self): # Read in the tiled map path = os.path.join("resources","GameMap.tmx") my_map = arcade.tilemap.read_tmx(path) # --- Walls --- # Calculate the right edge of the my_map in pixels self.end_of_map = my_map.map_size.width * GRID_SIZE # Grab the layer of items we can't move through self.wall_list = arcade.tilemap.process_layer( my_map, "wall", TILE_SPRITE_SCALING ) self.floor_list = arcade.tilemap.process_layer( my_map, "floor", TILE_SPRITE_SCALING ) # --- Other stuff # Set the background color if my_map.background_color: arcade.set_background_color(my_map.background_color) # Set the view port boundaries # These numbers set where we have 'scrolled' to. self.view_left = 0 self.view_bottom = 0
true
3839139f280e45332db2003202258f6352272e6a
Python
D0ub1ePieR/Leetcode
/solutions/202-Happy_Number-快乐数/Happy Number.py
UTF-8
860
3.34375
3
[]
no_license
# python3 # simple # 哈希表 数学 # 48ms 31.73% # 13.4MB 15.50% class Solution: def isHappy(self, n: int) -> bool: record = [] while 1: s = sum([int(x)**2 for x in str(n)]) if s == 1: return True if s in record: return False record.append(s) n = s # 56ms 18.34% # 13.4MB 15.50% class Solution: def isHappy(self, n: int) -> bool: def cal_sum(num): s = sum([int(x)**2 for x in str(num)]) # s = 0 # while num != 0: # s += (num % 10) ** 2 # num //= 10 # return s slow = fast = n while 1: slow = cal_sum(slow) fast = cal_sum(cal_sum(fast)) if slow == fast: break return slow == 1
true
d38fb236c68608ba7aafc16328c24c59fe86c423
Python
Tansiya/tansiya-training-prgm
/sample_question/class_divisible.py
UTF-8
440
4.0625
4
[]
no_license
"""define a class generate which can iterate the number,which divisible by 7,range between 0 and n""" #assign a function class string_handling(): def putNumbers(n): divi = [] for i in range(1, n+1): if i%7==0: divi.append(i) return divi def st_rev(n): s = str(n)[::-1] return s n = int(input()) b = string_handling.putNumbers(n) c = string_handling.st_rev(n) print("Reverse", c) print("Numbers divisible by 7", b)
true
cc0a0a448c1050b959c7917d6e79d354c67e17bf
Python
sanyamc/Courses
/Python/Company/minWindowSubstring.py
UTF-8
4,404
3.65625
4
[]
no_license
""" Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example, S = "ADOBECODEBANC" T = "ABC" Minimum window is "BANC". Note: If there is no such window in S that covers all characters in T, return the empty string "". If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. """ #result = [0,3,5,4,6,7,2] class Solution(object): def minRange(self,dictionary): import heapq min_heap=[] global_min=float("Inf") global_max=-global_min min_diff=global_max min_max=[] min_index=None max_index=None global_dict={} min_key=None min_val=global_min keys=list(dictionary.keys()) i=0 j=0 for key in keys: # print(dictionary) val=dictionary[key].pop(0) global_dict[val]=key heapq.heappush(min_heap,val) if val<min_val: min_val=val min_key=key if(len(dictionary[key])==0): val=heapq.heappop(min_heap) if(len(min_heap)>0): return (val,max(min_heap)) else: return (val,val) while(len(min_heap)>0 and len(dictionary[global_dict[min_heap[0]]])>0): #print(min_heap) val2=heapq.heappop(min_heap) if(len(min_heap)==0): key=global_dict[val2] max_val=dictionary[key][0] else: max_val=max(min_heap) min_max.append((val2,max_val)) # if val2<min_val: # min_val=val2 min_key=global_dict[val2] val=dictionary[min_key].pop(0) global_dict[val]=min_key heapq.heappush(min_heap,val) # print("min key "+str(min_key)) print("heap "+str(min_heap)) print(dictionary) print("min max"+str(min_max)) # if(len(min_heap)==0 or len(dictionary[global_dict[min_heap[0]]])==0): # val = heapq.heappop(min_heap) # if(len(min_heap)==0): # max_val= # else: # max_val=max(min_heap) # min_max.append((val,max_val)) # break if(len(min_heap)>0): val2=heapq.heappop(min_heap) if(len(min_heap)==0): key=global_dict[val2] if(len(dictionary[key])>0): max_val=dictionary[key][0] else: max_val=float("Inf") else: max_val=max(min_heap) min_max.append((val2,max_val)) print(min_max) print(min_heap) for tup in min_max: if abs(tup[1]-tup[0])<global_min: global_min=abs(tup[1]-tup[0]) min_index=min(tup) max_index=max(tup) return (min_index,max_index) def minWindow(self, s, t): """ :type s: str :type t: str :rtype: str """ if s==t: return s if len(s)==0 or len(s)<len(t): return "" dictionary={} t_dict={} for i in t: if i in t_dict: t_dict[i]+=1 else: t_dict[i]=1 for i,val in enumerate(s): if val in t: if val in dictionary: dictionary[val].append(i) else: dictionary[val]=[i] #print(t_dict) #print(dictionary) for key in t_dict: if key not in dictionary or len(dictionary[key])<t_dict[key]: return "" # print(dictionary) tup=self.minRange(dictionary) # print(tup) if(tup[0]==None or tup[1]==None): return "" else: return s[tup[0]:tup[1]+1] a={ 'a':[0,2,4], 'b':[1,5,7], 'c':[3,6] } s=Solution() S = "ADOBECODEBANC" T = "ABC" # S="baab" # T="bbb" # S="aabaabaaab" # T="bb" # S="ab" # T="a" # S="abc" # T="ab" # S="cabwefgewcwaefgcf" # T="cae" S="aabaabaaab" T="bb" S="bbaa" T="aba" print(s.minWindow(S,T))
true
fb81f8b21c2b749e959d2bca3ec8a909415c146d
Python
aroproduction/School_Programs_Class12
/Binary File Programs/updating_binary_02.py
UTF-8
775
3.03125
3
[]
no_license
# Updating name in existing binary file import pickle stu = {} found = False fin = open('../Resources/Stu.dat', "rb+") try: while True: rpos = fin.tell() stu = pickle.load(fin) if stu['Rollno'] == 5: stu['Name'] = 'Gurnam' fin.seek(rpos) pickle.dump(stu, fin) found = True except EOFError: if found == False: print("Sorry, no matching record found") else: print("\n"+"Record(s) successfully updated.\n") fin.close() with open('../Resources/Stu.dat', 'rb') as file: print('Updated Records:') try: while True: updated = pickle.load(file) if updated['Rollno'] == 5: print(updated) except EOFError: pass
true
33f8b828b4d65e6520c6695cdb04eac9957eeec5
Python
fedepacher/Wazuh-Test
/Task_4/Fixture/Module/test_student.py
UTF-8
774
2.90625
3
[ "MIT" ]
permissive
from student import StudentDB import pytest @pytest.fixture(scope='module') def db(): print('----------------Setup method----------------') db = StudentDB() db.connect('students.json') yield db print('----------------Teardown method---------------') db.close() ''' Test for student called Scott param db student list ''' def test_scott_data(db): scott_data = db.get_data('Scott') assert scott_data['id'] == 1 assert scott_data['name'] == 'Scott' assert scott_data['result'] == 'pass' ''' Test for student called Mark param db student list ''' def test_mark_data(db): mark_data = db.get_data('Mark') assert mark_data['id'] == 2 assert mark_data['name'] == 'Mark' assert mark_data['result'] == 'fail'
true
d749db8f4defc9101d35c4cf96da5fa8e352e6c5
Python
Vahid-Esmaeelzadeh/CTCI-Python
/educative/08 Tree DFS/04 Path With Given Sequence (medium).py
UTF-8
1,013
4.28125
4
[]
no_license
''' Path With Given Sequence Given a binary tree and a number sequence, find if the sequence is present as a root-to-leaf path in the given tree. ''' class TreeNode: def __init__(self, value, left=None, right=None): self.value = value self.left, self.right = left, right def has_path_with_given_sequence(root, seq): if root is None or len(seq) == 0: return False if root.value != seq[0]: return False if root.left is None and root.right is None and len(seq) == 1 and root.value == seq[0]: return True return has_path_with_given_sequence(root.left, seq[1:]) or has_path_with_given_sequence(root.right, seq[1:]) root = TreeNode(1) root.left = TreeNode(0) root.right = TreeNode(1) root.left.left = TreeNode(1) root.right.left = TreeNode(6) root.right.right = TreeNode(5) print("Tree has path sequence: " + str(has_path_with_given_sequence(root, [1, 0, 7]))) print("Tree has path sequence: " + str(has_path_with_given_sequence(root, [1, 1, 6])))
true
4c30efcbe8896e73ee5549edcaf16c70dd3e4b4c
Python
drewrutt/Image-To-Dice
/editor.py
UTF-8
3,035
3.6875
4
[]
no_license
from PIL import Image, ImageFilter import math import os dirname = os.path.dirname(__file__) def open_image(path): newImage = Image.open(path).convert('LA') return newImage # Save Image def save_image(image, path): image.save(path, 'png') # Create a new image with the given size def create_image(i, j): image = Image.new("RGB", (i, j), "white") return image # Get the pixel from the given image def get_pixel(image, i, j): # Inside image bounds? width, height = image.size if i >= width or j >= height: return None # Get Pixel pixel = image.getpixel((i, j)) return pixel #Builds the image section by section with the dice faces. #BRACKETS # 6 -> 0 - 42.5 # 5 -> 42.5 - 85 # 4 -> 85 - 127.5 # 3 -> 127.5 - 170 # 2 -> 170 - 212.5 # 1 -> 212.5 - 255 def create_dice_ary(image, blur, dirname): one = open_image(os.path.join(dirname, 'dice_bigger', 'one.png')) two = open_image(os.path.join(dirname, 'dice_bigger', 'two.png')) three = open_image(os.path.join(dirname, 'dice_bigger', 'three.png')) four = open_image(os.path.join(dirname, 'dice_bigger', 'four.png')) five = open_image(os.path.join(dirname, 'dice_bigger', 'five.png')) six = open_image(os.path.join(dirname, 'dice_bigger', 'six.png')) blur *= 3 factor = math.floor(int(50/blur)) lastX = 0 lastY = 0 width, height = image.size newimage = Image.new("1", (width*factor, height*factor)) ary = [] for x in range(int(height/blur)): row = [] for y in range(int(width/blur)): pix = get_pixel(image, lastX, lastY) if(pix != None): if(pix[0] <= 42.5): row.append(6) newimage.paste(six, (lastX*factor, lastY*factor)) elif(pix[0] > 42.5 and pix[0] <= 85): row.append(5) newimage.paste(five, (lastX*factor, lastY*factor)) elif(pix[0] > 85 and pix[0] <= 127.5): row.append(4) newimage.paste(four, (lastX*factor, lastY*factor)) elif(pix[0] > 127.5 and pix[0] <= 170): row.append(3) newimage.paste(three, (lastX*factor, lastY*factor)) elif(pix[0] > 170 and pix[0] <= 212.5): row.append(2) newimage.paste(two, (lastX*factor, lastY*factor)) else: row.append(1) newimage.paste(one, (lastX*factor, lastY*factor)) lastX += blur lastY += blur lastX = 0 ary.append(row) return newimage #To run: # -Pillow must be installed # -Put the image file path in the open_image section # -Set the blur to determine how much detail you would like (int 1 to whatever) # -Resulting file is saved in the same place as this file and is titled "dice.png" if __name__ == "__main__": img = open_image(r"") #Put the path to the image file here. #For windows you need to convert to a raw string which # it is already set up for. blur = 1 img = img.filter(ImageFilter.BoxBlur(blur)) newimg = create_dice_ary(img, blur, dirname) newimg.save("dice.png")
true
34abc24dc07fb23f142b90ccd10ecff719b39e1a
Python
dhermes/project-euler
/python/complete/no303.py
UTF-8
1,958
3.53125
4
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # We begin with a sorted list of values to choose from. # If the value is not found, we log our biggest value and # save the number of digits. We then start with 10**d # and 2*(10**d), the next biggest values with only digits # less than 3. We wish to find some x*(10**d) + y, where # both x and y have only 1s and 2s and y has d digits # or less. We want to x*(10**d) + y == 0 mod n # Since we have all possible values y with d digits or less, # we want to find the smallest match x such that # x*(10**d) is in the set of residues (-y) % n from itertools import product as i_product from python.decorators import euler_timer def find(n, value_list): for value in value_list: if value % n == 0: return value digs = len(str(max(value_list))) needed_residues = sorted(set((-value) % n for value in value_list)) residue = (10 ** digs) % n actual_list = [1, 2] residue_form = [(residue * val) % n for val in actual_list] while set(residue_form).intersection(needed_residues) == set(): next = [] for val in actual_list: next.extend([10 * val, 10 * val + 1, 10 * val + 2]) actual_list = next residue_form = [(residue * val) % n for val in actual_list] best_match = min(val for val in actual_list if (residue * val) % n in needed_residues) best_opposites = [val for val in value_list if val % n == (-(best_match * residue)) % n] return (10 ** digs) * best_match + min(best_opposites) def main(verbose=False): MAX_DIGITS = 12 candidate_lists = [['0', '1', '2']] * MAX_DIGITS values = list(i_product(*candidate_lists)) values = [int(''.join(value)) for value in values][1:] running_sum = 0 for n in range(1, 10000 + 1): running_sum += find(n, values) / n return running_sum if __name__ == '__main__': print euler_timer(303)(main)(verbose=True)
true
90fa9a1cadcb369433eb6be5222001532e76dcd7
Python
Chad-Mowbray/iamb-classifier
/ipclassifier/token_processors/spelling_syllabify.py
UTF-8
8,370
2.859375
3
[ "MIT" ]
permissive
import re from copy import deepcopy from nltk import pos_tag class SpellingSyllabifier: """ A last resort if a word token cannot be found elsewhere Syllabifies a word based only on its spelling Ridiculously expandable """ VOWELS = "aeiouy" DUMMY_STRESSED = "AH1" DUMMY_UNSTRESSED = "AH0" REGEX = { # Endings "IES": r'ies?$', "ION": r'[st]{1}ions?$', "ED": r'[^aeiou]ed$', "EST": r'.{2,}est$', "IZE": r'i[sz]es?$', "E": r'[^aeio]es?$', "SES": r'[sz]es$', "IAN": r'ianS?$', # Non-Endings "QU": r'qu', "AE": r'ae', "DOUBLE": r'([eiouy])\1', # no double a "OU": r'ou', "EY": r'ey\W?', "YV": r'y[aeiou]', "EA": r'ea', "AI": r'ai', "AU": r'au', "UI": r'ui', "OY": r'oy', # Others "EOU": r'eou', "EON": r'eon', "VLV": r'[aeiou]{1}[vwrl][aeiou]{1}' } def __init__(self, token): self.tentative_phonemes = [[]] self._token = token self._syllable_count = 0 self._modified_word = '' self._reduced_syllables = 0 self._main() def _get_syllable_count(self): word = self._check_endings() word = self._check_special_cases(word) syllables = [w for w in word if w in self.VOWELS] self._syllable_count = len(syllables) def _find_multiple(self, regex, word, rev=False): res = re.finditer(regex, word) indicies = [m.start() + 1 for m in res] indicies = indicies[::-1] if rev else indicies for idx in indicies: word = word[:idx] + word[idx + 1:] self._reduced_syllables += 1 return word def _find_single(self, letter, word): idx = word.rindex(letter) word = word[:idx] + word[idx + 1:] self._reduced_syllables += 1 return word def _check_endings(self): word = self._token if re.search(self.REGEX["EST"], word): word = self._find_single("e", word) return word if re.search(self.REGEX["IZE"], word): word = self._find_single("e", word) return word if re.search(self.REGEX["IAN"], word): word = self._find_single("i", word) return word if re.search(self.REGEX["IES"], word): word = self._find_single("e", word) return word if re.search(self.REGEX["SES"], word): return word if re.search(self.REGEX["E"], word): word = self._find_single("e", word) return word if re.search(self.REGEX["ION"], word) and len(word) > 4: word = self._find_single("i", word) return word if re.search(self.REGEX["ED"], word) and len(word) >= 4: word = self._find_single("e", word) return word return word def _check_special_cases(self, word=None): word = word if word else self._token if re.search(self.REGEX["AU"], word): word = self._find_multiple(self.REGEX["AU"], word) return self._check_special_cases(word) if re.search(self.REGEX["AI"], word): word = self._find_multiple(self.REGEX["AI"], word) return self._check_special_cases(word) if re.search(self.REGEX["QU"], word): word = self._find_multiple(self.REGEX["QU"], word) return self._check_special_cases(word) if re.search(self.REGEX["AE"], word): word = self._find_multiple(self.REGEX["AE"], word, rev=True) return self._check_special_cases(word) if re.search(self.REGEX["DOUBLE"], word): word = self._find_multiple(self.REGEX["DOUBLE"], word) return self._check_special_cases(word) if re.search(self.REGEX["OU"], word): word = self._find_multiple(self.REGEX["OU"], word) return self._check_special_cases(word) if re.search(self.REGEX["EY"], word): word = self._find_multiple(self.REGEX["EY"], word) return self._check_special_cases(word) if re.search(self.REGEX["YV"], word): word = self._find_multiple(self.REGEX["YV"], word) return self._check_special_cases(word) if re.search(self.REGEX["EA"], word): word = self._find_multiple(self.REGEX["EA"], word) return self._check_special_cases(word) if re.search(self.REGEX["UI"], word): word = self._find_multiple(self.REGEX["UI"], word) return self._check_special_cases(word) if re.search(self.REGEX["OY"], word): word = self._find_multiple(self.REGEX["OY"], word) return self._check_special_cases(word) self._modified_word = word return self._modified_word def _simple_stressor(self, restore_syllables=0): count = self._syllable_count if count == 1: return [[self.DUMMY_STRESSED]] else: return [[self.DUMMY_STRESSED if i == self._syllable_count - 2 else self.DUMMY_UNSTRESSED for i in range(self._syllable_count + restore_syllables) ]] def _complicated_stressor(self, POS, restore_syllables=0): if POS == "V" or any([self._token.endswith(ending) for ending in ["est", "eth", "ise", "ize"] ]): return [[self.DUMMY_STRESSED if i == 0 else self.DUMMY_UNSTRESSED for i in range(self._syllable_count + restore_syllables) ]] if POS in ["N", "J"]: return [[self.DUMMY_STRESSED if i == self._syllable_count - 1 else self.DUMMY_UNSTRESSED for i in range(self._syllable_count + restore_syllables) ]] def _check_ed(self, phonemes): if self._token.endswith("ed") and len(self._token) > 4: antepenult_letter = self._token[-3] if antepenult_letter not in "aeiou": phonemes_copy = deepcopy(phonemes[0]) phonemes_copy.insert(-1,'EH0') phonemes.append(phonemes_copy) self._reduced_syllables -= 1 return phonemes def _check_vowel_cluster(self, phonemes): if re.search(self.REGEX["EOU"], self._token): phonemes_len = len(phonemes[0]) reduced_phonemes = [self.DUMMY_STRESSED if i == 0 else self.DUMMY_UNSTRESSED for i in range(phonemes_len - 1) ] phonemes.append(reduced_phonemes) if re.search(self.REGEX["EON"], self._token): reduced_phonemes = [self.DUMMY_STRESSED if i == 0 else self.DUMMY_UNSTRESSED for i in range(2) ] phonemes.append(reduced_phonemes) if re.search(self.REGEX["VLV"], self._token): phonemes_len = len(phonemes[0]) reduced_phonemes = [self.DUMMY_STRESSED if i == 0 else self.DUMMY_UNSTRESSED for i in range(phonemes_len - 1) ] phonemes.append(reduced_phonemes) return phonemes def _create_phoneme_repr(self): """ Check POS, if none, use simple_stressor, otherwise, use complicated_stressor """ tag = pos_tag([self._token])[0][1] if tag.startswith("V") or any([self._token.endswith(ending) for ending in ["est", "eth", "ise", "ize"] ]): #or tag.startswith("N") or tag.startswith("J") self.tentative_phonemes = self._complicated_stressor(tag[0]) if self._token.endswith('ed'): self.tentative_phonemes = self._check_ed(self.tentative_phonemes) if self._modified_word: self.tentative_phonemes.append(self._complicated_stressor(tag[0], self._reduced_syllables)[0]) else: self.tentative_phonemes = self._simple_stressor() if self._token.endswith('ed'): self.tentative_phonemes = self._check_ed(self.tentative_phonemes) if self._modified_word: self.tentative_phonemes.append(self._simple_stressor(self._reduced_syllables)[0]) def _final_reduction_check(self): with_vowel_cluster = self._check_vowel_cluster(self.tentative_phonemes) self.tentative_phonemes = with_vowel_cluster def _main(self): self._get_syllable_count() self._create_phoneme_repr() self._final_reduction_check()
true
6923cb61c5715437746f44e20c14ec82cfa5988e
Python
houking-can/GenDataset
/acl.py
UTF-8
962
2.65625
3
[]
no_license
import os import shutil import json import re def iter_files(path): """Walk through all files located under a root path.""" if os.path.isfile(path): yield path elif os.path.isdir(path): for dirpath, _, filenames in os.walk(path): for f in filenames: yield os.path.join(dirpath, f) else: raise RuntimeError('Path %s is invalid' % path) d_path = r'E:\JSON\ACL' files = iter_files(d_path) for id,file in enumerate(files): if file.endswith('.json'): tmp = json.load(open(file)) abstract = tmp["abstract"] if "title and abstract" in abstract.lower(): abstract = re.sub("title and abstract.*$",'',abstract,flags=re.I) tmp["abstract"] =abstract json.dump(tmp,open(file,'w'),indent=4) print(file) # files = iter_files(path) # for id,file in enumerate(files): # shutil.move(file,os.path.join(path,"%d_decoded.txt" % id))
true
65ea0e92549e393489d39287a1439826736fdea8
Python
AHKerrigan/Think-Python
/exercise11_1.py
UTF-8
834
3.90625
4
[]
no_license
""" This is a solution to an exercise from Think Python, 2nd Edition by Allen Downey http://thinkpython2.com Copyright 2015 Allen Downey License: http://creativecommons.org/licenses/by/4.0/ Exercise 11-1 Write a function that reads the words in words.txt and stores them as keys in a dic‐ tionary. It doesn’t matter what the values are. Then you can use the in operator as a fast way to check whether a string is in the dictionary. """ def to_dictionary(file): """Takes a file as input and returns a dictionary containing each line as a key Keyword Arugments: file: the file we pull from Return aruguments: d: the dictionary we will return""" fin = open(file) d = dict() for line in fin: d[line.strip()] = '' return d if __name__ == "__main__": d = to_dictionary('words.txt') print("hello") print('exercise' in d)
true
f124cdbb85b04a3a09bc9252dddf7d6633df03bb
Python
afauth/mudecay
/MuonDecay/.old/analysis/mainFile.py
UTF-8
19,225
3.234375
3
[]
no_license
#Imports import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks from scipy.integrate import simps, trapz from scipy.optimize import curve_fit from scipy.stats import chisquare ################################################################################################################### #1. Picos ## 1.1. def peak_finder(series, height): # peak_finder se aplica em data frames com valores do eixo y #print('= Chamando funcao: peak_finder...') ''' Auxilia a encontrar todos os picos de uma waveform. No caso, encontra dois picos. Essa função retorna os valores no eixo x ''' # get the actual peaks peaks, _ = find_peaks( (-1)*series, height = height ) # height é um parâmetro decidido return(peaks) ## 1.2. def peaks_em_x(df, height, err_mess=0): ''' Esse loop cria e checa se existem erros na obtenção dos picos através da função peak-finder, quando peaks != 2 ''' peaks_em_x = [] counter = 0 for i in range(df.shape[1]): evento = df[ df.columns[i] ] _ = peak_finder(series=evento, height=height) if len(_) != 2: print(f'problema no {evento.name} com tamanho = {len(_)} e picos em {_}') counter += 1 peaks_em_x.append(_) if err_mess == 1: print(f'\nloop finalizado com {counter} erros') return(peaks_em_x) ## 1.3. def peak_finder_xy(series, height): ''' Essa função utiliza a peak_finder e já retorna os dados como uma Series com os valores em x e y de cada pico ''' __ = peak_finder(series=series, height=height) return(series.iloc[__]) ## 1.4. def peaks_em_xy(df, height, err_mess=0): peaks_em_xy = pd.Series([]) for i in range( df.shape[1] ): evento = df[ df.columns[i] ] _ = peak_finder_xy(series=evento, height=height) peaks_em_xy = pd.concat([ peaks_em_xy, _ ]) if len(peaks_em_xy) != 2*(df.shape[1] ): # se ele reconhe algo diferente de dois picos por waveform: print(f'existe um erro nos picos, pois aparece(m) {len(peaks_em_xy) - 2*(df.shape[1] )} pico(s) a mais') else: if err_mess == 1: print('não foram detectados problemas na quantidade de picos') peaks_em_xy = pd.DataFrame(peaks_em_xy).reset_index() peaks_em_xy.columns = ['x', 'y'] return(peaks_em_xy) ##1.5. def peaks_divididos_01(df, height, err_mess=0): _ = peaks_em_xy(df=df, height=height, err_mess=err_mess) peaks_0, peaks_1 = _.query('index % 2 == 0'), _.query('index % 2 != 0') return(peaks_0, peaks_1) ################################################################################################################### #2 ##2.1. def derivada_x(s): # insira uma series na entrada; o valor retornado está em coordenadas do eixo x ''' Encontra as diferenças entre elementos lado-a-lado. Serve para avaliar quando estamos começando ou terminando um pulso. ''' VA_derivada_baseLine = 5 # flutuação/amplitude máxima da base-line; # valor arbirtrário para saber se o número em questão está fora da # base-line; não é exatamente a derivada _ = [] for i in range( len(s) - 1 ): # i = index da series if abs(s[i] - s[i+1]) > VA_derivada_baseLine: _.append(i) return (_) # o valor retornado está em coordenadas do eixo x ################################################################################################################### #3. Contornos ##3.1. def contorno_limite_derivada(series, VA_1, VA_2, height): # recebe uma Series do pandas para começar ''' Define um recorte de onde se deve buscar um pulso e os seus delimitadores VA_1 e VA_2 são variáveis arbitrárias para definir a largura do pulso ''' peak = peak_finder(series, height=height) # encontrar os picos da waveform s1 = series[ (peak[0] - VA_1):(peak[0] + VA_2) ] # recortar envolta dos picos s2 = series[ (peak[1] - VA_1):(peak[1] + VA_2) ] df1 = pd.DataFrame( dict(s1 = s1) ).reset_index() # cria um Data Frame com os valores do recorte df1.columns = ['time', 's1'] # renomeia a coluna do data frame df2 = pd.DataFrame( dict(s1 = s2) ).reset_index() df2.columns = ['time', 's2'] ''' Calcular a "derivada" em cada ponto no entorno, para saber os limitantes do pulso Ao terminar, retornar o data frame que contem os valores limitantes do contorno do pulso ''' indexLim_1 = derivada_x( df1['s1'] ) # índices limitantes indexLim_2 = derivada_x( df2['s2'] ) # redefine os valores para apenas os limitantes do data frame df1 = df1.iloc[ [ indexLim_1[0], indexLim_1[-1] ] ] df2 = df2.iloc[ [ indexLim_2[0], indexLim_2[-1] ] ] # print(df2) # series marcada pelas colunas # da Series original, temos agora o contorno do pulso s1 = series[ df1['time'].iloc[0] : df1['time'].iloc[1]+1 ] # soma 1 para incluir o último termo s2 = series[ df2['time'].iloc[0] : df2['time'].iloc[1]+1 ] # print(s2) pulsos = s1, s2 return(pulsos) # retorna os dois contornos, um de cada pulso # ##3.2. def contorno_limite_arbitrario(df, VA_1, VA_2, height , err_mess=0): ''' Esse loop serve para olhar, em cada waveform do Data Frame original, o contorno ao redor de cada pulso, selecionado através do pico e das larguras arbitradas. Por razões de implementaçao, filtramos como queremos em cada uma das waveforms e transformamos num array. Com isso, acho que ficará bem mais rápido de fazer essas operações. O resultado é empilhado e transformado num Data Frame. ''' peaks_0 , peaks_1 = peaks_divididos_01(df=df, height=height) # if len(peaks_0) != len(peaks_1): # print('erro na obtenção dos picos divididos') contorno_0 = [] contorno_1 = [] ''' Para eventos que "terminam na borda" da janela, é possível que tenhamos um problema de tamanho do contorno, que seria de não pegarmos ou todo o pulso ou de não conseguir alocar tudo num DataFrame por causa da diferença de tamanho. ''' aux = [] for i in range( df.shape[1] ): evento = df[ df.columns[i] ] s0 = evento.where( (evento.index >= peaks_0.x.iloc[i] - VA_1) & (evento.index <= peaks_0.x.iloc[i] + VA_2) ).dropna().array if len(s0) != 1 + VA_1 + VA_2: s0 = np.append( s0 , np.full(1 + VA_1 + VA_2 - len(s0) , np.nan) ) aux.append(i) # if len(s0) != 1 + VA_1 + VA_2: # print(f'erro em {i}') s1 = evento.where( (evento.index >= peaks_1.x.iloc[i] - VA_1) & (evento.index <= peaks_1.x.iloc[i] + VA_2) ).dropna().array if len(s1) != 1 + VA_1 + VA_2: s1 = np.append( s1 , np.full(1 + VA_1 + VA_2 - len(s1) , np.nan) ) aux.append(i) # if len(s1) != 1 + VA_1 + VA_2: # print(f'erro em {i}') contorno_0.append(s0) contorno_1.append(s1) contorno_0 = pd.DataFrame( np.array(contorno_0) ).T # pontos do contorno vs waveform contorno_1 = pd.DataFrame( np.array(contorno_1) ).T if err_mess == 1: ''' Loop de checagem dos contornos ''' if ( len(contorno_0) and len(contorno_1) ) != df.shape[1] : _ = abs( len(contorno_0) - len(contorno_1) ) __ = 'primeiro' if len(contorno_0) > len(contorno_1) else 'segundo' print(f'Os contornos não batem no tamanho. Existe(m) {_} a mais no {__}') for elemento in (contorno_0 or contorno_1): if len(elemento) != VA_1 + VA_2 + 1: print(f'Erro no {elemento.name}') if len(aux) != 0: print(f'\nForam detectados {len(aux)} problemas na questão do tamanho da janela do contorno;\nOs problemas estão em {aux};\nPreenchidos com valores Nan\n') else: if err_mess == 1: print('\nNão foram detectados problemas na questão do tamanho da janela do contorno\n') #Retorna dois DataFrames contendo os contornos de cada waveform para cada um dos dois picos return( contorno_0, contorno_1 ) def contorno_limite_arbitrario_picos(df, peaks_01, VA_1, VA_2, height, err_mess=0): ''' Esse loop serve para olhar, em cada waveform do Data Frame original, o contorno ao redor de cada pulso, selecionado através do pico e das larguras arbitradas. Por razões de implementaçao, filtramos como queremos em cada uma das waveforms e transformamos num array. Com isso, acho que ficará bem mais rápido de fazer essas operações. O resultado é empilhado e transformado num Data Frame. ''' peaks_xy_0 , peaks_xy_1 = peaks_01 ''' Para eventos que "terminam na borda" da janela, é possível que tenhamos um problema de tamanho do contorno, que seria de não pegarmos ou todo o pulso ou de não conseguir alocar tudo num DataFrame por causa da diferença de tamanho. ''' # aux = [] # for i in range( df.shape[1] ): # evento = df[ df.columns[i] ] # s0 = evento.where( # (evento.index >= peaks_0.x.iloc[i] - VA_1) & (evento.index <= peaks_0.x.iloc[i] + VA_2) # ).dropna().array # if len(s0) != 1 + VA_1 + VA_2: # s0 = np.append( s0 , np.full(1 + VA_1 + VA_2 - len(s0) , np.nan) ) # aux.append(i) # # if len(s0) != 1 + VA_1 + VA_2: # # print(f'erro em {i}') # s1 = evento.where( # (evento.index >= peaks_1.x.iloc[i] - VA_1) & (evento.index <= peaks_1.x.iloc[i] + VA_2) # ).dropna().array # if len(s1) != 1 + VA_1 + VA_2: # s1 = np.append( s1 , np.full(1 + VA_1 + VA_2 - len(s1) , np.nan) ) # aux.append(i) # # if len(s1) != 1 + VA_1 + VA_2: # # print(f'erro em {i}') contorno_0 = [] aux_0 = [] for i in peaks_xy_0.index: evento = df[ df.columns[i] ] s0 = evento.where( (evento.index >= peaks_xy_0['x'][i] - VA_1) & (evento.index <= peaks_xy_0['x'][i] + VA_2) ).dropna().array if len(s0) != 1 + VA_1 + VA_2: s0 = np.append( s0 , np.full(1 + VA_1 + VA_2 - len(s0) , np.nan) ) aux_0.append(i) # if len(s0) != 1 + VA_1 + VA_2: # print(f'erro em {i}') contorno_0.append(s0) contorno_1 = [] aux_1 = [] for i in peaks_xy_1.index: evento = df[ df.columns[i] ] s1 = evento.where( (evento.index >= peaks_xy_1['x'][i] - VA_1) & (evento.index <= peaks_xy_1['x'][i] + VA_2) ).dropna().array if len(s1) != 1 + VA_1 + VA_2: s1 = np.append( s1 , np.full(1 + VA_1 + VA_2 - len(s1) , np.nan) ) aux_1.append(i) # if len(s1) != 1 + VA_1 + VA_2: # print(f'erro em {i}') contorno_1.append(s1) contorno_0 = pd.DataFrame( np.array(contorno_0) ).T # pontos do contorno vs waveform contorno_1 = pd.DataFrame( np.array(contorno_1) ).T if err_mess == 1: ''' Loop de checagem dos contornos ''' if ( len(contorno_0) and len(contorno_1) ) != df.shape[1] : _ = abs( len(contorno_0) - len(contorno_1) ) __ = 'primeiro' if len(contorno_0) > len(contorno_1) else 'segundo' print(f'Os contornos não batem no tamanho. Existe(m) {_} a mais no {__}') for elemento in (contorno_0 or contorno_1): if len(elemento) != VA_1 + VA_2 + 1: print(f'Erro no {elemento.name}') aux = aux_0 + aux_1 if len(aux) != 0: print(f'\nForam detectados {len(aux)} problemas na questão do tamanho da janela do contorno;\nOs problemas estão em {aux};\nPreenchidos com valores Nan\n') else: if err_mess == 1: print('\nNão foram detectados problemas na questão do tamanho da janela do contorno\n') ''' Retorna dois DataFrames contendo os contornos de cada waveform para cada um dos dois picos ''' return( contorno_0, contorno_1 ) #%% #4. Integrais ##4.1. def integral_simples(dados_em_y, dx): _ = dados_em_y I = 0 for i in range(len(_)): y = _.iloc[i] I += y * dx return(I) def integral_simples_dataframe(df, dx): integrais = np.array([]) for i in range( df.shape[1] ): coluna = df[ df.columns[i] ].dropna() integral = integral_simples(dados_em_y=coluna , dx=dx) integrais = np.append(integrais , integral) return(pd.Series(integrais)) #%% #5. Base Line ##5.1. def baseLine_sample(series, height, VA_1): # recebe uma series do pandas ''' Definimos essa função que retorna uma sample da base line da waveform. Retorna uma amostra da waveform para determinar o valor estatístico dela ''' _ = peak_finder(series, height = height) '''Pega todos os elementos até o início do primeiro pulso; intervalo exclusivo à direita''' if len(_) != 0: # pode acontecer de que o peak_finder não x_inicio_pulso_0 = _[0] - VA_1 # definido arbitrariamente sample = series.iloc[:x_inicio_pulso_0] else: sample = None return( sample ) # este elemento é uma Series ##5.2. Base Line def baseLine(df, height, VA_1): baseLines = [] # será uma lista de series for i in range( df.shape[1] ): evento = df[ df.columns[i] ] baseLines.append( baseLine_sample(evento, height, VA_1 = VA_1) ) baseLines = pd.concat(baseLines) return(baseLines) #retorna uma Series com os dados de base line #%% #6. LIDANDO COM FILTRAGENS E SATURAÇÕES NO DATA FRAME def filtra_saturacao_total(df, height, VA_1, VA_2): _ = peaks_divididos_01( df, height = height ) peaks_xy_0 , peaks_xy_1 = _[0] , _[1] filt_0 = pd.Series( peaks_xy_0.query('y > y.min()').index // 2 ) filt_1 = pd.Series( peaks_xy_1.query('y > y.min()').index // 2 ) _ = pd.concat( (filt_0, filt_1), ignore_index=True ).value_counts() filt_saturacao = pd.Series ( _.where( _ == 2).dropna().sort_index().index ) # aparece duas vezes <--> está nas duas Series df_filt_saturacao = df.iloc[ : , filt_saturacao] return (df_filt_saturacao) def filtra_saturacao_parcial(df, height, VA_1, VA_2): _ = peaks_divididos_01( df, height = height ) peaks_xy_0 , peaks_xy_1 = _[0] , _[1] filt_0 = peaks_xy_0.query('y > y.min()') filt_1 = peaks_xy_1.query('y > y.min()') return( np.array([ filt_0, filt_1 ]) ) def filtra_delta_t(df, convert_to_microsec, time_in_ADCch, height): _ = pd.DataFrame( peaks_em_x( df=df, height=height), columns = ['peak_0', 'peak_1'] ) delta_x = ( _['peak_1'] - _['peak_0'] ) delta_x.name = 'delta_x' delta_x_filtrado = delta_x.where(delta_x <= convert_to_microsec*time_in_ADCch).dropna() df_filtrado = df.iloc[: , delta_x_filtrado.index] return(df_filtrado) #%% Plot fit exponencial das diferenças de tempo def curve_fit_exponencial(df, height, convert_to_microsec, custom_number_of_bins=0, plot_graph=1, plt_points=0, plt_bars=1, path_to_save='../Documents/images/curve_fit-vida_media.png'): _ = pd.DataFrame( peaks_em_x( df=df, height=height), columns = ['peak_0', 'peak_1'] ) delta_x = ( _['peak_1'] - _['peak_0'] )*convert_to_microsec delta_x.name = 'delta_x' #print(f'Total de {len(delta_x)} eventos') ''' (a) Definimos a função de ajuste para a exponencial ''' def fit_function(t, A, tau, C): # função de ajuste exponencial return( A * np.e**(-t/tau) + C ) ''' (b) Coletamos os dados e fazemos plots preliminares, para ir acompanhando os resultados Obs.: a variável number_of_bins é o jeito padrão de quantificar quantos bins se tem num histograma fonte: https://stackoverflow.com/questions/60512271/how-can-i-extract-the-bins-from-seaborns-kde-distplot-object ''' if custom_number_of_bins == 0: number_of_bins = min( len( np.histogram_bin_edges(delta_x, bins="fd") ), 50 ) else: number_of_bins = custom_number_of_bins data_entries, bins = np.histogram(delta_x , bins = number_of_bins) bins_centers = np.array([0.5 * (bins[i] + bins[i+1]) for i in range(len(bins)-1)]) ''' (c) Fazemos a regressão pela curve_fit do Scipy obs.: É importante dar um valor inicial para os parâmetros, como um chute inicial. Nesse caso, eu apenas chutei os valores mesmo algumas vezes ''' p0 = np.array([ 0.5, 0.1, 1 ]) # initial guess for the parameters: y(t) = A * np.e**(-t/tau) + C coeff, cov_coeff = curve_fit( fit_function , xdata = bins_centers , ydata = data_entries, p0 = p0 ) #coeff, cov_coeff = curve_fit( fit_function , xdata = bins_centers , ydata = data_entries ) ''' (d) incertezas ''' #Calcula a incerteza coeff_error = np.sqrt(np.diag(cov_coeff)) / np.sqrt(number_of_bins - 1) #"np.sqrt(cov) / sqrt(n - 1)" ''' (e) Resultado ''' coeff_results = pd.DataFrame( [coeff, coeff_error] ).T coeff_results.rename( columns = {0:'valor', 1:'incerteza'}, index ={ 0:'A', 1:'tau', 2:'C' } , inplace = True ) ''' (f) Plot com histograma e regressão da curva ''' if plot_graph == 1: # detalhes fig = plt.figure( figsize=(8,6), dpi=200 ) plt.title('Diferenças de tempo entre o primeiro e o segundo pulso') #plt.ylabel(r'$\dfrac{\Delta N}{\Delta t}$') plt.xlabel(r'Diferença de tempo ($\mu$s)') plt.ylabel('Contagem / intervalo de tempo (Hz)') #plt.legend() # plot do histograma if plt_bars == 1: #sns.histplot(delta_x*convert_to_microsec, color='gray', bins=number_of_bins) sns.histplot(delta_x, color='gray', bins=number_of_bins) # plot dos centros dos bins if plt_points == 1: #plt.scatter(bins_centers*convert_to_microsec, data_entries, color = 'black', label = 'centro dos bins') plt.scatter(bins_centers, data_entries, color = 'black', label = 'centro dos bins') # plot da curve_fit x = np.linspace(0,10, 10000) plt.plot( x, fit_function(x, coeff[0], coeff[1], coeff[2]), color = 'orange', label = f'y(t) = {round(coeff[0])}*e^-t/{round(coeff[1])} + {round(coeff[2])}' ) return(coeff_results, fig, bins_centers, data_entries) else: #print('No figure') return(coeff_results, bins_centers, data_entries) #%% print('mainFile e bibliotecas importados')
true
3e472c5972d90ad0848cc8a6b5409d6b5cc4effa
Python
BuysDB/SingleCellMultiOmics
/singlecellmultiomics/barcodeFileParser/barcodeFileParser.py
UTF-8
10,138
3.015625
3
[ "MIT" ]
permissive
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import glob import logging from colorama import Fore from colorama import Back from colorama import Style import os import collections import itertools import gzip #logging.basicConfig(level=logging.DEBUG) # http://codereview.stackexchange.com/questions/88912/create-a-list-of-all-strings-within-hamming-distance-of-a-reference-string-with def hamming_circle(s, n, alphabet): for positions in itertools.combinations(range(len(s)), n): for replacements in itertools.product( range(len(alphabet) - 1), repeat=n): cousin = list(s) for p, r in zip(positions, replacements): if cousin[p] == alphabet[r]: cousin[p] = alphabet[-1] else: cousin[p] = alphabet[r] yield ''.join(cousin) class BarcodeParser(): def path_to_barcode_alias(self, path): barcodeFileAlias = os.path.splitext( os.path.basename(path))[0].replace('.gz','').replace('.bc','') return barcodeFileAlias def parse_pending_barcode_file_of_alias(self, alias): if not alias in self.pending_files: raise ValueError(f"trying to load {alias}, but barcode file not found") logging.info(f"Loading promised barcode file {alias}") self.parse_barcode_file( self.pending_files[alias] ) logging.info(f"Performing hamming extension for {alias}") self.expand(self.hammingDistanceExpansion, alias=alias) del self.pending_files[alias] def parse_barcode_file(self, barcodeFile): barcodeFileAlias = self.path_to_barcode_alias(barcodeFile) # Decide the file type (index first or name first) indexNotFirst = False with gzip.open(barcodeFile,'rt') if barcodeFile.endswith('.gz') else open(barcodeFile) as f : for i, line in enumerate(f): parts = line.strip().split() if len(parts) == 1 and ' ' in line: parts = line.strip().split(' ') if len(parts) == 1: pass elif len(parts) == 2: indexFirst = not all((c in 'ATCGNX') for c in parts[0]) if not indexFirst: indexNotFirst = True # print(parts[1],indexFirst) nospec=False i=0 with gzip.open(barcodeFile,'rt') if barcodeFile.endswith('.gz') else open(barcodeFile) as f : for i, line in enumerate(f): parts = line.strip().split() if len(parts) == 1 and ' ' in line: parts = line.strip().split(' ') if len(parts) == 1: self.addBarcode( barcodeFileAlias, barcode=parts[0], index=i+1) #self.barcodes[barcodeFileAlias][parts[0]] = i if not nospec: # only show this once: logging.info( f"\t{parts[0]}:{i} (No index specified in file)") nospec=True elif len(parts) == 2: if indexNotFirst: barcode, index = parts else: index, barcode = parts #self.barcodes[barcodeFileAlias][barcode] = index # When the index is only digits, convert to integer try: if int(index)==int(str(int(index))): index = int(index) else: pass except Exception as e: pass self.addBarcode( barcodeFileAlias, barcode=barcode, index=index) if not nospec: # only show this once: logging.info( f"\t{barcode}:{index} (index was specified in file, {'index' if indexFirst else 'barcode'} on first column)") nospec=True else: e = f'The barcode file {barcodeFile} contains more than two columns. Failed to parse!' logging.error(e) raise ValueError(e) logging.info(f'done loading {i} barcodes') def __init__( self, barcodeDirectory='barcodes', hammingDistanceExpansion=0, spaceFill=False, lazyLoad=None # these aliases wiill not be loaded until requested, '*' matches all files ): self.hammingDistanceExpansion = hammingDistanceExpansion barcodeDirectory = os.path.join( os.path.dirname( os.path.realpath(__file__)), barcodeDirectory) barcode_files = list(glob.glob(f'{barcodeDirectory}/*')) self.spaceFill = spaceFill self.hammingDistanceExpansion = hammingDistanceExpansion self.barcodes = collections.defaultdict( dict) # alias -> barcode -> index # alias -> barcode -> (index, hammingDistance) self.extendedBarcodes = collections.defaultdict(dict) self.pending_files = dict() for barcodeFile in barcode_files: barcodeFileAlias = self.path_to_barcode_alias(barcodeFile) if lazyLoad is not None and (barcodeFileAlias in lazyLoad or lazyLoad =='*'): logging.info(f"Lazy loading {barcodeFile}, alias {barcodeFileAlias}") self.pending_files[barcodeFileAlias] = barcodeFile continue logging.info(f"Parsing {barcodeFile}, alias {barcodeFileAlias}") self.parse_barcode_file(barcodeFile) if hammingDistanceExpansion > 0: self.expand(hammingDistanceExpansion, alias=barcodeFileAlias) def getTargetCount(self, barcodeFileAlias): return(len(self.barcodes[barcodeFileAlias]), len(self.extendedBarcodes[barcodeFileAlias])) def expand( self, hammingDistanceExpansion, alias, reportCollisions=True, spaceFill=None): barcodes = self.barcodes[alias] # hammingBarcode -> ( ( distance,origin) ) hammingSpace = collections.defaultdict(list) for barcode in barcodes: for hammingDistance in range(0, hammingDistanceExpansion + 1): for hammingInstance in hamming_circle( barcode, hammingDistance, 'ACTGN'): hammingSpace[hammingInstance].append( (hammingDistance, barcode)) # Resolve all for hammingBarcode in hammingSpace: # Check if there is a closest origin: sortedDistances = sorted(hammingSpace[hammingBarcode]) if len(sortedDistances) > 1 and ( sortedDistances[0][0] == sortedDistances[1][0]): # We cannot resolve this, two or more origins are at the same distance: #print('Cannot resolve %s' % hammingBarcode) continue hammingDistance, origin = sortedDistances[0] self.addBarcode( alias, barcode=hammingBarcode, index=self.barcodes[alias][origin], hammingDistance=hammingDistance, originBarcode=origin) def addBarcode( self, barcodeFileAlias, barcode, index, hammingDistance=0, originBarcode=None): if hammingDistance == 0: self.barcodes[barcodeFileAlias][barcode] = index else: if originBarcode is None: raise ValueError() self.extendedBarcodes[barcodeFileAlias][barcode] = ( index, originBarcode, hammingDistance) # get index and hamming distance to barcode returns none if not Available def getIndexCorrectedBarcodeAndHammingDistance(self, barcode, alias, try_lazy_load_pending=True): # Check if the alias still needs to be loaded: if barcode in self.barcodes[alias]: return (self.barcodes[alias][barcode], barcode, 0) if barcode in self.extendedBarcodes[alias]: return self.extendedBarcodes[alias][barcode] if alias in self.pending_files: if not try_lazy_load_pending: raise RecursionError() self.parse_pending_barcode_file_of_alias(alias) return self.getIndexCorrectedBarcodeAndHammingDistance(barcode, alias, try_lazy_load_pending=False) return (None, None, None) def list(self, showBarcodes=5): # showBarcodes=None show all for barcodeAlias, mapping in self.barcodes.items(): print( f'{len(mapping)} barcodes{Style.DIM} obtained from {Style.RESET_ALL}{barcodeAlias}') if len(mapping): for bcId in list(mapping.keys())[:showBarcodes]: try: print(('%s%s%s%s%s%s' % (Fore.GREEN, bcId, Fore.WHITE, '→', mapping[bcId], Style.RESET_ALL))) except Exception as e: print(('%s%s%s%s%s%s' % (Fore.GREEN, bcId, Fore.WHITE, '->', mapping[bcId], Style.RESET_ALL))) if showBarcodes is not None and len(mapping) > showBarcodes: print( f'{Style.DIM} %s more ...\n{Style.RESET_ALL}' % (len(mapping) - showBarcodes)) def getBarcodeMapping(self): return self.barcodes def __getitem__(self, alias): if alias in self.pending_files: self.parse_pending_barcode_file_of_alias(alias) return self.barcodes.get(alias)
true
585391d23f82681d69728d4afc2f2c389f75e4d5
Python
VadimChorrny/DEV-HUB
/_XSperions/add_cog.py
UTF-8
1,649
2.796875
3
[]
no_license
#----------------------------------------------+ # Enter Cog name | #----------------------------------------------+ COG_NAME = "captcha" #----------------------------------------------+ # Cog template | #----------------------------------------------+ cog_template = f"""import discord from discord.ext import commands from discord.ext.commands import Bot import asyncio #----------------------------------------------+ # Functions | #----------------------------------------------+ class {COG_NAME}(commands.Cog): def __init__(self, client): self.client = client #----------------------------------------------+ # Events | #----------------------------------------------+ @commands.Cog.listener() async def on_ready(self): print(f">> {COG_NAME} cog is loaded") #----------------------------------------------+ # Commands | #----------------------------------------------+ #----------------------------------------------+ # Errors | #----------------------------------------------+ def setup(client): client.add_cog({COG_NAME}(client))""" import os if "cogs" not in os.listdir("."): print("No [cogs] folder in current directory") elif f"{COG_NAME}.py" in os.listdir("cogs"): print(f"[{COG_NAME}.py] already exists") else: with open(f"cogs/{COG_NAME}.py", "w", encoding="utf8") as _file: _file.write(cog_template) print("Cog is deployed")
true
9b1e909df6bf98b472594f0ca584d679142bc9a0
Python
samparkewolfe/LSTM_Synth
/train_model.py
UTF-8
4,767
3
3
[]
no_license
#This python script handles training the models. #Import the needed libraries import os, sys import numpy as np import h5py import keras from keras.models import Sequential, load_model from keras.callbacks import ModelCheckpoint #Declare the variables of the inputs model_name = '' dataset_name = '' nb_epoch = '' it_i = 0 bestWeights = "" #Use the sys library to get variable imputs to the python script if len(sys.argv) < 4: #if the wrong number of inputs was given tell the user what is supposed to be inputted raise ValueError('Incorrect arguments, Correct format: python train_model.py [name_of_model] [name_of_dataset] [num_epochs]') else: #If the correct number of arguments are given, allocate them. model_name = sys.argv[1] dataset_name = sys.argv[2] nb_epoch = sys.argv[3] #Tell the user what's going on. print('Training Model:', model_name) print('Training Dataset:', dataset_name) print('Training Epochs:', nb_epoch) #load the Keras model and data set from the specific directory of the work space using Keras an h5py model = load_model('models/' + model_name +'/'+ model_name + '.h5') dataset = h5py.File('datasets/' + dataset_name +'/'+ dataset_name + '.h5' ,'r') #get the info from the files. X = dataset['X'][:] Y = dataset['Y'][:] nb_epoch = int(nb_epoch) #create the name for the new weights of we are about to make. weights_name = model_name +'_'+dataset_name+'_'+str(it_i) #if this model has already been trained on this dataset we automatically load the most recent set of weights and train from the best epoch. while os.path.exists('models/' + model_name +'/'+'weights/'+weights_name + "/" ): #Get all of the files in this directory. files = os.listdir('models/' + model_name +'/'+'weights/'+weights_name + "/") #Always start traing from the best epoch that was last trained. #initialize to -1 just is case the best one was 0. bestEpoch = -1 #iterate through all the files names we got from os.listdir for _file in (files): #Reset the wpoch we are on. currEpochString = '' #Get the value of the epoch of the files from the last 4 values of the files name. for i in range(0, 4): currEpochString = currEpochString + _file[(-7+i)] #Make that value and integer to be able to know how good it is. currEpoch = int(currEpochString) #If that epoch is a larger value of that the best one we got so far the loss must have improved for that epoch. if( currEpoch > bestEpoch): #Therefore this is now our best epoch bestEpoch = currEpoch #And the best weights are the files that we are currently on. bestWeights = _file #After iterating through all the files and finding the best one load the weights. model.load_weights('models/' + model_name + '/weights/' + weights_name+ '/' +bestWeights) #Tell them what we loaded. print('Loaded Weights:',bestWeights) #Because some weights already existed for this file we need to give the weights a new name, #if the new name we give it also existed then the while loop will repeat until this new name does not exist meaning we are making new files. it_i += 1 weights_name = model_name +'_'+dataset_name+'_'+str(it_i) #Make the specific directory for these weights in the correct place in the work space. if not os.path.exists('models/' + model_name +'/'+'weights/'+weights_name): os.makedirs('models/' + model_name +'/'+'weights/'+weights_name) #logs include `acc` and `loss`, and optionally include `val_loss` #We could add the loss of the epoch in to the name of the weights but then we wouldn't be able to iterate though them and find the best one as easy. #filepath= 'models/' + model_name +'/'+'weights/'+weights_name+'/'+'weights-improvement-{epoch:04d}-{loss:.2f}.h5' #Instead we just save a set of the weights with a unique name to that epoch with 4 digits. filepath= 'models/' + model_name +'/'+'weights/'+weights_name+'/'+weights_name+'_{epoch:00004d}.h5' #Create a checkpoint class to give to the training function. #This checkpoint will be called every time the loss of the training. It will only save the weights when the loss gets better. checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, save_weights_only=True, mode='auto', period=1) #Do this callbacks_list = [checkpoint] #START TRAINGING. model.fit(X, Y, nb_epoch=nb_epoch, callbacks=callbacks_list) #If the directory does not exist for these weights make one. if not os.path.exists('models/' + model_name +'/'+'weights/'+weights_name): os.makedirs('models/' + model_name +'/'+'weights/'+weights_name) #Print finished print('Saved Weights:',weights_name)
true
1f51aa621b523ed5465b6ad5674b3ec47e6aa7ad
Python
AashishMehtoliya/Diabetes
/diabetes.py
UTF-8
663
2.9375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue May 28 16:37:18 2019 @author: Aashish Mehtoliya """ from numpy import loadtxt from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score df = loadtxt('pima-indians-diabetes.csv', delimiter=",") X = df[:,0:8] Y = df[:,8] X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.3,random_seed = 23) model = XGBClassifier() model.fit(X_train,y_train) print(model) y_pred = model.predict(X_test) predictions = [round(i) for i in y_pred] accuracy = accuracy_score(y_test,predictions) print(accuracy*100.0)
true
18ab555bd279c090344e88f1c0b15ce4741dc7be
Python
kokliangchng/Sandbox
/week3/exceptionsToComplete.py
UTF-8
235
3.796875
4
[]
no_license
finished=False result=0 while not finished: try: result = int(input("Enter a number")) finished=True pass except ValueError: print("Please enter a valid number") print("Valid result is :",result)
true
d327760f9bca8983ca03c002ae2a6d39de8a5bb6
Python
DDKinger/FlowFly
/code/data_process_0.py
UTF-8
6,283
2.71875
3
[]
no_license
import scipy.io as sio import abc from functools import partial # MAXIMUM_FLOW = 1500 NUM_TRAIN = 14400 class AbstractDataset(abc.ABC): def __init__(self, x): self.x = x @property def x(self): return self.x @abc.abstractmethod def fmap(self, f): pass def __len__(self): return len(self.x) @abc.abstractmethod def to_dict(self): pass # @abc.abstractmethod # def denormalization(self): # pass class RawDataset(AbstractDataset): def __init__(self, x): super().__init__(x) def fmap(self, f): return RawDataset(*f(x)) def to_dict(self): return {'traffic_flow': self.x} class MinMaxNormalizedDataset(AbstractDataset): def __init__(self, x, x_max): super().__init__(x) self.x_max = x_max def fmap(self, f): return MinMaxNormalizedDataset(*f(self.x, self.y), self.x_max) def to_dict(self): return {'traffic_flow': self.x, 'x_max': self.x_max} class GaussianNormalizedDataset(AbstractDataset): def __init__(self, x, x_mean, x_std, x_max): super().__init__(x) self.x_mean = x_mean self.x_std = x_std self.x_max = x_max def fmap(self, f): return GaussianNormalizedDataset(*f(self.x), self.x_mean, self.x_std, self.x_max) def to_dict(self): return { 'x_input': self.x, 'x_max': self.x_max, 'x_mean': self.x_mean, 'x_std': self.x_std, } # def shuffle(x): # np.random.seed(400) # randomorder = np.arange(len(x)) # np.random.shuffle(randomorder) # x = x[randomorder] # return x def load_data(path): data = sio.loadmat(f"{path}.mat") return RawDataset(data['traffic_flow']) def normalization(prefix, processing, is_training): full_path = prefix + suffix(processing, is_training) if os.path.exists(full_path): return load_data(full_path) data = processing(load_data(prefix), is_training) sio.savemat(full_path, data.to_dict) return data def minmax_normal(data:RawDataset, num_train=NUM_TRAIN, is_training): if is_training: x_max = np.amax(data.x) else: x_max = return MinMaxNormalizedDataset(data.x/x_max, x_max) def gaussian_normal(data:RawDataset, num_train=NUM_TRAIN, is_training): data = minmax_normal(data, num_train) x_mean = np.mean(data.x[:num_train, :], axis=0) x_std = np.std(data.y[:num_train, :], axis=0) return GaussianNormalizedDataset(whiten(data.x, x_mean, x_std), x_mean, x_std, data.x_max) def whiten(x, mean, std): return (x-mean)/std def suffix(func, is_training): if is_training: sur = '_train' else: sur = '_test' if func is minmax_normal: return sur+'_normal' if func is gaussian_normal: return sur+'_gaussian' raise ValueError(f"Not valid function: {func}") # def split_dataset(x, y, dataset_type, num_train=NUM_TRAIN): # if dataset_type.lower() == 'train': # return x[:num_train, :], y[:num_train, :] # if dataset_type.lower() == 'test': # return x[num_train:, :], y[num_train:, :] # raise ValueError( # f"Invalid dataset type {dataset_type}, expected train or test.") def generate_data(prefix, shuffle=True, gaussian=False, is_training): if gaussian: data = normalization(prefix, gaussian_normal, is_training) else: data = normalization(prefix, minmax_normal, is_training) if is_training: data = data.fmap(partial(split_dataset, dataset_type='train')) if shuffle: data = data.fmap(shuffle) print("train data generated") else: data = data.fmap(partial(split_dataset, dataset_type='test')) print("test data generated") print("data size:", len(data)) return data ### def generate_normal(dataset): dataset_normal = dataset+'_normal.mat' if not os.path.exists(dataset_normal): x_input = sio.loadmat(dataset+'.mat')['x_input'] y_output = sio.loadmat(dataset)['y_output'] x_max = np.amax(x_input) x_input /= x_max y_output /= x_max sio.savemat(dataset_x_max, {'x_input': x_input, 'y_output': y_output, 'x_max': x_max}) else: x_input = sio.loadmat(dataset_normal)['x_input'] y_output = sio.loadmat(dataset_normal)['y_output'] x_max = sio.loadmat(dataset_x_max)['x_max'] return x_input, y_output, x_max def generate_gaussian(): dataset_gaussian = dataset+'_gaussian.mat' if not os.path.exists(dataset_gaussian): x_input, y_output, x_max = generate_normal(dataset) x_mean = np.mean(x_input[:num_train, :], axis=0) x_std = np.std(y_output[:num_train, :], axis=0) x_input -= x_mean x_input /= x_std y_output -= x_mean y_output /= x_std sio.savemat(dataset_gaussian, {'x_input': x_input, 'y_output': y_output, 'x_max': x_max, 'x_mean': x_mean, 'x_std': x_std}) else: x_input = sio.loadmat(dataset_gaussian)['x_input'] y_output = sio.loadmat(dataset_gaussian)['y_output'] x_max = sio.loadmat(dataset_gaussian)['x_max'] x_mean = sio.loadmat(dataset_gaussian)['x_mean'] x_std = sio.loadmat(dataset_gaussian)['x_std'] return x_input, y_output, x_max, x_mean, x_std def generate_data(dataset, shuffle=True, gaussian=False, is_training): if gaussian: x_input, y_output, x_max, x_mean, x_std = generate_gaussian(dataset) else: x_input, y_output, x_max = generate_normal(dataset) x_mean = 0 x_std = 1 if is_training: x = x_input[:num_train, :] y = y_output[:num_train, :] if shuffle: np.random.seed(400) randomorder = np.arange(len(x)) np.random.shuffle(randomorder) x = x[randomorder] y = y[randomorder] print("train data generated") else: x = x_input[num_train:, :] y = y_output[num_train:, :] print("test data generated") print("data size:", len(x)) return x, y, x_max, x_mean, x_std
true
186aabe5e70b2cde29c28640dac7664dffcade52
Python
elektrik-elektronik-muhendisligi/Esp8266Examples
/10_Socket_TCP/socket_TCP_02_server_simple.py
UTF-8
1,500
2.953125
3
[]
no_license
''' https://www.binarytides.com/python-socket-programming-tutorial/ prvni priklad ''' import socket import sys HOST = '' # Symbolic name meaning all available interfaces PORT = 8888 # Arbitrary non-privileged port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) print('Socket created') try: s.bind((HOST, PORT)) except socket.error as msg: print('Bind failed. Error Code : ' + str(msg[0]) + ' Message ' + msg[1]) sys.exit() print('Socket bind complete') s.listen(10) print('Socket now listening') # now keep talking with the client # TODO na PC to nefunguje # po pripojeni telnetem: telnet localhost 5000 # se pomoci recev precte jen jedno pismenko, pak probehne zbytek smycky # az k accept a uz se to nepripoji # trochu jsem to upravil oproti prikladu # asi to bude telnetem, ktery to posila po pismenku while 1: print("zacatek") # wait to accept a connection - blocking call conn, addr = s.accept() # display client information print('Connected with ' + addr[0] + ':' + str(addr[1])) while 1: print("recv") data = conn.recv(1024) print(data) reply = 'OK...' + data.decode('utf-8') print(reply) print("tady") if not data: print("not data") break print("reply") conn.sendall(reply.encode('utf-8')) print("reply") if data.decode('utf-8')=="e": print("Konec") break conn.close() print("conn close") s.close()
true
8065345665443f799494064174b97370d8aa88af
Python
AxentiAndrei2004/Introducere_Afi-are_-alcule
/Problema 10.py
UTF-8
236
2.90625
3
[]
no_license
n=int(input('Introdu numarul=')) print(n,'*1=',n*1) print(n,'*2=',n*2) print(n,'*3=',n*3) print(n,'*4=',n*4) print(n,'*5=',n*5) print(n,'*6=',n*6) print(n,'*7=',n*7) print(n,'*8=',n*8) print(n,'*9=',n*9) print(n,'*10=',n*10)
true
8031f8419eb69c9529f291b4b399b1239db5a19f
Python
elemel/drillion
/drillion/health_component.py
UTF-8
2,672
2.96875
3
[ "MIT" ]
permissive
from drillion.component import Component from drillion.maths import clamp class HealthComponent(Component): def __init__(self, update_phase, health=1.0, min_health=0.0, max_health=1.0, regeneration=0.0, epsilon=0.001): self._update_phase = update_phase self._health = health self._min_health = min_health self._max_health = max_health self._regeneration = regeneration self._epsilon = epsilon self._active = False self._healing = False @property def health(self): return self._health @health.setter def health(self, health): self._health = health self._update_healing() @property def min_health(self): return self._min_health @min_health.setter def min_health(self, min_health): self._min_health = min_health self._update_healing() @property def max_health(self): return self._max_health @max_health.setter def max_health(self, max_health): self._max_health = max_health self._update_healing() @property def regeneration(self): return self._regeneration @regeneration.setter def regeneration(self, regeneration): self._regeneration = regeneration self._update_healing() @property def epsilon(self): return self._epsilon @epsilon.setter def epsilon(self, epsilon): self._epsilon = epsilon self._update_healing() @property def at_min_health(self): return self._health < self._min_health + self._epsilon @property def at_max_health(self): return self._health > self._max_health - self._epsilon def create(self): self._active = True self._update_healing() def delete(self): self._active = False self._update_healing() def update(self, dt): self._health = clamp(self._health + dt * self._regeneration, self._min_health, self._max_health) self._update_healing() def _update_healing(self): healing = self._is_healing() if healing != self._healing: if self._healing: self._update_phase.remove_handler(self) self._healing = healing if self._healing: self._update_phase.add_handler(self) def _is_healing(self): if not self._active: return False if self._regeneration > self._epsilon: return not self.at_max_health if self._regeneration < -self._epsilon: return not self.at_min_health return False
true
442ee784f506e195ce9fd3f7191eb7aa61f7ce25
Python
mrusinowski/pp1
/04-Subroutines/z31.py
UTF-8
167
3.921875
4
[]
no_license
def reverse(t): t.reverse() return t tab = [2,5,4,1,8,7,4,0,9] print(f'Tablica: {tab}') print(f'Tablica z elementami w odwrotnej kolejności: {reverse(tab)}')
true
41e2e6d891224efec4265c9e844e738f24a1e329
Python
qingbol/BullyDetection
/predict.py
UTF-8
5,175
2.515625
3
[]
no_license
import tensorflow as tf import numpy as np import os,glob,cv2 import sys,argparse from PIL import Image import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt # from loaddata import load_dataset from tensorflow.python.platform import flags def main(_): #Load labels label_lst=[] rs = os.path.exists(FLAGS.output_labels) # rs = os.path.exists("trained_model/output_labels.txt") if rs==True: file_handler =open(FLAGS.output_labels,mode='r') contents = file_handler.readlines() for name in contents: name = name.strip('\n') label_lst.append(name) file_handler.close() num_label=len(label_lst) # print(label_lst) #============================================================== # Prepare input data # classes = os.listdir(FLAGS.train_path) # classes.sort() # print(classes) # num_classes = len(classes) # print("number classes is ",num_classes) # # We shall load all the training and validation images and labels into memory using openCV and use that during training # x_batch, y_true_batch, _, cls_batch, categories = load_dataset(train_path, FLAGS.img_size, classes) # print(y_true_batch) #============================================================== #======================read the image======================================== # First, pass the path of the image # dir_path = os.path.dirname(os.path.realpath(__file__)) # image_path=sys.argv[1] # filename = dir_path +'/' +image_path images = [] # Reading the image using OpenCV image = cv2.imread(FLAGS.img_file) # Resizing the image to our desired size and preprocessing will be done exactly as done during training image = cv2.resize(image, (FLAGS.img_size, FLAGS.img_size),0,0, cv2.INTER_LINEAR) images.append(image) images = np.array(images, dtype=np.uint8) images = images.astype('float32') images = np.multiply(images, 1.0/255.0) #The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape. input_img = images.reshape(1, FLAGS.img_size,FLAGS.img_size,FLAGS.num_channels) #========================read the image====================================== with tf.Session() as sess: ## Let us restore the saved model # Step-1: Recreate the network graph. At this step only graph is created. saver = tf.train.import_meta_graph(FLAGS.trained_model) # Step-2: Now let's load the weights saved using the restore method. saver.restore(sess, tf.train.latest_checkpoint(FLAGS.checkpoint)) # Accessing the default graph which we have restored graph = tf.get_default_graph() # Now, let's get hold of the op that we can be processed to get the output. # In the original network labels_pred is the tensor that is the prediction of the network labels_pred = graph.get_tensor_by_name("labels_pred:0") ## Let's feed the images to the input placeholders data_placeholder= graph.get_tensor_by_name("data_placeholder:0") label_placeholder = graph.get_tensor_by_name("label_placeholder:0") # label_false = np.zeros((1, num_classes)) label_false = np.zeros((1, num_label)) ### Creating the feed_dict that is required to be fed to calculate y_pred feed_dict_testing = {data_placeholder: input_img, label_placeholder: label_false} result=sess.run(labels_pred, feed_dict=feed_dict_testing) # result is of this format [probabiliy_of_rose probability_of_sunflower] # print(result) #print(label_lst) class_pred= tf.argmax(result, axis=1) label_index=sess.run(class_pred) # print(label_index) # print("This image belongs to category: " classes[label_index[0]]) print(label_lst[label_index[0]]) # print(classes[label_index[0]]) # # img = Image.open("data_cat/testing_data/1018.jpg") # plt.figure(figsize=(6,4)) # plt.subplot(2,1,1) # # print(input_img[0]) # # plt.imshow(input_img) # plt.imshow(image) # plt.axis('off') # plt.subplot(2,1,2) # # plt.figure() # plt.barh([0, 1], result[0], alpha=0.5) # plt.yticks([0, 1], classes) # #plt.yticks([0, 1], label_lst) # plt.xlabel('Probability') # plt.xlim(0,1.01) # plt.tight_layout() # plt.show() if __name__ == "__main__": #set some superparameters which can reset befor run flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string("train_path", "data_bully/training_data", "path of testing data") flags.DEFINE_string("img_file", "data_bully/testing_data/gossiping/gossiping0001.jpg", "path of testing data") flags.DEFINE_integer('img_size', 128, 'image width=image height.') flags.DEFINE_integer('num_channels', 3, 'image channel number.') flags.DEFINE_string("output_labels", "trained_model/output_labels.txt", "store the labels") flags.DEFINE_string("trained_model", "trained_model/bully_action.meta", "meta graph") flags.DEFINE_string("checkpoint", "./trained_model/", "checkpoint") tf.app.run()
true
25a2ee4b86e4c1b883e8d1c48f5fc487c2ce91a2
Python
luoguanghao/bioinfo_algo_script
/M3_Week5_2BreakOnGenomeGraph.py
UTF-8
574
2.6875
3
[]
no_license
if __name__ == '__main__': from os.path import dirname dataset = open(dirname(__file__)+'dataset.txt').read().strip().split('\n') edges = dataset[0].strip('(').strip(')').split('), (') bp = list(map(int,dataset[1].split(', '))) edges = [list(map(int,i.split(', '))) for i in edges] #print(edges) try: i1=edges.index([bp[1],bp[0]]) except: i1=edges.index([bp[0],bp[1]]) try: i2=edges.index([bp[2],bp[3]]) except: i2=edges.index([bp[3],bp[2]]) edges[i1]=[bp[2],bp[0]] edges[i2]=[bp[1],bp[3]] for e in edges: print('(%d, %d), '%(e[0],e[1]),end='')
true
52dc52c762b28f4fc9e302b246a25ad0eda58426
Python
Adashian/goit-python
/module_8/hw_8.py
UTF-8
1,584
3.265625
3
[]
no_license
from datetime import date, datetime, timedelta from collections import defaultdict def congratulate(users): day_names = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] this_week = date.today().isocalendar().week # От этой даты совершается проверка ДР на следующей недели result = defaultdict(list) for user in users: b_day = user.get('birthday') b_day_this_year = date(datetime.today().year, b_day.month, b_day.day) b_day_week = b_day_this_year.isocalendar().week b_day_week_day = b_day_this_year.isocalendar().weekday if this_week + 1 == b_day_week: day = day_names[b_day_week_day - 1] if b_day_week_day - 1 > 4: continue result[day].append(user.get('name')) if this_week == b_day_week and b_day_week_day - 1 > 4: day = day_names[0] result[day].append(user.get('name')) for key, values in result.items(): print(f'{key}:', end=' ') print(*values, sep=', ') test_data = [ {'name': 'Andriy', 'birthday': date(1994, 5, 8)}, {'name': 'Ivan', 'birthday': date(1992, 8, 5)}, {'name': 'Georg', 'birthday': date(1995, 2, 12)}, {'name': 'Yaroslav', 'birthday': date(1994, 8, 8)}, {'name': 'Anton', 'birthday': date(1993, 10, 21)}, {'name': 'Kirill', 'birthday': date(1992, 5, 14)}, {'name': 'Alexandr', 'birthday': date(1995, 5, 8)}, {'name': 'August', 'birthday': date(1994, 6, 27)} ] congratulate(test_data)
true
4037482df9a31dcf09c875b1563e40312584b8b5
Python
pfhayes/euler
/solved/Euler105.py
UTF-8
571
2.953125
3
[]
no_license
# Find the number of lines in Euler105.txt that obey the special sumset property from useful import powerset total = 0 for line in open("Euler105.txt") : s = map(int, line.split(",")) print s,"", bad = False for subs in powerset(s)[1:-1] : g = set(subs) comp = list(set(s) - g) for altSet in powerset(comp)[1:] : diff = (sum(g) - sum(altSet)) if diff == 0 or float(len(g) - len(altSet)) / diff < 0 : print g, altSet, print "No!" bad = True break if bad : break else : print "Yes!", k = sum(s) total += k print k print total
true
fbfc2f969525e6f290b2268e4de3ff52bc073d50
Python
JjVera96/chat_sockets
/server.py
UTF-8
6,177
2.59375
3
[]
no_license
# -*- coding: utf-8 -*- import socket import select from pymongo import MongoClient import sys import json class Servidor(): def __init__(self, ip, port): self.client = MongoClient('10.253.130.254', 27017) self.db = self.client.distribuidos self.users = self.db.users self.host = ip self.port = port self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.s.bind((self.host, self.port)) self.s.listen(0) self.contacts = {} self.rooms = {} self.conn_list = [] print('Servidor escuchando por la ip {} en el puerto {}'.format(ip, port)) def registrar(self, username, password, name, last_name, edad, gender): new_user = { 'username' : username, 'password' : password, 'name' : name, 'last_name' : last_name, 'edad' : edad, 'gender' : gender } try: self.user = self.users.find_one({'username' : username}) if self.user is None: self.user_id = self.users.insert_one(new_user).inserted_id return 'Registrado' else: return 'Usuario ya existe' except: return 'Error' def ingresar(self, username, password): self.user = self.users.find_one({'username' : username}) if self.user is None: return 'Usuario no existe' elif self.user['password'] == password: return 'Exito' else: return 'Contraseña incorrecta' def run(self): self.conn_list.append(self.s) while True: self.ready_to_read,self.ready_to_write,self.in_error = select.select(self.conn_list,[],[],0) for self.sock in self.ready_to_read: if self.sock == self.s: self.conn, self.addr = self.s.accept() self.conn_list.append(self.conn) print('Cliente {} conectado'.format(self.addr)) else: self.data = self.sock.recv(1024).decode('utf8') if self.data: self.cabeza, self.cuerpo = self.data.split('-') #Registrar un nuevo usuario if self.cabeza == 'reg': self.username, self.password, self.name, self.last_name, self.edad, self.gender = self.cuerpo.split('/') self.response = self.registrar(self.username, self.password, self.name, self.last_name, self.edad, self.gender) if self.response == 'Registrado': self.contacts[self.username] = self.sock self.sock.send(self.response.encode('utf8')) #Ingresar usuario if self.cabeza == 'ing': self.username, self.password = self.cuerpo.split('/') self.response = self.ingresar(self.username, self.password) if self.response == 'Exito': self.contacts[self.username] = self.sock self.sock.send(self.response.encode('utf8')) #Mostrar salas if self.cabeza == 'IR': self.response = json.dumps({'rooms' : list(self.rooms.keys())}).encode('utf8') self.sock.send(self.response) #Mostrar usuarios if self.cabeza == 'show users' : self.response = json.dumps({'users' : list(self.contacts.keys())}).encode('utf8') self.sock.send(self.response) #Crear sala desde lobby if self.cabeza == 'nR': self.rooms[self.cuerpo] = [] self.rooms[self.cuerpo].append(self.sock) #Entrar a una sala desde lobby if self.cabeza == 'ngR': self.rooms[self.cuerpo].append(self.sock) #Chat if self.cabeza == 'chat': self.room, self.mensaje = self.cuerpo.split('/') for self.person in self.rooms[self.room]: if self.person != self.s and self.person != self.sock: self.person.send(self.mensaje.encode('utf8')) #Eliminar sala if self.cabeza == 'dR': print(self.rooms[self.cuerpo]) if self.rooms[self.cuerpo][0] == self.sock: for self.person in self.rooms[self.cuerpo]: self.person.send('#remove-'.encode('utf8')) del self.rooms[self.cuerpo] self.sock.send('Ok'.encode('utf8')) else: self.sock.send('Denegado'.encode('utf8')) #Crear una sala estando en otra if self.cabeza == 'cR': print('cR') self.nroom, self.room = self.cuerpo.split('/') if not self.nroom in self.rooms: self.lista_usuarios = self.rooms[self.room] self.indice = self.lista_usuarios.index(self.sock) print(self.lista_usuarios) del self.lista_usuarios[self.indice] print(self.lista_usuarios) self.rooms[self.nroom] = [] self.rooms[self.nroom].append(self.sock) print(self.rooms[self.nroom]) self.sock.send('#room-{}'.format(self.nroom).encode('utf8')) else: self.sock.send('Esta sala ya existe'.encode('utf8')) #Cambiar sala if self.cabeza == 'gR': print('gR') self.nroom, self.room = self.cuerpo.split('/') if self.nroom in self.rooms: self.lista_usuarios = self.rooms[self.room] self.indice = self.lista_usuarios.index(self.sock) print(self.lista_usuarios) del self.lista_usuarios[self.indice] print(self.lista_usuarios) self.rooms[self.nroom].append(self.sock) print(self.rooms[self.nroom]) self.sock.send('#room-{}'.format(self.nroom).encode('utf8')) else: self.sock.send('Esta sala no existe'.encode('utf8')) #Privado a alguien if self.cabeza == 'private': self.person, self.mensaje = self.cuerpo.split('/') if self.person in self.contacts: self.sock_person = self.contacts[self.person] self.sock_person.send(self.mensaje.encode('utf8')) else: self.sock.send('No existe tal usuario'.encode('utf8')) #Salir sala if self.cabeza == 'eR': self.room = self.cuerpo self.lista_usuarios = self.rooms[self.room] self.indice = self.lista_usuarios.index(self.sock) del self.lista_usuarios[self.indice] #Salir chat if self.cabeza == 'exit': self.username, self.room = self.cuerpo.split('/') if not self.room is None: self.lista_usuarios = self.rooms[self.room] self.indice = self.lista_usuarios.index(self.sock) del self.lista_usuarios[self.indice] del self.contacts[self.username] def main(): server = Servidor('10.253.129.41', 5000) server.run() if __name__ == '__main__': main()
true
d004913c3cf60e9500800475b29a70eff866235e
Python
ulf1/torch-tweaks
/torch_tweaks/idseqs_to_mask.py
UTF-8
3,096
3.171875
3
[ "Apache-2.0" ]
permissive
import torch.sparse import itertools from typing import List, Optional, Union Number = Union[bool, int, float] def idseqs_to_mask(idseqs: List[List[int]], n_seqlen: Optional[int] = None, n_vocab_sz: Optional[int] = None, ignore: Optional[List[int]] = [], dtype: Optional[torch.dtype] = torch.bool, dense: Optional[bool] = False ) -> torch.sparse.FloatTensor: """Convert ID sequences into mask matrices Parameter: ---------- idseqs: List[List[int]] A list of ID sequences. Each ID basically a row-index. It's assumed that sequences are already padded! n_seqlen: Optional[int] = None The expected sequence length. n_vocab_sz: Optional[int] = None The number distinct IDs of all sequences. ignore: Optional[List[int]] = [] A list of IDs to ignore, e.g. ignore=[VOCAB.index("[PAD]")] As a result the empty rows of the mask matrix are removed accordingly. dtype: Optional[torch.dtype] = bool Only if dense=True, the data type of the mask matrix, e.g. torch.bool (True/False), torch.uint8 (0/1) dense: Optional[bool] = False Flag to return a dense mask matrix Returns: -------- torch.sparse.FloatTensor A batch-first FloatTensor <batch_sz, n_seqlen, vocab_sz> Example: -------- from torch_tweaks import idseqs_to_mask idseqs = [[1,2,3,4,0,0,1,2], [2,4,2,0,1]] masks = idseqs_to_mask(idseqs, n_seqlen=5, ignore=[3], dense=True) Help: ----- - Sparse module: https://pytorch.org/docs/stable/sparse.html - dtype: https://pytorch.org/docs/stable/tensors.html """ if n_seqlen is None: n_seqlen = max([len(seq) for seq in idseqs]) # create a list of IDs if n_vocab_sz is None: ids = set(itertools.chain(*idseqs)) else: ids = set(range(0, n_vocab_sz)) # remove IDs that we ignore ids = ids.difference(set(ignore)) n_features = len(ids) # convert to list to lookup with .index() method ids = list(ids) # loop over each ID sequence masks = [] for seq in idseqs: # extract index pairs of the sparse matrix featidx = [] seqidx = [] for step, elem in enumerate(seq[:n_seqlen]): try: featidx.append(ids.index(elem)) seqidx.append(step) except Exception: pass # convert to COO matrix tmp = torch.sparse.FloatTensor( indices=torch.LongTensor([seqidx, featidx]), values=torch.FloatTensor([1.0 for _ in range(len(seqidx))]), size=torch.Size([n_seqlen, n_features]) ).coalesce() # save it masks.append(tmp) # stack into one 3D tensor <batch_sz, n_seqlen, vocab_sz> masks = torch.stack(masks).coalesce() # convert to dense matrix if requested if dense: masks = masks.to_dense().type(dtype) # done return masks
true
ca220d267b0171d7a8ea926f638cf3dcbebca414
Python
Animenosekai/jsConsole
/jsConsole/internal/javascript/execute_js.py
UTF-8
1,989
2.71875
3
[ "MIT" ]
permissive
""" Executing JavaScript on the browser. © Anime no Sekai - 2020 """ from ..browser import browser from .. import config from ..exceptions import BrowserError import threading import asyncio async def evaluate_on_pyppeteer(command): result = await browser.evaluate(command) return result def evaluate(command, return_value=True): if config.layer == 'Selenium': if return_value: return browser.execute_script('return ' + str(command)) else: browser.execute_script(str(command)) elif config.layer == 'Pyppeteer': ''' if return_value: if isinstance(threading.current_thread(), threading._MainThread): #print('Main Thread') event_loop = asyncio.get_event_loop() result = event_loop.run_until_complete(evaluate_on_pyppeteer('return ' + str(command))) else: #print('Not Main Thread') asyncio.set_event_loop(asyncio.new_event_loop()) event_loop = asyncio.get_event_loop() result = event_loop.run_until_complete(evaluate_on_pyppeteer('return ' + str(command))) else: ''' try: if isinstance(threading.current_thread(), threading._MainThread): #print('Main Thread') event_loop = asyncio.get_event_loop() result = event_loop.run_until_complete(evaluate_on_pyppeteer(str(command))) else: #print('Not Main Thread') asyncio.set_event_loop(asyncio.new_event_loop()) event_loop = asyncio.get_event_loop() result = event_loop.run_until_complete(evaluate_on_pyppeteer(str(command))) except: return "Error while " return result else: raise BrowserError(f'There is an error with the layer: {str(config.layer)}') def switch_to_alert(): if config.layer == 'Selenium': browser.switch_to.alert
true
ff3eaad880cfa2f2264d6d6f19a9193f3d04eb19
Python
bretthop/projectchooser
/app/services/DomainService.py
UTF-8
777
2.609375
3
[]
no_license
from app.data.model.Domain import Domain class DomainService: def createDomain(self, domain): """ :type domain: Domain """ domain.put() return domain def updateDomain(self, domainId, domainTitle, domainDescription, domainStatus): _domain = Domain.get_by_id(domainId) if domainTitle is not None: _domain.title = domainTitle if domainDescription is not None: _domain.description = domainDescription if domainStatus is not None: _domain.status = domainStatus Domain.save(_domain) def GetDomainsByStatus(self, domainStatus): result = Domain.gql("WHERE status = '" + domainStatus +"'") return result
true