blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
d6e7b0cf941632dee22d801ee41360d7d50d3859
Python
nishiyamayo/atcoder-practice
/src/main/scala/past004/F.py
UTF-8
478
3.1875
3
[]
no_license
N, K = map(int, input().split()) K -= 1 d = dict() for i in range(N): S = input() d[S] = d.get(S, 0) + 1 l = d.items() l = sorted(l, key=lambda x:x[1], reverse=True) if len(l) == 1 and K == 0: print(l[K][0]) elif K == 0: print(l[K][0] if l[K + 1][1] != l[K][1] else "AMBIGUOUS") elif K == len(l) - 1: print(l[K][0] if l[K - 1][1] != l[K][1] else "AMBIGUOUS") else: print(l[K][0] if l[K - 1][1] != l[K][1] and l[K + 1][1] != l[K][1] else "AMBIGUOUS")
true
ac59234e19a555b6fa62a6056ccb1f281abf89c5
Python
joeyqzhou/recommendation-system
/cf_to_predict_rating.py
UTF-8
3,638
2.96875
3
[]
no_license
''' Created on Nov 1, 2015 @author: joey ''' import random import numpy as np import math import data_preparation as dp def userSimilarityRating(data): #Build the inverse table: #item_users(key:item,value:{user,rating_user_have give the item}) item_users = dict() for useri , items_rating in data.items(): for itemj in items_rating.keys(): if itemj not in item_users: item_users[itemj] = list() item_users[itemj].append({useri:items_rating[itemj]}) #cos(user_i,user_j) = cosine similarity between (x(i) and x(j)) # x(i): is the vector represent the user that each column is a moive. if user i had # seen the moive, then the number in the vector is the rating, otherwise zero. #key:useri #value:dict,key:userj,value:the number of movie both useri and uerj have seen C = dict() #key:userId #value:the total item number of userId N = dict() for itemi, users_rating in item_users.items(): for userj_rating_i in users_rating: userj = userj_rating_i.keys()[0] if userj not in C: N[userj] = 0 C[userj] = {} N[userj] += userj_rating_i[userj]#rating_{usrj_to_itemi} for userk_rating_i in users_rating: userk = userk_rating_i.keys()[0] if userj != userk: if userk not in C[userj]: C[userj][userk] = 0 C[userj][userk] += userj_rating_i[userj] * userk_rating_i[userk] #caluate similarity by normalize C W = dict() for u , related_users in C.items(): if u not in W: W[u] = {} for v, cuv in related_users.items(): W[u][v] = cuv / math.sqrt( N[u] * N[v] ) return W #W: similarity between two users. key:user i,value:dict(key:user j,value Wij) #R: users'rating for item def UserCF_to_predict_raring(user,item,trainData,W,K=6): predict_rating = 0.0 unnormalized_predict_rating = 0.0 count = 0 norm_similarity = 0.0 for useri, similarity in sorted(W[user].items(), \ key = lambda x:x[1], reverse=True): if item in trainData[useri].keys(): count += 1 if count >=K: break unnormalized_predict_rating += similarity * trainData[useri][item] norm_similarity += similarity if count < K/2: return -1 #cant predict, here can be replaced by the average value of the item get else: predict_rating = unnormalized_predict_rating/norm_similarity return predict_rating def Evaluation_CF_to_predict_rating(train, test, K): sum_squared_error = 0.0 rmse = 0.0 W = userSimilarityRating(train) count = 0 print "Evaluation" for user in train.keys(): if user in test.keys(): test_user_item = test[user] #key: item , value: rating user to item for itemi in test_user_item.keys(): predict_rating = UserCF_to_predict_raring(user,itemi,train,W,K) if predict_rating != -1: count += 1 real_rating = test[user][itemi] rmse += (predict_rating - real_rating)**2 print "predict number:", count rmse = np.sqrt(rmse/count) return rmse if __name__ == "__main__": data = dp.readMoiveIdRatingFromRatings("ratings.dat","::") trainData, testData = dp.splitRatingData(data) print Evaluation_CF_to_predict_rating(trainData, testData, 20)
true
cef179ae95ea3db91c8de4110f00dc19f402892c
Python
markok20/twitter-toolbox
/twitter_nlp_toolkit/tweet_sentiment_classifier/models/lstm_models.py
UTF-8
49,344
2.53125
3
[ "MIT" ]
permissive
from zipfile import ZipFile from twitter_nlp_toolkit.file_fetcher import file_fetcher from ..tweet_sentiment_classifier import Classifier, tokenizer_filter import os import json import pickle as pkl import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer from sklearn.utils import resample class LSTM_Model(Classifier): """ LSTM model with trainable embedding layer" """ def __init__(self, max_length=25, vocab_size=1000000, neurons=50, dropout=0.25, rec_dropout=0.25, embed_vec_len=200, activ='hard_sigmoid', learning_rate=0.001, bootstrap=1, early_stopping=True, patience=50, validation_split=0.2, max_iter=250, batch_size=10000, accuracy=0, remove_punctuation=False, remove_stopwords=False, lemmatize=True, hidden_neurons=0, bidirectional=False, **kwargs): """ Constructor for LSTM classifier using pre-trained embeddings Be sure to add additional parametesr to export() :param max_length: (int) Maximum text length, ie, number of temporal nodes. Default 25 :param vocab_size: (int) Maximum vocabulary size. Default 1E7 :param max_iter: (int) Number of training epochs. Default 100 :param neurons: (int) Depth (NOT LENGTH) of LSTM network. Default 100 :param dropout: (float) Dropout :param activ: (String) Activation function (for visible layer). Default 'hard_sigmoid' :param optimizer: (String) Optimizer. Default 'adam' """ self.type = 'LSTM_Model' self.package = 'twitter_nlp_toolkit.tweet_sentiment_classifier.models.lstm_models' self.bootstrap = bootstrap self.early_stopping = early_stopping self.validation_split = validation_split self.patience = patience self.max_iter = max_iter self.learning_rate = learning_rate self.max_length = max_length self.max_iter = max_iter self.batch_size = batch_size self.vocab_size = vocab_size self.neurons = neurons self.hidden_neurons = hidden_neurons self.dropout = dropout self.rec_dropout = rec_dropout self.activ = activ self.optimizer = 'adam' self.embed_vec_len = embed_vec_len self.embedding_initializer = tf.keras.initializers.glorot_normal(seed=None) self.finetune_embeddings = True self.remove_punctuation = remove_punctuation self.remove_stopwords = remove_stopwords self.lemmatize = lemmatize self.tokenizer = None self.classifier = None self.word_index = None self.embedding_matrix = None self.es = [] self.accuracy = accuracy self.bidirectional = bidirectional def preprocess(self, train_data, y, weights=None): if weights is None: weights = np.ones(len(y)) """ # Preprocess and tokenize text """ if 1 < self.bootstrap < len(y): train_data, y, weights = resample(train_data, y, weights, n_samples=self.bootstrap, stratify=y, replace=False) elif self.bootstrap < 1: n_samples = int(self.bootstrap * len(y)) train_data, y, weights = resample(train_data, y, weights, n_samples=n_samples, stratify=y, replace=False) filtered_data = tokenizer_filter(train_data, remove_punctuation=self.remove_punctuation, remove_stopwords=self.remove_punctuation, lemmatize_pronouns=True, lemmatize=self.lemmatize, verbose=True) print('Filtered data') cleaned_data = [' '.join(tweet) for tweet in filtered_data] return cleaned_data, y, weights def fit(self, train_data, y, weights=None, custom_vocabulary=None): """ :param train_data: (List-like of Strings) Tweets to fit on :param y: (Vector) Targets :param weights: (Vector) Weights for fitting data :param custom_vocabulary: (List of String) Custom vocabulary to use for tokenizer. Not recommended. :return: Fit history """ cleaned_data, y, weights = self.preprocess(train_data, y, weights) self.tokenizer = Tokenizer(num_words=self.vocab_size, filters='"#$%&()*+-/:;<=>?@[\\]^_`{|}~\t\n') self.tokenizer.fit_on_texts(cleaned_data) train_sequences = self.tokenizer.texts_to_sequences(cleaned_data) self.word_index = self.tokenizer.word_index print('Found %s unique tokens.' % len(self.word_index)) X = pad_sequences(train_sequences, maxlen=self.max_length, padding='pre') self.build_LSTM_network() print('Fitting LSTM model') history = self.classifier.fit(X, y, validation_split=self.validation_split, callbacks=self.es, batch_size=self.batch_size, sample_weight=weights, epochs=self.max_iter, verbose=2) self.accuracy = np.max(history.history['val_acc']) return history def build_LSTM_network(self): print("Creating LSTM model") if self.optimizer == 'adam': self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.learning_rate) init = tf.keras.initializers.glorot_uniform(seed=1) self.classifier = tf.keras.models.Sequential() self.classifier.add(tf.keras.layers.Embedding(input_dim=len(self.word_index) + 1, output_dim=self.embed_vec_len, input_length=self.max_length, mask_zero=True, embeddings_initializer=self.embedding_initializer, trainable=self.finetune_embeddings)) """ self.classifier.add(tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout)) """ if self.bidirectional: self.classifier.add(tf.keras.layers.Bidirectional( tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout))) else: self.classifier.add(tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout)) if self.hidden_neurons > 0: self.classifier.add( tf.keras.layers.Dense(units=self.hidden_neurons, kernel_initializer=init, activation='elu')) self.classifier.add(tf.keras.layers.Dense(units=1, kernel_initializer=init, activation=self.activ)) self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) print(self.classifier.summary()) if self.early_stopping: self.es.append( tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=self.patience)) def refine(self, train_data, y, bootstrap=True, weights=None): """ Train model further :param train_data: (list of Strings) Training tweets :param y: (vector) Targets :param weights: (vector) Training data weights :param bootstrap: (bool) Resample training data :returns: Fit history """ """ # Preprocess and tokenize text """ if bootstrap and 1 < self.bootstrap < len(y): train_data, y, weights = resample(train_data, y, weights, n_samples=self.bootstrap, stratify=y, replace=False) elif bootstrap and self.bootstrap < 1: n_samples = int(self.bootstrap * len(y)) train_data, y, weights = resample(train_data, y, weights, n_samples=n_samples, stratify=y, replace=False) filtered_data = tokenizer_filter(train_data, remove_punctuation=False, remove_stopwords=False, lemmatize=True) cleaned_data = [' '.join(tweet) for tweet in filtered_data] train_sequences = self.tokenizer.texts_to_sequences(cleaned_data) X = pad_sequences(train_sequences, maxlen=self.max_length, padding='pre') es = [] if self.early_stopping: es.append( tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=self.patience)) history = self.classifier.fit(X, y, validation_split=self.validation_split, callbacks=self.es, batch_size=self.batch_size, sample_weight=weights, epochs=self.max_iter, verbose=2) self.accuracy = np.max(history.history['val_acc']) return history def predict(self, data, **kwargs): """ Make binary predictions :param data: (list of Strings) Tweets :return: (vector of Bool) Predictions """ return np.round(self.predict_proba(data, **kwargs)) def predict_proba(self, data, preprocess=True): """ Make continuous predictions :param data: (list of Strings) Tweets :return: (vector) Predictions """ if self.tokenizer is None: raise ValueError('Model has not been trained!') filtered_data = tokenizer_filter(data, remove_punctuation=self.remove_punctuation, remove_stopwords=self.remove_stopwords, lemmatize=self.lemmatize, verbose=False) cleaned_data = [' '.join(tweet) for tweet in filtered_data] X = pad_sequences(self.tokenizer.texts_to_sequences(cleaned_data), maxlen=self.max_length) return self.classifier.predict(X) def export(self, filename): """ Saves the model to disk :param filename: (String) Path to file """ parameters = {'Classifier': self.type, 'package': self.package, 'bootstrap': self.bootstrap, 'early_stopping': self.early_stopping, 'validation_split': float(self.validation_split), 'patience': int(self.patience), 'max_iter': int(self.max_iter), 'max_length': int(self.max_length), 'neurons': int(self.neurons), 'hidden_neruons': int(self.hidden_neurons), 'dropout': float(self.dropout), 'rec_dropout': float(self.rec_dropout), 'activ': self.activ, 'vocab_size': self.vocab_size, 'batch_size': self.batch_size, 'accuracy': float(self.accuracy), 'remove_punctuation': self.remove_punctuation, 'remove_stopwords': self.remove_stopwords, 'lemmatize': self.lemmatize, 'learning_rate': self.learning_rate, 'bidirectional': self.bidirectional } if parameters['bootstrap'] < 1: parameters['bootstrap'] = float(parameters['bootstrap']) else: parameters['bootstrap'] = int(parameters['bootstrap']) os.makedirs(filename, exist_ok=True) with open(filename + '/param.json', 'w+') as outfile: json.dump(parameters, outfile) with open(filename + '/lstm_tokenizer.pkl', 'wb+') as outfile: pkl.dump(self.tokenizer, outfile) model_json = self.classifier.to_json() with open(filename + "/lstm_model.json", "w+") as json_file: json_file.write(model_json) self.classifier.save_weights(filename + "/lstm_model.h5") def load_model(self, filename): """ Load a model from the disc :param filename: (String) Path to file """ self.tokenizer = pkl.load(open(filename + '/lstm_tokenizer.pkl', 'rb')) with open(filename + '/lstm_model.json', 'r') as infile: model_json = infile.read() self.classifier = tf.keras.models.model_from_json(model_json) self.classifier.load_weights(filename + '/lstm_model.h5') self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) class GloVE_Model(LSTM_Model): """ LSTM model that uses GloVE pre-trained embeddings # TODO add automatic embedding downloading and unzipping """ def __init__(self, embedding_dict=None, embed_vec_len=200, max_length=25, vocab_size=1000000, batch_size=10000, neurons=100, hidden_neurons=0, dropout=0.2, bootstrap=1, early_stopping=True, validation_split=0.2, patience=50, max_iter=250, rec_dropout=0.2, activ='hard_sigmoid', accuracy=0, remove_punctuation=False, learning_rate=0.001, remove_stopwords=False, lemmatize=True, finetune_embeddings=False, bidirectional=False, **kwargs): """ Constructor for LSTM classifier using pre-trained embeddings Be sure to add extra parameters to export() :param glove_index: (Dict) Embedding index to use. IF not provided, a standard one will be downloaded :param name: (String) Name of model :param embed_vec_len: (int) Embedding depth. Inferred from dictionary if provided. Otherwise 25, 50, 100, and are acceptible values. 200 :param embedding_dict: (dict) Embedding dictionary :param max_length: (int) Maximum text length, ie, number of temporal nodes. Default 25 :param vocab_size: (int) Maximum vocabulary size. Default 1E7 :param max_iter: (int) Number of training epochs. Default 100 :param neurons: (int) Depth (NOT LENGTH) of LSTM network. Default 100 :param dropout: (float) Dropout :param activ: (String) Activation function (for visible layer). Default 'hard_sigmoid' :param optimizer: (String) Optimizer. Default 'adam' :param early_stopping: (bool) Train with early stopping :param validation_split: (float) Fraction of training data to withold for validation :param patience: (int) Number of epochs to wait before early stopping """ self.type = 'GloVE_Model' self.package = 'twitter_nlp_toolkit.tweet_sentiment_classifier.models.lstm_models' self.bootstrap = bootstrap self.early_stopping = early_stopping self.validation_split = validation_split self.patience = patience self.max_iter = max_iter self.embed_vec_len = embed_vec_len self.learning_rate = learning_rate self.bidirectional = bidirectional self.embedding_initializer = None self.finetune_embeddings = finetune_embeddings self.max_length = max_length self.embedding_dict = embedding_dict self.max_iter = max_iter self.vocab_size = vocab_size self.neurons = neurons self.hidden_neurons = hidden_neurons self.dropout = dropout self.rec_dropout = rec_dropout self.activ = activ self.optimizer = 'adam' self.batch_size = batch_size self.remove_punctuation = remove_punctuation self.remove_stopwords = remove_stopwords self.lemmatize = lemmatize self.es = [] self.tokenizer = None self.classifier = None self.word_index = None self.embedding_matrix = None self.accuracy = accuracy if self.embedding_dict is not None: self.embed_vec_len = len(list(self.embedding_dict.values())[0]) print('Setting embedding depth to {}'.format(self.embed_vec_len)) def preprocess(self, train_data, y, weights=None): if self.embedding_dict is None: print('Reloading embedding index') try: self.embedding_dict = {} with open('.glove_dicts/glove.twitter.27B.' + str(self.embed_vec_len) + 'd.txt', encoding="utf8") as f: for line in f: word, representation = line.split(maxsplit=1) representation = np.fromstring(representation, 'f', sep=' ') self.embedding_dict[word] = representation print('Dictionary loaded') except FileNotFoundError: file_fetcher.download_file("http://nlp.stanford.edu/data/glove.twitter.27B.zip", "glove_dicts.zip") with ZipFile('glove_dicts.zip', 'r') as zipObj: zipObj.extractall('glove_dicts') self.embedding_dict = {} with open('/.glove_dicts/glove.twitter.27B.' + str(self.embed_vec_len) + 'd.txt', encoding="utf8") as f: for line in f: word, representation = line.split(maxsplit=1) representation = np.fromstring(representation, 'f', sep=' ') self.embedding_dict[word] = representation print('Dictionary loaded') if weights is None: weights = np.ones(len(y)) if 1 < self.bootstrap < len(y): train_data, y, weights = resample(train_data, y, weights, n_samples=self.bootstrap, stratify=y, replace=False) elif self.bootstrap < 1: n_samples = int(self.bootstrap * len(y)) train_data, y, weights = resample(train_data, y, weights, n_samples=n_samples, stratify=y, replace=False) print('Sampled %d training points' % len(train_data)) filtered_data = tokenizer_filter(train_data, remove_punctuation=self.remove_punctuation, remove_stopwords=self.remove_stopwords, lemmatize=self.lemmatize, lemmatize_pronouns=False) print('Filtered data') cleaned_data = [' '.join(tweet) for tweet in filtered_data] return cleaned_data, y, weights def fit(self, train_data, y, weights=None, custom_vocabulary=None, clear_embedding_dictionary=True): """ :param train_data: (Dataframe) Training data :param y: (vector) Targets :param weights: (vector) Weights for fitting data :param custom_vocabulary: Custom vocabulary for the tokenizer. Not recommended. :param clear_embedding_dictionary: Delete the embedding dictionary after loading the embedding layer. Recommended, but will prevent the model from being re-fit (not refined) :returns Fit history """ """ # Preprocess and tokenize text """ cleaned_data, y, weights = self.preprocess(train_data, y, weights) if custom_vocabulary is not None: print('Applying custom vocabulary') self.tokenizer = Tokenizer(num_words=len(custom_vocabulary)) self.tokenizer.fit_on_texts(custom_vocabulary) else: print('Fitting tokenizer') self.tokenizer = Tokenizer(num_words=self.vocab_size, char_level=False) self.tokenizer.fit_on_texts(cleaned_data) train_sequences = self.tokenizer.texts_to_sequences(cleaned_data) self.word_index = self.tokenizer.word_index X = pad_sequences(train_sequences, maxlen=self.max_length, padding='pre') self.embedding_matrix = np.zeros((len(self.word_index) + 1, self.embed_vec_len)) for word, i in self.word_index.items(): embedding_vector = self.embedding_dict.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. # TODO consider optimizing self.embedding_matrix[i] = embedding_vector self.build_LSTM_network() if clear_embedding_dictionary: self.embedding_matrix = None self.embedding_dict = None print('Fitting GloVE model') history = self.classifier.fit(X, y, validation_split=self.validation_split, batch_size=self.batch_size, epochs=self.max_iter, sample_weight=weights, callbacks=self.es, verbose=2) self.accuracy = np.max(history.history['val_acc']) return history def export(self, filename): """ Saves the model to disk :param filename: (String) Path to file """ parameters = {'Classifier': self.type, 'package': self.package, 'max_length': int(self.max_length), 'neurons': int(self.neurons), 'hidden_neruons': int(self.hidden_neurons), 'dropout': float(self.dropout), 'rec_dropout': float(self.rec_dropout), 'activ': self.activ, 'vocab_size': int(self.vocab_size), 'max_iter': int(self.max_iter), 'batch_size': self.batch_size, 'early_stopping': self.early_stopping, 'patience': int(self.patience), 'bootstrap': self.bootstrap, 'validation_split': float(self.validation_split), 'accuracy': float(self.accuracy), 'remove_punctuation': self.remove_punctuation, 'remove_stopwords': self.remove_stopwords, 'lemmatize': self.lemmatize, 'finetune_embeddings': self.finetune_embeddings, 'learning_rate': self.learning_rate, 'bidirectional': self.bidirectional } if parameters['bootstrap'] < 1: parameters['bootstrap'] = float(parameters['bootstrap']) else: parameters['bootstrap'] = int(parameters['bootstrap']) os.makedirs(filename, exist_ok=True) with open(filename + '/param.json', 'w+') as outfile: json.dump(parameters, outfile) with open(filename + '/glove_tokenizer.pkl', 'wb+') as outfile: pkl.dump(self.tokenizer, outfile) # model_json = self.classifier.to_json() with open(filename + "/glove_model.json", "w+") as json_file: json_file.write(self.classifier.to_json()) self.classifier.save_weights(filename + "/glove_model.h5") def load_model(self, filename): """ :param filename: (String) Path to file """ self.tokenizer = pkl.load(open(filename + '/glove_tokenizer.pkl', 'rb')) with open(filename + '/glove_model.json', 'r') as infile: model_json = infile.read() self.classifier = tf.keras.models.model_from_json(model_json) self.classifier.load_weights(filename + '/glove_model.h5') self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) class NGRAM_Model(LSTM_Model): """ LSTM model that uses GloVE pre-trained embeddings # TODO add automatic embedding downloading and unzipping """ def __init__(self, embedding_dict=None, embed_vec_len=200, max_length=25, vocab_size=1000000, batch_size=10000, neurons=100, hidden_neurons=0, dropout=0.2, bootstrap=1, early_stopping=True, validation_split=0.2, patience=50, max_iter=250, rec_dropout=0.2, activ='hard_sigmoid', accuracy=0, remove_punctuation=False, learning_rate=0.001, remove_stopwords=False, lemmatize=True, finetune_embeddings=True, n_gram=3, feature_maps=10, **kwargs): """ Constructor for NGRAM LSTM classifier using pre-trained embeddings Be sure to add extra parameters to export() :param glove_index: (Dict) Embedding index to use. IF not provided, a standard one will be downloaded :param name: (String) Name of model :param embed_vec_len: (int) Embedding depth. Inferred from dictionary if provided. Otherwise 25, 50, 100, and are acceptible values. 200 :param embedding_dict: (dict) Embedding dictionary :param max_length: (int) Maximum text length, ie, number of temporal nodes. Default 25 :param vocab_size: (int) Maximum vocabulary size. Default 1E7 :param max_iter: (int) Number of training epochs. Default 100 :param neurons: (int) Depth (NOT LENGTH) of LSTM network. Default 100 :param dropout: (float) Dropout :param activ: (String) Activation function (for visible layer). Default 'hard_sigmoid' :param optimizer: (String) Optimizer. Default 'adam' :param early_stopping: (bool) Train with early stopping :param validation_split: (float) Fraction of training data to withold for validation :param patience: (int) Number of epochs to wait before early stopping """ self.type = 'NGRAM_Model' self.package = 'twitter_nlp_toolkit.tweet_sentiment_classifier.models.lstm_models' self.bootstrap = bootstrap self.early_stopping = early_stopping self.validation_split = validation_split self.patience = patience self.max_iter = max_iter self.embed_vec_len = embed_vec_len self.learning_rate = learning_rate self.embedding_initializer = None self.finetune_embeddings = finetune_embeddings self.max_length = max_length self.embedding_dict = embedding_dict self.max_iter = max_iter self.vocab_size = vocab_size self.neurons = neurons self.hidden_neurons = hidden_neurons self.dropout = dropout self.rec_dropout = rec_dropout self.activ = activ self.optimizer = 'adam' self.batch_size = batch_size self.remove_punctuation = remove_punctuation self.remove_stopwords = remove_stopwords self.lemmatize = lemmatize self.es = [] self.tokenizer = None self.classifier = None self.word_index = None self.embedding_matrix = None self.accuracy = accuracy self.n_grams = n_gram self.feature_maps = feature_maps if self.embedding_dict is not None: self.embed_vec_len = len(list(self.embedding_dict.values())[0]) print('Setting embedding depth to {}'.format(self.embed_vec_len)) def build_NGRAM_network(self): print("Creating LSTM model") if self.optimizer == 'adam': self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.learning_rate) init = tf.keras.initializers.glorot_uniform(seed=1) self.classifier = tf.keras.models.Sequential() self.classifier.add(tf.keras.layers.Embedding(input_dim=len(self.word_index) + 1, output_dim=self.embed_vec_len, input_length=self.max_length, mask_zero=True, embeddings_initializer=self.embedding_initializer, trainable=self.finetune_embeddings)) self.classifier.add(tf.keras.layers.Conv1D(self.feature_maps, self.n_grams, self.embed_vec_len, data_format='channels_first')) self.classifier.add(tf.keras.layers.Dropout(self.dropout)) # self.classifier.add(tf.keras.layers.MaxPooling2D(poolsize=(self.max_length - self.n_grams + 1, 1))) self.classifier.add(tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout)) self.classifier.summary() if self.hidden_neurons > 0: self.classifier.add( tf.keras.layers.Dense(units=self.hidden_neurons, kernel_initializer=init, activation='elu')) self.classifier.add(tf.keras.layers.Dense(units=1, kernel_initializer=init, activation=self.activ)) self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) print(self.classifier.summary()) if self.early_stopping: self.es.append( tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=self.patience)) def preprocess(self, train_data, y, weights=None): if self.embedding_dict is None: print('Reloading embedding index') try: self.embedding_dict = {} with open('/.glove_dicts/glove.twitter.27B.' + str(self.embed_vec_len) + 'd.txt', encoding="utf8") as f: for line in f: word, representation = line.split(maxsplit=1) representation = np.fromstring(representation, 'f', sep=' ') self.embedding_dict[word] = representation print('Dictionary loaded') except FileNotFoundError: file_fetcher.download_file("http://nlp.stanford.edu/data/glove.twitter.27B.zip", "glove_dicts.zip") with ZipFile('glove_dicts.zip', 'r') as zipObj: zipObj.extractall('glove_dicts') self.embedding_dict = {} with open('.glove_dicts/glove.twitter.27B.' + str(self.embed_vec_len) + 'd.txt', encoding="utf8") as f: for line in f: word, representation = line.split(maxsplit=1) representation = np.fromstring(representation, 'f', sep=' ') self.embedding_dict[word] = representation print('Dictionary loaded') if weights is None: weights = np.ones(len(y)) if 1 < self.bootstrap < len(y): train_data, y, weights = resample(train_data, y, weights, n_samples=self.bootstrap, stratify=y, replace=False) elif self.bootstrap < 1: n_samples = int(self.bootstrap * len(y)) train_data, y, weights = resample(train_data, y, weights, n_samples=n_samples, stratify=y, replace=False) print('Sampled %d training points' % len(train_data)) filtered_data = tokenizer_filter(train_data, remove_punctuation=self.remove_punctuation, remove_stopwords=self.remove_stopwords, lemmatize=self.lemmatize, lemmatize_pronouns=False) print('Filtered data') cleaned_data = [' '.join(tweet) for tweet in filtered_data] return cleaned_data, y, weights def fit(self, train_data, y, weights=None, custom_vocabulary=None, clear_embedding_dictionary=True): """ :param train_data: (Dataframe) Training data :param y: (vector) Targets :param weights: (vector) Weights for fitting data :param custom_vocabulary: Custom vocabulary for the tokenizer. Not recommended. :param clear_embedding_dictionary: Delete the embedding dictionary after loading the embedding layer. Recommended, but will prevent the model from being re-fit (not refined) :returns Fit history """ """ # Preprocess and tokenize text """ cleaned_data, y, weights = self.preprocess(train_data, y, weights) if custom_vocabulary is not None: print('Applying custom vocabulary') self.tokenizer = Tokenizer(num_words=len(custom_vocabulary)) self.tokenizer.fit_on_texts(custom_vocabulary) else: print('Fitting tokenizer') self.tokenizer = Tokenizer(num_words=self.vocab_size, char_level=False) self.tokenizer.fit_on_texts(cleaned_data) train_sequences = self.tokenizer.texts_to_sequences(cleaned_data) self.word_index = self.tokenizer.word_index X = pad_sequences(train_sequences, maxlen=self.max_length, padding='pre') self.embedding_matrix = np.zeros((len(self.word_index) + 1, self.embed_vec_len)) for word, i in self.word_index.items(): embedding_vector = self.embedding_dict.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. # TODO consider optimizing self.embedding_matrix[i] = embedding_vector self.build_NGRAM_network() if clear_embedding_dictionary: self.embedding_matrix = None self.embedding_dict = None print('Fitting GloVE model') history = self.classifier.fit(X, y, validation_split=self.validation_split, batch_size=self.batch_size, epochs=self.max_iter, sample_weight=weights, callbacks=self.es, verbose=2) self.accuracy = np.max(history.history['val_acc']) return history def export(self, filename): """ Saves the model to disk :param filename: (String) Path to file """ parameters = {'Classifier': self.type, 'package': self.package, 'max_length': int(self.max_length), 'neurons': int(self.neurons), 'hidden_neruons': int(self.hidden_neurons), 'dropout': float(self.dropout), 'rec_dropout': float(self.rec_dropout), 'activ': self.activ, 'vocab_size': int(self.vocab_size), 'max_iter': int(self.max_iter), 'batch_size': self.batch_size, 'early_stopping': self.early_stopping, 'patience': int(self.patience), 'bootstrap': self.bootstrap, 'validation_split': float(self.validation_split), 'accuracy': float(self.accuracy), 'remove_punctuation': self.remove_punctuation, 'remove_stopwords': self.remove_stopwords, 'lemmatize': self.lemmatize, 'finetune_embeddings': self.finetune_embeddings, 'learning_rate': self.learning_rate, 'n_grams': self.n_grams, 'feature_maps': self.feature_maps } if parameters['bootstrap'] < 1: parameters['bootstrap'] = float(parameters['bootstrap']) else: parameters['bootstrap'] = int(parameters['bootstrap']) os.makedirs(filename, exist_ok=True) with open(filename + '/param.json', 'w+') as outfile: json.dump(parameters, outfile) with open(filename + '/ngram_tokenizer.pkl', 'wb+') as outfile: pkl.dump(self.tokenizer, outfile) # model_json = self.classifier.to_json() with open(filename + "/ngram_model.json", "w+") as json_file: json_file.write(self.classifier.to_json()) self.classifier.save_weights(filename + "/ngram_model.h5") def load_model(self, filename): """ :param filename: (String) Path to file """ self.tokenizer = pkl.load(open(filename + '/glove_tokenizer.pkl', 'rb')) with open(filename + '/glove_model.json', 'r') as infile: model_json = infile.read() self.classifier = tf.keras.models.model_from_json(model_json) self.classifier.load_weights(filename + '/glove_model.h5') self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) class Charlevel_Model(LSTM_Model): """ LSTM model that uses GloVE pre-trained embeddings # TODO add automatic embedding downloading and unzipping """ def __init__(self, embedding_dict=None, embed_vec_len=128, max_length=140, vocab_size=128, batch_size=10000, neurons=100, hidden_neurons=0, dropout=0.2, bootstrap=1, early_stopping=True, validation_split=0.2, patience=50, max_iter=250, rec_dropout=0.2, activ='hard_sigmoid', accuracy=0, remove_punctuation=False, learning_rate=0.001, remove_stopwords=False, lemmatize=False, finetune_embeddings=True, n_grams=[3,4,5], feature_maps=10, bidirectional=False, **kwargs): """ Constructor for NGRAM LSTM classifier using pre-trained embeddings Be sure to add extra parameters to export() :param glove_index: (Dict) Embedding index to use. IF not provided, a standard one will be downloaded :param name: (String) Name of model :param embed_vec_len: (int) Embedding depth. Inferred from dictionary if provided. Otherwise 25, 50, 100, and are acceptible values. 200 :param embedding_dict: (dict) Embedding dictionary :param max_length: (int) Maximum text length, ie, number of temporal nodes. Default 25 :param vocab_size: (int) Maximum vocabulary size. Default 1E7 :param max_iter: (int) Number of training epochs. Default 100 :param neurons: (int) Depth (NOT LENGTH) of LSTM network. Default 100 :param dropout: (float) Dropout :param activ: (String) Activation function (for visible layer). Default 'hard_sigmoid' :param optimizer: (String) Optimizer. Default 'adam' :param early_stopping: (bool) Train with early stopping :param validation_split: (float) Fraction of training data to withold for validation :param patience: (int) Number of epochs to wait before early stopping """ self.type = 'Charlevel_Model' self.package = 'twitter_nlp_toolkit.tweet_sentiment_classifier.models.lstm_models' self.bootstrap = bootstrap self.early_stopping = early_stopping self.validation_split = validation_split self.patience = patience self.max_iter = max_iter self.embed_vec_len = embed_vec_len self.learning_rate = learning_rate self.embedding_initializer = None self.finetune_embeddings = finetune_embeddings self.max_length = max_length self.embedding_dict = embedding_dict self.max_iter = max_iter self.vocab_size = vocab_size self.neurons = neurons self.hidden_neurons = hidden_neurons self.dropout = dropout self.rec_dropout = rec_dropout self.activ = activ self.optimizer = 'adam' self.batch_size = batch_size self.remove_punctuation = remove_punctuation self.remove_stopwords = remove_stopwords self.lemmatize = lemmatize self.es = [] self.tokenizer = None self.classifier = None self.word_index = None self.embedding_matrix = None self.accuracy = accuracy self.n_grams = n_grams self.feature_maps = feature_maps self.bidirectional = bidirectional if self.embedding_dict is not None: self.embed_vec_len = len(list(self.embedding_dict.values())[0]) print('Setting embedding depth to {}'.format(self.embed_vec_len)) def build_charlevel_network(self): # TODO consider bidirectional print("Creating character-level model") if self.optimizer == 'adam': self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.learning_rate) init = tf.keras.initializers.glorot_uniform(seed=1) inputs = tf.keras.Input(shape=(self.max_length,)) embeddings = tf.keras.layers.Embedding(input_dim=len(self.word_index) + 1, output_dim=self.embed_vec_len, input_length=self.max_length, mask_zero=False, embeddings_initializer=self.embedding_initializer, trainable=self.finetune_embeddings)(inputs) reshape = tf.keras.layers.Reshape((self.max_length, self.embed_vec_len, 1))(embeddings) outputs = [] for ngram in self.n_grams: conv_layer = tf.keras.layers.Conv2D(self.feature_maps, kernel_size=ngram)(reshape) #reshape_layer = tf.keras.layers.Reshape((self.max_length, self.feature_maps, 1))(conv_layer) pooling_layer = tf.keras.layers.MaxPooling2D(pool_size=(1, self.embed_vec_len-ngram), data_format='channels_last')(conv_layer) reshape_layer = tf.keras.layers.Reshape((self.max_length-ngram+1,self.feature_maps))(pooling_layer) if self.bidirectional: outputs.append(tf.keras.layers.Bidirectional( tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout))(reshape_layer)) else: outputs.append(tf.keras.layers.LSTM(units=self.neurons, input_shape=(self.max_length, self.embed_vec_len), kernel_initializer=init, dropout=self.dropout, recurrent_dropout=self.rec_dropout)(reshape_layer)) output = tf.keras.layers.concatenate(outputs) flattened = tf.keras.layers.Flatten()(output) if self.hidden_neurons > 0: hidden_layer = tf.keras.layers.Dense(units=self.hidden_neurons, kernel_initializer=init, activation='relu')(flattened) dropout = tf.keras.layers.Dropout(self.dropout)(hidden_layer) else: dropout = tf.keras.layers.Dropout(self.dropout)(flattened) output = tf.keras.layers.Dense(units=1, kernel_initializer=init, activation=self.activ)(dropout) self.classifier = tf.keras.Model(inputs=inputs, outputs=output) self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc']) self.classifier.summary() if self.early_stopping: self.es.append( tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=self.patience)) def preprocess(self, train_data, y, weights=None): if weights is None: weights = np.ones(len(y)) if 1 < self.bootstrap < len(y): train_data, y, weights = resample(train_data, y, weights, n_samples=self.bootstrap, stratify=y, replace=False) elif self.bootstrap < 1: n_samples = int(self.bootstrap * len(y)) train_data, y, weights = resample(train_data, y, weights, n_samples=n_samples, stratify=y, replace=False) print('Sampled %d training points' % len(train_data)) filtered_data = tokenizer_filter(train_data, remove_punctuation=self.remove_punctuation, remove_stopwords=self.remove_stopwords, lemmatize=self.lemmatize, lemmatize_pronouns=False) print('Filtered data') cleaned_data = [' '.join(tweet) for tweet in filtered_data] print(cleaned_data[0]) return cleaned_data, y, weights def fit(self, train_data, y, weights=None, custom_vocabulary=None): """ :param train_data: (List-like of Strings) Tweets to fit on :param y: (Vector) Targets :param weights: (Vector) Weights for fitting data :param custom_vocabulary: (List of String) Custom vocabulary to use for tokenizer. Not recommended. :return: Fit history """ cleaned_data, y, weights = self.preprocess(train_data, y, weights) # filters='"#$%&()*+-/:;<=>?@[\\]^_`{|}~\t\n', self.tokenizer = Tokenizer(num_words=self.vocab_size, char_level=True, oov_token=0) self.tokenizer.fit_on_texts(cleaned_data) train_sequences = self.tokenizer.texts_to_sequences(cleaned_data) self.word_index = self.tokenizer.word_index print('Found %s unique tokens.' % len(self.word_index)) X = pad_sequences(train_sequences, maxlen=self.max_length, padding='pre') self.build_charlevel_network() print('Fitting LSTM model') steps_per_epoch = min((int(len(y) / self.batch_size)), 1000) history = self.classifier.fit(X, y, validation_split=self.validation_split, callbacks=self.es, batch_size=self.batch_size, sample_weight=weights, epochs=self.max_iter, verbose=1, steps_per_epoch=steps_per_epoch) self.accuracy = np.max(history.history['val_acc']) return history def export(self, filename): """ Saves the model to disk :param filename: (String) Path to file """ parameters = {'Classifier': self.type, 'package': self.package, 'max_length': int(self.max_length), 'neurons': int(self.neurons), 'hidden_neruons': int(self.hidden_neurons), 'dropout': float(self.dropout), 'rec_dropout': float(self.rec_dropout), 'activ': self.activ, 'vocab_size': int(self.vocab_size), 'max_iter': int(self.max_iter), 'batch_size': self.batch_size, 'early_stopping': self.early_stopping, 'patience': int(self.patience), 'bootstrap': self.bootstrap, 'validation_split': float(self.validation_split), 'accuracy': float(self.accuracy), 'remove_punctuation': self.remove_punctuation, 'remove_stopwords': self.remove_stopwords, 'lemmatize': self.lemmatize, 'finetune_embeddings': self.finetune_embeddings, 'learning_rate': self.learning_rate, 'n_grams': self.n_grams, 'feature_maps': self.feature_maps, 'bidirectional': self.bidirectional } if parameters['bootstrap'] < 1: parameters['bootstrap'] = float(parameters['bootstrap']) else: parameters['bootstrap'] = int(parameters['bootstrap']) os.makedirs(filename, exist_ok=True) with open(filename + '/param.json', 'w+') as outfile: json.dump(parameters, outfile) with open(filename + '/charlevel_tokenizer.pkl', 'wb+') as outfile: pkl.dump(self.tokenizer, outfile) # model_json = self.classifier.to_json() with open(filename + "/charlevel_model.json", "w+") as json_file: json_file.write(self.classifier.to_json()) self.classifier.save_weights(filename + "/charlevel_model.h5") tf.keras.utils.plot_model( self.classifier, to_file=(filename + "/model_topology.png"), show_shapes=True, show_layer_names=True) def load_model(self, filename): """ :param filename: (String) Path to file """ self.tokenizer = pkl.load(open(filename + '/glove_tokenizer.pkl', 'rb')) with open(filename + '/glove_model.json', 'r') as infile: model_json = infile.read() self.classifier = tf.keras.models.model_from_json(model_json) self.classifier.load_weights(filename + '/glove_model.h5') self.classifier.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['acc'])
true
85c9b6a16f4355018f66651b8df4c52276be3379
Python
dlondonmedina/Everyday-Coding
/week2/homework/Player.py
UTF-8
344
3.109375
3
[]
no_license
class Player: def __init__(self, id, token): self.id = id self.token = token self.wins = 0 self.rows = [0, 0, 0] self.cols = [0, 0, 0] self.diags = [0, 0] def get_token(self): return self.token def add_win(self): self.wins += 1 def get_wins(self): return self.wins
true
dbc422532dc17527363cd20c1b25235c27694ddf
Python
Aasthaengg/IBMdataset
/Python_codes/p02257/s884997944.py
UTF-8
390
3.078125
3
[]
no_license
N = int(input()) a = [int(input()) for x in range(N)] import math cnt = 0 for i in range(N) : cnt += 1 if a[i] == 2 : continue else : for j in range(2, int(math.sqrt(a[i])) + 1) : if a[i] % 2 == 0 : cnt -= 1 break if a[i] % j == 0 : cnt -= 1 break print(cnt)
true
39b49022b06282570c724ac6e8e18af401cfd524
Python
codermoji-contrib/python
/start/Intro to Dicts/printdict/printval4.py
UTF-8
123
2.765625
3
[ "MIT" ]
permissive
age = dict(tom=23, jane=32, mike=27, linda=25) print(age['mike']) print(age['linda']) print(age['jane']) print(age['tom'])
true
89bec2dac4eca41d758985b85e3a155b52439b3e
Python
OaklandPeters/abf
/abf/test_abf.py
UTF-8
5,851
3.015625
3
[ "MIT" ]
permissive
from __future__ import absolute_import import unittest import types import abc if __name__ == "__main__": import sys sys.path.append('..') from abf.meta import * from abf.error import * else: from .meta import * from .error import * class TestMyProcessing(unittest.TestCase): class MyProcessing(object): __metaclass__ = ABFMeta @classmethod def __call__(self, *args, **kwargs): return 1234 @classmethod def foo(self, bang): return 'foo'+repr(bang) @classmethod def already_classmethod(cls, shebang): return 'already '+str(shebang) def test_basic(self): result = self.MyProcessing('a') self.assertEqual(result, 1234) self.assertEqual(self.MyProcessing.foo(5), "foo5") self.assertEqual(self.MyProcessing.already_classmethod(3), 'already 3') def test_abstract_method_requirement(self): # This currently fails, because the obligation to reimplement __call__ # is not being enforced. def make_erroring(): class MyErroring(object): __metaclass__ = ABFMeta def caller(self, *args, **kwargs): print("Insufficient - Should have errored") return MyErroring thing = make_erroring self.assertRaises(ABFAbstractError, make_erroring) self.assertRaises(NotImplementedError, make_erroring) def test_classmethods(self): _get = lambda name: self.MyProcessing.__dict__[name] self.assert_(isinstance(_get('__call__'), classmethod)) self.assert_(isinstance(_get('foo'), classmethod)) self.assert_(isinstance(_get('already_classmethod'), classmethod)) self.MyProcessing.new_method = lambda x: x self.assert_(not isinstance(_get('new_method'), classmethod)) class TestInheritance(unittest.TestCase): def test_three_generations(self): class AsserterInterface(object): __metaclass__ = ABFMeta message = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) meets = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) exception = abc.abstractproperty() get_return = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) #-------- Mixins def __call__(self, *args, **kwargs): if not self.meets(*args, **kwargs): self.raise_exception(*args, **kwargs) return self.get_return(*args, **kwargs) def raise_exception(self, *args, **kwargs): raise self.exception(self.message(*args, **kwargs)) def make_error(): class FileAsserterInterface(AsserterInterface): """Parent interface for all File-related assertions.""" def get_return(self, path): return path meets = abc.abstractproperty() message = abc.abstractproperty() #exception = abc.abstractproperty() return FileAsserterInterface self.assertRaises(ABFAbstractError, make_error) def test_approach_two(self): class GrandParent(object): __metaclass__ = ABFMeta message = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) meets = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) exception = abc.abstractproperty() get_return = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) #-------- Mixins def __call__(self, *args, **kwargs): if not self.meets(*args, **kwargs): self.raise_exception(*args, **kwargs) return self.get_return(*args, **kwargs) def raise_exception(self, *args, **kwargs): raise self.exception(self.message(*args, **kwargs)) class Parent(GrandParent): """ defines one abstract --> non-abstract preserves three abstracts --> abstract """ def get_return(self, path): return path meets = abc.abstractproperty() message = abc.abstractproperty() exception = abc.abstractproperty() def should_be_correct(): class Child1(Parent): """Implements remaining abstracts.""" def meets(self): return False def message(self): return "My message" exception = RuntimeError return Child1 def should_be_correct_2(): #Correct, because: # (1) meets, exception redefined as non-abstract # (2) message redefined as abstract class Child3(Parent): def meets(self): return False message = abc.abstractmethod(lambda *args, **kwargs: NotImplemented) exception = RuntimeError return Child3 def should_be_error_1(): #Error because abstract 'message' is neither: # (1) defined as non-abstract # (2) re-defined as abstract in Child class Child2(Parent): def meets(self): return False exception = RuntimeError return Child2 Child1 = should_be_correct() Child2 = should_be_correct_2() # Child version 1 self.assert_( issubclass(Child1, Parent) ) # Child version 2 self.assert_( issubclass(Child2, Parent) ) # Child version 3 - erroring self.assertRaises(ABFAbstractError, should_be_error_1) if __name__ == "__main__": unittest.main()
true
ecc139d202672de8a994b48e7258344bb46b4a07
Python
A-Schmid/python-audio-tutorial
/mido/midi_device.py
UTF-8
575
3.15625
3
[]
no_license
import mido # list of all available MIDI input devices inputs = mido.get_input_names() # let user select a device counter = 0 for device in inputs: print(f'[{counter}] {device}') counter += 1 selection = input('select device: ') try: # listen to input from selected device and print MIDI messages with mido.open_input(inputs[int(selection)]) as p: for msg in p: print(msg) except (ValueError, IndexError) as e: print(f'invalid device number: {selection} - must be between 0 and {len(inputs)-1}') except KeyboardInterrupt: pass
true
f3c5350ae8ad234f3ef3fdcb9722ee858fe71015
Python
fulder/python-httpsig
/httpsig/tests/test_verify.py
UTF-8
12,473
2.671875
3
[ "MIT" ]
permissive
#!/usr/bin/env python import sys import os import unittest from httpsig.sign import HeaderSigner, Signer from httpsig.sign_algorithms import PSS from httpsig.verify import HeaderVerifier, Verifier sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) class BaseTestCase(unittest.TestCase): def _parse_auth(self, auth): """Basic Authorization header parsing.""" # split 'Signature kvpairs' s, param_str = auth.split(' ', 1) self.assertEqual(s, 'Signature') # split k1="v1",k2="v2",... param_list = param_str.split(',') # convert into [(k1,"v1"), (k2, "v2"), ...] param_pairs = [p.split('=', 1) for p in param_list] # convert into {k1:v1, k2:v2, ...} param_dict = {k: v.strip('"') for k, v in param_pairs} return param_dict class TestVerifyHMACSHA1(BaseTestCase): test_method = 'POST' test_path = '/foo?param=value&pet=dog' header_host = 'example.com' header_date = 'Thu, 05 Jan 2014 21:31:40 GMT' header_content_type = 'application/json' header_digest = 'SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=' header_content_length = '18' sign_header = 'authorization' def setUp(self): secret = b"something special goes here" self.keyId = "Test" self.algorithm = "hmac-sha1" self.sign_secret = secret self.verify_secret = secret self.sign_algorithm = None def test_basic_sign(self): signer = Signer(secret=self.sign_secret, algorithm=self.algorithm, sign_algorithm=self.sign_algorithm) verifier = Verifier( secret=self.verify_secret, algorithm=self.algorithm, sign_algorithm=self.sign_algorithm) GOOD = b"this is a test" BAD = b"this is not the signature you were looking for..." # generate signed string signature = signer.sign(GOOD) self.assertTrue(verifier._verify(data=GOOD, signature=signature)) self.assertFalse(verifier._verify(data=BAD, signature=signature)) def test_default(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.sign_secret, algorithm=self.algorithm, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.verify_secret, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) self.assertTrue(hv.verify()) def test_signed_headers(self): HOST = self.header_host METHOD = self.test_method PATH = self.test_path hs = HeaderSigner( key_id="Test", secret=self.sign_secret, algorithm=self.algorithm, sign_header=self.sign_header, headers=[ '(request-target)', 'host', 'date', 'content-type', 'digest', 'content-length' ], sign_algorithm=self.sign_algorithm) unsigned = { 'Host': HOST, 'Date': self.header_date, 'Content-Type': self.header_content_type, 'Digest': self.header_digest, 'Content-Length': self.header_content_length, } signed = hs.sign(unsigned, method=METHOD, path=PATH) hv = HeaderVerifier( headers=signed, secret=self.verify_secret, host=HOST, method=METHOD, path=PATH, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) self.assertTrue(hv.verify()) def test_incorrect_headers(self): HOST = self.header_host METHOD = self.test_method PATH = self.test_path hs = HeaderSigner(secret=self.sign_secret, key_id="Test", algorithm=self.algorithm, sign_header=self.sign_header, headers=[ '(request-target)', 'host', 'date', 'content-type', 'digest', 'content-length'], sign_algorithm=self.sign_algorithm) unsigned = { 'Host': HOST, 'Date': self.header_date, 'Content-Type': self.header_content_type, 'Digest': self.header_digest, 'Content-Length': self.header_content_length, } signed = hs.sign(unsigned, method=METHOD, path=PATH) hv = HeaderVerifier(headers=signed, secret=self.verify_secret, required_headers=["some-other-header"], host=HOST, method=METHOD, path=PATH, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) with self.assertRaises(ValueError) as e: hv.verify() self.assertEqual(str(e.exception), 'some-other-header is a required header(s)') def test_extra_auth_headers(self): HOST = "example.com" METHOD = "POST" PATH = '/foo?param=value&pet=dog' hs = HeaderSigner( key_id="Test", secret=self.sign_secret, sign_header=self.sign_header, algorithm=self.algorithm, headers=[ '(request-target)', 'host', 'date', 'content-type', 'digest', 'content-length' ], sign_algorithm=self.sign_algorithm) unsigned = { 'Host': HOST, 'Date': self.header_date, 'Content-Type': self.header_content_type, 'Digest': self.header_digest, 'Content-Length': self.header_content_length, } signed = hs.sign(unsigned, method=METHOD, path=PATH) hv = HeaderVerifier( headers=signed, secret=self.verify_secret, method=METHOD, path=PATH, sign_header=self.sign_header, required_headers=['date', '(request-target)'], sign_algorithm=self.sign_algorithm) self.assertTrue(hv.verify()) def test_empty_secret(self): with self.assertRaises(ValueError) as e: HeaderVerifier(secret='', headers={}) self.assertEqual(str(e.exception), 'secret cant be empty') def test_none_secret(self): with self.assertRaises(ValueError) as e: HeaderVerifier(secret=None, headers={}) self.assertEqual(str(e.exception), 'secret cant be empty') def test_huge_secret(self): with self.assertRaises(ValueError) as e: HeaderVerifier(secret='x' * 1000000, headers={}) self.assertEqual(str(e.exception), 'secret cant be larger than 100000 chars') class TestVerifyHMACSHA256(TestVerifyHMACSHA1): def setUp(self): super(TestVerifyHMACSHA256, self).setUp() self.algorithm = "hmac-sha256" class TestVerifyHMACSHA512(TestVerifyHMACSHA1): def setUp(self): super(TestVerifyHMACSHA512, self).setUp() self.algorithm = "hmac-sha512" class TestVerifyRSASHA1(TestVerifyHMACSHA1): def setUp(self): private_key_path = os.path.join( os.path.dirname(__file__), 'rsa_private_1024.pem') with open(private_key_path, 'rb') as f: private_key = f.read() public_key_path = os.path.join( os.path.dirname(__file__), 'rsa_public_1024.pem') with open(public_key_path, 'rb') as f: public_key = f.read() self.keyId = "Test" self.algorithm = "rsa-sha1" self.sign_secret = private_key self.verify_secret = public_key self.sign_algorithm = None class TestVerifyRSASHA256(TestVerifyRSASHA1): def setUp(self): super(TestVerifyRSASHA256, self).setUp() self.algorithm = "rsa-sha256" class TestVerifyRSASHA512(TestVerifyRSASHA1): def setUp(self): super(TestVerifyRSASHA512, self).setUp() self.algorithm = "rsa-sha512" class TestVerifyRSASHA512ChangeHeader(TestVerifyRSASHA1): sign_header = 'Signature' class TestVerifyHS2019PSS(TestVerifyHMACSHA1): def setUp(self): private_key_path = os.path.join(os.path.dirname(__file__), 'rsa_private_2048.pem') with open(private_key_path, 'rb') as f: private_key = f.read() public_key_path = os.path.join(os.path.dirname(__file__), 'rsa_public_2048.pem') with open(public_key_path, 'rb') as f: public_key = f.read() self.keyId = "Test" self.algorithm = "hs2019" self.sign_secret = private_key self.verify_secret = public_key self.sign_algorithm = PSS(salt_length=0) def test_algorithm_mismatch(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.sign_secret, algorithm=self.algorithm, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.verify_secret, sign_header=self.sign_header, algorithm="rsa-sha256", sign_algorithm=self.sign_algorithm) self.assertFalse(hv.verify()) def test_correct_derived_algorithm(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.sign_secret, algorithm=self.algorithm, sign_header=self.sign_header, sign_algorithm=self.sign_algorithm) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.verify_secret, sign_header=self.sign_header, algorithm="hs2019", sign_algorithm=self.sign_algorithm) self.assertTrue(hv.verify()) class TestSignAndVerify(unittest.TestCase): header_date = 'Thu, 05 Jan 2014 21:31:40 GMT' sign_header = 'authorization' def setUp(self): with open(os.path.join(os.path.dirname(__file__), 'rsa_private_1024.pem'), 'rb') as f: self.private_key = f.read() with open(os.path.join(os.path.dirname(__file__), 'rsa_public_1024.pem'), 'rb') as f: self.public_key = f.read() with open(os.path.join(os.path.dirname(__file__), 'rsa_private_2048.pem'), 'rb') as f: self.other_private_key = f.read() with open(os.path.join(os.path.dirname(__file__), 'rsa_public_2048.pem'), 'rb') as f: self.other_public_key = f.read() def test_default(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.private_key, algorithm='rsa-sha1', sign_header=self.sign_header) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.public_key, sign_header=self.sign_header) self.assertTrue(hv.verify()) def test_other_default(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.other_private_key, algorithm='rsa-sha256', sign_header=self.sign_header) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.other_public_key, sign_header=self.sign_header) self.assertTrue(hv.verify()) def test_mix_default_1_256(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.private_key, algorithm='rsa-sha1', sign_header=self.sign_header) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.other_public_key, sign_header=self.sign_header) self.assertFalse(hv.verify()) def test_mix_default_256_1(self): unsigned = { 'Date': self.header_date } hs = HeaderSigner( key_id="Test", secret=self.other_private_key, algorithm='rsa-sha256', sign_header=self.sign_header) signed = hs.sign(unsigned) hv = HeaderVerifier( headers=signed, secret=self.public_key, sign_header=self.sign_header) self.assertFalse(hv.verify())
true
84ce930d03cf753f40aa0028b7f88c188d893a7c
Python
r4mi4/Algorithm
/two_sum.py
UTF-8
358
3.953125
4
[]
no_license
""" two sum: [2,7,11,15], 18 => [1,2] """ def two_sum(numbers,target): p1 = 0 p2 = len(numbers) - 1 while p1 < p2: print(p1,p2) s = numbers[p1] + numbers[p2] if s == target: return [p1,p2] elif s > target: p2 -=1 else: p1 +=1 print(two_sum([2,7,11,15], 9))
true
a78e11a2bfe378a3b25c139696cef545dedc63ad
Python
Junghwan-brian/web-programming
/Web-Scrapper/main.py
UTF-8
487
2.59375
3
[]
no_license
#%% import requests from bs4 import BeautifulSoup import pandas as pd import sys sys.path #%% # stackoveflow와 indeed를 'C:\\Users\\brian\\Anaconda3\\envs\\WebProgramming\\lib\\site-packages' # 폴더안에 넣어주고 사용했다. import stackoverflow import indeed # %% stackoverflow_job = stackoverflow.get_so_jobs() indeed_job = indeed.get_indeed_jobs() jobs = stackoverflow_job + indeed_job print(jobs) path = "jobs.csv" job_df = pd.DataFrame(jobs) job_df.to_csv(path) # %%
true
5392b17de6e8767ba5506cf21447618c7b243445
Python
walkccc/LeetCode
/solutions/0249. Group Shifted Strings/0249.py
UTF-8
471
3.234375
3
[ "MIT" ]
permissive
class Solution: def groupStrings(self, strings: List[str]) -> List[List[str]]: keyToStrings = collections.defaultdict(list) # 'abc' . '11' because diff(a, b) = 1 and diff(b, c) = 1 def getKey(s: str) -> str: key = '' for i in range(1, len(s)): diff = (ord(s[i]) - ord(s[i - 1]) + 26) % 26 key += str(diff) + ',' return key for s in strings: keyToStrings[getKey(s)].append(s) return keyToStrings.values()
true
db062c7f0a3964f838bac52eab65bc23a2ff53d3
Python
EwersLabUWyo/TREES_Py_R
/Python3_Version/scripts/TREES_GUI.py
UTF-8
2,380
2.59375
3
[]
no_license
# Written by Matt Cook # Created July 8, 2016 # mattheworion.cook@gmail.com import os.path import pickle import tkinter import TREES_utils as utils class MainMenu(object): def __init__(self): root = self.root = tkinter.Tk() root.title('Welcome to the TREES Graphical User Interface') # width x height + x_offset + y_offset: root.minsize(width=800, height=100) # Look for a pickle of previous setup in current directory curr_dir = os.path.curdir filename = curr_dir + 'prev_ws.p' if os.path.isfile(filename): wSpace = pickle.load(filename) opts = wSpace['opts'] # if no previous workspace, initialize else: # defining options for opening a directory self.dirOpt = dirOpt = {} dirOpt['mustexist'] = False dirOpt['parent'] = root dirOpt['title'] = 'Please choose your working directory' # define options for opening or saving a csv file self.fileOpt = fileOpt= {} fileOpt['defaultextension'] = '.csv' fileOpt['filetypes'] = [('csv files', '*.csv'), ('text files', '*.txt')] fileOpt['initialdir'] = '\\' fileOpt['parent'] = root fileOpt['title'] = 'Please select your file' # Store opts as one dicitionary to pass into make self.opts = opts = {} opts['dirOpts'] = dirOpt opts['fileOpts'] = fileOpt # defining titles for frames self.frame_titles = titles = [] titles.insert(0, 'Blue Stain Xylem data: ') titles.insert(1, 'Daily Sap Flux Decline data: ') titles.insert(2, 'Water Stress data: ') titles.insert(3, 'Gsref data: ') titles.insert(4, 'Directory containing data files: ') # Hard code this for now, come back and changelater calcs = ['Xylem Scalar', 'Water Stress', 'Gsv0'] # populate window with widgets utils.makeMain(root, titles, calcs, **opts) mainGUI = MainMenu() root = mainGUI.root root.bind('<Escape>', lambda e: utils.__closeWindow(root)) root.mainloop()
true
65649364f555ee7c03489b072721dfe2bf823181
Python
zhaolijian/suanfa
/leetcode/1011.py
UTF-8
1,319
3.671875
4
[]
no_license
# 传送带上的包裹必须在 D 天内从一个港口运送到另一个港口。 # 传送带上的第 i 个包裹的重量为 weights[i]。每一天,我们都会按给出重量的顺序往传送带上装载包裹。我们装载的重量不会超过船的最大运载重量。 # 返回能在 D 天内将传送带上的所有包裹送达的船的最低运载能力。 class Solution: def shipWithinDays(self, weights, D: int) -> int: max_weight = max(weights) length = len(weights) # 平均每艘船运的货物数量 temp = length // D if length % D == 0 else length // D + 1 sorted_weights = sorted(weights) # 最大运载能力(最大就是最重的temp个货物) max_val = sum(sorted_weights[length - temp:]) # 最小运载能力 min_val = max_weight # 二分法 while min_val < max_val: # 运载能力 mid_val = (min_val + max_val) // 2 temp = 0 number = 1 for weight in weights: temp += weight if temp > mid_val: number += 1 temp = weight if number > D: min_val = mid_val + 1 else: max_val = mid_val return min_val
true
a80280d6377ac1b5bce4091736203558ad2ea879
Python
mykhaly/ucu
/computer_vision/HW4/helper.py
UTF-8
1,430
2.96875
3
[]
no_license
import itertools as it import numpy as np def get_homography(source, destination): h = np.zeros((source.size, 9)) for idx, ((x_src, y_src), (x_dest, y_dest)) in enumerate(zip(source, destination)): row_idx = idx * 2 h[row_idx][0:3] = np.array([-x_src, -y_src, -1]) h[row_idx][6:9] = np.array([x_dest * x_src, x_dest * y_src, x_dest]) h[row_idx+1][3:6] = np.array([-x_src, -y_src, -1]) h[row_idx+1][6:9] = np.array([y_dest * x_src, y_dest * y_src, y_dest]) evs, evcs = np.linalg.eig(np.dot(h.T, h)) return evcs.T[np.argmin(evs)].reshape(3, 3) def apply_homography(point, homography): new_point = homography.dot(np.hstack((point, np.ones(1)))) return new_point[:2] / new_point[-1] def find_homography(source, destination): matching_points = np.array(list(it.combinations(range(source.shape[0]), 4))) min_error = float('inf') best_match = None homography = None for match in matching_points: curr_homography = get_homography(source[match], destination[match]) transformed_src = np.apply_along_axis(lambda x: apply_homography(x, curr_homography), axis=1, arr=source) error = np.sum(np.sqrt(np.sum(np.square(destination - transformed_src), axis=1))) if min_error > error: min_error = error best_match = match homography = curr_homography return homography, best_match
true
00f2cc8a2cc9bcf125175d33bfce8765e09cb9fe
Python
DaHuO/Supergraph
/codes/CodeJamCrawler/16_0_1/Witzy/A.py
UTF-8
855
2.921875
3
[]
no_license
# -*- coding: utf-8 -*- """ created by huash at 2016/4/9 08:32 """ __author__ = 'huash' import sys import os import datetime import functools import itertools import collections def getDigits(num): result = set() while num > 0: result.add(num % 10) num /= 10 return result def lastNumber(num): baseDigits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} visitedNums = set() v = num while v not in visitedNums: baseDigits = baseDigits - getDigits(v) if len(baseDigits) == 0: return v visitedNums.add(v) v += num return "INSOMNIA" f = open("A-large.in", "r") output = open("A-large.out", "w") T = f.readline() i = 1 for num in f.readlines(): output.write("Case #{}: {}\n".format(i, lastNumber(int(num)))) i += 1
true
541a36fb793ac61107e9e8361317487167142204
Python
ksielemann/QUOD
/variance_in_repl_test.py
UTF-8
5,567
2.609375
3
[ "BSD-3-Clause" ]
permissive
### Katharina Sielemann ### ### kfrey@cebitec.uni-bielefeld.de ### ### v1 ### #prior to this analysis: run QUOD.py for the (I) whole dataset including all accessions and (II) the replicate dataset of the same accession #imports import os, glob, sys from argparse import ArgumentParser import scipy.stats import numpy as np import pandas as pd import matplotlib.pyplot as plt __usage__ = """ python3 variance_in_repl_test.py --all_covs <FULL_PATH_TO_accession_coverage.txt_FILE_FOR_ALL_ACCESSIONS> (in QUOD output folder of whole dataset) --replicate_scores <FULL_PATH_TO_gene_dispensability_scores.csv_FILE_FOR_REPLICATE_DATASET> (in QUOD output folder of replicate dataset) --output_dir <FULL_PATH_TO_OUPUT_FOLDER> REQUIREMENTS: os, glob, sys, argparse, scipy, pandas, numpy, matplotlib """ input_parameters = ArgumentParser() input_parameters.add_argument("--all_covs", dest="all_covs") input_parameters.add_argument("--replicate_scores", dest="repl_scores") input_parameters.add_argument("--output_dir", "--output", "--out", "--o", dest="output_directory") if "--help" in sys.argv or "-h" in sys.argv: print(__usage__) sys.exit(1) args = input_parameters.parse_args() if args.all_covs is None: print("\n'--all_covs' was not set'") print(__usage__) sys.exit(1) elif args.repl_scores is None: print("\n'--replicate_scores' was not set'") print(__usage__) sys.exit(1) elif args.output_directory is None: print("\n'--output_dir' was not set'") print(__usage__) sys.exit(1) else: #iterative (100x) random (n=14) selection of datasets input_matrix = pd.read_csv(args.all_covs, sep="\t") input_matrix = input_matrix.set_index("gene") if os.path.isdir(args.output_directory + "iterative_random_sets_scores/") == False: os.makedirs(args.output_directory + "iterative_random_sets_scores/") for i in range(100): print("iteration " + str(i+1)) cov_matrix = input_matrix.sample(14, axis="columns").copy() N = len(list(cov_matrix)) cX = cov_matrix.div(cov_matrix.mean(axis="index"), axis="columns") ds = 1/((cX.sum(axis="columns")).div(N)) ds.to_csv(args.output_directory + "iterative_random_sets_scores/" + str(i+1) + "_ds.csv", header=False) datei = open(args.repl_scores,"r") lines = datei.readlines() datei.close() all_values = [] for line in lines: line = line.strip().split(",") if float(line[1]) != np.inf: all_values.append(float(line[1])) max_number = max(all_values) #take average of iterative random sets score_files = glob.glob(args.output_directory + "iterative_random_sets_scores/*_ds.csv") variances = [] stdeviations = [] for scorefile in score_files: datei = open(scorefile,"r") ds = datei.readlines() datei.close() scores = [] for line in sorted(list(ds)): line = line.strip().split(",") if float(line[1]) >= max_number: value = max_number scores.append(float(value)) else: scores.append(float(line[1])) variances.append(np.var(scores)) stdeviations.append(np.std(scores)) #Col-0 replicates (n=14) datei = open(args.repl_scores,"r") ds = datei.readlines() datei.close() all_values = [] for line in ds: line = line.strip().split(",") if line[1] != np.inf: all_values.append(line[1]) max_number = max(all_values) scores_col = [] for line in sorted(list(ds)): line = line.strip().split(",") if line[1] >= max_number: value = max_number scores_col.append(float(value)) else: scores_col.append(float(line[1])) #boxplot my_dict = {'randomly,\niterative\nselected datasets': variances, 'replicates': np.var(scores_col)} medianprops = dict(linestyle='-', linewidth=1.5, color='royalblue') meanprops = dict(linestyle='dashed', linewidth=1.5, color='royalblue') plt.figure(figsize=(6,7)) data = [variances, np.var(scores_col)] plt.ylim(ymin=0, ymax = max(variances)) plt.xlim(xmin=0.8, xmax=2.2) plt.scatter(2, np.var(scores_col), color='grey', s=4, alpha=1) x = np.random.normal(1, 0.04, len(variances)) plt.scatter(x, variances, color='grey', s=1, alpha=0.4) plt.boxplot(my_dict['randomly,\niterative\nselected datasets'], showmeans=True, meanline=True, showfliers=False, medianprops=medianprops, meanprops=meanprops, widths=0.3) plt.xticks([1,2],["randomly,\niterative\nselected datasets", "replicates"]) plt.ylabel('variance of the dispensability score (ds)', fontsize=16) plt.tick_params(axis='both', which='both', labelsize=14) plt.savefig(args.output_directory + "variance_in_replicates.png") plt.close() #calculate mean scores of iterative randomly selected datasets score_files = glob.glob(args.output_directory + "iterative_random_sets_scores/*_ds.csv") gene_scores = {} for scorefile in score_files: datei = open(scorefile,"r") ds = datei.readlines() datei.close() for zeile in ds: line = zeile.strip().split(",") #print(line[0]) if line[0] not in gene_scores.keys(): if float(line[1]) <= float(max_number): gene_scores[line[0]] = [float(line[1])] else: gene_scores[line[0]] = [float(max_number)] else: if float(line[1]) <= float(max_number): gene_scores[line[0]] += [float(line[1])] else: gene_scores[line[0]] += [float(max_number)] scores_randomsets = [] for gene in gene_scores.keys(): scores_randomsets.append(np.mean(gene_scores[gene])) #calculate differences print("\nreplicates (var,std):") print(np.var(scores_col)) print(np.std(scores_col)) print("\niterative randomly selected datasets (var,std):") print(np.var(scores_randomsets)) print(np.std(scores_randomsets)) print("\n") print(scipy.stats.levene(scores_randomsets, scores))
true
d4a4663f0ede98675e7384d12e6594e1256c7999
Python
zymov/leetcode
/py/_53_Maximum_Subarray.py
UTF-8
683
3.671875
4
[]
no_license
""" Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle. """ from typing import List class Solution: def maxSubArray(self, nums: List[int]) -> int: sum = 0 max = nums[0] for i in nums: sum += i if sum > max: max = sum if sum < 0: sum = 0 return max
true
307e5a11874e6bbfbcc958349d0fbc79a80b6802
Python
jkapila/theNatureofCodeProject
/genrics.py
UTF-8
402
3.265625
3
[]
no_license
""" These are general methods definition """ from vector import PVector def addition(vec1, vec2): return PVector(vec1.x+vec2.x, vec1.y+vec2.y, vec1.z+vec2.z) def subtract(vec1, vec2): return PVector(vec1.x-vec2.x, vec1.y-vec2.y, vec1.z-vec2.z) def multiply(vec1, d): return PVector(vec1.x,vec1.y,vec1.z).mult(d) def divide(vec1, d): return PVector(vec1.x,vec1.y,vec1.z).div(d)
true
dbea24b22fcedc3f9ea56d299ad39f5dfef2d435
Python
OmarTahoun/competitive-programming
/Miscellaneous/UIA_Warm_Up/Python/phoneCode.py
UTF-8
285
3.0625
3
[]
no_license
n = int(input()) substring = list(raw_input()) for i in range(n-1): phone = list(raw_input()) for j in range(len(substring)): if substring[j] == phone[j]: continue else: substring = substring[:j] break print len(substring)
true
e3ad9dcf26d1da0d1f0654ba72c17e7ca0d4256c
Python
sloria/webtest-plus
/webtest_plus/response.py
UTF-8
3,192
2.953125
3
[ "MIT" ]
permissive
# -*- coding: utf-8 -*- import re from webtest import response class TestResponse(response.TestResponse): '''Same as WebTest's TestResponse but adds basic HTTP authentication to ``click`` and ``clickbutton``. ''' def click(self, description=None, linkid=None, href=None, index=None, verbose=False, extra_environ=None, auth=None, auth_type=None): """ Click the link as described. Each of ``description``, ``linkid``, and ``url`` are *patterns*, meaning that they are either strings (regular expressions), compiled regular expressions (objects with a ``search`` method), or callables returning true or false. All the given patterns are ANDed together: * ``description`` is a pattern that matches the contents of the anchor (HTML and all -- everything between ``<a...>`` and ``</a>``) * ``linkid`` is a pattern that matches the ``id`` attribute of the anchor. It will receive the empty string if no id is given. * ``href`` is a pattern that matches the ``href`` of the anchor; the literal content of that attribute, not the fully qualified attribute. If more than one link matches, then the ``index`` link is followed. If ``index`` is not given and more than one link matches, or if no link matches, then ``IndexError`` will be raised. If you give ``verbose`` then messages will be printed about each link, and why it does or doesn't match. If you use ``app.click(verbose=True)`` you'll see a list of all the links. You can use multiple criteria to essentially assert multiple aspects about the link, e.g., where the link's destination is. """ found_html, found_desc, found_attrs = self._find_element( tag='a', href_attr='href', href_extract=None, content=description, id=linkid, href_pattern=href, index=index, verbose=verbose) auth = auth or self.test_app.auth auth_type = auth_type or self.test_app.auth_type return self.goto(str(found_attrs['uri']), extra_environ=extra_environ, auth=auth, auth_type=auth_type) def clickbutton(self, description=None, buttonid=None, href=None, index=None, verbose=False, auth=None, auth_type=None): """ Like :meth:`~webtest.response.TestResponse.click`, except looks for link-like buttons. This kind of button should look like ``<button onclick="...location.href='url'...">``. """ found_html, found_desc, found_attrs = self._find_element( tag='button', href_attr='onclick', href_extract=re.compile(r"location\.href='(.*?)'"), content=description, id=buttonid, href_pattern=href, index=index, verbose=verbose) auth = auth or self.test_app.auth auth_type = auth_type or self.test_app.auth_type return self.goto(str(found_attrs['uri']), auth=auth, auth_type=auth_type)
true
9c5bb4ec55693cb8ef72aba460d5bfe2fd6f614d
Python
DeepSwissVoice/Dobby
/dobby/errors.py
UTF-8
3,902
3.140625
3
[ "MIT" ]
permissive
from typing import Any, Callable, Optional, TYPE_CHECKING if TYPE_CHECKING: from . import Context DobbyBaseError = type("DobbyBaseError", (Exception,), {}) DobbyBaseError.__doc__ = """This exception is just a subclass of `Exception`. It doesn't add any extra functionality but it's supposed to be the only error ever raised by Dobby. """ class DobbyError(DobbyBaseError): """ A base class for all Dobby-related errors that provide a bit more info. A `DobbyError` can help you fix the problem by giving a (useless) hint and the `Context` in which the error was raised. Attributes: ctx: `Context` that was passed to the error (optional) """ _msg: str _hint: Optional[str] ctx: Optional["Context"] def __init__(self, msg: str, **kwargs): self._msg = msg self._hint = kwargs.pop("hint", None) self.ctx = kwargs.pop("ctx", None) super().__init__(**kwargs) def __repr__(self) -> str: return f"{type(self).__name__}({self.msg!r})" def __str__(self) -> str: lines = [self.msg] if self.message: lines.append(f"=== Message ===\n{self.message}") if self.ctx: lines.append(f"=== Context ===\n{self.ctx.prettify()}") if self.hint: lines.append(f"=== Hint ===\n{self.hint}") return "\n\n".join(lines) def _format_str(self, s: str) -> str: return s.format(msg=self._msg, hint=self._hint, ctx=self.ctx, self=self) @property def msg(self) -> str: """Formatted message that was passed to the error.""" return self._format_str(self._msg) @property def hint(self) -> Optional[str]: """The hint which may have been provided when creating the error.""" if self._hint: return self._format_str(self._hint) @property def message(self) -> Optional[str]: """A property for subclasses to override. For `DobbyError` this will always be `None`. If the message is a truthy value then it'll be included in the string representation of the error. """ return None SetupError = type("SetupError", (DobbyError,), {}) SetupError.__doc__ = """ A subclass of `DobbyError` which really doesn't add anything to the base class **but** it is (or at least should be) the base class for all errors that happen during the setup of Dobby (that's basically everything before going to sleep to wait for the first task). """ EnvError = type("EnvError", (SetupError,), {}) EnvError.__doc__ = """ Finally we get to the first *real* error which is raised when trying to access a key from the `env` that isn't defined in the environment variables or the `env` config key. """ class ConversionError(SetupError): """Raised when the conversion of a config value to the designated slave argument type fails. Attributes: key: Name of the parameter that the `value` was supposed to be converted for value: Value that was passed to the `Converter` to be converted converter: `Converter` that tried to convert the `value` """ key: str value: Any converter: Callable def __init__(self, msg: str, **kwargs): self.key = kwargs.pop("key", None) self.value = kwargs.pop("value", None) self.converter = kwargs.pop("converter") super().__init__(msg, **kwargs) @property def message(self) -> str: """ A string which provides information on which `Converter` was used, what was to be converted and for which slave argument. """ lines = [] if self.converter: lines.append(f"Converter: {self.converter}") if self.key: lines.append(f"Key: \"{self.key}\"") if self.value: lines.append(f"Provided value: {self.value}") return "\n".join(lines)
true
ed0ca502bf073ff2853b26d7e70e8fcf076dcfab
Python
yiv/py-lab
/datatype/dict.py
UTF-8
230
3.203125
3
[]
no_license
book = {'padme': 35, 'edwin': 34} print(book) book['nick'] = 33 print('增', book) book['edwin'] = 50 print('改', book) print('查', book['padme']) print('键列表', list(book)) print('键列表(排序)', sorted(book))
true
0699ee1d56bd5a355e0723e10bd8e61401aefffc
Python
trec-dd/trec-dd-jig
/old-scorer/scorer.py
UTF-8
1,632
2.53125
3
[]
no_license
# -*- coding: utf-8 -*- # Run all the old-scorer in one trial from subprocess import call import click def run_all(): cubetest() stage_aware_cubetest() nDCG() snDCG() def cubetest(truth, run): print 'Calling cubetest' # results print to screen call(["perl", "cubeTest_dd.pl", truth, run, '50', '>']) def stage_aware_cubetest(truth, run): print 'Calling stage aware cubetest' # results print to screen call(["perl", "cubeTest_dd_s.pl", truth, run, '50']) def nDCG(truth, run): print 'Calling nDCG' # results written into file call(["./ndeval", truth, run]) # ndeval [options] qrels.txt run (-help for full usage information) def snDCG(truth, run): print 'Calling snDCG' # results written into file call(["perl", "snDCG_per_iteration.pl", truth, run, '5']) def pr(truth, run): print 'Calling P@R' # results print to screen call(["perl", "cubeTest_dd.pl", truth, run, '50']) choice = { 'cubetest': cubetest, 'stage_aware_cubetest': stage_aware_cubetest, 'nDCG': nDCG, 'snDCG': snDCG, 'PR': pr, } @click.command() @click.option('-truth', type=click.Path(exists=True), help='ground truth file path') @click.option('-run', type=click.Path(exists=True), help='run file path') # @click.option('-config', '-c', # type=click.Choice(['all', 'cubetest', 'stage_aware_cubetest', # 'nDCG', 'SnDCG']), # default='all', help='config option') def score(truth, run): for key, func in choice.iteritems(): func(truth, run) if __name__ == '__main__': score()
true
df5236ef929ea667965c723bd0f24674b0b631d9
Python
Aasthaengg/IBMdataset
/Python_codes/p03807/s352343009.py
UTF-8
235
3.015625
3
[]
no_license
import sys input = sys.stdin.readline def main(): N = int(input()) a_list = list(map(int, input().split())) if sum(a_list) % 2 == 1: print("NO") else: print("YES") if __name__ == '__main__': main()
true
c259b02e9473222828a55e03ac514bbe0450c2da
Python
LKhushlani/leetcode
/duplicte0s.py
UTF-8
514
2.90625
3
[]
no_license
class Solution: def duplicateZeros(self, arr: List[int]) -> None: """ Do not return anything, modify arr in-place instead. """ l = len(arr) shifts = 0 for i in range(l): if arr[i] == 0: shifts += 1 for i in range((l-1), -1, -1): if shifts+i <l: arr[shifts +i] = arr[i] if arr[i] == 0: shifts -=1 if shifts +i < l: arr[shifts+i] = 0
true
51a33b9fa028cf391ae4939791510888d3c5caea
Python
Aasthaengg/IBMdataset
/Python_codes/p02970/s119776449.py
UTF-8
102
3.015625
3
[]
no_license
n,d = map(int,input().split()) c = d*2+1 if n%c ==0: print(int(n//c)) else: print(int(n//c)+1)
true
b55c89444a2b4c620ff073f3bf1b9b4d5efb8722
Python
rafarios/quicksort
/quicksort.py
UTF-8
1,177
3.65625
4
[]
no_license
#import subprocess def printArray(arr): n = len(arr) f = open("README.md", "w") for i in range(n): print (arr[i]) f.write(arr[i] + "\n") print(" ") f.close() #output = subprocess.run(['git', 'add README.md']) #output = subprocess.run(['git', 'commit -F "README.md updated"']) def partition(arr,low,high): i = ( low-1 ) # index of smaller element pivot = arr[high] # pivot for j in range(low , high): # If current element is smaller than or equal to pivot if len(arr[j]) <= len(pivot): # increment index of smaller element i = i+1 arr[i],arr[j] = arr[j],arr[i] arr[i+1],arr[high] = arr[high],arr[i+1] printArray(arr) return ( i+1 ) def quickSort(arr,low,high): if low < high: # pi is partitioning index, arr[p] is now at right place pi = partition(arr,low,high) # Separately sort elements before partition and after partition quickSort(arr, low, pi-1) quickSort(arr, pi+1, high) arr = ["*****", "***", "************", "*************", "**", "*", "****", "*************************", "*********", "*****", "*********", "*******", "**"] n = len(arr) quickSort(arr,0,n-1)
true
edb4712bf0c452f66d0da6f246451b9c93f3e3ea
Python
tools4origins/pysparkling
/pysparkling/tests/test_context.py
UTF-8
2,693
3.125
3
[ "MIT", "Apache-2.0" ]
permissive
import logging import unittest import pysparkling class Context(unittest.TestCase): def test_broadcast(self): b = pysparkling.Context().broadcast([1, 2, 3]) self.assertEqual(b.value[0], 1) def test_lock1(self): """Should not be able to create a new RDD inside a map operation.""" sc = pysparkling.Context() self.assertRaises( pysparkling.exceptions.ContextIsLockedException, lambda: (sc .parallelize(range(5)) .map(lambda _: sc.parallelize([1])) .collect()) ) def test_lock2(self): """Should not be able to create RDDs containing RDDs.""" sc = pysparkling.Context() def parallelize_in_parallelize(): o = sc.parallelize(sc.parallelize(range(x)) for x in range(5)) print(o.map(lambda x: x.collect()).collect()) self.assertRaises( pysparkling.exceptions.ContextIsLockedException, parallelize_in_parallelize ) def test_parallelize_single_element(self): my_rdd = pysparkling.Context().parallelize([7], 100) self.assertEqual(my_rdd.collect(), [7]) def test_parallelize_matched_elements(self): my_rdd = pysparkling.Context().parallelize([1, 2, 3, 4, 5], 5) self.assertEqual(my_rdd.collect(), [1, 2, 3, 4, 5]) def test_parallelize_empty_partitions_at_end(self): my_rdd = pysparkling.Context().parallelize(range(3529), 500) print(my_rdd.getNumPartitions()) my_rdd.foreachPartition(lambda p: print(sum(1 for _ in p))) self.assertEqual(my_rdd.getNumPartitions(), 500) self.assertEqual(my_rdd.count(), 3529) def test_retry(self): class EverySecondCallFails: def __init__(self): self.attempt = 0 def __call__(self, value): self.attempt += 1 if self.attempt % 2 == 1: raise Exception return value data = list(range(6)) rdd = pysparkling.Context().parallelize(data, 3) result = rdd.mapPartitions(EverySecondCallFails()).collect() self.assertEqual(result, data) def test_union(self): sc = pysparkling.Context() rdd1 = sc.parallelize(['Hello']) rdd2 = sc.parallelize(['World']) union = sc.union([rdd1, rdd2]).collect() print(union) self.assertEqual(union, ['Hello', 'World']) def test_version(self): self.assertIsInstance(pysparkling.Context().version, str) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) Context().test_retry()
true
2fb401ed5b35314d0bc072cb21178ae77afe8933
Python
Benny93/dragonflow
/dragonflow/db/drivers/redis_calckey.py
UTF-8
990
2.53125
3
[ "Apache-2.0" ]
permissive
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import crc16 RedisClusterHashSlots = 16384 def key2slot(key): """ Calculate keyslot for a given key. This also works for binary keys that is used in python 3. """ k = unicode(key) start = k.find("{") if start > -1: end = k.find("}", start + 1) if end > -1 and end != start + 1: k = k[start + 1:end] return crc16.crc16xmodem(k) % RedisClusterHashSlots
true
4ca5a35f79db9a0d38f55fa4a4ec6a6994f220ca
Python
WanzhengZhu/local-embedding
/code/find_general_terms.py
UTF-8
5,919
2.515625
3
[]
no_license
import numpy as np from sklearn.feature_extraction.text import * from sklearn.linear_model import SGDClassifier from sklearn.preprocessing import normalize import time def read_file(filename): lines = [] with open(filename) as file: for line in file: # line = " ".join(line.split()) lines.append(line[:-1]) # Git rid of the last character \n return lines def read_interested_file(filename, keywords): # Read lines with at least one keyword lines = [] with open(filename) as file: for line in file: lines.append(line[:-1]) # Git rid of the last character \n return lines def read_file1(filename, num): training_data = [] training_label = [] i = 0 with open(filename) as file: for line in file: training_data.append(int(line.split()[0])) training_label.append(int(line.split()[1])) i = i+1 if i >= num: break return training_data, training_label def read_wordEmb(filename): words = [] wordEmb = [] with open(filename) as file: for line in file: words.append(line.split()[0]) # Vocabulary wordEmb.append(map(float, line.split()[1:])) # word vectors return (words,wordEmb) def Normalize(senvec): norm = 0 for x in senvec: norm += x**2 senvec = [x/(norm**0.5) for x in senvec] return senvec def find_general_terms(input_dir, node_dir, center_names, keywords_file): # node_dir = '/Users/wanzheng/Desktop/local-embedding/data/dblp/non-para-00/' print('[find_general_terms] Begin finding general terms') begin = time.time() print 'Reading files...' keywords = read_file(keywords_file) filename = input_dir + 'papers.txt' lines = read_file(filename) # lines = read_interested_file(filename, keywords) filename1 = node_dir + 'paper_cluster.txt' number = max(int(0.01*len(lines)), 50000) training_data_index, training_label = read_file1(filename1, number) lines_used = [] for i in training_data_index: lines_used.append(lines[i]) del lines # Save memory print 'Initializing tf-idf...' vectorizer = TfidfVectorizer(min_df=10) A = vectorizer.fit_transform(lines_used) print A._shape tfidf = A.toarray() print 'Trim tf-idf to only interested keywords' temp = [] for i in keywords: if i in vectorizer.vocabulary_: temp.append(vectorizer.vocabulary_.get(i)) tfidf = np.array(tfidf[:, temp]) print 'Original size is: ' + str(tfidf.shape) invalid = np.where(np.sum(tfidf, 1) == 0) print 'Number of invalid entries is: ' + str(len(invalid[0])) tfidf = np.delete(tfidf, invalid, 0) training_label = np.delete(np.array(training_label), invalid, 0) print 'Truncated size is: ' + str(tfidf.shape) print 'Running LASSO...' tfidf = normalize(tfidf, norm='l2', axis=0) # axis: 1: normalize each data; 0: normalize each feature. 0 is better than 1. clf = SGDClassifier(loss="hinge", penalty="l1", alpha=0.00005, n_jobs=20, max_iter=5) # Alpha for dblp is clf.fit(tfidf, training_label) dimension = len(tfidf[0]) del tfidf # To save memory print 'Writing to file...' filename_to_write = node_dir + 'repre_keyword.txt' general_keyword_to_write = node_dir + 'general_keyword.txt' nondetermining_terms = [[] for i in range(len(clf.coef_))] specific_terms = [[] for i in range(len(clf.coef_))] with open(filename_to_write, 'w') as fout: cluster_num = 0 for weight in clf.coef_: keyword_number = 0 print sum(weight) fout.write('cluster number ' + str(cluster_num) + ': ' + center_names[cluster_num] + '\n') representativeness_order = np.argsort(abs(np.array(weight)))[::-1] for i in representativeness_order: keyword_i = vectorizer.vocabulary_.keys()[vectorizer.vocabulary_.values().index(temp[i])] if weight[i] == 0: # Write to general terms nondetermining_terms[cluster_num].append(keyword_i) continue if weight[i] > 1: # Write to specific terms. The importance of this word is above threshold specific_terms[cluster_num].append(keyword_i) if keyword_number < 20: if weight[i] > 0: # Only output positive value, since positive value means learning towards this cluster fout.write(keyword_i + '\t' + str(weight[i]) + '\n') keyword_number = keyword_number + 1 cluster_num = cluster_num + 1 fout.write('\n') print 'Non-zero percentage: ' + str(keyword_number) + '/' + str(dimension) for i in range(len(specific_terms)): print('[find_general_terms] Specific terms: ', specific_terms[i].__len__()) with open(node_dir + 'repre_cand_' + str(i) + '.txt', 'w') as fout: for j in specific_terms[i]: fout.write(j + '\n') # General terms for all clusters result = set(nondetermining_terms[0]) for s in nondetermining_terms[1:]: result.intersection_update(s) # print result general_terms = [] with open(general_keyword_to_write, 'w') as fout: for i in result: fout.write(i + '\n') general_terms.append(i) print('[find_general_terms] General terms: ', general_terms.__len__()) end = time.time() print('[find_general_terms] Finish finding general terms using time %s second' % (end-begin)) return general_terms, specific_terms # print 'Running LASSO' # for alpha in [0, 0.01, 0.1, 0.3, 0.5, 1, 2]: # print 'alpha is: ' + str(alpha) # clf = Lasso(alpha=alpha) # clf.fit(tfidf, training_label) # print clf.coef_ # print sum(clf.coef_)
true
9863a5914df334b8ea4c0c124c20125e2a8114af
Python
BQSKit/bqskit
/bqskit/passes/processing/exhaustive.py
UTF-8
6,358
2.796875
3
[ "LicenseRef-scancode-unknown-license-reference", "BSD-2-Clause" ]
permissive
"""This module implements the ExhaustiveGateRemovalPass.""" from __future__ import annotations import logging from typing import Any from typing import Callable import numpy as np from bqskit.compiler.basepass import BasePass from bqskit.compiler.passdata import PassData from bqskit.ir.circuit import Circuit from bqskit.ir.operation import Operation from bqskit.ir.opt.cost.functions import HilbertSchmidtResidualsGenerator from bqskit.ir.opt.cost.generator import CostFunctionGenerator from bqskit.ir.structure import CircuitStructure from bqskit.runtime import get_runtime from bqskit.utils.typing import is_real_number _logger = logging.getLogger(__name__) class ExhaustiveGateRemovalPass(BasePass): """ The ExhaustiveGateRemovalPass class. Use instantiation to remove the most possible gates from the circuit. """ def __init__( self, success_threshold: float = 1e-10, cost: CostFunctionGenerator = HilbertSchmidtResidualsGenerator(), instantiate_options: dict[str, Any] = {}, collection_filter: Callable[[Operation], bool] | None = None, scoring_fn: Callable[[Circuit], float] | None = None, ) -> None: """ Construct a ExhaustiveGateRemovalPass. Args: success_threshold (float): The distance threshold that determines successful termintation. Measured in cost described by the hilbert schmidt cost function. (Default: 1e-10) cost (CostFunction | None): The cost function that determines successful removal of a gate. (Default: HilbertSchmidtResidualsGenerator()) instantiate_options (dict[str: Any]): Options passed directly to circuit.instantiate when instantiating circuit templates. (Default: {}) collection_filter (Callable[[Operation], bool] | None): A predicate that determines which operations should be attempted to be removed. Called with each operation in the circuit. If this returns true, this pass will attempt to remove that operation. Defaults to all operations. scoring_fn (Callable[[Circuit], float]): A scoring function for the circuits to determine which one to select. Defaults to gate counts weighted by their size. """ if not is_real_number(success_threshold): raise TypeError( 'Expected real number for success_threshold' ', got %s' % type(success_threshold), ) if not isinstance(cost, CostFunctionGenerator): raise TypeError( 'Expected cost to be a CostFunctionGenerator, got %s' % type(cost), ) if not isinstance(instantiate_options, dict): raise TypeError( 'Expected dictionary for instantiate_options, got %s.' % type(instantiate_options), ) self.collection_filter = collection_filter or default_collection_filter if not callable(self.collection_filter): raise TypeError( 'Expected callable method that maps Operations to booleans for' ' collection_filter, got %s.' % type(self.collection_filter), ) self.scoring_fn = scoring_fn or default_scoring_fn if not callable(self.scoring_fn): raise TypeError( 'Expected callable method that maps Circuits to floats for' ' scoring_fn, got %s.' % type(self.scoring_fn), ) self.success_threshold = success_threshold self.cost = cost self.instantiate_options: dict[str, Any] = { 'dist_tol': self.success_threshold, 'min_iters': 100, } self.instantiate_options.update(instantiate_options) async def run(self, circuit: Circuit, data: PassData) -> None: """Perform the pass's operation, see :class:`BasePass` for more.""" instantiate_options = self.instantiate_options.copy() if 'seed' not in instantiate_options: instantiate_options['seed'] = data.seed _logger.debug('Starting exhaustive gate removal.') target = self.get_target(circuit, data) # Frontier tracks circuits successfully instantiated to target frontier = [circuit.copy()] # Track best cicuit seen so far best_circuit = None best_score = -np.inf # Keep removing until no more successful circuits while len(frontier) > 0: # Expand each element of frontier by removing gates expanded_circuits = [] # Don't repeat circuit structures circuits_seen = set() for c in frontier: for cycle, op in c.operations_with_cycles(): point = (cycle, op.location[0]) copy = c.copy() copy.pop(point) structure = CircuitStructure(copy) if structure not in circuits_seen: expanded_circuits.append(copy) circuits_seen.add(structure) # Instantiate them all instantiated_circuits = await get_runtime().map( Circuit.instantiate, expanded_circuits, target=target, **instantiate_options, ) # Process them next_frontier = [] for c in instantiated_circuits: if self.cost(c, target) < self.success_threshold: next_frontier.append(c) score = self.scoring_fn(c) if score > best_score: best_circuit = c best_score = score frontier = next_frontier # Keep best circuit if one found if best_circuit is not None: circuit.become(best_circuit) def default_collection_filter(op: Operation) -> bool: return True def default_scoring_fn(circuit: Circuit) -> float: """Default scoring function.""" score = 0.0 for op in circuit: score -= (op.num_qudits - 1) * 100 + 1 return score
true
18d31fb5ec52da0d2eed3b6e716937b34f3315bb
Python
italosaniz/SisTelecomunicaciones
/modulogit.py
UTF-8
1,204
3.609375
4
[]
no_license
#COSTANCIA DE MATRICULA def nombre(): global nom nom=input("Ingrese su nombre: ") if (not verificar(nom)): print("Intentelo de nuevo") nombre() def verificar(x): for i in x: if (ord(i)<65 or ord(i)>90) and (ord(i)<97 or ord(i)>122) and ord(i)!=32: return False return True def apellido(): global ape ape=input("Ingrese su apellido: ") if (not verificar(ape)): print("Intentelo de nuevo") apellido() def numdni(): global dni while True: try: dni=int(input("Ingrese el numero de su DNI: ")) break except: print("Intentelo de nuevo") dni=str(dni) if (len(dni)!=8): print("Intentelo de nuevo") numdni() def naci(): global nacimiento while True: try: nacimiento=int(input("Ingrese la fecha de su nacimiento")) break except: print("Intentelo de nuevo") def cui(): global cui while True: try: cui=int(input("Ingrese el numero de su CUI")) break except: print("Intentelo de nuevo")
true
70943469fe4721c8019c58ceaf47d7d9aede8b69
Python
Tmk10/Reddit_dailyprogramming
/Kaprekar routine/kaprekar_routine.py
UTF-8
723
3.109375
3
[]
no_license
#main challenge def kaprekar_routine(number): number = list(str(number)) if len(number) <4: number.insert(0,"0") return(max(number)) #bonus 1 def kaprekar_routine_1(number): number = list(str(number)) if len(number) < 4: number.insert(0, "0") return "".join(sorted(number,reverse=True)) #bonus 2 def kaprekar_routine_2(number): counter =0 while number != 6174: number = list(str(number)) if len(number) < 4: number.insert(0, "0") if len(set(number)) < 2: counter =0 return counter number = int("".join(sorted(number,reverse=True))) - int("".join(sorted(number))) counter+=1 return counter
true
918aeaeaf69f1b365f23c6208b63883f71425df0
Python
AbdulHannanKhan/Advance-Lane-Finding
/lane.py
UTF-8
15,579
2.921875
3
[ "MIT" ]
permissive
import numpy as np import cv2 def eval_poly(vec, poly): """ Evaluates value of a polynomial at a given point :param vec: The given point :float :param poly: The polynomial :ndarray[3,] :return: value of polynomial at given point :float """ return vec ** 2 * poly[0] + vec * poly[1] + poly[2] def curvature_of_poly(poly, y): """ Given a polynomial and a point y calculate its curvature :param poly: The polynomial :ndarray[3,] :param y: The point to calculate curvature at :float :return: The curvature of Polynomial at y """ a, b, c = poly return ((1 + (2 * a * y + b) ** 2) ** (3 / 2)) / np.abs(2 * a) class Lane: left_anchor = None right_anchor = None left_poly = None left_poly_m = None right_poly = None right_poly_m = None win_count = None search_window_margin = None min_votes = None image_size = None mean_dist = 0 dist_count = 0 data_min = 0 curvature = 0 vehicle_center = 0 lane_width = 3.7 # average lane width vehicle_width = 2.5 # average vehicle width xm_per_pix = lane_width / 580 # 1280 - 350(offset)*2 = 580px ym_per_pix = 30 / 720 # 30 meters actual lane length in ROI perspective projected on 720px M_ = None M_inv_ = None @classmethod def threshold(cls, frame): """ Combine Saturation and Sobel thresholds to extract possible lane indication pixels :param frame: The given image to extract lane pixels :return: Grayscale image with highlighted possible lane pixels """ image = cv2.cvtColor(frame, cv2.COLOR_RGB2HLS) # Convert to HLS s_ = image[:, :, 2] # extract S channel from HLS _h, _w = s_.shape image = cv2.GaussianBlur(s_, (5, 5), 1) # Blur before thresholding to reduce noise highly_saturated = np.uint8(image > 200) sobel_strong_edges = np.uint8(cv2.Sobel(image, cv2.CV_64F, 1, 0) > 20) # Highlight where highly saturated or strong sobel edge pixels are found image = highly_saturated * 50 + sobel_strong_edges * 50 return image def find_hist_based_anchors(self, frame): """ Using histograms find left and right lane polynomial starting points :param frame: Input frame :return: None """ # define bounds frame_height = frame.shape[0] win_height = int(frame_height / self.win_count) mid_point = int(frame.shape[1] / 2) # calculate histogram of last 1/8th row patch hist = np.sum(frame[-win_height:, :] > 0, 0) # extract max values one from left half of image and one from right half as left and right anchors # respectively self.left_anchor = np.argmax(hist[:mid_point]) self.right_anchor = np.argmax(hist[mid_point:]) + mid_point def extract_poly(self, frame): """ Use left and right anchors as starting point and apply sliding window approach to find points of interest for lane polynomial :param frame: Input frame :return: None """ debug = np.copy(frame) # for debug draw sliding window rects # Define current left and right x positions cur_left = self.left_anchor cur_right = self.right_anchor # Search parameters setup height, width = frame.shape[:2] win_height = int(height / self.win_count) margin = self.search_window_margin # Storage for left and right points of interest for polynomial nonzero_indices_left = [] nonzero_indices_right = [] # Extract all nonzero x and y locations from frame nonzero_y, nonzero_x = np.nonzero(frame) # For all sliding windows for i in range(self.win_count): # Define window start and end win_set = height - (i + 1) * win_height win_end = height - i * win_height # Find left and right polynomial candidates by checking if they lie inside the sliding window left_candidates = ( (nonzero_y >= win_set) & (nonzero_y < win_end) & (nonzero_x >= max(cur_left - margin, 0)) & (nonzero_x < min(cur_left + margin, width)) ).nonzero()[0] right_candidates = ( (nonzero_y >= win_set) & (nonzero_y < win_end) & (nonzero_x >= max(cur_right - margin, 0)) & (nonzero_x < min(cur_right + margin, width)) ).nonzero()[0] # Add found candidates to their respective storages nonzero_indices_left += left_candidates.tolist() nonzero_indices_right += right_candidates.tolist() # If there are more candidates than minimum votes shift the current x positions to mean of current window if np.sum(left_candidates) > self.min_votes: cur_left = np.mean(nonzero_x[left_candidates]) if np.sum(right_candidates) > self.min_votes: cur_right = np.mean(nonzero_x[right_candidates]) # Draw rects for debugging cv2.rectangle(debug, (int(cur_left - margin), win_set), (int(cur_left + margin), win_end), 255) cv2.rectangle(debug, (int(cur_right - margin), win_set), (int(cur_right + margin), win_end), 255) # Extract x and y indices of candidates for both left and right polynomial left_y = nonzero_y[nonzero_indices_left] left_x = nonzero_x[nonzero_indices_left] right_y = nonzero_y[nonzero_indices_right] right_x = nonzero_x[nonzero_indices_right] # if total candidate points of polynomial are greater than a threshold fit polynomial to the points # Also find metric polynomials to use for curvature and vehicle position detection if np.sum(nonzero_indices_left) > 100: self.left_poly = np.polyfit(left_y, left_x, 2) # Find a metric polynomial by converting points to read world points left_y_metric = left_y * self.ym_per_pix left_x_metric = (left_x - self.warp_offset) * self.xm_per_pix # Consider perspective transform offset self.left_poly_m = np.polyfit(left_y_metric, left_x_metric, 2) if np.sum(nonzero_indices_right) > 100: self.right_poly = np.polyfit(right_y, right_x, 2) right_y_metric = right_y * self.ym_per_pix right_x_metric = (right_x - self.warp_offset) * self.xm_per_pix self.right_poly_m = np.polyfit(right_y_metric, right_x_metric, 2) # keep track of overall mean pixel distances between left and right polynomials self.mean_dist += self.right_anchor - self.left_anchor self.dist_count += 1 # estimate curvature and vehicle position using found lane polynomials self.estimate_curvature_and_position() def estimate_curvature_and_position(self): """ Estimates curvature of lane and position of vehicle :return: None """ height = self.image_size[0] eval_point = (height - 1) * self.ym_per_pix # point closest to vehicle to estimate curvature at # Find curvature of both polynomials and take mean left_curvature = curvature_of_poly(self.left_poly_m, eval_point) right_curvature = curvature_of_poly(self.right_poly_m, eval_point) self.curvature = (left_curvature + right_curvature) / 2 # Find vehicle position absolute_vehicle_center = (eval_poly(eval_point, self.right_poly_m) + eval_poly(eval_point, self.left_poly_m)) / 2 # Estimate vehicle position relative to lane center self.vehicle_center = self.lane_width / 2 - absolute_vehicle_center def create_image_mask(self): """ Create image mask based on lane polynomials to highlight frame :return: Mask image """ h, w = self.image_size im = np.zeros((h, w, 3), dtype=np.uint8) # Sample y points starting from top confidence location to bottom of image plot_y = np.linspace(self.data_min, h - 1, h - self.data_min) # Calculate values of polynomials at y sample points left_plt_x = self.left_poly[0] * plot_y ** 2 + self.left_poly[1] * plot_y + self.left_poly[2] right_plt_x = self.right_poly[0] * plot_y ** 2 + self.right_poly[1] * plot_y + self.right_poly[2] # Update mean dist using intercepts of polynomials self.mean_dist += right_plt_x[-1] - left_plt_x[-1] self.dist_count += 1 # For each sampled y for i in range(h - self.data_min): # Find start and end lane pixel start = int(max(0, left_plt_x[i])) end = int(min(w, right_plt_x[i])) # Color lane pixels for current row to be green im[i + self.data_min, start:end, 1] = 255 # Add Red spectrum based on how much away vehicle is from lane center im[i + self.data_min, start:end, 2] = \ abs(self.vehicle_center) / ((self.lane_width - self.vehicle_width) / 2) * 255 return im def mask_frame(self, frame): """ Mask/Highlight given frame with currently estimated lane area :param frame: Current frame :return: Masked frame """ # Get mask, un wrap the perspective and overlay on frame mask = self.create_image_mask() lane_mask = self.perspective_unwrap(mask) frame = cv2.addWeighted(frame, 1, lane_mask, 0.5, 0) # Check where vehicle is relative to lane center direction = "left" if self.vehicle_center < 0 else "right" # Show current curvature and vehicle position on image cv2.putText( frame, f"Curvature: {int(self.curvature)} m", (10, 35), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA ) cv2.putText( frame, f"{direction}: {int(abs(self.vehicle_center) * 100) / 100} m", (10, 85), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA ) return frame def process(self, frame): """ Update polynomials using previously estimated lane polynomials and given frame :param frame: Current undistorted video frame :return: """ # Perspective wrap and threshold the frame frame = self.preprocess_frame(frame) # Set search window margin margin = self.search_window_margin # Extract nonzero x and y locations from current frame nonzero_y, nonzero_x = np.nonzero(frame) # Given polynomials and search window margin check which nonzero pixels are polynomial candidates nonzero_left = eval_poly(nonzero_y, self.left_poly) nonzero_right = eval_poly(nonzero_y, self.right_poly) left_candidates = ( (nonzero_x >= nonzero_left - margin) & (nonzero_x < nonzero_left + margin) ).nonzero()[0] right_candidates = ( (nonzero_x >= nonzero_right - margin) & (nonzero_x < nonzero_right + margin) ).nonzero()[0] # Extract x and y indices of polynomial candidates for both left and right left_y = nonzero_y[left_candidates] left_x = nonzero_x[left_candidates] right_y = nonzero_y[right_candidates] right_x = nonzero_x[right_candidates] # Find confidence point i.e. the y point from top where we have data from both left and right polynomial # we don't want to highlight area of lane where we are not confident if np.sum(left_y) > 0 and np.sum(right_y) > 0: self.data_min = max(left_y.min(), right_y.min()) # If polynomial candidates are greater than a threshold update polynomials both pixel and metric if np.sum(left_candidates) > 50: self.left_poly *= 0.7 self.left_poly_m *= 0.7 self.left_poly += 0.3 * np.polyfit(left_y, left_x, 2) self.left_poly_m += 0.3 * \ np.polyfit(left_y * self.ym_per_pix, (left_x - self.warp_offset) * self.xm_per_pix, 2) if np.sum(right_candidates > 50): self.right_poly *= 0.7 self.right_poly_m *= 0.7 self.right_poly += 0.3 * np.polyfit(right_y, right_x, 2) self.right_poly_m += 0.3 * \ np.polyfit( right_y * self.ym_per_pix, (right_x - self.warp_offset) * self.xm_per_pix, 2 ) # Check if the found polynomials intercepts are correct if not reinitialize using sliding window method if not self.are_intercepts_correct(): self.init(frame) # Estimate lane curvature and vehicle position self.estimate_curvature_and_position() def are_intercepts_correct(self): """ Check if polynomial are correct by checking if their intercepts are at least 200 pixels apart :return: None """ return self.right_poly[2] - self.left_poly[2] > 200 def __init__(self, frame, roi, warp_offset, win_count=8, search_window_margin=30, min_votes=50): # Initialize internal parameters self.win_count = win_count self.image_size = frame.shape[:2] self.search_window_margin = search_window_margin self.min_votes = min_votes self.roi_source = roi self.warp_offset = warp_offset # Estimate perspective transform matrices self.estimate_perspective_transform() # Initialize polynomials with sliding window method preprocessed = self.preprocess_frame(frame) self.init(preprocessed) def preprocess_frame(self, frame): """ Perspective wrap and threshold frames to make the ready for processing :param frame: Image :return: None """ wrap = self.perspective_wrap(frame) return self.threshold(wrap) def init(self, frame): """ Initialize using sliding window method :param frame: Image :return: None """ self.find_hist_based_anchors(frame) self.extract_poly(frame) def estimate_perspective_transform(self): """ Calculate perspective transform matrices :return: None """ h, w = self.image_size offset = self.warp_offset # Create destination polygon based on offset and image dimensions roi_dest = np.float32([[w - offset, 0], [w - offset, h], [offset, h], [offset, 0]]) self.M_ = cv2.getPerspectiveTransform(np.float32(self.roi_source), roi_dest) self.M_inv_ = cv2.getPerspectiveTransform(roi_dest, np.float32(self.roi_source)) def perspective_wrap(self, frame): """ Perspective Transform to obtain bird eye view :param frame: Image :return: None """ h, w = self.image_size return cv2.warpPerspective(frame, self.M_, (w, h)) def perspective_unwrap(self, frame): """ Perspective Transform inverse to obtain original frame from bird eye view :param frame: Image :return: None """ h, w = self.image_size return cv2.warpPerspective(frame, self.M_inv_, (w, h))
true
64c644e5f0a55ef375c391ac186cefbb8f78d011
Python
AwsManas/Practice
/SieveOfErathonenis.py
UTF-8
1,079
3.640625
4
[]
no_license
def SieveOfEratosthenes(n): prime = [True for i in range(n+1)] p = 2 while (p * p <= n): # If prime[p] is not changed, then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * 2, n+1, p): prime[i] = False p += 1 # Print all prime numbers for p in range(2, n): if prime[p]: print p, # driver program if __name__==\'__main__\': n = 30 print "Following are the prime numbers smaller", print "than or equal to", n SieveOfEratosthenes(n) //c+++ vector<int> primesum(int N) { // Generate isPrime List less equal than N vector<bool> isPrime(N + 1, true); isPrime[0] = false; isPrime[1] = false; // Sieve of Erastothenes for(int i = 2; i <= N; i++) { if (!isPrime[i]) continue; if (i > N / i) break; for (int j = i * i; j <= N; j += i) isPrime[j] = false; }
true
655e869d768038629fa79d90614be3d85a4002d7
Python
Randy777/100_PyExample
/.history/10-19/14_20200908163947.py
UTF-8
143
3.21875
3
[]
no_license
# 将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。 def FunTest(n): if __name__ == "__main__": FunTest(90)
true
5cca83c1368c920c2ec4e005495d18062c284408
Python
james20141606/eMaize
/bin/random_projection.py
UTF-8
6,883
2.71875
3
[]
no_license
#! /usr/bin/env python import argparse, sys, os, errno import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s [%(levelname)s] : %(message)s') logger = logging.getLogger('random_projection') def prepare_output_file(filename): try: os.makedirs(os.path.dirname(filename)) except OSError as e: if e.errno != errno.EEXIST: raise e if __name__ == '__main__': main_parser = argparse.ArgumentParser(description='Command line interface for sklearn.random_projection') subparsers = main_parser.add_subparsers(dest='command') # command: generate parser = subparsers.add_parser('generate', help='generate a random sparse matrix') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-i', '--input-file', type=str, help='a HDF5 file') group.add_argument('-p', '--n-features', type=int, help='number of features') parser.add_argument('--dataset', type=str, help='dataset name in the HDF5 file') parser.add_argument('--transpose', action='store_true', help='transpose the matrix in the HDF5 file before random projection') parser.add_argument('-r', '--n-components', type=int, required=True, help='number of components after random projection') parser.add_argument('-o', '--output-file', type=str, required=True, help='matrix in .npz format') # command: test_load parser = subparsers.add_parser('test_load', help='test if a npz file can be loaded') parser.add_argument('input_file', type=str, help='input matrix file in .npz format') # command: transform parser = subparsers.add_parser('transform', help='transform an input matrix using random projection') parser.add_argument('-i', '--input-file', type=str, required=True, help='data matrix') parser.add_argument('--datasets', type=str, required=True, help='comma-separated list of dataset names. * for all datasets.') parser.add_argument('--components-file', type=str, help='components in .npz format') parser.add_argument('-o', '--output-file', type=str, required=True, help='transformed features file') parser.add_argument('--merge', action='store_true', help='merge transformed features into a single matrix') parser.add_argument('--output-dataset', type=str, default='data', help='output dataset name') # command: normalize parser = subparsers.add_parser('normalize', help='normalize the transformed features into z-scores') parser.add_argument('-i', '--input-file', type=str, required=True, help='output file of the transform command') parser.add_argument('--scaler-file', type=str, required=True, help='input file containing scales for each feature (HDF5 file with dataset mean_ and scale_)') parser.add_argument('-o', '--output-file', type=str, required=True, help='normalized features file') # command: merge args = main_parser.parse_args() import numpy as np from sklearn.random_projection import SparseRandomProjection from scipy.sparse import load_npz, save_npz if args.command == 'generate': if args.input_file is not None: import h5py f = h5py.File(args.input_file, 'r') if args.dataset is None: raise ValueError('option --dataset is required for HDF5 input file') if args.transpose: n_features = f[args.dataset].shape[0] else: n_features = f[args.dataset].shape[1] if args.n_features is not None: n_features = args.n_features logger.info('number of features: %d'%n_features) X = np.zeros((2, n_features)) proj = SparseRandomProjection(args.n_components) logger.info('generate random projection matrix (%d components)'%args.n_components) proj.fit(X) logger.info('save random projection matrix to ' + args.output_file) prepare_output_file(args.output_file) save_npz(args.output_file, proj.components_, compressed=False) elif args.command == 'test_load': load_npz(args.input_file) elif args.command == 'transform': import h5py logger.info('load random projection components from ' + args.components_file) components = load_npz(args.components_file) proj = SparseRandomProjection(components.shape[0]) proj.components_ = components fin = h5py.File(args.input_file) y = {} if args.datasets == '*': datasets = fin.keys() else: datasets = args.datasets.split(',') for dataset in datasets: X = fin[dataset][:].reshape((1, -1)) logger.info('transform dataset ' + dataset) y[dataset] = np.ravel(proj.transform(X)) del X fin.close() logger.info('save transformed features to ' + args.output_file) prepare_output_file(args.output_file) fout = h5py.File(args.output_file) if args.merge: logger.info('merge transformed features') n_samples = len(y) y = np.concatenate([y[dataset] for dataset in datasets]).reshape((n_samples, -1)) fout.create_dataset('data', data=y) else: logger.info('save transformed features as separate datasets') for dataset in datasets: fout.create_dataset(dataset, data=y[dataset]) fout.close() elif args.command == 'normalize': import h5py from sklearn.preprocessing import StandardScaler logger.info('read scaler file: ' + args.scaler_file) fin = h5py.File(args.scaler_file, 'r') scaler = StandardScaler(copy=False) scaler.mean_ = fin['mean_'][:] scaler.scale_ = fin['scale_'][:] fin.close() logger.info('read input file: ' + args.input_file) fin = h5py.File(args.input_file, 'r') logger.info('create output file: ' + args.output_file) prepare_output_file(args.output_file) fout = h5py.File(args.output_file, 'w') for dataset in fin.keys(): logger.info('normalize dataset ' + dataset) data = fin[dataset][:].reshape((1, -1)) data = scaler.transform(data) fout.create_dataset(dataset, data=np.ravel(data)) fin.close() fout.close()
true
9ea3dd153802cfe3793e6a6120a590cfc09446e5
Python
poojagmahajan/Data_Analysis
/Data Analytics/Numpy/Transpose.py
UTF-8
784
4.5
4
[]
no_license
import numpy as np # Creating 2-D array arr = np.arange(0,50,1).reshape(10,5) # Declare a 2-D array print("The original array") print(arr) print("\nThe transposed array") print(arr.transpose()) # Print the transposed array #print(arr.T) # This can also be used and same result will be produced # Declare 2 array arr1 = np.arange(1,40,4) arr2 = np.arange(1,30,3) print("The first array\n", arr1, "\nThe second array\n", arr2, '\n') print("The Exponent Function") print(np.exp(arr1)) print("\nThe Square Function") print(np.square(arr1)) print("\nThe Square root Function") print(np.sqrt(arr1)) print("\nThe Cube root Function") print(np.cbrt(arr1)) print("\nThe Addition Function") print(np.add(arr1, arr2)) print("\nThe Subtraction Function") print(np.subtract(arr1, arr2))
true
4cda9bc26150dbefdf4f021d5711f9b661188d65
Python
juicyfruityo/spheremailru
/homework(1_semestr)/data_analysis/hw2/C_2.py
UTF-8
1,698
3.46875
3
[]
no_license
#!/bin/python3 import operator from operator import add from functools import reduce def solution1(arr): return [int(''.join(list(filter(str.isalnum, arr_i[::-1])))) for arr_i in arr] def solution2(iterator): return [x[0]*x[1] for x in iterator] def solution3(iterator): return [i for i in iterator if i % 6 == 0 or i % 6 == 5 or i % 6 == 2] def solution4(arr): return [i for i in arr if bool(i) is True] # переделать/доделать: def solution5(rooms): for room in rooms: operator.setitem\ (room, 'square', room['width'] * room['length']) return rooms def solution6(rooms): return [i for i in solution5(rooms)] def solution7(rooms): return [{'name': room['name'], 'width': room['width'], 'length': room['length'], 'square': room['width']*room['length']} for room in rooms] # ^^^^ надо бы переделать ^^^^ def solution8(people): return int(reduce(add, [man['height'] for man in people])), \ len([man['height'] for man in people]) def solution9(students): return [stud['name'] for stud in students if stud['gpa'] > 4.5] def solution10(tickets): return list(filter(lambda tick: sum(map(int, [x for i, x in enumerate(tick) if i % 2 == 0])) \ == sum(map(int, [x for i, x in enumerate(tick) if i % 2 == 1])), tickets)) solutions = { 'solution1': solution1, 'solution2': solution2, 'solution3': solution3, 'solution4': solution4, 'solution5': solution5, 'solution6': solution6, 'solution7': solution7, 'solution8': solution8, 'solution9': solution9, 'solution10': solution10, }
true
bfd8a193fb8b6073ed76a04229d9585189c9bcdf
Python
TiMusBhardwaj/pythonExample
/python-and-mongo-master/python_dict.py
UTF-8
1,272
3.9375
4
[]
no_license
#Dictionary thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } print(thisdict) x = thisdict["model"] y = thisdict.get("model") if x==y: print("Same Result") #Dictionary constructor thisdict = dict(brand="Ford", model="Mustang", year=1964) thisdict["year"] = 2018 print(thisdict) #keys for x in thisdict: print(x) #values for x in thisdict: print(thisdict[x]) for x in thisdict.values(): print(x) # Key and value for x, y in thisdict.items(): print(x, y) #Key Exists ?? thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } if "model" in thisdict: print("Yes, 'model' is one of the keys in the thisdict dictionary") print(len(thisdict)) #Add an item thisdict["color"] = "red" print(thisdict) #POP thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } thisdict.pop("model") print(thisdict) thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } thisdict.popitem() print(thisdict) #DEL thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } del thisdict["model"] print(thisdict) #Clear thisdict = { "brand": "Ford", "model": "Mustang", "year": 1964 } thisdict.clear() print(thisdict)
true
369abcc07bcfbd4fd487da9e6355153e6362a7e9
Python
nPellejero/deepNet
/src/scripts/detect3.py
UTF-8
2,711
2.625
3
[]
no_license
# para ejecutar en el directorio images-originals # pasa imagenes a escala de grises, equaliza su histograma de intensidad y luego detecta la cara mas grande, recorta la imagen y la guarda en images-croped. import numpy as np import cv2 import os,sys rootdir = os.getcwd() face_cascade = cv2.CascadeClassifier('../scripts/haarcascade_frontalface_default.xml') face_cascade1 = cv2.CascadeClassifier('../scripts/haarcascade_frontalface_alt.xml') face_cascade2 = cv2.CascadeClassifier('../scripts/haarcascade_profileface.xml') pathCroped = "/home/npellejero/tesis/AMFED/images-croped2/" pathOrig = "/home/npellejero/tesis/AMFED/images-originals/" contador = 0 contLoc = 0 contLocM = 0 contMaster = 0 fileName = sys.argv[1] def detect(img, cascade): detectTot = [] #for scale in [float(i)/10 for i in range(12, 12)]: # for neighbors in range(3,4): scale = 1.1 neighbors = 3 rects = cascade.detectMultiScale(img, scaleFactor=scale, minNeighbors=neighbors, minSize=(50, 50), flags=cv2.cv.CV_HAAR_SCALE_IMAGE) detectTot = detectTot + list(rects) return detectTot def find_face_from_img(img): rects1 = detect(img, face_cascade) rects2 = detect(img, face_cascade1) rects3 = detect(img, face_cascade2) return rects1 + rects2 + rects3 def funaux(x): if abs(x[1][3] - x[1][2]) < 10: return x[1][3]/x[1][2] else: return 0 with open(fileName) as f: dirNames = f.readlines() dirNames = map( lambda x: x.strip(), dirNames) for myDir in dirNames: print myDir pathHastaDir = pathOrig+myDir+"/" pathHastaNewDir = pathCroped+myDir+"/" try: os.makedirs(pathHastaNewDir) except OSError: if not os.path.isdir(pathHastaNewDir): raise for fi in os.listdir(myDir): absFile = pathHastaDir+fi img = cv2.imread(absFile) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) clahe = cv2.createCLAHE(clipLimit=5, tileGridSize=(2,2)) cl1 = clahe.apply(img) contLocM = contLocM + 1 totalFace = find_face_from_img(cl1) if len(totalFace) > 0: contLoc = contLoc + 1 totalFace = map(lambda x: list(x),totalFace) max_index, max_value = max(enumerate(totalFace), key=lambda x: funaux(x) ) x,y,w,h = max_value #print x, y, w, h #Dubugging boxes #cv2.rectangle(cl1, (x, y), (x+w, y+h), (0, 255, 0), 2) y1 = y - int(h/4.) y2 = y + h + int(h/4.) x1 = x - int(w/8.) x2 = x + w + int(w/8.) image = cl1[y1:y2, x1:x2] cv2.imwrite(pathCroped+myDir+"/"+fi,image) contador = contador + contLoc contMaster = contMaster + contLocM print "en este dire encontramos: "+ str(contLoc) + " de " + str(contLocM) contLoc = 0 contLocM = 0 print "encontramos caras en: "+ str(contador) + " de " + str(contMaster)
true
90e7466093dd1e08334f146f401c2ebd4f456cd5
Python
efaro2014/Dojo-Assignments
/python_stack/python/oop/chain_oop.py
UTF-8
761
3.328125
3
[]
no_license
class User: def __init__(self, name, email): self.name = name self.email = email self.account_balance = 0 def make_deposit(self, amount): self.account_balance += amount return self def make_withdrawal(self, amount): self.account_balance -= amount return self def display_user_balance(self): print(self.account_balance) # return self def transfer_money(self, other_user, amount): self.account_balance -= amount other_user.account_balance += amount user1 = User('Efrem', 'efrem@gmail') user2 = User('Ben', 'ben@gmail.com') user3 = User('guido', 'guido@gmail.com') user3.make_deposit(100).make_deposit(200).make_deposit(300).make_withdrawal(50).display_user_balance()
true
26ba8ea3ca77c4e3cac2e7318a600611cfbc3afb
Python
ChoiHyeongGeun/ScriptProgramming
/Practice/#4/Problem6.16.py
UTF-8
737
4.59375
5
[]
no_license
# 6.16 # 1년의 총 일수를 구하는 함 def numberOfDaysInYear(year) : # 윤년이면 if (year % 4 == 0) and (year % 100 != 0) and (year % 400 == 0) : return 366 # 총 366일 # 윤년이 아니면 else : return 365 # 총 365일 # 결과를 출력하는 함수 def printResult() : # 일수의 총 합을 0으로 초기화 sum = 0 # 2010년부터 2020년까지 for x in range(2010, 2021) : # 총 일수를 합한다. sum = sum + numberOfDaysInYear(x) # 그 결과를 출력한다. print("2010년부터 2020년까지의 총 일수는", sum, "일 입니다.") # 메인에서 결과를 출력한다. printResult()
true
b9f6f319b4b5b99687a320d5e697ef32852a35ce
Python
davidaries/Job8
/tools.py
UTF-8
918
2.53125
3
[]
no_license
import working_data import initial_load_data as ild def summary(): """Prints out a summary of information to the console""" print('\n========= Summary data at this point =========================================================') print('\npdata =', working_data.pdata) for h in working_data.pdata: print(h) print('\npe_outs =', working_data.pe_outs) dev_outs = working_data.pe_outs.keys() for i in working_data.pe_outs: print('device_out = ', i) for ii in working_data.pe_outs[i]: print(' ', ii, working_data.pe_outs[i][ii]) print('\npe_waits =', working_data.pe_waits) for j in working_data.pe_waits: print(j, working_data.pe_waits[j]) print('\nadats =', working_data.adat) for i in working_data.adat: print('person = ', i) for ii in working_data.adat[i]: print(' ', ii, working_data.adat[i][ii])
true
27e708816da9ef0bd3dd4c12d693c58973f3b463
Python
Mashfiq137/Hough_transform_Image_processing
/main.py
UTF-8
1,447
2.9375
3
[ "Apache-2.0" ]
permissive
# -*- coding: utf-8 -*- """ Created on Fri Aug 08 16:11:33 2021 @author: rizvee """ from patterns import pattern_detect from collections import defaultdict from PIL import Image, ImageDraw from math import sqrt, pi, cos, sin # ----------------------------------------------Input Image--------------------------------------------------# input_image = Image.open("sphere.jpg") output_image = Image.new("RGB", input_image.size) output_image.paste(input_image) draw_result = ImageDraw.Draw(output_image) # ----------------------------------------------Define Range--------------------------------------------------# steps = 100 rmin = 40 rmax = 80 threshold = 0.4 points = [] for r in range(rmin, rmax + 1): for t in range(steps): points.append((r, int(r * cos(2 * pi * t / steps)), int(r * sin(2 * pi * t / steps)))) acc = defaultdict(int) for x, y in pattern_detect(input_image): for r, dx, dy in points: a = x - dx b = y - dy acc[(a, b, r)] += 1 circles_count = [] for k, v in sorted(acc.items(), key=lambda i: -i[1]): x, y, r = k if v / steps >= threshold and all((x - xc) ** 2 + (y - yc) ** 2 > rc ** 2 for xc, yc, rc in circles_count): print(v / steps, x, y, r) circles_count.append((x, y, r)) for x, y, r in circles_count: draw_result.ellipse((x-r, y-r, x+r, y+r), outline=(255,0,0,0)) output_image.save("Final_Final_Final_Result.png")
true
b27fae3d70457e239a458c2b77959a0ce0902658
Python
cerealkill/light_karma
/utils.py
UTF-8
1,722
3.09375
3
[]
no_license
# -*- coding: utf-8 -*- import re from itertools import cycle MANTRA = cycle(["om vajrasattva samaya", "manupalaya", "vajrasattva denopa titha", "dido me bhava", "suto kayo me bhava", "supo kayo me bhava", "anurakto me bhava", "sarva siddhi me prayatsa", "sarva karma su tsame", "tsittam shriyam kuru hum", "ha ha ha ha ho", "bhagavan", "sarva tathagata", "vajra mame muntsa", "vajra bhava maha samaya sattva ah hum phet"]) def find_text(text, reg): """ Regex finder of first occurrence :param text: text to find the match :param reg: regex :return: """ finder = re.compile(reg, re.MULTILINE) return finder.findall(text)[0] def process_tabular_data(headers_text, lines_list, wanted_list, replacement, cls=None): """ Bring it on and then just Class(*this) to profit! :param headers_text: ["D", "C", "B"] :param lines_list: [["VD", "VC", "VB"], ...] :param wanted_list: ["A", "B", "C", "D"] :param replacement: None or '' :param cls: If a class is to be instanced with result :return: [[None, "VB", "VC", "VD"], ...] """ columns = process_columns(headers_text, wanted_list) table = [[line[columns[w]] if w in columns.keys() else replacement for w in wanted_list] for line in lines_list] return [cls(*line) for line in table] if cls else table def process_columns(headers_text, wanted_list): """ Find desired sublists in a huge list :param headers_text: str :param wanted_list: list :return: dict """ columns = {word: headers_text.index(word) for word in wanted_list if word in headers_text} if len(columns) < 1: raise ValueError return columns
true
d8fed868b7675ca62266e52693b8e8c24eac9f6b
Python
rakibkuddus1109/pythonClass
/multithreading.py
UTF-8
478
3.71875
4
[]
no_license
import time import threading a = [2,3,4,5] def square(a): for j in a: time.sleep(0.5) print(j**2) def cube(a): for j in a: time.sleep(0.3) print(j**3) t = time.time() # square(a) # cube(a) t1 = threading.Thread(target=square,args=(a,)) t2 = threading.Thread(target=cube,args=(a,)) t1.start() t2.start() # join : when one process is in sleep mode, other would come & join t1.join() t2.join() print("Execution time",time.time() - t)
true
434c9b0d8b8475bdbfd374f18de855dc000b0942
Python
genebarsukov/MadFuzzWebScraper
/src/models/Story.py
UTF-8
1,609
3.203125
3
[]
no_license
class Story(object): """ A simple object to hold the parsed story parameters The variables that are initialized are done so to match the default database values """ story_id = None url = '' title = '' author = '' body = '' snippet = '' source_id = None active = False position = 0 rating = 100 up_votes = 0 down_votes = 0 def __init__(self): """ Constructor """ pass def escapeValues(self, db_conn): """ Escape all of the story's values before inserting into a database """ # Enforce integers if self.story_id is not None: self.story_id = int(self.story_id) if self.source_id is not None: self.source_id = int(self.source_id) if self.position is not None: self.position = int(self.position) if self.rating is not None: self.rating = int(self.rating) if self.up_votes is not None: self.up_votes = int(self.up_votes) if self.down_votes is not None: self.down_votes = int(self.down_votes) # Escape strings if self.url is not None: self.url = db_conn.escape(self.url) if self.title is not None: self.title = db_conn.escape(self.title) if self.author is not None: self.author = db_conn.escape(self.author) if self.body is not None: self.body = db_conn.escape(self.body) if self.snippet is not None: self.snippet = db_conn.escape(self.snippet)
true
664f8f38d7aeea06896476bfeb26faef467b80f0
Python
wattaihei/ProgrammingContest
/AtCoder/キーエンス2020/probD.py
UTF-8
3,094
3.125
3
[]
no_license
# instead of AVLTree class BITbisect(): def __init__(self, max): self.max = max self.data = [0]*(self.max+1) # 0からiまでの区間和 # 立っているビットを下から処理 def query_sum(self, i): s = 0 while i > 0: s += self.data[i] i -= i & -i return s # i番目の要素にxを足す # 覆ってる区間すべてに足す def add(self, i, x): while i <= self.max: self.data[i] += x i += i & -i def insert(self, x): self.add(x, 1) def delete(self, x): self.add(x, -1) def count(self, x): return self.query_sum(x) - self.query_sum(x-1) def length(self): return self.query_sum(self.max) # 下からc番目(0-indexed)の数 # O(log(N)) def search(self, c): c += 1 s = 0 ind = 0 l = self.max.bit_length() for i in reversed(range(l)): if ind + (1<<i) <= self.max: if s + self.data[ind+(1<<i)] < c: s += self.data[ind+(1<<i)] ind += (1<<i) if ind == self.max: return False return ind + 1 def bisect_right(self, x): return self.query_sum(x) def bisect_left(self, x): if x == 1: return 0 return self.query_sum(x-1) # listみたいに表示 def display(self): print('inside BIT:', end=' ') for x in range(1, self.max+1): if self.count(x): c = self.count(x) for _ in range(c): print(x, end=' ') print() import sys input = sys.stdin.readline from operator import itemgetter INF = 10**15 N = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) for i in range(N): if i%2 == 1: a = A[i] A[i] = B[i] B[i] = a INDs = [] def dfs(p,L): if p == N: if len(L) == (N+1)//2: INDs.append(L) return dfs(p+1, L+[p]) dfs(p+1, L) return dfs(0, []) ans = INF for IND in INDs: As = [] Bs = [] usingA = [False]*N for ind in IND: usingA[ind] = True for ind in range(N): if usingA[ind]: As.append((A[ind], ind)) else: Bs.append((B[ind], ind)) As.sort() Bs.sort() ok = True pre = -INF Array = [None]*N for i in range(N): if i%2 == 0: if As[i//2][0] < pre: ok = False break Array[As[i//2][1]] = i+1 pre = As[i//2][0] else: if Bs[i//2][0] < pre: ok = False break Array[Bs[i//2][1]] = i+1 pre = Bs[i//2][0] if not ok: continue bit = BITbisect(N) nowans = 0 for j, a in enumerate(Array): nowans += j - bit.query_sum(a) bit.add(a, 1) if nowans < ans: ans = nowans if ans == INF: print(-1) else: print(ans)
true
a6b00cd4e644c018b8cbb2cc86b053d8a17ca7dc
Python
burakbayramli/books
/PHY_604_Computational_Methods_in_Physics_and_Astrophysics_II_Zingale/code1/ODEs/eigenvalues/finite-well.py
UTF-8
1,233
2.8125
3
[]
no_license
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import schrodinger def V(x): """ the potential well -- a finite square well """ idx = np.abs(x) < 1.0 Vwell = np.zeros_like(x) Vwell[idx] = -1000.0 return Vwell # pick a starting point far from the action -- we need this pretty # big x0 = 5.0 x_match = 0.257 nsteps = 250 s = schrodinger.Schrodinger(V, x_match=x_match, x_far=x0, nsteps=nsteps) # some examples for n, (E_old, E_new) in enumerate([(-970, -960), (-980, -975), (-990, -980), (-999, -998), (-100, -150)]): if n == 4: E, xi_s, psi_s = s.solve(E_old, E_new, plot_intermediate=True) else: E, xi_s, psi_s = s.solve(E_old, E_new) print("eigenvalue is E = {}".format(E)) Vs = V(xi_s) plt.clf() plt.plot(xi_s, Vs/max(np.abs(Vs)), lw=2, label=r"$V(x)/\max{V(x)}$") plt.plot(xi_s, psi_s/max(np.abs(psi_s)), label=r"$\psi(x)/\max{\psi(x)}$") plt.xlabel("x") plt.title(r"eigenvalue, $\mathcal{{E}}$ = {}".format(E)) plt.xlim(-0.5*x0, 0.5*x0) plt.ylim(-1.2, 1.2) plt.legend(frameon=False, loc="best") ep = "{:6.2f}".format(E) plt.savefig("finite-well-psi-E{}.png".format(ep.strip()))
true
ab964e1838d1df76b32cfe80a28e076883981ce6
Python
AaronBecker/project-euler
/euler081.py
UTF-8
795
3.234375
3
[]
no_license
with open('euler081_input.txt') as f: pe81 = [map(int, line.strip().split(',')) for line in f.readlines()] def euler81(matrix=pe81): """http://projecteuler.net/index.php?section=problems&id=81 Find the minimal path sum from the top left to the bottom right by moving right and down.""" shortest_path = [[matrix[0][0]]*len(matrix[0]) for n in xrange(len(matrix))] for n in xrange(1, len(matrix[0])): shortest_path[0][n] = matrix[0][n] + shortest_path[0][n-1] shortest_path[n][0] = matrix[n][0] + shortest_path[n-1][0] for y in xrange(1, len(matrix[0])): for x in xrange(1, len(matrix)): shortest_path[x][y] = matrix[x][y] + \ min(shortest_path[x-1][y], shortest_path[x][y-1]) return shortest_path[-1][-1]
true
5c96603cea1fe92470dd135c43b6d4dbab8e2793
Python
felixhalim/python-bot
/update_reg_user.py
UTF-8
1,340
2.640625
3
[]
no_license
import gspread from oauth2client.service_account import ServiceAccountCredentials import pprint scope = ['https://spreadsheets.google.com/feeds','https://www.googleapis.com/auth/drive'] creds = ServiceAccountCredentials.from_json_keyfile_name('spreadsheet-token.json', scope) client = gspread.authorize(creds) registered_user = client.open('Project_Goodall').worksheet("Registered_User") Dictionary={} # Function to sync with data on spreadsheet def getLatestData(): tele_id_list = registered_user.col_values(1) matric_list = registered_user.col_values(2) name_list = registered_user.col_values(3) counter_help_list = registered_user.col_values(4) bool_donate_list = registered_user.col_values(5) index_list = registered_user.col_values(6) value_list = list(map(list, zip(matric_list,name_list,counter_help_list,bool_donate_list,index_list))) Dictionary.update(dict(zip(tele_id_list, value_list))) return Dictionary # Function to alter data on spreadsheet def setData(telegram_id,index_dict,value): if(index_dict=="bool_donate"): index_dict=3 elif(index_dict=="counter_help"): index_dict=2 row_dict = Dictionary[telegram_id][4] # 4 is the index in terms of row registered_user.update_cell(int(row_dict)+2, int(index_dict)+2, value) # +2 offset based on spreadsheet
true
e342384f741b23537d88e26e4a92c2dedbd77777
Python
cristinarivera/python
/untitled-11.py
UTF-8
220
3.109375
3
[]
no_license
def udacify(string): word = 'U'+string return word # Remove the hash, #, from infront of print to test your code. print udacify('dacians') #>>> Udacians print udacify('turn') #>>> Uturn
true
8aa905946ab08c7ac77609161bb31eba0d566db5
Python
ironmann250/python-wikiquotes
/tests/test_random_titles.py
UTF-8
538
2.625
3
[ "MIT" ]
permissive
import wikiquote import unittest class SearchTest(unittest.TestCase): """ Test wikiquote.random_titles() """ def test_random(self): for lang in wikiquote.langs.SUPPORTED_LANGUAGES: results = wikiquote.random_titles(lang=lang, max_titles=20) self.assertTrue(len(results) == 20) def test_unsupported_lang(self): self.assertRaises(wikiquote.utils.UnsupportedLanguageException, wikiquote.random_titles, lang='hlhljopjpojkopijj')
true
cc602a0e49d72a055f8ee86c17d720836979e6c3
Python
veera-sivarajan/Weather-Graphing
/graph.py
UTF-8
270
2.765625
3
[]
no_license
import datetime from matplotlib import pyplot as plt from weather import get_weather def graph(x, y): plt.xlabel('Time') plt.ylabel('Temperature') plt.xlim(0, 24, 2) plt.ylim(10, 60) plt.plot(x, y) plt.show() #plt.savefig("weather graph.pdf")
true
3868551324de22aac6c858a809eb7b4f7bf60e15
Python
mmweber2/hackerrank
/test_convert_string.py
UTF-8
1,053
3.25
3
[]
no_license
from nose.tools import assert_equals from convert_string import convert_string from string import ascii_lowercase as letters def test_no_duplicates(): assert_equals("xyz", convert_string("xyz")) def test_all_duplicate_no_wrap(): assert_equals("abc", convert_string("aaa")) def test_all_duplicate_wrap(): assert_equals("zab", convert_string("zzz")) def test_multiple_duplicates(): assert_equals("ampbq", convert_string("ampap")) def test_empty_string(): assert_equals("", convert_string("")) # Does an exact wrapping of 26 work? def test_26_a(): assert_equals(letters, convert_string("a" * 26)) def test_26_z(): assert_equals("z" + letters[:25], convert_string("z" * 26)) # Does a wrapping of more than 26 work? def test_27_a(): assert_equals(letters + "a", convert_string("a" * 27)) def test_27_k(): assert_equals("klmnopqrstuvwxyzabcdefghijk", convert_string("k" * 27)) # Does a wrapping of a multiple of 26 work? def test_52_a(): assert_equals(letters * 2 + "dogs", convert_string("a" * 52 + "dogs"))
true
f8d6403b16a48142d3ecac4ccf141209961d07ba
Python
fangwendong/machineLearning
/classify_tree.py
UTF-8
2,283
3.296875
3
[]
no_license
# coding: utf-8 from sklearn.datasets import load_iris from sklearn import tree import numpy as np ''' iris数据一共有150组,前100组作为训练样本,后50组作为测试样本 ''' def predict_train(x_train, y_train): ''' 使用信息熵作为划分标准,对决策树进行训练 参考链接: http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier ''' clf = tree.DecisionTreeClassifier(criterion='entropy') # print(clf) clf.fit(x_train, y_train) ''' 系数反映每个特征的影响力。越大表示该特征在分类中起到的作用越大 ''' print 'feature_importances_: %s' % clf.feature_importances_ '''测试结果的打印''' y_pre = clf.predict(x_train) # print(x_train) print "结果做差" cha = y_pre - y_train print(cha) print(np.mean(y_pre == y_train)) return y_pre, clf def show_pdf(clf): ''' 可视化输出 把决策树结构写入文件: http://sklearn.lzjqsdd.com/modules/tree.html Mac报错:pydotplus.graphviz.InvocationException: GraphViz's executables not found 解决方案:sudo brew install graphviz 参考写入: http://www.jianshu.com/p/59b510bafb4d ''' # with open("testResult/tree.dot", 'w') as f: # from sklearn.externals.six import StringIO # tree.export_graphviz(clf, out_file=f) import pydotplus from sklearn.externals.six import StringIO dot_data = StringIO() tree.export_graphviz(clf, out_file=dot_data) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_pdf("/home/wendong/PycharmProjects/sklearn/output/tree1.pdf") if __name__ == '__main__': iris = load_iris() # 前140组作为训练的数据 train_data = iris.data[:140] train_lable = iris.target[:140] print(train_data.shape[0]) print(iris.target) # 采用决策树训练模型 ypre, clf = predict_train(train_data, train_lable) #将决策树打印出来 show_pdf(clf) # 后10组作为测试数据 test_data = iris.data[140:] test_lable = iris.target[140:] test_pre = clf.predict(test_data) print("测试结果做差") cha = test_pre - test_lable print(cha)
true
79df0ac8f7455f6993fef763f6cfa3797c49dff4
Python
pylinx64/mon_python_16
/mon_python_16/pepsibot/teext.py
UTF-8
219
3.5625
4
[]
no_license
print('HELLO') print('HELLO' == 'hello') print(10 > 9 ) print(10 / 1) print('Hello' == 'hello') print('HELLO'.lower()) print('как' in 'как дела ?') print('как' in 'приветкакдела?')
true
181abba50e371627c90d6a1b676851217da702f2
Python
diekhans/t2t-chm13-gene-analysis
/bin/bioTypeToCat
UTF-8
735
2.765625
3
[]
no_license
#!/usr/bin/env python3 import argparse from pycbio.sys import fileOps from bioTypeCat import BioCategory def parseArgs(): usage = """ Convert biotypes, including CAT-specified, to more general categories """ parser = argparse.ArgumentParser(description=usage) parser.add_argument('inTypes', nargs='?', default="/dev/stdin", help="") parser.add_argument('outCats', nargs='?', default="/dev/stdout", help="") args = parser.parse_args() return args def main(args): with fileOps.opengz(args.outCats, "w") as outFh: for line in fileOps.iterLines(args.inTypes): print(BioCategory.fromCatType(line.strip()), file=outFh) main(parseArgs())
true
745f10e3784d7375279e5ee065eeaa87f9eb7945
Python
JesseWright/cs373
/notes/03-24.py
UTF-8
836
2.90625
3
[]
no_license
# ----------- # Fri, 24 Mar # ----------- def theta_join ( r: Iterable[Dict[str, int]], s: Iterable[Dict[str, int]], f: Callable[[Dict[str,int], Dict[str, int]], bool] -> Iterator[Dict[str, int]] : for v1 in r : for v2 in s : if f(v1, v2) : yield dict(v1, **v2) return (dict(v1, **v2) for v1 in r for v2 in s if f(v1, v2)) def natural_join ( r: Iterable[Dict[str, int]], s: Iterable[Dict[str, int]] -> Iterator[Dict[str, int]] def f (v1, v2) : for k in v1 : if k in v2 : if v1[k] != v2[k] return False return True def f (v1, v2) : all([v1[k] == v2[k] for k in v1 if k in v2]) for v1 in r : for v2 in s : if f(v1, v2) : yield dict(v1, **v2)
true
194c58beac8c5f868ac514553662348f144152cc
Python
q2806060/python-note
/numpydemo/03/demo3-05.py
UTF-8
487
3.078125
3
[]
no_license
import numpy as np import matplotlib.pyplot as mp # 生成网格点坐标矩阵 n = 1000 x, y = np.meshgrid(np.linspace(-3, 3,n), np.linspace(-3, 3, n)) # 根据x, y计算当前坐标下的z高度值 z = (1-x/2 + x**5 + y**3) * np.exp(-x**2 - y**2) mp.figure("Imshow", facecolor="lightgray") mp.title("Imshow", fontsize=18) mp.xlabel("X", fontsize=14) mp.ylabel("Y", fontsize=14) mp.tick_params(labelsize=10) mp.grid(linestyle=":") mp.imshow(z, cmap='jet', origin="lower") mp.show()
true
8e8fddd224fbffb97a7f8da3930859db6ff3a1c4
Python
SoniaAmezcua/qa_minds_proyecto_final
/tests/test_menu_categories.py
UTF-8
1,016
2.59375
3
[]
no_license
from actions.shop_actions import ShopActions from core.utils import datafile_handler as data_file from facades import menu_facade as menu from facades import menu_categories_facade as menu_categories import pytest import datetime from time import sleep #Prueba 2.- Verificar los elementos del menú de categorías @pytest.mark.parametrize('title_category, products_by_category',data_file.get_data('./input_data/menu_category.csv')) def test_menu_categories(title_category, products_by_category): global test_case_name timestamp = datetime.datetime.now().strftime('%Y%m%d_%H%M%S') #20210511_211246 test_case_name = 'test_menu_categories {}'.format(timestamp) menu.click_menu_option_shop() menu_categories.view_menu_options(title_category, products_by_category) #Metodo que se ejecuta siempre, despues de cada caso de prueba. #Cierra la instancia del navegador def teardown(): shop_actions = ShopActions() shop_actions.save_screenshot(test_case_name) shop_actions.close_browser()
true
4a21d14b98d02566e9d097f354b1083296a4d442
Python
fantasysea/HelloPython
/getjikexuexi.py
UTF-8
1,683
2.65625
3
[]
no_license
__author__ = 'wuheyou' __author__ = 'CC' # coding=utf-8 # -*- coding: utf8 -*- import requests import re import sys reload(sys) sys.setdefaultencoding("utf-8") # r = requests.get("http://www.baidu.com/") # r.encoding = 'utf-8' # print r.content class spider: def getHtml(self,url): return requests.get(url) def getItem(self,html): item = {} item['title'] = re.findall('title="(.*?)" ',html,re.S)[0] item['content'] = re.findall('none;">(.*?)</p>',html,re.S)[0] cf = re.findall('<em>(.*?)</em>',html,re.S) item['time'] = cf[0] item['xinhao'] = cf[1] item['number'] = re.findall('learn-number">(.*?)</em>',html,re.S)[0] return item def saveItem(self,item): f = open('info.txt','a') f.writelines(item['title'].strip('\r\n\t') + '\n') f.writelines(item['content'].strip('\r\n\t') + '\n') f.writelines(item['time'].strip('\r\n\t') + '\n') f.writelines(item['xinhao'].strip('\r\n\t') + '\n') f.writelines(item['number'].strip('\r\n\t') + '\n') if __name__=='__main__': url = 'http://www.jikexueyuan.com/course/?pageNum=2' jikespider = spider() html = jikespider.getHtml(url) html.encoding = 'utf-8' print html.text list = re.findall('deg=\"0\" >(.*?)</li>',html.text,re.S) print list for each in list: item = jikespider.getItem(each) print item jikespider.saveItem(item) print item['title'].strip('\r\n\t') print item['content'].strip('\r\n\t') print item['time'].strip('\n\t') print item['xinhao'].strip('\r\n\t') print item['number'].strip('\r\n\t')
true
426ce8416c1463b6c670783ce6efb9cceb50c450
Python
ragnartrades/LimitOrderBooks
/Analytics/ExtractPrices.py
UTF-8
1,360
3.140625
3
[]
no_license
from Analytics.Features import Features from Analytics.LimitOrderBookSeries import LimitOrderBookSeries class ExtractPrices(Features): def __init__(self): pass def extract_data(self, data): """ :param data: data frame :return: time series """ # return a limit order book series levels = len(data.columns) / 4 ask_price = data['AskPrice1'].tolist() ask_size = data['AskSize1'].tolist() bid_price = data['BidPrice1'].tolist() bid_size = data['BidSize1'].tolist() mid_price = [0.5*(ask_price[i]+bid_price[i]) for i in range(0,len(ask_price))] input_data = list() output_data = list() for i in range(0, len(ask_price)): feature_set = list() feature_set.append(ask_price[i]) feature_set.append(ask_size[i]) feature_set.append(bid_price[i]) feature_set.append(bid_size[i]) input_data.append(feature_set) for i in range(1, len(mid_price)): delta = mid_price[i] - mid_price[i-1] if delta > 0: output_data.append('Upward') elif delta < 0: output_data.append('Downward') else: output_data.append('Stationary') return [input_data[:-1], output_data]
true
8000a58f89b46c41be0023b9aef4066aa819b065
Python
rexarabe/Python_projects2
/020_operator/001_operator.py
UTF-8
209
4.125
4
[]
no_license
#!/bin/python """Python Operators Operators are used to perform operations on variables and values. """ x = 10 y = 15 print(x+y) print(x-y) print(x*y) print(x/y) print(y%x) print(x**y) print(y//x)
true
5e5242c4da067d8149d8374e4f5038f2065a1652
Python
shoeferg13/fa18-hw-ref
/hw4.py
UTF-8
6,935
4.34375
4
[]
no_license
""" CS 196 FA18 HW4 Prepared by Andrew, Emilio, and Prithvi You might find certain default Python packages immensely helpful. """ # Good luck! """ most_common_char Given an input string s, return the most common character in s. """ def most_common_char(s): if len(s) == 0: return None s = s.lower() max = 0; for char in s: if s.count(char) > max: max = s.count(char) return s[max] print(most_common_char("")) """ alphabet_finder Given an input string s, return the shortest prefix of s (i.e. some s' = s[0:i] for some 0 < i <= n) that contains all the letters of the alphabet. If there is no such prefix, return None. Your function should recognize letters in both cases, i.e. "qwertyuiopASDFGHJKLzxcvbnm" is a valid alphabet. Example 1: Argument: "qwertyuiopASDFGHJKLzxcvbnm insensitive paella" Return: "qwertyuiopASDFGHJKLzxcvbnm" Example 2: Argument: "aardvarks are cool!" Return: None """ def alphabet_finder(s): alpha = {"abcdefghijklmnopqrstuv"} arr = [] s = s.lower() returnString = "" input = s for i in range(0, len(s)): if s[i] in alpha: alpha.remove(s[i]) arr += input[i] if (len(alpha) == 0): return returnString.join(arr) return None # """ # longest_unique_subarray # # Given an input list of integers arr, # return a list with two values [a,b] such that arr[a:a+b] is the longest unique subarray. # That is to say, all the elements of arr[a:a+b] must be unique, # and b must be the largest value possible for the array. # If multiple such subarrays exist (i.e. same b, different a), use the lowest value of a. # # Example: # Argument: # [1, 2, 3, 1, 4, 5, 6] # Return: # [1, 6] # """ # def longest_unique_subarray(arr): # pass # # """ string_my_one_true_love A former(?) CA for this course really like[d] strings that have the same occurrences of letters. This means the staff member likes "aabbcc", "ccddee", "abcabcabc", etcetera. But the person who wrote all of your homework sets wants to trick the staff with really long strings, that either could be the type of string that the staff member likes, or a string that the CA would like if you remove exactly one character from the string. Return True if it's a string that the homework creator made, and False otherwise. Don't treat any characters specially, i.e. 'a' and 'A' are different characters. Ungraded food for thought: Ideally, your method should also work on integer arrays without any modification. Example 1: Argument: "abcbabcdcdda" There are 3 a's, 3 b's, 3 c's, and 3 d's. That means it is a very likable string! Return: True Example 2: Argument: "aaabbbcccddde" There are 3 a's, 3 b's, 3 c's, and 3 d's. We have 1 e, which we can remove. Return: True Example 3: Argument: "aaabbbcccdddeeffgg" This string is similar to the other ones, except with 2 e's, f's and g's at the end. To make this string likable, we need to remove the 2 e's, f's, and g's or we can remove one a, b, c, and d. However all of these require more than one removal, so it becomes invalid. Return: False """ def string_my_one_true_love(s): if (s == None): return null charDict = {char : 0 for char in s} for char in s: charDict[char] += 1 valuesArr = charDict.values() valuesArr.sort() returnBool = True change = 0 good = 0 diff = 0 maxDiff = 0 for i in range(len(valuesArr) - 1): if valuesArr[i] != valuesArr[i + 1]: returnBool = false diff = abs(arr[i + 1] - arr[i]) good = arr[i] for j in range(i, len(valuesArr)): if valuesArr[j] != good: change += diff if diff > maxDiff: maxDiff = diff if (returnBool == True) or (maxDiff <= 1 and change <= 1) or (1 + diff == good): return True return False print(string_my_one_true_love("abcbabcdcdda")) """ alive_people You are given a 2-dimensional list data. Each element in data is a list [birth_year, age_of_death]. Assume that the person was alive in the year (birth_year + age_of_death). Given that data, return the year where the most people represented in the list were alive. If there are multiple such years, return the earliest year. Example: Argument: [[1920, 80], [1940, 22], [1961, 10]] Return: 1961 """ def alive_people(data): if data == None or len(data) == 0: return None sumArr = [] for i in data: for j in range(i, i[1] + 1): sumArr.append(i[0] + j) dictYears = {i : 0 for i in sumArr} for i in sumArr: dictYears[i] += 1 returnYear = 0 max = 0 for i in dictYears: if dictYears[i] > max: max = dictYears[i] returnYear = i return returnYear # """ # three_sum # # Given an input list of integers arr, and a constant target t, # is there a triplet of distinct elements [a,b,c] so that a + b + c = t? # # Return a 2-dimensional list of all the unique triplets as defined above. # Each inner list should be a triplet as we defined above. # We don't care about the order of triplets, nor the order of elements in each triplet. # # Example: # Arguments: # [-1, 0, 1, 2, -1, -4], 0 # Return: # [ # [-1, 0, 1], # [-1, -1, 2] # ] # """ # def three_sum(arr, t): # pass # # """ happy_numbers Given an input integer n > 0, return the number of happy integers between 1 and n, bounds inclusive. https://en.wikipedia.org/wiki/Happy_number Example 1: Argument: 8 The happy numbers between 1 and 8 are 1 and 7 (7 -> 49 -> 97 -> 130 -> 10 -> 1) Return: 2468 // 1234 (i.e., 2) Example 2: Argument: 15 Return: 4294967296 ** (1 / 16) (i.e., 4) 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1. """ # def happy_numbers(n): # happyArr = [] # if (n == 0): # return None # if (n == 1): # return 1 # nArr = [] # for i in range(1, n): # result = 0 # nArr = [int(d) for d in str(i)] # for j in nArr: # result += j**2 # checker = [int(d) for d in str(result)] # if (len(checker) == 1) # if (result == 1): # happArr.append(j) # return happyArr # # # """ # zero_sum_subarray # # Given an input list of integers arr, # return a list with two values [a,b] such that sum(arr[a:a+b]) == 0. # In plain English, give us the location of a subarray of arr that starts at index a # and continues for b elements, so that the sum of the subarray you indicated is zero. # If multiple such subarrays exist, use the lowest valid a, and then lowest valid b, # in that order of priority. # If no such subarray exists, return None. # # Ungraded food for thought: # Think about how to generalize your solution to any arbitrary target sum. # # Example 1: # Argument: # [0, 1, 2, 3, 4, 5] # Clearly, the first element by itself forms a subarray with sum == 0. # Return: # [0, 1] # # Example 2: # Argument: # [10, 20, -20, 3, 21, 2, -6] # In this case, arr[1:3] = [20, -20], so there is a zero sum subarray. # Return: # [1, 2] # """ # def zero_sum_subarray(arr): # sum = 0 # startIndex = 0 # endIndex = 0 # returnArray = [] # for i in arr: # sum += i # if sum == 0: # # # # #
true
9e8ce4ad5f043443ae43d8445d21afabd0e73f1e
Python
amchugh/rocket
/python/rocketfollow.py
UTF-8
3,919
2.71875
3
[]
no_license
import rocketenv import pygame import random SIZE = (800,900) FLOOR = 800 class Missile: def __init__(self, world_size, pos, vel, dt): self.world_size = world_size self.pos = [pos[0], pos[1]] self.vel = vel self.dt = dt def step(self): self.pos[0] += self.vel[0] * self.dt self.pos[1] += self.vel[1] * self.dt return self.pos[0] < 0 or self.pos[0] > self.world_size[0] or self.pos[1] < 0 or self.pos[1] > FLOOR def draw(self, screen): LENGTH = 1 fin = (self.pos[0] - self.vel[0] * LENGTH, self.pos[1] - self.vel[1] * LENGTH) pygame.draw.line(screen, (255,0,120), self.pos, fin, 3) SLANT = 200 def makeMissile(): startX = random.randint(SLANT,SIZE[0]-SLANT) endX = random.randint(-SLANT,SLANT) vx, vy = rocketenv.normalize(endX, FLOOR) vel = (vx*MISSILE_SPEED, vy*MISSILE_SPEED) return Missile(SIZE, (startX, 0), vel, dt) fps = 60 dt = 1/30.0 env = rocketenv.RocketEnv(SIZE, dt) env.reset(); env.initrender(None, False) clock = pygame.time.Clock() # ---------------- # ::Switch these:: # Old, easy controller #controller = rocketenv.MovingRocketController(1.30180042, 5.07822616, 0.00407172, 0.09638811, 4.64927884, 0.22577127, 0.62695137, dt) #env.rocket.ROCKET_MAX_INDIVIDUAL_FORCE = 3.2 #env.rocket.ROCKET_ROTATIONAL_INERTIA = 0.6 # Harder controller FITNESS: 2.51736263 #controller = rocketenv.MovingRocketController(1.29434620, 14.02993530, -0.00853724, 0.11117422, 4.65478087, 0.29473669, 0.76614155, dt) #env.rocket.ROCKET_MAX_INDIVIDUAL_FORCE = 10 #env.rocket.ROCKET_ROTATIONAL_INERTIA = 0.4 # Slower, but looks better. Evaluated based on time to point FITNESS: 802.6 #controller = rocketenv.MovingRocketController(1.30103649, 24.12807184, -0.00416717, 0.11021518, 4.79300645, 0.06620423, 0.81834318) #env.rocket.ROCKET_MAX_INDIVIDUAL_FORCE = 10 #env.rocket.ROCKET_ROTATIONAL_INERTIA = 0.4 # This one is faster, but it overshoots a lot. FITNESS: 291.74 controller = rocketenv.MovingRocketController(1.30300312, 24.10937873, -0.00392903, 0.10979283, 4.80212557, 0.07160376, 0.84756384) env.rocket.ROCKET_MAX_INDIVIDUAL_FORCE = 10 env.rocket.ROCKET_ROTATIONAL_INERTIA = 0.4 # ---------------- controller.reset() running = True missiles = [] MISSILE_SPEED = 30 ROCKET_INTERVAL = 1.6 DIST = 30 SQR_DIST = DIST * DIST c_i = 0 CENTER = (SIZE[0]/2,SIZE[1]/2) while running: clock.tick(fps) keys = pygame.key.get_pressed() if keys[pygame.K_x]: env.resetRandom(0); env.render() if len(missiles) > 0: controller.target = missiles[0].pos dx = env.rocket.x - missiles[0].pos[0] dy = env.rocket.y - missiles[0].pos[1] if dx*dx + dy*dy <= SQR_DIST: missiles.remove(missiles[0]) else: controller.target = CENTER if pygame.mouse.get_pressed()[0]: controller.target = pygame.mouse.get_pos() c_i+=1 if c_i >= ROCKET_INTERVAL * fps: c_i -= ROCKET_INTERVAL * fps missiles.append(makeMissile()) for m in missiles: if m.step(): missiles.remove(m) m.draw(env.screen) for i in range(6): f1, f2 = controller.step(env.rocket.x, env.rocket.y, env.rocket.vx, env.rocket.vy, env.rocket.omega, env.rocket.theta) env.step((f1, f2)) pygame.draw.circle(env.screen, (0,255,0), controller.target, 2, 0) pygame.draw.circle(env.screen, (0,0,255), (env.rocket.x, env.rocket.y), DIST, 1) pygame.draw.line(env.screen, (0,0,0), (0, FLOOR), (SIZE[0], FLOOR)) pygame.display.flip() # event handling, gets all event from the event queue for event in pygame.event.get(): # only do something if the event is of type QUIT if event.type == pygame.QUIT: # change the value to False, to exit the main loop running = False
true
5a57ffa79b664adf3f82d0f5a5f09f6ec4b7855b
Python
Akankshipriya/Trade-App
/Trade App/s2Port.py
UTF-8
4,411
2.71875
3
[]
no_license
from pandas_datareader import data as pdr import yfinance as yf import pandas as pd import numpy as np from datetime import datetime import matplotlib.dates as mdates import matplotlib.pyplot as plt import pandas_datareader as pdr import matplotlib.axis as ax from pandas.util.testing import assert_frame_equal def plotPorts2(start_date,end_date): plt.close() yf.pdr_override() data = pdr.get_data_yahoo("BTC-USD", start_date, end_date) btc = pd.DataFrame(data) btc = btc[['Adj Close']] btc.columns = ['Close'] btc.reset_index(level=0, inplace = True) # In[8]: b = pd.DataFrame() for x in btc: b ['price'] = btc['Close'] b['sma'] = btc['Close'].rolling(window=20).mean() b['std'] = btc['Close'].rolling(window=20).std() b['bolU'] = b['sma'] + (2 * b['std'] )#Calculating Upper Bound b['bolD'] = b['sma'] - (2 * b['std'] )#Calculating Lower Bound #Convert Bollinger Bands to %b - bollinger column b['bollinger'] = (b['price'] - b['bolD'])/(b['bolU']-b['bolD']) bb1 = b[['price','bolU','bolD','bollinger']] bb1.columns = ['Price','Upper Band','Lower Band','Bollinger'] bb1.fillna(0,inplace=True) # In[ ]: # In[9]: RSI = pd.DataFrame(index=btc.index) RSI['price'] = btc ['Close'] RSI['val'] = None RSI['up'] = 0 #When there is no up value 0 RSI['down'] = 0 #When there is no down value 0 size = RSI.shape[0] dp = 14 for x in range(size): if x ==0: continue #first day will continue #calculating the ups , when closing price is higher in day x than x -1 if RSI['price'].iloc[x] > RSI['price'].iloc[x-1]: # RSI['up'].iloc[x] = RSI['price'].iloc[x] - RSI['price'].iloc[x-1] else: #calculating the downs days , when closing price is lower in day x than x -1 RSI['down'].iloc[x] = RSI['price'].iloc[x-1]-RSI['price'].iloc[x] if x >= dp: avgUp = RSI['up'][x-dp:x].sum()/dp #calculates avg up of last dp days avgDown = RSI['down'][x-dp:x].sum()/dp #calculates avg down of last dp days rs = avgUp/avgDown #calculation of RS RSI['val'].iloc[x] = 100 - 100/(1+rs) signals = pd.DataFrame(index=btc.index)#copy index for BTC signals['price'] = btc['Close'] signals['id']= 0.0 signals['RSI'] = RSI['val'] signals['RSI'].fillna(0, inplace=True) signals['bollinger'] = bb1['Bollinger'] signals['id']=[np.nan for i in signals.index] # only verifications for days after DPth (period of RSI) day signals['id'][dp:].loc[((signals['RSI'] < 30) & (signals['bollinger'] < 0))] = 1 signals['id'][dp:].loc[((signals['RSI'] > 70) & (signals['bollinger'] > 1))] = 0 signals['id'].ffill(inplace=True) #fill empty values with 0 signals['id'].fillna(0,inplace=True) signals['buySell'] = signals['id'].diff() signals['buySell'].fillna(0,inplace=True) ################################################################################### # Code taken from Willems, K., 2019. (Tutorial) Python For Finance: Algorithmic Trading initInvestment = 100000 stocksOwned = pd.DataFrame(index=signals.index).fillna(0.0) noCur = 10 #No of currency to be purchased stocksOwned['BTC'] = noCur*signals['id'] portfolio = pd.DataFrame(index=signals.index) portfolio['Holdings'] = stocksOwned['BTC'].multiply(btc['Close'], axis=0) buySell = stocksOwned['BTC'].diff() portfolio['cash'] = initInvestment - (buySell.multiply(btc['Close'], axis=0)).cumsum() portfolio['total'] = portfolio['cash'] + portfolio['Holdings'] portfolio['cash'][0] = initInvestment portfolio['total'][0] = initInvestment ################################################################################### # In[50]: fig, (ax) = plt.subplots(1, 1, sharex=True) ax.plot(portfolio.index, portfolio['total'], label='Price') ax.set_xlabel('Date') ax.set_ylabel('Value of portfolio in USD') day = signals.loc[signals.buySell == 1.0].index day2 = signals.loc[signals.buySell == -1.0].index ax.scatter(x = day, y=portfolio.loc[day, 'total'], color = 'green') ax.scatter(x = day2, y=portfolio.loc[day2, 'total'], color = 'red') plt.show()
true
59f24fe9070f697e695846fba7883bed22e66da5
Python
yusheng88/RookieInstance
/Rookie054.py
UTF-8
1,114
3.859375
4
[]
no_license
# -*- coding = utf-8 -*- # @Time : 2020/7/8 22:18 # @Author : EmperorHons # @File : Rookie054.py # @Software : PyCharm """ https://www.runoob.com/python3/python3-examples.html Python 使用正则表达式提取字符串中的 URL 给定一个字符串,里面包含 URL 地址,需要我们使用正则表达式来获取字符串的 URL """ import pysnooper import re @pysnooper.snoop() def re_Find(string): url = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', string) """ (?:x) 匹配 x 但是不记住匹配项。这种括号叫作非捕获括号, 使得你能够定义与正则表达式运算符一起使用的子表达式。 看看这个例子 /(?:foo){1,2}/。如果表达式是 /foo{1,2}/,{1,2} 将只应用于 'foo' 的最后一个字符 'o'。 如果使用非捕获括号,则 {1,2} 会应用于整个 'foo' 单词。执行以上代码输出结果为: """ return url if __name__ == '__main__': string = "百度 的网页地址为:https://www.baidu.com/, Google 的网页地址为:https://www.google.com" print("url:", re_Find(string))
true
a4082ceb7a01808681c50811afce5fe7b84055d1
Python
shills112000/django_course
/PYTHON/STATEMENTS_WHILE_FOR_IF/while.py
UTF-8
1,385
3.953125
4
[]
no_license
#!/usr/local/bin/python3.7 #https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming #while True: # print ("Looping") count = 1 while count <=4: print (f"counting : {count}") count += 1 count =0 while count < 10: if count % 2 == 0:# miss even numbers count +=1 continue print (f"were counting odd numbers: {count}") count += 1 count += 1 count = 1 while count < 10: if count % 2 == 0: break print (f"We are counting odd numbers {count}") count += 1 x = 0 while x < 5 : print (f"the current value of x is {x}") #x = x+1 x+= 1 # same as above else: print (f"x is {x} not less than 5") # break continue pass #break : breaks out of the current closest enclosing loop #continue: goes to the top of the closted enclosing loop #pass; does nothing at all # PASS x = [1,2,3] for item in x: pass # this is a filler and allows the for loop without having any code and processes no errorspass #CONTINUE mystring = 'Sammy' for letter in mystring: if letter == 'a': continue # go to the top of the for loop print (letter) #BREAK for letter in mystring: if letter == 'a': break # breaks out of loop when a is hit print (letter) x = 0 while x < 5: if x == 2: # break out of loop if x equals to 2 break print (x) x+=1
true
43c9ef192077a2f0050a6ebd70495f91ad73bf4a
Python
jdrubin91/BidirectionalTFAnalyzer
/src/Depletion_Simulator.py
UTF-8
844
2.609375
3
[]
no_license
__author__ = 'Joseph Azofeifa' import math import numpy as np import matplotlib.pyplot as plt from scipy import integrate def simulate(N=10000, mu=0, si=300, a=-1500,b=1500): f = lambda x: (1.0 / math.sqrt(2*math.pi*pow(si,2)) )*math.exp(-pow(x-mu,2)/(2*pow(si,2))) u = lambda x: 1.0 / (b-a) xs = list() for i in range(N): x = np.random.uniform(a,b) F,U = f(x), u(x) r = f(x) / (u(x) + f(x) ) if np.random.uniform(0,1) > r: xs.append(x) c = 0.06 g = lambda x: c*((u(x) / (f(x)+u(x)))) #F = plt.figure() #ax = F.add_subplot(1,2,1) #ax.hist(xs,bins=50, normed=1) #ax2 = F.add_subplot(1,2,2) #xs.sort() #N = float(len(xs)) #ax2.plot(xs,[i/N for i in range(len(xs))]) # #plt.show() #raise TypeError, "something" return xs if __name__ == "__main__": X = simulate()
true
4eff248cc023f334759b5ce93d11ee1e87263507
Python
kimdanny/HeapSort-and-QuickSort-Comparison
/Automation/testing.py
UTF-8
336
3.125
3
[]
no_license
from random import randint import numpy randomList = [] size = 100_000 + 1100_000 * 5 for x in range(size): randomList.append(randint(0, 1_000_000)) # See how many repetitions of elements in a single list a = numpy.array(randomList) unique, counts =numpy.unique(a, return_counts=True) this = dict(zip(unique, counts)) print(this)
true
0df114cc93c9f7f7ada529ed52fe07c072be4c27
Python
kbase/taxonomy_re_api
/src/exceptions.py
UTF-8
768
2.828125
3
[ "MIT" ]
permissive
"""Exception classes.""" class ParseError(Exception): code = -32700 class InvalidRequest(Exception): code = -32600 class MethodNotFound(Exception): code = -32601 def __init__(self, method_name): self.method_name = method_name class InvalidParams(Exception): code = -32602 class InternalError(Exception): code = -32603 class ServerError(Exception): code = -32000 class REError(Exception): """Error from the RE API.""" def __init__(self, resp): """Takes a requests response object.""" self.resp_json = None try: self.resp_json = resp.json() except ValueError: pass self.resp_text = resp.text def __str__(self): return self.resp_text
true
41b14397da76619ae7c34efb12c94aff91ae6821
Python
da-ferreira/uri-online-judge
/uri/3096.py
UTF-8
592
4.09375
4
[]
no_license
def kamenetsky(number): """ Formula de kamenetsky permite saber quantos digitos tem o fatorial de um numero qualquer > 0 se calcular seu fatorial. :param number: O numero do fatorial :return: Quantidade de digitos do fatorial desse numero. """ import math if number < 0: # nao existe return 0 elif number <= 1: return 1 digits = (number * math.log10(number / math.e)) + (math.log10(2 * math.pi * number) / 2) return math.floor(digits) + 1 n = int(input()) print(kamenetsky(n))
true
2dba2dcc2fd0c07c91985f8a2142653e172eae51
Python
tkhunlertkit/Sketches
/python/Bit Coin Computation/test.py
UTF-8
320
2.796875
3
[]
no_license
import requests response = requests.get('https://chain.so/api/v2/get_price/BTC/USD',verify=True) response = response.json()['data']['prices'] cumulative = 0 for i in response: cumulative += float(i['price']) for key in i: print key, i[key] print print cumulative print 'avg:', cumulative / len(i)
true
c7caf6b14a5bb703d03288ca138117f8b52c36bd
Python
ghomsy/makani
/analysis/aero/avl/avl_reader.py
UTF-8
21,745
2.890625
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/python # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for parsing and analyzing AVL files.""" import collections import importlib import logging import sys import warnings import numpy class AvlReader(object): """Parses and analyzes AVL files. Attributes: filename: Filename of the AVL file to be processed. avl: Ordered dict that represents the parsed structure of the AVL file. properties: Dict that represents properties of the aircraft, surfaces, and surface sections. Its structure mimics that of the AVL file itself. """ def __init__(self, filename): """Initializes the class by parsing the AVL file.""" self.filename = filename with open(filename, 'r') as f: self.avl = self.Parse(f.read()) self.properties = self.Analyze(self.avl) def Analyze(self, avl): """Analyze properties of the AVL geometry. Args: avl: Ordered dict representing a parsed AVL file. Returns: Dict that represents properties of the aircraft, surfaces, and surface sections. Its structure mimics that of the AVL file itself. """ properties = dict() properties['surfaces'] = [] for avl_surface in avl['surfaces']: transform = self._GetSurfaceTransformation(avl_surface) sections = [] for avl_section in avl_surface['sections']: sections.append(self._CalcSectionProperties(avl_section, transform)) panels = [] for section1, section2 in zip(sections[0:-1], sections[1:]): panels.append(self._CalcPanelProperties(section1, section2)) surface = self._CalcSurfaceProperties(sections, panels) surface['name'] = avl_surface['name'] surface['sections'] = sections surface['panels'] = panels properties['surfaces'].append(surface) return properties def _CalcSectionProperties(self, avl_section, transform=lambda x: x): """Calculates the properties of sections, i.e. stations along the span.""" # Apply the scaling and offset parameters, if any, from the AVL # file. chord = avl_section['Chord'] * transform([0.0, 1.0, 0.0])[1] leading_edge_avl = transform([avl_section['Xle'], avl_section['Yle'], avl_section['Zle']]) return { 'chord': chord, 'incidence': numpy.pi / 180.0 * avl_section['Ainc'], 'leading_edge_b': numpy.array([-leading_edge_avl[0], leading_edge_avl[1], -leading_edge_avl[2]]), 'quarter_chord_b': numpy.array([-leading_edge_avl[0] - chord / 4.0, leading_edge_avl[1], -leading_edge_avl[2]]) } def _CalcPanelProperties(self, section1, section2): """Calculates properties of the areas between sections.""" span = numpy.sqrt( (section2['leading_edge_b'][1] - section1['leading_edge_b'][1])**2.0 + (section2['leading_edge_b'][2] - section1['leading_edge_b'][2])**2.0) area = (section1['chord'] + section2['chord']) * span / 2.0 taper_ratio = section2['chord'] / section1['chord'] c = ((2.0 * section1['chord'] + section2['chord']) / (section1['chord'] + section2['chord']) / 3.0) mean_incidence = (c * section1['incidence'] + (1.0 - c) * section2['incidence']) aerodynamic_center_b = (c * section1['quarter_chord_b'] + (1.0 - c) * section2['quarter_chord_b']) return { 'aerodynamic_center_b': aerodynamic_center_b, 'area': area, 'mean_aerodynamic_chord': (2.0 / 3.0 * section1['chord'] * (1.0 + taper_ratio + taper_ratio**2.0) / (1.0 + taper_ratio)), 'mean_incidence': mean_incidence, 'taper_ratio': taper_ratio, 'span': span, 'standard_mean_chord': area / span } def _CalcSurfaceProperties(self, sections, panels): """Calculates properties of full surfaces.""" area = 0.0 aerodynamic_center_b = numpy.array([0.0, 0.0, 0.0]) mean_aerodynamic_chord = 0.0 mean_incidence = 0.0 for panel in panels: area += panel['area'] aerodynamic_center_b += panel['area'] * panel['aerodynamic_center_b'] mean_aerodynamic_chord += panel['area'] * panel['mean_aerodynamic_chord'] mean_incidence += panel['area'] * panel['mean_incidence'] aerodynamic_center_b /= area mean_aerodynamic_chord /= area mean_incidence /= area # Set the span vector from the leading edge of the first section # to the leading edge of the last section. Ignore the x # component. Choose the direction such that the span is along the # surface coordinate y axis. span_b = sections[0]['leading_edge_b'] - sections[-1]['leading_edge_b'] span_b[0] = 0.0 if abs(span_b[1]) > abs(span_b[2]): if span_b[1] < 0.0: span_b *= -1.0 else: if span_b[2] < 0.0: span_b *= -1.0 span = numpy.linalg.norm(span_b) # Surface coordinates are defined such that they are aligned with # body coordinates for horizontal surfaces and are rotated about # body x such that surface z is aligned with the *negative* body y # for vertical surfaces. The negative is required to match the # convention in AVL. surface_x_b = [1.0, 0.0, 0.0] surface_y_b = span_b / span surface_z_b = numpy.cross(surface_x_b, surface_y_b) return { 'aerodynamic_center_b': aerodynamic_center_b, 'area': area, 'aspect_ratio': span * span / area, 'dcm_b2surface': numpy.array([surface_x_b, surface_y_b, surface_z_b]), 'mean_aerodynamic_chord': mean_aerodynamic_chord, 'mean_incidence': mean_incidence, 'span': span, 'standard_mean_chord': area / span } def _GetSurfaceTransformation(self, surface): """Returns surface scaling and offset transformation function.""" if all([k in surface for k in ['Xscale', 'Yscale', 'Zscale']]): scale = [surface['Xscale'], surface['Yscale'], surface['Zscale']] else: scale = [1.0, 1.0, 1.0] if all([k in surface for k in ['dX', 'dY', 'dZ']]): offset = [surface['dX'], surface['dY'], surface['dZ']] else: offset = [0.0, 0.0, 0.0] return lambda coord: [x * m + b for x, m, b in zip(coord, scale, offset)] def PlotGeometry(self): """Plots 3-D line drawing of surfaces.""" # b/120081442: Next lines removed the module initialization load of the # matplotlib module which was causing a bazel pip-installed package issue on # batch sim workers. pyplot = importlib.import_module('matplotlib.pyplot') mplot_3d = importlib.import_module('mpl_toolkits.mplot3d') # Importing Axes3D has the side effect of enabling 3D projections, but # it is not directly used, so we remove it here. del mplot_3d.Axes3D axes = pyplot.figure().add_subplot(1, 1, 1, projection='3d') axes.w_xaxis.set_pane_color((0.8, 0.8, 0.8, 1.0)) axes.w_yaxis.set_pane_color((0.8, 0.8, 0.8, 1.0)) axes.w_zaxis.set_pane_color((0.8, 0.8, 0.8, 1.0)) axes.w_xaxis.gridlines.set_color(('blue')) axes.w_yaxis.gridlines.set_color(('blue')) axes.w_zaxis.gridlines.set_color(('blue')) # The _axinfo update requires additional specification of linestyle and # linewidth on our linux distributions in order to function properly. axes.w_xaxis._axinfo.update( # pylint: disable=protected-access {'grid': {'color': (0.7, 0.7, 0.7, 1.0), 'linestyle': '-', 'linewidth': 0.8}}) axes.w_yaxis._axinfo.update( # pylint: disable=protected-access {'grid': {'color': (0.7, 0.7, 0.7, 1.0), 'linestyle': '-', 'linewidth': 0.8}}) axes.w_zaxis._axinfo.update( # pylint: disable=protected-access {'grid': {'color': (0.7, 0.7, 0.7, 1.0), 'linestyle': '-', 'linewidth': 0.8}}) axes.set_aspect('equal') axes.set_xlabel('x') axes.set_ylabel('y') axes.set_zlabel('z') half_span = self.avl['Bref'] / 2.0 axes.set_xlim((-half_span * 0.5, half_span * 1.5)) axes.set_ylim((-half_span, half_span)) axes.set_zlim((-half_span, half_span)) color_order = ['black', 'brown', 'red', 'orange', 'yellow', 'green', 'blue', 'violet', 'gray'] legend_plots = [] legend_labels = [] for i, surface in enumerate(self.avl['surfaces']): transform = self._GetSurfaceTransformation(surface) leading_edge_xs = [] leading_edge_ys = [] leading_edge_zs = [] trailing_edge_xs = [] trailing_edge_ys = [] trailing_edge_zs = [] for section in surface['sections']: coord = transform([section['Xle'], section['Yle'], section['Zle']]) leading_edge_xs.append(coord[0]) leading_edge_ys.append(coord[1]) leading_edge_zs.append(coord[2]) coord = transform([section['Xle'] + section['Chord'], section['Yle'], section['Zle']]) trailing_edge_xs.append(coord[0]) trailing_edge_ys.append(coord[1]) trailing_edge_zs.append(coord[2]) xs = leading_edge_xs + list(reversed(trailing_edge_xs)) ys = leading_edge_ys + list(reversed(trailing_edge_ys)) zs = leading_edge_zs + list(reversed(trailing_edge_zs)) surface_line, = axes.plot(xs + [xs[0]], ys + [ys[0]], zs + [zs[0]], color=color_order[i]) legend_plots.append(surface_line) legend_labels.append(surface['name']) # Plot symmetric surfaces. if self.avl['iYsym']: axes.plot(xs + [xs[0]], -numpy.array(ys + [ys[0]]), zs + [zs[0]], '--', color=color_order[i]) elif 'Ydupl' in surface: y_scale = surface['Yscale'] if 'Yscale' in surface else 1.0 axes.plot(xs + [xs[0]], -numpy.array(ys + [ys[0]]) + 2.0 * surface['Ydupl'] * y_scale, zs + [zs[0]], '--', color=color_order[i]) axes.legend(legend_plots, legend_labels, loc='lower left', prop={'size': 10}) pyplot.show() def Parse(self, avl_file): """Parses AVL file. Args: avl_file: String of the read AVL file. Returns: Dictionary representing the information stored in the AVL file. """ # Make iterator over lines in file. Automatically, remove comments # and blank lines. Terminate the file with an END keyword (this # isn't mentioned in the AVL documentation, but at least one of the # example files uses this convention and it makes the parsing more # natural. lines = iter([l.split('!', 1)[0].strip() for l in avl_file.splitlines() if l.strip() and l[0] not in '#!'] + ['END']) # Parse the AVL header for information on the case name, reference # areas, etc. avl, line = self._ParseHeader(lines) # Loop through the rest of the file, which should only be composed # of surfaces and bodies. while True: tokens = line.split() keyword = tokens[0][0:4] if keyword == 'SURFACE'[0:4]: surface, line = self._ParseSurface(lines) avl.setdefault('surfaces', []).append(surface) elif keyword == 'BODY': body, line = self._ParseBody(lines) avl.setdefault('body', []).append(body) else: if keyword != 'END': logging.error('Encountered unexpected keyword: %s', tokens[0]) break return avl def _ParseHeader(self, lines): """Parses header information.""" header = collections.OrderedDict() header['case'] = lines.next() tokens = lines.next().split() header['Mach'] = float(tokens[0]) tokens = lines.next().split() header['iYsym'] = int(tokens[0]) header['iZsym'] = int(tokens[1]) header['Zsym'] = float(tokens[2]) tokens = lines.next().split() header['Sref'] = float(tokens[0]) header['Cref'] = float(tokens[1]) header['Bref'] = float(tokens[2]) tokens = lines.next().split() header['Xref'] = float(tokens[0]) header['Yref'] = float(tokens[1]) header['Zref'] = float(tokens[2]) line = lines.next() try: # CDp is optional. header['CDp'] = float(line.split()[0]) line = lines.next() except (IndexError, ValueError): pass return header, line def _ParseAirfoil(self, lines): """Parses airfoil camber line definition.""" airfoil = [[]] while True: line = lines.next() tokens = line.split() try: airfoil.append([float(tokens[0]), float(tokens[1])]) except (IndexError, ValueError): break return airfoil, line def _ParseFilename(self, lines): """Parses filename of airfoil definition.""" line = lines.next() # The file name may either be quoted or not. if line[0] == '"': filename = line.split()[0][1:-1] else: filename = line return filename def _ParseSection(self, lines): """Parses information describing cross-section of surface along span.""" section = collections.OrderedDict() tokens = lines.next().split() section['Xle'] = float(tokens[0]) section['Yle'] = float(tokens[1]) section['Zle'] = float(tokens[2]) section['Chord'] = float(tokens[3]) section['Ainc'] = float(tokens[4]) try: # Nspan and Sspace are optional. section['Nspan'] = int(tokens[5]) section['Sspace'] = float(tokens[6]) except (IndexError, ValueError): pass next_line = None first_keyword = True while True: line = next_line if next_line else lines.next() next_line = None tokens = line.split() keyword = tokens[0][0:4] # Issue warnings if there is a suspicious ordering of the camber # line keywords. According to the AVL documentation, the camber # line keywords must immediately follow the data line of the # SECTION keyword, and also later camber line keywords overwrite # earlier ones. if keyword in ['NACA', 'AIRFOIL'[0:4], 'AFILE'[0:4]]: if not first_keyword: logging.warning('%s did not immediately follow the data line of the ' 'SECTION keyword.', tokens[0]) if any([k in section for k in ['naca', 'airfoil', 'afile']]): logging.warning('Another camber line definition exists. This will ' 'overwrite it.') if keyword == 'NACA': # Parse NACA camber line. section['naca'] = int(lines.next().split()[0]) assert 0 <= section['naca'] and section['naca'] <= 9999 elif keyword == 'AIRFOIL'[0:4]: # Parse airfoil coordinates. try: # x/c range is optional. section['x1'] = float(tokens[1]) section['x2'] = float(tokens[2]) except (IndexError, ValueError): pass section['airfoil'], next_line = self._ParseAirfoil(lines) elif keyword == 'AFILE'[0:4]: # Parse airfoil filename. try: # x/c range is optional. section['x1'] = float(tokens[1]) section['x2'] = float(tokens[2]) except (IndexError, ValueError): pass section['afile'] = self._ParseFilename(lines) elif keyword == 'DESIGN'[0:4]: # Parse design variable. tokens = lines.next().split() design = collections.OrderedDict() design['DName'] = tokens[0] try: design['Wdes'] = float(tokens[1]) except (IndexError, ValueError): # Although it is not listed as an optional value in the AVL # documentation, some of the example AVL files do not have a # value for Wdes. logging.warning('Wdes value is missing for %s.', design['DName']) section.setdefault('designs', []).append(design) elif keyword == 'CONTROL'[0:4]: # Parse control variable. tokens = lines.next().split() control = collections.OrderedDict() control['name'] = tokens[0] control['gain'] = float(tokens[1]) control['Xhinge'] = float(tokens[2]) control['XYZhvec'] = [float(tokens[3]), float(tokens[4]), float(tokens[5])] try: control['SgnDup'] = float(tokens[6]) except (IndexError, ValueError): # Although it is not listed as an optional value in the AVL # documentation, some of the example AVL files do not have a # value for SgnDup. logging.warning('SgnDup value is missing for %s.', control['name']) section.setdefault('controls', []).append(control) elif keyword == 'CLAF': # Parse dCL/da scaling factor. section['CLaf'] = float(lines.next().split()[0]) elif keyword == 'CDCL': # Parse CD(CL) function parameters. tokens = lines.next().split() section['CL1'] = float(tokens[0]) section['CD1'] = float(tokens[1]) section['CL2'] = float(tokens[2]) section['CD2'] = float(tokens[3]) section['CL3'] = float(tokens[4]) section['CD3'] = float(tokens[5]) else: break first_keyword = False return section, line def _ParseSurface(self, lines): """Parses definition of a lifting surface.""" surface = collections.OrderedDict() surface['name'] = lines.next() tokens = lines.next().split() surface['Nchord'] = int(tokens[0]) surface['Cspace'] = float(tokens[1]) try: # Nspan and Sspace are optional. surface['Nspan'] = int(tokens[2]) surface['Sspace'] = float(tokens[3]) except (IndexError, ValueError): pass next_line = None while True: line = next_line if next_line else lines.next() next_line = None keyword = line.split()[0][0:4] if keyword in ['COMPONENT'[0:4], 'INDEX'[0:4]]: # Parse component grouping. surface['Lcomp'] = int(lines.next().split()[0]) elif keyword == 'YDUPLICATE'[0:4]: # Parse duplicated surface y-plane. surface['Ydupl'] = float(lines.next().split()[0]) elif keyword == 'SCALE'[0:4]: # Parse surface scaling. tokens = lines.next().split() surface['Xscale'] = float(tokens[0]) surface['Yscale'] = float(tokens[1]) surface['Zscale'] = float(tokens[2]) elif keyword == 'TRANSLATE'[0:4]: # Parse surface translation. tokens = lines.next().split() surface['dX'] = float(tokens[0]) surface['dY'] = float(tokens[1]) surface['dZ'] = float(tokens[2]) elif keyword == 'ANGLE'[0:4]: # Parse surface incidence angle. surface['dAinc'] = float(lines.next().split()[0]) elif keyword == 'NOWAKE'[0:4]: surface['nowake'] = True elif keyword == 'NOALBE'[0:4]: surface['noalbe'] = True elif keyword == 'NOLOAD'[0:4]: surface['noload'] = True elif keyword == 'SECTION'[0:4]: # Parse airfoil section camber line along span. section, next_line = self._ParseSection(lines) surface.setdefault('sections', []).append(section) else: break return surface, line def _ParseBody(self, lines): """Parses description of non-lifting bodies shape.""" body = collections.OrderedDict() body['name'] = lines.next() tokens = lines.next().split() body['Nbody'] = int(tokens[0]) body['Bspace'] = float(tokens[1]) while True: line = lines.next() keyword = line.split()[0][0:4] if keyword == 'YDUPLICATE'[0:4]: body['Ydupl'] = float(lines.next().split()[0]) elif keyword == 'SCALE'[0:4]: # Parse body scaling. tokens = lines.next().split() body['Xscale'] = float(tokens[0]) body['Yscale'] = float(tokens[1]) body['Zscale'] = float(tokens[2]) elif keyword == 'TRANSLATE'[0:4]: # Parse body translation. tokens = lines.next().split() body['dX'] = float(tokens[0]) body['dY'] = float(tokens[1]) body['dZ'] = float(tokens[2]) elif keyword == 'BFILE'[0:4]: # Parse body shape filename. body['bfile'] = self._ParseFilename(lines) else: break return body, line def main(argv): # Internal matplotlib functions currently trigger the following # warnings. warnings.filterwarnings('ignore', 'elementwise comparison failed; returning ' 'scalar instead, but in the future will perform ' 'elementwise comparison') warnings.filterwarnings('ignore', 'comparison to `None` will result in an ' 'elementwise object comparison in the future.') logging.basicConfig(stream=sys.stdout, format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO) avl = AvlReader(argv[1]) avl.PlotGeometry() logging.shutdown() if __name__ == '__main__': main(sys.argv)
true
ee25c8ed2eabeb12a3826f3556c152606e6f464e
Python
nclv/My-Gray-Hacker-Resources
/Cryptography/Hash_Functions/MD5/Hash-Length-extension-attacks/VimeoHashExploit/server.py
UTF-8
1,638
2.53125
3
[ "CC-BY-SA-4.0", "MIT" ]
permissive
""" adapted from Fillipo Valsorda's tutorial august/2014 """ import os import binascii import md5 import urlparse from flask import Flask, request, abort, render_template PORT = 4242 USER_ID = 42 USER_NAME = "Jack" API_KEY = binascii.hexlify(os.urandom(16)) API_SECRET = binascii.hexlify(os.urandom(16)) app = Flask(__name__) def sign_req(values, secret): s = secret for k, v in sorted(values.items()): s += k s += v return md5.MD5(s).hexdigest() @app.route('/') def show_info(): req = { "method": "vimeo.test.login", "api_key": API_KEY } return render_template('info.html', user_id=USER_ID, api_key=API_KEY, user_name=USER_NAME, api_sig=sign_req(req, API_SECRET)) @app.route('/api', methods=['POST']) def handle_api(): values = dict(urlparse.parse_qsl(request.get_data())) if not 'api_sig' in values: abort(400) if not 'api_key' in values: abort(400) if not 'method' in values: abort(400) if values['api_key'] != API_KEY: abort(403) api_sig = values['api_sig'] del values['api_sig'] if sign_req(values, API_SECRET) != api_sig: abort(403) if values["method"] == "vimeo.test.login": return render_template("user.xml", user_id=USER_ID, user_name=USER_NAME) elif values["method"] == "vimeo.videos.setFavorite": if not 'video_id' in values: abort(400) if not 'favorite' in values: abort(400) if values["video_id"] != '1337': abort(404) return render_template("ok.xml") else: abort(404) if __name__ == '__main__': app.debug = True app.run(port=PORT)
true
b54c8d732c668e9ed5536d8714db5e08a63e17e3
Python
Andrii-Dykyi/2D-game-pygame
/bullet.py
UTF-8
992
3.34375
3
[]
no_license
import os import pygame from pygame.sprite import Sprite class Bullet(Sprite): """Class to manage bullets fired from rocket.""" def __init__(self, game_settings, screen, rocket): """Create a bullet object at the rocket's current position.""" super().__init__() self.screen = screen self.game_settings = game_settings self.image = pygame.image.load(os.path.join('images', 'bullet.png')) self.rect = self.image.get_rect() self.rect.centerx = rocket.rect.centerx self.rect.centery = rocket.rect.centery self.rect.top = rocket.rect.top self.y = self.rect.y def update(self): """Move the bullet up the screen.""" self.y -= self.game_settings.bullet_speed_factor # Update the rect position. self.rect.y = self.y def blit_bullet(self): """Draw the bullet to the screen.""" self.screen.blit(self.image, self.rect)
true
70c5317cc3c2690738f19bfbe738a81fad822a13
Python
NeugeCZ/czech-derivation
/upravy.py
UTF-8
138
2.703125
3
[]
no_license
import re def uprava_pravopisu(slovo): if 'rě' in slovo: return re.sub('rě', 'ře', slovo) else: return slovo
true
ee1a566c75bbd419f3939057260d9a4c228dfb93
Python
JosephLevinthal/Research-projects
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4160/codes/1723_2504.py
UTF-8
404
3.453125
3
[]
no_license
v = int(input("Quantidade inicial de copias do virus no sangue de Micaleteia: ")) l = int(input("Quantidade inicial de leucocitos no sangue: ")) pv = int(input("Percentual de multiplicacao diaria do virus: ")) pl = int(input("Percentual de multiplicacao diaria dos leucocitos: ")) dias = 0 while(l < 2*v): h = (pv * v/ 100) v = v + h m = (pl * l/ 100) l = l + m dias = dias + 1 print(dias)
true
53ead851be5ab9e0516e264130b7f26fb50250ba
Python
voidnologo/advent_of_code_2020
/1_code.py
UTF-8
301
3.203125
3
[]
no_license
from itertools import combinations from math import prod with open("1_data.txt", "r") as f: data = f.read().splitlines() print("Part 1:", next((c, prod(c)) for c in combinations(data, 2) if sum(c) == 2020)) print("Part 2:", next((c, prod(c)) for c in combinations(data, 3) if sum(c) == 2020))
true
0348b226ac3edc1e5551b2135d8aa04b4775e588
Python
ZeweiSong/FAST
/filter_database.py
UTF-8
1,951
3.015625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Dec 08 10:51:54 2015 This is a trial script for filtering the UNITE database. All records with 'unidentified' in its name are discarded, resutling a clean reference database for taxonomic assignment. Please feel free to contact me for any question. -- Zewei Song University of Minnesota Dept. Plant Pathology songzewei@outlook.com """ def main(name_space): import argparse import textwrap from lib import File_IO parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent('''\ ------------------------ By Zewei Song University of Minnesota Dept. Plant Pathology songzewei@outlook.com ------------------------'''), prog = '-filter_database') parser.add_argument("-i", "--input", help="Name of the input FASTA file.") parser.add_argument("-o", "--output", help="Name of the output FASTA file") args = parser.parse_args(name_space) database = File_IO.read_seqs(args.input) count = len(database) print "Reading in %s ..." % args.input print "%s contains %i records." % (args.input, count) count_filter = 0 database_cleaned = [] for record in database: if record[0].find('unidentified') == -1: # check if current record contain 'unidentified' taxonomic level. database_cleaned.append(record) count_filter += 1 print "%i records contain 'unidentified' string." % (count - count_filter) count_write = File_IO.write_seqs(database_cleaned, args.output) print "Filtered database is saved in %s with %i records." % (args.output, count_write) if __name__ == '__main__': import sys main(sys.argv[1:])
true
f284c9f0bb2cd3aaeb73f47ac0b3f89ed670e09e
Python
RakeshSharma21/HerokuDeployment
/model.py
UTF-8
383
2.921875
3
[]
no_license
import pandas as pd import pickle as pkl hiringDf=pd.read_csv('hiring.csv') print(hiringDf.head()) y=hiringDf['salary'] X=hiringDf.drop(['salary'],axis=1) from sklearn.linear_model import LinearRegression regressor=LinearRegression() regressor.fit(X,y) pkl.dump(regressor, open('model.pkl','wb')) model=pkl.load(open('model.pkl','rb')) print(model.predict([[2,8,8]]))
true
4da4c4b183c6945c5a711540f2ef596d7d21efd8
Python
RobinVdBroeck/ucll_scripting
/exercises/basics/02-conditionals/student.py
UTF-8
330
3.84375
4
[]
no_license
# Voorbeeld def abs(x): if x < 0: return -x else: return x # Merk op dat 'else if' in Python een speciale syntax heeft # Zoek deze zelf op online def sign(x): if x < 0: return -1 if x is 0: return 0 return 1 def factorial(n): if n in (0,1): return 1 return n * factorial(n-1)
true
e56b1f292163ad6b5d88e01eb7a2e7759b8bd58f
Python
timcosta/prawtools
/prawtools/stats.py
UTF-8
14,667
2.53125
3
[ "BSD-2-Clause" ]
permissive
"""Utility to provide submission and comment statistics in a subreddit.""" from __future__ import print_function from collections import defaultdict from datetime import datetime from tempfile import mkstemp import codecs import logging import os import re import time from praw import Reddit from praw.models import Submission from six import iteritems, text_type as tt from .helpers import AGENT, arg_parser, check_for_updates DAYS_IN_SECONDS = 60 * 60 * 24 RE_WHITESPACE = re.compile(r'\s+') TOP_VALUES = {'all', 'day', 'month', 'week', 'year'} logger = logging.getLogger(__package__) class SubredditStats(object): """Contain all the functionality of the subreddit_stats command.""" post_footer = tt('>Generated with [BBoe](/u/bboe)\'s [Subreddit Stats]' '(https://github.com/praw-dev/prawtools) ' '([Donate](https://cash.me/$praw))') post_header = tt('---\n###{}\n') post_prefix = tt('Subreddit Stats:') @staticmethod def _permalink(item): if isinstance(item, Submission): return tt('/comments/{}').format(item.id) else: return tt('/comments/{}//{}?context=1').format(item.submission.id, item.id) @staticmethod def _points(points): return '1 point' if points == 1 else '{} points'.format(points) @staticmethod def _rate(items, duration): return 86400. * items / duration if duration else items @staticmethod def _safe_title(submission): """Return titles with whitespace replaced by spaces and stripped.""" return RE_WHITESPACE.sub(' ', submission.title).strip() @staticmethod def _save_report(title, body): descriptor, filename = mkstemp('.md', dir='.') os.close(descriptor) with codecs.open(filename, 'w', 'utf-8') as fp: fp.write('{}\n\n{}'.format(title, body)) logger.info('Report saved to {}'.format(filename)) @staticmethod def _user(user): return '_deleted_' if user is None else tt('/u/{}').format(user) def __init__(self, subreddit, site, distinguished): """Initialize the SubredditStats instance with config options.""" self.commenters = defaultdict(list) self.comments = [] self.distinguished = distinguished self.min_date = 0 self.max_date = time.time() - DAYS_IN_SECONDS self.reddit = Reddit(site, check_for_updates=False, user_agent=AGENT) self.submissions = [] self.submitters = defaultdict(list) self.submit_subreddit = self.reddit.subreddit('subreddit_stats') self.subreddit = self.reddit.subreddit(subreddit) def basic_stats(self): """Return a markdown representation of simple statistics.""" comment_score = sum(comment.score for comment in self.comments) if self.comments: comment_duration = (self.comments[-1].created_utc - self.comments[0].created_utc) comment_rate = self._rate(len(self.comments), comment_duration) else: comment_rate = 0 submission_duration = self.max_date - self.min_date submission_rate = self._rate(len(self.submissions), submission_duration) submission_score = sum(sub.score for sub in self.submissions) values = [('Total', len(self.submissions), len(self.comments)), ('Rate (per day)', '{:.2f}'.format(submission_rate), '{:.2f}'.format(comment_rate)), ('Unique Redditors', len(self.submitters), len(self.commenters)), ('Combined Score', submission_score, comment_score)] retval = 'Period: {:.2f} days\n\n'.format(submission_duration / 86400.) retval += '||Submissions|Comments|\n:-:|--:|--:\n' for quad in values: retval += '__{}__|{}|{}\n'.format(*quad) return retval + '\n' def fetch_recent_submissions(self, max_duration): """Fetch recent submissions in subreddit with boundaries. Does not include posts within the last day as their scores may not be representative. :param max_duration: When set, specifies the number of days to include """ if max_duration: self.min_date = self.max_date - DAYS_IN_SECONDS * max_duration for submission in self.subreddit.new(limit=None): if submission.created_utc <= self.min_date: break if submission.created_utc > self.max_date: continue self.submissions.append(submission) def fetch_submissions(self, submissions_callback, *args): """Wrap the submissions_callback function.""" logger.debug('Fetching submissions') submissions_callback(*args) logger.debug('Found {} submissions'.format(len(self.submissions))) if not self.submissions: return self.submissions.sort(key=lambda x: x.created_utc) self.min_date = self.submissions[0].created_utc self.max_date = self.submissions[-1].created_utc self.process_submitters() self.process_commenters() def fetch_top_submissions(self, top): """Fetch top submissions by some top value. :param top: One of week, month, year, all :returns: True if any submissions were found. """ for submission in self.subreddit.top(limit=None, time_filter=top): self.submissions.append(submission) def process_commenters(self): """Group comments by author.""" logger.debug('Processing Commenters on {} submissions' .format(len(self.submissions))) for index, submission in enumerate(self.submissions): if submission.num_comments == 0: continue logger.debug('{}/{} submissions' .format(index + 1, len(self.submissions))) submission.comment_sort = 'top' more_comments = submission.comments.replace_more() if more_comments: skipped_comments = sum(x.count for x in more_comments) logger.debug('Skipped {} MoreComments ({} comments)' .format(len(more_comments), skipped_comments)) comments = [comment for comment in submission.comments.list() if self.distinguished or comment.distinguished is None] self.comments.extend(comments) self.comments.sort(key=lambda x: x.created_utc) for comment in self.comments: if comment.author: self.commenters[comment.author].append(comment) def process_submitters(self): """Group submissions by author.""" logger.debug('Processing Submitters') for submission in self.submissions: if submission.author and (self.distinguished or submission.distinguished is None): self.submitters[submission.author].append(submission) def publish_results(self, view, submitters, commenters): """Submit the results to the subreddit. Has no return value (None).""" def timef(timestamp, date_only=False): """Return a suitable string representaation of the timestamp.""" dtime = datetime.fromtimestamp(timestamp) if date_only: retval = dtime.strftime('%Y-%m-%d') else: retval = dtime.strftime('%Y-%m-%d %H:%M PDT') return retval basic = self.basic_stats() top_commenters = self.top_commenters(commenters) top_comments = self.top_comments() top_submissions = self.top_submissions() # Decrease number of top submitters if body is too large. body = None while body is None or len(body) > 40000 and submitters > 0: body = (basic + self.top_submitters(submitters) + top_commenters + top_submissions + top_comments + self.post_footer) submitters -= 1 title = '{} {} {}posts from {} to {}'.format( self.post_prefix, str(self.subreddit), 'top ' if view in TOP_VALUES else '', timef(self.min_date, True), timef(self.max_date)) try: # Attempt to make the submission return self.submit_subreddit.submit(title, selftext=body) except Exception: logger.exception('Failed to submit to {}' .format(self.submit_subreddit)) self._save_report(title, body) def run(self, view, submitters, commenters): """Run stats and return the created Submission.""" logger.info('Analyzing subreddit: {}'.format(self.subreddit)) if view in TOP_VALUES: callback = self.fetch_top_submissions else: callback = self.fetch_recent_submissions view = int(view) self.fetch_submissions(callback, view) if not self.submissions: logger.warning('No submissions were found.') return return self.publish_results(view, submitters, commenters) def top_commenters(self, num): """Return a markdown representation of the top commenters.""" num = min(num, len(self.commenters)) if num <= 0: return '' top_commenters = sorted(iteritems(self.commenters), reverse=True, key=lambda x: (sum(y.score for y in x[1]), len(x[1])))[:num] retval = self.post_header.format('Top Commenters') for author, comments in top_commenters: retval += '0. {} ({}, {} comment{})\n'.format( self._user(author), self._points(sum(x.score for x in comments)), len(comments), 's' if len(comments) != 1 else '') return '{}\n'.format(retval) def top_submitters(self, num): """Return a markdown representation of the top submitters.""" num = min(num, len(self.submitters)) if num <= 0: return '' top_submitters = sorted(iteritems(self.submitters), reverse=True, key=lambda x: (sum(y.score for y in x[1]), len(x[1])))[:num] retval = self.post_header.format('Top Submitters\' Top Submissions') for (author, submissions) in top_submitters: retval += '0. {}, {} submission{}: {}\n'.format( self._points(sum(x.score for x in submissions)), len(submissions), 's' if len(submissions) != 1 else '', self._user(author)) for sub in sorted(submissions, reverse=True, key=lambda x: x.score)[:10]: title = self._safe_title(sub) if sub.permalink in sub.url: retval += tt(' 0. {}').format(title) else: retval += tt(' 0. [{}]({})').format(title, sub.url) retval += ' ({}, [{} comment{}]({}))\n'.format( self._points(sub.score), sub.num_comments, 's' if sub.num_comments != 1 else '', self._permalink(sub)) retval += '\n' return retval def top_submissions(self): """Return a markdown representation of the top submissions.""" num = min(10, len(self.submissions)) if num <= 0: return '' top_submissions = sorted( [x for x in self.submissions if self.distinguished or x.distinguished is None], reverse=True, key=lambda x: x.score)[:num] if not top_submissions: return '' retval = self.post_header.format('Top Submissions') for sub in top_submissions: title = self._safe_title(sub) if sub.permalink in sub.url: retval += tt('0. {}').format(title) else: retval += tt('0. [{}]({})').format(title, sub.url) retval += ' by {} ({}, [{} comment{}]({}))\n'.format( self._user(sub.author), self._points(sub.score), sub.num_comments, 's' if sub.num_comments != 1 else '', self._permalink(sub)) return tt('{}\n').format(retval) def top_comments(self): """Return a markdown representation of the top comments.""" num = min(10, len(self.comments)) if num <= 0: return '' top_comments = sorted(self.comments, reverse=True, key=lambda x: x.score)[:num] retval = self.post_header.format('Top Comments') for comment in top_comments: title = self._safe_title(comment.submission) retval += tt('0. {}: {}\'s [comment]({}) in {}\n').format( self._points(comment.score), self._user(comment.author), self._permalink(comment), title) return tt('{}\n').format(retval) def main(): """Provide the entry point to the subreddit_stats command.""" parser = arg_parser(usage='usage: %prog [options] SUBREDDIT VIEW') parser.add_option('-c', '--commenters', type='int', default=10, help='Number of top commenters to display ' '[default %default]') parser.add_option('-d', '--distinguished', action='store_true', help=('Include distinguished subissions and ' 'comments (default: False). Note that regular ' 'comments of distinguished submissions will still ' 'be included.')) parser.add_option('-s', '--submitters', type='int', default=10, help='Number of top submitters to display ' '[default %default]') options, args = parser.parse_args() if options.verbose == 1: logger.setLevel(logging.INFO) elif options.verbose > 1: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.NOTSET) logger.addHandler(logging.StreamHandler()) if len(args) != 2: parser.error('SUBREDDIT and VIEW must be provided') subreddit, view = args check_for_updates(options) srs = SubredditStats(subreddit, options.site, options.distinguished) result = srs.run(view, options.submitters, options.commenters) if result: print(result.permalink) return 0
true
d7e13ba422bac0211543ef74cb765ea7e3475219
Python
Billerens/conventional-commits-vscode-helper
/commit-msg
UTF-8
3,046
3.109375
3
[]
no_license
#!/usr/bin/env python3 import re, sys, os def main(): buffered = '' counter = -1 currentPosition = 0 patternHeaderType = r'^(build|ci|docs|feat|fix|perf|refactor|style|test|chore|revert)' patternHeaderScope = r'(?:\(([^\)\s]+)\))?' patternHeaderImportant = r'!?' patternHeaderMessage = r': (?!(?:.* ){1})([<>!? ,.\-_a-zA-Z0-9]{0,52})' patternHeaderEnd = r'^\n' patternBody = r'^(.){0,72}(\n)' filename = sys.argv[1] lines = open(filename, 'r').readlines() for line in lines: counter = counter + 1 if line == '\n' and line == buffered: print("2 free strings in a row! Found in ", counter ," line ") else: buffered = line #TYPE CHECK print(lines[0]) headerRegexType = re.match(patternHeaderType, lines[0]) if headerRegexType != None: print("<TYPE> ends on: ", headerRegexType.span()[1], " position. Is correct.") currentPosition += headerRegexType.span()[1] else: print("<TYPE> has an error!: Check from 1st position.") #SCOPE CHECK print(lines[0][headerRegexType.span()[1]:len(lines[0])]) headerRegexScope = re.match(patternHeaderScope, lines[0][headerRegexType.span()[1]:len(lines[0])]) if headerRegexScope != None: print("<SCOPE> ends on: ", currentPosition + headerRegexScope.span()[1], " position. Is correct.") currentPosition += headerRegexScope.span()[1] else: print("<SCOPE> has an error!: Check from ", headerRegexType.span()[1], " position.") #IMPORTANT CHECK print(lines[0][currentPosition:len(lines[0])]) headerRegexImportant = re.match(patternHeaderImportant, lines[0][currentPosition:len(lines[0])]) if headerRegexImportant != None: print("!IMPORTANT! ends on: ", currentPosition + headerRegexImportant.span()[1], " position. Is correct.") currentPosition += headerRegexImportant.span()[1] else: print("!IMPORTANT! has an error!: Check from ", currentPosition - headerRegexScope.span()[1], " position.") #MESSAGE CHECK print(lines[0][currentPosition:len(lines[0])]) headerRegexMessage = re.match(patternHeaderMessage, lines[0][currentPosition:len(lines[0])]) if headerRegexMessage != None: print("<MESSAGE> ends on: ", currentPosition + headerRegexMessage.span()[1], " position. Is correct.") currentPosition += headerRegexMessage.span()[1] else: print("<MESSAGE> has an error!: Check from ", currentPosition - headerRegexImportant.span()[1], " position.") #LENGTH CHECK print(lines[0][currentPosition:len(lines[0])]) headerRegexEnd = re.match(patternHeaderEnd, lines[0][currentPosition:len(lines[0])]) if headerRegexEnd != None: print("<HEAD> ends on: ", currentPosition + headerRegexEnd.span()[1], " position. Is correct.") currentPosition += headerRegexEnd.span()[1] else: print("<HEAD> has an error!: Check from ", currentPosition, " position. Has more then 52 symbols.") if __name__ == "__main__": main()
true
e21ea88ac1b078e33ff368e0819139b48438a9b8
Python
Aletvia/point_of_sale
/src/modules/inventory/models.py
UTF-8
332
2.546875
3
[ "MIT" ]
permissive
from django.db import models """ Model which represent a product (p. ej. Coca-Cola 500ml, 800.00, 500). """ class Products(models.Model): description = models.TextField(max_length=100) #unit_price = models.DecimalField(max_digits=7, decimal_places=2) unit_price = models.IntegerField() stock = models.IntegerField()
true
0979196c44084f7438c405baa600add4938aacde
Python
Ofrogue/ENOT
/quad.py
UTF-8
2,422
3.5
4
[]
no_license
# quad tree class import random class QuadNode: def __init__(self, x, y, width, height, level): # x, y are left upper corner self.x = x self.y = y self.width = width self.height = height self.center = (x + width / 2, y + height / 2) self.children = list() self.elements = list() self.level = level def __str__(self): return str((self.x, self.y)) def build(self, depth=5): if depth == 0: return self.children.append(QuadNode(self.x, self.y, self.width/2, self.height/2, self.level+1)) self.children.append(QuadNode(self.x + self.width / 2, self.y, self.width / 2, self.height / 2, self.level+1)) self.children.append(QuadNode(self.x, self.y + self.height / 2, self.width / 2, self.height / 2, self.level+1)) self.children.append(QuadNode(self.x + self.width / 2, self.y + self.height / 2, self.width / 2, self.height / 2, self.level+1)) for child in self.children: child.build(depth-1) def add_xy_object(self, x, y, xy_object): node = self while node.children: i, j = 0, 0 if x > node.center[0]: i = 1 if y > node.center[1]: j = 1 node = node.children[i + 2 * j] node.elements.append(xy_object) def neighbours(self, x, y): node = self while node.children: i, j = 0, 0 if x > node.center[0]: i = 1 if y > node.center[1]: j = 1 node = node.children[i + 2 * j] return node.elements def pop(self, x, y): node = self while node.children: i, j = 0, 0 if x > node.center[0]: i = 1 if y > node.center[1]: j = 1 node = node.children[i + 2 * j] n = 0 for n, element in enumerate(node.elements): if element.rect.x == x and element.rect.y == y: break element = node.elements.pop(n) return element def expand_to_level(self, level): pass class XYelement: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return str((self.x, self.y)) if __name__ == "__main__": qn = QuadNode(0, 0, 600, 600, 0) qn.build(4)
true
e461d4e3441c38562cfac83b2cfd026273b3fcb3
Python
Juniorlimaivd/MachineLearningCIn
/lista-2/prototype.py
UTF-8
515
3.015625
3
[]
no_license
import numpy as np import math import random def generateRandomPrototypes(data, prototypesNumber): n_instances = len(data.values) n_attributes = len(data.values[0]) result_x = [] result_y = [] for _ in range(prototypesNumber): prototype = [data.values[random.randrange(n_instances)][i] for i in range(n_attributes-1)] result_x.append(prototype) classe = data.values[random.randrange(n_instances)][-1] result_y.append(classe) return (result_x, result_y)
true
a1d591556391ae558d7436ade8d7d1a0d6e76f90
Python
walkingpanda/walkingpanda
/get start/main.py
UTF-8
680
2.8125
3
[]
no_license
import torch import numpy as np import torch.nn as nn N, D_in, H, D_out = 64, 1000, 100, 10 x = torch.randn(N, D_in) y = torch.randn(N, D_out) model = torch.nn.Sequential( nn.Linear(D_in, H), nn.ReLU(), nn.Linear(H, D_out), ) loss_fn = nn.MSELoss(reduction='sum') lr = 1e-4 for t in range(1000): # forward pass y_pred = model(x) # compute loss loss = loss_fn(y_pred, y) print(t, loss) model.zero_grad() # backward pass,compute the gradient loss.backward() # update weights of w1 and w2 with torch.no_grad(): for param in model.parameters(): param -= lr * param.grad
true
adbeb3d9148e1eb971ee7c6347bb05b935cd1c9e
Python
ryu577/algorithms
/algorith/sequencegen/permutations/all_permutations.py
UTF-8
634
3.640625
4
[ "MIT" ]
permissive
def perm(t,i,n): """ Based on procedure "perm" in ch6 of Giles and Bassard. """ if i==n: print(t) else: for j in range(i,n+1): swap(t,i,j) perm(t,i+1,n) swap(t,i,j) def perm2(a,ix): """ My own version of perm. """ if ix==len(a): print(a) else: for j in range(ix+1): swap(a,j,ix) perm2(a,ix+1) swap(a,j,ix) def swap(a,i,j): if i<0 or j>len(a)-1: return tmp=a[j] a[j]=a[i] a[i]=tmp if __name__=="__main__": t=[1,2,3] #perm(t,0,len(t)-1) perm2(t,0)
true
f71c782dc9099fced1acd39bdad33014a7de39df
Python
georgenewman10/stock
/history.py
UTF-8
647
2.96875
3
[]
no_license
from datetime import datetime from iexfinance.stocks import get_historical_data import pandas as pd ### maybe replace hist() with hist(start, end, etc) so you can more easily change important variables def hist(output=None): #if output=='pandas' histories = {} stock_list = ['AAPL','GOOG','MSFT','AMZN','FB','BABA','JNJ','JPM','XOM'] names = [x.lower() for x in stock_list] start = datetime(2018, 1, 1) end = datetime(2019, 1, 1) for i in range(len(stock_list)): histories[names[i]] = get_historical_data(stock_list[i],start,end,output_format='pandas') #output_format='pandas' return histories
true
600724228c3a068f87dc599158fef17bf64e9ef7
Python
CRSantiago/Python-Projects
/Micro Projects/prime_factorization.py
UTF-8
551
4.625
5
[]
no_license
# Prime Factorization - Have the user enter a number and find all Prime Factors (if there are any) and display them. import math def find_prime_factors(n): while n%2==0: yield 2 n/=2 for i in range(3,int(math.sqrt(n))+1,2): while n%i==0: yield i n/=i if n>2: yield n user_input = int(input("Enter a number:\n")) print("\nLet's see what are prime factors of the number you entered.") for factor in find_prime_factors(user_input): print(factor)
true
1b8c54d7f65037e8e2af4518c6b29b3c3fe00586
Python
AlieksieienkoVitalii/Labs
/Lesson_6/Lesson_6_3_3.py
UTF-8
1,015
4.3125
4
[]
no_license
# СПОСОБ 3_______________________________________________________________________________________________________________________________________________________ def my_function(n): if n == 1 or n == 2: return 1 else: return my_function(n - 1) + my_function(n - 2) steps = int(input('Введите количество ступеней в лестнице - ')) while True: if steps <= 0: steps = int(input('Число ступений должно быть не меньше одной. Повторите ввод - ')) elif steps == 1: print('количество способов чтобы забраться на лестницу - 1') exit(0) elif steps == 2: print('количество способов чтобы забраться на лестницу - 2') exit(0) else: break print('количество способов чтобы забраться на лестницу - ' + str(my_function(steps)))
true
a13316066102cc3bd033fd937823cd811f4114ef
Python
frossie-shadow/astshim
/tests/test_xmlChan.py
UTF-8
2,060
2.609375
3
[]
no_license
from __future__ import absolute_import, division, print_function import os.path import unittest import astshim from astshim.test import ObjectTestCase DataDir = os.path.join(os.path.dirname(__file__), "data") class TestObject(ObjectTestCase): def test_XmlChanDefaultAttributes(self): sstream = astshim.StringStream() chan = astshim.XmlChan(sstream) self.assertEqual(chan.xmlFormat, "NATIVE") self.assertEqual(chan.xmlLength, 0) self.assertEqual(chan.xmlPrefix, "") zoommap = astshim.ZoomMap(3, 2.0) self.checkXmlPersistence(sstream=sstream, chan=chan, obj=zoommap) def test_XmlChanSpecifiedAttributes(self): sstream = astshim.StringStream() chan = astshim.XmlChan( sstream, 'XmlFormat="QUOTED", XmlLength=2000, XmlPrefix="foo"') self.assertEqual(chan.xmlFormat, "QUOTED") self.assertEqual(chan.xmlLength, 2000) self.assertEqual(chan.xmlPrefix, "foo") zoommap = astshim.ZoomMap(4, 1.5) self.checkXmlPersistence(sstream=sstream, chan=chan, obj=zoommap) def test_XmlChanSetAttributes(self): sstream = astshim.StringStream() chan = astshim.XmlChan(sstream) chan.xmlFormat = "QUOTED" chan.xmlLength = 1500 chan.xmlPrefix = "test" self.assertEqual(chan.xmlFormat, "QUOTED") self.assertEqual(chan.xmlLength, 1500) self.assertEqual(chan.xmlPrefix, "test") zoommap = astshim.ZoomMap(1, 0.5) self.checkXmlPersistence(sstream=sstream, chan=chan, obj=zoommap) def checkXmlPersistence(self, sstream, chan, obj): """Check that an Ast object can be persisted and unpersisted """ chan.write(obj) sstream.sinkToSource() obj_copy = chan.read() self.assertEqual(obj.className, obj_copy.className) self.assertEqual(obj.show(), obj_copy.show()) self.assertEqual(str(obj), str(obj_copy)) self.assertEqual(repr(obj), repr(obj_copy)) if __name__ == "__main__": unittest.main()
true
af9e6dda53b19142673ca7cb39d84d571a3ad4fa
Python
Jovamih/PythonProyectos
/Pandas/Data Sciensist/alto-rendimiento.py
UTF-8
918
3.390625
3
[ "MIT" ]
permissive
#/usr/bin/env python import pandas as pd import numpy as np import numexpr def rendimiento(): #la libreria numexpr proporciona eval() funcion que evalua literales de cadena a expresiones python logicas data=pd.DataFrame(np.random.randint(12,200,size=(8,4)),columns=list('ABCD')) #la libreria Pandas tambien posee pd.eval() para operar atraves de estos data_mask=pd.eval('data.A>100') print(data[data_mask]) #podemos usar eval() en python en asignaciones internas data.eval('TOTAL=A+B+C+D',inplace=True) print(data) #el uso particular de eval() es para sumas y gestion de columnas de forma mas rapida y eficiente #tambien podemos usar query() y combinarlos con el uso de variables temporales data_mean=(data.mean(axis=0)).mean() data_mask=data.query('(A>@data_mean )& (D>@data_mean)') print(data[data_mask]) if __name__=="__main__": rendimiento()
true
69ad3f4d4f52b3c9d14674659d5a6bbda834f54d
Python
varungambhir/Major_Project
/preprocess.py
UTF-8
297
2.96875
3
[]
no_license
li="" with open('response.txt') as f: while True: c = f.read(1) if not c: print "End of file" break li=li+c print li fn="" for i in range(0,len(li)-2): fn+=li[i] if li[i+1]=='{' and li[i]=='}': fn+=',' f=open('response.txt','w') f.write(str(fn))
true
4193f13355a64d6cc1ef850546db8a76f386f3a7
Python
JamesBrowns/data-analysis
/D A/python/回归预测/简单线性linearregression.py
UTF-8
996
2.953125
3
[]
no_license
# -*- coding: utf-8 -*- # 引入模块 import pandas as pd from sklearn.linear_model import LinearRegression # 读取数据 train = pd.read_csv("data/train1.csv") test = pd.read_csv("data/test1.csv") submit = pd.read_csv("data/sample_submit.csv") # 删除id train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) # 取出训练集的y y_train = train.pop('y') # 建立线性回归模型 reg = LinearRegression() reg.fit(train, y_train) #y_pred = reg.predict(test) # 若预测值是负数,则取0 #y_pred = map(lambda x: x if x >= 0 else 0, y_pred) # 输出预测结果至my_XGB_prediction.csv #submit['y'] = y_pred #submit.to_csv('data/my_linearRegression_prediction22.csv', index=False) print reg.coef_ from sklearn import metrics import numpy as np rmse=np.sqrt(metrics.mean_squared_error(y_train, reg.predict(train))) print 'linearRegression rmse为%f'%rmse #xgboots 18.5718185229 #linearRegression rmse为38.920108
true
893f9b77a05a9de3e38dd61a9d334e6eaf5efbe6
Python
p2327/CS61a_Berkeley
/list_lab_recursion.py
UTF-8
1,308
4.03125
4
[]
no_license
def reverse_recursive(lst): if lst == []: return [] else: return reverse_recursive(lst[1:]) + [lst[0]] test = reverse_recursive([1, 2, 3, 4]) def merge(lst1, lst2): """Merges two sorted lists recursively. >>> merge([1, 3, 5], [2, 4, 6]) [1, 2, 3, 4, 5, 6] >>> merge([], [2, 4, 6]) [2, 4, 6] >>> merge([1, 2, 3], []) [1, 2, 3] >>> merge([5, 7], [2, 4, 6]) [2, 4, 5, 6, 7] """ "*** YOUR CODE HERE ***" if lst1 == [] or lst2 == []: return lst1 + lst2 elif lst1[0] < lst2[0]: return [lst1[0]] + merge(lst1[1:], lst2) elif lst1[0] > lst2[0]: return [lst2[0]] + merge(lst1, lst2[1:]) test2 = merge([1, 3, 5], [2, 4, 6]) def merge_iter(lst1, lst2): """Merges two sorted lists. >>> merge_iter([1, 3, 5], [2, 4, 6]) [1, 2, 3, 4, 5, 6] >>> merge_iter([], [2, 4, 6]) [2, 4, 6] >>> merge_iter([1, 2, 3], []) [1, 2, 3] >>> merge_iter([5, 7], [2, 4, 6]) [2, 4, 5, 6, 7] """ new = [] while lst1 and lst2: if lst1[0] < lst2[0]: new += [lst1[0]] lst1 = lst1[1:] else: new += [lst2[0]] lst2 = lst2[1:] if lst1: return new + lst1 else: return new + lst2
true