blob_id
stringlengths 40
40
| language
stringclasses 1
value | repo_name
stringlengths 5
133
| path
stringlengths 2
333
| src_encoding
stringclasses 30
values | length_bytes
int64 18
5.47M
| score
float64 2.52
5.81
| int_score
int64 3
5
| detected_licenses
listlengths 0
67
| license_type
stringclasses 2
values | text
stringlengths 12
5.47M
| download_success
bool 1
class |
|---|---|---|---|---|---|---|---|---|---|---|---|
89fe3f0295ebf82b45fd715b5386857dc5394ba6
|
Python
|
josiah-bennett/mp3p
|
/mp3p/time_manipulation.py
|
UTF-8
| 1,686
| 3.484375
| 3
|
[
"MIT"
] |
permissive
|
from mp3p.time_util import TimeUtil
def goto_help(cmd):
"""display the help screen for the goto method."""
print('The goto command takes a timestamp and jumps to that location in the audio.')
print('Syntax: goto timestamp')
print('timestamp: hour:minutes:seconds')
print(' minutes:seconds')
print(' seconds \n')
print('the current location is: ' + str(current_location(cmd)) + 'ms')
def goto(cmd, timestamp):
"""Specify a timestamp in the audio to jump to."""
time_array = timestamp.split(':')
# convert the timestamp to milliseconds
time = TimeUtil(time_array).time_to_ms()
if time < cmd.icp.get_length():
cmd.icp.pause()
cmd.icp.set_time(time)
cmd.icp.play()
else:
print('*** Warning: The given timestamp exceeds the length of the audio.')
def jump_help(cmd):
"""display the help screen for the jump method"""
print('The jump commend takes a interval in seconds and jumps according to the symbol forwards or backwards.')
print('Syntax: jump +/-interval \n')
print('The current location is: ' + str(current_location(cmd)) + 'ms')
def jump(cmd, interval):
"""Jump forward or backward in the audio by the specified time interval."""
symbols = ['+', '-']
for i in symbols:
if interval.startswith(i):
interval = interval.strip(i)
print(interval)
if interval.isdigit():
cmd.icp.pause()
time = 'cmd.icp.get_time() ' + i + ' int(interval) * 1000'
cmd.icp.set_time(eval(time))
cmd.icp.play()
return
print('*** The time interval specified is not a valid number.')
# TODO implement a better location method
def current_location(cmd):
"""return the current playback location"""
return cmd.icp.get_time()
| true
|
ffd58bc32ac7880558cdd9405c1737dee465feb4
|
Python
|
pvigier/lpc-scripts
|
/apply_palette.py
|
UTF-8
| 753
| 2.9375
| 3
|
[
"MIT"
] |
permissive
|
import sys
import time
import numpy as np
from PIL import Image
def color_image(indices, palette):
print(indices.shape, palette.shape)
return Image.fromarray(palette[0,indices], mode='RGBA')
if __name__ == '__main__':
if len(sys.argv) < 3:
print('Too few arguments: a greyscale image and a palette are expected')
exit()
indices_path = sys.argv[1]
palette_path = sys.argv[2]
start = time.time()
indices = Image.open(indices_path)
palette = Image.open(palette_path)
image = color_image(np.asarray(indices), np.asarray(palette))
image_path = indices_path[indices_path.rfind('/')+1:indices_path.rfind('.')] + '_colored.png'
image.save(image_path, compress_level=9)
print(time.time() - start)
| true
|
12cbad83d2bbc01d506131d4db5f9120fa4c0abd
|
Python
|
Wanqianxn/refugees-say
|
/helpers.py
|
UTF-8
| 4,671
| 2.890625
| 3
|
[] |
no_license
|
import random
import pandas as pd
import numpy as np
class MatchingAlgo:
def __init__(self, cases, sites):
self.cases = cases
self.sites = sites
# Takes community's details (city, state) and returns dict of relevant info.
def communityInfo(self, city, state):
comDf = self.sites[(self.sites['city'] == city) & (self.sites['state'] == state)]
if comDf.empty:
return None
return comDf.iloc[0].to_dict()
# Return all communities in a *dict dict*.
def dictOfCommunities(self):
comD = dict()
for i in range(len(self.sites.index)):
key = self.sites.iloc[i]['city'] + ", " + self.sites.iloc[i]['state']
comD[key] = self.communityInfo(self.sites.iloc[i]['city'], self.sites.iloc[i]['state'])
return comD
# Takes refugee group's name and returns dict of relevant info.
def refugeesInfo(self):
pass
# Return all refugees from a particular community in a *dict dict*.
def dictOfRefugees(self):
pass
# Get rid of spaces in string.
def noSpace(string):
words = string.strip().split()
all_words = ""
for word in words:
all_words = all_words + word
return all_words.lower()
def getToolTip(key):
abbreviations={'cap':'Capacity', 'nats':'Nationalities supported', 'slang':'Staff languages', 'clang':'Community languages', 'lfs':'Large family support',
'sps':'Single parent support', 'num':'Number in family', 'nat':'Nationality', 'lang':'Languages spoken', 'sp':'Single Parent',
'score':'Community fit score'}
return abbreviations[key]
# Randomly assigns cases to sites.
def randomize(cases, sites):
randDictbyName, randDictbySite = dict(), dict()
for city in sites['city']:
key = (city, sites[sites['city'] == city].iloc[0]['state'])
randDictbySite[key] = dict()
for name in cases['name']:
city = random.choice(sites['city'])
randDictbyName[name] = city
key = (city, sites[sites['city'] == city].iloc[0]['state'])
randDictbySite[key][name] = None
return randDictbyName, randDictbySite
# Placeholder for algorithm that provides real score
def randScore(groupName, groupComm):
return random.randint(0, 100)
# Random score
def randScore():
return random.randint(0, 100)
class RandomAlgo(MatchingAlgo):
def __init__(self, cases, sites):
MatchingAlgo.__init__(self, cases, sites)
self.randDictbyName, self.randDictbySite = randomize(self.cases, self.sites)
def refugeesInfo(self, groupName):
refDf = self.cases[self.cases['name'] == groupName]
if refDf.empty:
return None
refugeesInfo = refDf.iloc[0].to_dict()
languages = refDf.iloc[0]['lang']
refugeesInfo['lang'] = languages.replace(" ", "").split(",")
#refugeesInfo['community'] = self.randDictbyName[groupName]
refugeesInfo['score'] = randScore()
return refugeesInfo
def dictOfRefugees(self, city):
key = (city, self.sites[self.sites['city'] == city].iloc[0]['state'])
if key in self.randDictbySite:
for name in self.randDictbySite[key]:
self.randDictbySite[key][name] = self.refugeesInfo(name)
return self.randDictbySite[key]
else:
return dict()
class CSVAlgo(MatchingAlgo):
def __init__(self, cases, sites, output):
MatchingAlgo.__init__(self, cases, sites)
self.output = output
def refugeesInfo(self, groupName):
refDf = self.cases[self.cases['name'] == groupName]
if refDf.empty:
return None
refugeesInfo = refDf.iloc[0].to_dict()
languages = refDf.iloc[0]['lang']
refugeesInfo['lang'] = languages.replace(" ", "").split(",")
#for i in range(len(self.output.index)):
#if self.output.iloc[i, 0] == groupName:
#for j in range(len(self.output.columns)):
#if self.output.iloc[i, j] == 1:
#refugeesInfo['community'] = self.output.columns[j]
return refugeesInfo
def dictOfRefugees(self, city):
refD = dict()
#for name in self.cases['name']:
#if self.refugeesInfo(name)['community'] == city:
#refD[name] = self.refugeesInfo(name)
return refD
# For testing.
def main():
sites1 = pd.read_csv('data/sites.csv')
cases1 = pd.read_csv('data/cases.csv')
output1 = pd.read_csv('data/output.csv')
csv = RandomAlgo(cases1, sites1)
print(csv.dictOfRefugees("Los Gatos"))
if __name__ == '__main__':
main()
| true
|
03ebcf5ea77d0c9a8f5670c8d744f8a22a8be0d0
|
Python
|
loveAlakazam/Homeworks2019
|
/ProgramTraining/SW_Expert_Academy/1284/수도요금경쟁.py
|
UTF-8
| 283
| 2.84375
| 3
|
[] |
no_license
|
#13분14초
T=int(input())
for t in range(1,T+1):
P,Q,R,S,W= map(int, input().split())
A= W*P #A사: 1리터당 P원, W리터당=> P*W원
#B사: (W<=R) Q원 (W>R) Q+(W-R)*S
B=Q
if(W>R):
B+=S*(W-R)
result=min(A,B)
print('#{} {}'.format(t, result))
| true
|
0775c1cbf181f32510c4ecdc0c17d1ab0c6f247b
|
Python
|
reddyonlinenow/codebreakers-solutions
|
/leetcode/142/142.py
|
UTF-8
| 1,045
| 3.796875
| 4
|
[] |
no_license
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def detectCycle(self, head: ListNode) -> ListNode:
# check to see if head is None or of length 1
if not head or not head.next:
return None
# use 2 pointers to find if there's a cycle
slow = head.next
fast = head.next.next
while fast and fast.next:
slow = slow.next
fast = fast.next.next
# cycle found
if slow == fast:
break
# there's no cycle if they don't equal each other
if slow != fast:
return None
# move one of the nodes to the head of the list, then
# increment the two pointers one at a time and when they meet again
# we've found the start of the cycle
slow = head
while slow != fast:
slow = slow.next
fast = fast.next
return slow
| true
|
214029d2049d7faddad3649690b541b973cb5fa1
|
Python
|
Lukdes/ATM-project
|
/main.py
|
UTF-8
| 1,213
| 3.25
| 3
|
[] |
no_license
|
from Banksystem import Bank
Luke = Bank("Luke", "1234" , "4321" )
go = Luke.Login()
while go:
#once acess is granted, you need to choose one of the seven choices and then hit enter. If something else is typed you are told to choose a number from 1 to 7
print "__________________________________________________"
print "1) View Checkings Balance"
print "2) View Savings Balance"
print "3) Withdraw Cash"
print "4) Desposit Cash"
print "5) Transfer Money"
print "6) View Summary"
print "7) End session"
print "__________________________________________________"
question = raw_input("What would you like to do? ")
print "__________________________________________________"
if question == "1":
Luke.ViewCheckingsBalance()
elif question == "2":
Luke.ViewSavingsBalance()
elif question == "3":
Luke.WithdrawCash()
elif question == "4":
Luke.DepositCashIntoChecking()
elif question == "5":
Luke.TransferFundsFromAccounts()
elif question == "6":
Luke.ViewSummaryofAccount()
elif question == "7":
count = 1
go = Luke.TerminateSession()
else:
print "Please choose a number from 1 to 7"
| true
|
1a170e0fe6fa3a81f2c9159275d4af16c9aa1caf
|
Python
|
pawelczapla/gameofcheckers
|
/checkers/constants.py
|
UTF-8
| 543
| 2.921875
| 3
|
[] |
no_license
|
import pygame
# Dimensions
WIDTH, HEIGHT = 800, 800
ROWS, COLS = 8, 8
square_size = 100
# Colors
RED = (255, 0, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
BLUE = (0, 0, 255)
GREY = (128, 128, 128)
# Assets
circle = pygame.image.load('assets/circle.png')
background = pygame.image.load('assets/black.jpg')
tile = pygame.image.load('assets/white.png')
white_man = pygame.image.load('assets/white_man.png')
black_man = pygame.image.load('assets/black_man.png')
crown = pygame.transform.scale(pygame.image.load('assets/crown.png'), (62, 62))
| true
|
ece28d6043f3c38ab3f403232d87dd06648f0ea6
|
Python
|
PyrosCoffee/KBA-iot-portfolio
|
/monitor_ii/db.py
|
UTF-8
| 1,154
| 2.5625
| 3
|
[] |
no_license
|
"""
Edited the db.py that was in the base components to suit the needs of the project
"""
import os
from sqlalchemy import Column, DateTime, Float, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from datetime import datetime
# data folder doesnt get things added to it, fix later
db_folder = "./data/"
db_name = "enviromon.db"
if not os.path.isdir(db_folder):
os.makedirs(db_folder)
print(f"Created {db_folder} folder")
Base = declarative_base()
# class for storing environment details
class EnvironmentTPH(Base):
__tablename__ = "tph_storage"
id = Column(Integer, primary_key=True, autoincrement="auto")
device_name = Column(String)
device_mac = Column(String)
device_serial = Column(String)
temperature = Column(Float)
pressure = Column(Float)
humidity = Column(Float)
created_at = Column(DateTime)
def __init__(self):
self.device_name = "UNKNOWN"
self.device_mac = "ZZ:ZZ:ZZ:ZZ:ZZ:ZZ"
self.device_serial = "UNKNOWN"
self.temperature = None
self.pressure = None
self.humidity = None
self.created_at = datetime.now()
| true
|
fe29ea0ad32892dc9f3b87d211a9622e0900befd
|
Python
|
TheHa1fBloodPrince/formautofill
|
/FormAutoFill.py
|
UTF-8
| 2,208
| 3.3125
| 3
|
[] |
no_license
|
#Created by: TheHalfBloodPrince
from selenium import webdriver
import pyautogui
from datetime import datetime
from threading import Timer
print ('Executing Order 66...')
option = webdriver.ChromeOptions()
browser = webdriver .Chrome('/usr/bin/chromedriver')
browser.get ("Insert form link")
#Function that makes script run at the right time - example, this is set to run tommorow @8:55 am
x=datetime.today()
y=x.replace(day=x.day+1, hour=8, minute=55, second=0, microsecond=0)
delta_t=y-x
secs=delta_t.seconds+1
def auto_sign_in():
#import datetime again so it fills out the correct day in the form and not the day the scirpt was run, see last question
from datetime import datetime
current_time = datetime.now()
#This section is if you need to sign in to your organizations emaill account to get access like I do, so you may be able to comment this whole section out...
#school email sign in
pyautogui.write('email address')
pyautogui.press('enter', interval=4.00)
#login
pyautogui.press('tab', interval=0.25)
pyautogui.write('username')
pyautogui.press('tab', interval=0.25)
pyautogui.write('password')
pyautogui.press('tab', interval=0.25)
pyautogui.press('enter', interval=4.00)
#confirm this account belongs to you:
pyautogui.press('tab', interval=0.25)
pyautogui.press('enter', interval=4.00)
#Questions
#full name?
pyautogui.press('tab', interval=0.25)
pyautogui.press('tab', interval=0.25)
pyautogui.write('name', interval=0.25)
#Are you here? (Radio button)
pyautogui.press('tab', interval=0.25)
pyautogui.press('space', interval=0.25)
#you understand the work? (Radio button)
pyautogui.press('tab', interval=0.25)
pyautogui.press('space', interval=0.25)
#input date
#DD
pyautogui.press('tab', interval=0.25)
pyautogui.write(current_time.strftime('%d'))
#MM
pyautogui.write(current_time.strftime('%m'))
#yyyy
pyautogui.write(current_time.strftime('20%y'))
#submit
pyautogui.press('tab')
pyautogui.press('enter')
t = Timer(secs, auto_sign_in)
t.start()
print ('Finished')
| true
|
fc4d345dc456d380ced074d053837d533651f082
|
Python
|
adarshsingh994/Practice
|
/Python/MaximisingXor.py
|
UTF-8
| 382
| 3.03125
| 3
|
[] |
no_license
|
#!/bin/python3
import math
import os
import random
import re
import sys
# Complete the maximizingXor function below.
def maximizingXor(l, r):
maxXor = 0
for i in range(l, r + 1):
for j in range(i, r + 1):
curXor = i ^ j
if curXor > maxXor:
maxXor = curXor
print(maxXor)
if __name__ == '__main__':
l = int(input())
r = int(input())
maximizingXor(l, r)
| true
|
639d69e2e9b3e5c77a1cc63ee40c45db6cdb8c3a
|
Python
|
songcq/mammoth
|
/tube_wrap.py
|
UTF-8
| 2,285
| 2.796875
| 3
|
[] |
no_license
|
import solid as sc
import math
from solid.utils import Point2
import utils
def f(x):
l = x
a = x
p = Point2(math.cos(a), math.sin(a))
p.set_length(l)
return p
points = [f(i * 0.3) for i in range(100)]
# d = _sp.catmull_rom_polygon(points, subdivisions=10)
d = sc.text("hi", halign="center", valign="center")
def wrap_tube(objects, radius, hstep, vstep):
tilt_angle = utils.point_angle(Point2(hstep, vstep))
def create(i):
obj = objects[i]
obj = sc.rotate((0, 0, tilt_angle))(obj)
obj = sc.rotate((90, 0, 0))(obj)
facing_angle = math.degrees(i * hstep / radius)
obj = sc.rotate(facing_angle + 90)(obj)
hpos = utils.unit_point2(facing_angle) * radius
pos = (*hpos, i * vstep)
obj = sc.translate(pos)(obj)
return obj
return sc.union()([create(i) for i in range(len(objects))])
def create_tube(text):
def create(char):
return sc.linear_extrude(0.1)(sc.text(char, size=1, font="Monaco", segments=100))
objects = [create(char) for char in text]
wrap = wrap_tube(objects, 10, 0.7, 0.02)
wrap = sc.translate((0, 0, 0.5))(wrap)
return wrap
text = "I met a traveller from an antique land, Who said — Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away."
def create_cup():
height = 27.5
cup = sc.cylinder(10, height, center=True, segments=200)
cup = sc.translate((0, 0, height / 2))(cup)
cutter = sc.cylinder(9.5, height, center=True, segments=200)
cutter = sc.translate((0, 0, 1 + height / 2))(cutter)
cup = cup - cutter
return cup
tube = create_tube(text + " " + text)
cup = create_cup()
d = sc.color("gold")(tube) + sc.color("blue")(cup)
sc.scad_render_to_file(d, "/tmp/output.scad")
| true
|
e8603fb188666256208b4440113f0f39d83671ba
|
Python
|
durbanie/ProjectEuler
|
/src/P1/Problem25.py
|
UTF-8
| 2,036
| 4.125
| 4
|
[] |
no_license
|
'''
Problem: Find the index of the first 1000 digit fibonacci number.
Strategy: Brute-force & Mathematical
Notes: Implementing this as an array with each digit as an entry in the array.
In Python, this is actually not necessary (python allows an arbitrary number
of digits in an integer), but in other languages like C or Java, the number
of digits is limited. Therefore, this array implementation is meant to be
valid in other languages.
The mathematical strategy involves an approximation to binet's formula,
where to find the nth fibonacci number F(n):
F(n) = Phi^n / sqrt(5)
where Phi is the golden ratio, Phi = 1.61803398875...
To find the number of digits, take log_10 of F(n) and add 1
Ndigits(F(n)) = n log10(Phi) - log10(sqrt(5)) + 1
Solving for n gives:
n = (Ndigits(F(n)) - 1 + log10(sqrt(5))) / log10(Phi)
Run-time: Brute-force: 1435 ms, mathematical: <1us
'''
from math import log10
from Common.stopwatch import StopWatch
def add(l1, l2):
l3 = []
r = 0
l1l = len(l1)
l2l = len(l2)
ml = max(l1l, l2l)
for i in range(ml):
#print i, l1, l2
l1v, l2v = 0, 0
if (i < len(l1)): l1v = l1[i]
if (i < len(l2)): l2v = l2[i]
#print l1v, l2v, r
r, v = divmod(l1v+l2v+r, 10)
l3.append(v)
if r > 0:
#print r
l3.append(r)
return l3
def fibonacci_brute_force():
i = [1]
j = [1]
counter = 1
while len(j) < 1000:
counter += 1
t = j
j = add(i, j)
i = t
print len(j)
print counter+1
root5 = 2.236068
Phi = 1.618034
def fibonacci_math(ndigits):
#n = (Ndigits(F(n)) + log10(sqrt(5))) / log10(Phi)
return int(round((ndigits - 1 + log10(root5)) / log10(Phi)))
def main():
StopWatch.start()
fibonacci_brute_force()
StopWatch.print_time()
StopWatch.start()
print fibonacci_math(1000)
StopWatch.print_time()
if __name__ == '__main__':
main()
| true
|
8af18bb462c1a194394b1126f32ebe170d827b73
|
Python
|
guptaabhishekknp/algorithms_project-graphs
|
/allcode/Map.py
|
UTF-8
| 28,498
| 3.125
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import math
import sys
# In[2]:
#functions for heap data structure
#adjacency lists are implemented as python dictionaries
def PARENT(i,D):
n = len(D)
if i>0:
return math.floor((i-1)/2)
else:
return -1
def LCHILD(i,D):
n = len(D)
if ((2*i)+1) < n:
return (2*i)+1
else:
return -1
def RCHILD(i,D):
n = len(D)
if ((2*i)+2) < n:
return (2*i)+2
else:
return -1
def RSIB(i,D):
n = len(D)
if i<(n-1) and i%2 == 1:
return i+1
else:
return -1
def PERC_UP(i,D):
while i>0 and D[i][1]<D[PARENT(i,D)][1]:
p = D[i]
D[i] = D[PARENT(i,D)]
D[PARENT(i,D)] = p
i = PARENT(i,D)
return D
def INSERT(v,D):
n = len(D)
D.insert(n,v)
PERC_UP(n,D)
return D
def PERCDOWN(i,D):
while (RCHILD(i,D)!=-1 and D[i][1]>D[RCHILD(i,D)][1]) or (LCHILD(i,D)!=-1 and D[i][1]>D[LCHILD(i,D)][1]):
if RCHILD(i,D)==-1:
j = LCHILD(i,D)
elif LCHILD(i,D)==-1:
j = RCHILD(i,D)
else:
j = RCHILD(i,D)
if D[LCHILD(i,D)][1]<D[RCHILD(i,D)][1]:
j = LCHILD(i,D)
p = D[i]
D[i] = D[j]
D[j] = p
i = j
return D
def DELETEMIN(D):
n = len(D)-1
smallest = D[0]
D[0]=D[n]
del D[n]
D = PERCDOWN(0,D)
return D, smallest
def DECREASE(i,new_value,D):
D[i] = (D[i][0],new_value)
D = PERC_UP(i,D)
return D
# In[3]:
def initialize_D(start_vertex, graph):
infty = float("inf") #infinity value, change this to 10,000 before submitting the code
vertices = [key for key in graph]
start_vertex_ngbrs = graph[start_vertex]
D = [(start_vertex,0)]
vertices.remove(start_vertex)
#if you want to uncomment the 3 lines below, the back pointer must be initialized
#so that vertices adjacent to the starting vertex point to the starting vertex
#for nghbr in start_vertex_ngbrs:
# D = INSERT((nghbr[0],nghbr[1]),D)
# vertices.remove(nghbr[0])
for v in vertices:
D = INSERT((v,infty),D)
return D
def index_in_list(vert_indx,D):
i = 0
for v in D:
if v[0] == vert_indx:
return i
i+=1
return -1
def print_paths(graph, start_vertex, back_pointer):
for key in graph:
l = []
k = key
while k != back_pointer[k]:
l.append(k)
k = back_pointer[k]
l.append(start_vertex)
l = l[::-1]
print('path from {} to {} is given by:'.format(start_vertex,key),l)
print('total cost of this path is:',find_path_length(l,graph))
return
def find_path_length(l,graph):
length = 0
for i in range(len(l)-1):
idx = index_in_list(l[i+1],graph[l[i]])
length+= graph[l[i]][idx][1]
return length
def run_Dijkstras(start_vertex, graph):
back_pointer = {key:key for key in graph}
mark = {key:0 for key in graph} #0 for unmarked, 1 for marked
D = initialize_D(start_vertex, graph)
#for strt_nbrs in graph[start_vertex]:
# back_pointer[strt_nbrs[0]] = start_vertex
while 0 in list(mark.values()):
D, v = DELETEMIN(D)
current_vertex = v[0]
mark[current_vertex] = 1
for adj_vert in graph[current_vertex]:
adj_indx = adj_vert[0]
adj_cost = adj_vert[1]
j = index_in_list(adj_indx,D)
if mark[adj_indx] == 0 and D[j][1]>v[1]+adj_cost:
D = DECREASE(j,v[1]+adj_cost,D)
back_pointer[adj_indx] = current_vertex
return back_pointer
def words_in_name(lst):
new_list = []
for piece in lst:
word = piece.rstrip('&"\/').lstrip('&"\/').split('-')
if len(word[0]) > 0:
new_list = new_list+word
return new_list
def create_vertex_data():
vertex_data = read_from_file("MapDataVertices.txt")
for element in vertex_data:
element[2] = int(element[2])
element[3] = int(element[3])
#element[4] = element[4]#.split()#words_in_name(element[4].split())
return vertex_data #returns a list of tuples:
#(vertex_id,label,x-coordinate,y-coordinate,name,list of words in the name)
def read_from_file(filename):
data = []
with open(filename) as f:
for line in f:
fields = line.split('"')[0].split()
if fields!=[] and fields[0][0]!='/':
name = line.split('"')[1]
data.append([int(fields[0])]+fields[1:]+[name])
return data
def create_edge_data():
edge_data = read_from_file("MapDataEdges.txt")
for element in edge_data:
element[3] = int(element[3])
element[4] = int(element[4])
element[5] = int(element[5])
element[6] = int(element[6])
element[8] = element[8].strip('()')
return edge_data
def construct_graph(vertex_data, edge_data, has_skateboard, minimize_time):
graph = {vertex[0]:[] for vertex in vertex_data}
for edge in edge_data:
if minimize_time:
cost = calculate_time(edge[5],has_skateboard,edge[8])
else:
cost = edge[5]
graph[edge[3]].append(
(edge[4],
cost,
edge[0]
)
)
return graph
def make_path(graph, start_vertex, end_vertex, back_pointer, edge_data, has_skateboard):
l = []
while end_vertex != back_pointer[end_vertex]:
l.append(end_vertex)
end_vertex = back_pointer[end_vertex]
l.append(start_vertex)
l = l[::-1]
return l
def create_output(l, graph, edge_data, has_skateboard):
time = 0
distance = 0
legs = 0
path_list = []
for i in range(len(l)-1):
v = l[i]
j = index_in_list(l[i+1],graph[l[i]])
edge_indx = graph[l[i]][j][2]
dist_for_leg = edge_data[find_index_in_edge_data(edge_indx,edge_data)][5]
time_for_leg = calculate_time(dist_for_leg,has_skateboard,edge_data[find_index_in_edge_data(edge_indx,edge_data)][8])
time += time_for_leg
distance += dist_for_leg
legs += 1
path_list.append('FROM: ({}) {}\n'.format(vertex_data[l[i]][1],vertex_data[l[i]][-1]))
path_list.append('ON: {}\n'.format(edge_data[find_index_in_edge_data(edge_indx,edge_data)][-1]))
path_list.append('Travel {} feet in direction {} degrees {}\n'.format(dist_for_leg,edge_data[find_index_in_edge_data(edge_indx,edge_data)][-4],edge_data[find_index_in_edge_data(edge_indx,edge_data)][-3]))
path_list.append('TO: ({}) {}\n'.format(vertex_data[l[i+1]][1],vertex_data[l[i+1]][-1]))
path_list.append('({} seconds)\n\n'.format(time_for_leg))
path_list.append('legs = {}, distance = {} feet, time = {} seconds\n'.format(legs,distance,time))
return ''.join(path_list)
def calculate_time(edge_length, has_skateboard, C):
WalkSpeed = 272 #ft/min = (3.1 miles/hr) * (5280 ft/mile) / (60 mins/hr)
WalkFactorU = 0.9 #Multiply walk speed by this for walk up.
WalkFactorD = 1.1 #Multiply walk speed by this for walk down.
SkateFactorU = 1.1 #Multiply walk speed by this for skateboard up.
SkateFactorF = 2.0 #Multiply walk speed by this for skateboard flat.
SkateFactorD = 5.0 #Multiply walk speed by this for skateboard down.
StepFactorU = 0.5 #Multiply walk speed by this for walk up steps.
StepFactorD = 0.9 #Multiply walk speed by this for walk down steps.
BridgeFactor = 1.0 #Multiply walk speed by this for walking on a bridge.
div_factor = {
'f': 1,
'x': (int(has_skateboard)*SkateFactorF + (int(not has_skateboard))*1),
'F': int(has_skateboard)*SkateFactorF + (int(not has_skateboard))*1,
'u': WalkFactorU,
'U': int(has_skateboard)*SkateFactorU + (int(not has_skateboard))*WalkFactorU,
'd': WalkFactorD,
'D': int(has_skateboard)*SkateFactorD + (int(not has_skateboard))*WalkFactorD,
's': StepFactorU,
't': StepFactorD,
'b': BridgeFactor
}
t = int(60*float(edge_length)/float(WalkSpeed) + 0.5)
t /= div_factor[C]
return int(t)
def create_route_file(l, vertex_data):
MapWidthFeet = 5521
MapHeightFeet = 4369
MapWidthPixels = 2528
MapHeightPixels = 2000
CropLeft = 150
CropDown = 125
file = open(r"Route.txt","w+")
file_cropped = open(r"RouteCropped.txt","w+")
for i in range(len(l)-1):
v = vertex_data[find_index_in_edge_data(l[i],vertex_data)][2]
w = vertex_data[find_index_in_edge_data(l[i],vertex_data)][3]
x = vertex_data[find_index_in_edge_data(l[i+1],vertex_data)][2]
y = vertex_data[find_index_in_edge_data(l[i+1],vertex_data)][3]
a = int(v * MapHeightPixels / MapHeightFeet)
b = int(w * MapWidthPixels / MapWidthFeet)
c = int(x * MapHeightPixels / MapHeightFeet)
d = int(y * MapWidthPixels / MapWidthFeet)
file.write('{} {} {} {}\n'.format(a,b,c,d))
a = a - CropLeft
b = b - CropDown
c = c - CropLeft
d = d - CropDown
file_cropped.write('{} {} {} {}\n'.format(a,b,c,d))
file.close()
file_cropped.close()
return
def plot_on_map():
from PIL import Image, ImageDraw
img = Image.open('BrandeisMapLabeled.jpg')
drawing = ImageDraw.Draw(img)
with open('Route.txt') as f:
for line in f:
coords = line.split()
a, b, c, d = int(coords[0]), int(coords[1]), int(coords[2]), int(coords[3])
drawing.line([(a,b),(c,d)],fill='pink',width=15)
img.show()
return
def print_list(l):
for i in l:
print('*',i)
return
def get_vertex_id(s, vertex_data): #get vertex id from the input string s
l = []
for data in vertex_data:
if s.lower() == data[1].lower():
return data[0]
if s.lower() == data[4].lower():
return data[0]
if s.lower() in data[4].lower():
l.append(data[0])
if len(l)==1:
return l[0]
if len(l)>1:
print('Ambigous name. Following multiple matches found.\n')
print_list([vertex_data[i][4] for i in l])
print('\nPlease enter a substring that uniquely identifies the place.\n')
return 0
if len(l)==0:
print('Place not found. Try again.')
return 0
#the string entered should be either the map location, for example L24 etc, or, a substring of a unique name
#so either the full name or a word that uniquely identifies the location for example 'farber', 'Farber l', 'Farber lib'
#are all substrings of unique location 'Farber Library'
#not case sensitive so more flexible
# return -1 #location not found, try again
# return -2 #more than one location for example 'schwartz will give two locations', 'Hassenfeld Lot will give two locations'
#maybe just return a single location error and try again- NO!!! the
#first check if it matches map location
#then check if it is exactly the name of a place
#then check if it is substring
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
# # Part 2
def is_undirected(graph): #checks if every edge - reverse-edge pair has the same weight,
#so that the graph represented by adjacency list can be interpreted as undirected
result = True
for key in graph:
for vert in graph[key]:
vertex_indx = vert[0]
edge_wt = vert[1]
j = index_in_list(key, graph[vertex_indx])
reverse_edge_wt = graph[vertex_indx][j][1]
if edge_wt!=reverse_edge_wt:
print(key,vertex_indx,edge_wt,j,reverse_edge_wt)
result = False
return result
def just_one(a, b, l):
return ((a in l) and (b not in l)) or ((a not in l) and (b in l))
def find_index_in_edge_data(idx,edge_data):
l = [x[0] for x in edge_data]
return l.index(idx)
def min_span_tree(graph, start_vertex, edge_data):
T = set()
to_put_back = []
vertices_in_T = set()
vertices_in_T.add(start_vertex)
edge_cost_pairs = set()
for key in graph:
for element in graph[key]:
edge_cost_pairs.add((element[2],element[1]))
heap = []
for x in list(edge_cost_pairs):
heap = INSERT(x,heap)
num_vertices = len(graph)
while len(T)<num_vertices-1:
heap, smallest = DELETEMIN(heap)
smallest = smallest[0]
indx_sm_edge_data = find_index_in_edge_data(smallest,edge_data)
while not just_one(edge_data[indx_sm_edge_data][3],edge_data[indx_sm_edge_data][4],vertices_in_T): #loop until there is a edge with exactly one
to_put_back.append(smallest)
#print(heap)
#print(len(vertices_in_T))
heap, smallest = DELETEMIN(heap)
smallest = smallest[0]
indx_sm_edge_data = find_index_in_edge_data(smallest,edge_data)
T.add(smallest)
vertices_in_T.add(edge_data[indx_sm_edge_data][3])
vertices_in_T.add(edge_data[indx_sm_edge_data][4])
for edg in to_put_back:
heap = INSERT((edg,edge_data[find_index_in_edge_data(edg,edge_data)][5]),heap)
to_put_back = []
return T
def plot_edges(edge_list, edge_data, vertex_data):#needs to be changed!!!!!!!!
MapWidthFeet = 5521
MapHeightFeet = 4369
MapWidthPixels = 2528
MapHeightPixels = 2000
img = Image.open('BrandeisMapLabeled.jpg')
drawing = ImageDraw.Draw(img)
for edg in edge_list:
v_1 = edge_data[edg][3]
v_2 = edge_data[edg][4]
v = vertex_data[v_1][2]
w = vertex_data[v_1][3]
x = vertex_data[v_2][2]
y = vertex_data[v_2][3]
a = int(v * MapHeightPixels / MapHeightFeet)
b = int(w * MapWidthPixels / MapWidthFeet)
c = int(x * MapHeightPixels / MapHeightFeet)
d = int(y * MapWidthPixels / MapWidthFeet)
drawing.line([(a,b),(c,d)],fill='pink',width=10)
img.show()
return
def plotting_cordinates_from_edges(edge_list, edge_data, vertex_data):
MapWidthFeet = 5521
MapHeightFeet = 4369
MapWidthPixels = 2528
MapHeightPixels = 2000
coords = []
for edg in edge_list:
v_1 = edge_data[find_index_in_edge_data(edg,edge_data)][3]
v_2 = edge_data[find_index_in_edge_data(edg,edge_data)][4]
v = vertex_data[v_1][2]
w = vertex_data[v_1][3]
x = vertex_data[v_2][2]
y = vertex_data[v_2][3]
a = int(v * MapHeightPixels / MapHeightFeet)
b = int(w * MapWidthPixels / MapWidthFeet)
c = int(x * MapHeightPixels / MapHeightFeet)
d = int(y * MapWidthPixels / MapWidthFeet)
coords.append(str(a)+' '+str(b)+' '+str(c)+' '+str(d))
return '\n'.join(coords)
def tree_from_edges(edges, vertex_data, edge_data):
tree = {key[0]: set() for key in vertex_data}
for edge in edges:
edge_idx = find_index_in_edge_data(edge,edge_data)
v1 = edge_data[edge_idx][3]
v2 = edge_data[edge_idx][4]
tree[v1].add((v2,0))#0 is a dummy coordinate in the tuple
tree[v2].add((v1,0))#0 is a dummy coordinate in the tuple
for key in tree:
tree[key] = list(tree[key])
return tree
def plot_traversal(traversal, vertex_data):#needs to be changed!!!!!!!!
from PIL import Image, ImageDraw
MapWidthFeet = 5521
MapHeightFeet = 4369
MapWidthPixels = 2528
MapHeightPixels = 2000
img = Image.open('BrandeisMapLabeled.jpg')
drawing = ImageDraw.Draw(img)
visited = []
for i in range(len(traversal)-1):
v_1 = traversal[i]
v_2 = traversal[i+1]
visited.append(v_1)
v = vertex_data[v_1][2]
w = vertex_data[v_1][3]
x = vertex_data[v_2][2]
y = vertex_data[v_2][3]
a = int(v * MapHeightPixels / MapHeightFeet)
b = int(w * MapWidthPixels / MapWidthFeet)
c = int(x * MapHeightPixels / MapHeightFeet)
d = int(y * MapWidthPixels / MapWidthFeet)
drawing.line([(a,b),(c,d)],fill='pink',width=10)
if v_2 in visited:
drawing.line([(a,b),(c,d)],fill='red',width=2)
else:
drawing.line([(a,b),(c,d)],fill='pink',width=10)
img.show()
return
def pre_order_trvsl(tree, root_key, vistd_vrtx_list):#returns a list of vertices in the order in which they are traversed
vistd_vrtx_list.append(root_key)
for nghbr in tree[root_key]:
if nghbr[0] not in vistd_vrtx_list:
vistd_vrtx_list = pre_order_trvsl(tree,nghbr[0],vistd_vrtx_list)
if vistd_vrtx_list[-1]!=root_key:
vistd_vrtx_list.append(root_key)
return vistd_vrtx_list
def find_cost(a,b, graph):
for e in graph[a]:
if b==e[0]:
return e[1]
return float("inf")
#if the next vertex is already visited, look two places ahead and if there's a path to that and the distance through that parth is shorter
#(yes, this needs to be checked as it is not always true) then shortcut it.T
def prim_shortchut_traversal(traversal, graph):
visited = [traversal[0]]
i = 0
while i < len(traversal)-2:
v_1 = traversal[i]
v_2 = traversal[i+1]
v_3 = traversal[i+2]
#if find_cost(v_1,v_3, graph)<float("inf"):#if there is any edge at all shortcut it
if (find_cost(v_1,v_3, graph)<find_cost(v_1,v_2, graph)+find_cost(v_2,v_3, graph)) and (v_2 in visited):#shortcut only if the new edge is better
visited.append(v_3)
i+=2
else:
visited.append(v_2)
i+=1
return visited
#a dict with keys as vertices and values as an index of set, which is initially all different but set same for unioning 2 sets
def kruskal_min_spanning_tree(edge_data, vertex_data, graph):
vertex_sets_indices = {key[0]:key[0] for key in vertex_data}#assign all set indices as distinct
T = set()
edge_cost_pairs = set()
for key in graph:
for element in graph[key]:
edge_cost_pairs.add((element[2],element[1]))
heap = []
for x in list(edge_cost_pairs):
heap = INSERT(x,heap)
n_vert = len(vertex_data)
while len(T)<n_vert-1:
to_put_back = []
while True:
heap, smallest = DELETEMIN(heap)
smallest = smallest[0]
indx_sm_edge_data = find_index_in_edge_data(smallest,edge_data)
v_1 = edge_data[indx_sm_edge_data][3]
v_2 = edge_data[indx_sm_edge_data][4]
if vertex_sets_indices[v_1]!=vertex_sets_indices[v_2]:
T.add(smallest)
n1 = vertex_sets_indices[v_1]
n2 = vertex_sets_indices[v_2]
n = max([n1,n2])
for key in vertex_sets_indices:
if vertex_sets_indices[key]==n1 or vertex_sets_indices[key]==n2:
vertex_sets_indices[key]=n
for edg in to_put_back:
heap = INSERT((edg,edge_data[find_index_in_edge_data(edg,edge_data)][5]),heap)
break
else:
to_put_back.append(smallest)
return T
def prim_preorder(start_vertex, vertex_data, edge_data):
graph_new = construct_graph(vertex_data[5:], edge_data[20:], False, False) #delete the black hole and corners vertices and edges
min_tree_edges = min_span_tree(graph_new, start_vertex, edge_data[20:])
prim_min_spanning_tree = tree_from_edges(min_tree_edges, vertex_data[5:], edge_data[20:])
traversal = pre_order_trvsl(prim_min_spanning_tree, start_vertex, [])
output = create_output(traversal,graph_new,edge_data[20:], False)
print('Would you like to plot the result from Route.txt into the brandeis map? (Requires the python package PIL to be installed)')
print('y/n - default n? ')
plot = input()
print(output)
create_route_file(traversal,vertex_data)
if plot.lower() == 'y':
plot_on_map()
#plot_traversal(traversal, vertex_data)
#plot_traversal(traversal, vertex_data)
return output, traversal
def prim_shortcut(start_vertex, vertex_data, edge_data):
graph_new = construct_graph(vertex_data[5:], edge_data[20:], False, False) #delete the black hole and corners vertices and edges
min_tree_edges = min_span_tree(graph_new, start_vertex, edge_data[20:])
prim_min_spanning_tree = tree_from_edges(min_tree_edges, vertex_data[5:], edge_data[20:])
traversal = pre_order_trvsl(prim_min_spanning_tree, start_vertex, [])
prim_shortcut_trav = prim_shortchut_traversal(traversal, graph_new)
output = create_output(prim_shortcut_trav,graph_new,edge_data[20:], False)
print('Would you like to plot the traversal onto the brandeis map? (Requires the python package PIL to be installed)')
print('y/n - default n? ')
plot = input()
print(output)
create_route_file(prim_shortcut_trav,vertex_data)
if plot.lower() == 'y':
plot_on_map()
#plot_traversal(traversal, vertex_data)
#plot_traversal(prim_shortcut_trav, vertex_data)
return output, prim_shortcut_trav
def kruskal_preorder(start_vertex, vertex_data, edge_data):
graph_new = construct_graph(vertex_data[5:], edge_data[20:], False, False) #delete the black hole and corners vertices and edges
kruskal_edges = kruskal_min_spanning_tree(edge_data[20:],vertex_data[5:], graph_new)
k_min_spanning_tree = tree_from_edges(kruskal_edges, vertex_data[5:], edge_data[20:])
traversal = pre_order_trvsl(k_min_spanning_tree, start_vertex, [])
output = create_output(traversal,graph_new,edge_data[20:], False)
print('Would you like to plot the traversal onto the brandeis map? (Requires the python package PIL to be installed)')
print('y/n - default n? ')
plot = input()
print(output)
create_route_file(traversal,vertex_data)
if plot.lower() == 'y':
plot_on_map()
#plot_traversal(traversal, vertex_data)
return output, traversal
def tour(start_vertex, vertex_data, edge_data):
print('Enter one of these tour options:')
print(' 0: Preorder traversal of Prim tree')
print(' 1: Triangle shorcuts of Prim traversal')
print(' 2: Preorder traversal of Kruskal tree')
print(' or return to quit')
option = input()
if option == '0':
prim_preorder(start_vertex, vertex_data, edge_data)
elif option == '1':
prim_shortcut(start_vertex, vertex_data, edge_data)
elif option == '2':
kruskal_preorder(start_vertex, vertex_data, edge_data)
elif option == '':
sys.exit('You pressed return')
else:
print('Enter valid option')
tour(start_vertex)
return
# In[9]:
def find_path(start_vertex, end_vertex, vertex_data, edge_data, has_skateboard, minimize_time):
graph = construct_graph(vertex_data, edge_data, has_skateboard, minimize_time)
back_pointer = run_Dijkstras(start_vertex,graph)
l = make_path(graph, start_vertex, end_vertex, back_pointer, edge_data, has_skateboard)
output = create_output(l, graph, edge_data, has_skateboard)
return l, output
def run_map(vertex_data, edge_data):
print("******************************WELCOME TO THE BRANDEIS MAP******************************\n")
print('Entered locations may be: \nthe map location(eg L1, U22 etc) or, \nthe exact name (farber library etc), or, \na substring that uniqiely identifies the place (eg., farber l etc)\n')
got_location = False
while got_location == False:
print('Enter start (return to quit):')
inp = input()
if inp == '':
sys.exit('You pressed return.')
start_vertex = get_vertex_id(inp,vertex_data)
if start_vertex!=0:
got_location = True
got_location = False
while got_location == False:
print('Enter finish (or return to do a tour):')
inp = input()
if inp == '':
tour(start_vertex, vertex_data, edge_data)
sys.exit()
end_vertex = get_vertex_id(inp,vertex_data)
if end_vertex!=0:
got_location = True
print('Have a skateboard (y/n - default=n)?')
sk = input()
print('Minimize time (y/n - default=n)?')
ti = input()
#t f
has_skateboard = False
minimize_time = False
if sk.lower() == 'y':
has_skateboard = True
if ti.lower() == 'y':
minimize_time = True
path_list, output = find_path(start_vertex, end_vertex, vertex_data, edge_data, has_skateboard, minimize_time)
print(output)
print('Creating the files Route.txt and Routecropped.txt with pixels for the path..')
create_route_file(path_list,vertex_data)
print('Done')
print('Would you like to plot the result from Route.txt into the brandeis map? (Requires the python package PIL to be installed)')
print('y/n - default n? ')
plot = input()
if plot.lower() == 'y':
plot_on_map()
return
def output_for_samples(vertex_data, edge_data):
filename = 'sample_output_cases.txt'
file = open(r"Output.txt","w+")
with open(filename) as f:
for line in f:
fields = line.split()
board = fields[3].split('=')[1]
time = fields[4].split('=')[1]
if board == 'n':
has_board = False
else:
has_board = True
if time == 'n':
minimize_time = False
else:
minimize_time = True
start_vertex = get_vertex_id(fields[1],vertex_data)
end_vertex = get_vertex_id(fields[2],vertex_data)
path_list, output = find_path(start_vertex, end_vertex, vertex_data, edge_data, has_board, minimize_time)
file.write(line+'\n')
file.write(output)
def tour_outputs_vertex_J(vertex_data, edge_data):
start_vertex = get_vertex_id('J',vertex_data)
graph_new = construct_graph(vertex_data[5:], edge_data[20:], False, False) #delete the black hole and corners vertices and edges
min_tree_edges = min_span_tree(graph_new, start_vertex, edge_data[20:])
file = open(r"OutputP.txt","w+")
file.write(plotting_cordinates_from_edges(min_tree_edges, edge_data, vertex_data))
krus_edge = kruskal_min_spanning_tree(edge_data[20:], vertex_data[5:], graph_new)
file = open(r"OutputK.txt","w+")
file.write(plotting_cordinates_from_edges(krus_edge, edge_data, vertex_data))
file = open(r"OutputPP.txt","w+")
file.write(prim_preorder(start_vertex, vertex_data, edge_data))
file = open(r"OutputPS.txt","w+")
file.write(prim_shortcut(start_vertex, vertex_data, edge_data))
file = open(r"OutputKP.txt","w+")
file.write(kruskal_preorder(start_vertex, vertex_data, edge_data))
return
vertex_data = create_vertex_data()
edge_data = create_edge_data()
run_map(vertex_data, edge_data)
#output_for_samples(vertex_data, edge_data)
#tour_outputs_vertex_J(vertex_data, edge_data) #used to create the several output files
| true
|
4774c9f8023d73bbea0a50f30f5849ba2ca1a610
|
Python
|
newfull5/Baekjoon-Online-Judge
|
/[11399] ATM.py
|
UTF-8
| 158
| 3.046875
| 3
|
[] |
no_license
|
input()
cost = list(map(int, input().split()))
cost = sorted(cost)
answer = 0
for i in range(1,len(cost)+1):
answer += sum(cost[:i])
print(answer)
| true
|
6a122314914452ee9d4d921c4069fbadaf9404ef
|
Python
|
operfly/distribute_scpider
|
/test_2.py
|
UTF-8
| 1,994
| 3.65625
| 4
|
[] |
no_license
|
# -*-coding:utf-8-*-
import threading
mutex_lock = threading.RLock() # 互斥锁的声明
ticket = 100000 # 总票数
# 用于统计各个线程的得票数
ticket_stastics = []
class myThread(threading.Thread): # 线程处理函数
def __init__(self, name):
threading.Thread.__init__(self) # 线程类必须的初始化
self.thread_name = name # 将传递过来的name构造到类中的name
def run(self):
# 声明在类中使用全局变量
global mutex_lock
global ticket
while 1:
mutex_lock.acquire() # 临界区开始,互斥的开始
# 仅能有一个线程↓↓↓↓↓↓↓↓↓↓↓↓
if ticket > 0:
ticket -= 1
# 统计哪到线程拿到票
print ("线程%s抢到了票!票还剩余:%d。" % (self.thread_name, ticket))
ticket_stastics[self.thread_name] += 1
else:
break
# 仅能有一个线程↑↑↑↑↑↑↑↑↑↑↑↑
mutex_lock.release() # 临界区结束,互斥的结束
mutex_lock.release() # python在线程死亡的时候,不会清理已存在在线程函数的互斥锁,必须程序猿自己主动清理
print ("%s被销毁了!" % (self.thread_name))
# 初始化线程
threads = [] # 存放线程的数组,相当于线程池
for i in range(0, 5):
thread = myThread(i) # 指定线程i的执行函数为myThread
threads.append(thread) # 先讲这个线程放到线程threads
ticket_stastics.append(0) # 初始化线程的得票数统计数组
for t in threads: # 让线程池中的所有数组开始
t.start()
for t in threads:
t.join() # 等待所有线程运行完毕才执行一下的代码
print ("票都抢光了,大家都散了吧!")
print ("=========得票统计=========")
for i in range(0, len(ticket_stastics)):
print ("线程%d:%d张" % (i, ticket_stastics[i]))
| true
|
bf859c72db9b4e519f2c4623e64f716e11df32f1
|
Python
|
MonchoG/Computer-Vision
|
/modules/face_recognition/Server.py
|
UTF-8
| 3,091
| 2.65625
| 3
|
[] |
no_license
|
import base64
import pickle
import socket
import struct
import sys
import time
from _thread import start_new_thread
import cv2
import modules.face_recognition.recognize_faces as recognizer
def string_to_image(string, title):
fh = open("{}.png".format(title), "wb")
fh.write(base64.b64decode(string))
print("Done writing file.")
fh.close()
HOST = '192.168.43.134'
PORT = 9999
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error as msg:
print("Could not create socket. Error Code: ", str(msg[0]), "Error: ", msg[1])
sys.exit(0)
print("[-] Socket Created")
# bind socket
try:
s.bind((HOST, PORT))
print("[-] Socket Bound to host " + str(HOST))
print("[-] Socket Bound to port " + str(PORT))
except socket.error as msg:
print("Bind Failed. Error Code: {} Error: {}".format(str(msg[0]), msg[1]))
sys.exit()
s.listen(10)
print("Listening...")
# Client handler
def client_thread(conn, addr):
try:
recv_0 = 0
data = b""
payload_size = struct.calcsize(">L")
print("payload_size: {}".format(payload_size))
while True:
while len(data) < payload_size:
print("Recv: {} from {}".format(len(data), addr[0]))
data += conn.recv(4096)
if len(data) == 0:
recv_0 += 1
# if recv_0 >= 1000:
# break
print("Done Recv: {} from {}".format(len(data), addr[0]))
packed_msg_size = data[:payload_size]
data = data[payload_size:]
msg_size = struct.unpack(">L", packed_msg_size)[0]
print("msg_size: {}".format(msg_size))
while len(data) < msg_size:
data += conn.recv(4096)
if str(data).__contains__('Bye'):
break
frame_data = data[:msg_size]
data = data[msg_size:]
frame = pickle.loads(frame_data, fix_imports=True, encoding="bytes")
frame = cv2.imdecode(frame, cv2.IMREAD_COLOR)
t = time.localtime()
timestamp = time.strftime('%b-%d-%Y_%H%M%S', t)
cv2.imwrite('{}.png'.format(timestamp), frame)
print("[ INFO ] Starting recognizer for {}".format(addr[0]))
result = recognizer.find_face(frame, scaleFactor=1.1, minNeighbors=7, minSize=(35, 35), reSample=3)
cv2.imwrite('result_{}.png'.format(timestamp), result)
print("[ INFO ] Finished recognizer for {}".format(addr[0]))
time.sleep(10)
except Exception as exp:
print(exp)
print(exp.with_traceback())
exit()
finally:
print("Exited all loops closing connections")
conn.close()
while True:
# blocking call, waits to accept a connection
try:
conn, addr = s.accept()
print("[-] Connected to " + addr[0] + ":" + str(addr[1]))
start_new_thread(client_thread, (conn, addr))
except socket.error as e:
print("Error occurred during initializing connection")
print(e.strerror)
| true
|
99983da8be525ee89e20e4c9a95ba2cc3a4ac471
|
Python
|
GriffinPeirce/Aquabot_Streaming
|
/udpServer_pi.py
|
UTF-8
| 814
| 3.21875
| 3
|
[] |
no_license
|
import socket
def main():
#host = '192.168.1.101'
#port = 22 #port for server
#pass tuple of host and port
#DGRAM = datagram
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #by default, socket is TCP so we should specify it is UDP
host = '192.168.1.101'
port = 5000
#bind socket to port
s.bind((host, port))
print("Server started.")
#UDP is connectionless
while True:
#no connection to receive from. just store data and addr
data, addr = s.recvfrom(1024)
data = data.decode('utf-8')
print("Message from: " + str(addr))
print("From connected user: " + data)
data.upper()
print("Sending: " + data)
s.sendto(data.encode('utf-8'), addr)
s.close()
if __name__ == '__main__':
main()
| true
|
c6910f5ccefea5b2a641830d9dc8603254f64f62
|
Python
|
ambv/aiotone
|
/aiotone/uspectro.py
|
UTF-8
| 3,841
| 2.671875
| 3
|
[
"MIT"
] |
permissive
|
#!/usr/bin/env python3
from __future__ import annotations
from functools import lru_cache
import os
from pathlib import Path
import click
import numpy
from PIL import Image
from aiotone import audiofile
from aiotone.colors import get_color, colors_to_buckets, convert_html_to_hsv
BETA = 3.14159265359 * 2.55
def freq_from_pcm(pcm, window, step, channels):
"""Yields real FFTs from data chunks of `window` size in `pcm` double array."""
# XXX doesn't pad data with zeroes at the start
offset = 0
while offset < pcm.shape[0]:
data = numpy.zeros(window, numpy.float64)
for ch in channels:
chunk = pcm[offset : offset + window, ch]
if len(chunk) < window:
chunk = numpy.pad(chunk, [(0, window - len(chunk))])
data += chunk
result = numpy.fft.rfft(data * kaiser(len(data)))
# some transformations suggested by
# https://lo.calho.st/posts/numpy-spectrogram/
result = result[: window // 2]
result = numpy.absolute(result) * 2.0 / window
# result = (20 * numpy.log10(result)).clip(-120)
yield result
offset += step
@lru_cache()
def kaiser(length):
"""Memoized Kaiser window, saves a lot of time recomputing the same shape.
See more at:
https://en.wikipedia.org/wiki/Kaiser_window
"""
return numpy.kaiser(length, BETA)
def convert_channels_to_list(channels):
if channels is None or channels == "ALL":
return []
return [int(elem.strip()) for elem in channels.split(",")]
@click.command()
@click.argument("file")
@click.option(
"-b",
"--brightness",
type=click.IntRange(min=1),
default=8,
help="Brightness multiplier",
)
def main(
file,
window=4800,
step=600,
brightness=8,
prepend=0,
fps=10,
crop_height=2160,
colors=None,
channels=None,
):
width = 0
height = 0
if not colors:
colors = "#000000,#0000ff,#008080,#00ff00,#ffffff"
if not channels:
channels = "ALL"
colors = convert_html_to_hsv(colors)
color_buckets = colors_to_buckets(colors, min=0, max=1)
channels = convert_channels_to_list(channels)
audio_data, audio_rate = audiofile.read(file)
audio_channels = audio_data.shape[1]
audio_duration = audio_data.shape[0] / audio_rate
freq_samples = []
window = window or audio_rate
step = step or int(round(audio_rate / fps))
channels = channels or list(range(audio_channels))
print(file)
print(" duration:", audiofile.duration_str(audio_duration))
print(" sample rate:", audio_rate)
print(" channels:", audio_channels)
print(" window:", window)
print(" step:", step, "(fps: {})".format(fps))
print("Calculating FFT...", end="\r")
for freq in freq_from_pcm(audio_data, window, step, channels):
width += 1
height = len(freq)
freq_samples.append(freq)
rgb = numpy.zeros((height, width + prepend, 3), "uint8")
print(" image width:", width)
print(" image height:", height)
print("Preparing image...", end="\r")
custom_black = get_color(0, brightness, color_buckets)
for x in range(prepend):
for y in range(height):
rgb[y, x] = custom_black
print("Applying colors...", end="\r")
for x, freq in enumerate(freq_samples, prepend):
freq = freq[:height]
for y, f in enumerate(reversed(freq)):
rgb[y, x] = get_color(f, brightness, color_buckets)
print("Creating in-memory PNG image", end="\r")
i = Image.fromarray(rgb, mode="RGB")
img_path = Path(file).stem + f".b{brightness}.png"
print("Saving image to", img_path, " " * 10, end="\r")
i.save(img_path)
print("Saved image to", img_path, " " * 10)
if __name__ == "__main__":
main()
| true
|
15e82493228fb5e225f8d4a3089f689bb8cfeba1
|
Python
|
Sho-Tamura-Create/LearningPY
|
/pyxel/test00.py
|
UTF-8
| 1,611
| 2.96875
| 3
|
[] |
no_license
|
import pyxel
alphaChanel = 11
charset = {'A':0,'B':1,'C':2,'D':3,'E':4,'F':5,'G':6,'H':7,'I':8,'J':9,'K':10,'L':11,'M':12,'N':13,'O':14,'P':15,'Q':16,'R':17,'S':18,'T':19,'U':20,'V':21,'W':22,'X':23,'Y':24,'Z':25,'.':26,':':27,'!':28,'?':39,'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9}
s = 0
class App:
def __init__(self):
pyxel.init(160, 120,caption='レトロゲー',scale=4,fps=60)
pyxel.image(0).load(0,0, 'res/font.png')
pyxel.image(1).load(0,0, 'res/sf00.png')
self.x = 0
pyxel.run(self.update, self.draw)
def update(self):
if pyxel.btnp(pyxel.KEY_Q):
pyxel.quit()
# self.x = (self.x + 1) % pyxel.width
def draw(self):
pyxel.cls(1)
# pyxel.rect(self.x, 0, self.x + 7, 7, 9)
# pyxel.text(55, 41, "Hello world!", 16)
# pyxel.blt(0,0,0,0,0,8,8,alphaChanel)
# pyxel.blt(80,60,1,0,0,16,16,alphaChanel)
self.char()
self.score(self.char(),50,2)
self.text("SCORE:",2,2)
def char(self):
x = pyxel.mouse_x
y = pyxel.mouse_y
if pyxel.btn(pyxel.MOUSE_LEFT_BUTTON):
pyxel.blt(x,y,1,0,0,16,-16,alphaChanel)
global s
s += 1
else:
pyxel.blt(x,y,1,0,0,16,16,alphaChanel)
return str(s)
def text(self,text,x,y):
for i in range(len(text)):
pyxel.blt(x+i*8,y,0,charset[text[i]]*8,0,8,8,alphaChanel)
def score(self,s,x,y):
for i in range(len(s)):
pyxel.blt(x+i*8,y,0,charset[s[i]]*8,8,8,8,alphaChanel)
App()
| true
|
801beb7d522948ed45d8c59b1929a0a8e58d1db2
|
Python
|
DevMayurJ/Duplicate-File-Finder
|
/DuplicateFileFinder.py
|
UTF-8
| 2,090
| 3.328125
| 3
|
[] |
no_license
|
from sys import *
import os;
import hashlib;
def hashfile(path, blocksize = 1024):
fd = open(path, 'rb')
hasher = hashlib.md5()
buff = fd.read(blocksize)
while len(buff) > 0:
hasher.update(buff)
buff = fd.read(blocksize)
fd.close()
return hasher.hexdigest()
def FindDuplicate(path):
flag = os.path.isabs(path)
if flag == False:
path = os.path.abspath(path)
exists = os.path.isdir(path)
dups = {}
if exists:
for dirName, subdirs, fileList in os.walk(path):
for filen in fileList:
path = os.path.join(dirName, filen)
file_hash = hashfile(path)
if file_hash in dups:
dups[file_hash].append(path)
else:
dups[file_hash] = [path]
return dups
else:
print ("Invalid path")
def PrintDuplicate(dict1):
results = list(filter(lambda x: len(x) > 1, dict1.values()))
if len(results) > 0:
print ("Duplicate files found")
print ("The following are identical files.")
for result in results:
for subresult in result:
print ("\t\t%s" % subresult)
print ("-------------------------------------------------------------------------")
else:
print("No dulplicate files found")
def DisplayHelp():
print ("This script List all duplicate files from provided directory path")
print ("python.exe .\DuplicateFileFinder.py <Directory>")
print ("e.g python.exe .\DuplicateFileFinder.py F:\\Users\DevMJ\\")
def main():
if len(argv) != 2:
print ("ERROR! Invalid arguments")
DisplayHelp()
return
if (argv[1] == "-h") or (argv[1] == "-H"):
DisplayHelp()
return
try:
arr = {}
arr = FindDuplicate(argv[1])
PrintDuplicate(arr)
except ValueError:
print("ERROR: Invalid datatype of imput")
if __name__ == "__main__":
main()
| true
|
55ba7e5f885c735a1352a557d239f433c75ba1e5
|
Python
|
RaymondZano/MBAN-Python-Course
|
/6_pandas and matplotlib essentials.py
|
UTF-8
| 2,670
| 3.625
| 4
|
[] |
no_license
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 10 18:11:26 2018
@author: chase.kusterer
Working Directory:
/Users/chase.kusterer/Desktop/PyCourse
Purpose:
To introduce pandas and matplotlib
"""
###############################################################################
# Importing libraries and base dataset
###############################################################################
import pandas as pd
# Checking the arguments for pd.to_numeric()
pd.to_numeric()
# Testing pd.to_numeric()
x = '7.9484141'
pd.to_numeric(x)
print(x)
# Checking the documentation on pd.datetools()
help(pd.datetools)
# Testing pd.cut()
x = range(100)
y = pd.cut(x, 5)
print(y)
print(pd.value_counts(y))
###############################################################################
# matplotlib Essentials
###############################################################################
import pandas as pd
import matplotlib.pyplot as plt
file ='diamonds_missing_values.xlsx'
diamonds = pd.read_excel(file)
plt.hist(x = 'price',
data = diamonds)#lazy printing - not shown immediately, need to call
#plt.show()
plt.hist(x = 'carat',
data = diamonds)#another column name from file
plt.show()
plt.hist(x = 'price',
data = diamonds,
bins = 15,
normed = True)
plt.show()
plt.hist(x = 'price',
data = diamonds,
bins = 150,
normed = True)
plt.show()
plt.hist(x = 'price',
data = diamonds,
bins = 150,
normed = True)
plt.show()
# Finding the optimal number of bins with the
# Freedman-Diaconis rule
iqr_max = pd.np.percentile(diamonds['price'], [75])
iqr_min = pd.np.percentile(diamonds['price'], [25])
iqr_price = float(iqr_max - iqr_min)
h = 2 * iqr_price * (len(diamonds['price']) ** -(1/3))
price_range = max(diamonds['price']) - min(diamonds['price'])
print(price_range / h)
plt.hist(x = 'price',
data = diamonds,
bins = 21,
normed = True)
"""
Prof. Chase:
The Freedman-Diaconis rule can be cumbersome if done manually in
Python. Luckily, it is built into plt.hist as an option for bins.
This is one of the major advantages of open source communities.
"""
plt.hist(x = 'price',
data = diamonds,
bins = 'fd',
normed = True)#fd is freedman-diaconis, best form of data, optimized
# Scatterplot example
plt.scatter(x = 'carat',
y = 'price',
data = diamonds)
plt.xlabel('Carat Weight')
plt.ylabel('Price')
plt.axhline(y = 25000)
plt.axvline(x = 1)#vertical line
plt.axvline()
plt.show()
| true
|
8602ab26cba7c4992d475b5fc0024141f5c0016b
|
Python
|
ArdelH/spaceGame
|
/classes.py
|
UTF-8
| 7,237
| 2.953125
| 3
|
[] |
no_license
|
import pygame as pg
from PIL import ImageFont
pg.font.init()
# Parent
class buttons_and_labels():
def __init__(self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
self.game_display = game_display
self.rectX = rectX
self.rectY = rectY
self.rectW = rectW
self.rectH = rectH
self.rectC = rectC
self.text = text
text_font = ImageFont.truetype(font.lower() + '.ttf', size)
current_textW, current_textH = text_font.getsize(text)
self.textX = rectX + ((rectW / 10) * 0.5)
self.textY = rectY + ((rectH - current_textH) / 3.0)
self.textY = rectY + ((rectH - size) / 2.5)
self.textC = textC
self.font = font
self.size = size
self.bold = bold
self.italic = italic
self.rect = pg.Rect(self.rectX, self.rectY, self.rectW, self.rectH)
def draw(self):
myfont = pg.font.SysFont(self.font, self.size, self.bold, self.italic)
text_to_show = myfont.render(self.text, False, self.textC)
pg.draw.rect(self.game_display, self.rectC, self.rect)
self.game_display.blit(text_to_show, (self.textX, self.textY))
def change_text(self, new_text):
self.text = new_text
class buttons(buttons_and_labels):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
text_font = ImageFont.truetype(font.lower() + '.ttf', size)
current_textW, current_textH = text_font.getsize(text)
self.textX = rectX + ((rectW - current_textW) / 2.5)
self.textY = rectY + ((rectH - current_textH) / 3.0)
class label(buttons_and_labels):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
class custom_label_fix_pos_left(label):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
class custom_label_fix_pos_center(buttons_and_labels):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
text_font = ImageFont.truetype(font.lower() + '.ttf', size)
current_textW, current_textH = text_font.getsize(text)
self.textX = rectX + ((rectW - current_textW) / 2.5)
self.textY = rectY + ((rectH - current_textH) / 3.0)
class custom_label_custom_pos_left(label):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
class custom_label_custom_pos_center(label):
def __init__ (self, game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
text_font = ImageFont.truetype(font.lower() + '.ttf', size)
current_textW, current_textH = text_font.getsize(text)
self.textX = rectX + ((rectW - current_textW) / 2.5)
self.textY = rectY + ((rectH - current_textH) / 3.0)
class menu_bar(label):
def __init__(self, game_display, rectX, rectY, rectW, rectH, rectC, barC, max_nr, current_nr, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, text, textC, font, size, bold, italic)
self.front_barC = barC
self.max_nr = max_nr
self.current_nr = current_nr
self.background_barC = rectC
self.background_barX = rectX
self.background_barY = rectY
self.background_barW = rectW
self.background_barH = rectH
self.front_barX = rectX
self.front_barY = rectY
if rectW * (current_nr / max_nr) > self.background_barW:
self.front_barW = self.background_barW
else:
self.front_barW = rectW * (current_nr / max_nr)
self.front_barH = rectH
self.background_bar = pg.Rect(self.background_barX, self.background_barY, self.background_barW, self.background_barH)
self.front_bar = pg.Rect(self.front_barX, self.front_barY, self.front_barW, self.front_barH)
def draw(self):
myfont = pg.font.SysFont(self.font, self.size, self.bold, self.italic)
if self.current_nr > self.max_nr:
self.text_with_nr = self.text + ' ' + str(self.current_nr) + ' / ' + str(self.max_nr) + ' ' + self.over_max_text
else:
self.text_with_nr = self.text + ' ' + str(self.current_nr) + ' / ' + str(self.max_nr)
self.text_to_show = myfont.render(self.text_with_nr, False, self.textC)
if self.background_barW * (self.current_nr / self.max_nr) > self.background_barW:
self.front_barW = self.background_barW
else:
self.front_barW = self.background_barW * (self.current_nr / self.max_nr)
self.front_bar = pg.Rect(self.front_barX, self.front_barY, self.front_barW, self.front_barH)
pg.draw.rect(self.game_display, self.background_barC, self.background_bar)
pg.draw.rect(self.game_display, self.front_barC, self.front_bar)
self.game_display.blit(self.text_to_show, (self.textX, self.textY))
def change_current_max(self):
self.current_nr = self.max_nr
def change_current_set(self, set_nr):
self.current_nr = set_nr
def change_current_sub(self, sub_nr):
if self.current_nr - sub_nr < 0:
self.current_nr = 0
else:
self.current_nr -= sub_nr
class menu_bar_max(menu_bar):
def __init__(self, game_display, rectX, rectY, rectW, rectH, rectC, barC, max_nr, current_nr, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, barC, max_nr, current_nr, text, textC, font, size, bold, italic)
def change_current_add(self, add_nr):
if self.current_nr + add_nr > self.max_nr:
self.current_nr = self.max_nr
else:
self.current_nr += add_nr
class menu_bar_no_lim(menu_bar):
def __init__(self, game_display, rectX, rectY, rectW, rectH, rectC, barC, max_nr, current_nr, over_max_text, text, textC, font, size, bold, italic):
super().__init__(game_display, rectX, rectY, rectW, rectH, rectC, barC, max_nr, current_nr, text, textC, font, size, bold, italic)
self.over_max_text = over_max_text
def change_current_add(self, add_nr):
self.current_nr += add_nr
class global_var():
def __init__(self, state):
self.state = state
def change_state(self, new_state):
self.state = new_state
| true
|
fa5ded646961aa362414beafda4b7ea8136f28a5
|
Python
|
lettergram/DataProfiler
|
/dataprofiler/validators/base_validators.py
|
UTF-8
| 4,684
| 3.28125
| 3
|
[
"Apache-2.0"
] |
permissive
|
#!/usr/bin/env python
"""
coding=utf-8
Build model for a dataset by identifying type of column along with its
respective parameters.
"""
from __future__ import print_function
from __future__ import division
def is_in_range(x, config):
"""
Checks to see x is in the range of the config.
:param x: number
:type x: int/float
:param config: configuration
:type config: dict
:returns: bool
"""
try:
return config['start'] <= float(x) <= config['end']
except:
raise TypeError("Value is not a float")
def is_in_list(x, config):
"""
Checks to see x is in the config list.
:param x: item
:type x: string
:param config: configuration
:type config: dict
:returns: bool
"""
return float(x) in config
class Validator():
def __init__(self):
self.config = None
self.report = None
self.validation_run = False
self.validation_report = dict()
def validate(self, data, config):
"""
Validate a data set. No option for validating a partial data set.
Set configuration on run not on instantiation of the class such that
you have the option to run multiple times with different configurations
without having to also reinstantiate the class.
:param data: The data to be processed by the validator. Processing
occurs in a column-wise fashion.
:type data: DataFrame Dask/Pandas
:param config: configuration for how the validator should
run across the given data. Validator will only run over columns
specified in the configuration.
:type config: dict
:Example:
This is an example of the config::
config = {
<column_name>: {
range: {
'start': 1,
'end':2
},
list: [1,2,3]
}
}
"""
if not config:
raise ValueError("Config is required")
known_anomaly_validation = config.get('known_anomaly_validation', {})
for iter_key, value in known_anomaly_validation.items():
if len(value) < 1:
raise Warning(
f"Pass at a minimum one value for a specified column "
f"(i.e. iter_key variable) -- not both for {iter_key}")
self.config = config
df_type = config.get('df_type', '').lower()
for iter_key, value in known_anomaly_validation.items():
self.validation_report[iter_key] = dict()
df_series = data[iter_key]
for sub_key, sub_value in value.items():
self.validation_report[iter_key][sub_key] = dict()
if sub_key not in ["range", "list"]:
raise TypeError(
'Range and list only acceptable key values.')
apply_type = is_in_range if sub_key == "range" else is_in_list
if df_type == 'dask':
temp_results = df_series.apply(
apply_type,
meta=(iter_key, 'bool'),
args=(sub_value,))
temp_results = temp_results.compute()
# Dask evaluates this to be an nd array so we have to
# convert it to a normal list
self.validation_report[iter_key][sub_key] = [
idx for idx, val
in enumerate(temp_results.values.tolist()) if val
]
elif df_type == 'pandas':
temp_results = df_series.apply(
apply_type,
args=(sub_value,)
)
self.validation_report[iter_key][sub_key] = [
idx for idx, val in temp_results.items() if val
]
else:
raise ValueError(
'Dask and Pandas are the only supported dataframe '
'types.')
del temp_results
self.validation_run = True
def get(self):
"""
Get the results of the validation run.
"""
if self.validation_run:
return self.validation_report
else:
raise Warning(
"Precondition for get method not met. Must validate data prior "
"to getting results.")
| true
|
55959cb38abe6244116ea968c4ec9e830590b4ca
|
Python
|
mingzeng8/ionization_calculator
|
/ADK_calculator.py
|
UTF-8
| 3,260
| 3.078125
| 3
|
[] |
no_license
|
#calculate the parameters in ADK model
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy.special import gamma
from scipy.constants import c, e, m_e, physical_constants
from fbpic.particles.elementary_process.ionization.read_atomic_data import get_ionization_energies
class ADK_calculator(object):
def __init__( self, element, level_max=None ):
"""
This is mostly copied from fbpic/particles/elementary_process/ionization/ionizer.py
but with some modifications.
Initialize parameters needed for the calculation of ADK ionization rate
Parameters
----------
element: string
The atomic symbol of the considered ionizable species
(e.g. 'He', 'N' ; do not use 'Helium' or 'Nitrogen')
See Chen, JCP 236 (2013), equation (2) for the ionization rate formula
"""
self.set_element(element, level_max)
def set_element( self, element, level_max=None ):
# Get the array of energies
Uion = get_ionization_energies( element )
# Check whether the element string was valid
if Uion is None:
raise ValueError("Unknown ionizable element %s.\n" %element + \
"Please use atomic symbol (e.g. 'He') not full name (e.g. Helium)")
else:
self.element = element
# Determine and set the maximum level of ionization
self.level_max = level_max
if self.level_max is None:
self.level_max = len(Uion)
else:
assert type(self.level_max) is int, "level_max must be integer"
if self.level_max>len(Uion):
raise ValueError("Chosen level_max for {}".format(element) + \
" cannot exceed {}".format(len(Uion)))
# Calculate the ADK prefactors (See Chen, JCP 236 (2013), equation (2))
# - Scalars
alpha = physical_constants['fine-structure constant'][0]
r_e = physical_constants['classical electron radius'][0]
wa = alpha**3 * c / r_e
Ea = m_e*c**2/e * alpha**4/r_e
# - Arrays (one element per ionization level)
UH = get_ionization_energies('H')[0]
Z = np.arange( len(Uion) ) + 1
self.n_eff = n_eff = Z * np.sqrt( UH/Uion )
l_eff = n_eff[0] - 1
self.C2 = C2 = 2**(2*n_eff) / (n_eff * gamma(n_eff+l_eff+1) * gamma(n_eff-l_eff))
# For now, we assume l=0, m=0
self.adk_power = - (2*n_eff - 1)
self.adk_prefactor = wa * C2 * ( Uion/(2*UH) ) \
* ( 2*(Uion/UH)**(3./2)*Ea )**(2*n_eff - 1)
self.adk_exp_prefactor = -2./3 * ( Uion/UH )**(3./2) * Ea
def get_ADK_parameters(self):
return np.transpose([self.adk_prefactor, self.adk_exp_prefactor, self.adk_power])
def ionization_rate(self, E, level=None):
'''
return the ionization rate
'''
if level is None:
return self.adk_prefactor * np.exp(self.adk_exp_prefactor/E) * E**self.adk_power
else:
return self.adk_prefactor[level] * np.exp(self.adk_exp_prefactor[level]/E) * E**self.adk_power[level]
if __name__ == '__main__':
ion=ADK_calculator('O')
print(ion.get_ADK_parameters())
| true
|
aca8078a350790d5cceb7626e0e9e266d3aca80d
|
Python
|
shamoldas/pythonBasic
|
/numpy/empty.py
|
UTF-8
| 269
| 3.796875
| 4
|
[] |
no_license
|
# Python Programming illustrating
# numpy.empty method
import numpy as geek
b = geek.empty(2, dtype = int)
print("Matrix b : \n", b)
a = geek.empty([2, 2], dtype = int)
print("\nMatrix a : \n", a)
c = geek.empty([3, 3])
print("\nMatrix c : \n", c)
| true
|
dd1b6a3bd78415bd3d49561510c29f385b950ca9
|
Python
|
Deadlysmurf/Code-Scraps
|
/t_test_summary_stats.py
|
UTF-8
| 1,276
| 2.8125
| 3
|
[] |
no_license
|
### For t-test hypothesis testing when only summary statistics are provided
## DEPENDANCIES:
## import numpy as np
## import scipy.stats as ss
def t_test(sample_mean, mu, sd, n, alpha, tails):
if tails == 1:
t_critical = (sample_mean-mu)/(sd/(np.sqrt(n)))
pval = ss.t.sf(np.abs(t_critical), n-1)
print("T-critical value: %f" % t_critical)
print("P-value: %f" % pval)
if pval > alpha:
print("As %f is greater than %f, there is insufficent evidence to reject the null hypothesis." % (pval, alpha))
else:
print("As %f is less than %f, there is sufficent evidence to reject the null hypothesis, and accept the alternative." % (pval, alpha))
elif tails == 2:
t_critical = (sample_mean-mu)/(sd/(np.sqrt(n)))
pval = ss.t.sf(np.abs(t_critical), n-1)*2
print("T-critical value: %f" % t_critical)
print("P-value: %f" % pval)
if pval > alpha:
print("As %f is greater than %f, there is insufficent evidence to reject the null hypothesis." % (pval, alpha))
else:
print("As %f is less than %f, there is sufficent evidence to reject the null hypothesis, and accept the alternative." % (pval, alpha))
### March 17, 2018 ###
## MEAK ##
| true
|
9ee6f4db7e25a239e2725a8c95d7cc841b3d9015
|
Python
|
Iammagneat/gl_test_numbers1
|
/count_numbers.py
|
UTF-8
| 170
| 3.3125
| 3
|
[] |
no_license
|
with open('numbers.txt') as file:
text_list = [line.rstrip() for line in file]
x = 0
for i in text_list:
if not i.startswith('#'):
x += float(i)
print(x)
| true
|
734175ef5d647a7f807616e06a1cd73c3c482606
|
Python
|
impelfin/rpi_with_iot
|
/python/p17_if.py
|
UTF-8
| 161
| 3.828125
| 4
|
[] |
no_license
|
a = int(input("Input the First number : "))
b = int(input("Input the Second number : "))
if a > b:
print("Max is %d" % a)
else:
print("Max is %d" % b)
| true
|
c2c6506fcfaa21c79ce94e1b2db30218f6d062dd
|
Python
|
Bootstrap360/RL
|
/environments/gridworld2.py
|
UTF-8
| 10,105
| 2.859375
| 3
|
[] |
no_license
|
import numpy as np
import random, copy, math
import itertools
import scipy.misc
import matplotlib.pyplot as plt
from PIL import Image
import cv2
class gameOb():
def __init__(self,coordinates,size,color,reward,name):
self.x = coordinates[0]
self.y = coordinates[1]
self.size = size
self.color = color
self.name = name
self.reward = reward
class Hero(gameOb):
def __init__(self, coordinates, size, sizeX, sizeY):
self.color = [0,0,255]
super(Hero, self).__init__(coordinates, size, self.color, None,'hero')
self.sizeX = sizeX
self.sizeY = sizeY
def take_action(self, action): # up down left right
if action == 0 and self.y >= 1:
self.y -= 1
if action == 1 and self.y < self.sizeY - 2:
self.y += 1
if action == 2 and self.x >= 1:
self.x -= 1
if action == 3 and self.x < self.sizeX - 2:
self.x += 1
@staticmethod
def get_num_actions():
return 4
class Goal(gameOb):
def __init__(self,coordinates,size):
self.color = [0,255,0]
super(Goal, self).__init__(coordinates,size, self.color,1,'goal')
class Fire(gameOb):
def __init__(self,coordinates,size):
self.color = [255,0,0]
super(Fire, self).__init__(coordinates,size, self.color,-11,'fire')
class GridEnvironment():
def __init__(self, height, width, channels, partial = False):
self.partial = partial
self.height = height
self.width = width
self.channels = channels
self.reset()
def update(self, objects):
self.observation_space = np.zeros([self.height,self.width, self.channels], dtype=int)
hero = None
for item in objects:
for i, val in enumerate(item.color):
self.observation_space[item.y+1:item.y+item.size+1,item.x+1:item.x+item.size+1,i] = val
if item.name == 'hero':
hero = item
if self.partial == True:
self.observation_space = self.observation_space[hero.y:hero.y+3,hero.x:hero.x+3,:]
def reset(self):
if self.partial:
self.observation_space = np.zeros([3, 3, 3], dtype=int)
else:
self.observation_space = np.zeros([self.height,self.width, self.channels], dtype=int)
def get_empty(self):
return np.zeros([self.height,self.width, self.channels], dtype=int)
def get_grid_observations(self, objects):
return self.observation_space
def get_num_states(self):
return self.height * self.width * self.channels
class AbsPositionsEnvironment():
def __init__(self, height, width, channels, partial = False):
self.partial = partial
self.height = height
self.width = width
self.channels = channels
self.reset()
def update(self, objects):
hero = None
goal = None
for i, item in enumerate(objects):
if item.name == 'hero':
hero = item
if item.name == 'goal':
goal = item
self.observation_space = np.array([[hero.x, hero.y, goal.x, goal.y]])
def reset(self):
self.observation_space = self.get_empty()
def get_empty(self):
return np.zeros([1,4], dtype=int)
def get_grid_observations(self, objects):
grid_space = np.zeros([self.height,self.width, self.channels], dtype=int)
hero = None
for item in objects:
for i, val in enumerate(item.color):
grid_space[item.y+1:item.y+item.size+1,item.x+1:item.x+item.size+1,i] = val
return grid_space
def get_num_states(self):
return 4
class DeltaPositionsEnvironment():
def __init__(self, height, width, channels, partial = False):
self.partial = partial
self.height = height
self.width = width
self.channels = channels
self.reset()
def update(self, objects):
hero = None
goal = None
for i, item in enumerate(objects):
if item.name == 'hero':
hero = item
if item.name == 'goal':
goal = item
self.observation_space = np.array([[goal.x - hero.x, goal.y - hero.y]])
def reset(self):
self.observation_space = self.get_empty()
def get_empty(self):
return np.zeros([1,2], dtype=int)
def get_grid_observations(self, objects):
grid_space = np.zeros([self.height,self.width, self.channels], dtype=int)
hero = None
for item in objects:
for i, val in enumerate(item.color):
grid_space[item.y+1:item.y+item.size+1,item.x+1:item.x+item.size+1,i] = val
return grid_space
def get_num_states(self):
return 2
class GameEnv():
def __init__(self, partial, size, state_type = 'image'):
self.actions = 4
self.objects = []
self.partial = partial
self.height = size
self.width = size
self.channels = 3
self.state_type = state_type
self.min_distance = 1000000
self.env = DeltaPositionsEnvironment(size, size, 3)
self.max_reward = math.sqrt(size * size * 2)
self.reset()
a = self.env.get_grid_observations(self.objects)
plt.imshow(a,interpolation="nearest")
def get_num_states(self):
return self.env.get_num_states()
@staticmethod
def get_num_actions():
return Hero.get_num_actions()
def get_state(self):
self.env.update(self.objects)
return self.env.observation_space
def reset(self):
self.objects = []
hero = Hero(self.newPosition(),1, self.width, self.height)
self.objects.append(hero)
for i in range(1):
goal = Goal(self.newPosition(),1)
self.objects.append(goal)
for i in range(0):
fire = Fire(self.newPosition(),1)
self.objects.append(fire)
return self.get_state()
def take_action(self,action):
hero = self.objects[0]
heroX = hero.x
heroY = hero.y
penalize = 0.0
hero.take_action(action)
if hero.x == heroX and hero.y == heroY:
penalize = 0.0
self.objects[0] = hero
return penalize
def newPosition(self):
iterables = [ range(self.width-1), range(self.height-1)]
points = []
for t in itertools.product(*iterables):
points.append(t)
currentPositions = []
for objectA in self.objects:
if (objectA.x,objectA.y) not in currentPositions:
currentPositions.append((objectA.x,objectA.y))
for pos in currentPositions:
points.remove(pos)
location = np.random.choice(range(len(points)),replace=False)
return points[location]
@staticmethod
def get_distace(target, hero):
return math.sqrt(math.pow(target.x - hero.x, 2) + math.pow(target.y - hero.y, 2))
@staticmethod
def _get_correct_action(target, hero):
if(target.y < hero.y):
return 0
if(target.y > hero.y):
return 1
if(target.x < hero.x):
return 2
if(target.x > hero.x):
return 3
def get_correct_action(self):
others = []
for obj in self.objects:
if obj.name == 'hero':
hero = obj
else:
others.append(obj)
ended = False
target = others[0]
return GameEnv._get_correct_action(target, hero)
def check_goal(self, action):
others = []
for obj in self.objects:
if obj.name == 'hero':
hero = obj
else:
others.append(obj)
ended = False
target = others[0]
correct_action = GameEnv._get_correct_action(target, hero)
reward = 0
if action == correct_action:
reward = 1
else:
reward = 0
# distance = GameEnv.get_distace(target, hero)
# if distance != 0:
# reward = (1.0 / distance) / self.max_reward
# if distance < self.min_distance and distance != 0:
# reward = 0.1
# self.min_distance = distance
if hero.x == target.x and hero.y == target.y:
self.objects.remove(target)
self.objects.append(Goal(self.newPosition(),1))
self.min_distance = 100000000
return 1, True
return reward, False
# for other in others:
# if hero.x == other.x and hero.y == other.y:
# self.objects.remove(other)
# if other.reward == 1:
# self.objects.append(Goal(self.newPosition(),1))
# # else:
# # self.objects.append(gameOb(self.newPosition(),1,1,self.colors['fire'],-1,'fire'))
# return 1, True
def render_env(self):
a = copy.deepcopy(self.env.get_grid_observations(self.objects))
render_height = 128 * 2
render_width = 128 * 2
b = scipy.misc.imresize(a[:,:,0],[render_width, render_height, 1],interp='nearest')
c = scipy.misc.imresize(a[:,:,1],[render_width, render_height, 1],interp='nearest')
d = scipy.misc.imresize(a[:,:,2],[render_width, render_height, 1],interp='nearest')
a = np.stack([b,c,d],axis=2)
return a
def render(self):
rendered_env = self.render_env()
cv2.imshow('game', rendered_env)
cv2.waitKey(100)
def step(self,action):
penalty = self.take_action(action)
reward, done = self.check_goal(action)
state = self.get_state()
info = 'I dont know'
if reward == None:
print(done)
print(reward)
print(penalty)
return state,(reward+penalty),done, info
else:
return state,(reward+penalty),done, info
| true
|
db71ec188766bf306982476b1f7c1715afe7a993
|
Python
|
Teenspirit-Hao/Discrete-Event-Simulator
|
/model.py
|
UTF-8
| 1,660
| 2.671875
| 3
|
[] |
no_license
|
import numpy as np
import os
import random
"""
Machines are created here
Whenever you use the machine release it
"""
class Machine(object):
def __init__(self, name):
self.machineID = int(name)
self.machineName = "Machine_"+str(name)
self.machineBusy = False
self.jobOverTime = 0
self.now = 0
self.jobsDone = []
def processJob(self, jobID, time, pTime):
# check if machine is busy or not
assert self.machineBusy == False
self.onJob = jobID
self.now = time
self.processTime = pTime
# import pdb; pdb.set_trace()
self.jobOverTime = self.now + self.processTime
self.machineBusy = True
return
def releaseMachine(self):
# check if currently in use
assert self.machineBusy == True
self.jobsDone.append(self.onJob)
self.machineBusy = False
return
"""
Jobs are created here
Always use the job then release it too
"""
class Jobs(object):
def __init__(self, name):
self.jobID = name
self.jobName = "Job_"+str(name)
self.jobBusy = False
self.processDetails = []
self.noOfProcess = 0
self.now = 0
self.machineVisited = 0
def getProcessed(self):
# print("{} requested".format(self.jobName))
assert self.jobBusy == False
self.jobBusy = True
return
def releaseJob(self):
# print("{} released".format(self.jobName))
assert self.jobBusy == True
self.machineVisited += 1
self.jobBusy = False
return
| true
|
09044b8a8fcc699a61a9bc9fbf7a6d39f10fa07b
|
Python
|
pbharathkoundinya/CSD-LAB
|
/CSD LAB/Lab 1/problem4.py
|
UTF-8
| 252
| 3.234375
| 3
|
[] |
no_license
|
l=[]
n=int(input("enter no.of elements :"))
for i in range(n):
i=int(input("enter element :"))
l.append(i)
d=max(l)
a=[]
l.remove(max(l))
for i in l:
a.append(i)
s=2*max(a)
if d>=s:
print("true")
else:
print("false")
| true
|
10febffda3220a7edaf2fe9c65f3d6fe7edd3937
|
Python
|
laiy/Distributed_Computing
|
/wsgi/wsgi_app_on_tornado.py
|
UTF-8
| 433
| 2.515625
| 3
|
[] |
no_license
|
import tornado.web
import tornado.httpserver
import tornado.wsgi
def simple_app(environ, start_response):
status = "200 OK"
response_headers = [("Content-type", "text/plain")]
start_response(status, response_headers)
return ["Hello world!\n"]
container = tornado.wsgi.WSGIContainer(simple_app)
http_server = tornado.httpserver.HTTPServer(container)
http_server.listen(8888)
tornado.ioloop.IOLoop.current().start()
| true
|
536e1643495f44085345c591facd6f46371452e2
|
Python
|
Dwape/domotics
|
/back/webapp/read_db.py
|
UTF-8
| 2,896
| 3.1875
| 3
|
[] |
no_license
|
#!/usr/bin/python
#import MySQLdb
import pymysql
pymysql.install_as_MySQLdb()
import datetime
#cur = None # Database cursor
db = None # A reference to the database
def connect():
'''
Connects to the database use to store sensore values.
'''
global db
db = pymysql.connect(host="localhost", # your host, usually localhost
user="root", # your username
passwd="tpintrocom", # your password
db="domotics") # name of the data base
#global cur
cur = db.cursor()
cur.execute("SELECT * FROM data")
cur.close()
def close_connection():
'''
Closes the connection to the database.
'''
db.close()
def get_latest_values():
'''
Returns the latest values saved in the database.
:return: str[]
The latest values in the database
A list of six elements with all the values.
The elements represent (in this order): humidity, temperature, LPG amount, CO amount, Smoke, light.
'''
#connect()
#cur = db.cursor()
#result = cur.fetchall()[0]
#cur.close()
cur = db.cursor()
cur.execute("SELECT * FROM data ORDER BY datetime DESC") # This for some reason fixes the cursor problem
result = cur.fetchall()[0]
cur.close()
return result
def get_range_values(fromDate, toDate):
'''
Returns all the values saved in the database from the first date to the second date.
The dates passed as method parameters must be in the following format.
'YYYY-MM-DD HH:MI:SS'
For example: '2008-11-11 13:23:44'
:param fromDate: str
A string representing the starting date.
:param toDate: str
A string representing the end date.
:return: str[[]]
The values in the database withing the specified date range.
A list with lists of six elements with all the values.
The elements represent (in this order): humidity, temperature, LPG amount, CO amount, Smoke, light.
'''
#connect()
#cur = db.cursor()
cur = db.cursor()
cur.execute("SELECT * FROM data WHERE (datetime > " + fromDate + " AND datetime < " + toDate +") ORDER BY datetime DESC")
result = cur.fetchall()
cur.close()
#cur.close()
return result # Check if the return value is correct or we need to remove the last value (like we do in get_latest_values())
def save_values(values):
'''
Saves the values passed as function parameter to the database
:param values: str[]
A list of six elements with all the values to be saved.
The elements represent (in this order): humidity, temperature, LPG amount, CO amount, Smoke, light.
'''
cur = db.cursor()
cur.execute("INSERT INTO data VALUES (%s, %s, %s, %s, %s, %s, %s)", (datetime.datetime.now(), values[0], values[1], values[2], values[3] ,values[4], values[5]))
cur.close()
db.commit()
| true
|
073336cf5dafa02e3eef78460604fb7ec33d0945
|
Python
|
Moenupa/MINEWORLDY
|
/titanic/sklearnimputer.py
|
UTF-8
| 2,209
| 2.609375
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
# @Author: Moenupa 2019/05/21
import pandas as pd
import numpy as np
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer, SimpleImputer
from sklearn.impute import KNNImputer
def func_procs():
try:
dir = "C:\\Github\\MINEWORLDY\\titanic\\"
X_train = pd.read_csv(open(dir + "train.csv")).loc[
:,
["PassengerId", "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
]
y_train = pd.read_csv(open(dir + "train.csv")).loc[
:,
"Survived"
]
X_test = pd.read_csv(open(dir + "test.csv")).loc[
:,
["PassengerId", "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
]
except ValueError:
print("VE")
except FileNotFoundError:
print("FE")
X_train.loc[X_train['Sex']=='male','Sex'] = 1
X_train.loc[X_train['Sex'] == 'female', 'Sex'] = 2
X_train.loc[X_train['Embarked'] == 'S', 'Embarked'] = 1
X_train.loc[X_train['Embarked'] == 'C', 'Embarked'] = 2
X_train.loc[X_train['Embarked'] == 'Q', 'Embarked'] = 3
X_test.loc[X_test['Sex'] == 'male','Sex'] = 1
X_test.loc[X_test['Sex'] == 'female', 'Sex'] = 2
X_test.loc[X_test['Embarked'] == 'S', 'Embarked'] = 1
X_test.loc[X_test['Embarked'] == 'C', 'Embarked'] = 2
X_test.loc[X_test['Embarked'] == 'Q', 'Embarked'] = 3
# 数据映射
#imp_mean = IterativeImputer(random_state=0)
#imp_mean.fit(X_train)
#imp_mean.transform(X_train)
#imp_mean.transform(X_test)
age_median = X_train["Age"].median()
fare_median = X_train["Fare"].median()
emb_median = X_train["Embarked"].median()
X_train = X_train.fillna({'Age': age_median, 'Fare': fare_median, 'Embarked': emb_median})
X_test = X_test.fillna({'Age':age_median, 'Fare':fare_median, 'Embarked':emb_median})
X_train = X_train.to_csv(dir + "X_train_median_proc.csv")
X_test = X_test.to_csv(dir + "X_test_median_proc.csv")
print("Output Complete.")
#X_train_child = X_train.loc[X_test['Age'] <= 18, 'Age']
if __name__ == "__main__":
func_procs()
| true
|
da7348722198a214518ffb9dc426529b8a862c6f
|
Python
|
shazack/LeetCode-Pythonsolns-
|
/reverseVowels.py
|
UTF-8
| 1,186
| 3.578125
| 4
|
[] |
no_license
|
class Solution(object):
def reverseVowels(self, s):
vowels = ('a','e','i','o','u','A','E','I','O','U')
if len(s)==0:
return ""
r = list(s)
start=0
end=len(s)-1
while start!=end or start+1==end:
#both consonants
if r[start] not in vowels and r[end] not in vowels:
if start+1 == end or end-1 == start:
break
start += 1
end -= 1
#print "if1",start,end
#one ptr - vowel one ptr - consonant
elif (r[start] in vowels and r[end] not in vowels):
end -= 1
#print "if2", start, end
elif (r[end] in vowels and r[start] not in vowels):
start += 1
#print "if3", start, end
elif (r[start] in vowels and r[end] in vowels):
r[start],r[end] = r[end],r[start]
#print "if4", start, end
if start == end or start+1==end or end-1==start:
break
start += 1
end -= 1
return ''.join(r)
| true
|
fd12bbd584d6976f93c98517494ed4ea1d40eb50
|
Python
|
renukadeshmukh/Leetcode_Solutions
|
/142_LinkedListCycleII.py
|
UTF-8
| 1,974
| 4.25
| 4
|
[] |
no_license
|
'''
142. Linked List Cycle II
Given a linked list, return the node where the cycle begins. If there is no
cycle, return null.
To represent a cycle in the given linked list, we use an integer pos which
represents the position (0-indexed) in the linked list where tail connects to.
If pos is -1, then there is no cycle in the linked list.
Note: Do not modify the linked list.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: tail connects to node index 1
Explanation: There is a cycle in the linked list, where tail connects to the
second node.
Example 2:
Input: head = [1,2], pos = 0
Output: tail connects to node index 0
Explanation: There is a cycle in the linked list, where tail connects to the
first node.
Example 3:
Input: head = [1], pos = -1
Output: no cycle
Explanation: There is no cycle in the linked list.
Follow up:
Can you solve it without using extra space?
'''
'''
ALGORITHM:
1. Traverse linked list using two pointers - fast and slow.
2. Move one pointer by one and other pointer by two.
3. If these pointers meet at same node then there is a loop.
If pointers do not meet then linked list doesn’t have loop.
4. If a loop is found, initialize slow pointer to head, let fast pointer be at
its position.
5. Move both slow and fast pointers one node at a time.
6. The point at which they meet is the start of the loop.
RUNTIME COMPLEXITY: O(N)
SPACE COMPLEXITY: O(1)
'''
class Solution(object):
def detectCycle(self, head):
"""
:type head: ListNode
:rtype: ListNode
"""
fast = slow = head
is_cycle = False
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast:
is_cycle = True
break
if is_cycle:
slow = head
while slow != fast:
slow = slow.next
fast = fast.next
return slow
return None
| true
|
b54efff3d63c72f2d7678de530f8727c6ea9b594
|
Python
|
harshit0810/Acadview-Python-Assignments
|
/Assignment-4/solution.py
|
UTF-8
| 774
| 4.21875
| 4
|
[] |
no_license
|
#QUESTION-1
list1=[23,34,553,542]
print(list1[::-1])
#QUESTION-2
string1='Game Of Thrones'
for i in string1:
if(i.isupper()):
print(i,end=' ')
print()
#QUESTION-3
string2=input("Enter the list:- ")
string2=string2.split(',')
list2=[]
for i in string2:
list2.append(int(i))
print(list2)
#QUESTION-4
string3=input("Enter string:- ")
if(string3==string3[::-1]):
print("Palindromic no.")
else:
print("Not Palindromic no.")
#QUESTION-5
import copy
li1 = [1,2,[3,5],4]
li2 = copy.copy(li1)
print ("The original elements before shallow copying")
for i in range(0,len(li1)):
print (li1[i],end=" ")
print("\r")
li2[2][0] = 7
print ("The original elements after shallow copying")
for i in range(0,len( li1)):
print (li1[i],end=" ")
| true
|
af2bce3e12318369dcd612b306c39d93518901b5
|
Python
|
joanaosoriosousa/small-python-projects
|
/tic-tac-toe.py
|
UTF-8
| 6,230
| 4.375
| 4
|
[
"MIT"
] |
permissive
|
import random
game_board = """
{} | {} | {}
---------
{} | {} | {}
---------
{} | {} | {}
"""
def display_board(board):
print(game_board.format(*board))
def ask_player_name():
player1 = input("Player 1, what's your name? \n")
player2 = input("Player 2, what's your name? \n")
return player1, player2
# Function that selects randomly which is thr first player
def choose_first():
return random.randint(1, 2)
# Function that saves the input player
def player_marker(player1):
available_choices = ['X', 'O']
# While the result is not X or O, it keeps asking for the correct input.
while True:
if (player1 := input(f'{first_player}, please select X or O: ')) not in available_choices:
print(f'\nSorry {first_player}, but you did not select X or O. Please try again.')
else:
player2 = 'X' if player1 == 'O' else 'O'
return player1, player2
# Function that receives the user choice 'X' or 'O' and position 1-9 and updates the board
def place_marker(board, marker, position):
board[position-1] = marker
display_board(board)
return board
def player_position(board, name):
position = 0
while True:
try:
position = int(input(f'{name}, please choose a position (1-9): '))
except ValueError:
print(f'\nSorry {name}, but you did not select a position between 1 and 9. Please try again.')
continue
# Check if the input position is a digit between 1 and 9
if not 1 <= position <= 9:
print(f'\nSorry {name}, but you did not select a position between 1 and 9. Please try again.')
continue
# Check if the position is not available taken
if board[position-1] != ' ':
print(f'\nSorry {name}, but that position is already taken. Please try again.')
continue
else:
break
return position
# Function that checks if the player has won. Returns True if yes.
def win_check(board, marker):
# Check diagonals
if board[0] == marker and board[4] == marker and board[8] == marker:
return True
if board[2] == marker and board[4] == marker and board[6] == marker:
return True
# Check horizontal positions
if board[0] == marker and board[1] == marker and board[2] == marker:
return True
if board[3] == marker and board[4] == marker and board[5] == marker:
return True
if board[6] == marker and board[7] == marker and board[8] == marker:
return True
# Check vertical positions
if board[0] == marker and board[3] == marker and board[6] == marker:
return True
if board[1] == marker and board[4] == marker and board[7] == marker:
return True
if board[2] == marker and board[5] == marker and board[8] == marker:
return True
return False
# Function that checks if the board is full. Returns True if full, False otherwise.
def full_board_check(board):
print(board)
for position in board:
# The board is not full. There is at least one position available.
if position == ' ':
return False
# The board is full.
return True
# Function that asks the player if they want to play again and returns True if they want
def replay():
choice = ' '
available_choices = ['Y', 'N']
while True:
choice = input('Would you like to play again? Please select Y or N: \n')
if choice not in available_choices:
print('Sorry, but you did not select Y or N. Please try again.')
elif choice == 'Y':
return True
else:
return False
# MAIN
print('Welcome to Tic Tac Toe Game!')
# Show the board index positions
positions_board = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
display_board(positions_board)
# Begin the game with an empty board
board = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
playing = True
game_on = True
while playing:
# Randomly selecting which player is playing first
p1_name, p2_name = ask_player_name()
if choose_first() == 1:
first_player = p1_name
second_player = p2_name
print(f"\n{p1_name} is playing first.")
else:
first_player = p2_name
second_player = p1_name
print(f"\n{p2_name} is playing first.")
# The first player chooses the marker X or O
first_marker, second_marker = player_marker(first_player)
while game_on:
# FIRST PLAYER'S TURN
# First Player chooses the position to place the marker
first_position = player_position(board, first_player)
# The board is updated
board = place_marker(board, first_marker, first_position)
# Check if the first player has won the game
if win_check(board, first_marker):
print(f'Congratulations, {first_player}! You won!\n')
if replay():
board = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
break
else:
playing = False
break
# Check if all the positions are completed
if full_board_check(board):
print('GAME OVER')
if replay():
board = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
break
else:
playing = False
break
# SECOND PLAYER'S TURN
second_position = player_position(board, second_player)
board = place_marker(board, second_marker, second_position)
if win_check(board, second_marker):
print(f'Congratulations, {second_player}! You won!\n')
if replay():
board = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
break
else:
playing = False
break
# Check if all the positions are completed
if full_board_check(board):
print('GAME OVER')
if replay():
board = [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']
break
else:
playing = False
break
# if __name__ == '__main__':
# main()
| true
|
006ca52082311ef223ecdb1ebb36ecb59e540c04
|
Python
|
EduardoAlbert/python-exercises
|
/Mundo 2 - Estruturas de controle/057-065 Estrutura de repetição while/ex065.py
|
UTF-8
| 449
| 3.71875
| 4
|
[] |
no_license
|
opcao = ''
c = 0
soma = 0
lista = []
media = 0
while opcao in 'S':
valor = int(input('\033[36mDigite um número: '))
lista.append(valor)
c += 1
soma += valor
opcao = str(input('\033[30mQuer continuar [S|N]? ')).strip().upper()[0]
media = soma / c
print('\033[31mA média entre todos o valores é {}'.format(media))
print('\033[33mO maior valor é {}'.format(max(lista)))
print('\033[34mO menor valor é {}'.format(min(lista)))
| true
|
e2d3d22f35f4c8c976941e4a3a082eb6de73133d
|
Python
|
peskin55/PythonProgramming1
|
/Zachary_Peskin_Final_Programming_Assignment.py
|
UTF-8
| 3,185
| 2.96875
| 3
|
[] |
no_license
|
#!/usr/bin/env python
from bs4 import BeautifulSoup
from re import findall
from urllib.parse import urljoin
from urllib.parse import urlparse
from html.parser import HTMLParser
from urllib.request import urlopen
class Vocab(HTMLParser):
def __init__(self, url):
HTMLParser.__init__(self)
self.url = url
self.links = []
def handle_starttag(self, tag, attrs):
if tag == 'a':
for attribs in attrs:
if attribs[0] == "href":
absolute = urljoin(self.url, attribs[1])
if absolute[:4] == 'http':
self.links.append(absolute)
def getlinks(self):
return self.links
def decode_url(url):
analysis = urlopen(url).read().decode()
importer = Vocab(url)
importer.feed(analysis)
finished = importer.getlinks()
return finished
has_been_viewed = set()
def parse_dictionary(url):
vocab = []
for link in range(len(url)):
path = urlparse(url[link]).path
word = path[8:]
print("Parsing info for " + word + ".")
vocab.append([word, ""])
return vocab
def delete_duplicates(url):
new_list = []
global has_been_viewed
unique = decode_url(url)
unique.sort()
has_been_viewed.add(url)
for uniq in unique:
if uniq not in has_been_viewed:
try:
has_been_viewed.add(uniq)
if findall("http://dictionary.reference.com/browse/+",uniq) != []:
new_list.append(uniq)
except:
pass
return new_list
def change_definition(list):
terms = []
for n in range(len(list)):
terms.append(list[n][0])
update_vocab = input("Would you like to update a definition (Y/N)? ")
while update_vocab in ["Y", "Yes", "y", "yes"]:
term = input("Term: ")
if term in terms:
index = terms.index(term)
list.pop(index)
new_def = input("Definition: ")
list.insert(index, [term,new_def])
else:
print("ERROR! Term not found.")
return change_definition(list)
edited_list = list
return edited_list
story_path = input("What's the short story path? ")
full_url = "http://classicshorts.com/stories/" + story_path + ".html"
try:
test = urlopen(full_url)
deflist = delete_duplicates(full_url)
if len(deflist) > 0:
vocablist = parse_dictionary(deflist)
print("Short story found. There are " + str(len(vocablist)) + " unique vocabulary words.")
updated_list=change_definition(vocablist)
file_export = input("What would you like to save the file as? ")
outfile = open(file_export,'w')
words = []
for k in range(len(vocablist)):
words.append(vocablist[k][0])
cell_size = len(max(words, key = len))
row_format = "{:<" + str(cell_size) + "} - {}\n"
for line in range(len(updated_list)):
outfile.writelines(row_format.format(updated_list[line][0],updated_list[line][1]))
print("File saved!")
else:
print("Short story found. There are no vocabulary words.")
except:
print("Short story not found.")
| true
|
b4a42fb58d1ef59e54a3be25ac257f0b53bd33cf
|
Python
|
amolpandit38/fingercursor
|
/handTrackingModule.py
|
UTF-8
| 4,363
| 3.140625
| 3
|
[] |
no_license
|
"""------------------Creating Hand trackig Package----------------------------"""
import cv2
import mediapipe as np
import time
import math
"""-------------------------------Creation of Hand_Detection Class---------------------------------"""
"""
Methods inside Hand Detection Class
1.findHands() :- Detect No of Hands Inside The Frame
2.FindPosition() :- Find location Of Hands Points
3. FingerUp() :- Count Number Of Finger Up
4. Distance() :- Find Distance Between Two Points Of Finger's
"""
class handDetector:
def __init__(self, mode=False, maxHands=2, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.trackCon = trackCon
self.npHands = np.solutions.hands
self.hands = self.npHands.Hands(
self.mode, self.maxHands, self.detectionCon, self.trackCon
)
self.npDraw = np.solutions.drawing_utils
self.tipIds = [4, 8, 12, 16, 20]
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLMS in self.results.multi_hand_landmarks:
if draw:
self.npDraw.draw_landmarks(
img, handLMS, self.npHands.HAND_CONNECTIONS
)
return img
def findPosition(self, img, handNo=0, draw=True):
xList = []
yList = []
bbox = []
self.lmlist = []
if self.results.multi_hand_landmarks:
myhand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myhand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
# print(id,cx,cy)
xList.append(cx)
yList.append(cy)
self.lmlist.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 7, (255, 0, 255), cv2.FILLED)
Xmin, Xmax = min(xList), max(xList)
Ymin, Ymax = min(yList), max(yList)
bbox = Xmin, Ymin, Xmax, Ymax
if draw:
cv2.rectangle(
img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2
)
return self.lmlist, bbox
def fingerUp(self):
finger = []
# Thumb
if self.lmlist[self.tipIds[0]][1] < self.lmlist[self.tipIds[0] - 1][1]:
finger.append(0)
else:
finger.append(1)
# 4 finger
for id in range(1, 5):
if self.lmlist[self.tipIds[id]][2] < self.lmlist[self.tipIds[id] - 2][2]:
finger.append(1)
else:
finger.append(0)
return finger
def Distance(self, img, Top_1, Top_2, draw=True):
x1, y1 = self.lmlist[Top_1][1:]
x2, y2 = self.lmlist[Top_2][1:]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
length = math.hypot(x1 - x2, y1 - y2)
if draw:
cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.circle(img, (x1, y1), 7, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 7, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), 7, (0, 0, 255), cv2.FILLED)
return (length, img, [x1, y1, x2, y2, cx, cy])
"""--------------------------Main Function-----------------------------------"""
def main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handDetector()
while True:
success, img = cap.read()
img = detector.findHands(img)
lmlist = detector.findPosition(img)
if len(lmlist) != 0:
print(lmlist[4])
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(
img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_COMPLEX, 3, (0, 255, 170), 2
)
cv2.imshow("output", img)
if cv2.waitKey(1) == 27:
break
if __name__ == "__main__":
main()
| true
|
e0c5795434c4aec4a669371f5cc6dbe6f6c79d33
|
Python
|
RJHarvest/book-web-scraper
|
/scrapeInfo.py
|
UTF-8
| 1,244
| 3.328125
| 3
|
[] |
no_license
|
import requests
import pandas as pd
from bs4 import BeautifulSoup
def main():
titles = []
prices = []
ratings = []
for i in range(1,51):
html_page = requests.get(f'http://books.toscrape.com/catalogue/page-{i}.html')
content = html_page.content
soup = BeautifulSoup(content, 'html.parser')
book_sections = soup.find_all('article', class_='product_pod')
for book in book_sections:
title = book.h3.a.get('title')
price = book.find('p', class_='price_color').text
rating = getRating(book.p.get('class')[1])
# append to array to store all
titles.append(title)
prices.append(price)
ratings.append(rating)
df = pd.DataFrame({
'titles': titles,
'prices': prices,
'ratings': ratings,
})
df.to_csv('bookinfo.csv', index=False)
def getRating(strRating):
if (strRating == 'One'):
return 1
elif (strRating == 'Two'):
return 2
elif (strRating == 'Three'):
return 3
elif (strRating == 'Four'):
return 4
elif (strRating == 'Five'):
return 5
else:
return None
if __name__ == '__main__':
main()
| true
|
b593f6e13c384045c0dcdb719d6fa4003551caf8
|
Python
|
ypark54/Python
|
/discord_test/keyboard_test.py
|
UTF-8
| 95
| 2.703125
| 3
|
[] |
no_license
|
import keyboard
while True:
a = keyboard.read_key()
#print(a)
| true
|
ade8e27ddc455e3e6d82dec3ecf0b01988ba42d1
|
Python
|
matiasimc/RedesNeuronales
|
/tarea1/src/Network.py
|
UTF-8
| 1,497
| 2.9375
| 3
|
[] |
no_license
|
from Layer import *
class NeuralNetwork:
def __init__(self, opts):
self.learningRate = opts.learningRate
self.iterations = opts.iterations
self.layers = []
self.layers.append(Layer(opts.input_size, opts.input_size))
for (i, c) in enumerate(opts.hidden_layers):
self.layers.append(Layer(len(self.layers[len(self.layers)-1].neurons), c))
self.layers.append(OutputLayer(len(self.layers[len(self.layers)-1].neurons), opts.output_size))
def feed(self, inputs):
data = inputs
for l in self.layers:
data = l.feed(data)
def backpropagate(self, expected_output):
for (i,l) in enumerate(reversed(self.layers)):
if i != 0:
l.backpropagate(expected_output, self.layers[len(self.layers)-i])
else:
l.backpropagate(expected_output, None)
def update(self, inputs):
data = inputs
for l in self.layers:
data = l.update(data, self.learningRate)
def learn(self, data_set):
for i in range(self.iterations):
for d in data_set:
self.feed(d["input"])
self.backpropagate(d["output"])
self.update(d["input"])
def calculate(self, test):
self.feed(test)
return [n.output for n in self.layers[len(self.layers) -1].neurons]
def predict(self,test):
output = self.calculate(test)
return output.index(max(output))
| true
|
b02714461499f2c5976014c7d94bb4bfaf84a1b1
|
Python
|
LakhanShanker/TextConvertor
|
/speechToText.py
|
UTF-8
| 975
| 3.375
| 3
|
[] |
no_license
|
import speech_recognition as speech
def takeCommand(): #method to take audio
r = speech.Recognizer() #recognizer class of speech recognition
with speech.Microphone() as source: #taking input through microphone
r.adjust_for_ambient_noise(source) #adjusting noise
print("Listening.....")
audio = r.listen(source)
try:
query = r.recognize_google(audio) #google api to recognise audio
print(f"User said : {query}\n")
with open('textFile.txt','a+') as t: #opening file and appending to it
if 'thank you' not in query:
t.write("\n" + query) #writing in file
except Exception as e:
print("Sorry I cannot hear this properly, Say that again please....")
return "None"
return query
if __name__ == '__main__': #main method
while(True):
query = takeCommand().lower()
if 'thank you' in query:
exit()
| true
|
ebc456fcb0bf5c1381cb041a38b34ca24caef050
|
Python
|
kbala42ylv/ebabot
|
/classes/browser.py
|
UTF-8
| 2,250
| 2.515625
| 3
|
[] |
no_license
|
from selenium import webdriver
from selenium.common.exceptions import NoSuchElementException
from selenium.common.exceptions import TimeoutException
from selenium.common.exceptions import StaleElementReferenceException
from selenium.webdriver.support.ui import WebDriverWait
import classes.log as log
import settings
chromedriver_path = settings.driver_path
web_headless = settings.web_headless
web_profile = settings.web_profile
web_implicitly_wait = settings.web_implicitly_wait
web_size = settings.web_size
class Browser(object):
"""docstring for Browser"""
def __init__(self, user):
super(Browser, self).__init__()
self.options = webdriver.ChromeOptions()
self.options.add_experimental_option("excludeSwitches", ["enable-logging"])
self.options.headless = web_headless
self.options.add_argument("user-data-dir={}\\{}".format(web_profile,user['name']))
self.__web = webdriver.Chrome(chromedriver_path, options=self.options)
self.__web.implicitly_wait(web_implicitly_wait)
if web_size == "max":
self.__web.maximize_window()
else:
self.__web.set_window_size(web_size[0], web_size[1])
log.write("Tarayıcı varsayılan ayarlarda açıldı.", "header")
log.write("<blue>Gizli mi?:</> {}".format("Evet" if web_headless else "Hayır"))
def get(self):
return self.__web
def wait(self, ec, seconds = 300, isNot = False):
try:
ignored_exceptions=(NoSuchElementException,StaleElementReferenceException,)
wait = WebDriverWait(self.__web, seconds,ignored_exceptions=ignored_exceptions)
if isNot:
return wait.until_not(ec)
return wait.until(ec)
except TimeoutException:
return False
def element(self, xpath, multiple = False):
try:
if multiple == True:
element = self.__web.find_elements_by_xpath(xpath)
else:
element = self.__web.find_element_by_xpath(xpath)
except NoSuchElementException:
return False
return element
def switchTab(self, tab):
self.__web.switch_to.window(self.__web.window_handles[tab])
| true
|
b9ff020e560202b96093a4d1844f6f4e428a79a4
|
Python
|
Data-Tach/ML-4-e
|
/operations-on-opencv/ex2.py
|
UTF-8
| 207
| 2.5625
| 3
|
[
"MIT"
] |
permissive
|
# Blur image
import cv2
import imutils
img = cv2.imread("resizeImg.png")
gaussianBlur = cv2.GaussianBlur(img, (21,21), 0)
cv2.imshow("gaussianBlur.png", gaussianBlur)
cv2.waitKey(0)
cv2.destroyAllWindows()
| true
|
fcbd4a19dc0269f8b94b3b1b1000b79ae3a2ad7a
|
Python
|
yangyuxiang1996/leetcode
|
/out/production/leetcode/225.用队列实现栈.py
|
UTF-8
| 1,305
| 3.75
| 4
|
[] |
no_license
|
#
# @lc app=leetcode.cn id=225 lang=python3
#
# [225] 用队列实现栈
#
# @lc code=start
from collections import deque
class MyStack:
def __init__(self):
"""
Initialize your data structure here.
"""
self.deque1 = deque()
self.deque2 = deque()
def push(self, x: int) -> None:
"""
Push element x onto stack.
"""
self.deque1.append(x)
def pop(self) -> int:
"""
Removes the element on top of the stack and returns that element.
这里只能利用deque的popleft方法,因此需要deque2存储
"""
size = len(self.deque1)
while size > 1:
self.deque2.append(self.deque1.popleft())
size -= 1
tmp = self.deque1.popleft()
self.deque1, self.deque2 = self.deque2, self.deque1
return tmp
def top(self) -> int:
"""
Get the top element.
"""
return self.deque1[-1]
def empty(self) -> bool:
"""
Returns whether the stack is empty.
"""
return len(self.deque1) == 0
# Your MyStack object will be instantiated and called as such:
# obj = MyStack()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.top()
# param_4 = obj.empty()
# @lc code=end
| true
|
7ab93dbabb0b11f2e22e6bb98cbee14e33a7c288
|
Python
|
qiufengdiewu/LPInsider
|
/039description2POS.py
|
UTF-8
| 2,441
| 2.734375
| 3
|
[
"Apache-2.0"
] |
permissive
|
# coding=utf-8
import stanfordcorenlp
import pandas as pd
"""
注释一是将lncrinter的正样本作为训练集
"""
def precess(description):
description = description.replace('(', ' ')
description = description.replace(',', ' ')
description = description.replace(')', ' ')
description = description.replace('.', ' ')
description = description.replace("'", ' ')
description = description.replace(':', ' ')
description = description.replace('[', ' ')
description = description.replace(']', ' ')
description = description.replace('/', ' ')
return description
#将正负样本转换成Stanford ner可以处理的格式
if __name__ == '__main__':
path = 'I:/stanford_parser/stanford-corenlp-full-2018-10-05'
nlp = stanfordcorenlp.StanfordCoreNLP(path)
sample = pd.read_csv('./in/pos_neg_sample.txt', sep='\t', header=None)
f = open("./out/039sample2wordPOS.txt","w")
for i in range(len(sample)):
lncRNA = str(sample[0][i])
protein = str(sample[1][i])
description = str(sample[2][i])
sentence = precess(description)
sentence_pos = nlp.pos_tag(sentence)
for i in range(len(sentence_pos)):
word = sentence_pos[i][0]
if word == lncRNA:
f.write(word +"\tlncRNA\n")
elif word == protein:
f.write(word+"\tprotein\n")
else:
pos = sentence_pos[i][1]
f.write(word+"\t"+pos+"\n")
nlp.close()
"""#注释一
if __name__ == '__main__':
path = 'I:/stanford_parser/stanford-corenlp-full-2018-10-05'
nlp = stanfordcorenlp.StanfordCoreNLP(path)
sample = pd.read_csv('./in/pos_sample.txt', sep='\t', header=None)
f = open("./out/039description2wordPOS.txt","w")
for i in range(len(sample)):
lncRNA = str(sample[0][i])
protein = str(sample[1][i])
description = str(sample[3][i])
sentence = precess(description)
sentence_pos = nlp.pos_tag(sentence)
for i in range(len(sentence_pos)):
word = sentence_pos[i][0]
if word == lncRNA:
f.write(word +"\tlncRNA\n")
elif word == protein:
f.write(word+"\tprotein\n")
else:
pos = sentence_pos[i][1]
f.write(word+"\t"+pos+"\n")
nlp.close()
"""
| true
|
806bb757144b41b9e12627e25277317dcea6ba31
|
Python
|
c18gour/K_book
|
/chapter8/8-printTime.py
|
UTF-8
| 452
| 3.625
| 4
|
[] |
no_license
|
class Time:
pass
def printTime(time):
print(str(time.hours)+':'+str(time.minutes)+':'+str(time.seconds))
currentTime = Time()
currentTime.hours = 9
currentTime.minutes = 14
currentTime.seconds = 30
printTime(currentTime)
class Time:
def printTime(time):
print(str(time.hours)+':'+str(time.minutes)+':'+str(time.seconds))
class Time:
def printTime(self):
print(str(self.hours)+':'+str(self.minutes)+':'+str(self.seconds))
| true
|
ab477d85c8ff0a2b42799f6745ee6db12150118c
|
Python
|
joordan/greyhound-bus-scraper
|
/scrape.py
|
UTF-8
| 2,032
| 2.828125
| 3
|
[] |
no_license
|
import numpy as np
from selenium import webdriver
from selenium.webdriver.support.ui import Select
outputfile = open("output.txt","w+",encoding='utf-8')
options = webdriver.ChromeOptions()
options.add_argument('headless')
#driver = webdriver.Chrome()
driver = webdriver.Chrome(chrome_options=options)
#driver.get("https://www.google.com")
driver.get("http://75.126.140.163/stops/893740/Stockton_CA/arriving")
#driver.implicitly_wait(10)
odd = driver.find_elements_by_class_name("odd")
even = driver.find_elements_by_class_name("even")
a = np.array(odd)
b = np.array(even)
# interweave 2 list ex. [1,3] & [2,4] becomes [1,2,3,4]
c = np.empty((a.size + b.size,), dtype=a.dtype)
c[0::2] = a
c[1::2] = b
departures = c.tolist()
temparr = []
select = Select(driver.find_element_by_id('select-date-stop'))
for x in departures:
# print(x.text) # has breaks
#temparr is html row temparr[1] is location
temparr = x.text.split(' ')
#separation needs to be done here
for row in temparr:
row = row.replace('\n',' ')
outputfile.write(row)
outputfile.write(' ')
outputfile.write('\n') # start new line for each row
select = Select(driver.find_element_by_id('select-date-stop'))
options = len(select.options)
if (options > 1):
select.select_by_index(1)
tomorrow_deps = driver.find_elements_by_class_name("odd")
even = driver.find_elements_by_class_name("even")
if (even):
a = np.array(tomorrow_deps)
b = np.array(even)
# interweave 2 list ex. [1,3] & [2,4] becomes [1,2,3,4]
c = np.empty((a.size + b.size,), dtype=a.dtype)
c[0::2] = a
c[1::2] = b
tomorrow_deps = c.tolist()
nextday = []
for x in tomorrow_deps:
nextday = x.text.split(' ')
for row in nextday:
row = row.replace('\n',' ')
outputfile.write(row)
outputfile.write(' ')
driver.close()
| true
|
a139822cec07ad589557b6938ea59d9305582c7c
|
Python
|
mohrobati/JS-Buxter
|
/repair/live_variables_extractor.py
|
UTF-8
| 3,265
| 2.75
| 3
|
[
"MIT"
] |
permissive
|
from copy import deepcopy
class LiveVariablesExtractor:
def __init__(self, program):
self.__program = program
self.__live_variable_elements = self.__getLiveVariableElements('./configs/live_variable_elements.txt')
self.__variables = []
def __getLiveVariableElements(self, path):
live_variable_elements = []
file = open(path)
for line in file:
live_variable_elements.append(line.replace("\n", ""))
return live_variable_elements
def __closeScope(self, first, last):
for var in self.__variables:
if (not var["isDone"]) and first <= var["scope"][0] and last >= var["scope"][1]:
var["scope"][1] = last
var["isDone"] = True
def __getTypes(self, programPoint, live_variables, runner):
live_variables_types_str = ""
for var in live_variables:
live_variables_types_str += "typeof (" + var + ") + ' $$split$$ ' + "
live_variables_str = live_variables_types_str[:len(live_variables_types_str) - len(" + $$split$$ + ")]
typesCode = "\nconsole.log('%%insp '+ " + live_variables_str + " %%insp ');\n" \
"console.log('%%insp '+ " + live_variables_str + " %%insp ');\nreturn\n"
typesProgram = deepcopy(self.__program)
typesProgram = typesProgram[:programPoint] + \
typesCode + typesProgram[programPoint:]
return runner.run(typesProgram)
def extractLiveVariables(self, node, meta):
if node.type in self.__live_variable_elements:
first = meta.start.offset
last = meta.end.offset
if node.type == 'VariableDeclaration' and node.declarations[0].init and \
node.declarations[0].init.type != "ArrowFunctionExpression" \
and node.declarations[0].init.type != "FunctionExpression":
self.__variables.append({"name": node.declarations[0].id.name, "scope": [first, last], "isDone": False})
elif node.type == 'ArrowFunctionExpression' or node.type == 'FunctionExpression' or node.type == 'FunctionDeclaration':
for var in node.params:
self.__variables.append({"name": var.name, "scope": [first, last], "isDone": True})
elif node.type == 'BlockStatement' or node.type == 'ForStatement':
self.__closeScope(first, last)
def getLiveVariablesUpToPoint(self, programPoint, runner, curr_variables=None):
live_variables = set()
types = None
for var in self.__variables:
if not var["isDone"]:
live_variables.add(var["name"])
continue
if var["scope"][0] <= programPoint <= var["scope"][1]:
live_variables.add(var["name"])
if curr_variables:
for var in curr_variables:
if var in live_variables:
live_variables.remove(var)
live_variables = list(curr_variables) + list(live_variables)
while None in live_variables:
live_variables.remove(None)
if runner:
types = self.__getTypes(programPoint, live_variables, runner)
return live_variables, types
| true
|
f2f745d476bba9cd17b9ffefdce7018a9af41e01
|
Python
|
jdpatt/AoC
|
/2020/day_8/day_8.py
|
UTF-8
| 2,310
| 3.65625
| 4
|
[] |
no_license
|
"""Day 8"""
import copy
from os import read
from pathlib import Path
from typing import Tuple
class BootCodeError(Exception):
...
def read_in_boot_code():
"""Each line consists of an operation and an argument."""
with open(Path(__file__).parent.joinpath("input.txt")) as puzzle_input:
instructions = list()
for line in puzzle_input:
operation, argument = line.split(" ")
instructions.append(
{"operation": operation, "argument": argument, "executed": False}
)
return instructions
def has_executed(instruction) -> bool:
return instruction["executed"]
def run_program(instructions) -> Tuple[int, int]:
accumulator = 0
instruction_pointer = 0
while True:
try:
instruction = instructions[instruction_pointer]
if has_executed(instruction):
return -1, accumulator
if instruction["operation"] == "jmp":
instruction_pointer += int(instruction["argument"])
elif instruction["operation"] == "acc":
accumulator += int(instruction["argument"])
instruction_pointer += 1
elif instruction["operation"] == "nop":
instruction_pointer += 1
else:
raise BootCodeError("Unhandled Operation")
instruction["executed"] = True
except IndexError:
print(f"Program Completed...\t{accumulator=}") # 2060
return 0, accumulator
if __name__ == "__main__":
boot_code = read_in_boot_code()
return_code, accumulator = run_program(copy.deepcopy(boot_code))
print(f"Value prior to repeating instructions: {accumulator}") # 1801
for index, instruction in enumerate(boot_code):
if instruction["operation"] == "acc":
continue # Skip running this loop.
modified_boot_code = copy.deepcopy(boot_code)
if instruction["operation"] == "jmp":
modified_boot_code[index]["operation"] = "nop"
elif instruction["operation"] == "nop":
modified_boot_code[index]["operation"] = "jmp"
print(f"Running program...{index}")
return_code, accumulator = run_program(modified_boot_code)
if return_code == 0:
break
| true
|
aa4650835a8287ce9ed7c7a6b097cabde1f18a71
|
Python
|
nickliqian/keep_learning
|
/KnowledgeMapping/SpiderExp/1-Code/panyu.goodjob.cn/run.py
|
UTF-8
| 699
| 2.6875
| 3
|
[
"MIT"
] |
permissive
|
import requests
from lxml import etree
import csv
url = "http://panyu.goodjob.cn/job/pos970735.html"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.108 Safari/537.36",
}
r = requests.get(url=url)
html = etree.HTML(r.text)
lis = html.xpath("//ul[@class='c6']/li/text()")
item = {}
for li in lis:
content = li.split(":")
if len(content) == 1:
content.append("NULL")
item[content[0]] = content[1]
print(item)
with open("data.csv", "w", newline='', encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(item.keys())
writer.writerow(item.values())
| true
|
1d530679716fe70c37d8e34991cce9d5045e162f
|
Python
|
piotrszleg/symbolic_manipulation
|
/expression.py
|
UTF-8
| 1,325
| 2.90625
| 3
|
[] |
no_license
|
from itertools import zip_longest, product, accumulate
from blist import sorteddict
from dataclasses import dataclass, field
@dataclass(unsafe_hash=True)
class Expression:
def matches(self, other, variables):
return True
def cost(self):
return 1
def __lt__(self, other):
return self.cost()>other.cost()
def possible_transformations(self, transformations):
for transformation in transformations:
variables={}
if transformation.matches(self, variables):
yield transformation.transform(self, variables)
def simplify_recursive(self, transformations, path, paths, depth, max_depth):
if depth>max_depth:
return
for transformation in self.possible_transformations(transformations):
if not transformation in paths:
path.append(transformation)
paths[transformation]=path
transformation.simplify_recursive(transformations, path.copy(), paths, depth+1, max_depth)
def simplify(self, transformations, max_depth=10):
paths=sorteddict()
self.simplify_recursive(transformations, [self], paths, 0, max_depth)
return paths
def visit(self, fn):
fn(self)
def replace_variables(self, variables):
return self
| true
|
32a77271e31d021b0af76d9c43df900a813f7d38
|
Python
|
1MT3J45/pyprog
|
/max.py
|
UTF-8
| 79
| 2.90625
| 3
|
[] |
no_license
|
a = [8,5,9,6,8,4]
max1 = a[0]
for i in a :
if i < max1:
max1=i
print max1
| true
|
2596fc8ea7ceadae2dc5e3e49808bc7e00547a17
|
Python
|
jmslip/clever-historical-data
|
/service/calculos_geral.py
|
UTF-8
| 3,055
| 2.796875
| 3
|
[
"MIT"
] |
permissive
|
from datetime import datetime, timedelta
import pandas as pd
from service.historico import HistoricoService
from utils.clever_generics import CleverGenerics
class CalculosGeral:
def __init__(self) -> None:
self.historico_service = HistoricoService()
self.clever_generics = CleverGenerics()
self.key_carteria = 'Carteira'
self.key_inflacao_meta = 'Inflacao_meta'
def rd_default(self, ativos, from_date, to_date):
historico = self.get_historico(
ativos=ativos, from_date=from_date, to_date=to_date)
desvio_padrao = self.calcula_desvio_padrao(historico=historico)
desvio_normalizado = desvio_padrao.apply(self.normalize)
soma_desvio_normalizado = self.get_soma_desvio(desvio_normalizado)
rd = dict()
for chave, item in desvio_normalizado.iteritems():
rd[chave] = self.calcula_rd(item[0], soma_desvio_normalizado)
return rd
def get_historico(self, ativos, from_date, to_date) -> dict:
historico = dict()
for ativo in ativos:
historico_ativo = self.historico_service.passado(
ativo, to_date=to_date, from_date=from_date, model_to_json=True)
if len(historico_ativo['historico']) > 0:
historico[ativo] = historico_ativo
else:
historico[ativo] = {'historico': [{'variacao': '0.0'}]}
return historico
def calcula_desvio_padrao(self, historico: dict):
historico_variacao = dict()
for ativo in historico:
variacao = []
for item in historico[ativo]['historico']:
variacao.append(float(item['variacao']))
historico_variacao[ativo] = variacao
self.iguala_tamanho_listas_historico(historico_variacao)
df = pd.DataFrame(historico_variacao)
dp = df.std()
return pd.DataFrame(dp).transpose()
def iguala_tamanho_listas_historico(self, historico_variacao: dict):
maior = 0
for chave in historico_variacao:
aux = len(historico_variacao[chave])
if (aux > maior):
maior = aux
for chave in historico_variacao:
if len(historico_variacao[chave]) < maior:
for i in range(maior - len(historico_variacao[chave])):
historico_variacao[chave].append(0.0)
def get_soma_desvio(self, desvio):
soma_desvio_series = desvio.sum(axis=0)
soma_desvio = soma_desvio_series.values
return soma_desvio[0]
def calcula_rd(self, desvio_normalizado, soma_desvio_normalizado):
return (desvio_normalizado / soma_desvio_normalizado)
def normalize(self, x):
if x.item() == 0.0:
return 0.0
return 1/x
def get_from_and_to_date(self):
from_date = self.clever_generics.data_formato_banco(
(datetime.today() + timedelta(days=-365*2)))
to_date = self.clever_generics.data_formato_banco(datetime.today())
return from_date, to_date
| true
|
c3459f21f5be23e39a8cd31008b0b8f4bfa8d405
|
Python
|
bitgrease/python_bases_exercises_1
|
/Chapter10Ex/10.3Ex/Dog.py
|
UTF-8
| 444
| 4.125
| 4
|
[] |
no_license
|
class Dog:
species = "Canis Familiaris"
def __init__(self, age, name):
self.age = age
self.name = name
def __str__(self):
return f"{self.name} is {self.age} years old."
def speak(self, sound):
return f"{self.name} says {sound}."
class GoldenRetriever(Dog):
def speak(self, sound="Bark"):
return super().speak(sound)
gr = GoldenRetriever(13, "Dave")
print(gr)
print(gr.speak())
| true
|
c7fd0888b68ae03ac5597c632dd23fd0a5c7f337
|
Python
|
gurlwithcurlz/hackday_django_test
|
/backend/power_analysis/models.py
|
UTF-8
| 1,502
| 2.765625
| 3
|
[] |
no_license
|
from django.db import models
import numpy as np
from scipy.stats import norm, ttest_ind, ttest_ind_from_stats
def binomial_std(n, p):
"""Calculate the standard deviation of the sample i.e. sqrt( var(X/n) ) or standard error."""
return np.sqrt(p*(1 - p)/n)
# Create your models here.
class PowerAnalysis(models.Model):
base_conversion = models.FloatField()
a_grade_proportion = models.FloatField()
uplift = models.FloatField()
days_max = models.IntegerField()
calls_per_day = models.IntegerField()
def calculate_power_analysis(self):
avg_conversion = self.base_conversion
A_conversion = self.base_conversion * (1 + self.uplift)
n_non_A = self.calls_per_day * (1 - self.a_grade_proportion)
n_A = self.calls_per_day * self.a_grade_proportion
days_list = range(2, self.days_max)
confidence = []
nAs_sig = []
p_sig = [0.80, 0.85, 0.90, 0.95, 0.99]
for days in days_list:
t, p = ttest_ind_from_stats(
avg_conversion, binomial_std(n_non_A, avg_conversion), days ,
A_conversion, binomial_std(n_A, A_conversion), days,
equal_var=False
)
confidence.append(1 - p)
nAs_sig.append(n_A * days)
first_day = np.array(days_list)[np.where(np.array(confidence)>=0.95)][0]
nAs_firstday = np.array(nAs_sig)[np.where(np.array(confidence)>=0.95)][0]
return first_day, np.round(nAs_firstday)
| true
|
05f3075883fb76081dab850a71ca33c2162d4a6a
|
Python
|
talkowski-lab/rCNV2
|
/data_curation/other/curate_gnomad_sv_gene_counts.py
|
UTF-8
| 3,058
| 2.578125
| 3
|
[
"LicenseRef-scancode-unknown-license-reference",
"MIT"
] |
permissive
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 Ryan L. Collins <rlcollins@g.harvard.edu>
# and the Talkowski Laboratory
# Distributed under terms of the MIT license.
"""
Curates counts of functional SVs from gnomAD-SV VCF
"""
import pandas as pd
import numpy as np
import argparse
from os.path import splitext
import pysam
import subprocess
def main():
"""
Main block
"""
# Parse command-line arguments and options
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--gnomad-sv-vcf', help='gnomad-SV VCF. Required.', required=True)
parser.add_argument('--genes', help='list of gene symbols to consider. Required.',
required=True)
parser.add_argument('-o', '--outfile', help='Path to output tsv file. [default: ' +
'stdout]', default='stdout')
parser.add_argument('-z', '--gzip', action='store_true', help='Compress ' +
'output tsv file with gzip. [Default: do not compress]')
args = parser.parse_args()
gz_suf = 'gz gzip'.split()
# Open connection to outfile
if args.outfile in '- stdout'.split():
outfile = stdout
else:
if splitext(args.outfile)[-1].replace('.' ,'') in gz_suf:
outfile_path = splitext(args.outfile)[0]
else:
outfile_path = args.outfile
outfile = open(outfile_path, 'w')
# Build dict of genes & counts
zeros = {'lof_any' : 0, 'lof_del' : 0, 'lof_other' : 0, 'cg' : 0, 'ied' : 0}
gdict = {g.rstrip() : zeros.copy() for g in open(args.genes).readlines()}
# Parse VCF
for sv in pysam.VariantFile(args.gnomad_sv_vcf).fetch():
if 'PASS' not in sv.filter:
continue
if 'PROTEIN_CODING__LOF' in sv.info.keys():
for gene in sv.info.get('PROTEIN_CODING__LOF', []):
if gene in gdict.keys():
gdict[gene]['lof_any'] += 1
if sv.info['SVTYPE'] == 'DEL':
gdict[gene]['lof_del'] += 1
else:
gdict[gene]['lof_other'] += 1
if 'PROTEIN_CODING__COPY_GAIN' in sv.info.keys():
for gene in sv.info.get('PROTEIN_CODING__COPY_GAIN', []):
if gene in gdict.keys():
gdict[gene]['cg'] += 1
if 'PROTEIN_CODING__DUP_LOF' in sv.info.keys():
for gene in sv.info.get('PROTEIN_CODING__DUP_LOF', []):
if gene in gdict.keys():
gdict[gene]['ied'] += 1
# Write to outfile
header = '\t'.join('#gene lof_any lof_del lof_other cg ied'.split())
outfile.write(header + '\n')
for gene, gdat in gdict.items():
gline = gene + '\t' + '\t'.join([str(x) for x in gdat.values()])
outfile.write(gline + '\n')
outfile.close()
# Gzip output, if optioned
if args.gzip:
subprocess.run(['gzip', '-f', outfile_path])
if __name__ == '__main__':
main()
| true
|
cf8a29c6366c0759d6b1c4c33dda9e658af5c03c
|
Python
|
ArakelyanEdgar/MachineLearningAlgorithms
|
/SVR/svr.py
|
UTF-8
| 1,089
| 3.125
| 3
|
[] |
no_license
|
#SVR
#importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.formula.api as sm
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
#retrieve dataset
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
#featureScale X
X_Scaler = StandardScaler()
y_Scaler = StandardScaler()
X = X_Scaler.fit_transform(X)
y= y.reshape(-1,1)
y = y_Scaler.fit_transform(y)
#svr regressor
regressor = SVR(kernel='rbf')
regressor.fit(X, y)
#visualizing SVR results
plt.scatter(X, y, color='red')
plt.plot(X, regressor.predict(X), color='blue')
plt.title('SVR Regression')
plt.xlabel('LEVEL')
plt.ylabel('SALARY')
plt.show()
print(y_Scaler.inverse_transform( regressor.predict(X_Scaler.transform(np.array([[6.5]])) )))
| true
|
34dc9e5bc782e41718c86374e453af8f6c266a12
|
Python
|
simuxs123/Python
|
/exercise/exercise9.py
|
UTF-8
| 522
| 3.734375
| 4
|
[] |
no_license
|
import random
a = random.randint(1, 9)
kiek=0;
while True:
inpt=input("Guess the number:")
if inpt=="exit":
break
if inpt.isnumeric():
if a==int(inpt):
print("Corect, you did",kiek,"guesses")
print("Play again")
a = random.randint(1, 9)
kiek=0;
else:
kiek += 1
if int(inpt)>a:
print("To high")
else:
print("To low")
else:
print("Enter the number or exit")
| true
|
7607d066f6dcd9cd9fd4efb25191d435f69f6135
|
Python
|
lukas-manduch/spoj
|
/ADDREV/adding_reversed_numbers.py
|
UTF-8
| 132
| 3.296875
| 3
|
[] |
no_license
|
i = int(input())
while i > 0:
i -= 1
arr = input().split()
print(int(str(int(arr[0][::-1]) + int(arr[1][::-1]))[::-1]))
| true
|
491619af3190e0edbde90d9c3e045578a84704f4
|
Python
|
rodrigocarlos2/TermoGeralPA
|
/source.py
|
UTF-8
| 183
| 3.5
| 4
|
[] |
no_license
|
a1 = input('Write the first name: ')
r = input('Write the reason: ')
n = input('Write the wished element number: ')
an = a1+(n-1)*r
print(an)
while a1<=an:
print(a1),
a1 += r
| true
|
906ebfcb9c624728e45a9f57ec87d4f99d6657a8
|
Python
|
marcosD67/HackerEarth
|
/MayEasy/subsets.py
|
UTF-8
| 101
| 2.734375
| 3
|
[] |
no_license
|
#Result: 60/100
#Solved: 2:06:45
#Mainly meant to test their testcases.
n = int(input())
print(n)
| true
|
79b5ae6675325b55477fca9f6c7a5b59fa37a2ab
|
Python
|
dbgithub/recommender-systems
|
/recommendationasaservice/utils.py
|
UTF-8
| 1,719
| 3
| 3
|
[] |
no_license
|
"""
This module is called 'utils' because it owns miscellaneous methods that can come in handy
in different scenarios throughout the project/application.
For instance, statistics methods, subroutines for main methods in main, etc.
"""
__author__ = "Aitor De Blas Granja"
__email__ = "aitor.deblas@ugent.be"
from main import SUGESTIOCLIENT, LOG_STATUS
def delete_all_consumptions_user(userID):
"""
Deletes all consumptions made by user identified by userID.
:param userID: int number of the user identifier
:return:
"""
s, response = SUGESTIOCLIENT.delete_user_consumptions(userID)
if s == 200 or s == 202:
if LOG_STATUS is True:
print "[",s,"]: All consumptions of user ",userID," were deleted successfully!"
else:
print "[",str(s),"]: Something went wrong."
def get_rating(userID, movieID):
"""
Retrieves the consumption from the recommender service provided the user ID.
:param userID: int number of the user identifier
:param movieID: int number of the movie identifier
:return: the rating. It returns a list with a single item containing tuples accessed as attributes of an object
"""
s, rating = SUGESTIOCLIENT.get_user_consumptions(userID, movieID)
if s == 200 or s == 202:
if LOG_STATUS is True:
print "[", s, "]: Movie rating retrieved successfully!"
return s, rating
else:
print "[", str(s), "]: Something went wrong."
return s
def decode_stars(detailfield):
"""
Decodes the stars rating from the provided parameter
:param detailfield: string representation of the rating for a certain movie
:return: float of the rating
"""
return float(detailfield.split(':')[3])
| true
|
a28b98295caac98462e1e408e94ac1067aa84078
|
Python
|
rgommers/scipy
|
/scipy/stats/tests/test_odds_ratio.py
|
UTF-8
| 6,705
| 2.609375
| 3
|
[
"BSL-1.0",
"BSD-2-Clause",
"MIT",
"LicenseRef-scancode-unknown-license-reference",
"Qhull",
"BSD-3-Clause"
] |
permissive
|
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_allclose
from .._discrete_distns import nchypergeom_fisher, hypergeom
from scipy.stats._odds_ratio import odds_ratio
from .data.fisher_exact_results_from_r import data
class TestOddsRatio:
@pytest.mark.parametrize('parameters, rresult', data)
def test_results_from_r(self, parameters, rresult):
alternative = parameters.alternative.replace('.', '-')
result = odds_ratio(parameters.table)
# The results computed by R are not very accurate.
if result.statistic < 400:
or_rtol = 5e-4
ci_rtol = 2e-2
else:
or_rtol = 5e-2
ci_rtol = 1e-1
assert_allclose(result.statistic,
rresult.conditional_odds_ratio, rtol=or_rtol)
ci = result.confidence_interval(parameters.confidence_level,
alternative)
assert_allclose((ci.low, ci.high), rresult.conditional_odds_ratio_ci,
rtol=ci_rtol)
# Also do a self-check for the conditional odds ratio.
# With the computed conditional odds ratio as the noncentrality
# parameter of the noncentral hypergeometric distribution with
# parameters table.sum(), table[0].sum(), and table[:,0].sum() as
# total, ngood and nsample, respectively, the mean of the distribution
# should equal table[0, 0].
cor = result.statistic
table = np.array(parameters.table)
total = table.sum()
ngood = table[0].sum()
nsample = table[:, 0].sum()
# nchypergeom_fisher does not allow the edge cases where the
# noncentrality parameter is 0 or inf, so handle those values
# separately here.
if cor == 0:
nchg_mean = hypergeom.support(total, ngood, nsample)[0]
elif cor == np.inf:
nchg_mean = hypergeom.support(total, ngood, nsample)[1]
else:
nchg_mean = nchypergeom_fisher.mean(total, ngood, nsample, cor)
assert_allclose(nchg_mean, table[0, 0], rtol=1e-13)
# Check that the confidence interval is correct.
alpha = 1 - parameters.confidence_level
if alternative == 'two-sided':
if ci.low > 0:
sf = nchypergeom_fisher.sf(table[0, 0] - 1,
total, ngood, nsample, ci.low)
assert_allclose(sf, alpha/2, rtol=1e-11)
if np.isfinite(ci.high):
cdf = nchypergeom_fisher.cdf(table[0, 0],
total, ngood, nsample, ci.high)
assert_allclose(cdf, alpha/2, rtol=1e-11)
elif alternative == 'less':
if np.isfinite(ci.high):
cdf = nchypergeom_fisher.cdf(table[0, 0],
total, ngood, nsample, ci.high)
assert_allclose(cdf, alpha, rtol=1e-11)
else:
# alternative == 'greater'
if ci.low > 0:
sf = nchypergeom_fisher.sf(table[0, 0] - 1,
total, ngood, nsample, ci.low)
assert_allclose(sf, alpha, rtol=1e-11)
@pytest.mark.parametrize('table', [
[[0, 0], [5, 10]],
[[5, 10], [0, 0]],
[[0, 5], [0, 10]],
[[5, 0], [10, 0]],
])
def test_row_or_col_zero(self, table):
result = odds_ratio(table)
assert_equal(result.statistic, np.nan)
ci = result.confidence_interval()
assert_equal((ci.low, ci.high), (0, np.inf))
@pytest.mark.parametrize("case",
[[0.95, 'two-sided', 0.4879913, 2.635883],
[0.90, 'two-sided', 0.5588516, 2.301663]])
def test_sample_odds_ratio_ci(self, case):
# Compare the sample odds ratio confidence interval to the R function
# oddsratio.wald from the epitools package, e.g.
# > library(epitools)
# > table = matrix(c(10, 20, 41, 93), nrow=2, ncol=2, byrow=TRUE)
# > result = oddsratio.wald(table)
# > result$measure
# odds ratio with 95% C.I.
# Predictor estimate lower upper
# Exposed1 1.000000 NA NA
# Exposed2 1.134146 0.4879913 2.635883
confidence_level, alternative, ref_low, ref_high = case
table = [[10, 20], [41, 93]]
result = odds_ratio(table, kind='sample')
assert_allclose(result.statistic, 1.134146, rtol=1e-6)
ci = result.confidence_interval(confidence_level, alternative)
assert_allclose([ci.low, ci.high], [ref_low, ref_high], rtol=1e-6)
@pytest.mark.parametrize('alternative', ['less', 'greater', 'two-sided'])
def test_sample_odds_ratio_one_sided_ci(self, alternative):
# can't find a good reference for one-sided CI, so bump up the sample
# size and compare against the conditional odds ratio CI
table = [[1000, 2000], [4100, 9300]]
res = odds_ratio(table, kind='sample')
ref = odds_ratio(table, kind='conditional')
assert_allclose(res.statistic, ref.statistic, atol=1e-5)
assert_allclose(res.confidence_interval(alternative=alternative),
ref.confidence_interval(alternative=alternative),
atol=2e-3)
@pytest.mark.parametrize('kind', ['sample', 'conditional'])
@pytest.mark.parametrize('bad_table', [123, "foo", [10, 11, 12]])
def test_invalid_table_shape(self, kind, bad_table):
with pytest.raises(ValueError, match="Invalid shape"):
odds_ratio(bad_table, kind=kind)
def test_invalid_table_type(self):
with pytest.raises(ValueError, match='must be an array of integers'):
odds_ratio([[1.0, 3.4], [5.0, 9.9]])
def test_negative_table_values(self):
with pytest.raises(ValueError, match='must be nonnegative'):
odds_ratio([[1, 2], [3, -4]])
def test_invalid_kind(self):
with pytest.raises(ValueError, match='`kind` must be'):
odds_ratio([[10, 20], [30, 14]], kind='magnetoreluctance')
def test_invalid_alternative(self):
result = odds_ratio([[5, 10], [2, 32]])
with pytest.raises(ValueError, match='`alternative` must be'):
result.confidence_interval(alternative='depleneration')
@pytest.mark.parametrize('level', [-0.5, 1.5])
def test_invalid_confidence_level(self, level):
result = odds_ratio([[5, 10], [2, 32]])
with pytest.raises(ValueError, match='must be between 0 and 1'):
result.confidence_interval(confidence_level=level)
| true
|
22118959ff67e0105463724ec921e4874058ea06
|
Python
|
marchampson/cbir_api
|
/cbir/quantize_example.py
|
UTF-8
| 1,222
| 2.703125
| 3
|
[] |
no_license
|
from __future__ import print_function
from mainwaring.ir import BagOfVisualWords
from sklearn.metrics import pairwise
import numpy as np
# rand gen vocabular/cluster centers along with the feature vectors, we'll generate 10 FV containing
# 6 real-valued entries, along with a codebook containing 3 'visual words'
np.random.seed(42)
vocab = np.random.uniform(size=(3,6))
features = np.random.uniform(size=(10,6))
print("[INFO] vocabulary:\n{}\n".format(vocab))
print("[INFO] features:\n{}\n".format(features))
# init bovw - it will contain 3 entries one for each of the possible visual words
hist = np.zeros((3,), dtype="int32")
# loop over the individual feature vectors
for (i, f) in enumerate(features):
# compute euclidean dist between current fv and teh 3 visual words; then, find the index of the
# word with teh smallest distance
D = pairwise.euclidean_distances(f.reshape(1, -1),Y=vocab)
j = np.argmin(D)
print("[INFO] Closest visual word to feature #{}: {}".format(i, j))
hist[j] += 1
print("[INFO] Updated histogram: {}".format(hist))
#apply our BOVW class
bovw = BagOfVisualWords(vocab, sparse=False)
hist = bovw.describe(features)
print("[INFO] BOVW histogram: {}".format(hist))
| true
|
958a6d467305cfa427ee92c93773ebd60f38d986
|
Python
|
RVaishnavi-999/Advanced-Python-Programs
|
/Employee payroll programpy.py
|
UTF-8
| 701
| 3.890625
| 4
|
[] |
no_license
|
# -*- coding: utf-8 -*-
"""
@author: Vaishnavi R
"""
"""8. Program to calculate the employee weekly payroll using method
overloading concept."""
class emp:
def weekly_pay(self,whrs=None,pay=None,ohrs=None):
if whrs!=None and pay!=None and ohrs!=None:
total=whrs*pay+ohrs*pay
print("total pay of employee is ",total)
elif whrs!=None and pay!=None:
total=whrs*pay
print("total pay of employee is",total)
e=emp()
whrs=eval(input("enter hours worked by employee: "))
ohrs=eval(input("enter the hours worked over time: "))
pay=eval(input("enter the pay per hour: "))
if ohrs>0:
e.weekly_pay(whrs,pay,ohrs)
else:
e.weekly_pay(whrs,pay)
| true
|
ad0ed6bfab03bb63177aaba00ed38c565acfe944
|
Python
|
jnaneshjain/PythonProjects
|
/com/underscorepython/pythonunderscoreinterpretor.py
|
UTF-8
| 165
| 3.0625
| 3
|
[] |
no_license
|
'''
>>> 5 + 4
9
>>> _ # stores the result of the above expression
9
>>> _ + 6
15
>>> _
15
>>> a = _ # assigning the value of _ to another variable
>>> a
15
'''
| true
|
971fef3cce531b8247a4d35a8d3ea1e5cf30fb80
|
Python
|
gitman00/Pygame
|
/Demo Collision/collision_file.py
|
UTF-8
| 952
| 2.953125
| 3
|
[] |
no_license
|
import pygame as p
p.init()
SCREEN_WIDTH,SCREEN_HEIGHT=1100,2250
SCREEN=p.display.set_mode((SCREEN_WIDTH,SCREEN_HEIGHT))
rect1=p.Rect(500,500,200,200)
x_speed,y_speed=5,-4
rect2=p.Rect(400,1000,200,400)
rect2_speed=2
def moving_rect():
global x_speed,y_speed
rect1.x += x_speed
rect1.y += y_speed
if rect1.right >= SCREEN_WIDTH or rect1.left<= 0:
x_speed *= -1
if rect1.bottom >= SCREEN_HEIGHT or rect1.top<= 0:
y_speed *= -1
collision_tolerance=10
if rect1.colliderect(rect2):
if abs(rect2.top-rect1.bottom)< collision_tolerance:
y_speed *= -1
if abs(rect2.bottom-rect1.top)< collision_tolerance:
y_speed *= -1
if abs(rect2.right-rect1.left)< collision_tolerance:
x_speed *= -1
if abs(rect2.left-rect1.right)< collision_tolerance:
x_speed *= -1
p.draw.rect(SCREEN,((255,0,0)),rect1)
p.draw.rect(SCREEN,((0,0,255)),rect2)
On=True
while On:
SCREEN.fill((0,0,0))
moving_rect()
p.display.update()
| true
|
ab0061747c4085c779edaba1567fb455198e9acf
|
Python
|
JZDBB/tensorflow
|
/basis/session_basis.py
|
UTF-8
| 597
| 3.421875
| 3
|
[] |
no_license
|
# tf.Session()
# 创建一个会话,当上下文管理器退出时会话关闭和资源释放自动完成。
#
# tf.Session().as_default()
# 创建一个默认会话,当上下文管理器退出时会话没有关闭,还可以通过调用会话进行run()和eval()操作.
import tensorflow as tf
a = tf.constant(1.0)
b = tf.constant(2.0)
with tf.Session() as sess:
print(a.eval())
print(b.eval(session=sess))
a = tf.constant(1.0)
b = tf.constant(2.0)
with tf.Session().as_default() as sess:
print(a.eval())
# sess.close() 加上这句话效果就一样啦
print(b.eval(session=sess))
| true
|
bf847af14dbea2c27ea4ab879d495b3e6da0134c
|
Python
|
JY-Justin/pydailynotes
|
/pach/test_002.py
|
UTF-8
| 2,442
| 3.734375
| 4
|
[] |
no_license
|
# python 解析库 lxml
from lxml import etree
text = '''
<div>
<ul>
<li class="item-0"><a href="link1.html">first item</a></li>
<li class="item-1"><a href="link2.html">second item</a></li>
<li class="item-inactive"><a href="link3.html">third item</a></li>
<li class="item-1"><a href="link4.html">fourth item</a></li>
<li class="item-0"><a href="link5.html">fifth item</a>
</ul>
</div>
'''
# 构建一个 html 对象
html = etree.HTML(text)
# print(html)
# 将其转换为 bytes 对象
result = etree.tostring(html)
# 进行 bytes 到 str 的转换
# print(result.decode('utf-8'))
# print(type(result.decode('utf-8')))
# 也可以直接读取文本进行解析
html = etree.parse('./test.html', etree.HTMLParser())
result = etree.tostring(html)
# print(result.decode('utf-8'))
# 如果我们要选取所有的节点 可以这样进行
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//*')
# print(result)
# 如果我们只想获取其中的某一种节点 例如 li
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//li')
# print(result)
# print(result[0])
# 获取子节点以及孙子节点
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//li/a')
# print(result)
# // 获取所有的孙子节点 / 获取直接的子节点
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//ul//a')
# print(result)
# 首先选中 href 是 link4.html 的 a 节点,然后再获取其父节点,然后再获取其 class 属性
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//a[@href="link4.html"]/../@class')
# print(result)
# 同时我们也可以通过 parent:: 来获取父节点
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//a[@href="link4.html"]/parent::*/@class')
# print(result)
# 属性匹配 要选取 class 为 item-1 的 li 节点
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//li[@class="item-0"]')
# print(result)
# 文本获取: 用 XPath 中的 text() 方法可以获取节点中的文本
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//li[@class="item-0"]/text()')
# print(result)
# 先到 a 节点下面再获取文本
html = etree.parse('./test.html', etree.HTMLParser())
result = html.xpath('//li[@class="item-0"]/a/text()')
print(result)
| true
|
2bfee52174d8686c1042c2d372a6c78f8a38b48b
|
Python
|
Hanler/Project-bio-beta
|
/animation.py
|
UTF-8
| 819
| 2.875
| 3
|
[] |
no_license
|
from PyQt5 import QtCore
class Animation():
@property
def center(self):
return self._center
def animation(self, lb, x_center, y_center, parent):
initial_rect = QtCore.QRect(
x_center,
y_center,
171,
171
)
zoom_factor = 1.5
final_rect = QtCore.QRect(
x_center,
y_center,
int(initial_rect.width() * zoom_factor),
int(initial_rect.height() * zoom_factor),
)
final_rect.moveCenter(initial_rect.center())
an = QtCore.QPropertyAnimation(lb, b"geometry", parent)
an.setEasingCurve(QtCore.QEasingCurve.InOutSine)
an.setStartValue(initial_rect)
an.setEndValue(final_rect)
an.setDuration(2500)
return an
| true
|
185b94d18e39bcbdbeb5e11dfb31169eb8a75e3e
|
Python
|
pulakanamnikitha/nikki
|
/21.py
|
UTF-8
| 56
| 2.828125
| 3
|
[] |
no_license
|
a,b,c=map(int,raw_input().split())
s=b+c
c=s*a
print(c)
| true
|
14852021adb74dfdc2a3ec52f39119ec2d759e15
|
Python
|
JosiahRooney/Python
|
/sum.py
|
UTF-8
| 99
| 3.3125
| 3
|
[
"MIT"
] |
permissive
|
def sumArray(arr):
sum = 0
for x in arr:
sum += x
return sum
print sumArray([1,2,5,10,255,3])
| true
|
afa89c20f7c3dd75db788dc8d325363bb72c369b
|
Python
|
SuperZG/MyPythonLearning
|
/my_first_project/day3/chapter9/demo4(持续追加).py
|
UTF-8
| 373
| 3.328125
| 3
|
[] |
no_license
|
with open('D:\\inout9\\multi2.txt', 'w') as example:
flag = True
while flag:
message = input('Input anything, quit to exit:\n')
if message == 'quit':
flag = False
else:
message = message + '\n'
example.write(message)
with open('D:\\inout9\\multi2.txt', 'r') as exampleread:
print(exampleread.read())
| true
|
a0bd848d8d6b45213fe6788efab634ecc4cec125
|
Python
|
SahilMund/A_ML_Cheatsheets
|
/Machine Learning A-Z Template Folder/Part 1 - Data Preprocessing/datapreprocessingtamplete.py
|
UTF-8
| 616
| 2.921875
| 3
|
[] |
no_license
|
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#importing the data set
dataset = pd.read_csv("Data.csv")
#distinguishing bn independent and dependent coloumns in dataset
X = dataset.iloc [:, :-1].values
Y=dataset.iloc[:,3]
#splitting data into test and train sets
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
#Feature scaling
"""from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)
X_test=sc_X.transform(X_test)"""
| true
|
d1f788d554e9cea1f9656901af308bca0d431cb5
|
Python
|
chui101/covid-vis
|
/calculate_trends.py
|
UTF-8
| 2,982
| 3.171875
| 3
|
[] |
no_license
|
#!/usr/bin/python3
import numpy
from states import state_info, state_historic_data
from matplotlib import pyplot
def growth_rate(data, data_name='positive'):
values = map(lambda x: 0 if (data_name not in x or x[data_name] is None) else x[data_name], data)
nonzero = filter(lambda x: x > 0, values)
y = numpy.array(list(nonzero))
return weighted_exponential_fit(numpy.arange(len(y)), y)
def death_growth_rate(data):
deaths = map(lambda x: 0 if ('death' not in x or x['death'] is None) else x['death'], data)
nonzero = filter(lambda x: x > 0, deaths)
y = numpy.array(list(nonzero))
return weighted_exponential_fit(numpy.arange(len(y)), y)
def exponential_fit(x, y):
return numpy.polyfit(x,numpy.log(y),1)
def weighted_exponential_fit(x, y):
return numpy.polyfit(x,numpy.log(y),1,w=numpy.sqrt(y))
def to_exponential_function(fit):
return "y=" + str(numpy.exp(fit[1])) + "*exp(" + str(fit[0]) + "*t)"
def doubling_time(data, data_name='positive'):
fit = growth_rate(data, data_name)
return numpy.log(2)/fit[0]
if __name__ == "__main__":
si = state_info()
states = si.get_states()
# calculate doubling time for last seven days for all tracked states
doubling_time_last_seven = []
for state in states:
data = state_historic_data(state).get_latest_n(7)
doubling_time_last_seven.append(doubling_time(data))
pyplot.bar(range(len(states)), doubling_time_last_seven, tick_label=list(states))
pyplot.title("Average doubling time over past 7 days")
pyplot.ylabel("Average doubling time (days)")
fig = pyplot.gcf()
fig.set_size_inches(10, 7)
pyplot.show()
pyplot.close()
# calculate doubling time for each seven day window for all tracked states
for state in ['KY',"TN","NY","IN","LA","OH", "MI"]:
data = state_historic_data(state).data
doubling_time_last_seven = []
if len(data) > 7:
for i in range(len(data)-6):
doubling_time_last_seven.append(doubling_time(data[i:i+7]))
pyplot.plot(range(3,len(doubling_time_last_seven)+3), doubling_time_last_seven, label=state)
pyplot.title("Average doubling time (7 day moving average, higher is better)")
pyplot.ylabel("Average case doubling time (days)")
pyplot.xlabel("Days since first reported case")
pyplot.legend()
pyplot.grid(b=True)
fig = pyplot.gcf()
fig.set_size_inches(10, 7)
pyplot.show()
pyplot.close()
print("Average death doubling time in days for past 7 days of data")
for state in states:
data = state_historic_data(state)
latest_data = data.get_latest_n(7)
print(state + "," + str(doubling_time(latest_data,'death')))
print("Average case doubling time in days since 10th confirmed case")
for state in states:
data = state_historic_data(state)
latest_data = data.get_after_n_cases(10)
print(state + "," + str(doubling_time(latest_data)))
| true
|
783648533d356a7e8db1e3e04e55b2fc61f0332a
|
Python
|
neilrobertson/BICRCode
|
/Baselib/genemapping/genelookup.py
|
UTF-8
| 2,683
| 3.09375
| 3
|
[] |
no_license
|
# class for looking up information about a gene
# so far includes:
# - coordinate lookup (what coord for gene x?)
# - name lookup (given gene id, provide common name?)
# - interval overlap (given interval, what genes overlap?)
from genemapping.coordlookup import *
from datastructures.genomicintervalfinder import *
class GeneLookup:
def __init__(self):
self._coordlookup = None
self._overlaplookup = None
self._poverlaplookup = None
def initCoordsFromFile(self, filename, filesettings):
self._coordlookup = CoordLookup()
self._coordlookup.setFromFile(filename, filesettings)
def initOverlapsFromCoords(self):
print "converting gene coordinate lookup into overlap lookup"
assert not self._coordlookup is None
self._overlaplookup = GenomicIntervalFinder("Gene")
self._overlaplookup.initFromCoordLookup(self._coordlookup)
def initPromoterOverlapsFromCoords(self, pbounds):
print "converting gene coordinate lookup into promoter lookup"
assert not self._coordlookup is None
self._poverlaplookup = GenomicIntervalFinder("Gene Promoters")
self._poverlaplookup.initPromotersFromCoordLookup(self._coordlookup, pbounds)
def lookupName(self, gid):
assert not self._coordlookup is None
return self._coordlookup.getName(gid)
def getGeneIDsByInterval(self, chrom, start, end):
if self._overlaplookup is None:
self.initOverlapsFromCoords()
return self._overlaplookup.lookupInterval(chrom, start, end)
def getPromotersByInterval(self, chrom, start, end, promoterbounds):
assert self._poverlaplookup is not None
return self._poverlaplookup.lookupInterval(chrom, start, end)
def promoterOverlap(self, geneid, promoterbounds, elementgif):
"""
looks to see whether a geneid has any of the given elements in its promoter
geneid -- a gene id (str)
promoterbounds -- pair (tuple) of integers (upstream, downstream)
elementgif -- a GenomicIntervalFinder object with the elements to lookup
"""
chrom, start, end = self._coordlookup.getCoord(geneid)
strand = self._coordlookup.getStrand(geneid)
if strand == "1":
promoterstart = start - promoterbounds[0]
promoterend = start + promoterbounds[1]
if strand == "-1":
promoterstart = start - promoterbounds[1]
promoterend = start + promoterbounds[0]
return elementgif.getOverlappingIntervalCount(chrom, promoterstart, promoterend)
if __name__ == "__main__":
genefile = "/home/pzs/genebuilds/genelists/human-genes-ncbi36.csv"
gfsettings = { "id" : 0,
"strand": 2,
"chrom" : 3,
"start" : 4,
"end" : 5 }
gl = GeneLookup()
gl.initCoordsFromFile(genefile, gfsettings)
gl.initOverlapsFromCoords()
gl.initPromoterOverlapsFromCoords((500, 1000))
| true
|
40a64286d5cd10347dc43c6f6dbd8eefa8b2edaa
|
Python
|
shujji/iot
|
/snk/AnalogLight/al2.py
|
UTF-8
| 1,166
| 2.78125
| 3
|
[] |
no_license
|
#!/usr/bin/env python
# Example for RC timing reading for Raspberry Pi
# Must be used with GPIO 0.3.1a or later - earlier verions
# are not fast enough!
import RPi.GPIO as GPIO, time, os
import requests
import time
import datetime
from time import gmtime, strftime
DEBUG = 1
GPIO.setmode(GPIO.BCM)
today = datetime.date.today()
def RCtime (RCpin):
reading = 0
GPIO.setup(RCpin, GPIO.OUT)
GPIO.output(RCpin, GPIO.LOW)
#time.sleep(0.1)
time.sleep(0.05)
GPIO.setup(RCpin, GPIO.IN)
# This takes about 1 millisecond per loop cycle
while (GPIO.input(RCpin) == GPIO.LOW):
reading += 1
return reading
while True:
print RCtime(4) , strftime("%m/%d/%Y" , gmtime()) , strftime("%H:%M:%S" , gmtime()) # Read RC timing using pin #18
#r = requests.post("https://thingspace.io/dweet/for/RPiRND1_analogLight", data={ 'rc_time': RCtime(4) })
r = requests.post("https://thingspace.io/dweet/for/RPiRND1_analogLight", data={ 'light': RCtime(4) , 'date': strftime("%m/%d/%Y" , gmtime()) , 'time': strftime("%H:%M:%S" , gmtime()) })
| true
|
ec4018b16a5f78247377ce139b7117969499d5d2
|
Python
|
abhishek8899/Space-Invaders
|
/classes.py
|
UTF-8
| 362
| 2.984375
| 3
|
[] |
no_license
|
class freeze():
def __init__(self, x, y, ti):
self.x = x
self.y = y
self.t = ti
class fire():
def __init__(self, x, y):
self.x = x
self.y = y
class fire1(fire):
def __init__(self, x, y):
fire.__init__(self, x, y)
class fire2(fire):
def __init__(self, x, y):
fire.__init__(self, x, y)
| true
|
0a3eb7fbfb6dd0731c4f17f065d8c8e206abe293
|
Python
|
F1schGott/CSC108
|
/A1/admission_functions.py
|
UTF-8
| 4,545
| 3.9375
| 4
|
[] |
no_license
|
"""Starter code for Assignment 1 CSC108 Summer 2018"""
SPECIAL_CASE_SCHOOL_1 = 'Fort McMurray Composite High'
SPECIAL_CASE_SCHOOL_2 = 'Father Mercredi High School'
SPECIAL_CASE_YEAR = '2017'
# Add other constants here
DEGREE_LEN = 6
COURSE_LEN = 9
def is_special_case(record: str) -> bool:
"""Return True iff the student should be handled using the special case rules.
>>> is_special_case('Jacqueline Smith,Fort McMurray Composite High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts')
True
>>> is_special_case('Jacqueline Smith,Father Something High School,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts')
False
>>> is_special_case('Jacqueline Smith,Fort McMurray Composite High,2015,MAT,90,94,ENG,92,88,CHM,80,85,BArts')
False
"""
# Complete the body of the function here
case_one = SPECIAL_CASE_SCHOOL_1
case_two = SPECIAL_CASE_SCHOOL_2
year = SPECIAL_CASE_YEAR
#I renamed them to make the code shorter
return ((case_one in record) or (case_two in record)) and (year in record)
# Complete the rest of the functions here
def get_final_mark(record: str, course_mark: str, exam_mark: str) -> float:
"""Return the student's final mark of the course, by calculating the average
of course_mark and exam_mark in the record. A missing exam mark counts as
a zero, unless the student is a special case.
>>> get_final_mark('Jacqueline Smith,Fort McMurray Composite High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts', '90', '94')
92.0
>>> get_final_mark('Jacqueline Smith,Fort McMurray Composite High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts', '92', 'NE')
92.0
>>> get_final_mark('Jacqueline Smith,Fort McDonald Composite High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts', '80', 'NE')
40.0
"""
if exam_mark == 'NE' and is_special_case(record):
return float(course_mark)
elif exam_mark == 'NE' and not is_special_case(record):
return int(course_mark)/ 2
else:
return (int(course_mark) + int(exam_mark))/ 2
def get_both_marks(course_record: str, course_code: str) -> str:
"""Return a string containing the coursework mark in the course_record if
the course_code matches the course_record and the exam mark separated by a
single space. Otherwise, return the empty string.
>>> get_both_marks('MAT,90,94', 'MAT')
'90 94'
>>> get_both_marks('MAT,90,94', 'ACT')
''
>>> get_both_marks('ENG,92,88', 'ENG')
'92 88'
"""
if course_code in course_record:
return course_record[4:6] + ' ' + course_record[7:9]
else:
return ''
def extract_course(transcript: str, course_num: int) -> str:
"""Return the coursework mark from the transcript. The course_num represents
which course to extract. The first course in the transcript being course 1,
the second being course 2, etc.
>>> extract_course('MAT,90,94,ENG,92,88,CHM,80,85', 1)
'MAT,90,94'
>>> extract_course('MAT,90,94,ENG,92,88,CHM,80,85', 2)
'ENG,92,88'
>>> extract_course('MAT,90,94,ENG,92,88,CHM,80,85', 3)
'CHM,80,85'
"""
return transcript[(course_num - 1)* 10 : (course_num - 1)* 10 + COURSE_LEN]
def applied_to_degree(record: str, degree: str) -> bool:
"""Return True if and only if the student represented by the record
applied to the degree.
>>> applied_to_degree('Jacqueline Smith,Fort McMurray Composite High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts', 'BArts')
True
>>> applied_to_degree('Jacqueline Smith,Fort McMurray BComuter High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BArts', 'BCom')
False
>>> applied_to_degree('Jacqueline Smith,Fort McMurray BComuter High,2017,MAT,90,94,ENG,92,88,CHM,80,85,BCom', 'BCom')
True
"""
return degree in record[-DEGREE_LEN:]
def decide_admission(course_average: float, degree_cutoff: float) -> str:
"""Return 'accept' if the course_average is at least the degree_cutoff but
below the threshold for a scholarship, 'accept with scholarship' if the
course_average is at or above the threshold for a scholarship, and 'reject'
if the course_average is below the degree_cutoff.
>>> decide_admission(70,80)
'reject'
>>> decide_admission(80,80)
'accept'
>>> decide_admission(85,80)
'accept with scholarship'
"""
if course_average < degree_cutoff:
return 'reject'
elif course_average >= degree_cutoff + 5:
return 'accept with scholarship'
else:
return 'accept'
# Programer: SongQi Wang
# Student number: 1003439442
| true
|
6bc6815baa190c14aa42dd41a854930f3e6c61e2
|
Python
|
facelessuser/sublime-markdown-popups
|
/st3/mdpopups/coloraide/spaces/ipt.py
|
UTF-8
| 2,871
| 2.65625
| 3
|
[
"MIT"
] |
permissive
|
"""
The IPT color space.
https://www.researchgate.net/publication/\
221677980_Development_and_Testing_of_a_Color_Space_IPT_with_Improved_Hue_Uniformity.
"""
from ..spaces import Space, Labish
from ..channels import Channel, FLG_MIRROR_PERCENT
from ..cat import WHITES
from .. import algebra as alg
from ..types import Vector
from typing import Tuple
# The IPT algorithm requires the use of the Hunt-Pointer-Estevez matrix,
# but it was originally calculated with the assumption of a slightly different
# D65 white point than what we use.
#
# - Theirs: [0.9504, 1.0, 1.0889] -> xy chromaticity points (0.3127035830618893, 0.32902313032606195)
# - Ours: [0.9504559270516716, 1, 1.0890577507598784] -> calculated from xy chromaticity points [0.31270, 0.32900]
#
# For a good conversion, our options were to either set the color space to a slightly different D65 white point,
# or adjust the algorithm such that it accounted for the difference in white point. We chose the latter.
#
# ```
# theirs = alg.diag([0.9504, 1.0, 1.0889])
# ours = alg.diag(white_d65)
# return alg.multi_dot([MHPE, theirs, alg.inv(ours)])
# ```
#
# Below is the Hunter-Pointer-Estevez matrix combined with our white point compensation.
XYZ_TO_LMS = [
[0.4001764512951712, 0.7075, -0.08068831054981859],
[-0.2279865839462744, 1.15, 0.061191135138152386],
[0.0, 0.0, 0.9182669691320122]
]
LMS_TO_XYZ = [
[1.8503518239760197, -1.1383686221417688, 0.23844898940542367],
[0.36683077517134854, 0.6438845448402356, -0.01067344358438],
[0.0, 0.0, 1.089007917757562]
]
LMS_P_TO_IPT = [
[0.4, 0.4, 0.2],
[4.455, -4.851, 0.396],
[0.8056, 0.3572, -1.1628]
]
IPT_TO_LMS_P = [
[1.0000000000000004, 0.0975689305146139, 0.2052264331645916],
[0.9999999999999997, -0.1138764854731471, 0.13321715836999803],
[1.0, 0.0326151099170664, -0.6768871830691793]
]
def xyz_to_ipt(xyz: Vector) -> Vector:
"""XYZ to IPT."""
lms_p = [alg.npow(c, 0.43) for c in alg.dot(XYZ_TO_LMS, xyz, dims=alg.D2_D1)]
return alg.dot(LMS_P_TO_IPT, lms_p, dims=alg.D2_D1)
def ipt_to_xyz(ipt: Vector) -> Vector:
"""IPT to XYZ."""
lms = [alg.nth_root(c, 0.43) for c in alg.dot(IPT_TO_LMS_P, ipt, dims=alg.D2_D1)]
return alg.dot(LMS_TO_XYZ, lms, dims=alg.D2_D1)
class IPT(Labish, Space):
"""The IPT class."""
BASE = "xyz-d65"
NAME = "ipt"
SERIALIZE = ("--ipt",) # type: Tuple[str, ...]
CHANNELS = (
Channel("i", 0.0, 1.0, bound=True),
Channel("p", -1.0, 1.0, bound=True, flags=FLG_MIRROR_PERCENT),
Channel("t", -1.0, 1.0, bound=True, flags=FLG_MIRROR_PERCENT)
)
WHITE = WHITES['2deg']['D65']
def to_base(self, coords: Vector) -> Vector:
"""To XYZ."""
return ipt_to_xyz(coords)
def from_base(self, coords: Vector) -> Vector:
"""From XYZ."""
return xyz_to_ipt(coords)
| true
|
1c4b589a00eea38377806ffdcba657aac40f3261
|
Python
|
khua19/k
|
/flower.py
|
UTF-8
| 261
| 3.84375
| 4
|
[] |
no_license
|
import turtle
window = turtle.Screen()
flower=turtle.Turtle()
for i in range(25):
flower.forward(150)
flower.left(90)
flower.forward(150)
flower.left(90)
flower.forward(150)
flower.left(90)
flower.forward(150)
flower.left(75)
| true
|
5140804f171aa8d6e8306c338549ee4d7f1b2dbe
|
Python
|
rootcoma/imageglitch
|
/image_glitch.py
|
UTF-8
| 24,387
| 2.734375
| 3
|
[
"MIT"
] |
permissive
|
import ctypes
from OpenGL import GL as gl
from PIL import Image
import sdl2
from shader_filters import *
import random
DEF_WINDOW_WIDTH = 1024
DEF_WINDOW_HEIGHT = 768
class View:
"""
Holds coordinates for navigating ortho view
"""
offset = (0.0, 0.0)
zoom = 1
def reset(self):
self.offset = (0.0, 0.0)
self.zoom = 1
class Console:
"""
Hold logic for dealing with console input and output
"""
console_prompt = ">"
input_buffer = []
output_buffer = []
current_input = ""
max_buffer_len = 100
line_number = 0
console_filter = None
def cleanup(self):
if self.console_filter:
self.console_filter.cleanup_shader()
self.console_filter = None
def _create_shader(self):
if not self.console_filter:
offset = (0, 0)
self.console_filter = ConsoleFilter()
self.console_filter.add_str(self.console_prompt, offset)
def render(self, window_dimensions):
self._create_shader()
offset = (0, 0)
self.console_filter.render(offset, window_dimensions)
def clear(self):
self.line_number = 0
self.output_buffer = []
self.console_filter.clear()
offset = (0, 0)
self.console_filter.add_str(self.console_prompt, offset)
def get_formatted_input(self, text):
return "%s%s" % (self.console_prompt, text)
def add_input(self, text):
self._create_shader()
self.input_buffer = [text] + \
self.input_buffer[:self.max_buffer_len - 1]
self.add_output(self.get_formatted_input(text), update_filter=False)
def add_output(self, text, update_filter=True, update_line_number=True):
for t in text.split("\n"):
if update_line_number:
self.line_number += 1
if update_filter:
self.console_filter.backspace(len(self.get_input()))
self.console_filter.add_str(
"%s\n%s" % (t, self.get_input()), (0, 0))
self.output_buffer = [t] + \
self.output_buffer[:self.max_buffer_len - 1]
def get_output(self, num_lines):
return self.output_buffer[:num_lines]
def get_input(self):
return self.get_formatted_input(self.current_input)
def backspace(self):
if self.current_input:
self.console_filter.backspace()
self.current_input = self.current_input[:-1]
def parse_input(self, text):
"""
returns any commands that are detected, keeps track of input
and updates output
"""
inputted_commands = []
txt = text
self._create_shader()
# Seems like first time console is opened the backquote is added
# to input so for now manually removing it until I find out cause
txt = txt.replace('`', '')
char_width = self.console_filter.img_dimensions[0] / 16
while '\n' in txt:
txt_split = txt.split('\n', 1)
self.current_input += txt_split[0]
self.add_input(self.current_input)
curr_offset = len(self.get_input())-len(txt_split[0])
coords = ((len(self.console_prompt)+curr_offset) * char_width, 0)
self.console_filter.add_str(txt_split[0], coords)
self.console_filter.add_str("\n%s" % (self.console_prompt), (0, 0))
inputted_commands.append(self.current_input)
self.current_input = ""
txt = txt_split[1]
self.current_input += txt
curr_offset = len(self.current_input) - len(txt)
coords = ((len(self.console_prompt)+curr_offset) * char_width, 0)
self.console_filter.add_str(txt, coords)
return inputted_commands
class ImageGlitch:
"""
Image glitching class, uses opengl shaders to filters images. SDL2 window
and opengl context can be created using this class
"""
fb_ids = {
"a": -1,
"b": -1,
}
target_texture = -1
target_fb = -1
fb_texture_map = {
"a": "fb_tex",
"b": "fb_tex_alt",
}
texture_ids = {
"img": -1,
"fb_tex": -1,
"fb_tex_alt": -1,
}
img_dimensions = (-1, -1)
view = View()
window = None
window_dimensions = (DEF_WINDOW_WIDTH, DEF_WINDOW_HEIGHT)
all_filters = {}
filters = []
final_filter = None
console = Console()
console_enabled = False
frame = 0
playing = False
recording = False
recording_remaining_frames = -1
recording_frame_num = -1
fps = 10
last_update = sdl2.SDL_GetTicks()
def __init__(self):
self.init_sdl()
self.all_filters = {k: v() for k, v in ALL_FILTERS.iteritems()}
def filter_img(self, img, filters):
"""
this should destroy any existing resources if they exist, then
init program for new image
"""
self.cleanup_img_fb()
self.cleanup_image_texture()
self.img_dimensions = img.size
assert all(name in self.all_filters for name in filters), (
"Error, filter not found")
self.filters = [self.all_filters[n] for n in filters]
if not self.final_filter:
self.final_filter = OrthoFilter()
self.init_image_texture(img)
self.init_img_fb()
self.update_filtered_image(update_frame_count=False)
def init_sdl(self):
"""
Create a window and initialize opengl
"""
sdl2.SDL_Init(sdl2.SDL_INIT_EVERYTHING)
sdl2.SDL_GL_SetAttribute(sdl2.SDL_GL_CONTEXT_MAJOR_VERSION, 3)
sdl2.SDL_GL_SetAttribute(sdl2.SDL_GL_CONTEXT_MINOR_VERSION, 2)
sdl2.SDL_GL_SetAttribute(sdl2.SDL_GL_CONTEXT_PROFILE_MASK,
sdl2.SDL_GL_CONTEXT_PROFILE_CORE)
sdl2.SDL_GL_SetAttribute(sdl2.SDL_GL_DOUBLEBUFFER, 1)
sdl2.SDL_GL_SetAttribute(sdl2.SDL_GL_DEPTH_SIZE, 24)
sdl2.SDL_GL_SetSwapInterval(0) # 0 = no vsync
self.window = sdl2.SDL_CreateWindow(
"DPT GLITCH GUY",
sdl2.SDL_WINDOWPOS_UNDEFINED,
sdl2.SDL_WINDOWPOS_UNDEFINED,
DEF_WINDOW_WIDTH,
DEF_WINDOW_HEIGHT,
sdl2.SDL_WINDOW_OPENGL | sdl2.SDL_WINDOW_SHOWN)
assert self.window, "Error: Could not create window"
sdl2.SDL_SetWindowResizable(self.window, True)
glcontext = sdl2.SDL_GL_CreateContext(self.window)
gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA)
gl.glEnable(gl.GL_CULL_FACE)
gl.glEnable(gl.GL_BLEND)
gl.glClearColor(0.6, 0.6, 0.6, 0.0)
def cleanup_img_fb(self):
"""
Destroy any allocated framebuffers
"""
for k, v in self.fb_ids.iteritems():
if v != -1:
gl.glDeleteFramebuffers(1, int(v))
self.fb_ids[k] = -1
def init_img_fb(self):
"""
Create 2 framebuffers to use for swapping image to texture for post
processing shaders
"""
for name in self.fb_ids:
self.fb_ids[name] = gl.glGenFramebuffers(1)
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self.fb_ids[name])
gl.glFramebufferTexture2D(
gl.GL_FRAMEBUFFER,
gl.GL_COLOR_ATTACHMENT0,
gl.GL_TEXTURE_2D,
self.texture_ids[
self.fb_texture_map[name]],
0)
assert (gl.GL_FRAMEBUFFER_COMPLETE ==
gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER)), (
"Frame buffer %s isn't completely initialized" % (name))
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
def cleanup_image_texture(self):
"""
Cleanup allocated textures
"""
for k, v in self.texture_ids.iteritems():
if v != -1:
gl.glDeleteTextures(v)
self.texture_ids[k] = -1
def init_image_texture(self, img):
"""
allocate textures that are the size of the imported image. One will be
attached to a framebuffer.
"""
image_bytes = img.convert("RGBA").tobytes("raw", "RGBA", 0, -1)
for name in self.texture_ids:
self.texture_ids[name] = gl.glGenTextures(1)
gl.glBindTexture(gl.GL_TEXTURE_2D, self.texture_ids[name])
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER,
gl.GL_NEAREST)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER,
gl.GL_NEAREST)
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
gl.glTexImage2D(
gl.GL_TEXTURE_2D,
0,
gl.GL_RGBA8,
img.size[0],
img.size[1],
0,
gl.GL_RGBA,
gl.GL_UNSIGNED_BYTE,
image_bytes)
def record(self, folder_name="mov"):
"""
"""
filename = "%s/%03d.png" % (folder_name, self.recording_frame_num)
self.console.add_output(
"Saved frame %s/%s" %
(self.recording_frame_num +
1,
self.recording_frame_num +
self.recording_remaining_frames))
self.recording_frame_num += 1
self.recording_remaining_frames -= 1
if self.recording_remaining_frames <= 0:
self.console.add_output("Done recording")
self.recording = False
self.recording_frame_num = 0
self.recording_remaining_frames = -1
image = self.get_filter_img()
image.save(filename, compress_level=3)
image.close()
def get_filter_img(self):
width = self.img_dimensions[0]
height = self.img_dimensions[1]
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self.target_fb)
gl.glReadBuffer(gl.GL_COLOR_ATTACHMENT0)
pixels = gl.glReadPixels(
0, 0, width, height, gl.GL_RGBA, gl.GL_UNSIGNED_BYTE)
#gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
image = Image.frombytes("RGBA", (width, height), pixels)
image = image.transpose(Image.FLIP_TOP_BOTTOM)
return image
def screenshot(self, filename):
"""
bind the last framebuffer used during filtering and copy pixels to
image and save as filename
"""
image = self.get_filter_img()
image.save(filename, compress_level=3)
def update_filtered_image(self, update_frame_count=True):
"""
Update the image by processing it with all of the shaders.
"""
gl.glBindTexture(gl.GL_TEXTURE_2D, self.texture_ids['img'])
current_fb = [(x, y) for x, y in self.fb_texture_map.iteritems()]
for val in self.filters:
gl.glBindFramebuffer(
gl.GL_FRAMEBUFFER, self.fb_ids[current_fb[0][0]])
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
val.render(self.img_dimensions, self.frame)
gl.glBindTexture(gl.GL_TEXTURE_2D, self.texture_ids[
current_fb[0][1]])
self.target_texture = self.texture_ids[current_fb[0][1]]
self.target_fb = self.fb_ids[current_fb[0][0]]
current_fb = current_fb[1:] + current_fb[:1]
if update_frame_count:
self.frame += 1
if self.recording:
self.record()
#gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
def update_screen(self):
"""
Updates what is on the screen.
"""
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
# This renders the filters into an orho view to allow
# scaling and offseting for preview
tar_tex = self.target_texture if self.filters else self.texture_ids[
'img']
gl.glBindTexture(gl.GL_TEXTURE_2D, tar_tex)
self.final_filter.render(self.view.offset, self.view.zoom,
self.window_dimensions, self.img_dimensions)
# This renders the console
if self.console_enabled:
self.console.render(self.window_dimensions)
sdl2.SDL_GL_SwapWindow(self.window)
def handle_resize(self, dimensions):
"""
Called when the window is resized
"""
self.window_dimensions = dimensions
def do_command(self, cmd):
update_image = False
update_screen = False
update_frame_count = False
cmd = cmd.strip()
if not cmd:
return False, True, False
if cmd == 'clear':
self.console.clear()
update_screen = True
elif cmd == 'shuffle':
random.shuffle(self.filters)
update_screen = True
update_image = True
self.console.add_output("Filter order shuffled.")
elif cmd == 'all':
self.console.add_output(
"%s" % ("\n".join(sorted([name for name in ALL_FILTERS]))))
update_screen = True
elif cmd == 'help':
self.console.add_output("You are on your own ;(")
update_screen = True
elif cmd[:5] == 'echo ':
self.console.add_output(cmd[5:])
update_screen = True
elif cmd[:4] == 'add ':
target = cmd[4:]
if target in self.all_filters:
self.filters.append(self.all_filters[target])
self.console.add_output("Success adding filter %s." % (target))
update_image = True
else:
self.console.add_output("Could not find filter %s." % (target))
update_screen = True
elif cmd[:4] == 'mov ':
targets = cmd[4:].split(' ')
target_x = None
target_y = None
try:
target_x = int(targets[0])
target_y = int(targets[1])
except:
self.console.add_output("Failed to parse int!")
if target_x is not None and target_y is not None:
if target_x < 0 or target_x >= len(self.filters):
self.console.add_output("Target x is out of bounds!")
if target_y < 0 or target_y >= len(self.filters):
self.console.add_output("Target y is out of bounds!")
target_x = target_y
self.console.add_output(
"Success, switched %s and %s." % (target_x, target_y))
if target_x != target_y:
tmp = self.filters[target_y]
self.filters[target_y] = self.filters[target_x]
self.filters[target_x] = tmp
update_image = True
update_screen = True
elif cmd[:5] == 'load ':
target = cmd[5:]
img = None
try:
img = Image.open(target)
except:
self.console.add_output("Could not load image %s" % (target))
if img is not None:
filters = [k for k, v in self.all_filters.iteritems()
for f in self.filters if v == f]
self.filter_img(img, filters)
img.close()
self.console.add_output("Success, loaded image %s" % (target))
update_screen = True
elif cmd[:7] == 'record ':
num_frames = None
try:
num_frames = int(cmd[7:])
except:
self.console.add_output("Failed to parse int")
if num_frames is not None:
self.console.add_output("Recording %s frames." % (num_frames))
self.recording = True
self.recording_remaining_frames = num_frames
self.recording_frame_num = 0
update_screen = True
elif cmd[:4] == 'rem ':
target = None
if cmd[4:] == 'all':
self.filters = []
self.console.add_output("Success.")
update_image = True
else:
try:
target = int(cmd[4:])
except:
self.console.add_output("Could not parse int!")
if target is not None:
if target < 0 or target > len(self.filters):
self.console.add_output("That index is out of bounds!")
else:
self.console.add_output("Success.")
self.filters = self.filters[
:target] + self.filters[target + 1:]
update_image = True
update_screen = True
elif cmd == 'list':
for i in range(len(self.filters)):
self.console.add_output("%d %s" % (i, str(self.filters[i])))
update_screen = True
elif cmd == 'next':
self.console.add_output('Success.')
update_image = True
update_screen = True
update_frame_count = True
elif cmd == 'play':
self.playing = True
self.console.add_output("Success. Playing: %s" % self.playing)
update_screen = True
elif cmd == 'screenshot':
self.screenshot('out.png')
self.console.add_output("Success, saved out.png.")
update_screen = True
elif cmd == 'stop':
self.playing = False
self.console.add_output("Success: Playing: %s" % self.playing)
update_screen = True
else:
self.console.add_output("Command not recognized.")
update_screen = True
return update_image, update_screen, update_frame_count
def run(self):
run, update_img, update_view, update_frame = self.poll_events()
if (run and self.playing and
sdl2.SDL_GetTicks() - self.last_update > 1000 / self.fps):
self.update_filtered_image()
self.last_update = sdl2.SDL_GetTicks()
self.update_screen()
else:
if update_img:
self.update_filtered_image(
update_frame_count=update_frame)
if update_view:
self.update_screen()
delay = 10
sdl2.SDL_Delay(delay)
return run
def poll_events(self):
"""
Wait for a SDL2 event, handle it once encountered
"""
update_img = False
update_view = False
update_frame = False
event = sdl2.SDL_Event()
while sdl2.SDL_PollEvent(ctypes.byref(event)):
# resize events
if event.type == sdl2.SDL_WINDOWEVENT:
if event.window.event == sdl2.SDL_WINDOWEVENT_RESIZED:
self.handle_resize(
(event.window.data1, event.window.data2))
if event.window.event in [sdl2.SDL_WINDOWEVENT_RESIZED,
sdl2.SDL_WINDOWEVENT_EXPOSED]:
update_view = True
# quit events
if event.type == sdl2.SDL_QUIT:
return False, False, False, False
# Console inputs
if self.console_enabled:
commands = []
if event.type == sdl2.SDL_TEXTINPUT:
event_str = event.text.text[:]
commands += self.console.parse_input(event_str)
update_view = True
if event.type == sdl2.events.SDL_KEYDOWN:
if event.key.keysym.sym == sdl2.SDLK_BACKSPACE:
self.console.backspace()
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_RETURN:
commands += self.console.parse_input('\n')
update_view = True
for cmd in commands:
update_img, update_view, update_frame = self.do_command(
cmd)
# hotkeys
if event.type == sdl2.events.SDL_KEYDOWN:
if event.key.keysym.sym == sdl2.SDLK_ESCAPE:
return False, False, False, False
elif event.key.keysym.sym == sdl2.SDLK_BACKQUOTE:
self.console_enabled = not self.console_enabled
if self.console_enabled:
sdl2.SDL_StartTextInput()
else:
sdl2.SDL_StopTextInput()
update_view = True
if self.console_enabled:
return True, update_img, update_view, update_frame
if event.key.keysym.sym == sdl2.SDLK_a:
self.playing = True
update_view = True
update_img = True
elif event.key.keysym.sym == sdl2.SDLK_s:
self.playing = False
update_view = True
update_img = True
elif event.key.keysym.sym == sdl2.SDLK_r:
random.shuffle(self.filters)
update_img = True
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_UP:
self.view.offset = (
self.view.offset[0], self.view.offset[1] - 8)
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_DOWN:
self.view.offset = (
self.view.offset[0], self.view.offset[1] + 8)
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_LEFT:
self.view.offset = (
self.view.offset[0] + 8, self.view.offset[1])
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_RIGHT:
self.view.offset = (
self.view.offset[0] - 8, self.view.offset[1])
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_EQUALS:
self.view.zoom += 0.05
update_view = True
elif event.key.keysym.sym == sdl2.SDLK_MINUS:
self.view.zoom -= 0.05
update_view = True
return True, update_img, update_view, update_frame
def cleanup(self):
"""
destroys opengl and sdl resources allocated
"""
for val in self.all_filters.itervalues():
val.cleanup_shader()
self.filters = []
if self.final_filter:
self.final_filter.cleanup_shader()
if self.console:
self.console.cleanup()
self.final_filter = None
self.cleanup_img_fb()
self.cleanup_image_texture()
if self.window:
sdl2.SDL_DestroyWindow(self.window)
self.window = None
self.view.reset()
def __del__(self):
self.cleanup()
if __name__ == "__main__":
img = Image.open('selena.jpg')
ig = ImageGlitch()
import atexit
atexit.register(ig.cleanup)
ig.filter_img(img,
[
'first',
# 'second',
# 'third',
'rgb_shift',
# 'repeat_end',
# 'static',
# 'static2',
'scanlines',
])
img.close()
running = True
ig.update_screen()
while running:
running = ig.run()
| true
|
119bcc198438a5c304bba7d3824e007f12b828d5
|
Python
|
avielb/DevOps0803
|
/11.py
|
UTF-8
| 356
| 3.15625
| 3
|
[] |
no_license
|
myfile = open("read_my_contents.txt", "r")
all_lines = myfile.readlines()
for line in all_lines:
print(line, end='')
myfile.close()
my_new_file = open("my_file.txt", "w")
my_new_file.write("Hello my file....")
my_new_file.close()
my_other_file = open("read_my_contents.txt", "a")
my_other_file.write("\nthis is the last line")
my_other_file.close()
| true
|
2cdeb1295969b6e9d21e01202713432f050a021f
|
Python
|
turner3467/football_scores
|
/scripts/download.py
|
UTF-8
| 1,206
| 2.765625
| 3
|
[] |
no_license
|
#! /usr/bin/env python
import csv
import urllib.request as req
import io
base_url = "http://football-data.co.uk/mmz4281/" # 1516/E0.csv
seasons = [str(i % 100).zfill(2) + str((i + 1) % 100).zfill(2)
for i in range(100, 116)]
leagues = [1, 2]
cntry = {"eng": "E",
"ger": "D",
"fra": "F",
"spa": "SP",
"ita": "I"}
for s in seasons:
for l in leagues:
for c in cntry:
if c == 'eng': # premiership = 0
l_tmp = l - 1
else:
l_tmp = l
url = base_url + "{}/{}{}.csv".format(s, cntry[c], l_tmp)
r = req.urlopen(url)
reader = csv.reader(io.TextIOWrapper(r, errors="ignore"))
file = "../data/raw_data/{}_{}_{}.csv".format(c, s, str(l))
with open(file, "w") as outfile:
writer = csv.writer(outfile, delimiter=",")
for row in reader:
writer.writerow(row)
print("Historic seasons downloaded successfully.")
| true
|
60d40adc65941e4f13ab2a1daac1ed64b71fde5e
|
Python
|
iCodeIN/pe
|
/test/test__parse.py
|
UTF-8
| 3,317
| 2.84375
| 3
|
[
"MIT"
] |
permissive
|
from pe.operators import (
Dot,
Literal,
Class,
Sequence,
Choice,
Optional,
Star,
Plus,
Nonterminal,
And,
Not,
Capture,
Bind,
)
from pe._parse import loads
def eloads(s):
start, defmap = loads(s)
return defmap[start]
def test_loads_dot():
assert eloads('.') == Dot()
assert eloads('. # comment') == Dot()
def test_loads_literal():
assert eloads('"foo"') == Literal('foo')
assert eloads('"foo" # comment') == Literal('foo')
assert eloads('"\\t"') == Literal('\t')
assert eloads('"\\n"') == Literal('\n')
assert eloads('"\\v"') == Literal('\v')
assert eloads('"\\f"') == Literal('\f')
assert eloads('"\\r"') == Literal('\r')
assert eloads('"\\""') == Literal('"')
assert eloads("'\\''") == Literal("'")
assert eloads("'\\['") == Literal("[")
assert eloads("'\\\\'") == Literal("\\")
assert eloads("'\\]'") == Literal("]")
assert eloads("'\\123'") == Literal('S')
assert eloads("'\\x61'") == Literal('a')
assert eloads("'\\u0061'") == Literal('a')
assert eloads("'\\U00000061'") == Literal('a')
def test_loads_class():
assert eloads('[xyz]') == Class('xyz')
assert eloads('[xyz] # comment') == Class('xyz')
assert eloads('[x-z]') == Class('x-z')
assert eloads('[\\[\\]]') == Class('[]')
assert eloads('[xy\\u007a]') == Class('xyz')
assert eloads('[\xe1bc]') == Class('ábc')
def test_loads_nonterminal():
assert eloads('foo') == Nonterminal('foo')
assert eloads('foo # comment') == Nonterminal('foo')
def test_loads_optional():
assert eloads('"a"?') == Optional('a')
assert eloads('"a"? # comment') == Optional('a')
def test_loads_star():
assert eloads('"a"*') == Star('a')
assert eloads('"a"* # comment') == Star('a')
def test_loads_plus():
assert eloads('"a"+') == Plus('a')
assert eloads('"a"+ # comment') == Plus('a')
def test_loads_sequence():
assert eloads('"a" "b"') == Sequence('a', 'b')
assert eloads('"a" "b" # comment') == Sequence('a', 'b')
def test_loads_choice():
assert eloads('"a" / "b"') == Choice('a', 'b')
assert eloads('"a" / "b" # comment') == Choice('a', 'b')
def test_loads_and():
assert eloads('&"a"') == And('a')
assert eloads('&"a" # comment') == And('a')
def test_loads_not():
assert eloads('!"a"') == Not('a')
assert eloads('!"a" # comment') == Not('a')
def test_loads_capture():
assert eloads('~"a"') == Capture('a')
assert eloads('~"a" # comment') == Capture('a')
def test_loads_bind():
assert eloads('x:"a"') == Bind('a', name='x')
assert eloads('x:"a" # comment') == Bind('a', name='x')
assert eloads('x: "a"') == Bind('a', name='x')
assert eloads('x : "a"') == Bind('a', name='x')
def test_loads_def():
assert loads('A <- "a"') == ('A', {'A': Literal('a')})
assert loads('A <- "a" # comment') == ('A', {'A': Literal('a')})
assert loads('A <- "a" "b"') == ('A', {'A': Sequence('a', 'b')})
assert loads('A <- "a" B <- "b"') == ('A', {'A': Literal('a'),
'B': Literal('b')})
assert loads('''
A <- "a" Bee
Bee <- "b"
''') == ('A', {'A': Sequence('a', Nonterminal('Bee')),
'Bee': Literal('b')})
| true
|
34055eba8478acc8b7fe99b62b1268a1855f1cbc
|
Python
|
nathantheinventor/solved-problems
|
/URI Online Judge/Beginner/1017 Fuel Spent/fuel.py
|
UTF-8
| 56
| 2.546875
| 3
|
[] |
no_license
|
print("{:.3f}".format(int(input()) * int(input()) / 12))
| true
|
113dd3323512d928c75262939970dfb2d43d69f6
|
Python
|
ChanceQZ/rs-img-classification
|
/src/readTif.py
|
UTF-8
| 353
| 2.5625
| 3
|
[] |
no_license
|
import cv2
import numpy as np
import tifffile
img = tifffile.imread('678.tif')
a = img[:,:,0]+img[:,:,1]+img[:,:,2]
b = np.zeros(a.shape, dtype=np.uint8)
b[np.where(a == 0)] = 255
print(img.shape, np.max(img))
cv2.namedWindow("Image")
cv2.imshow("Image", cv2.resize(b, (img.shape[0]//10, img.shape[1]//10)))
cv2.waitKey (0)
cv2.destroyAllWindows()
| true
|
6188784782489cd05bc1e843a03216e728968647
|
Python
|
StasyaZlato/Home-Work
|
/2016-2017/classworks/programming_test.py
|
UTF-8
| 1,528
| 3.671875
| 4
|
[] |
no_license
|
#Задание1. Открыть файл и вывести на экран строчки, содержащие союз
with open ('freq.txt', 'r', encoding = 'utf-8') as f:
lines = f.readlines ()
for line in lines:
if 'союз' in line:
print (line)
#Задание2. Распечатать через запятую все существительные женского рода
#единственного числа и вывести сумму ipm
with open ('freq.txt', 'r', encoding = 'utf-8') as f:
lines = f.readlines ()
a = []
for line in lines:
line = line.split ()
if 'жен' in line and 'ед' in line:
print (line[0], end = ', ')
a.append (line[-1])
ipm_sum = 0
for elem in a:
elem = float (elem)
ipm_sum += elem
print (ipm_sum)
#Задание3. Спрашиваем слова, пока пользователь не введет пустое слово.
#Выводим для каждого морф. информацию и ipm
with open ('freq.txt', 'r', encoding = 'utf-8') as f:
lines = f.readlines ()
word = input ()
while word:
for line in lines:
line = line.split()
if word in line:
print ('Морфологическая информация: ' + ' '.join (line[2:-2]))
print ('IPM = ' + line[-1])
word = input ()
| true
|
142077bb9333312704700bde57afb717423c0017
|
Python
|
emarahimself/mnist-pytorch
|
/dataset.py
|
UTF-8
| 3,654
| 2.875
| 3
|
[] |
no_license
|
import idx2numpy
from sklearn import preprocessing
from sklearn.datasets import load_iris, load_digits, make_blobs
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
class DatasetBase:
x_train = None
x_test = None
y_train = None
y_test = None
def normalize(self):
raise NotImplementedError
def binarize_labels(self):
self.binarizer = preprocessing.LabelBinarizer()
self.y_train = self.binarizer.fit_transform(self.y_train)
self.y_test = self.binarizer.fit_transform(self.y_test)
@property
def features(self):
return self.x_train.shape[1]
@property
def train_size(self):
return self.x_train.shape[0]
@property
def test_size(self):
return self.x_test.shape[0]
@property
def classes(self):
return self.y_test.shape[1]
class BlobsDataset(DatasetBase):
def __init__(self, samples=1000, centers=3, features=20):
x, y = make_blobs(n_samples=samples, centers=centers, n_features=features)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(
x, y, test_size=0.25, random_state=1
)
self.normalize()
self.binarize_labels()
def normalize(self):
scaler = preprocessing.MinMaxScaler()
self.x_train = scaler.fit_transform(self.x_train)
self.x_test = scaler.fit_transform(self.x_test)
class IrisDataset(DatasetBase):
def __init__(self):
x, y = load_iris(return_X_y=True)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.25, random_state=1
)
self.x_train = x_train
self.x_test = x_test
self.y_train = y_train
self.y_test = y_test
self.normalize()
self.binarize_labels()
def normalize(self):
scaler = preprocessing.MinMaxScaler()
self.x_train = scaler.fit_transform(self.x_train)
self.x_test = scaler.fit_transform(self.x_test)
class MNISTDataset(DatasetBase):
def __init__(self):
train_images_path = 'dataset/train-images-idx3-ubyte'
test_images_path = 'dataset/t10k-images-idx3-ubyte'
train_labels_path = 'dataset/train-labels-idx1-ubyte'
test_labels_path = 'dataset/t10k-labels-idx1-ubyte'
self.x_train = idx2numpy.convert_from_file(train_images_path)
self.y_train = idx2numpy.convert_from_file(train_labels_path)
self.x_test = idx2numpy.convert_from_file(test_images_path)
self.y_test = idx2numpy.convert_from_file(test_labels_path)
features = 28 * 28
train_size = self.x_train.shape[0]
test_size = self.x_test.shape[0]
self.x_train = self.x_train.reshape(train_size, features)
self.x_test = self.x_test.reshape(test_size, features)
self.normalize()
self.binarize_labels()
def normalize(self):
self.x_train = self.x_train / 255.0
self.x_test = self.x_test / 255.0
class DigitsDataset(DatasetBase):
def __init__(self):
x, y = load_digits(return_X_y=True)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.25, random_state=1
)
self.x_train = x_train
self.x_test = x_test
self.y_train = y_train
self.y_test = y_test
self.normalize()
self.binarize_labels()
def normalize(self):
scaler = preprocessing.MinMaxScaler()
self.x_train = scaler.fit_transform(self.x_train)
self.x_test = scaler.fit_transform(self.x_test)
| true
|
8ffb9e82c988e8a26e41b8f39025f79e25df8327
|
Python
|
AleksanderKarmazin/Test_july_2020
|
/test.py
|
UTF-8
| 10,710
| 2.953125
| 3
|
[
"Apache-2.0"
] |
permissive
|
import time
from selenium import webdriver
import pytest
from selenium.common.exceptions import ElementClickInterceptedException, NoSuchElementException
from loginPage import LoginPage
from homePage import HomePage
@pytest.mark.usefixtures("driver_init")
class Test_Class_01():
# ТС_1.1. Логин с корректным ID пользователя и корректным паролем
def test_TC_01(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
# homepage = HomePage(driver)
# homepage.open_profile_menu()
# homepage.click_logout()
# ТС_1.2. Логин с пустым полем ID пользователя и пустым полем паролем
def test_TC_02(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("")
login.enter_password("")
login.click_login()
openElement = driver.find_element_by_css_selector("div.invalid-feedback")
elementText = openElement.text
Text = "Login is not given."
assert Text == elementText
openElement2 = driver.find_element_by_xpath("//form/div[2]/div")
elementText2 = openElement2.text
Text2 = "Password is not given."
assert Text2 == elementText2
# ТС_1.3. Логин с корректным ID пользователя и не корректным паролем (5 символов)
def test_TC_03(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("12345")
login.click_login()
openElement = driver.find_element_by_xpath("//form/div[2]/div")
elementText = openElement.text
Text = "The entered password must be not less than 6 symbols."
assert Text == elementText
# ТС_1.4. Логин с корректным ID пользователя и не корректным паролем (6 символов)
def test_TC_04(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123455")
login.click_login()
openElement = driver.find_element_by_xpath("//form/div/div")
elementText = openElement.text
Text = "Login or password is incorrect!"
assert Text == elementText
# ТС_1.5. Логин с корректным ID пользователя и не корректным паролем (7 символов)
def test_TC_05(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("1234567")
login.click_login()
openElement = driver.find_element_by_xpath("//form/div/div")
elementText = openElement.text
Text = "Login or password is incorrect!"
assert Text == elementText
# ТС_1.6. Логин с не корректным ID пользователя и корректным паролем
def test_TC_06(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.comm")
login.enter_password("123456")
login.click_login()
openElement = driver.find_element_by_xpath("//form/div/div")
elementText = openElement.text
Text = "Login or password is incorrect!"
assert Text == elementText
# ТС_1.7. Логин с не корректным ID пользователя и не корректным паролем (6 символов)
def test_TC_07(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.comm")
login.enter_password("123455")
login.click_login()
openElement = driver.find_element_by_xpath("//form/div/div")
elementText = openElement.text
Text = "Login or password is incorrect!"
assert Text == elementText
# ТС_2.1 Корректный номер телефона (Russia, номер 9181234567, Health Care)
def test_TC_08(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("Russia")
homepage.enter_phone("9181234567")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# ТС_2.2. Повторный ввод корректного телефона без изменений информации (Russia, номер 9181234567, Health Care )
def test_TC_09(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("Russia")
homepage.enter_phone("9181234567")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.3. Повторный ввод корректных данных с изменениями дропдауна Business segment
def test_TC_10(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("Russia")
homepage.enter_phone("9181234567")
homepage.select_business_segment("Finance")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.4. Повторный ввод корректного телефона с изменениями дропдауна Country (United States , номер 2026794501, Health Care )
def test_TC_11(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("United States")
homepage.enter_phone_code("+1")
homepage.enter_phone("2026794501")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.5. Пустое поле кода (USA , номер 2026794501)
def test_TC_12(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("United States")
homepage.enter_phone_code("")
homepage.enter_phone("2026794501")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.6. Пустое поле телефон
def test_TC_13(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("United States")
homepage.enter_phone_code("+1")
homepage.enter_phone("")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.7. Ввод номера телефона не корректного формата
def test_TC_14(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("United States")
homepage.enter_phone_code("+1")
homepage.enter_phone("202 679 45 01")
homepage.select_business_segment("Health Care")
homepage.click_update()
homepage.open_profile_menu()
homepage.click_logout()
# 2.8. Ввод не действительного номера телефона
def test_TC_15(self):
driver = self.driver
driver.get("https://area.mtg-bi.com")
login = LoginPage(driver)
login.sign_in()
login.enter_username("testcaseqa5@gmail.com")
login.enter_password("123456")
login.click_login()
homepage = HomePage(driver)
homepage.open_profile_menu()
homepage.open_profile()
homepage.select_country("United States")
homepage.enter_phone_code("+1")
homepage.enter_phone("956-42-84")
homepage.select_business_segment("Health Care")
homepage.click_update()
time.sleep(10)
homepage.open_profile_menu()
homepage.click_logout()
| true
|
77ad1958758f8a399d137006b7eab0b92f900673
|
Python
|
davidcolton/bitesofpy
|
/304/max_letter.py
|
UTF-8
| 1,258
| 3.765625
| 4
|
[] |
no_license
|
from typing import Tuple
from collections import Counter
import re
def max_letter_word(text) -> Tuple[str, str, int]:
"""
Find the word in text with the most repeated letters. If more than one word
has the highest number of repeated letters choose the first one. Return a
tuple of the word, the (first) repeated letter and the count of that letter
in the word.
>>> max_letter_word('I have just returned from a visit...')
('returned', 'r', 2)
>>> max_letter_word('$5000 !!')
('', '', 0)
"""
max_word = ""
max_letter = ""
max_count = 0
if isinstance(text, str):
for idx, word in enumerate(text.split()):
most_frequent = Counter(
"".join(filter(str.isalpha, word.casefold()))
).most_common(1)
try:
letter, cnt = most_frequent[0]
if cnt > max_count:
max_word = word
max_letter = letter
max_count = cnt
except IndexError:
pass
else:
raise ValueError
max_word = "".join([c for c in max_word if c.isalpha() or c in ["'", "-"]])
return (max_word, max_letter, max_count)
| true
|
dba44ccc13d136c8a703806e079aa30b96b2d197
|
Python
|
levit123/Basic-Python-Projects
|
/Budget/Budget.py
|
UTF-8
| 579
| 4.03125
| 4
|
[] |
no_license
|
#new function named "calcBills"
def calcBills():
#creates a variable with the following properties
myBills = {'Electric': 120.00, 'Rent': 1200.00, 'Water_Sewer': 60.00, 'Car_Insurance': 75.00, 'Phone': 65.00}
#creates an integer and sets its value to 0
total = 0
#uses a for loop to add all the numbers in "myBills" to "total"
for i in myBills:
total += myBills[i]
#creates a string that has a sentence with the "total"
owed = 'The total cost for bills this month is: ${}'.format(total)
#returns the "owed" string
return owed
| true
|
62b37d7d3843b46916ad86b61a882f1e1bdc2f9d
|
Python
|
otak007/RailNL
|
/code/algorithms/depth_first.py
|
UTF-8
| 6,128
| 2.90625
| 3
|
[] |
no_license
|
from code.classes.map import Map
from code.classes.stations import Station
from code.classes.traject import Traject
import copy
import csv
import matplotlib.pyplot as plt
def all_stations(distance, color, map, all_critical, max_time, crit_stations, steps):
## Goes over all start stations and chooses best traject
is_critical(map, all_critical)
# Initialize lists
trajecten = []
scores = []
t = []
s = []
# Goes over all start stations
for x in range(len(map.stations)):
for connection in map.connections:
connection.travelled = False
# Create new traject and travel
traject = Traject(map.stations[x])
trajects, score = travel(traject, map.stations[x], "y", steps, t, s, map, max_time, crit_stations)
trajecten.append(copy.deepcopy(trajects))
scores.append(copy.copy(score))
t = []
s = []
# Choose traject with highest score
index = scores.index(max(scores))
best_traject = trajecten[index]
# add connections from best traject to list of already driven connections
for connection in best_traject.connections:
map.driven_connections.append(connection.id)
map.driven_connections = list(set(map.driven_connections))
trajecten.append(copy.deepcopy(best_traject))
# Plot traject
plot_traject(best_traject, color, distance)
return best_traject
def is_critical(map, all_critical):
# Checks if connection is connected to critical station
for connection in map.connections:
for station in map.stations:
if (station.name == connection.stationA or station.name == connection.stationB) and station.critical == True:
connection.critical = 1
if map.driven_connections:
for id in map.driven_connections:
if id == connection.id:
connection.critical = 0
else:
if all_critical == "yes":
connection.critical = 1
def find_neighbours(station, map):
# Initialize lists
connections = []
stations = []
# Add relevant connections to relevant lists
for connection in map.connections:
if station.name == connection.stationA:
connections.append(connection)
stations.append(to_station(connection.stationB, map))
elif station.name == connection.stationB:
connections.append(connection)
stations.append(to_station(connection.stationA, map))
return connections, stations
def find_subroutes(stations, connections, last_station, steps, traject, t, s, map, max_time, crit_stations, depth = 0, trajecten = [], scores = []):
# Start with appending start station
if depth == 0:
traject.traject.append(last_station)
# If max depth and time is not reached
if depth < steps and sum(traject.times) <= max_time:
# Iterate over stations
for station in stations:
# Find connected stations for that station
connections, stations = find_neighbours(station, map)
# Go nodes back if max depth is reached
while len(traject.traject) > (depth + 1):
lost_connection = traject.connections.pop()
# If connection no longer travelled, reset variable
if lost_connection not in traject.connections:
lost_connection.travelled = False
traject.traject.pop()
traject.times.pop()
traject.scores.pop()
# Find connection to node and add to list if possible
for connection in connections:
if (last_station.name == connection.stationA and station.name == connection.stationB) or (station.name == connection.stationA and last_station.name == connection.stationB):
if sum(traject.times) + connection.travelTime <= max_time:
traject.times.append(connection.travelTime)
traject.scores.append(connection.calc_val(crit_stations))
connection.travelled = True
traject.traject.append(station)
traject.connections.append(connection)
# Prevent travelling back
for next_station in stations:
if last_station.name is next_station.name:
stations.remove(next_station)
for connection in connections:
if (next_station.name == connection.stationA and station.name == connection.stationB) or (station.name == connection.stationA and next_station.name == connection.stationB):
connections.remove(connection)
# Travel again
find_subroutes(stations, connections, station, steps, traject, t, s, map, max_time, crit_stations, depth + 1)
else:
traject.score = sum(traject.scores)
traject.time = sum(traject.times)
t.append(copy.deepcopy(traject))
s.append(traject.score)
return t, s
def travel(traject, station, color, steps, t, s, map, max_time, crit_stations):
connections, stations = find_neighbours(station, map)
trajecten, scores = find_subroutes(stations, connections, station, steps, traject, t, s, map, max_time, crit_stations)
best_score = max(scores)
best_traject = trajecten[scores.index(max(scores))]
return best_traject, best_score
def plot_traject(traject, color, distance):
## plots traject once best traject is chosen
# goes over every station in traject and plots it
for x in range(1, len(traject.traject)):
station1 = traject.traject[x-1]
station2 = traject.traject[x]
plt.plot([float(station1.yCoordinate) - 0.02, float(station2.yCoordinate) - 0.02], [float(station1.xCoordinate) + distance * 0.01, float(station2.xCoordinate) + distance * 0.01], color+"-")
def to_station(name, map):
## Transforms a station(str) to Station(obj)
for row in map.stations:
if name == row.name:
name = row
return name
| true
|
81aa66e73d243eae8768e1461f83acbeab3591d2
|
Python
|
DanielBaudry/makemegreen
|
/engine/footprint.py
|
UTF-8
| 4,481
| 2.59375
| 3
|
[] |
no_license
|
""" Footprint """
from models import BaseObject, Footprint, User, FootprintType
from engine import dictionnary as info
from flask import current_app as app
class BadUserException(Exception):
pass
class BadArgException(Exception):
pass
class ComputeFootprint:
def __init__(self):
pass
def getCO2Footprint(self, data):
redmeatFootprint = float(data.get('red_meat_frequency')) * info.dic['serving'] * info.dic['nb_meals'] * info.dic['red_meat']
whitemeatFootprint = float(data.get('white_meat_frequency')) * info.dic['serving'] * info.dic['nb_meals'] * info.dic['white_meat']
clothesFootprint = float(data.get('clothes_composition')) * info.dic['quantity_clothes'] * info.dic['cotton'] \
+ (1 - float(data.get('clothes_composition'))) * info.dic['quantity_clothes'] * info.dic['polyester/wool']
trainFootprint = float(data.get('train_frequency')) * info.dic['train']
if float(data.get('personal_vehicule_consumption')) == -1:
carFootprint = float(data.get('personal_vehicule_frequency')) * info.dic['car']
else:
carFootprint = float(data.get('personal_vehicule_frequency')) * float(data.get('personal_vehicule_consumption'))/100. * info.dic['car_liter']
carFootprint = carFootprint - carFootprint * float(data.get('carpooling_frequency')) * (info.dic['nb_passengers'] - 1.)/info.dic['nb_passengers']
return redmeatFootprint + whitemeatFootprint + clothesFootprint + carFootprint
def getTrashFootprint(self, data):
greentrashFootprint = float(data.get('green_garbage')) * info.dic['green_trash']
yellowtrashFootprint = float(data.get('yellow_garbage')) * info.dic['yellow_trash']
return greentrashFootprint + yellowtrashFootprint
def getWaterFootprint(self, data):
bathFootprint = float(data.get('bath_shower_frequency')) * float(data.get('bath_or_shower')) * info.dic['bath']
showerFootprint = float(data.get('bath_shower_frequency')) * (1 - float(data.get('bath_or_shower'))) * info.dic['shower'] * info.dic['time_shower']
return bathFootprint + showerFootprint
def execute(self, data):
return [
{
"id": 1,
"type": {
"label": "carbon"
},
"value": self.getCO2Footprint(data)
},
{
"id": 2,
"type": {
"label": "waste"
},
"value": self.getTrashFootprint(data)
},
{
"id": 3,
"type": {
"label": "water"
},
"value": self.getWaterFootprint(data)
}
]
class GetFootprintHistory:
def __init__(self):
pass
def execute(self, user: User) -> Footprint:
if user is None:
raise BadUserException()
footprints = []
for type in FootprintType:
footprint_type = type.value.get('label')
if footprint_type != "total":
footprint = Footprint.query. \
filter_by(user_id=user.get_id()). \
filter_by(type=footprint_type). \
order_by(Footprint.date_created.asc()). \
all()
footprints.append(footprint)
return footprints
class GetFootprints:
def __init__(self):
pass
def execute(self, user: User) -> Footprint:
if user is None:
raise BadUserException()
footprints = []
for type in FootprintType:
footprint_type = type.value.get('label')
if footprint_type != "total":
footprint = Footprint.query. \
filter_by(user_id=user.get_id()). \
filter_by(type=footprint_type). \
order_by(Footprint.date_created.desc()). \
first()
footprints.append(footprint)
return footprints
class SaveFootprint:
def __init__(self, footprint: Footprint):
self.footprint = Footprint
def execute(self, footprint: Footprint) -> Footprint:
if footprint is None:
raise BadArgException()
BaseObject.check_and_save(footprint)
return footprint
| true
|
72c304aa7723b031632e35521b6b044ca579ac55
|
Python
|
erasta/blockly-cv2
|
/prj/water/code.py
|
UTF-8
| 274
| 2.609375
| 3
|
[] |
no_license
|
import cv2
import numpy as np
image = cv2.imread('media/lena.jpg',1)
markers = [(10,10), (100,100), None]
water = cv2.watershed(image,markers)
print(water)
cv2.imshow('mywin',image)
cv2.imshow('watershed',water)
if cv2.waitKey(0)&0xff == 27:
pass
cv2.destroyAllWindows()
| true
|
1900ebf9d609ac767d5e0349077683068fa1055e
|
Python
|
tuxmsantos/exemple02
|
/operations.py
|
UTF-8
| 129
| 3.515625
| 4
|
[] |
no_license
|
num1 = input("digite o primeiro numero....:")
num2 = input("digite o segundo numero.....:")
total = int(num1 / num2)
print total
| true
|