blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
2413e32be23f1431fa3bf81f4d16d09f8e4b6c23
Python
furyash/nscLab
/3. ceaserCipher/server-socket.py
UTF-8
686
2.765625
3
[]
no_license
import socket def decode(message): message = list(message) #bytes(message.encode('ascii'))) for i in range(len(message)): message[i] = chr(ord(message[i]) - key) return ''.join(message) key = 3 format = 'utf-8' size = 1024 port = 8585 server = socket.socket() host = socket.gethostname() server.bind((host, port)) server.listen() print('Listening...') conn, addr = server.accept() ### print(f"[{addr}] Connected.") message = conn.recv(size).decode(format) ### print("CypherText Recieved:", message) print(f'Decrypted Message : {decode(message)}') conn.close() server.close()
true
a3fadc1d0a796e5cd3eb230a226b29a4b509b48d
Python
shariqx/codefights-python
/MsgfrombinaryCode.py
UTF-8
364
2.875
3
[]
no_license
def messageFromBinaryCode(code): x = 0 out = '' while x +8 <= len(code): y = (x + 8) subst = code[x:y] #print(subst) theInt = int(subst,2) # print(theInt) asci = chr(theInt) out+=asci x = x+8 return out print(messageFromBinaryCode('010010000110010101101100011011000110111100100001'))
true
d8f0391c1e8d3bfef161d076b1529867332f28d3
Python
mvtmm/spaceInvaders
/Explosion.py
UTF-8
1,263
3.421875
3
[]
no_license
import pygame from Assettype import AssetType from Assetloader import Assetloader class Explosion(pygame.sprite.Sprite): def __init__(self, x, y): pygame.sprite.Sprite.__init__(self) # Bilder die nach einander angezeigt werden um eine Animation zu erzeugen self.images = [] # Alle Bilder laden for num in range(1,12): img = Assetloader.getAsset(AssetType.Shoot, "Explosion1_" + str(num) + ".png") # Bilder skalieren img = pygame.transform.scale(img, (100,100)) self.images.append(img) self.index = 0 self.image = self.images[self.index] self.rect = self.image.get_rect() self.rect.center = [x,y] self.counter = 0 def update(self): # Schnelligkeit der Bilder Wechsel Methode explosion_speed = 2 self.counter += 1 if self.counter >= explosion_speed and self.index < len(self.images) -1: # Animation abspielen self.counter = 0 self.index += 1 self.image = self.images[self.index] if self.index >= len(self.images) -1 and self.counter >= explosion_speed: # Animation abgelaufen deshalb Objekt zerstören self.kill()
true
c598927e15617378a16d5c76602041660cc0e2d3
Python
anuj0721/jarivs
/jarvis.py
UTF-8
3,230
2.59375
3
[]
no_license
import pyttsx3 import datetime import speech_recognition as sr import wikipedia import webbrowser import os import smtplib from twilio.rest import Client from pytube import YouTube engine = pyttsx3.init('sapi5') voices=engine.getProperty('voices') engine.setProperty('voice',voices [0].id) def speak(audio): engine.say(audio) engine.runAndWait() def sendEmail(to , contents): server=smtplib.SMTP('smtp.gmail.com',587) server.ehlo() server.starttls() server.login('anujgupta0721@gmail.com','9560430478') server.sendmail('anujgupta0721@gmail.com',to,content) server.close() def wishMe(): hour=int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("good morning anuj!") elif hour>=12 and hour<18: speak("good afternoon anuj!") else: speak("good evening anuj!") speak("i m jarvis. please tell me how may I help you") def takeCommand(): '''it takes microphone input from user and returns string output''' r = sr.Recognizer() with sr.Microphone() as source: print("listening...") r.pause_threshold=1 r.adjust_for_ambient_noise(source,duration=5) audio = r.listen(source) try: print("recognizing..") query=r.recognize_google(audio, language='en-in') print(f"user said:{query}\n") except Exception as e: #print(e) print("say that again please...") return "none" return query if __name__ == "__main__" : chrome_path='C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' myvideo=YouTube("https://www.youtube.com/watch?v=5MgBikgcWnY") print(sr.__version__) wishMe() if True: query=takeCommand().lower() #query='open google' #logic for executing task based on query if 'wikipedia' in query: speak('searching wikipedia..') query=query.replace('wikipedia','') results=wikipedia.summary(query,sentences=2) speak("according to wikipedia") print(results) speak(results) elif 'open youtube' in query: url="youtube.com" webbrowser.get(chrome_path).open(url) elif 'open google' in query: url="google.com" webbrowser.get(chrome_path).open(url) elif 'open stackoverflow' in query: webbrowser.open("stackoverflow.com") elif 'send email' in query: speak("what should i say") content='send this email to anuj gupta to check code' to='anujgupta0721@gmail.com' sendEmail(to,content) speak("email has been sent ") elif 'message' in query: client=Client() from_whatsapp_number='whatsapp:+918109813801' to_whatsapp_number='whatsapp:+919009849949' client.messages.create(body="checking program!",from_=from_whatsapp_number,to=to_whatsapp_number) speak("whatsapp message has been sent") elif 'open netflix' in query: webbrowser.open("netflix.com") elif 'title' in query: print(myvideo.title) elif 'views' in query: print(myvideo.views)
true
857bb4e8b24aec38b15b91aeaf761618061b4747
Python
Tribler/application-tester
/tribler_apptester/utils/asyncio.py
UTF-8
434
2.8125
3
[]
no_license
from asyncio import Future, iscoroutine, sleep def maybe_coroutine(func, *args, **kwargs): value = func(*args, **kwargs) if iscoroutine(value) or isinstance(value, Future): return value async def coro(): return value return coro() async def looping_call(delay, interval, task, *args): await sleep(delay) while True: await maybe_coroutine(task, *args) await sleep(interval)
true
6b810024a7e0c8c95496102a4bcece07e1456530
Python
zszzlmt/leetcode
/solutions/506.py
UTF-8
698
3.25
3
[]
no_license
import copy class Solution(object): def findRelativeRanks(self, nums): """ :type nums: List[int] :rtype: List[str] """ ranks = copy.deepcopy(nums) ranks.sort(reverse=True) res = list() for item in nums: rank = ranks.index(item) + 1 if rank == 1: res.append('Gold Medal') continue elif rank == 2: res.append('Silver Medal') continue elif rank == 3: res.append('Bronze Medal') continue else: res.append(str(rank)) continue return res
true
22552fb057b2665cb35804e524207a268c879c5d
Python
Wardar-py/Todo_list
/todo_list/models.py
UTF-8
1,011
2.546875
3
[]
no_license
from django.db import models from datetime import timedelta # Create your models here. from django.utils import timezone class Category(models.Model): name = models.CharField(max_length=100, unique=True) class Meta: verbose_name = 'Категория' verbose_name_plural = 'Категории' def __str__(self): return self.name def get_due_date(): """ На выполнение задачи по-умолчанию даётся один день """ return timezone.now() + timedelta(days=1) class Todo(models.Model): title = models.CharField(max_length=250) text = models.TextField(blank=True) created_date = models.DateField(auto_now_add=True) due_date = models.DateField(default=get_due_date()) category = models.ForeignKey(Category, related_name='todo_list', on_delete=models.PROTECT) class Meta: verbose_name = 'Задача' verbose_name_plural = 'Задачи' def __str__(self): return self.title
true
d823f9006189c9d4cebb96248ab0ea4fd2897dfe
Python
OnurKader/CMP4501
/search/search.py
UTF-8
5,826
3.375
3
[]
no_license
# search.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem. """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state. """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor. """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves. """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze. """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s, s, w, s, w, w, s, w] def depthFirstSearch(problem): start = problem.getStartState() stack = util.Stack() stack.push((start, list())) visited_nodes = list() while not stack.isEmpty(): # print "a" curr_coord, next_coords = stack.pop() for xy, comp, _ in problem.getSuccessors(curr_coord): if problem.isGoalState(xy): return next_coords + [comp] # raise Exception("Illegal action " + str(action)) # Exception: Illegal action South if xy not in visited_nodes: stack.push((xy, next_coords + [comp])) visited_nodes.append(curr_coord) return list() # BFS = Queue # Return a list of Directions def breadthFirstSearch(problem): # from game import Directions as dir # TODO "Exception: Illegal action South" # (35, 1) start = problem.getStartState() queue = util.Queue() # queue = (Current COORD, [Next COORD(S)]) queue.push((start, list())) visited_nodes = list() # print queue.list while not queue.isEmpty(): curr_coord, next_coords = queue.pop() # Tuple and a List # next_coords == None ?!?! # getSuccessors returns available coords to visit for xy, comp, _ in problem.getSuccessors(curr_coord): if problem.isGoalState(xy): # Does it 1 block early? how to fix?! return next_coords + [comp] if xy not in visited_nodes: # Compass is a direction NORTH, SOUTH, etc. visited_nodes.append(xy) # queue.push((xy, next_coords.append(comp))) # order of concatanation matters queue.push((xy, next_coords + [comp])) # queue.push((xy, next_coords.append(comp))) # AttributeError: 'NoneType' object has no attribute 'append' # return [dir.NORTH, dir.NORTH, dir.WEST] return list() def uniformCostSearch(problem): # from game import Directions as dir p_queue = util.PriorityQueue() visited_nodes = list() start = problem.getStartState() # PriorityQueue = (Item, Priority) p_queue.push((start, list(), 0), 0) while not p_queue.isEmpty(): curr_coord, next_coords, cost = p_queue.pop() for xy, comp, price in problem.getSuccessors(curr_coord): if problem.isGoalState(xy): return next_coords + [comp] if xy not in visited_nodes: visited_nodes.append(xy) p_queue.push( (xy, next_coords + [comp], cost + price), cost + price) return list() def nullHeuristic(state, problem=None): return 0 def aStarSearch(problem, heuristic=nullHeuristic): p_queue = util.PriorityQueue() visited_nodes = list() start = problem.getStartState() p_queue.push((start, list(), 0), 0 + heuristic(start, problem)) while not p_queue.isEmpty(): curr_coord, next_coords, cost = p_queue.pop() for xy, comp, price in problem.getSuccessors(curr_coord): if problem.isGoalState(xy): return next_coords + [comp] if xy not in visited_nodes: visited_nodes.append(xy) p_queue.push( (xy, next_coords + [comp], cost + price), cost + price + heuristic(xy, problem)) return list() # Abbreviations dfs = depthFirstSearch bfs = breadthFirstSearch ucs = uniformCostSearch astar = aStarSearch
true
9e42139dec5e830b3a4e35e222bee636aa02b03e
Python
jskerjan/programming
/programming.py
UTF-8
781
3.046875
3
[]
no_license
#I plan to get the comments competency checked off on this assignment # A sequence of assignments to generate a random problem : import random a = random.randint(5,9) e = random.randint(1,3) #range is kept between 1 and 3 to ensure b remains a single digit integer c = random.randint(1,3) d = random.randint(5,9) b = c * e #b must be calculated this way to counter c * e, leaving only a coefficient for x in the calculation for u u = (a + (c * d) + (-b + (c * e))) print('Problem: ({a}x - {b}) + {c}({d}x + {e}) = ?' .format (a = a, b = b, c = c, d = d, e = e)) print('Answer : {u}x'. format (u = u)) #This is a comment about editing for the staging and committing competency #This comment is an edit being made through the GitHub website to demonstrate the pulling competency
true
a4d8705e9b91a82a4d1a0e032e0ecc3a86246067
Python
Vaild/python-learn
/homework/20200707/59_字符串调整.py
UTF-8
371
3.625
4
[]
no_license
#!/usr/bin/python3 # coding = UTF-8 str1 = 'Hello, 我是David' str2 = 'OK, 好' str3 = '很高兴认识你' n = max(len(str1), len(str2),len(str3)) print(str1.ljust(n)) print(str2.ljust(n)) print(str3.ljust(n)) print('*'*50) print(str1.rjust(n)) print(str2.rjust(n)) print(str3.rjust(n)) print('*'*50) print(str1.center(n)) print(str2.center(n)) print(str3.center(n))
true
3ed772d863e1eecbc8578ef3d9be42134e5cab0c
Python
gmg2719/Geometry
/猜数字/匈牙利算法.py
UTF-8
355
2.90625
3
[]
no_license
from scipy.optimize import linear_sum_assignment import numpy as np from scipy.sparse import csr a = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 9]]) x, y = linear_sum_assignment(a, maximize=True) print(x, y) print(a) print(a[x, y]) a = csr.csr_matrix(([1, 2, 3], (0, 1, 2), (0, 1, 2))) print(a) x, y = linear_sum_assignment(a, maximize=True) print(a[x, y])
true
6c8a1087221ed1fd3128eb20c5f8d24ce1c5091c
Python
khushaliverma27/Multi-modal-MER
/Feature Extraction and Data Analysis/lyric_features.py
UTF-8
8,794
2.765625
3
[]
no_license
#!/usr/bin/env python # lyric_features.py [DIRECTORY_NAME] prints an ACE XML 1.1 feature # value file to standard output with the features corresponding to the # lyrics in the specified directory import csv import os import os.path import string import subprocess import sys function_words = [["the"], ["and"], ["to"], ["a", "an"], ["of"], ["in"], ["that", "those"], ["it"], ["not"], ["as"], ["with"], ["but"], ["for"], ["at"], ["this", "these"], ["so"], ["all"], ["on"], ["from"], ["one", "ones"], ["up"], ["no"], ["out"], ["what"], ["then"], ["if"], ["there"], ["by"], ["who"], ["when"], ["into"], ["now"], ["down"], ["over"], ["back"], ["or"], ["well"], ["which"], ["how"], ["here"], ["just"], ["very"], ["where"], ["before"], ["upon"], ["about"], ["after"], ["more"], ["why"], ["some"]] treebank_tags = [['CC'], ['CD'], ['DT'], ['EX'], ['FW'], ['IN'], ['JJ', 'JJR', 'JJS'], ['LS'], ['MD'], ['NN', 'NNS', 'NNP', 'NNPS'], ['PDT'], ['POS'], ['PRP', 'PRP$'], ['RB', 'RBR', 'RBS'], ['RP'], ['SYM'], ['TO'], ['UH'], ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ'], ['WDT', 'WP' 'WP$', 'WRB']] def print_feature(name, value_list): print(" <feature>\n" + " <name>" + name + "</name>") for v in value_list: print(" <v>" + str(v) +"</v>") print(" </feature>") def function_word_frequencies(lyrics): length = len(lyrics) if length == 0: return [0 for x in range(50)] return [float(sum([sum([w == y for y in lyrics]) for w in l])) / length for l in function_words] def average_word_length(lyrics): length = len(lyrics) if length == 0: return [0] return [float(sum([len(s) for s in lyrics])) / length] def letter_frequencies(lyrics): length = len(lyrics) if length == 0: return [0 for x in range(26)] join = "".join(lyrics) join_length = len(join) return [float(join.count(chr(i))) / join_length for i in range(97, 123)] def punctuation_frequencies(lyrics): length = len(lyrics) if length == 0: return [0 for x in range(32)] return [float(sum([l.count(p) for l in lyrics])) / length for p in string.punctuation] def vocabulary_richness(lyrics): length = len(lyrics) if length == 0: return [0] return [float(len(frozenset(lyrics))) / length] def flesh_list(filename): process = subprocess.Popen(['java', '-jar', 'CmdFlesh.jar', filename], stdout = subprocess.PIPE) process.wait() result = process.stdout.read() process.stdout.close() split = result.replace(',', '.').replace('?', '0').split() return [split[i] for i in [3, 8, 10, 12, 17, 22]] def aspell_count(lyrics): length = len(lyrics) if length == 0: return [0] process = subprocess.Popen(['aspell', '-d', 'en', 'list'], stdin = subprocess.PIPE, stdout = subprocess.PIPE) (result, stderrdata) = process.communicate(" ".join(lyrics)) return [float(len(result.split())) / length] def treebank_frequencies(filename): process = subprocess.Popen(['./stanford-postagger.sh', 'models/bidirectional-distsim-wsj-0-18.tagger', filename], cwd = 'stanford-postagger-2009-12-24', stdout = subprocess.PIPE) process.wait() result = process.stdout.read() process.stdout.close() split = result.split() length = len(split) if length == 0: return [0 for x in range(20)] triples = [s.partition('_') for s in result.split()] return [float(sum([sum([t == y[2] for y in triples]) for t in l])) / length for l in treebank_tags] def bigram_frequencies(lyrics): characters = " " + string.ascii_lowercase length = len(lyrics) if length == 0: return ",".join(["0" for x in range(27**2)]) + "\n" join = " ".join(lyrics) join_length = len(join) bigrams = [s1 + s2 for s1 in characters for s2 in characters] return ",".join(["%g" % (float(join.count(b)) / join_length) for b in bigrams]) + "\n" features = [("Word count", lambda f, l, r: [len(l)]), ("Function word frequencies", lambda f, l, r: function_word_frequencies(r)), ("Average word length", lambda f, l, r: average_word_length(r)), ("Letter frequencies", lambda f, l, r: letter_frequencies(r)), ("Punctuation frequencies", lambda f, l, r: punctuation_frequencies(l)), ("Vocabulary size", lambda f, l, r: [len(frozenset([s.lower() for s in r]))]), ("Vocabulary richness", lambda f, l, r: vocabulary_richness(r)), ("Flesh-Kincaid grade level", lambda f, l, r: flesh_list(f)[0:1]), ("Flesh reading ease", lambda f, l, r: flesh_list(f)[1:2]), ("Sentence count", lambda f, l, r: flesh_list(f)[2:3]), ("Average syllable count per word", lambda f, l, r: flesh_list(f)[4:5]), ("Average sentence length", lambda f, l, r: flesh_list(f)[5:6]), ("Rate of misspelling", lambda f, l, r: aspell_count(l)), ("Part-of-speech frequencies", lambda f, l, r: treebank_frequencies(f))] # intermediate_features = [("bigram_frequencies.dat", # lambda c, l, r: bigram_frequencies(r))] # csv_features = [("Letter-bigram components", # "bigram_components.dat"), # ("Topic membership probabilities (10 topics)", # "topics10.dat"), # ("Topic membership probabilities (24 topics)", # "topics24.dat")] # print('<?xml version="1.0"?>\n' # + " <!DOCTYPE feature_vector_file [\n" # + " <!ELEMENT feature_vector_file (comments, data_set+)>\n" # + " <!ELEMENT comments (#PCDATA)>\n" # + " <!ELEMENT data_set (data_set_id, section*, feature*)>\n" # + " <!ELEMENT data_set_id (#PCDATA)>\n" # + " <!ELEMENT section (feature+)>\n" # + ' <!ATTLIST section start CDATA ""\n' # + ' stop CDATA "">\n' # + " <!ELEMENT feature (name, v+)>\n" # + " <!ELEMENT name (#PCDATA)>\n" # + " <!ELEMENT v (#PCDATA)>\n" # + "]>\n\n" # + "<feature_vector_file>\n\n" # + " <comments>Features extracted for SLAC</comments>\n") # csv_files = [(n, open(os.path.join(f))) for (n, f) in csv_features] # csv_readers = [(n, csv.reader(f)) for (n, f) in csv_files] # for filename in os.listdir(sys.argv[1]): # if filename == ".DS_Store": continue # print(" <data_set>\n" # + " <data_set_id>" # + os.path.splitext(filename)[0] # + "</data_set_id>") # full_name = os.path.join(sys.argv[1], filename) # file = open(full_name) # contents = file.read() # file.close() # lyrics = contents.split() # reduced_lyrics = [s.translate(None, string.punctuation).lower() for s in lyrics] # for feature in features: # print_feature(feature[0], feature[1](full_name, lyrics, reduced_lyrics)) # for feature in intermediate_features: # outside_file = open(feature[0], 'a') # outside_file.write(feature[1](contents, lyrics, reduced_lyrics)) # outside_file.close() # for feature in csv_readers: # print_feature(feature[0], feature[1].next()) # print(" </data_set>") # for (n, f) in csv_files: f.close() # print("</feature_vector_file>")
true
4f630b38c60c9197883a419d0b2b31f4653a7130
Python
nicomn97/Lab-Intermedio
/RelacionCM/graf.py
UTF-8
828
2.734375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt plt.figure(figsize=(8,5)) plt.errorbar(1,6.949, yerr=0.046, fmt='o',label="$Relacion B/I\ experimental$") plt.scatter(2,6.926, label="$Relacion B/I\ Teorica$") plt.ylabel("$B/I (T/A\\times 10^{-4})$") plt.xticks([]) plt.title("$B\ vs.\ I$") plt.legend(loc="best") plt.savefig("g4.pdf") plt.figure(figsize=(8,5)) plt.errorbar(1,1.52, yerr=0.24, fmt='o',label="$e/m\ para\ R=2cm$") plt.errorbar(2,1.51, yerr=0.21, fmt='o',label="$e/m\ para\ R=3cm$") plt.errorbar(3,1.45, yerr=0.19, fmt='o',label="$e/m\ para\ R=4cm$") plt.errorbar(4,1.56, yerr=0.23, fmt='o',label="$e/m\ para\ R=5cm$") plt.scatter(5,1.7588, label="$Valor\ e/m\ CODATA$") plt.ylabel("$e/m\ (As/kg\\times 10^{11})$") plt.xlim(0,8) plt.xticks([]) plt.title("$B\ vs.\ I$") plt.legend(loc=4) plt.savefig("g5.pdf")
true
6f75c570b5a9f5e6c5a5ac55cc42bf285481287c
Python
reachtarunhere/python-workout
/ch03-lists-tuples/test_e13_tuple_records.py
UTF-8
413
3.5
4
[]
no_license
from e13_tuple_records import format_sort_records, PEOPLE def test_empty(): assert format_sort_records([]) == [] def test_with_people(): output = format_sort_records(PEOPLE) assert isinstance(output, list) assert all(isinstance(x, str) for x in output) assert output[0][:10].strip() == 'Putin' assert output[0][10:20].strip() == 'Vladimir' assert output[0][20:].strip() == '3.63'
true
f52ddbe2251c1c850defdc9bdadedb082b5ce82f
Python
Asherkab/benderopt
/benderopt/stats/lognormal.py
UTF-8
3,715
3.21875
3
[ "MIT" ]
permissive
import numpy as np from scipy import stats def generate_samples_lognormal(mu_log, sigma_log, low_log, low, high_log, step, base, size=1, **kwargs): """Generate sample for (truncated)(discrete)log10normal density.""" # Draw a samples which fit between low and high (if they are given) a = (low_log - mu_log) / sigma_log b = (high_log - mu_log) / sigma_log samples = base ** stats.truncnorm.rvs(a=a, b=b, size=size, loc=mu_log, scale=sigma_log) if step and low != -np.inf: samples = step * np.floor((samples - low) / step) + low elif step and low == -np.inf: samples = step * np.floor(samples / step) return samples def lognormal_cdf(samples, mu_log, sigma_log, low, high, base, ): """Evaluate (truncated)normal cumulated density function for each samples. https://onlinecourses.science.psu.edu/stat414/node/157 From scipy: If X normal, log(X) = Y follow a lognormal dist if s=sigma and scale = exp(mu) So we infer for a base b : s = sigma * np.log(b) and scale = base ** mu are similar mu = 9.2156 sigma = 8.457 base = 145.2 a = (stats.norm.rvs(size=1000000, loc=mu, scale=sigma)) b = np.log(stats.lognorm.rvs(size=1000000, s=sigma * np.log(base), scale=base ** mu)) / np.log(base) plt.subplot(2, 1, 1) plt.hist(a, bins=5000) plt.subplot(2, 1, 2) plt.hist(b, bins=5000) plt.show() """ parametrization = { 's': sigma_log * np.log(base), 'scale': base ** mu_log, } cdf_low = stats.lognorm.cdf(low, **parametrization) cdf_high = stats.lognorm.cdf(high, **parametrization) values = (stats.lognorm.cdf(samples, **parametrization) - cdf_low) / (cdf_high - cdf_low) values[(samples < low)] = 0 values[(samples >= high)] = 1 return values def lognormal_pdf(samples, mu, mu_log, sigma, sigma_log, low, low_log, high, high_log, base, step ): """Evaluate (truncated)(discrete)normal probability density function for each sample.""" values = None if step is None: parametrization = { 's': sigma_log * np.log(base), 'scale': base ** mu_log, } cdf_low = stats.lognorm.cdf(low, **parametrization) cdf_high = stats.lognorm.cdf(high, **parametrization) values = stats.lognorm.pdf(samples, **parametrization) / (cdf_high - cdf_low) else: values = (lognormal_cdf(samples + step, mu_log=mu_log, sigma_log=sigma_log, low=low, high=high, base=base) - lognormal_cdf(samples, mu_log=mu_log, sigma_log=sigma_log, low=low, high=high, base=base)) values[(samples < low) + (samples >= high)] = 0 return values
true
34a99ed58ea13b6c899a22ad2aa833111fa7864e
Python
iccowan/CSC_117
/HW_2_20/p163_12.py
UTF-8
795
4.1875
4
[]
no_license
# Ian Cowan # Feb 20 2019 # Problem 12 on page 163 # Population # Prompts the user to input the appropiate fields start = int(input('Starting number of organisms: ')) daily_inc = float(input('Daily increase (percentage): ')) num_days = int(input('Number of days to multiply: ')) # Adds the headers to the table print('Day\tApproximate Population') print('-----------------------------') # Sets the last_pop variable last_pop = start daily_inc = 1 + (daily_inc / 100) day = 1 # Loops while the day is less than or equal to the number of days inputted by the user and returns the information while day <= num_days: if day == 1: pop = float(start) else: pop = last_pop * daily_inc print(str(day) + '\t' + str('{:.3f}'.format(pop))) last_pop = pop day += 1
true
8bf2afd4d6a4770e89c1be94838115f1d4b54fc0
Python
152334H/aoc_2020
/2020/12/solve.py
UTF-8
746
2.640625
3
[]
no_license
from aoc import * def parse(l): return (l[0], int(l[1:])) def rotate(x,y): return (y,-x) s = sreadlines('input', parse) MOV, MOVDIR = [(1,0), (0,-1), (-1,0), (0,1)], 'ESWN' direct, loc = 0, (0,0) for act,v in s: if act in 'LR': direct = (direct+(v//90)*[-1,1][act == 'R']) % 4 elif act == 'F': loc = padd(loc, pmul(MOV[direct],v)) elif act in 'NSEW': loc = padd(loc, pmul(MOV[MOVDIR.index(act)],v)) print(sum(map(abs,loc))) loc, wpt = (0,0), (10,1) for act,v in s: if act in 'LR': direct = ((v//90)*[-1,1][act == 'R']) % 4 for _ in range(direct): wpt = rotate(*wpt) elif act == 'F': loc = padd(loc, pmul(wpt,v)) elif act in 'NSEW': wpt = padd(wpt, pmul(MOV[MOVDIR.index(act)],v)) print(sum(map(abs,loc)))
true
78400e4e8b49e708f343c1f7d78a84602d8e5b18
Python
calvinfroedge/erpnext
/erpnext/patches/before_jan_2012/remove_duplicate_table_mapper_detail.py
UTF-8
581
2.546875
3
[]
no_license
""" Removes duplicate entries created in """ import webnotes def execute(): res = webnotes.conn.sql("""\ SELECT a.name FROM `tabTable Mapper Detail` a, `tabTable Mapper Detail` b WHERE a.parent = b.parent AND a.from_table = b.from_table AND a.to_table = b.to_table AND a.from_field = b.from_field AND a.to_field = b.to_field AND a.name < b.name""") if res and len(res)>0: name_string = ", ".join(["'" + str(r[0]) + "'" for r in res]) res = webnotes.conn.sql("""\ DELETE FROM `tabTable Mapper Detail` WHERE name IN (%s)""" % name_string)
true
36e0b4075fec730cfd383e64589cc933fb26316a
Python
damiendevienne/hgt-ghosts
/Prediction_ale.py
UTF-8
4,904
2.5625
3
[]
no_license
#!/usr/bin/python3 ########## ########### Utilisation ############ Python3 prediction_ale.py [uts complet] [arbre complet] [arbre prune] [numero de gene] ############# ############## ############################################################################### Importation ######################################################################### from ete3 import Tree import argparse import sys ############################################################################### Déclaration ######################################################################### ale = open(sys.argv[1],"r") arbre_zombi= Tree(sys.argv[2],format=1) #grand arbre_vivant = Tree(sys.argv[3],format =1) #petit num_gene = sys.argv[4] liste = [] liste_feuille_vivante = [i.name for i in arbre_vivant] liste_feuille = [i.name for i in arbre_zombi] liste_morte = list(set(liste_feuille)-set(liste_feuille_vivante)) transfert = ale.readlines() transfert_donneur = [] transfert_receveur = [] score=[] nouveau_transfert = open("new_transfert.txt","a") ############################################################################### Lecture fichier ALE ######################################################################### try: info = transfert[1].split() except: nouveau_transfert.write("null") exit() del transfert[0] for line in transfert: events = line.split() donneur_a = events[0].split("(") receveur_a = events[1].split("(") transfert_donneur.append(donneur_a[0]) transfert_receveur.append(receveur_a[0]) score.append(events[2]) ############################################################################### Prediction ######################################################################### ######## Pour prédire ce que vont devenir les transferts après échantillonnage nous cherchons si les donneurs disparus ont un ascendant vivant et différent du receveur. ######## Pour les cas des receveurs nous cherchons si ils ont un descendant vivant et différent du donneur. new_transfert_donneur = [] for d in transfert_donneur: node = arbre_zombi&d leaves = [i.name for i in node] descornot = len(list(set(liste_feuille_vivante) & set(leaves))) while (descornot==0 and node.is_root()!=True): node=node.up leaves = [i.name for i in node] descornot = len(list(set(liste_feuille_vivante) & set(leaves))) if (descornot==1): new_transfert_donneur.append(list(set(liste_feuille_vivante) & set(leaves))[0]) else: new_transfert_donneur.append(arbre_vivant.get_common_ancestor(list(set(liste_feuille_vivante) & set(leaves))).name) new_transfert_receveur = [] for d in transfert_receveur: node = arbre_zombi&d leaves = [i.name for i in node] descornot = len(list(set(liste_feuille_vivante) & set(leaves))) if (descornot==0): new_transfert_receveur.append("none") elif (descornot==1): new_transfert_receveur.append(list(set(liste_feuille_vivante) & set(leaves))[0]) else: new_transfert_receveur.append(arbre_vivant.get_common_ancestor(list(set(liste_feuille_vivante) & set(leaves))).name) transfert_new = [] transfert_disparu = [] for k in range(len(new_transfert_donneur)): if (new_transfert_receveur[k]!="none"): transfert_new.append(new_transfert_donneur[k] + " - " + new_transfert_receveur[k]+ " - "+ score[k]) elif(new_transfert_receveur[k]=="none"): transfert_disparu.append( transfert_donneur[k] + " - " + transfert_receveur[k] + ";" + "null" + ";" + str(score[k]) + ";" + "0") ############################################################################### Elimination des doublons ######################################################################### ############# On conserve un seule copie de chaque transfert, celle qui a le score le plus élevé mes_transferts = [] for i in range(len(transfert_new)): for j in range(len(transfert_new)): if(i!=j): transfert_1 = transfert_new[i].split("-") transfert_2 = transfert_new[j].split("-") if (str(transfert_1[0]) == str(transfert_2[0]) and str(transfert_1[1])==str(transfert_2[1])): if (float(transfert_1[2])>float(transfert_2[2])): mes_transferts.append(transfert_new[i]) liste.append(j) liste.append(i) elif(float(transfert_1[2])<float(transfert_2[2])): mes_transferts.append(transfert_new[j]) liste.append(j) liste.append(i) for i in range(len(transfert_new)): if i not in liste: mes_transferts.append(transfert_new[i]) liste.append(i) ############################################################################### Ecriture ######################################################################### nouveau_transfert = open("new_transfert.txt","a") transfert_new_final = list(set(mes_transferts)) for i in range(len(transfert_new_final)): nouveau_transfert.write(str(transfert_new_final[i])+"\n") sortie = open("sortie.txt", "a") for i in range(len(transfert_disparu)): sortie.write(num_gene+ ";" +str(transfert_disparu[i])+"\n")
true
cc0f9995f6fb0ae6658c011b87283fdeee64964b
Python
futotta-risu/JABA
/JABA/service/scraper/spam/filtering.py
UTF-8
1,508
2.765625
3
[ "Apache-2.0" ]
permissive
from math import ceil from sklearn.cluster import DBSCAN from scipy.spatial.distance import pdist, squareform import numpy as np from .metrics import jacard def filter_duplicated(data): ''' Filters the duplicated elements from the data. Parameters: data (list) List of strings. ''' pass # TODO Implement functions def filter_spam(data, batch_size=5000, verbose=False, metric=jacard, eps=0.3): ''' Filters spam based on text similarity. Parameters data : Python list of the input data. The list can be a string. ''' batches = ceil(len(data)/batch_size) filtered_data = [] if verbose: import time start_time = time.time() for n_batch in range(batches): if verbose: last_batch_time = time.time() - start_time start_time = time.time() eta_time = (batches + 1 - n_batch) * last_batch_time batch_output = f'Current batch {n_batch+1} of {batches}.' time_output = 'ETA : %i:%2i' % (eta_time//60, int(eta_time) % 60) print(batch_output + ' ' + time_output) batch = data[batch_size * n_batch:batch_size * (n_batch+1)] batch = np.array(batch).reshape(-1, 1) distance_matrix = squareform(pdist(batch, metric)) db = DBSCAN().fit(distance_matrix) for i, v in enumerate(db.labels_): if v == -1: filtered_data += [batch[i]] return filtered_data
true
f7709b841d2cf7a9c54c7a2015580ad9e47d93a0
Python
gaoliming123/learn
/seq2seq/models/linear.py
UTF-8
1,154
3.09375
3
[]
no_license
import torch.nn as nn class Linear(nn.Module): """ This context vector, generated by the encoder, will be used as the initial hidden state of the decoder. In case that their dimension is not matched, a linear layer should be used to transformed the context vector to a suitable input (shape-wise) for the decoder cell state (including the memory(Cn) and hidden(hn) states). The shape mismatch is True in the following conditions: 1. The hidden sizes of encoder and decoder are the same BUT we have a bidirectional LSTM as the Encoder. 2. The hidden sizes of encoder and decoder are NOT same. 3. ETC? """ def __init__(self, hidden_size_encoder, hidden_size_decoder): super(Linear, self).__init__() num_directions = 1 self.linear_connection_op = nn.Linear(num_directions * hidden_size_encoder, hidden_size_decoder) self.connection_possibility_status = num_directions * hidden_size_encoder == hidden_size_decoder def forward(self, input): if self.connection_possibility_status: return input else: return self.linear_connection_op(input)
true
b9a0808db0a8cf23d77601c9f212f2ce4dc2fd99
Python
tnzw/tnzw.github.io
/py3/def/posixpath2.py
UTF-8
14,296
2.65625
3
[]
no_license
# posixpath2.py Version 1.1.1 # Copyright (c) 2023 <tnzw@github.triton.ovh> # This program is free software. It comes without any warranty, to # the extent permitted by applicable law. You can redistribute it # and/or modify it under the terms of the Do What The Fuck You Want # To Public License, Version 2, as published by Sam Hocevar. See # http://www.wtfpl.net/ for more details. def posixpath2(os_module=None, *, use_environ=True, supports_unicode_filenames=False, get_user_home=None, keep_double_initial_slashes=True): _module__func = posixpath2 _module__name__ = _module__func.__name__ if __name__ == '__main__' else (__name__ + '.' + _module__func.__name__) #if __name__ != '__main__': _module__name__ = __name__ + '.' + _module__name__ try: export = __builtins__.__class__(_module__name__) except AttributeError: class _module__class__: pass export = _module__class__() export.__name__ = _module__name__ export.__doc__ = _module__func.__doc__ export._mk_module = _module__func # beginning of module # __all__ = [ 'curdir', 'pardir', 'sep', 'altsep', 'extsep', 'pathsep', 'basename', 'commonpath', 'commonprefix', 'dirname', 'isabs', 'join', 'normcase', 'normpath', 'relpath', 'split', 'splitdrive', 'splitext', 'supports_unicode_filenames', 'samestat', ] # https://docs.python.org/3/library/os.path.html export.os = os_module curdir = '.' pardir = '..' sep = '/' altsep = None extsep = '.' pathsep = ':' def _check_arg_types(funcname, *args): # Copied from https://github.com/python/cpython/blob/3.11/Lib/genericpath.py#L144 hasstr = hasbytes = False for s in args: if isinstance(s, str): hasstr = True elif isinstance(s, bytes): hasbytes = True else: raise TypeError(f'{funcname}() argument must be str, bytes, or os.PathLike object, not {s.__class__.__name__!r}') from None if hasstr and hasbytes: raise TypeError("Can't mix strings and bytes in path components") from None if os_module is None: def _fspath(path): # Inspired by https://github.com/python/cpython/blob/3.11/Lib/os.py#L1036 if isinstance(path, (str, bytes)): return path path_type = type(path) try: fspath_func = path_type.__fspath__ except AttributeError: raise TypeError('expected str, bytes or os.PathLike object, not ' + path_type.__name__) from None path_repr = fspath_func(path) if isinstance(path_repr, (str, bytes)): return path_repr raise TypeError(f'expected {path_type.__name__}.__fspath__() to return str or bytes, not {type(path_repr).__name__}') export._fspath = _fspath else: def _fspath(s): return os_module.fspath(s) # do not use `_fspath = os_module.fspath` # Pure path operations (uses os.fspath anyway which is part of os module but not a syscall actualy) def basename(path): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L140 # `PurePosixPath(...).name` returns different result than `posixpath.basename()`. """Returns the final component of a pathname""" path = _fspath(path) sep = b'/' if isinstance(path, bytes) else '/' i = path.rfind(sep) + 1 return path[i:] def commonpath(paths): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L527 """Given a sequence of path names, returns the longest common sub-path.""" if not paths: raise ValueError('commonpath() arg is an empty sequence') paths = (*(_fspath(p) for p in paths),) # use our custom fspath if isinstance(paths[0], bytes): sep = b'/'; curdir = b'.' else: sep = '/'; curdir = '.' try: split_paths = [p.split(sep) for p in paths] try: isabs, = {p[:1] == sep for p in paths} except ValueError: raise ValueError("Can't mix absolute and relative paths") from None split_paths = [[c for c in s if c and c != curdir] for s in split_paths] # removes empty names, curdir names and root s1 = min(split_paths); s2 = max(split_paths); common = s1 for i, c in enumerate(s1): if c != s2[i]: common = s1[:i] break return (sep if isabs else sep[:0]) + sep.join(common) except (TypeError, AttributeError): _check_arg_types('commonpath', *paths) raise def _commonprefix(m): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/genericpath.py#L69 # PurePath() is useless here as this method does not care of path mechanism. s1 = min(m); s2 = max(m) for i, c in enumerate(s1): if c != s2[i]: return s1[:i] return s1 def commonprefix(m): """Given a list of pathnames, returns the longest common leading component""" if not m: return '' if not isinstance(m[0], (list, tuple)): m = (*(_fspath(_) for _ in m),) return _commonprefix(m) def dirname(path): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L150 # `PurePosixPath(...).parent.as_posix()` returns different result than `posixpath.dirname()` does. """Returns the directory component of a pathname""" path = _fspath(path) sep = b'/' if isinstance(path, bytes) else '/' i = path.rfind(sep) + 1 head = path[:i] if head and head != sep * len(head): head = head.rstrip(sep) return head def _isabs(fspath): return fspath.startswith(b'/' if isinstance(fspath, bytes) else '/') #return PurePosixPath(path).is_absolute() def isabs(path): return _isabs(_fspath(path)) def _join(fspath, *fspaths): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L71 # `PurePosixPath(...).joinpath(...).as_posix()` returns different result than `posixpath.join()` does. sep = b'/' if isinstance(fspath, bytes) else '/' path = fspath try: if not fspaths: path[:0] + sep #23780: Ensure compatible data type even if p is null. for b in fspaths: if b.startswith(sep): path = b elif not path or path.endswith(sep): path += b else: path += sep + b return path except (TypeError, AttributeError, BytesWarning): _check_arg_types('join', fspath, *fspaths) raise def join(path, *paths): """Join two or more pathname components, inserting '/' as needed. If any component is an absolute path, all previous path components will be discarded. An empty last part will result in a path that ends with a separator.""" return _join(*(_fspath(p) for p in (path,) + paths)) def normcase(path): return _fspath(path) # ~noop def _normpath(fspath): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L350 if isinstance(fspath, bytes): sep = b'/'; empty = b''; dot = b'.'; dotdot = b'..' else: sep = '/'; empty = ''; dot = '.'; dotdot = '..' if fspath == empty: return dot if fspath.startswith(sep): initial_slashes = 2 if keep_double_initial_slashes and fspath.startswith(sep * 2) and not fspath.startswith(sep * 3) else 1 else: initial_slashes = 0 comps = fspath.split(sep) new_comps = [] for comp in comps: if comp in (empty, dot): pass elif comp != dotdot or (not initial_slashes and not new_comps) or (new_comps and new_comps[-1] == dotdot): new_comps.append(comp) elif new_comps: new_comps.pop() comps = new_comps fspath = sep.join(comps) if initial_slashes: fspath = sep * initial_slashes + fspath return fspath or dot def normpath(path): """Normalize path, eliminating double slashes, etc.""" return _normpath(_fspath(path)) def relpath(path, start=None): # Algorithm adapted from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L486 # Handles a pure path version of relpath() if os_module is None. # /!\ On windows: posixpath.abspath('..') returns '..'! So we can't compare abspath nor relpath from original behavior! """Return a relative version of a path""" if not path: raise ValueError('no path specified') path = _fspath(path) if isinstance(path, bytes): curdir = b'.'; sep = b'/'; pardir = b'..' else: curdir = '.'; sep = '/'; pardir = '..' start = curdir if start is None else _fspath(start) try: if _isabs(path) != _isabs(start): if os_module is None: raise ValueError("Can't mix absolute and relative paths") path = _abspath(path); start = _abspath(start) else: path = _normpath(path); start = _normpath(start) start_list = [x for x in start.split(sep) if x and x != curdir] # removes empty names, curdir names and root path_list = [x for x in path.split(sep) if x and x != curdir] # removes empty names, curdir names and root i = len(_commonprefix([start_list, path_list])) rel_list = [pardir] * (len(start_list) - i) + path_list[i:] if not rel_list: return curdir return _join(*rel_list) except (TypeError, AttributeError, BytesWarning, DeprecationWarning): _check_arg_types('relpath', path, start) raise def split(path): # Algorithm copied from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L100 """Split a pathname. Returns tuple "(head, tail)" where "tail" is everything after the final slash. Either part may be empty.""" path = _fspath(path) sep = b'/' if isinstance(path, bytes) else '/' i = path.rfind(sep) + 1 head, tail = path[:i], path[i:] if head and head != sep * len(head): head = head.rstrip(sep) return head, tail def splitdrive(path): """Split a pathname into drive and path. On Posix, drive is always empty.""" path = _fspath(path) return path[:0], path def splitext(path): # Algorithm refactored from https://github.com/python/cpython/blob/3.11/Lib/genericpath.py#L121 """Split the extension from a pathname. Extension is everything from the last dot to the end, ignoring leading dots. Returns "(root, ext)"; ext may be empty.""" path = _fspath(path) if isinstance(path, bytes): sep = b'/'; dot = b'.' else: sep = '/'; dot = '.' si = path.rfind(sep) di = path.rfind(dot) if di > si: fi = si + 1 while fi < di: if path[fi:fi + 1] != dot: return path[:di], path[di:] fi += 1 return path, path[:0] # Non-OS operations def samestat(s1, s2): return s1.st_ino == s2.st_ino and s1.st_dev == s2.st_dev if os_module is not None: __all__ += [ 'abspath', 'exists', 'lexists', 'isfile', 'isdir', 'islink', 'getatime', 'getmtime', 'getctime', 'getsize', 'samefile', 'sameopenfile', 'realpath', 'expanduser', # defpath, ismount, expandvars ] if hasattr(os_module, 'devnull'): __all__ += ['devnull'] devnull = os_module.devnull # OS operations # FileNotFoundError happens when a node does not exists while traversing a path # ex: /dir/dir/noent/noent # ^ # NotADirectoryError happens when a file is traversed like a dir # ex: /dir/dir/file/noent # ^ def _abspath(fspath): cwd = os_module.getcwdb() if isinstance(fspath, bytes) else os_module.getcwd() return _normpath(_join(cwd, fspath)) def abspath(path): return _abspath(os_module.fspath(path)) def exists(path): try: s = os_module.stat(path) except (NotADirectoryError, FileNotFoundError): return False return True def lexists(path): try: s = os_module.lstat(path) except (NotADirectoryError, FileNotFoundError): return False return True def isfile(path): try: s = os_module.stat(path) except (NotADirectoryError, FileNotFoundError): return False return stat.S_ISREG(s.st_mode) def isdir(path): try: s = os_module.stat(path) except (NotADirectoryError, FileNotFoundError): return False return stat.S_ISDIR(s.st_mode) def islink(path): try: s = os_module.lstat(path) except (NotADirectoryError, FileNotFoundError): return False return stat.S_ISLNK(s.st_mode) def getatime(path): return os_module.stat(path).st_atime def getctime(path): return os_module.stat(path).st_ctime # caution! windows ctime != linux ctime def getmtime(path): return os_module.stat(path).st_mtime def getsize(path): return os_module.stat(path).st_size def samefile(f1, f2): return samestat(os_module.stat(f1), os_module.stat(f2)) def sameopenfile(f1, f2): return samestat(os_module.fstat(f1), os_module.fstat(f2)) def realpath(path, *, strict=False): # documentation says that we "should not" use this function anyway return os_realpath(path, strict=strict, os_module=os_module) def expanduser(path): # Algorithm adapted from https://github.com/python/cpython/blob/3.11/Lib/posixpath.py#L229 # Handles more options from module configuration, like the use of get_user_home(). """Expand ~ and ~user constructions.""" path = os_module.fspath(path) is_bytes = isinstance(path, bytes) if is_bytes: tilde = b'~'; sep = b'/' else: tilde = '~'; sep = '/' if not path.startswith(tilde): return path i = path.find(sep, 1) if i < 0: i = len(path) if i == 1: if use_environ and hasattr(os_module.environ) and 'HOME' in os_module.environ: userhome = os_module.environ['HOME'] # XXX also use a fake pwd module? elif get_user_home is not None: userhome = get_user_home(path[1:1]) else: return path else: # XXX also use a fake pwd module? if get_user_home is not None: userhome = get_user_home(path[1:i]) else: return path if userhome is None: return path if is_bytes: if not isinstance(userhome, bytes): userhome = os_module.fsencode(userhome) else: if not isinstance(userhome, str): userhome = os_module.fsdecode(userhome) userhome = userhome.rstrip(sep) return (userhome + path[i:]) or sep __export__ = ['__all__', *__all__] # end of module # _module__locals = locals() for _ in _module__locals.get('__export__', _module__locals): if not hasattr(export, _): setattr(export, _, _module__locals[_]) return export posixpath2 = posixpath2() posixpath2._required_globals = ['stat', 'os_realpath']
true
85e4157b15c92eb318d6eed6c6763fd9384379de
Python
Sinan-96/BoligPrisTracker
/database/dataBaseFunctions.py
UTF-8
1,496
3
3
[]
no_license
import sqlite3 from datetime import datetime """ Functions that sends a variety of queries to the database. These queries are adding, altering and removing data from the different tables of the database. """ #Conn is the database def addBolig(pris:int,by:int,bydel:int,gate:int,conn): query = "INSERT INTO Bolig VALUES (?, ?, ?, ?);" data_tuple = (pris,by,bydel,gate) conn.execute(query,data_tuple) def addBy(navn:str,conn): query = "INSERT INTO By VALUES (?, ?, ?);" data_tuple = (navn,0) conn.execute(query,data_tuple) def addBydel(navn:str,by:int,conn): query = "INSERT INTO Bydel VALUES (?, ?, ?);" data_tuple = (by,navn,0) conn.execute(query,data_tuple) def addGate(navn:str,bydel:int,conn): query = "INSERT INTO Gate VALUES (?, ?, ?);" data_tuple = (bydel,navn,0) conn.execute(query,data_tuple) #Gets GJpris for a specific date from a by,bydel or gate def getGJpris(dato:datetime,table:str,navn:str,conn): #TODO may have to change this query to fit the tables query = f"SELECT GjPris" \ f"FROM {table}" \ f"WHERE Navn = {navn} AND Dato = {dato}" return conn.execute(query) #Meant to be called in regular time intervals, every day for example #Takes table name as argument def updateGjPris(table:str,conn): query = f"UPDATE {table}" \ f"FROM Bolig ,{table}" \ f"SET GjPris = SUM(Bolig.Pris)" \ f"WHERE {table}.ID = Bolig.{table}" conn.execute(query)
true
1f8e3fce61404645c5f0554cda86dc6ad843ea0d
Python
teotiwg/studyPython
/200/pt3/084.py
UTF-8
195
3.15625
3
[]
no_license
txt1 = 'A' txt2 = 'Hi' txt3 = 'Warcraft Three' txt4 = '3PO' ret1 = txt1.isalpha() ret2 = txt2.isalpha() ret3 = txt3.isalpha() ret4 = txt4.isalpha() print(ret1) print(ret2) print(ret3) print(ret4)
true
11db749c6ace2fb754d543560c0035cf05cfb4f8
Python
seadsystem/Backend
/Analysis and Classification/Analysis/Code/Vince's_Code/Analysis/Testing Data/vince_Analysis.py
UTF-8
9,242
2.765625
3
[ "MIT" ]
permissive
## # Analysis.py # # Author: Vincent Steffens, vsteffen@ucsc.edu # Date: 16 November 2014 # # Produces a mean power spectrum of raw SEAD plug current # data, normalized by total current. # Outputs to spectrum in a numpy array to stdout or a text # file, each array element on a line. ## #For numerical analysis import numpy as np import math #For visualization import matplotlib.pyplot as pyp #For manipulating command-line arguments import sys #For handling files import os #For using regular expressions import re def init(): #Check for proper number of arguments, die if necessary #max args = 2 + number of valid options max_args = 10 if len(sys.argv) < 2: print "Usage: Analysis.py [-cfhpvVw] source_file" print "Call with -h for help" sys.exit(-1) if len(sys.argv) > max_args: print "Usage: Analysis.py [-cfhpvVw] source_file" print "Call with -h for help" sys.exit(-2) #handle calling with only Analysis.py -h if sys.argv[1] == '-h': print_help() exit() #Check for options. Break the option area of argv into a list of #characters. Make a list of those that are valid, and a list of #those that aren't. Let the user know if they endered an invalid #option. #When adding options, be sure to add a description to the -h section #below valid_options = 'cdfhpvVw' alleged_options = list(set(''.join(sys.argv[1:-1]))) options = [x for x in alleged_options if re.search(x, valid_options)] non_options = [x for x in alleged_options if x not in options and x != '-'] for i in non_options: print "Ignoring invalid option: \'%s\'" % (i) return options def import_and_trim(): Currents = [] amp_ids = [70, 66, 74, 62, 78, 58, 50, 14, 54] #Try to open source file for reading filename = sys.argv[len(sys.argv) - 1] if os.path.isfile(filename): with open(filename) as f: #Check the first element of the first line. #if it's "sensor_id", it's the old format #if it's "1", it's the new format line = f.readline().split(',') #New format if len(line) == 2: #discard first one for line in f: line = line.split(',') Currents.append(line[1]) elif line[0] == '1': if line[1] == 'I': Currents.append(line[3]) for line in f: line = line.split(',') if line[1] == 'I': Currents.append(line[2]) else: for line in f: line = re.split(',|\t', line) if int(line[0]) in amp_ids: Currents.append(line[1]) else: print "Analysis: cannot open file:", filename #Convert currents to milliamps Currents = [ 27*float(x)/1000 for x in Currents ] return Currents def produce_blocklist(): blocklist = [] data_length = len(Currents) #or Times, just to de-specify i = 0 while i < data_length: if i + 200 > len(Currents): break blocklist.append(Currents[i:i+blockwidth]) i += blockwidth return blocklist def produce_mean_normalized_power_spectrum(blocklist): #question: mean then normalize, or normalized then mean? #doesn't matter because multiplication commutes #units are in square amps #here's why: #original was in amps #take ft (not fft) #break up original into frequency components #view from frequency perspective #frequency components are in amps #take mod square using absolute #mod square(a + bi) = a^2 + b^2 #units are now in square amps per hz #integrate it in piecese from a to a + blockwidth #now you have units of amps sqared #put those in an array #oh yeah #so now we have a power spectrum for an amp signal (odd sounding) #in amps squared #Produce power spectrum, sum power_spectrum = np.square(np.absolute(np.fft.rfft(blocklist[0]))) sum_power_spectrum = power_spectrum for i in xrange(1, len(blocklist)): power_spectrum = np.square(np.absolute(np.fft.rfft(blocklist[i]))) sum_power_spectrum = np.add(sum_power_spectrum, power_spectrum) #Take integral total_sq_amps = 0.0 for i in xrange(0, len(sum_power_spectrum)): total_sq_amps += sum_power_spectrum[i] #Normalize by total amps measured normalized_power_spectrum = sum_power_spectrum * (1/total_sq_amps) #Finish taking mean mean_normalized_spectrum = normalized_power_spectrum / len(blocklist) return mean_normalized_spectrum def display(spectrum): template = np.ones(len(spectrum)) #Get the plot ready and label the axes pyp.plot(spectrum) max_range = int(math.ceil(np.amax(spectrum) / standard_deviation)) for i in xrange(0, max_range): pyp.plot(template * (mean + i * standard_deviation)) pyp.ylabel('Amps Squared') pyp.title('Mean Normalized Power Spectrum') if 'V' in Options: pyp.show() if 'v' in Options: tokens = sys.argv[-1].split('.') filename = tokens[0] + ".png" input = '' if os.path.isfile(filename): input = raw_input("Error: Plot file already exists! Overwrite? (y/n)\n") while input != 'y' and input != 'n': input = raw_input("Please enter either \'y\' or \'n\'.\n") if input == 'y': pyp.savefig(filename) else: print "Plot not written." else: pyp.savefig(filename) def write_output(): tokens = sys.argv[-1].split('.') filename = tokens[0] + ".txt" #If a file with the same name already exists, #check before overwriting and skip if necessary if os.path.isfile(filename): input = raw_input("Error: Output file already exists! Overwrite? (y/n) : ") while input != 'y' and input != 'n': input = raw_input("Please enter either \'y\' or \'n\'.\n") if input == 'n': print "Writing skipped." return #Write out = open(filename, 'w') for element in Spectrum: out.write(str(element) + ",") out.close() def print_help(): print "\nAnalysis.py." print "Used to produce a mean power spectrum of raw SEAD plug current data, normalized by total current" print "\nCall using this syntax:" print "$ python Analysis.py [-fhpvVw] [input file]" print "" print "Input: Raw, 4-column SEAD plug data" print "Output: Either or both of:" print "1. Numpy array printed to stdout." print "2. Spectrum written to text file." print "\nOptions may be arranged in any order, and in any number of groups" print "" print "-c:\t Classify. Match input data to a known group." print " This only works for microwaves, lamps, and laptop computers" print "-f:\t Fragmented data. This handles gaps in the data." print "-h:\t Help. Display this message." print "-p:\t Print. Print numpy array containing spectrum to terminal." print "-V:\t View. Display plot of spectrum, with the mean and multiples of the standard deviation." print "-v:\t Visualize. Print plot to file." print "-w:\t Write. Write spectrum to file, each array element on its own line" print "\nExamples:" print "1: Handle fragmented data, view plot, write spectrum to file" print " python Analysis.py -vfw 1_raw.csv" print " python Analysis.py -f -wv 1_raw.csv" print "2: View plot of spectrum" print " python Analysis.py -V 1_raw.csv" def classify(spectrum): variation_coefficient = standard_deviation / mean #count regions count = 0 flag = 0 threshold = mean + standard_deviation for i in xrange(0, len(spectrum)): if flag == 0 and spectrum[i] > threshold: flag = 1 count += 1 continue elif flag == 1 and spectrum[i] < threshold: flag = 0 output_string = sys.argv[-1] if len(output_string) < 24: output_string = output_string + "\t" if variation_coefficient < 3.511: print "%s\t was recorded from a laptop computer." % (output_string) return elif np.amax(spectrum) < 0.01 or count > 1: print "%s\t was recorded from a microwave." % (output_string) return else: print "%s\t was recorded from a lamp." % (output_string) #Execution begins here blockwidth = 200 Currents = [] Times = [] Options = init() Currents = import_and_trim() Blocklist = produce_blocklist() Spectrum = produce_mean_normalized_power_spectrum(Blocklist) #mean and std are used by both display() and classify() #only calculate once. mean = np.mean(Spectrum) standard_deviation = np.std(Spectrum) #This should be done first if 'h' in Options: print_help() if 'c' in Options: classify(Spectrum) if 'p' in Options: print Spectrum if 'w' in Options: write_output() if 'v' in Options or 'V' in Options: display(Spectrum)
true
1d364a408f91bac7b5fa6ba7287503445d0aa1b5
Python
geosaleh/Sorting_Algorithms
/sort_barchart.py
UTF-8
4,351
3.515625
4
[]
no_license
# Collection of sorting functions # # follow us on twitter @PY4ALL # import numpy as np import matplotlib.pyplot as plt import random plt.ion() x = np.arange(1, 20) fig, ax = plt.subplots(2, 2, dpi=120) plt.show() my_list = np.arange(1, 20) random.shuffle(my_list) bubble_rects = ax[0][0].bar(x, my_list, align='center') insertion_rects = ax[0][1].bar(x, my_list, align='center') selection_rects = ax[1][0].bar(x, my_list, align='center') shell_rects = ax[1][1].bar(x, my_list, align='center') plt.tight_layout() ax[0][0].set_ylim(0, 20) ax[0][0].set_title('Bubble Sort', pad=-40) ax[0][1].set_ylim(0, 20) ax[0][1].set_title('Insertion Sort', pad=-40) ax[1][0].set_ylim(0, 20) ax[1][0].set_title('Selection Sort') ax[1][1].set_ylim(0, 20) ax[1][1].set_title('Shell Sort') def bubble_sort(inlist): n = len(inlist) out_list = [*inlist] for i in range(n-1): swapped = False for j in range(n-1): # Compare elements if out_list[j] > out_list[j+1]: # Swap elements out_list[j+1], out_list[j] = out_list[j], out_list[j+1] swapped = True # Update the plot after swapping the elemnts for rect, h in zip(bubble_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) # Break the main loop if no more swap if not swapped: break return out_list def insertion_sort(inlist): n = len(inlist) out_list = [*inlist] for i in range(n): # Select element to be inserted value_to_insert = out_list[i] hole_position = i # Locate hole position for the element to be inserted while hole_position > 0 and out_list[hole_position-1] > value_to_insert: out_list[hole_position] = out_list[hole_position-1] hole_position = hole_position - 1 for rect, h in zip(insertion_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) # Insert the elemnt at hole position out_list[hole_position] = value_to_insert # Update the plot after inserting the elemnt for rect, h in zip(insertion_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) return out_list def selection_sort(inlist): n = len(inlist) out_list = [*inlist] for i in range(n): # Set current element as minimum _min = i # Check the elements to get the minimum for j in range(i+1, n): if out_list[j] < out_list[_min]: _min = j # Swap the minimum element with the current element if _min != i: out_list[i], out_list[_min] = out_list[_min], out_list[i] # Update the plot after swapping the elemnts for rect, h in zip(selection_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) return out_list def shell_sort(inlist): out_list = [*inlist] interval = 0 # Calculate interval while interval < len(out_list): interval = interval * 3 + 1 while interval > 0: for outer in range(interval, len(out_list)): # Select value to be inserted value_to_insert = out_list[outer] inner = outer # Shift element toward right while inner > interval - 1 and out_list[inner - interval] >= value_to_insert: out_list[inner] = out_list[inner - interval] inner = inner - interval # Update the plot after shifting the elemnt for rect, h in zip(shell_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) # Insert the element at the hole position out_list[inner] = value_to_insert # Update the plot after inserting the element for rect, h in zip(shell_rects, out_list): rect.set_height(h) plt.draw() plt.pause(0.02) interval = (interval - 1) // 3 return out_list # Run all sorting algorithms bubble_sort(my_list) insertion_sort(my_list) selection_sort(my_list) shell_sort(my_list)
true
cafc150115a8a61f275bd8d764bdc9ff4e1d63a3
Python
ISmilingFace/weather
/wetapp/views.py
UTF-8
1,100
2.515625
3
[]
no_license
import json from urllib.request import urlopen import requests from django.shortcuts import render # Create your views here. class GetWeather(object): def __init__(self): self.weather_url = 'http://api.map.baidu.com/telematics/v3/weather?location={}&output=json&ak=TueGDhCvwI6fOrQnLM0qmXxY9N0OkOiQ&callback=?' self.ip_url = 'https://api.map.baidu.com/location/ip?ak=KHkVjtmfrM6NuzqxEALj0p8i1cUQot6Z' def get_location(self): loc_js = urlopen(self.ip_url).read().decode() loc_dict = json.loads(loc_js) city = loc_dict['content']['address_detail']['city'] return city def get_data(self, location): url = self.weather_url.format(location) js_content = requests.get(url).text js_dict = json.loads(js_content) return js_dict def index(request): weather = GetWeather() location = weather.get_location() location = request.GET.get('location', location) data_list = weather.get_data(location)['results'][0] return render(request, template_name='index.html', context=data_list)
true
2ccaf5429947bba985ea88a8264979357c1856dc
Python
topdeliremegagroove/Game-of-life-CPES
/Ancienne version/rapide.py
UTF-8
8,105
3.03125
3
[]
no_license
from tkinter import * from functools import partial from time import sleep root = Tk() root.title("Le Jeu de la Vie") # A faire : changer la taille de la grille ; # détecter la taille du fichier lu (ou en faire une par défaut, et dans ce cas, centrer les coordonnées) ; # --> faire avancer étape par étape # bouton de réinitialisation taille = 30 pixel = 650 c = Canvas(root, height = pixel, width = pixel, bg="grey") c.grid(row=0, column=0, rowspan = 30) #creation de la grille à gauche side = pixel/taille grid_display = [] #liste qui stockera la couleur des cellules def change_col(coord, _) : # changement de couleur des cellules i,j = coord if c.itemcget(grid_display[i][j], "fill") == "white" : c.itemconfig(grid_display[i][j], fill="black") else : c.itemconfig(grid_display[i][j], fill="white") def initialisation() : # implémentation des cellules pour initialiser la grille et les contrôles for i in range(taille) : grid_display.append([]) for j in range(taille) : grid_display[i].append(c.create_rectangle(side*j, side*i, side*(j+1), side*(i+1), width=1, fill="white", tags=f"{i}_{j}")) c.tag_bind(f"{i}_{j}","<Button-1>", partial(change_col, (i,j))) global entry_file, launch_button, speed_scale, step, step_label, save_button, save_entry # Entrée du fichier d'initialistion entry_file = Entry(root, width = 30) entry_file.grid(row=4, column=2) # Bouton de départ launch_button = Button(root, command=grid_generation, text=" Go ! ") launch_button.grid(row=5, column=2) # Curseur de la vitesse speed_scale = Scale(root, orient="horizontal", from_ = 0, to = 16, resolution=0.1, tickinterval=2, label="Speed (steps/sec)", length = 330) speed_scale.set(2) speed_scale.grid(row=7, column=2, rowspan=3) # Affichage de l'étape actuelle step = 0 step_label = Label(root, text=f"Step {step}") step_label.grid(row=11, column=2) # Bouton pour sauvegarder l'affichage actuel save_button = Button(root, command=sauvegarde, text="Save the grid") save_button.grid(row=15, column=2) # Et une boîte d'entrée pour le nom du fichier save_entry = Entry(root, width=30) save_entry.grid(row=14, column=2) def sauvegarde() : file_name = save_entry.get() if file_name == "" : file_name = "Sauvegarde_tmp" f = open(f"{file_name}.txt", "w") for i in range(len(grid_display)) : for j in range(len(grid_display)) : if c.itemcget(grid_display[i][j], "fill") == "black" : f.write(f"{i} {j}\n") f.close def grid_generation() : # création de la première grille 0_1 for i in range(len(grid_display)) : # désactivation des cases for j in range(len(grid_display)) : c.dtag(grid_display[i][j], f"{i}_{j}") if entry_file.get() != "" : file = open(f"{entry_file.get()}.txt", "r") lines = file.readlines() file.close() grid = [[0]*taille for _ in range(taille)] for i in range(len(lines)) : coords = lines[i].split() grid[int(coords[0])][int(coords[1])] = 1 else : grid = [] for i in range(len(grid_display)) : grid.append([]) for j in range(len(grid_display)) : if c.itemcget(grid_display[i][j], "fill") == "white" : grid[i].append(0) else : grid[i].append(1) # Sauvegarde automatique de la position de départ sauvegarde() first_grid = [[0]*taille for _ in range(taille)] for x in range(1, taille-1) : for y in range(1, taille-1) : if grid[x][y] == 1 : first_grid[x][y] += 1 #indique que la cellule était vivante au tour d'avant first_grid[x-1][y-1] += 2 first_grid[x][y-1] += 2 first_grid[x+1][y-1] += 2 first_grid[x-1][y] += 2 first_grid[x+1][y] += 2 first_grid[x-1][y+1] += 2 first_grid[x][y+1] += 2 first_grid[x+1][y+1] += 2 #boucle d'initialisation à partir de la grille racine entry_file.destroy() launch_button.destroy() save_button.destroy() save_entry.destroy() global pause_button # Bouton de pause pause_button = Button(root, text="Pause", command=partial(pause, grid)) pause_button.grid(row=0, column = 2) global reset_button reset_button = Button(root, command=reset, text="Reset") #le bouton reset permet de revenir à la grille vierge reset_button.grid(row=16, column=2) update(first_grid) # generation_plateau(first_grid) def update(grid) : # fonction d'actualisation des Labels à partir d'une grille donné. global step step += 1 step_label.configure(text=f"Step {step}") #step est le compteur de tour for i in range(len(grid)) : for j in range(len(grid)) : if grid[i][j] % 2 == 0 : color = "white" else : color = "black" c.itemconfig(grid_display[i][j], fill = color) #change l'objet du canva, change la couleur du rectangle dans grid display new_grid = main_evaluate(grid) # fonction qui calcule la grille suivante if grid == new_grid : # arrêt du programme quand il n'y a plus d'évolution return speed = speed_scale.get() if speed != 0 : root.after(int(1000/speed), update, new_grid) #pendant un certain temps j'attends, puis j'appelle la fonction update else : pause(new_grid) def main_evaluate(grid) : stock = [[0]*len(grid) for _ in range(len(grid))] for x in range(1, len(grid)-1) : for y in range(1, len(grid)-1) : if grid[x][y] in [5, 6, 7] : stock[x][y] += 1 #indique que la cellule était vivante au tour suivant stock[x-1][y-1] += 2 stock[x][y-1] += 2 stock[x+1][y-1] += 2 stock[x-1][y] += 2 stock[x+1][y] += 2 stock[x-1][y+1] += 2 stock[x][y+1] += 2 stock[x+1][y+1] += 2 return stock def pause(grid) : speed_scale.set(0) pause_button.configure(text="Resume", command=partial(resume, grid)) #le bouton pause pointe vers la fonction resume global step_button step_button = Button(root, text="Next step", command=partial(update_step_by_step, grid)) step_button.grid(row=5, column=2) def resume(grid) : step_button.destroy() speed_scale.set(2) pause_button.configure(text="Pause", command=partial(pause, grid)) #le bouton pause pointe vers la fonction pause update(grid) def update_step_by_step(grid) : global step step += 1 step_label.configure(text=f"Step {step}") for i in range(len(grid)) : for j in range(len(grid)) : if grid[i][j] % 2 == 0 : color = "white" else : color = "black" c.itemconfig(grid_display[i][j], fill = color) new_grid = main_evaluate(grid) # fonction qui calcule la grille suivante if grid == new_grid : # arrêt du programme quand il n'y a plus d'évolution step_button.configure(state=DISABLED) pause_button.configure(command=partial(resume, new_grid)) step_button.configure(command=partial(update_step_by_step, new_grid)) def reset(): speed_scale.set(0) c.delete("all") step_label.destroy() speed_scale.destroy() pause_button.destroy() reset_button.destroy() #next_step.destroy() initialisation() initialisation() root.mainloop()
true
6d2803b80216de7df59c67840cf596ea93be4293
Python
valeriekamen/python
/rotate-image.py
UTF-8
3,322
4.15625
4
[]
no_license
# Rotate a square matrix clockwise one rotation import math def get_new_position(start_i, start_j, lim): # [0,0] -> [0,2] # print(start_j, lim - start_i) return start_j, lim - start_i def rotate_image(input_matrix, number_times=None, start_i=0, start_j=0): print(input_matrix, number_times, start_i, start_j) lim = len(input_matrix) if number_times == 0: return input_matrix if not number_times: number_times = lim - 1 print(number_times) # check if actually a square for side in input_matrix: if not len(side) == lim: return False starting_i = start_i starting_j = start_j # moving_i = start_i # moving_j = start_j # moving_val = input_matrix[moving_i][moving_j] for n in range(number_times): moving_i = start_i moving_j = start_j moving_val = input_matrix[moving_i][moving_j] for n in range(0, 4): print("moving", moving_val) new_i, new_j = get_new_position(moving_i, moving_j, lim - 1) next_moving_val = input_matrix[new_i][new_j] input_matrix[new_i][new_j] = moving_val moving_val = next_moving_val moving_i = new_i moving_j = new_j start_j += 1 rotate_image( input_matrix, math.floor(number_times / 2), starting_i + 1, starting_j + 1 ) print(input_matrix) return input_matrix assert rotate_image([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) == [ [7, 4, 1], [8, 5, 2], [9, 6, 3], ] assert rotate_image( [[5, 1, 9, 11], [2, 4, 8, 10], [13, 3, 6, 7], [15, 14, 12, 16]] ) == [[15, 13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7, 10, 11]] assert rotate_image([[1, 2], [3, 4]]) == [[3, 1], [4, 2]] assert rotate_image([[1]]) == [[1]] """ Works, maybe overly complicated def rotate_image(input_matrix): lim = len(input_matrix) # check if actually a square for side in input_matrix: if not len(side) == lim: return False # list of proper length in order of final positions new_nums = [None] * (lim ** 2) for i in range(lim): # inside matrix for j in range(lim): # inside row num = input_matrix[i][j] # new position in matrix is [(lim - 1) - j][i] # ex: [0][0] moves to [0][2] new_j = (lim - 1) - i # new index in grand scheme is 3 * i + j # ex: [0][2] is 3rd in list of 9 numbers, 3 * 0 + 2 as index 2 new_pos = (lim * j) + new_j new_nums[new_pos] = num # go through matrix and replace what has been calculated in new_nums for i in range(lim): # inside matrix for j in range(lim): # inside row this_pos = (lim * i) + j input_matrix[i][j] = new_nums[this_pos] return input_matrix Creates new matrix, does not change in place def rotate_image(input_matrix): # check if actually a square for side in input_matrix: if not len(side) == len(input_matrix): return False new_matrix = [] for i in range(len(input_matrix)): new_row = [] for side in input_matrix: new_row.append(side[i]) new_row.reverse() new_matrix.append(new_row) return new_matrix """
true
1a46ffac355c4058bc6013f5f890188f188c83fc
Python
rickypeng99/codingDocFinder
/scraper_scripts/c_lib.py
UTF-8
1,867
2.875
3
[]
no_license
# coding: utf-8 # In[1]: from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options import re import urllib import pandas as pd options = Options() options.headless = True browser = webdriver.Chrome('./chromedriver',options=options) # In[2]: title = [] description = [] links = [] Syntax = [] Text = [] # In[4]: def get_js_soup(url,browser): browser.get(url) res_html = browser.execute_script('return document.body.innerHTML') soup = BeautifulSoup(res_html,'html.parser') #beautiful soup object to be used for parsing html content return soup # In[5]: dir_url = 'https://doc.bccnsoft.com/docs/cppreference_en/all_c_functions.html' soup = get_js_soup(dir_url,browser) # In[7]: find = soup.find_all('td',class_='category-table-td') # In[9]: i = 0 while i < len(find): a = find[i].get_text(separator=' ') a = a.replace("\n","") a = a.replace(" "," ") title.append(a) i += 1 a = find[i].get_text(separator=' ') a = a.replace("\n","") a = a.replace(" "," ") description.append(a) i += 1 # In[26]: web_base = "https://doc.bccnsoft.com/docs/cppreference_en/" # In[27]: for link_holder in soup.find_all('td',class_='category-table-td'): try: rel_link = link_holder.find('a')['href'] links.append(web_base + rel_link) except: continue # In[52]: for url in links: soupp = get_js_soup(url,browser) try: Syntax.append(soupp.find('pre',class_='syntax-box').get_text(separator=' ')) except: Syntax.append(" ") Text.append(soupp.getText()) # In[62]: df = pd.DataFrame({'title':title, 'url':links, 'description':description, 'syntax':Syntax, 'text':Text }) # In[63]: df.to_csv('C_Library.csv', index=False, encoding='utf-8')
true
62239e799006db9c164ea0ff849088958ad6a67e
Python
ztxm/Python_level_1
/lesson6/task4.py
UTF-8
3,149
4.46875
4
[]
no_license
""" 4) Реализуйте базовый класс Car. У данного класса должны быть следующие атрибуты: speed, color, name, is_police (булево). А также методы: go, stop, turn(direction), которые должны сообщать, что машина поехала, остановилась, повернула (куда). Опишите несколько дочерних классов: TownCar, SportCar, WorkCar, PoliceCar. Добавьте в базовый класс метод show_speed, который должен показывать текущую скорость автомобиля. Для классов TownCar и WorkCar переопределите метод show_speed. При значении скорости свыше 60 (TownCar) и 40 (WorkCar) должно выводиться сообщение о превышении скорости. Создайте экземпляры классов, передайте значения атрибутов. Выполните доступ к атрибутам, выведите результат. Выполните вызов методов и также покажите результат. """ class Car(): def __init__(self, speed, color, name, is_police=False): self.speed = speed self.color = color self.name = name self.is_police = is_police def go(self): return f"{self.name} Машина поехала" def stop(self): return f"{self.name} Машина остановилась" def turn(self, direction): if direction == "left": return "повернула на лево" if direction == "right": return "повернула на право" def show_speed(self): return self.speed class TownCar(Car): def show_speed(self): if self.speed > 60: return f"Вы превысили скорость на {self.speed - 60}" return self.speed class SportCar(Car): """dsf""" class WorkCar(Car): def show_speed(self): if self.speed > 40: return f"Вы превысили скорость на {self.speed - 40}" return self.speed class PoliceCar(Car): def __init__(self, speed, color, name, is_police=True): super().__init__(speed, color, name, is_police) my_car = Car(60, "silver", "Mazda") my_town_car = TownCar(45, "black", "Volvo") my_sport_car = SportCar(100, "Red", "Ferrari") my_work_car = WorkCar(50, "white", "Gaz") my_police_car = PoliceCar(0, "white", "Ford") print(f"{my_car.name} {my_car.color}") print(f"{my_town_car.name} {my_town_car.color} {my_town_car.is_police}") print(f"{my_sport_car.name} {my_sport_car.color} {my_sport_car.turn('left')}") my_sport_car.speed = 150 print(my_sport_car.go()) print(f"{my_sport_car.name} Скрость: {my_sport_car.show_speed()} км/ч") print(my_sport_car.stop()) my_town_car.speed = 80 print(f"\n{my_town_car.name} {my_town_car.show_speed()} км/ч") my_work_car.speed = 70 print(f"{my_work_car.name} {my_work_car.show_speed()} км/ч")
true
80112411c19ac07dad1cca8e6c543817f1d8ba36
Python
croguerrero/pythonexercises
/bisiesto.py
UTF-8
360
3.765625
4
[]
no_license
## Ano bisiesto year = int(input("Year: ")) if year % 4 == 0: if year % 100: if year % 400: print("This year {} is bisiesto".format(year)) else: print("This year {} is not bisiesto".format(year)) else: print("This year {} is bisiesto".format(year)) else: print("This year {} is not bisiesto ".format(year))
true
e65bd24262ca1466d057bce241d1a2fb609da441
Python
swaroop1995/assignment
/ass2_12.py
UTF-8
330
3.796875
4
[]
no_license
print("1)Monkey A and B are smiling") print("2)Monkey A and B are not smiling") print("3)Monkey A is smiling") print("4)Monkey B is not smiling") option=int(input("select the option:")) if option==1 or option==2: print("we are in trouble") else: if option==3 or option==4: print("we are not in trouble")
true
adf4029fd1527714922d0171a51ec0f5a87ac762
Python
latufla/EventSystem
/models/forms/form_base.py
UTF-8
189
2.578125
3
[]
no_license
from wtforms import Form class FormBase(Form): def errors_str(self): error = "" for k, v in self.errors.items(): error += v[0] + '\n' return error
true
019406d342621ef9d77a4fd331576b064c8e299f
Python
linn24/mrt_route_suggestion
/mrt_app/initialize_data.py
UTF-8
1,964
2.859375
3
[]
no_license
import sys from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.sql.expression import true from sqlalchemy.sql.sqltypes import Boolean from mrt_app.models import Base, Line, Station, Traffic import pandas as pd from datetime import datetime SQLALCHEMY_DATABASE_URI = 'sqlite:///mrt.db' DATA_FILE_NAME = 'StationMap.csv' TRAFFIC_FILE_NAME = 'TrafficInfo.csv' engine = create_engine(SQLALCHEMY_DATABASE_URI) Base.metadata.bind = create_engine DBSession = sessionmaker(bind=engine) session = DBSession() def load_data(file_name): data = pd.read_csv(file_name) return data.values.tolist() try: row_list = load_data(DATA_FILE_NAME) line_set = set() # Populate lines for row in row_list: line_set.add(row[0][0:2]) for line_name in line_set: line = Line( name=line_name ) session.add(line) session.commit() lines = session.query(Line).order_by(Line.id.asc()) line_dict = {line.name:line.id for line in lines} # Populate stations for row in row_list: station = Station( name = str(row[1]), line_id = line_dict[str(row[0][0:2])], code_number = int(row[0][2:]), opening_date = datetime.strptime(row[2], '%d %B %Y').date(), ) session.add(station) row_list = load_data(TRAFFIC_FILE_NAME) # Populate traffic information for row in row_list: traffic = Traffic( line_id = line_dict.get(str(row[0])), start_hour = int(row[1]), end_hour = int(row[2]), is_weekend = bool(row[3]), is_operating = bool(row[4]), delay_in_minutes = int(row[5]), ) session.add(traffic) session.commit() except: print("Unexpected error:", sys.exc_info()) # Rollback the changes on error session.rollback() finally: # Close the connection session.close()
true
5e84a310a962945b16094b60d409f60e1a2d1d01
Python
dionwang88/lc1
/algo/241_Different_Ways_To_Add_Parentheses/Q241.py
UTF-8
1,067
3.109375
3
[]
no_license
class Solution(object): def __init__(self): self.map = {} def diffWaysToCompute(self, inputs): if not inputs: return [] return self.helper(inputs) def helper(self, inputs): res = [] for i in xrange(len(inputs)): c = inputs[i] if c == '+' or c == '-' or c == '*': p1 = inputs[:i] p2 = inputs[i + 1:] l1 = self.map.get(p1, self.helper(p1)) l2 = self.map.get(p2, self.helper(p2)) for i1 in l1: for i2 in l2: r = 0 if c == '+': r = i1 + i2 elif c == '-': r = i1 - i2 elif c == '*': r = i1 * i2 res.append(r) if len(res) == 0: res.append(int(inputs)) self.map[inputs] = res return res sol = Solution() print sol.diffWaysToCompute('2*3-4*5')
true
238fccf0aadd04f683e603fce07d8b07d133c132
Python
victorxuli/traitement-d-image
/tp4.py
UTF-8
5,497
2.53125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Tue Oct 23 14:10:42 2018 @author: victo """ from skimage import util as ut from PIL import Image import numpy as np import scipy.fftpack as sc import scipy as sp import skimage.io as skio from skimage import exposure as ske from skimage import color import matplotlib.pyplot as plt from skimage import filters as fl from skimage import img_as_float as img_as_float from skimage.segmentation import clear_border import skimage.measure as skim from skimage.morphology import disk import skimage.restoration as re import skimage import skimage.morphology as sm import cv2 plt.close("all") imag = skio.imread('D:\image\code.bmp') plt.figure("image original ") plt.title("image original ") plt.imshow(imag,cmap = 'gray') plt.axis('off') ## mdian seuil1 = np.median(imag) rows,cols=imag.shape for i in range(rows): for j in range(cols): if (imag[i,j]>=seuil1): imag[i,j]=255 else: imag[i,j]=0 plt.figure("image bilanisation par median") plt.title("image bilanisation par median ") plt.imshow(imag,cmap = 'gray') plt.axis('off') ## mean imag = skio.imread('D:\image\code.bmp') seuil2 = np.mean(imag) rows,cols=imag.shape for i in range(rows): for j in range(cols): if (imag[i,j]>=seuil2): imag[i,j]=255 else: imag[i,j]=0 plt.figure("image bilanisation par mean") plt.title("image bilanisation par mean ") plt.imshow(imag,cmap = 'gray') plt.axis('off') ##图像膨胀滤波 图像变亮 粗化区域 亮特征增大 暗特征减小 dilatation imag = skio.imread('D:\image\code.bmp') dst1=sm.dilation(imag,sm.square(3)) #用边长为3的正方形滤波器进行膨胀滤波 plt.figure("image dilation 3") plt.title("image dilation 3") plt.imshow(dst1,cmap = 'gray') plt.axis('off') dst2=sm.dilation(imag,sm.square(11)) #用边长为11的正方形滤波器进行膨胀滤波 plt.figure("image dilation 11") plt.title("image dilation 11") plt.imshow(dst2,cmap = 'gray') plt.axis('off') ##图像腐蚀滤波 图像变暗 细化区域 亮特征减小 暗特征增加 erosion dst5=sm.erosion(imag,sm.square(5)) #用边长为5的正方形滤波器进行腐蚀滤波 plt.figure("image erosion 5") plt.title("image erosion 5") plt.imshow(dst5,cmap = 'gray') plt.axis('off') dst6=sm.erosion(imag,sm.square(25)) #用边长为25的正方形滤波器进行腐蚀滤波 plt.figure("image erosion 25") plt.title("image erosion 25") plt.imshow(dst6,cmap = 'gray') plt.axis('off') ##图像开运算 先腐蚀再膨胀 小亮点消失 原图中大片黑色区域中的亮点消失 可以消除小物体或小斑块 dst3=sm.opening(imag,sm.disk(9)) #用边长为9的圆形滤波器进行膨胀滤波 plt.figure("image openning 9") plt.title("image openning 9") plt.imshow(dst3,cmap = 'gray') plt.axis('off') dst4=sm.opening(imag,sm.disk(3)) #用边长为3的圆形滤波器进行膨胀滤波 plt.figure("image openning 3") plt.title("image openning 3") plt.imshow(dst4,cmap = 'gray') plt.axis('off') ##图像闭运算 先膨胀再腐蚀,可用来填充孔洞。 dst7=sm.closing(imag,sm.disk(9)) #用边长为9的圆形滤波器进行膨胀滤波 plt.figure("image close 9") plt.title("image close 9") plt.imshow(dst7,cmap = 'gray') plt.axis('off') dst8=sm.closing(imag,sm.disk(3)) #用边长为3的圆形滤波器进行膨胀滤波 plt.figure("image close 3") plt.title("image close 3") plt.imshow(dst8,cmap = 'gray') plt.axis('off') ##图像白帽(white-tophat) 将原图像减去它的开运算值,返回比结构化元素小的白点 dst9=sm.white_tophat(imag,sm.square(25)) plt.figure("image white_tophat 25") plt.title("image white_tophat 25") plt.imshow(dst9,cmap = 'gray') plt.axis('off') ##图像黑帽(black-tophat) 将原图像减去它的闭运算值,返回比结构化元素小的黑点,且将这些黑点反色。 bottom-Hat dst10=sm.black_tophat(imag,sm.square(23)) dst10 = clear_border(dst10) plt.figure("image black_tophat 27") plt.title("image black_tophat 27") plt.imshow(dst10,cmap = 'gray') plt.axis('off') dst10=sm.opening(dst10,sm.disk(6)) #dst10=sm.opening(dst10,sm.square(3)) #dst10=sm.closing(dst10,sm.disk(6)) #dst10=sm.erosion(dst10,sm.square(6)) dst10=sm.dilation(dst10,sm.square(12)) #dst10=sm.erosion(dst10,sm.square(4)) #Imax1 = np.percentile(dst10,60) #rows,cols=dst10.shape #for i in range(rows): # for j in range(cols): # if (dst10[i,j]<=Imax1): # dst10[i,j]=0 dst10 = clear_border(dst10) plt.figure("image bilanisation par mean_final") plt.title("image bilanisation par mean_final ") plt.imshow(dst10,cmap = 'gray') plt.axis('off') #dst10=sm.opening(dst10,sm.disk(3)) #dst10=sm.dilation(dst10,sm.square(3)) #plt.figure("image black_tophat asd 25") #plt.title("image black_tophat das 25") #plt.imshow(dst10,cmap = 'gray') #plt.axis('off') #seuil_f = np.mean(dst10) ass = fl.threshold_otsu(dst10) dst10 = dst10<=ass #Imax = np.percentile(dst10,87) rows,cols=dst10.shape for i in range(rows): for j in range(cols): if (dst10[i,j]==True): dst10[i,j]=False else: dst10[i,j]=True #dst10 = clear_border(dst10) dst10=sm.erosion(dst10,sm.square(5)) plt.figure("image bilanisation ") plt.title("image bilanisation") plt.imshow(dst10,cmap = 'gray') plt.axis('off')
true
95941824cf8e93a55c61928b29564db7dfc73673
Python
yass0016/beagle-project
/python_client/index.py
UTF-8
579
2.609375
3
[]
no_license
import requests import Adafruit_BBIO.GPIO as GPIO import time import string import random GPIO.setup("P9_15", GPIO.IN) old_switch_state = 0 def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) while True: new_switch_state = GPIO.input("P9_15") if new_switch_state == 1 and old_switch_state == 0: r = requests.post('http://sayadev.com:2000/list', data={'text':id_generator()}) print(r.status_code, r.reason) time.sleep(0.1) old_switch_state = new_switch_state
true
25319e241f385d1a7533e56559a17ca55872c633
Python
vivekaxl/CodeLab
/hacker_rank/6.py
UTF-8
1,391
3.40625
3
[]
no_license
# Enter your code here. Read input from STDIN. Print output to STDOUT from __future__ import division class line_segments: def __init__(self, start, end): self. start = start self.end = end self.distance = end - start def __str__(self): return str(self.start) + " " + str(self.end) + " " + str(self.distance) def good_bad(line1, line2): count = 0 if line1.start <= line2.start and line1.end >= line2.end: return False elif line1.start >= line2.start and line1.end <= line2.end: return False return True def temp_remove(lines, line): return [l for l in lines if not (l.start == line.start and l.end == line.end)] def subset_selection(lines, new_line): for line in lines: if good_bad(line, new_line) is False: return False, line return True, None first_line = raw_input() lines = [] for _ in xrange(int(first_line)): second_line = raw_input() start, end = [int(x) for x in second_line.split()] lines.append(line_segments(start, end)) subset = [] for line in lines: cond, odd_line = subset_selection(subset, line) if cond is True: subset.append(line) else: if subset_selection(temp_remove(subset, odd_line), line) and odd_line.distance < line.distance: subset.remove(odd_line) subset.append(line) for l in subset: print l print len(subset)
true
0929e714f7306dc8dec50e00cbf65a46aae1cc16
Python
HoeYeon/Algorithm
/Python_Algorithm/Baek/1120.py
UTF-8
257
3.140625
3
[]
no_license
a, b = input().split(' ') if len(b) > len(a): a, b = b, a result = 0 for i in range(0,len(a)-len(b)+1): count = 0 for j in range(0, len(b)): if a[i+j] == b[j]: count += 1 result = max(result,count) print(len(b) - result)
true
071bf19b7be7c011c8d938bfeb8b1f3a17188cbf
Python
aleonnet/Vision_Marker_Chaser
/Mechanum Wheel Equations.py
UTF-8
1,132
2.890625
3
[]
no_license
from math import sin, cos, radians ''' VX is the Speed Multiplier for Wheel X Vd is mostly a constant - the max speed you want for this run T0 is Theta Zero the desired direction of travel, hopefully to be variable Vo is an offset to help change direction, I think? 0.7854 is Pi/4 ''' V1 = 0 V2 = 0 V3 = 0 V4 = 0 Vd = 5 T0 = 90 Vo = 0 RADS = radians(T0) # robot_ctrl.set_mode(rm_define.robot_mode_chassis_follow) # chassis_ctrl.set_trans_speed(0) V1 = Vd * (sin(RADS + 0.7854) + Vo) V1a = Vd * sin(T0 + 0.7854) + Vo V2 = Vd * (cos(RADS + 0.7854) - Vo) V2a = Vd * cos(T0 + 0.7854) - Vo V3 = Vd * (cos(RADS + 0.7854) + Vo) V3a = Vd * cos(T0 + 0.7854) + Vo V4 = Vd * (sin(RADS + 0.7854) - Vo) V4a = Vd * sin(T0 + 0.7854) - Vo # V2 = Vd * cos(T0 + 0.7854) - Vo # V3 = Vd * cos(T0 + 0.7854) + Vo # V4 = Vd * sin(T0 + 0.7854) - Vo # print(V1, V1a, V2, V2a, V3, V3a, V4, V4a) print(V1, V2, V3, V4) ''' circle_1 = 50 * (1 + sin(radians(n * 10))) circle_2 = 50 * (1 + cos(radians(n * 10))) chassis_ctrl.set_wheel_speed(V1, V2, V3, V4) time.sleep(2) chassis_ctrl.set_trans_speed(0) '''
true
6b9a52705db44085a49a72d6ee07a4330723eec3
Python
changhw01/Maneki
/fr/test_ipca.py
UTF-8
11,619
3.28125
3
[]
no_license
import sys import os import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA import cv2 import time import pickle class CCIPCA(BaseEstimator, TransformerMixin): """Candid covariance-free incremental principal component analysis (CCIPCA) Linear dimensionality reduction using an online incremental PCA algorithm. CCIPCA computes the principal components incrementally without estimating the covariance matrix. This algorithm was designed for high dimensional data and converges quickly. This implementation only works for dense arrays. However it should scale well to large data. Time Complexity: per iteration 3 dot products and 2 additions over 'n' where 'n' is the number of features (n_features). Implementation of: author={Juyang Weng and Yilu Zhang and Wey-Shiuan Hwang} journal={Pattern Analysis and Machine Intelligence, IEEE Transactions} title={Candid covariance-free incremental principal component analysis} year={2003} month={aug} volume={25} number={8} pages={1034-1040} Parameters ---------- n_components : int Number of components to keep. Must be set amnesia : float A parameter that weights the present more strongly than the past. amnesia=1 makes the present count the same as anything else. copy : bool If False, data passed to fit are overwritten Attributes ---------- `components_` : array, [n_components, n_features] Components. `explained_variance_ratio_` : array, [n_components] Percentage of variance explained by each of the selected components. Notes ----- Calling fit(X) multiple times will update the components_ etc. Examples -------- >>> import numpy as np >>> from sklearn.decomposition import CCIPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ccipca = CCIPCA(n_components=2) >>> ccipca.fit(X) CCIPCA(amnesic=2.0, copy=True, n_components=2) >>> print(ccipca.explained_variance_ratio_) [ 0.97074203 0.02925797] See also -------- PCA ProbabilisticPCA RandomizedPCA KernelPCA SparsePCA IPCA """ def __init__(self, n_components=2, amnesic=2.0, copy=True): self.n_components = n_components if self.n_components < 2: raise ValueError("must specifiy n_components for CCIPCA") self.copy = copy self.amnesic = amnesic self.iteration = 0 def fit(self, X, y=None, **params): """Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. Notes ----- Calling multiple times will update the components """ n_samples, n_features = X.shape # init if self.iteration == 0: self.mean_ = np.zeros([n_features], np.float) self.components_ = np.zeros([self.n_components, n_features], np.float) else: if n_features != self.components_.shape[1]: raise ValueError('The dimensionality does not match') # incrementally fit the model for i in range(0, X.shape[0]): self.partial_fit(X[i, :]) # update explained_variance_ratio_ self.explained_variance_ratio_ = np.sqrt(np.sum(self.components_ ** 2, axis=1)) # sort by explained_variance_ratio_ idx = np.argsort(-self.explained_variance_ratio_) self.explained_variance_ratio_ = self.explained_variance_ratio_[idx] self.components_ = self.components_[idx, :] # re-normalize self.explained_variance_ratio_ = (self.explained_variance_ratio_ / self.explained_variance_ratio_.sum()) for r in range(0, self.components_.shape[0]): self.components_[r, :] /= np.sqrt(np.dot(self.components_[r, :], self.components_[r, :])) return self def partial_fit(self, u): """ Updates the mean and components to account for a new vector. Parameters ---------- _u : array [1, n_features] a single new data sample """ n = float(self.iteration) V = self.components_ # amnesic learning params if n <= int(self.amnesic): w1 = float(n + 2 - 1) / float(n + 2) w2 = float(1) / float(n + 2) else: w1 = float(n + 2 - self.amnesic) / float(n + 2) w2 = float(1 + self.amnesic) / float(n + 2) # update mean self.mean_ = w1 * self.mean_ + w2 * u # mean center u u = u - self.mean_ # update components for j in range(0, self.n_components): if j > n: # the component has already been init to a zerovec pass elif j == n: # set the component to u V[j, :] = u else: # update the components V[j, :] = w1 * V[j, :] + w2 * np.dot(u, V[j, :]) * u / np.linalg.norm(V[j, :]) normedV = V[j, :] / np.linalg.norm(V[j, :]) u = u - np.dot(np.dot(u.T, normedV), normedV) self.iteration += 1 self.components_ = V return def transform(self, X): """Apply the dimensionality reduction on X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ X_transformed = X - self.mean_ X_transformed = np.dot(X_transformed, self.components_.T) return X_transformed def inverse_transform(self, X): """Transform data back to its original space, i.e., return an input X_original whose transform would be X Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples in the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) """ return np.dot(X, self.components_) + self.mean_ def read_cvimages(path, sz=None): c = 0 X = [] y, z = [], [] for dirname, dirnames, filenames in os.walk(path): for subdirname in dirnames: subject_path = os.path.join(dirname, subdirname) for filename in os.listdir(subject_path): try: if filename[-3:] == "png": im = cv2.imread(os.path.join(subject_path, filename)) im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) im = cv2.resize(im, (128, 128), interpolation=cv2.INTER_CUBIC) im = cv2.equalizeHist(im) X.append(im.flatten("C").copy()) # flatten 2D to 1D #X.append(im.flatten().astype(np.float32, copy=False)) y.append(c) except: print "Unexpected error:", sys.exc_info()[0] raise z.append(subdirname) c = c + 1 return [X, y, z] def project(W, X, mu=None): if mu is None: return np.dot(X, W) return np.dot(X - mu, W) def EuclideanDistance(p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return np.sqrt(np.sum(np.power((p - q), 2))) def CosineDistance(p, q): p = np.asarray(p).flatten() q = np.asarray(q).flatten() return -np.dot(p.T, q) / (np.sqrt(np.dot(p, p.T) * np.dot(q, q.T))) def predict(Xin, W, mu, projections, y, z, labels): minDist = 0, print "min dist: %f" % minDist minClass = -1 Q = project(W, Xin.reshape(1, -1), mu) for i in xrange(len(projections)): dist = CosineDistance(projections[i], Q) #print y[i], dist if dist < minDist: minDist = dist print "found min dist: %f (%s)" % (minDist, labels[z[y[i]]]) minClass = y[i] else: #print "dist: %f (%s)"%(dist, z[y[i]]) pass return minClass, minDist def asRowMatrix(X): if len(X) == 0: return np.array([]) mat = np.empty((0, X[0].size), dtype=X[0].dtype) for row in X: mat = np.vstack((mat, np.asarray(row).reshape(1, -1))) return mat if __name__ == "__main__": # read labels indata = open("labels.bin", "rb") labels = pickle.load(indata) # read images [X, y, z] = read_cvimages("raw") X = np.vstack(X) print "X. total pixel per face", X.shape print "y. numbers of samples", np.array(y).shape print "z. numbers of labels", np.array(z).shape # PCA k = len(z) print "principal component no: ", k pca_m = PCA(n_components=k).fit(X) W_pca = pca_m.components_.T pca_projections = [] # build pca projection model for xi in X: pca_projections.append(project(W_pca, xi.reshape(1, -1), mu=pca_m.mean_)) # CCIPCA sample_no = len(y) - 2 ccipca_m = CCIPCA(n_components=k, amnesic=1.0).fit(X[:sample_no, :]) W_ipca = ccipca_m.components_.T ccipca_projections = [] # build pca projection model for xi in X[:sample_no, :]: ccipca_projections.append(project(W_ipca, xi.reshape(1, -1), mu=ccipca_m.mean_)) ### testing phase test_img = cv2.imread(sys.argv[1]) test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) test_img = cv2.resize(test_img, (128, 128), interpolation=cv2.INTER_CUBIC) test_img = cv2.equalizeHist(test_img) test_img = test_img.flatten("C").copy() print "" print "pca-based prediction result" t0 = time.time() [output_label, score] = predict( test_img, W_pca, pca_m.mean_, pca_projections, y, z, labels) print "took", "%f" % ((time.time() - t0) * 1000.), "ms" if output_label > -1: print "Label:", labels[z[output_label]], score else: print "no suitable label found" print "" print "ccipca-based prediction result (%d samples)" % sample_no t0 = time.time() [output_label, score] = predict(test_img, W_ipca, ccipca_m.mean_, ccipca_projections, y[:sample_no], z, labels) print "took", "%f" % ((time.time() - t0) * 1000.), "ms" if output_label > -1: print "Label:", labels[z[output_label]], score else: print "no suitable label found" print "" print "add more samles" add_no_files = 4 ccipca_m.fit(X[sample_no:(sample_no + add_no_files), :]) W_ipca2 = ccipca_m.components_.T for xi in X[sample_no:(sample_no + add_no_files), :]: ccipca_projections.append( project(W_ipca2, xi.reshape(1, -1), mu=ccipca_m.mean_)) print "ccipca-based prediction result (%d samples)" % (sample_no + add_no_files) t0 = time.time() [output_label, score] = predict(test_img, W_ipca2, ccipca_m.mean_, ccipca_projections, y[:(sample_no + add_no_files)], z, labels) print "took", "%f" % ((time.time() - t0) * 1000.), "ms" if output_label > -1: print "Label:", labels[z[output_label]], score else: print "no suitable label found"
true
d445475903574783ae7dd99fc99e13da4a9c0521
Python
mstepan/algorithms-py
/excel2sql.py
UTF-8
324
3.703125
4
[]
no_license
def create_palindrome(value): for i in range(len(value)-1, 0, -1): if str[i] != str[i+1]: break value def main(): base_str = "test" palindrome = create_palindrome(base_str) print("str: %s, palindrome: %s" % (base_str, palindrome)) if __name__ == "__main__": main()
true
e13b2e13beacd37dc48e6bc6debdc3cae863e9ad
Python
Sophie1218/IE221_L22_CNCL
/myprogram/option1/point.py
UTF-8
2,740
3.609375
4
[]
no_license
# import libraries from math import sqrt from pygame.draw import circle from pygame.draw import rect from myprogram.interface import BLACK, WHITE, COLORS, LIGHT_COLORS class Point: """ A class to represent a two-dimensional data point. ... Attributes ---------- x : float coordinates[0] y : float coordinates[1] label : None/int data is labeled after K - means predict Methods ------- distance(point2): return value of distance between two points update_coordinates(x, y): update coordinates of point update_label(label): update label return_coordinates(): return value of coordinates return_label(): return label show(screen): draw point on the screen draw_boundary(screen): draw rectangle with color depends on label this function supports to draw boundaries after running K - means """ def __init__(self, x, y): self.x = x self.y = y self.label = None def distance(self, point2): """ Calculate the distance between two points Parameter: point2 is another Point object Returns: value of distance (float) """ return sqrt((self.x - point2.x) ** 2 + (self.y - point2.y) ** 2) def update_coordinates(self, x, y): self.x = x self.y = y def update_label(self, label): self.label = label def return_coordinates(self): return [self.x, self.y] def return_label(self): return self.label def show(self, screen): circle(screen, BLACK, (self.x + 50, self.y + 50), 6) if None == self.label: circle(screen, WHITE, (self.x + 50, self.y + 50), 5) else: circle(screen, COLORS[self.label], (self.x + 50, self.y + 50), 5) def draw_boundary(self, screen): if None != self.label: rect(screen, LIGHT_COLORS[self.label], (self.return_coordinates()[0] + 50, self.return_coordinates()[1] + 50, 5, 5)) class PointCluster(Point): """ A derived class of Point class. ... Attributes ---------- same as base class x : float coordinates[0] y : float coordinates[1] label : None/int data is labeled after K - means predict Methods ------- show(screen): draw point on the screen with size of circle is bigger """ def show(self, screen): circle(screen, COLORS[self.label], (self.x + 50, self.y + 50), 10)
true
bcfe054c1cbab0fa7b8609386c9e1d6ca2d8f00f
Python
KKainz/Uebungen
/UE1/3 - spaziergang.py
UTF-8
573
3.765625
4
[]
no_license
def wieweitSpazieren(gewicht: float, letzesMal: float, vertraegtsich: bool) -> float: if gewicht < 5: if not vertraegtsich: return "2 km" else: return "4 km" elif gewicht > 15 or letzesMal > 24: while vertraegtsich: return "8 km" else: return "5 km" if __name__ == '__main__': print(wieweitSpazieren(0.8, 15, False)) print(wieweitSpazieren(10, 2, False)) print(wieweitSpazieren(3.5, 8, True)) print(wieweitSpazieren(20, 26, True)) print(wieweitSpazieren(20, 26, False))
true
7983877722212be109f685c7cd6b8c38b84ec162
Python
bryantChhun/CardiacUltrasoundSegmentation
/imagePreprocess.py
UTF-8
1,101
2.671875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on 05 February, 2018 @ 11:16 PM @author: Bryant Chhun email: bchhun@gmail.com Project: BayLabs License: """ import glob import src.preprocess.mask_preprocess as mp import os def imagePreprocess(): ''' method to generate images, binary-interpolated-aligned masks, and save them as npy arrays: 1) load img.mhd, scale it, then save to directory './images' 2) load mask.vtk a) preprocess with contour_preprocess b) align using apply_recentering_mask3d c) save to directory './masks' :return: ''' data_dir = './data' glob_search = os.path.join(data_dir, "Patient*") patient_dirs = sorted(glob.glob(glob_search)) if len(patient_dirs) == 0: raise Exception("No patient directories found in {}".format(data_dir)) for patient_dir in patient_dirs: # each Patient folder contains approx 20 time frames of 3D images p = mp.preprocessData(patient_dir, frame="ED") p = mp.preprocessData(patient_dir, frame="ES") if __name__ == '__main__': imagePreprocess()
true
2ef0741d6ad84dda93349f1cc6f6e7c0b490acc6
Python
bmuftic1/ImageProcessing
/Extracting signatures/Boss/boss.py
UTF-8
2,754
3.078125
3
[]
no_license
#Student: Belma Muftic #Student number: D17127216 #Assignment number: 1.1 #Assignment objective: Find and crop the signature #importing needed packages import numpy as np import cv2 from matplotlib import pyplot as plt from matplotlib import image as image import easygui #opening the wanted image f = easygui.fileopenbox() I = cv2.imread(f) #convert image to greyscale G = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY) #equalize the greyscale image H=cv2.equalizeHist(G) #find the binary image of the equalized greyscale B = cv2.adaptiveThreshold(H, maxValue = 255, adaptiveMethod = cv2.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType = cv2.THRESH_BINARY, blockSize = 21, C = 35) #invert the binary image B = 255-B #find the region of interest ROI = cv2.bitwise_and(I,I, mask=B) #get the height and width of the ROI h,w,d = ROI.shape #find the sum values of each row and column #IDEA: the row/column that has a non-black pixel will have a sum that is greater than zero, thus, it is the first/last pixel to take for the cropping rowsSum=B.sum(axis=0) columnsSum=B.sum(axis=1) #initialize values upperMostPixel=1 lowerMostPixel=len(rowsSum)-1 leftMostPixel=1 rightMostPixel=len(columnsSum)-1 #find upper-most pixel by searching for the first pixel (from above) that has a row sum that is different from zero for x in range (1, len(rowsSum)): if (rowsSum[x]!=0): upperMostPixel=x-1 break #find lower-most pixel by searching for the first pixel (from below) that has a row sum that is different from zero #condition x!=len(rowsSum)-1 is there in case it tries to set the value of the found pixel to a value greater than the size of the image for x in range (len(rowsSum)-1, 0, -1): if (rowsSum[x]!=0 & x!=len(rowsSum)-1): lowerMostPixel=x+1 break #find left-most pixel by searching for the first pixel (from left) that has a column sum that is different from zero for x in range (1, len(columnsSum)): if (columnsSum[x]!=0): leftMostPixel=x-1 break #find right-most pixel by searching for the first pixel (from right) that has a column sum that is different from zero #condition x!=len(columnsSum)-1 is there in case it tries to set the value of the found pixel to a value greater than the size of the image for x in range (len(columnsSum)-1, 0, -1): if (columnsSum[x]!=0 & x!=len(columnsSum)-1): rightMostPixel=x+1 break #turn the black pixels to white h,w,d = ROI.shape for x in range (0, h): for y in range (0, w): #test if pixel is black if (ROI[x,y][0]==0 & ROI[x,y][1]==0 & ROI[x,y][2]==0): #if it is, turn it into white ROI[x,y]=(255,255,255) #crop signature from original image Ci = ROI[leftMostPixel:rightMostPixel, upperMostPixel:lowerMostPixel] #show final image cv2.imshow("signature", Ci) key = cv2.waitKey(0)
true
15455ebec4bd530467f70ba90e9ff84fa5f5d11c
Python
xioashitou/algorithm013
/Week_03/50.pow-x-n.py
UTF-8
1,311
3.546875
4
[]
no_license
# # @lc app=leetcode.cn id=50 lang=python3 # # [50] Pow(x, n) # # https://leetcode-cn.com/problems/powx-n/description/ # # algorithms # Medium (36.29%) # Likes: 466 # Dislikes: 0 # Total Accepted: 116.2K # Total Submissions: 319.9K # Testcase Example: '2.00000\n10' # # 实现 pow(x, n) ,即计算 x 的 n 次幂函数。 # # 示例 1: # # 输入: 2.00000, 10 # 输出: 1024.00000 # # # 示例 2: # # 输入: 2.10000, 3 # 输出: 9.26100 # # # 示例 3: # # 输入: 2.00000, -2 # 输出: 0.25000 # 解释: 2^-2 = 1/2^2 = 1/4 = 0.25 # # 说明: # # # -100.0 < x < 100.0 # n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。 # # # # @lc code=start class Solution: def myPow(self, x: float, n: int) -> float: # 1、dumb, recursion depth exceeded in comparison # if n == 0: # return 1 # if x == 0: # return 0 # if n > 0: # return x * self.myPow(x, n - 1) # else: # return 1/(x * self.myPow(x, -n - 1)) # 2.快速幂(exponentiation by squaring) def helper(n): if n == 0: return 1 m = helper(n // 2) return m * m if not n % 2 else m * m * x return helper(n) if n >= 0 else 1/helper(-n) # @lc code=end
true
c03cfa1fdc134be5dcc832e78b8d8a011712b754
Python
hhy5277/LeetCode-9
/008_字符串转换整数/Solution.py
UTF-8
964
3.078125
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/24 20:54 # @Author : zenRRan # @Version : python3.7 # @File : Solution.py # @Software: PyCharm class Solution: def myAtoi(self, str: str) -> int: s = str.strip() syb = 1 ptr = 0 res = 0 if len(s) == 0: return 0 if s[0] == '-': syb = -1 s = s[1:] elif s[0] == '+': s = s[1:] if len(s) == 0: return 0 while s[ptr].isnumeric(): res = res * 10 + int(s[ptr]) ptr += 1 if ptr >= len(s): break res = res * syb if res > 2147483647: res = 2147483647 elif res < -2147483648: res = -2147483648 return res data = ['--2', '0-1', '42', ' -42', '4193 with words', 'words and 987', '-91283472332'] for elem in data: print(Solution().myAtoi(str=elem))
true
39c24221bdc9cce4195fbf6782e4265f5d038b98
Python
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_8/33.py
UTF-8
1,916
3.046875
3
[]
no_license
#!/usr/bin/env python #-*- encoding: utf-8 -*- # # FILE.py # DESC # # Copyright (c) 2008 Pierre "delroth" Bourdon <root@delroth.is-a-geek.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import math def primes(a, b): for n in xrange(a, b + 1): ok = True for d in xrange(2, int(math.sqrt(n)) + 1): if n % d == 0: ok = False break if ok: yield n def primedivisors(m, n): for p in primes(m, n): if n % p == 0: yield p def nsets(a, b, p): sets = [set(primedivisors(p, n)) for n in xrange(a, b + 1)] newsets = [] while True: for s in sets: found = None for i,n in enumerate(newsets): for e in s: if e in n: found = n break if not found: continue else: newsets[i] = newsets[i].union(s) break if not found: newsets.append(s) if sets == newsets: return len(sets) else: sets, newsets = newsets, [] return len(newsets) for n in xrange(int(raw_input())): a, b, p = [int(e) for e in raw_input().split()] print 'Case #%d: %d' % (n + 1, nsets(a, b, p))
true
0a03ea23892dca6618f540e1b8d5eb58a8c37bb5
Python
joysjohney/Luminar_Python
/PythonPrograms/collections/dictionary/emp.py
UTF-8
427
3.03125
3
[]
no_license
employee={ "eid":1002, "ename":"person", "desig":"tester", "salary":15000 } #print employee name print(employee["ename"]) #check for company is there print("company" in employee) #add new record comapany name Luminar employee["cname"]="Luminar" #update employee salary = current salary + 5000 employee["salary"]+=5000 #print all key:value pairs for key in employee: print(key,":",employee[key])
true
8e25c1b7887435715c2fd9633442400fc77b78f7
Python
JamesWo/Algorithms
/topcoder/division2-2/PiecewiseLinearFunctionDiv2.l2.SRM586.py
UTF-8
3,265
3.8125
4
[]
no_license
""" # [PiecewiseLinearFunctionDiv2](http://community.topcoder.com/tc?module=ProblemDetail&rd=15698&pm=12698) *Single Round Match 586 Round 1 - Division II, Level Two* ## Statement F is a function that is defined on all real numbers from the closed interval [1,N]. You are given a int[] *Y* with N elements. For each i (1 <= i <= N) we have F(i) = *Y*[i-1]. Additionally, you know that F is piecewise linear: for each i, on the interval [i,i+1] F is a linear function. The function F is uniquely determined by this information. For example, if F(4)=1 and F(5)=6 then we must have F(4.7)=4.5. As another example, this is the plot of the function F for *Y* = {1, 4, -1, 2}. ![image](images/2zecd35.png) You are also given a int[] *query*. For each i, compute the number of solutions to the equation F(x) = *query*[i]. Note that sometimes this number of solutions can be infinite. Return a int[] of the same length as *query*. For each i, element i of the return value should be -1 if the equation F(x) = *query*[i] has an infinite number of solutions. Otherwise, element i of the return value should be the actual number of solutions this equation has. ## Definitions - *Class*: `PiecewiseLinearFunctionDiv2` - *Method*: `countSolutions` - *Parameters*: `int[], int[]` - *Returns*: `int[]` - *Method signature*: `int[] countSolutions(int[] Y, int[] query)` ## Constraints - *Y* will contain between 2 and 50 elements, inclusive. - Each element of *Y* will be between -1,000,000,000 and 1,000,000,000, inclusive. - *query* will contain between 1 and 50 elements, inclusive. - Each element of *query* will be between -1,000,000,000 and 1,000,000,000, inclusive. ## Examples ### Example 1 #### Input <c>[1, 4, -1, 2],<br />[-2, -1, 0, 1]</c> #### Output <c>[0, 1, 2, 3 ]</c> #### Reason This is the example from the problem statement. The detailed information about the queries is: There is no such x that F(x) = -2 is satisfied. F(x) = -1 is only true for x = 3. F(x) = 0 has two roots: 2.8 and 10/3. F(x) = 1 has three roots: 1, 2.6 and 11/3. ### Example 2 #### Input <c>[0, 0],<br />[-1, 0, 1]</c> #### Output <c>[0, -1, 0 ]</c> #### Reason This function's plot is a horizontal segment between points (1, 0) and (2, 0). F(x) = 0 is satisfied for any x between 1 and 2 and thus the number of solutions is infinite. For any other value on the right-hand side, it has no solutions. ### Example 3 #### Input <c>[2, 4, 8, 0, 3, -6, 10],<br />[0, 1, 2, 3, 4, 0, 65536]</c> #### Output <c>[3, 4, 5, 4, 3, 3, 0 ]</c> ### Example 4 #### Input <c>[-178080289, -771314989, -237251715, -949949900, -437883156, -835236871, -316363230, -929746634, -671700962],<br />[-673197622, -437883156, -251072978, 221380900, -771314989, -949949900, -910604034, -671700962, -929746634, -316363230]</c> #### Output <c>[8, 6, 3, 0, 7, 1, 4, 8, 3, 4 ]</c> """ def solve( Y, i ): count = 0 for j in range( len(Y)-1 ): if Y[j] == i == Y[j+1]: return -1 if (Y[j] <= i <= Y[j+1]) or (Y[j] >= i >= Y[j+1]): count += 1 for elem in Y[1:-1]: if elem == i: count -= 1 return count def countSolutions(Y, query): result = [] for i in query: s = solve( Y, i ) result.append( s ) return result
true
3d54e2f77a0ff57a7ddd5661a50ddcef81b0b357
Python
AAO2014/promprog15_1
/lesson4/classwork_3.py
UTF-8
2,320
3.46875
3
[]
no_license
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function # для совместимости с python 2.x.x # Дата некоторого дня определяется тремя натуральными числами y (год), m (месяц) и d (день). # По заданным d, m и y определите дату предыдщуего дня. # # Заданный год может быть високосным. Год считается високосным, если его номер кратен 4, # однако из кратных 100 високосными являются лишь кратные 400, # например 1700, 1800 и 1900 — невисокосные года, 2000 — високосный. from classwork_2 import is_leap_year # lenOfMonths -> months_lengths months_lengths = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] class NonValidDataExeption(Exception): pass def yesterday(year, month, day): try: if not ((0 <= int(year) <= 9999) and (0 < int(month) < 13) and (0 < int(day) < 32)): print("Data isn't correct") # мы договорились что пишем на 3м пайтоне => print() # здесь по логике тоже надо скидывать NonValidDataExeption return None except: raise NonValidDataExeption("Data isn't integer number") # здесь по логике тоже надо скидывать NonValidDataExeption return None if day > months_lengths[month - 1]: # в сообщении Exception нужно максимально детализировать ошибку # - что было передано, какие значения допустимы # NonValidDataExeption("Month {} isn't correct! Valid values is {}-{}".format(...)) raise NonValidDataExeption("Month isn't correct") if is_leap_year(year): months_lengths[1] = 29 else: months_lengths[1] = 28 if (month == 1) and (day == 1): y = year - 1 m = 12 d = 31 else: y = year if day == 1: m = month - 1 d = months_lengths[m - 1] else: m = month d = day - 1 return y, m, d
true
25d3e6a41dd86a216cf489e141c89b6d86b6a65d
Python
qmnguyenw/python_py4e
/geeksforgeeks/python/basic/18_9.py
UTF-8
2,872
4.28125
4
[]
no_license
Binary Search (bisect) in Python Binary Search is a technique used to search element in a sorted list. In this article, we will looking at library functions to do Binary Search. **Finding first occurrence of an element.** > bisect.bisect_left(a, x, lo=0, hi=len(a)) : Returns leftmost insertion point > of x in a sorted list. Last two parameters are optional, they are used to > search in sublist. __ __ __ __ __ __ __ # Python code to demonstrate working # of binary search in library from bisect import bisect_left def BinarySearch(a, x): i = bisect_left(a, x) if i != len(a) and a[i] == x: return i else: return -1 a = [1, 2, 4, 4, 8] x = int(4) res = BinarySearch(a, x) if res == -1: print(x, "is absent") else: print("First occurrence of", x, "is present at", res) --- __ __ **Output:** First occurrence of 4 is present at 2 **Finding greatest value smaller than x.** __ __ __ __ __ __ __ # Python code to demonstrate working # of binary search in library from bisect import bisect_left def BinarySearch(a, x): i = bisect_left(a, x) if i: return (i-1) else: return -1 # Driver code a = [1, 2, 4, 4, 8] x = int(7) res = BinarySearch(a, x) if res == -1: print("No value smaller than ", x) else: print("Largest value smaller than ", x, " is at index ", res) --- __ __ **Output:** Largest value smaller than 7 is at index 3 **Finding rightmost occurrence** > bisect.bisect_right(a, x, lo=0, hi=len(a)) Returns rightmost insertion point > of x in a sorted list a. Last two parameters are optional, they are used to > search in sublist. __ __ __ __ __ __ __ # Python code to demonstrate working # of binary search in library from bisect import bisect_right def BinarySearch(a, x): i = bisect_right(a, x) if i != len(a)+1 and a[i-1] == x: return (i-1) else: return -1 a = [1, 2, 4, 4] x = int(4) res = BinarySearch(a, x) if res == -1: print(x, "is absent") else: print("Last occurrence of", x, "is present at", res) --- __ __ **Output:** Last occurrence of 4 is present at 3 Please refer Binary Search for writing your own Binary Search code. **Reference :** https://docs.python.org/3/library/bisect.html Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
true
cab4316f300282c8c115f9361023210158c7ff9a
Python
thekrisharmon/Open-Street-Map-SQL-Project
/countyAudit.py
UTF-8
1,549
3.15625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Apr 23 12:09:05 2018 My goal for this python file is to size up the counties listed in my data sample. I'm curious how many counties are covered and if any data clean-up is needed at this point. I utilized my code from the StreetNameAudit.py file and modified it to look for the county information. @author: kharmon """ import xml.etree.cElementTree as ET from collections import defaultdict import re osmFile = open("kcsample.osm", "r") # changed the 'S' to a 'D' to pull in the entire string from the tiger:county attribute county_type_re = re.compile(r'\D+\.?$', re.IGNORECASE) countyTypes = defaultdict(int) def auditCountyType(countyTypes, countyName): counties = county_type_re.search(countyName) if counties: countyType = counties.group() countyTypes[countyType] += 1 def printSortedDict(d): keys = d.keys() keys = sorted(keys, key=lambda s: s.lower()) for k in keys: v = d[k] print "%s: %d" % (k, v) #Looking for tags that have the attribute of 'tiger:county' so I can see the counties listed in my data sample def is_county_name(element): return (element.tag == "tag") and (element.attrib['k'] == "tiger:county") #changed the focus to county instead of street name def audit(): for row, element in ET.iterparse(osmFile): if is_county_name(element): auditCountyType(countyTypes, element.attrib['v']) printSortedDict(countyTypes) if __name__ == '__main__': audit()
true
40b00cba2d98af6009812c653eff3abad8fb682e
Python
srirambandi/AI_TAK
/AI_TAK.py
UTF-8
22,694
3.328125
3
[ "MIT" ]
permissive
# * AI TAK Bot # * Sri Ram Bandi (srirambandi.654@gmail.com) import sys import pdb import time import random from copy import deepcopy from collections import deque from math import exp class Game: class Player: def __init__(self, flats, capstones): self.flats = flats self.capstones = capstones def __init__(self, n): self.n = n self.total_squares = n * n self.board = [ [] for i in xrange(self.total_squares) ] self.turn = 0 if n == 5: self.max_flats = 21 self.max_capstones = 1 elif n == 6: self.max_flats = 30 self.max_capstones = 1 elif n == 7: self.max_flats = 40 self.max_capstones = 1 self.max_movable = n self.max_down = 1 self.max_up = n self.max_left = 'a' self.max_right = chr(ord('a') + n - 1) self.moves = 0 self.players = [] self.players.append(Game.Player(self.max_flats, self.max_capstones)) self.players.append(Game.Player(self.max_flats, self.max_capstones)) self.all_squares = [ self.square_to_string(i) for i in xrange(self.total_squares) ] def square_to_num(self, square_string): """ Return -1 if square_string is invalid """ if len(square_string) != 2: return -1 if not square_string[0].isalpha() or not square_string[0].islower() or not square_string[1].isdigit(): return -1 row = ord(square_string[0]) - 96 col = int(square_string[1]) if row < 1 or row > self.n or col < 1 or col > self.n: return -1 return self.n * (col - 1) + (row - 1) def square_to_string(self, square): """Convert square number to string """ if square < 0 or square >= self.total_squares: return '' row = square % self.n col = square / self.n return chr(row + 97) + str(col + 1) def unexecute_move(self, move_string): """Unexecute placement move """ if self.moves == 1 or self.moves == 0: current_piece = 1 - self.turn else: current_piece = self.turn square = self.square_to_num(move_string[1:]) self.board[square].pop() if move_string[0] == 'C': self.players[current_piece].capstones += 1 else: self.players[current_piece].flats += 1 def execute_move(self, move_string): """Execute move """ if self.turn == 0: self.moves += 1 if self.moves != 1: current_piece = self.turn else: current_piece = 1 - self.turn if move_string[0].isalpha(): square = self.square_to_num(move_string[1:]) if move_string[0] == 'F' or move_string[0] == 'S': self.board[square].append((current_piece, move_string[0])) self.players[current_piece].flats -= 1 elif move_string[0] == 'C': self.board[square].append((current_piece, move_string[0])) self.players[current_piece].capstones -= 1 elif move_string[0].isdigit(): count = int(move_string[0]) square = self.square_to_num(move_string[1:3]) direction = move_string[3] if direction == '+': change = self.n elif direction == '-': change = -self.n elif direction == '>': change = 1 elif direction == '<': change = -1 prev_square = square for i in xrange(4, len(move_string)): next_count = int(move_string[i]) next_square = prev_square + change if len(self.board[next_square]) > 0 and self.board[next_square][-1][1] == 'S': self.board[next_square][-1] = (self.board[next_square][-1][0], 'F') if next_count - count == 0: self.board[next_square] += self.board[square][-count:] else: self.board[next_square] += self.board[square][-count:-count + next_count] prev_square = next_square count -= next_count count = int(move_string[0]) self.board[square] = self.board[square][:-count] self.turn = 1 - self.turn def partition(self, n): """Generates all permutations of all partitions of n """ part_list = [] part_list.append([n]) for x in xrange(1, n): for y in self.partition(n - x): part_list.append([x] + y) return part_list def check_valid(self, square, direction, partition): """For given movement (partition), check if stack on square can be moved in direction. Assumes active player is topmost color """ if direction == '+': change = self.n elif direction == '-': change = -self.n elif direction == '>': change = 1 elif direction == '<': change = -1 for i in xrange(len(partition)): next_square = square + change * (i + 1) if len(self.board[next_square]) > 0 and self.board[next_square][-1][1] == 'C': return False if len(self.board[next_square]) > 0 and self.board[next_square][-1][1] == 'S' and i != len(partition) - 1: return False if i == len(partition) - 1 and len(self.board[next_square]) > 0 and self.board[next_square][-1][1] == 'S' and partition[i] > 1: return False if i == len(partition) - 1 and len(self.board[next_square]) > 0 and self.board[next_square][-1][1] == 'S' and self.board[square][-1][1] != 'C': return False return True def generate_stack_moves(self, square): """Generate stack moves from square Assumes active player is topmost color """ all_moves = [] r = square % self.n c = square / self.n size = len(self.board[square]) dirs = ['+', '-', '<', '>'] up = self.n - 1 - c down = c right = self.n - 1 - r left = r rem_squares = [up, down, left, right] for num in xrange(min(size, self.n)): part_list = self.partition(num + 1) for di in range(4): part_dir = [ part for part in part_list if len(part) <= rem_squares[di] ] for part in part_dir: if self.check_valid(square, dirs[di], part): part_string = ''.join([ str(i) for i in part ]) all_moves.append(str(sum(part)) + self.all_squares[square] + dirs[di] + part_string) return all_moves def generate_all_moves(self, player): """Generate all possible moves for player Returns a list of move strings """ all_moves = [] for i in xrange(len(self.board)): if len(self.board[i]) == 0: if self.players[player].flats > 0: all_moves.append('F' + self.all_squares[i]) if self.moves != player and self.players[player].flats > 0: all_moves.append('S' + self.all_squares[i]) if self.moves != player and self.players[player].capstones > 0: all_moves.append('C' + self.all_squares[i]) for i in xrange(len(self.board)): if len(self.board[i]) > 0 and self.board[i][-1][0] == player and self.moves != player: all_moves += self.generate_stack_moves(i) return all_moves class Agent: def __init__(self): data = sys.stdin.readline().strip().split() self.player = int(data[0]) - 1 self.n = int(data[1]) self.time_left = int(data[2]) self.game = Game(self.n) self.max_depth = self.n self.play() def getNeighbors(self, square,length=1): total_squares = self.n * self.n if square < 0 or square >= total_squares: return [] elif square == 0: arr = [] for i in xrange(length): arr.append(square + 1+i) arr.append(square + (1+i)*self.n) return arr elif square == self.n - 1: arr = [] for i in xrange(length): arr.append(square - 1-i) arr.append(square + (1+i)*self.n) return arr elif square == total_squares - self.n: arr = [] for i in xrange(length): arr.append(square + 1+i) arr.append(square - (1+i)*self.n) return arr elif square == total_squares - 1: arr = [] for i in xrange(length): arr.append(square - 1-i) arr.append(square - (1+i)*self.n) return arr elif square < self.n: arr = [] for i in xrange(length): if square - 1-i >= 0: arr.append(square - 1-i) if square + 1+i < self.n: arr.append(square + 1+i) arr.append(square + (1+i)*self.n) return arr elif square % self.n == 0: arr = [] for i in xrange(length): arr.append(square + 1+i) if square + (1+i)*self.n < total_squares: arr.append(square + (1+i)*self.n) if square - (1+i)*self.n >=0 : arr.append(square - (1+i)*self.n) return arr elif (square + 1) % self.n == 0: arr = [] for i in xrange(length): arr.append(square - 1-i) if square + (1+i)*self.n < total_squares: arr.append(square + (1+i)*self.n) if square - (1+i)*self.n >= self.n-1 : arr.append(square - (1+i)*self.n) # arr = [elm if 0<= elm <self.n for elm in arr] return arr elif square >= total_squares - self.n: arr = [] for i in xrange(length): if square - 1-i >= total_squares-self.n: arr.append(square - 1-i) if square + 1+i < total_squares: arr.append(square + 1+i) arr.append(square - (1+i)*self.n) # arr = [elm if 0<= elm <self.n for elm in arr] return arr else: arr = [] for i in xrange(length): if square + 1+i < ((square/self.n)+1)*self.n: arr.append(square + 1+i) if square - 1-i >= ((square/self.n))*self.n: arr.append(square - 1-i) if square + (1+i)*self.n <= total_squares-self.n +(square%self.n): arr.append(square + (1+i)*self.n) if square - (1+i)*self.n >= (square%self.n): arr.append(square - (1+i)*self.n) return arr def bfs(self, source, direction, player): if direction == '<' and source % self.n == 0 or direction == '-' and source // self.n == 0 or direction == '>' and (source + 1) % self.n == 0 or direction == '+' and source // self.n == self.n - 1: return 0 fringe = deque() fringe.append((source, 0)) value = 0 reached_end = False while not len(fringe) == 0 and value < self.n + 1: node, val = fringe.popleft() value = val if direction == '<' and node % self.n == 0 or direction == '-' and node // self.n == 0 or direction == '>' and (node + 1) % self.n == 0 or direction == '+' and node // self.n == self.n - 1: reached_end = True break nbrs = self.getNeighbors(node) for nbr in nbrs: if len(self.game.board[nbr]) == 0 or self.game.board[nbr][-1][0] == player and self.game.board[nbr][-1][1] != 'S': if direction == '<': if nbr % self.n <= node % self.n: fringe.append((nbr, value + 1)) elif direction == '-': if nbr // self.n <= node // self.n: fringe.append((nbr, value + 1)) elif direction == '>': if nbr % self.n >= node % self.n: fringe.append((nbr, value + 1)) elif direction == '+': if nbr // self.n >= node // self.n: fringe.append((nbr, value + 1)) if reached_end: return value else: return self.n * self.n def dfs(self, source, direction, player, visited): fringe = [] fringe.append(source) dfs_val = self.n * self.n while not len(fringe) == 0: node = fringe.pop() visited.add(node) nbrs = self.getNeighbors(node) has_children = False for nbr in nbrs: if len(self.game.board[nbr]) > 0 and nbr not in visited and self.game.board[nbr][-1][0] == player and self.game.board[nbr][-1][1] != 'S': fringe.append(nbr) has_children = True if not has_children: if direction == '>': dfs_val = min(self.bfs(node, '>', player), dfs_val) elif direction == '+': dfs_val = min(self.bfs(node, '+', player), dfs_val) if dfs_val == self.n * self.n: return -1 else: if dfs_val != 0: pass return dfs_val def score_combination(self, bfs, dfs): if dfs == -1: return 0 else: return self.n * self.n * exp(-0.5 * (bfs + dfs)) def road_score(self, player): value = 0 visited = [set(), set()] for r in xrange(0, self.n / 2): for c in xrange(0, self.n): idx = r * self.n + c if len(self.game.board[idx]) > 0 and self.game.board[idx][-1][0] == player and self.game.board[idx][-1][1] != 'S' and idx not in visited[1]: value = max(value, self.score_combination(self.bfs(idx, '-', player), self.dfs(idx, '+', player, visited[1]))) idx = c * self.n + r if len(self.game.board[idx]) > 0 and self.game.board[idx][-1][0] == player and self.game.board[idx][-1][1] != 'S' and idx not in visited[0]: value = max(value, self.score_combination(self.bfs(idx, '<', player), self.dfs(idx, '>', player, visited[0]))) return value def evaluation_function(self): if self.n == 5: bonus = 1000; cutoff_bonus = 20000; fc = 100; cs = 85; w = 30; c = 15; ccap = 15; s = 18; inf = 10; rd = 10; wallpenalty = 10; attack = 1; fw = 15.5; ccw = 6.0; sw = 3.0; iw = 6.0; rw = 4.0; cw = 4.0; ww = 1.0; cow = 1.3; else: bonus = 2500; cutoff_bonus = 45000; fc = 100; cs = 85; w = 40; c = 15; ccap = 20; s = 18; rd = 1; inf = 10; wallpenalty = 10; attack = 2; fw = 15.5; ccw = 6.0; sw = 3.0; iw = 6.0; rw = 4.0; cw = 4.0; ww = 1; cow = 1.3; infl = [[0,0,0,0,0,0,0], [0,1,0,1,1,0,0], [0,0,0,0,1,0,0], [0,1,1,1,1,1,0], [0,-1,0,0,0,0,-1], [0,-1,0,0,-1,0,0], [0,-1,-1,-1,-1,-1,0]] flats_owned = [0, 0] color = [0,0] stack_score = 0; wall_dis = 0; total_influence =0; composition = 0; total_squares = len(self.game.board) influence_table = [0 for i in xrange(total_squares)] for idx in xrange(len(self.game.board)): ################# Feature 1 ################# if len(self.game.board[idx]) > 0: if self.game.board[idx][-1][1] == 'F': flats_owned[self.game.board[idx][-1][0]] += fc if self.game.board[idx][-1][1] == 'C': flats_owned[self.game.board[idx][-1][0]] += cs if self.game.board[idx][-1][1] == 'S': flats_owned[self.game.board[idx][-1][0]] += w ############################################## ################# Feature 2 ################# if len(self.game.board[idx]) > 1: #if it is stack for h in xrange(len(self.game.board[idx])-1): color[self.game.board[idx][h][0]] += s stack_score = color[self.player] - color[1 - self.player] piece = self.game.board[idx][-1][1]; owner = self.game.board[idx][-1][0]; if owner == self.player and stack_score >0: if piece == 'F': stack_score += 4*s; if piece == 'C': stack_score += 7*s; else: stack_score += 5*s; elif owner == self.player and stack_score <=0: if piece == 'F': stack_score += -2*s; if piece == 'C': stack_score += -5*s; else: stack_score += -3*s; elif owner != self.player and stack_score >0: if piece == 'F': stack_score += 2*s; if piece == 'C': stack_score += 5*s; else: stack_score += 3*s; else: if piece == 'F': stack_score += -4*s; if piece == 'C': stack_score += -7*s; else: stack_score += -5*s; if owner == self.player and color[self.player]>0: ttt = min(self.n-1,color[self.player]+1) nbrs = nbrs = self.getNeighbors(idx,ttt) for nbr in nbrs: if len(self.game.board[nbr]) == 0 : influence_table[nbr] += 1; elif self.game.board[nbr][-1] == [1-self.player,'F']: influence_table[nbr] += 1; elif self.game.board[nbr][-1][1] != 'F': influence_table[nbr] -= 1; elif piece == 'C' and self.game.board[idx][-2][0] == self.player and self.game.board[nbr][-1] == [1-self.player,'S']: influence_table[nbr] += 1; if abs(idx-nbr)==1 : if len(self.game.board[nbr]) > 0 : if self.game.board[nbr][-1][0] == self.player and self.game.board[nbr][-1][1] != 'F': wall_dis -= color[self.player]*wallpenalty; if self.game.board[nbr][-1][0] == 1-self.player and self.game.board[nbr][-1][1] != 'F': wall_dis -= color[1-self.player]*wallpenalty ############################################## ##################Feature 3 ################## if len(self.game.board[idx]) == 1: nbrs = nbrs = self.getNeighbors(idx) mapping = {'F':1,'S':2,'C':3} piece = self.game.board[idx][-1][1]; owner = self.game.board[idx][-1][0]; for nbr in nbrs: if len(self.game.board[nbr]) > 0: nbr_piece = self.game.board[nbr][-1][1] nbr_owner = self.game.board[nbr][-1][0] xx = mapping[piece] if owner==self.player else 3+mapping[piece] yy = mapping[nbr_piece] if nbr_owner==self.player else 3+mapping[nbr_piece] influence_table[nbr] += infl[xx][yy] row = 0; for i in range(0,total_squares,self.n): row_num = 0; for j in range(i,i+self.n): if len(self.game.board[j]) > 0: if self.game.board[j][-1][0]== self.player and self.game.board[j][-1][1] != 'S': row_num +=1; elif self.game.board[j][-1][0]== 1-self.player and self.game.board[j][-1][1] != 'S': row_num -= attack; composition += row_num**3; total_influence += influence_table[j]*10; row += influence_table[j]*10 col = 0; for i in range(self.n): col_num = 0; for _j in range(self.n): j = i+ (_j*self.n); if len(self.game.board[j]) > 0: if self.game.board[j][-1][0]== self.player and self.game.board[j][-1][1] != 'S': col_num +=1; elif self.game.board[j][-1][0]== 1-self.player and self.game.board[j][-1][1] != 'S': col_num -= attack; composition += col_num**3; # total_influence += influence_table[j]*10; col += influence_table[j]*10 flat_comp = flats_owned[self.player] - flats_owned[1 - self.player] road_comp = self.road_score(1 - self.player) + self.road_score(self.player) return rd*road_comp + fw*flat_comp + sw*stack_score + iw*total_influence + rw* row + cw*col + ww*wall_dis + cow*composition; def play(self): a = random.randint(0,self.n-1) b = random.randint(1,self.n) if self.player == 0: move = 'F' + chr(97+a)+str(b) self.game.execute_move(move) sys.stdout.write(move + '\n'); sys.stdout.flush() opponent_move = sys.stdin.readline().strip() move = self.min_max(opponent_move) sys.stdout.write(move + '\n'); sys.stdout.flush() else: opponent_move = sys.stdin.readline().strip() self.game.execute_move(opponent_move) move = 'F' + chr(97+a)+str(b) while(move == opponent_move): a = random.randint(0,self.n-1) b = random.randint(1,self.n) move = 'F' + chr(97+a)+str(b) self.game.execute_move(move) sys.stdout.write(move + '\n'); sys.stdout.flush() while True: opponent_move = sys.stdin.readline().strip() move = self.min_max(opponent_move) sys.stdout.write(move + '\n') sys.stdout.flush() def min_max(self,move): if move != '': self.game.execute_move(move) (my_move,val) = self.max_node(float('-inf'), float('inf'), 2,move) self.game.execute_move(my_move) return my_move def unexecute_move(self, board, players, moves, turn): self.game.board = board self.game.players = players self.game.moves = moves self.game.turn = turn def max_node(self, alpha, beta, depth,opponent_move): if depth == 0: return (opponent_move,self.evaluation_function()) val = float('-inf') # store_val = False # if depth == 0: # store_val = True action = opponent_move; for move in self.game.generate_all_moves(self.player): old_game = deepcopy(self.game) self.game.execute_move(move) node_val = self.min_node(alpha, beta, depth - 1) self.game = old_game val = max(node_val, val) if val == node_val: action = move alpha = max(alpha, val) if beta <= alpha: break # if store_val: # sys.stderr.write('Value: ' + str(val) + '\n') # return (action,val) # else: # return (action,val) return (action,val) def min_node(self, alpha, beta, depth): if depth == 0: return self.evaluation_function() val = float('inf') # store_val = False # if depth == 0: # store_val = True action = '' for move in self.game.generate_all_moves(1 - self.player): old_game = deepcopy(self.game) self.game.execute_move(move) (some_move,node_val) = self.max_node(alpha, beta, depth - 1,move) self.game = old_game val = min(node_val, val) if val == node_val: action = move beta = min(beta, val) if beta <= alpha: break # if store_val: # sys.stderr.write('Value: ' + str(val) + '\n') # return action # else: # return val return val random_player = Agent() # +++ okay decompyling AgentBFS.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.10.20 22:47:40 IST
true
aec8b0e5b7a9dceaead55424e965d40c2cd6d426
Python
hoatd/Ds-Algos-
/GeeksforGeeks/Random-problems/all_character.py
UTF-8
907
3.390625
3
[]
no_license
from collections import defaultdict def solve(s, lst): cnt1 = defaultdict() for i in s: p = ord(i) if i.islower(): p -= 97 else: p -= 65 if p in cnt1: cnt1[p] += 1 else: cnt1[p] = 1 ans = [] for l in lst: k = l cnt2 = defaultdict() for c in k: p = ord(c) if c.islower(): p -= 97 else: p -= 65 if p in cnt2: cnt2[p] += 1 else: cnt2[p] = 1 flag = True for key in cnt1.keys(): if key not in cnt2.keys(): flag = False break if flag == True: ans.append(k) return ans s = "sun" lst = ["geeksforgeeks","unsorted","sunday","just","sss"] ans = solve(s, lst) print(ans)
true
402ca0908c4a1dfcb56bfc482621957778e92051
Python
lurak/Coursework
/SimpleSite/map_cities.py
UTF-8
315
2.59375
3
[]
no_license
import folium def get_map(place, path): m = folium.Map( location=(place.latitude, place.longitude), zoom_start=12, ) folium.Marker( location=(place.latitude, place.longitude), popup=place.name, icon=folium.Icon(icon='cloud') ).add_to(m) m.save(path)
true
33db14f4d5a9a39301ea0d465a51fc1d13fc6ad4
Python
Rajeshdraksharapu/Leetcode-Prblems
/BackTrackingProblems/islandBackTracking.py
UTF-8
1,208
3.328125
3
[]
no_license
island = [ [0, 1, 0, 0, 0], [0, 1, 0, 1, 1], [1, 1, 1, 0, 1], [0, 1, 0, 0, 0] ] grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] count=0 def findingIsland(row,column,island,visited): if row<0 or column<0 or row>len(island)-1 or column>len(island[0])-1: return elif island[row][column]=="1" and visited[row][column]!=True: visited[row][column]=True findingIsland(row-1,column,island,visited) findingIsland(row+1,column,island,visited) findingIsland(row,column+1,island,visited) findingIsland(row,column-1,island,visited) return 1 def islandToFind(row,column,island): visited = [[False for i in range(len(grid[0]))] for j in range(len(island))] count=0 for i in range(len(island)): for j in range(len(island[0])): if grid[i][j]=="1" and visited[i][j]!=True: row=i column=j count+=(findingIsland(row,column,grid,visited)) return count row=0 column=0 print(islandToFind(row,column,grid)) #print(findingIsland(row,column))
true
1a85de4bc3847c1550870232e52fcf6b95c79570
Python
SanchRepo/Intro-Python
/Ece 203/BugClass.py
UTF-8
913
4.1875
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Aug 25 13:51:09 2017 @author: szh24 """ class Bug: def __init__(self,initialPosition): self.initialPosition = float(initialPosition) self.pot=1 def move(self): self.initialPosition+=self.pot def turn(self): self.pot=self.pot*-1 def position(self): return self.initialPosition def direction(self): if self.pot==1: print("Bug is facing right") elif self.pot==-1: print("Bug is facing left") ant = Bug(10) # starts at position 10 facing right ant.move() # Position is 11 ant.turn() # now facing left ant.move() # Position is 10 ant.move() # Position is 9 print ant.position() # prints ‘9’ to the screen print ant.direction() # prints ‘left’ to the screen
true
0e6cc6d63ea07d43ec77db58b9006332a64ec0ed
Python
brenolemes/exercicios-python
/exercicios/CursoemVídeo/ex085.py
UTF-8
662
4.625
5
[ "MIT" ]
permissive
''' Crie um programa onde o usuário possa digitar sete valores numéricos e cadastre-os em uma lista única que mantenha separados os valores pares e ímpares. No final, mostre os valores pares e ímpares em ordem crescente. ''' num = [[], []] for c in range(1, 8): valor = int(input(f'Digite o {c}º valor: ')) if valor % 2 == 0: num[0].insert(0, valor) # Poderia dar um append elif valor % 2 != 0: num[1].insert(0, valor) # Poderia dar um append num[0].sort() # Ordem crescente num[1].sort() # Ordem crescente print(f'Os valores pares digitados foram: {num[0]}') print(f'Os valores ímpares digitados foram: {num[1]}')
true
e9e9293fd5506eb789a82f6a6d6dd8c5457ac743
Python
aishwarya202005/Decision-Tree-Classifier
/q-1-2.py
UTF-8
7,704
2.953125
3
[]
no_license
#!/usr/bin/env python # coding: utf-8 # In[70]: import pprint import sys import numpy as np import pandas as pd eps = np.finfo(float).eps from numpy import log2 as log # In[71]: a=pd.read_csv('train_data.csv') a.describe() df = pd.DataFrame(a)#,columns=['Work_accident','promotion_last_5years','sales','salary','left']) # In[72]: # train, validate = np.split(df, [int(.8*len(df))]) #for sequential data train, validate = np.split(df.sample(frac=1), [int(.8*len(df))]) # for random # df= train # In[73]: def find_entropy(df): Class = 'left' #To make the code generic, changing target variable class name entropy = 0 values = df['left'].unique() for value in values: fraction = df['left'].value_counts()[value]/float(len(df[Class])) entropy += -fraction*np.log2(fraction+eps) return entropy def find_entropy_attribute(df,attribute): Class = 'left' #To make the code generic, changing target variable class name target_variables = df[Class].unique() #This gives all 'Yes' and 'No' variables = df[attribute].unique() #This gives different features in that attribute (like 'Hot','Cold' in Temperature) if len(target_variables) == 1 or len(variables) == 1: return 0; entropy2 = 0 for variable in variables: entropy = 0 for target_variable in target_variables: num = len(df[attribute][df[attribute]==variable][df[Class] ==target_variable]) den = len(df[attribute][df[attribute]==variable]) fraction = num/(den+eps) entropy += -fraction*np.log2(fraction+eps) fraction2 = den/float(len(df)) entropy2 += fraction2*entropy return entropy2 def min_num_entropy(df,attribute): # temp_d=df # x=temp_d.sort_values(by=attribute) # print "min_continuous entropy" # variables = x[attribute].unique() variables = df[attribute].unique() #This gives different features in that attribute (like 'Hot','Cold' in Temperature) entropy2 = 0 entropy1 = 0 min_entr=sys.maxint min_split=sys.maxint entropy_fin=0 for variable in variables: entropy = 0 df1 = df[df[attribute]<=variable] df2 = df[df[attribute]>variable] entropy1 = find_entropy(df1) entropy2 = find_entropy(df2) fraction2 = len(df2)/float(len(df)) fraction1 = len(df1)/float(len(df)) entropy_fin = fraction1*entropy1+ fraction2*entropy2 if min_entr>entropy_fin: min_entr=entropy_fin min_split=variable return min_entr,min_split # print min_num_entropy(df,'satisfaction_level') # In[74]: numerical_attributes=[] for i in df.keys()[0:5]: numerical_attributes.append(i) # print(i) # print numerical_attributes # In[75]: def max_IG(dataf): IG = [] i=0 split=-1 max_=0 max_in=None #categ for key in dataf.keys()[5:-1]: if key!= 'left': temp_en = find_entropy_attribute(dataf,key) # print temp_en ig1= find_entropy(dataf)-temp_en # print("IG 1: ",ig1,key) if ig1>max_: max_=ig1 max_in=key IG.append(ig1) #continuous for key in dataf.keys()[0:5]: temp_en = min_num_entropy(dataf,key)[0] ig1=find_entropy(dataf)-temp_en # print("IG 2conti: ",ig1,key) if ig1>max_: max_=ig1 max_in=key split=min_num_entropy(dataf,key)[1] IG.append(ig1) # print 'ig=',IG return max_in,max_,split,IG # max_IG(df) # In[76]: class DTree: def __init__(self,pos=0,neg=0, child={},val = None,spl_pt=-1): self.val = val self.child = child self.pos=pos self.neg=neg self.spl_pt=spl_pt def buildTree(df1,label_node,tree=None): max_ig_node,gn,split,Info_gain_array = max_IG(df1) # print max_ig_node,gn,split # dd=find_entropy_attribute(df1,label_node) # print 'MAX IG= ',gn,'split=',split # pprint.pprint(max_ig_node) c_pos=0 c_len=0 if gn <= 0.000001 or len(df1.columns)==1: # print 'IG-array',Info_gain_array ########switched 0 and 1 c_pos=len(df1[df1[label_node]==1]) c_len=len(df1[df1[label_node]==0]) if c_pos>c_len: max_ig_node="YES" else: max_ig_node="NO" child={} # print "leaf nnode hai" leaf_n=DTree(c_pos,c_len,child,max_ig_node) return leaf_n print 'node is--- ',max_ig_node c_pos=len(df1[max_ig_node][df1[label_node]==1]) c_len=len(df1[max_ig_node][df1[label_node]==0]) child={} if split==-1: newnode=DTree(c_pos,c_len,child,max_ig_node,-1) attr = df1[max_ig_node].unique() for labels in attr: nd1=df1[df1[max_ig_node]==labels] nd1=nd1.drop(columns=[max_ig_node]) newnode.spl_pt=-1 newnode.child[labels] = buildTree(nd1,label_node) #Calling the function recursively else: newnode=DTree(c_pos,c_len,child,max_ig_node,split) label1="<="+str(split) label2=">"+str(split) # print "numericl ka bno" nd1=df1[df1[max_ig_node]<=split] nd2=df1[df1[max_ig_node]>split] # print len(nd1) # print len(nd2) if len(nd1)==0 or len(nd2)==0: c_pos=len(df1[df1[label_node]==1]) c_len=len(df1[df1[label_node]==0]) if c_pos>c_len: max_ig_node="YES" else: max_ig_node="NO" child={} # print "leaf nnode hai" leaf_n=DTree(c_pos,c_len,child,max_ig_node) return leaf_n newnode.child[label1] = buildTree(nd1,label_node) #Calling the function recursively newnode.child[label2] = buildTree(nd2,label_node) #Calling the function recursively return newnode # In[77]: def traverse(tree): print(tree.val) #,'split=',tree.spl_pt) if tree.val==1: return for k,vals in tree.child.items(): pprint.pprint(k) traverse(vals) tree = buildTree(train,'left') print "tree:-" traverse(tree) # pprint.pprint(tree.val) # In[79]: def predict(row,tree): # global tp,tn,fp,fn if tree.val=="YES" or tree.val=="NO": return tree.val attr=row[tree.val] if tree.val in numerical_attributes: if attr<=tree.spl_pt: x="<="+str(tree.spl_pt) return predict(row,tree.child[x]) else: x=">"+str(tree.spl_pt) return predict(row,tree.child[x]) else: if attr in tree.child: return predict(row,tree.child[attr]) return "NO" def calc_measures(df,tree): tp=0 tn=0 fp=0 fn=0 i=0 while i< len(df): pred_val=predict(df.iloc[i],tree) if df.iloc[i]['left']==1: if pred_val=="YES": tp=tp+1 else: fn=fn+1 #### fn here elif df.iloc[i]['left']==0: if pred_val=="NO": tn=tn+1 else: fp=fp+1 #### fp here i=i+1 # print"i=" return tp,fp,tn,fn tp,fp,tn,fn=calc_measures(validate,tree) print "tp=",tp print "tn=",tn print "false positive=",fp print "False negative=",fn total=tp+tn+fp+fn prec=tp/float(tp+fp) rec=tp/float(tp+fn) den=float((1/rec)+(1/prec)) f1=2/float(den) print "Precision: ", prec print "Recall: ",rec print "F1: ",f1 print "accuracy: ",(tp+tn)/float(total) # In[ ]:
true
9e0df50a0df2a3cf99f86c88e8273d31196c6d69
Python
NuclearPython/OptimizeCassette_PC
/GnoweeNSGAPython3/MultiObjectiveTest.py
UTF-8
1,350
2.625
3
[]
no_license
# Gnowee Modules import Gnowee_multi from ObjectiveFunction_Multi import ObjectiveFunction_multi from Constraints import Constraint from GnoweeHeuristics_multi import GnoweeHeuristics_multi import numpy as np from OptiPlot import plot_vars import matplotlib.pyplot as plt # User Function Module from TestFunction import testfittness #second Function #objective function array testarray = np.zeros(6) print(testfittness(testarray)) sz = 100 all_ints = ["i" for i in range(sz)] LB = np.zeros(sz) UppB = np.ones(sz) # Select optimization problem type and associated parameters gh = GnoweeHeuristics_multi(objective=ObjectiveFunction_multi(testfittness), lowerBounds=LB, upperBounds=UppB, varType=all_ints, optimum=0) print(gh) # Run optimization (timeline) = Gnowee_multi.main_multi(gh) length = len(timeline) fitnesses = np.zeros(length) generations = np.zeros(length) for i in range(0,length): t = timeline[i] fitnesses[i] = t.fitness generations[i] = t.generation plt.plot(generations, fitnesses, '-r', lw=2) # plot the data as a line plt.xlabel('Generation', fontsize=14) # label x axis plt.ylabel('Fittness', fontsize=14) # label y axis plt.gca().grid() # add grid lines plt.show() # display the plot print('\nThe result:\n', timeline[-1])
true
3f8c14201772e3603d8e0d3c8a72df53eb53b70b
Python
lmorinishi/leetcode-practice
/solutions/lc_014_longestCommonPrefix.py
UTF-8
479
2.90625
3
[]
no_license
class Solution: def longestCommonPrefix(self, strs: List[str]) -> str: if len(strs) == 0 or '' in strs: return '' if len(strs) == 1: return strs[0] result = '' min_len = min(len(k) for k in strs) i = 0 while i < min_len: if len(set([k[i] for k in strs])) == 1: result += strs[0][i] i += 1 else: return result return result
true
e5de1f9a9e702c3c3f7bdecfce9586963692f7cf
Python
Ehtycs/scicomp-project
/test_pod.py
UTF-8
4,203
3.234375
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 4 20:47:53 2018 @author: marjamaa This is an invented toy example on how this POD works. Circuit has an input current and output voltage, four resistor values out of seven are adjustable. So the system formed from the circuit by nodal analysis is 1-in 1-out and parametrized by four resistor values (conductances). Circuit has six nodes -> five DoFs. After POD analysis we could reduce this to less than five by discarding the least important 'modes'. See circuit.png for the topology of the circuit. """ import numpy as np import matplotlib.pyplot as plt from pod import make_reducer G3,G4,G5 = 1,1,1 def Zmu(params): """ Parametrized part of the nodal analysis admittance matrix """ G1, G2, G6, G7 = params Z = np.zeros(shape=(5,5)) Z[0,0] = G1+G3 Z[1,1] = G1+G2+G4 Z[2,2] = G2+G5 Z[3,3] = G5+G7 Z[4,4] = G4+G6+G7 Z[0,1] = -G1 Z[1,2] = -G2 Z[1,0] = -G1 Z[2,1] = -G2 Z[3,4] = -G7 Z[4,3] = -G7 return Z # Constant part of nodal analysis matrix Zconst = np.zeros(shape=(5,5)) Zconst[1,4] = -G4 Zconst[2,3] = -G5 Zconst[3,2] = -G5 Zconst[4,1] = -G4 Zconst[0,0] = G3 Zconst[1,1] = G4 Zconst[2,2] = G5 Zconst[3,3] = G5 Zconst[4,4] = G4 # Input current vector J1 = np.zeros(shape=(5,1)) J1[0] = 1 # Limits for the input current and the conductances of the resistors parameter_limits = [(1,10)] + 4*[(0.1, 10.0)] def full_model(params): """ Calculate a solution for given parameter vector """ i1 = params[0] conds = params[1:] Z = Zconst + Zmu(conds) J = J1*i1 u = np.linalg.solve(Z,J) return u def rom_builder(psi): """ Build a reduced order model. A function which given a parameter vector returns a reduced order solution """ rZconst = psi.T@Zconst@psi rJ1 = psi.T@J1 def reduced_model(params): i1 = params[0] conds = params[1:] rZ = rZconst + psi.T@Zmu(conds)@psi rJ = rJ1*i1 return np.linalg.solve(rZ, rJ) return reduced_model def error_estimator(psi, reduced_model, params): """ Estimates the error of the reduced model by evaluating norm(Z * psi * u_red - J) which should be zero if reduced order model is perfectly accurate. """ i1 = params[0] conds = params[1:] rsol = reduced_model(params) Z = Zconst + Zmu(conds) J = J1*i1 return np.linalg.norm(Z@psi@rsol - J) # Make a reducer instance using The Awesome Constructor Function(TM) red = make_reducer(full_model=full_model, parameter_limits=parameter_limits, error_estimator=error_estimator, # The "cutoff" dimension, ie. take this many # modes into the reduced order model. poddim=3, # or # The error limit for the cutoff, # podtol = 1e-9, rom_builder=rom_builder, # print stuff verbose=True, # If exceptions are thrown from argument functions, # rethrow them rethrow_exceptions=True) # Do an initial reduced order model using 2 samples # this is very little res = red.reduce(4) # Improve the model iteratively # by finding the maximum of the error function for i in range(0,100): red.improve(res) if res.error < 1e-9: break else: print("The error didn't converge to required tolerance.") print("This happens if poddim is too small or podtol " "is too big or too small amount of samples") print("Remainder error is {}".format(res.error)) # Plot the singular values of the system plt.plot(np.arange(1,res.ss.shape[0]+1), res.ss) plt.title('Magnitude of singular values') plt.xlabel("Index of $\sigma$") plt.ylabel("Magnitude of $\sigma$") plt.xticks(np.arange(1,res.ss.shape[0]+1)) plt.show() print("Original dimension {}, reduced dimension {}".format(res.psi.shape[0], res.psi.shape[1]))
true
e9a5d8b49025077cebef3d8f276e25869ab9227c
Python
TommyCpp/nx-poprank
/test/GraphTestCase.py
UTF-8
428
2.75
3
[]
no_license
from unittest import TestCase from heterogeneousgraph import HeGraph import networkx as nx class GraphTestCase(TestCase): def _setup(self, sub_graph_count=1, node_per_graph=3, probability_of_edge_creation=0.8): G = HeGraph() for i in range(sub_graph_count): sub_graph = nx.fast_gnp_random_graph(node_per_graph, probability_of_edge_creation) G.add_graph(sub_graph) return G
true
f23f9fee270af5242b41e81cdef42554c38358a7
Python
skdy33/Video-Copyright-Detector
/Plagierism.py
UTF-8
8,744
2.765625
3
[]
no_license
# Input data의 파일형식에 따라 FPS가 안맞을수도 있다. # 안 맞는 경우 파일형식의(예.avi) Header의 문제인데, 실험 때는 그냥 되는 파일형식으로 convert해서 사용하자. class plagierism: """ 원본 영상을 받는다. input : self = str of the video out = str of the name of the output video, including """ codec = {'mp4':'H264','avi':'XVID'} def WriterChecker(self): if (self.cap.isOpened()!=1): print("Refresh opener") return 0 if (self.out.isOpened()!=1): print("Refresh writer") return 0 return 1 def __init__(self,video,out): self._fileName = video self._outFile = out self.cap = cv2.VideoCapture(video) print(self.cap.isOpened()) #Checking if (cap.isOpened()==False): print ("Problem reading a video file") return #the property of the video self.width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) self.height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) self.FPS = cap.get(cv2.CAP_PROP_FPS) # For later issue. If we wanna keep our output w/ a same extension out_file, out_extension = out.split('.') dec = self.codec.get(out_extension,1) if dec == 1: return print (dec) try: fourcc = cv2.VideoWriter_fourcc(*'XVID') # 일단 output은 무조건 .avi except: print ("I said write the name of the output including extension") return # Output은 무조건 .avi self.out = cv2.VideoWriter(out_file+'_m.avi',fourcc,self.FPS,(640,480)) if (self.out.isOpened()==False): print ("There might be a existing file that has your target name.") return """ writer class name : str of the name of the file that'll be the modified one. """ def writer(self,name): return """ 영상의 절단 후 재배포 """ def Cutting(self): while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: frame = frame[int(height/8):int(height/8*7),int(width/8):int(width/8*7)] frame = cv2.resize(frame,(640,480)) self.out.write(frame) cv2.imshow('frame',frame) else: break cap.release() out.release() cv2.destroyAllWindows() """ 영상 아래에 임의의 영상 혹은 사진 끼워넣기 data : String of background에 깔릴 영상(or 사진) location """ def Padding(self,data): back = cv2.VideoCapture(data) #checking if (back.isOpened()!=True): print ("Prob opening background video or image") return BackWidth = int(back.get(cv2.CAP_PROP_FRAME_WIDTH)) BackHeight = int(back.get(cv2.CAP_PROP_FRAME_HEIGHT)) BackFPS = back.get(cv2.CAP_PROP_FPS) while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: # 여기서 back frame을 계속 읽어줘야해. 나중에 regarding complexity 우리가 picture 의 경우는 fixation 할 수 있지만 # 지금은 일단 편의를 위해 닫히면 계속 새로 open 하도록 할게 if back.isOpened() == True: BackRet, BackFrame = back.read() if BackRet == 1: pass else : back.release() back = cv2.VideoCapture(data) BackRet, BackFrame = back.read() else : back.release() back = cv2.VideoCapture(data) BackRet, BackFrame = back.read() # padding은 일단 1/2 사이즈로 줄여서 넣어볼게. frame = cv2.resize(frame,(int(BackWidth/2),int(BackHeight/2))) BackFrame[int(BackHeight/4):int(BackHeight/4*3),int(BackWidth/4):int(BackWidth/4*3)] = frame BackFrame = cv2.resize(BackFrame,(640,480)) self.out.write(BackFrame) cv2.imshow('frame',BackFrame) else: cap.release() out.release() back.release() break cap.release() out.release() back.release() cv2.destroyAllWindows() """ 영상 일부분만 배포 s = starting point. 몇 초 후 부터 녹화할것인가. 초 단위 d = duration. 몇 분을 녹화할 것인가. 초 단위 """ def Slicing(self,s,d): # sec to frame start = int(s * self.FPS) fin = int(d * self.FPS) #Checking before writing if (WriterChecker()==0): return #Frame counter cnt = 0 #Write while(self.cap.isOpened()): if (cnt < s): continue if (cnt > d): break ret, frame = self.cap.read() if ret == True: cnt +=1 frame = cv2.resize(frame,(640,480)) self.out.write(frame) cv2.imshow('frame',frame) else: break cap.release() out.release() cv2.destroyAllWindows() return """ 영상 화질 낮추기 일단 (640,480) 으로 나오는 걸로 한다. 이것보다 더 극단적으로 낮추고 싶으면 writer 정의할 때 작게해야 하는데, 이건 writer function 정의하고 그거 이용하면 쉬울거다. 그러면 writer refresh func 에는 해상도 default var 로 주면 될 것 같다. """ def Dequalify(self): #Checking before writing if (WriterChecker()==0): return #write while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: frame = cv2.resize(frame,(640,480)) self.out.write(frame) cv2.imshow('frame',frame) else: break return """ 좌우 대칭 flip """ def Flip(self): #Checking before writing if (WriterChecker()==0): return #write while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: frame = cv2.resize(frame,(640,480)) frame = cv2.flip(frame) self.out.write(frame) cv2.imshow('frame',frame) else: break return """ 속도 빠르게 만들기. x : times faster(slower). 이것도 writer 재정의야. 일단은 hard coding, refreshing writing func 만들면 그걸로 대신 사용. """ def SpeedUp(self,x): # self.out 재정의 if (self.out.isOpened()): self.out.release() out_file = self._outFile.split('.')[0] #FPS 재정의 FPS = self.FPS * x fourcc = cv2.VideoWriter_fourcc(*'XVID') # 일단 output은 무조건 .avi self.out = cv2.VideoWriter(out_file+'_m.avi',fourcc,FPS,(640,480)) #check if (WriterChecker()==0): return 0 #write while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: frame = cv2.resize(frame,(640,480)) frame = cv2.flip(frame) self.out.write(frame) cv2.imshow('frame',frame) else: break """ 음성 바꾸기 opencv로 음성 안들어옴. """ def AudioChg(self): return """ 조도 변화 a = param b = bias """ def Jodo(self,a=2,b=3): #Checking before writing if (WriterChecker()==0): return #write while(self.cap.isOpened()): ret, frame = self.cap.read() if ret == True: frame = cv2.resize(frame,(640,480)) frame = frame*a + b self.out.write(frame) cv2.imshow('frame',frame) else: break return
true
a1147e0cf00953fb903935bff9fdd58eb8f007f6
Python
mami-project/lurk
/proxySTAR_V3/certbot/venv/lib/python2.7/site-packages/pylint/test/functional/method_hidden.py
UTF-8
323
2.984375
3
[ "Apache-2.0", "MIT" ]
permissive
# pylint: disable=too-few-public-methods,print-statement """check method hidding ancestor attribute """ class Abcd(object): """dummy""" def __init__(self): self.abcd = 1 class Cdef(Abcd): """dummy""" def abcd(self): # [method-hidden] """test """ print(self)
true
5fab108b90adbf2f0c58b579e0826ee23a620390
Python
Mary-Li-shuangyue/wadlab
/tango_with_django_project/populate_rango.py
UTF-8
2,469
3.140625
3
[]
no_license
import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tango_with_django_project.settings") import django django.setup() from rango.models import Category, Page def populate(): '''create lists of dictionaries containing the pages we want to add into each category then, create a dictionary of dictionaries for the categories so we can iterate through each data structure, and add the data to the models''' python_pages = [ {"title": "Official Python ~Tutorial", "url": "http://docs.python.org/2/tutorial/", "views":12}, {"title": "How to think like a computer scientist", "url": "http://www.greenteapress.com/thinkpython/", "views":34}, {"title": "Learn Python in 10 minutes", "url": "http://www.korokithakis.net/tutorials/python/", "views":23}, ] django_pages = [ {"title": "Offical Django Tutorial", "url": "https://docs.djangoproject.com/en/1.9/intro/tutorial01/", "views":76}, {"title": "Django Rocks", "url": "http://www.djangorocks.com/", "views":32}, {"title": "How to Tango with Django", "url": "http://www.tangowithdjango.com/", "views":18}, ] other_pages = [ {"title": "Bottle", "url": "http://bottlepy.org/docs/dev/", "views":33}, {"title": "Flask", "url": "http://flask.pocoo.org", "views":11}, ] cats = {"Python":{"pages": python_pages, "views":128, "likes":64}, "Django":{"pages": django_pages, "views":64, "likes":32}, "Other Frameworks":{"pages": other_pages, "views":32, "likes":16}} for cat, cat_data in cats.items(): c = add_cat(cat, cat_data["views"], cat_data["likes"]) for p in cat_data["pages"]: add_page(c,p["title"],p["url"],p["views"]) #print out the categories added for c in Category.objects.all(): for p in Page.objects.filter(category = c): print("- {0} - {1}".format(str(c),str(p))) def add_page(cat, title, url, views ): p = Page.objects.get_or_create(category = cat, title=title)[0] p.url = url p.views = views p.save() return p def add_cat(name, views=0, likes=0): c = Category.objects.get_or_create(name=name )[0]#[0] returns the object reference only c.views = views c.likes = likes c.save() return c if __name__ == '__main__': print("Starting Rango population script...") populate()
true
3c5dec1420458ba250d287744053707fee27ac20
Python
riki900/mySketches
/examples/coding-creative-examples/examples/cc_07_loops/cc_07_loops.pyde
UTF-8
142
3.140625
3
[]
no_license
size(600, 600) background(50) stroke(200) for i in range(5): line(random(width), random(height), random(width), random(height))
true
e2e9b20224e73478c08b728a0ec826a499cdd863
Python
Yakobo-UG/Python-by-example-challenges
/challenge 17.py
UTF-8
545
4.65625
5
[]
no_license
#Ask the user’s age. If they are 18 or over, display the message “You can vote”, if they are aged 17, display the message “You can learn to drive”, if they are 16, display the message “You can buy a lottery ticket”, if they are under 16, display the message “You can go Trick-or-Treating”. Age = int(input("Enter your age: ")) if Age >= 18: print("You can vote") elif Age == 17: print("You can learn to drive") elif Age == 16 : print("You can buy a lottery ticket") else: print("You can go Trick-or-Treating")
true
0be8c103b5bdbac9de542f4415890b105c21dd47
Python
Fleskimiso/MemoryPuzzle
/Puzzle.py
UTF-8
1,589
3.28125
3
[]
no_license
import pygame from Shapes import * class Puzzle: def __init__(self, shape, color, x_pos, y_pos): self.width = 50 self.height = 50 self.shape = shape self.color = color self.x_position = x_pos self.y_position = y_pos self.surface = pygame.Surface((self.width, self.height), pygame.SRCALPHA) self.surface.fill((0, 0, 0, 0)) self.surface_orignal = self.surface.copy() self.draw_blank() def draw_figure(self): self.surface = self.surface_orignal.copy() pygame.draw.rect(self.surface, (0, 0, 0), (0, 0, self.width, self.height), 1) if self.shape == Shapes.circle: pygame.draw.circle(self.surface, self.color.value, self.surface.get_rect().center, int(self.width / 2), 10) elif self.shape == Shapes.square: pygame.draw.polygon(self.surface, self.color.value, [ (10, 10), (self.width - 10, 10), (self.width - 10, self.height - 10), (10, self.height - 10) ], 5) elif self.shape == Shapes.cross: pygame.draw.line(self.surface, self.color.value, (0, 0), (self.width, self.height)) pygame.draw.line(self.surface, self.color.value, (self.width, 0), (0, self.height)) elif self.shape == Shapes.elipse: pygame.draw.ellipse(self.surface, self.color.value, (0, 10, self.width, self.height - 2 * 10), 15) def draw_blank(self): self.surface = self.surface_orignal.copy() pygame.draw.rect(self.surface, (0, 0, 0, 255), ((0, 0), (self.width, self.height)), 1)
true
253fe3c4cebf63d7a8fbc16af75c303db241ca12
Python
g-ampo/Drone_RL
/Source/RL_Agent_old.py
UTF-8
3,804
2.6875
3
[]
no_license
import numpy as np from Source.RF_Env import RFBeamEnv, Generate_BeamDir, Gen_RandomBeams class RL_Agent: def __init__(self, env, alpha, gamma): self.env = env # Environment self.alpha = alpha # learning rate self.gamma = gamma #discount factor self.Q = {} # Q_table def sample_action(self, obs, eps): assert self.Check_Obs(obs), "%r (%s) obs is invalid" % (obs, type(obs)) str_obs = ConvObs_ToString(obs) if (np.random.random() < eps) or (not self.Q): #print("came here") action = self.env.GenAction_Sample() #print("new action: {0}".format(action)) str_action = ConvAct_String(action) #print("new str action: {0}".format(str_action)) self.Q[str_obs][str_action] = 0.0 else: action = max(self.Q[str_obs], key= self.Q[str_obs].get) #print("exist str action: {0}".format(action)) eval_action = ConStr_Action(action) #print("exist action: {0}".format(eval_action)) action = eval_action return action def Check_Obs(self, obs): str_obs = ConvObs_ToString(obs) if str_obs in self.Q: pass else: self.Q[str_obs] ={} a = self.env.GenAction_Sample() #print("check obs action: {0}".format(a)) str_action = ConvAct_String(a) self.Q[str_obs][str_action] = 0.0 #print("[RL_A] obs:{0}, a: {1}".format(str_obs, self.Q[str_obs])) return True def Check_Action(self, obs, action): str_obs = ConvObs_ToString(obs) str_action = ConvAct_String(action) if str_action in self.Q[str_obs]: #print("ac: {0}".format(str(action))) #print(self.Q) pass else: self.Q[str_obs][str_action] = 0.0 return True def Action_Vals(self, obs): action_vals = [] str_obs = ConvObs_ToString(obs) for a in self.Q[str_obs]: action_vals.append(self.Q[str_obs][a]) #print("[RL_A] action_vals: {0}".format(action_vals)) return action_vals def Update_Q(self, prev_obs, action, obs, rwd): assert self.Check_Obs(prev_obs), "%r (%s) prev_obs is invalid" % (prev_obs, type(prev_obs)) assert self.Check_Obs(obs), "%r (%s) obs is invalid" % (obs, type(obs)) assert self.Check_Action(prev_obs, action), "%r (%s) action is invalid" % (action, type(action)) #self.Check_Obs(prev_obs) and self.Check_Obs(obs) and self.Check_Action(prev_obs, action): str_prev_obs = ConvObs_ToString(prev_obs) str_action = ConvAct_String(action) self.Q[str_prev_obs][str_action] += self.alpha*(rwd + self.gamma*np.max(self.Action_Vals(obs))- self.Q[str_prev_obs][str_action]) return True def Best_Action(self, obs): str_obs = ConvObs_ToString(obs) assert self.Check_Obs(obs), "%r (%s) obs is invalid" % (obs, type(obs)) best_a = max(self.Q[str_obs], key=self.Q[str_obs].get) best_val = self.Q[str_obs][best_a] return ConStr_Action(best_a), best_val def ConvObs_ToString(obs): str_obs = " " obs_list = [str(x) for x in obs] str_obs = str_obs.join(obs_list) #print(str_obs) return str_obs def ConvAct_String(action): str_l = ','.join(str(' '.join(str(x) for x in v)) for v in action) return str_l def ConStr_Action(str_action): item_list = str_action.split(',') action = [] for item in item_list[:-1]: subitem_list = item.split(' ') l = [] #print(subitem_list) for x in subitem_list: l.append(complex(x)) action.append(l) action.append([int(item_list[-1])]) return action
true
170e211eadbf90e21eb4a08f5524a1e888a89409
Python
anish888/python-project2
/validate_angrams.py
UTF-8
411
4
4
[]
no_license
#function for valaditing angrams def anagram(word1, word2): word1 = word1.lower() word2 = word2.lower() #sorting word1 and word2 #if user word is validate angram it return true otherwise false.. return sorted(word1) == sorted(word2) #taking user input for valadating angrams word1=input("enter word1") word2=input('enter word2') #calling function anagram=anagram(word1,word2) print(anagram)
true
030e589d4b0bbcc12ea5383f6ca624190f0acb35
Python
eric0890/ITC110
/HW3.py
UTF-8
776
4.46875
4
[]
no_license
#pizzaconverter.py #this file converts the price and size of a pizza into cost per square inch #note: I tested using 10" diameter and $8 which equals 78.5 square inches divided by 800 cents = 9.82 (rounded) from math import pi def main(): print("This program computes the cost per square inch of pizza. \n") #these formulas are needed to calcuate the final formula(s) diameter = int(input("Enter the diameter of the pizza (in inches): ")) price = int(input("Enter the price of the pizza (in dollars): ")) #this equation converts the user inputs and combines it with the formula for area areaprice = (pi * ((diameter / 2) ** 2) /(price)) print("\nThe cost is", round(areaprice,2), "cents per square inch.") main()
true
c39f73d378d46a8380e2ed3d50650d0475ee20f8
Python
DaniilBelousov/Paintings-dataset
/picToGray.py
UTF-8
270
2.859375
3
[]
no_license
import cv2 as cv import os # Картинка в серый def pictureToGray(root, pics): os.chdir(root) for pic in pics: gray = cv.imread(pic, 0) cv.imwrite(pic, gray) print("Directory: ", root) print("Changed into gray --> Success")
true
9a23192c46335044aac4e89c618543c8a6a5df6c
Python
minhd2/advent-of-code-2020
/day8_handheld_halting/day8.py
UTF-8
828
3.078125
3
[]
no_license
def calculate_acc(filename): acc = 0 game_on = True game_steps = dict() index_set = set() with open(filename, 'r') as file: lines = [line.rstrip() for line in file] #print(lines) index = 0 while game_on: if index in index_set: print(index) game_on = False break elif lines[index][:3] == 'nop': index_set.add(index) index += 1 continue elif lines[index][:3] == 'jmp': index_set.add(index) if lines[index][4] == '-': index -= int(lines[index][5:]) else: index += int(lines[index][5:]) elif lines[index][:3] == 'acc': index_set.add(index) if lines[index][4] == '-': acc -= int(lines[index][5:]) index += 1 else: acc += int(lines[index][5:]) index += 1 print(index_set) print(acc) print(calculate_acc('data.txt'))
true
4153681171496207027aedbfba05416528cc8b9e
Python
sven123/auxiliary
/aux/protocol/transport.py
UTF-8
2,934
2.78125
3
[ "BSD-3-Clause" ]
permissive
from socket import ( socket, AF_INET, SOCK_DGRAM, IPPROTO_TCP, SOCK_STREAM, SOL_SOCKET, SO_REUSEADDR) from ssl import wrap_socket, CERT_NONE TCP_DEFAULT_FRAME_SIZE = 1200 class Transport(object): def __init__(self, hostname, port): self.addr = (hostname, port) self.__connection = None def connect(self): raise Exception("Not Implemented Error") def close(self): raise Exception("Not Implemented Error") class UDPTransport(Transport): def __init__(self, hostname, port): super(UDPTransport, self).__init__(hostname, port) self.__connection = socket(AF_INET, SOCK_DGRAM) def connect(self): self.__connection.connect(self.addr) def send(self, message): self.__connection.sendto(message, self.addr) def recv(self): return self.__connection.recv(4096) def close(self): self.__connection.close() class TCPTransport(Transport): def __init__(self, hostname, port): super(TCPTransport, self).__init__(hostname, port) self.__connection = socket(AF_INET, SOCK_STREAM) self.__connection.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) def connect(self): self.__connection.connect(self.addr) def send(self, message): self.__connection.sendto(message, self.addr) def recv(self, frame_size=TCP_DEFAULT_FRAME_SIZE): return self.__connection.recv(frame_size) def close(self): self.__connection.close() class TLS_TCPTransport(TCPTransport): #TODO: This should just be a wrapper def __init__(self, hostname, port, timeout=10): super(TLS_TCPTransport, self).__init__(hostname, port) #TODO: Should do a better build up of ssl_socket self.__connection = wrap_socket(socket(AF_INET, SOCK_STREAM), cert_reqs=CERT_NONE, do_handshake_on_connect=False) self.__connection.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) self.__connection.settimeout(1) self.__connection.settimeout(timeout) def connect(self): try: self.__connection.connect(self.addr) finally: pass def send(self, message): self.__connection.write(message) def recv(self, n_of_bytes=TCP_DEFAULT_FRAME_SIZE): return self.__connection.read(n_of_bytes) def recv_all(self): data = self.recv(n_of_bytes=1000) while data: print "receiving", data recv_buffer = data data = self.recv(n_of_bytes=1000) return recv_buffer def close(self): self.__connection.close()
true
6b9a791d54fee75423af97194a5a9c04ff81b93b
Python
blitzbutter/MyCode
/netCalc.py
UTF-8
1,718
4.03125
4
[]
no_license
### Jacob Bryant ### 12/8/2018 ### Program to calculate the network address # --- Takes a string to ask a user as input --- # def calc_bin(user_in): bin_f = "{0:08d}" # Pads binary numbers with 8 bytes # --- Formats the input IP address and converts it to binary --- # ip_in = input(user_in) ip = ip_in.split('.') ip_bin = "" for i in range(0, len(ip)): ip[i] = bin(int(ip[i])) # Converts it to binary ip[i] = ip[i].replace('0b','') # Removes the leading '0b' ip[i] = bin_f.format(int(ip[i])) # Formats the input to pad with eight zeroes ip_bin += ip[i] # Adds it to the string of binary numbers return ip_bin # --- Ask the user for the IP and netmask --- # ip_str = calc_bin("Enter IP: ") net_str = calc_bin("Enter netmask: ") # --- Lets the user know what operation is happening --- # print("ANDing %s" % ip_str) print(" %s" % net_str) network_ip = "" # Network IP variable # --- And each individual bit in the IP and netmask string of bits, then store in network_ip --- # for i in range(0, len(ip_str)): bit = int(ip_str[i]) & int(net_str[i]) # Ands each individual bit network_ip += str(bit) # --- Splits the string of bits into 4 parts, to convert back to their decimal counterparts --- # n = 8 network_ip = [network_ip[i:i+n] for i in range(0, len(network_ip), n)] # --- Converts back to decimal format and formats the output nicely --- # network_ip_out = "" for i in range(0, len(network_ip)): network_ip_out += str(int(network_ip[i], 2)) if i != len(network_ip)-1: network_ip_out += '.' print("Network address is %s" % network_ip_out) # Prints the network IP
true
95d0eb1e30db3e1e72be1ae3562bee3d2b46a801
Python
DrRamm/mediatek-lte-baseband-re
/SoC/common/make_image.py
UTF-8
9,114
2.59375
3
[]
no_license
#!/usr/bin/env python3 '''\ Create "preloader" images suitable for booting on MediaTek platforms. Provide an ARMv7-A/ARMv8-A (AArch32-only) binary as an input, and this tool will convert it into an image that, depending on your selected options, will be able to be booted from either eMMC flash or an SD card. For example, to create an eMMC image, run: ./make_image.py -b eMMC -o preloader-emmc.img code.bin This can be written to the eMMC BOOT0 hardware partition using MediaTek's SPFT utility, the same way any other preloader is written. To create an SD image, run: ./make_image.py -b SD -o preloader-sd.img code.bin To write the image to an SD card, run: sudo dd if=preloader-sd.img of=/dev/DEVICE bs=2048 seek=1 Where `/dev/DEVICE` is the path to your SD card, e.g., `/dev/sdX` or `/dev/mmcblkX`. This command writes the SD preloader to byte offset 2048 (LBA 4, 512-byte blocks) on the card, so if you want to create a partition table on the card, you MUST you an MBR (DOS) scheme--writing a GPT after flashing the preloader will likely overwrite the preloader, and writing the preloader after creating the GPT will likely corrupt the GPT. It is equally important to ensure that your first partition starts at sector (LBA) 4096--this will give enough space for the largest possible preloader size (1 MiB, the size of the L2 SRAM on some higher-end SoCs), plus it will ensure your partitions are nicely aligned. 4096 is largely an arbitrary number, since the smallest LBA number to avoid the first partition overwriting the preloader is 2052 (LBA 4 + 1 MiB / 512 B), so in theory you could use that (or an even smaller number for devices with a 256 KiB L2 SRAM), but 4096 is a nice power of 2 so I like that better. ''' import argparse import enum import hashlib import struct class code_arch(enum.Enum): aarch32 = enum.auto() aarch64 = enum.auto() class flash_device(enum.Enum): EMMC = enum.auto() SD = enum.auto() class gfh_type(enum.Enum): FILE_INFO = enum.auto(), BL_INFO = enum.auto(), ANTI_CLONE = enum.auto(), BL_SEC_KEY = enum.auto(), BROM_CFG = enum.auto(), BROM_SEC_CFG = enum.auto(), def gen_gfh_header(type, version): magic = b'MMM' size = { gfh_type.FILE_INFO: 56, gfh_type.BL_INFO: 12, gfh_type.ANTI_CLONE: 20, gfh_type.BL_SEC_KEY: 532, gfh_type.BROM_CFG: 100, gfh_type.BROM_SEC_CFG: 48, }.get(type) if size == None: raise ValueError("Unknown gfh_type: {}".format(type)) type = { gfh_type.FILE_INFO: 0, gfh_type.BL_INFO: 1, gfh_type.ANTI_CLONE: 2, gfh_type.BL_SEC_KEY: 3, gfh_type.BROM_CFG: 7, gfh_type.BROM_SEC_CFG: 8, }.get(type) h = struct.pack('3s', magic) h += struct.pack('B', version) h += struct.pack('<H', size) h += struct.pack('<H', type) return h def gen_gfh_file_info(file_type, flash_dev, offset, base_addr, start_addr, max_size, payload_size): identifier = b'FILE_INFO' file_ver = 1 sig_type = 1 # SIG_PHASH load_addr = base_addr - offset sig_len = 32 # SHA256 file_len = offset + payload_size + sig_len jump_offset = start_addr - load_addr attr = 1 file_info = gen_gfh_header(gfh_type.FILE_INFO, 1) file_info += struct.pack('12s', identifier) file_info += struct.pack('<I', file_ver) file_info += struct.pack('<H', file_type) file_info += struct.pack('B', flash_dev) file_info += struct.pack('B', sig_type) file_info += struct.pack('<I', load_addr) file_info += struct.pack('<I', file_len) file_info += struct.pack('<I', max_size) file_info += struct.pack('<I', offset) file_info += struct.pack('<I', sig_len) file_info += struct.pack('<I', jump_offset) file_info += struct.pack('<I', attr) return file_info def gen_gfh_bl_info(): bl_info = gen_gfh_header(gfh_type.BL_INFO, 1) bl_info += struct.pack('<I', 1) return bl_info def gen_gfh_brom_cfg(arch): brom_cfg = gen_gfh_header(gfh_type.BROM_CFG, 3) # TODO: Make this configurable. brom_cfg += bytes.fromhex("9001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000881300000000000000000000") if arch == code_arch.aarch64: brom_cfg = bytearray(brom_cfg) # Set the flag. flags = struct.unpack_from('<I', brom_cfg, 8)[0] flags |= 1 << 12 struct.pack_into('<I', brom_cfg, 8, flags) # Set the magic value. brom_cfg[0x55] = 0x64 brom_cfg = bytes(brom_cfg) return brom_cfg def gen_gfh_bl_sec_key(): bl_sec_key = gen_gfh_header(gfh_type.BL_SEC_KEY, 1) bl_sec_key += bytes(bytearray(524)) return bl_sec_key def gen_gfh_anti_clone(): anti_clone = gen_gfh_header(gfh_type.ANTI_CLONE, 1) anti_clone += bytes(bytearray(12)) return anti_clone def gen_gfh_brom_sec_cfg(): brom_sec_cfg = gen_gfh_header(gfh_type.BROM_SEC_CFG, 1) brom_sec_cfg += struct.pack('<I', 3) brom_sec_cfg += bytes(bytearray(36)) return brom_sec_cfg def gen_image(boot_device, payload, payload_arch): # Header identifier = { flash_device.EMMC: b'EMMC_BOOT', flash_device.SD: b'SDMMC_BOOT', }.get(boot_device) if identifier == None: raise ValueError("Unknown boot_device: {}".format(boot_device)) version = 1 dev_rw_unit = { flash_device.EMMC: 512, flash_device.SD: 512, }.get(boot_device) header = struct.pack('12s', identifier) header += struct.pack('<I', version) header += struct.pack('<I', dev_rw_unit) assert(len(header) <= dev_rw_unit) padding_length = dev_rw_unit - len(header) header += bytes(bytearray(padding_length)) # Boot ROM layout identifier = b'BRLYT' version = 1 gfh_block_offset = 4 # Must be >=2 to account for the device header and boot ROM layout blocks. assert(gfh_block_offset >= 2) boot_region_addr = { flash_device.EMMC: dev_rw_unit * gfh_block_offset, flash_device.SD: dev_rw_unit * gfh_block_offset + 2048, # SDMMC_BOOT is flashed to byte offset 2048 on the SD card. }.get(boot_device) max_preloader_size = 0x40000 # 0x40000 is the size of the L2 SRAM, so the maximum possible size of the preloader. main_region_addr = max_preloader_size + boot_region_addr layout = struct.pack('8s', identifier) layout += struct.pack('<I', version) layout += struct.pack('<I', boot_region_addr) layout += struct.pack('<I', main_region_addr) # bootloader_descriptors[0] bl_exist_magic = b'BBBB' bl_dev = { flash_device.EMMC: 5, flash_device.SD: 8, }.get(boot_device) bl_type = 1 # ARM_BL bl_begin_addr = boot_region_addr bl_boundary_addr = main_region_addr bl_attribute = 1 layout += struct.pack('4s', bl_exist_magic) layout += struct.pack('<H', bl_dev) layout += struct.pack('<H', bl_type) layout += struct.pack('<I', bl_begin_addr) layout += struct.pack('<I', bl_boundary_addr) layout += struct.pack('<I', bl_attribute) layout_max_size = dev_rw_unit * (gfh_block_offset - 1) assert(len(layout) <= layout_max_size) padding_length = layout_max_size - len(layout) layout += bytes(bytearray(padding_length)) # GFH image offset = 0x300 base_addr = 0x201000 start_addr = base_addr image = gen_gfh_file_info(bl_type, bl_dev, offset, base_addr, start_addr, max_preloader_size, len(payload)) image += gen_gfh_bl_info() image += gen_gfh_brom_cfg(payload_arch) image += gen_gfh_bl_sec_key() image += gen_gfh_anti_clone() image += gen_gfh_brom_sec_cfg() assert(len(image) <= offset) padding_length = offset - len(image) image += bytes(bytearray(padding_length)) image += payload image += hashlib.sha256(image).digest() return header + layout + image if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("input", type=str, help="Input binary.") parser.add_argument("-o", "--output", type=str, default="preloader.img", help="Output image.") parser.add_argument("-b", "--boot-device", type=str, choices=["eMMC", "SD"], default="eMMC", help="Boot device.") parser.add_argument("-a", "--arch", type=str, choices=["aarch32", "aarch64"], default="aarch32", help="Code architecture. Choose \"aarch32\" if you're booting 32-bit ARM code, \"aarch64\" for 64-bit ARM code.") args = parser.parse_args() binary = open(args.input, 'rb').read() padding_length = 4 - (len(binary) % 4) if padding_length != 4: binary += bytes(bytearray(padding_length)) boot_device = { "eMMC": flash_device.EMMC, "SD": flash_device.SD, }.get(args.boot_device) arch = { "aarch32": code_arch.aarch32, "aarch64": code_arch.aarch64, }.get(args.arch) image = gen_image(boot_device, binary, arch) output = open(args.output, 'wb') output.write(image) output.close()
true
ce96543e05919addfeca5d7e3cb1288781e7a8c2
Python
kinketu/FEM
/ElasticProblem/ElasticProblem.py
UTF-8
5,866
2.640625
3
[ "MIT" ]
permissive
# This program is to solve Linear elastic problem using FEM solver. # Use Triangular Element. # Asumption plane strain analysis. # Units of pressure to use MPa # Units of force to use MN from numpy import array, zeros, dot from numpy.linalg import solve import matplotlib.pyplot as plt from openacoustics.gmsh import * import fem def preprocessor(debug=True): if debug == True: # Create nodes and element. nodes = array([[0., 0.], [0., 1.], [1., 0.], [1., 1.]]) elements = array([[0, 2, 1], [3, 1, 2]]) elif debug == False: # Create nodes and element. # Create an instance of class gmsh. gmsh = GMsh2D() # Load the .geo file. geo = 'ElasticProblem.geo' gmsh.loadGeo(geo, 0.2, order=1) # Load nodes indices and coordinates. nodes = gmsh.getNodes() # Get the sorce node number. source = gmsh.getPoints("S") # Load node numbers of triangular elements. elements = gmsh.getTriangles("", order=1) return nodes, elements def element_matrix(node0, node1, node2): t = 1 # t is thickness. b01 = node0[1]-node1[1] b12 = node1[1]-node2[1] b20 = node2[1]-node0[1] a10 = node1[0]-node0[0] a21 = node2[0]-node1[0] a02 = node0[0]-node2[0] detA =(a10*b20-b01*a02) Be = array([[b12, 0., b20, 0., b01, 0.], [0., a21, 0., a02, 0., a10], [a21, b12, a02, b20, a10, b01]])/detA Ke = t*dot(dot(Be.T, D), Be)*detA/2 return Ke, Be def node_matrix(d, element): dn = [] for node in element: de.append([node*2, node*2+1]) dn = array(dn).flatten() return dn def createDmatrix(PlaneType="Strain"): if PlaneType == "Strain": # Plane Strain D = array([[1-Poisson, Poisson, 0.], [Poisson, 1-Poisson, 0.], [0., 0., (1-2*Poisson)/2.]])\ *Young/((1+Poisson)*(1-2*Poisson)) elif PlaneType == "Stress": # Plane Stress D = array([[1., Poisson, 0.], [Poisson, 1., 0.], [0., 0., (1-Poisson)/2]])*Young/(1-Poisson**2) return D def totalmatrices(nodes, elements): # Create total matrix. numberOfNodes = nodes.shape[0] numberOfElements = elements.shape[0] K = zeros((numberOfNodes*2, numberOfNodes*2)) B = [] for element in elements: node0 = nodes[element[0], :] node1 = nodes[element[1], :] node2 = nodes[element[2], :] # Calculate elementary matrices. Ke, Be = element_matrix(node0, node1, node2) B.append(Be) # Assemble global system matrices. # Convert local number into global number. list1 = [] list2 = [] for i in range(numberOfNodes): list1.append([i*2, i*2+1]) for i in element: list2.append(list1[i]) list2 = array(list2).flatten() #print list2 for rowIndex in range(Ke.shape[0]): for columnIndex in range(Ke.shape[1]): K[list2[rowIndex], list2[columnIndex]]\ += Ke[rowIndex, columnIndex] B = array(B) return K, B def total_strain(): eps = [] for element in elements: element_number = list(elements).index(list(element)) dn = node_matrix(d, element) epse = dot(B[element_number], dn) eps.append(epse) eps = array(eps) return eps def mizes_stress(stress): sigx = stress[0] sigy = stress[1] sigz = stress[2] tauxy = stress[3] tauyz = stress[4] tauzx = stress[5] mizes = sqrt(((sigx-sigy)**2+(sigy-sigz)**2+(sigz-sigx)**2\ +6*(tauxy**2+tauyz**2+tauzx**2))/2) return mizes def postprocessor(nodes, saveimage=False): pass def plot_displacement(old_nodes, new_nodes, saveimage=False): x1 = old_nodes[:, 0] y1 = old_nodes[:, 1] x2 = new_nodes[:, 0] y2 = new_nodes[:, 1] plt.figure() plt.gca().set_aspect('equal') plt.triplot(x1, y1, elements, 'ko-') plt.triplot(x2, y2, elements, 'bo--') plt.title("Elastic Problem") plt.xlabel('x') plt.ylabel('y') plt.xlim(-0.1, 1.1) plt.ylim(-0.1, 1.1) if saveimage == True: plt.savefig("Elastic_Problem.png") plt.show() def plot_mizes(nodes, elements, mizes, saveimage=False): x = nodes[:, 0] y = nodes[:, 1] plt.figure() plt.gca().set_aspect('equal') plt.tripcolor(x, y, elements, facecolors=mizes, edgecolors='k') plt.colorbar() plt.title("von-Mizes stress") plt.xlabel('x') plt.ylabel('y') plt.axis('tight') if saveimage == True: plt.savefig("mizes.png") plt.show() if __name__ == '__main__': # Preprocessor nodes, elements = preprocessor() # Solver # Young's modulus and Poisson's ration of soft iron Young = 200*10**3 # MPa Poisson = 0.3 D = createDmatrix() K, B = totalmatrices(nodes, elements) unval = 100 # unkown value f = array([unval, unval, unval, 0, 10, unval, 10, 0]) # "discon" is a list of displcement constraint. # ex) discon = [[index number in the K matrix, value], ...] discon = [[0, 0], [1, 0], [2, 0], [5, 0]] K, f = fem.dis_to_force2(discon, K, f) d = solve(K, f) d = d.reshape((d.shape[0]/2, 2)) dis_scale = 500 # displacement scale new_nodes = nodes + d * dis_scale #eps = total_strain() # Print Debug #print "matrixK\n", K #print "displacement\n", d # Postprocessor #plot_displacement(nodes, new_nodes) print d
true
53fb96c689a745594c62571edfd2104395c7ceb2
Python
Aasthaengg/IBMdataset
/Python_codes/p03439/s110811200.py
UTF-8
1,334
3.03125
3
[]
no_license
import bisect import heapq import sys import queue input = sys.stdin.readline sys.setrecursionlimit(100000) class V: def __init__(self, f): self.f = f self.v = None def __str__(self): return str(self.v) def ud(self, n): if self.v is None: self.v = n else: self.v = self.f(self.v, n) def get(self): return self.v def read_values(): return map(int, input().split()) def read_list(): return list(read_values()) def main(): N = int(input()) left = 0 right = N - 1 D = {} c = 0 for _ in range(21): if left not in D: print(left) sys.stdout.flush() res = input() c += 1 if res == "Vacant" or c >= 20: return D[left] = res LD = D[left] m = (left + right) // 2 if m not in D: print(m) sys.stdout.flush() res = input() c += 1 if res == "Vacant" and c >= 20: return D[m] = res MD = D[m] if (m % 2 == left % 2 and MD == LD) or (m % 2 != left % 2 and MD != LD): left = m if left != m else m + 1 else: right = m if __name__ == "__main__": main()
true
6c38f1ca9636261cab363979cd5c1ab8c46a4a30
Python
NacerSebtiMS/GAN_MNIST
/dataset.py
UTF-8
3,148
2.953125
3
[]
no_license
# -*- coding: utf-8 -*- import gzip import numpy as np import matplotlib.pyplot as plt import gzip test_image_path = 'data/t10k-images-idx3-ubyte.gz' test_label_path = 'data/t10k-labels-idx1-ubyte.gz' train_image_path = 'data/train-images-idx3-ubyte.gz' train_label_path = 'data/train-labels-idx1-ubyte.gz' #---------------------------------------------------------------------------- # Direct interaction with the dataset # Getting labels def get_label(n,train=True): if train: file = gzip.open(train_label_path,'r') else : file = gzip.open(test_label_path,'r') file.read(8) buff = file.read(1 * n) labels = np.frombuffer(buff, dtype=np.uint8).astype(np.int64) return labels[-1] # Getting images def get_img(n,train=True): if train: file = gzip.open(train_image_path,'r') else : file = gzip.open(test_image_path,'r') image_size = 28 file.read(16) buff = file.read(image_size * image_size * n) data = np.frombuffer(buff, dtype=np.uint8).astype(np.float32) data = data.reshape(n, image_size, image_size, 1) image = np.asarray(data[-1]).squeeze() return image # Getting both the image and the label at given index from the dataset def get_both(n,train=True): return get_label(n,train),get_img(n,train) # Returns n iamges with the given label def get_img_by_lbl(n,label,train=True): cpt=1 imgs = [] while n>len(imgs): if get_label(cpt,train) == label: imgs += [get_img(cpt,train)] cpt+=1 return imgs # Returns a complete set in a list def get_set(train=True,n=0): if train: file_lbl = gzip.open(train_label_path,'r') file_img = gzip.open(train_image_path,'r') if n == 0 : n = 60000 else : file_lbl = gzip.open(test_label_path,'r') file_img = gzip.open(test_image_path,'r') if n == 0 : n = 10000 file_lbl.read(8) buff = file_lbl.read(1 * n) labels = np.frombuffer(buff, dtype=np.uint8).astype(np.int64) image_size = 28 file_img.read(16) buff = file_img.read(image_size * image_size * n) data = np.frombuffer(buff, dtype=np.uint8).astype(np.float32) data = data.reshape(n, image_size, image_size, 1) return [data,labels] def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) #---------------------------------------------------------------------------- # Functions used to print the results def show_img(img): plt.imshow(img) def show_mult_img(imgs): n = len(imgs) l = int(n**(1/2)) if int(n**(1/2)) != n**(1/2): l+=1 fig = plt.figure(figsize=(l*2,l*2)) for i in range(len(imgs)): sub = fig.add_subplot(l,l,i+1) sub.imshow(imgs[i], interpolation='nearest') #---------------------------------------------------------------------------- # Testing Area def test(): # n = 15 # lbl,img = get_both(n) # print(lbl) # plt.imshow(img) get_set() if __name__ == "__main__": test()
true
fc4daaa789e3fb4b620a82d5949b53a6979d34c1
Python
liuq4360/recommender_systems_abc
/preprocessing/netflix_prize/transform2triple.py
UTF-8
831
2.90625
3
[]
no_license
#!/usr/bin/env python # coding=utf-8 # 将training_set转换为三元组(userid,videoid,score) import os cwd = os.getcwd() # 获取当前工作目录 f_path = os.path.abspath(os.path.join(cwd, "..")) # 获取上一级目录 all_files = os.listdir(f_path + '/data/mini_training_set') data = f_path + "/output/data.txt" fp = open(data, 'w') # 打开文件,如果文件不存在则创建它,该文件是存储最终的三元组 for path in all_files: with open(f_path+"/data/training_set/"+path, "r") as f: # 设置文件对象 lines = f.readlines() video_id = lines[0].strip(':\n') for l in lines[1:]: user_score_time = l.strip('\n').split(',') user_id = user_score_time[0] score = user_score_time[1] fp.write(user_id+","+video_id+","+score+"\n") fp.close()
true
5d9dfea2b95dbe3d48e05e6dc93f08237672a948
Python
adrianosferreira/python-algorithms
/study.py
UTF-8
1,217
3.015625
3
[]
no_license
adjacent_list = { 1: [2, 5], 2: [1, 3], 3: [6, 4, 2], 4: [5, 3], 5: [1, 4], 6: [3, 7], 7: [6, 8, 9], 8: [7], 9: [7], } def find_articulation_points(): visited = [False for x in range(len(adjacent_list) + 1)] dt = [0 for x in range(len(adjacent_list) + 1)] low_link = [0 for x in range(len(adjacent_list) + 1)] ap = [False for x in range(len(adjacent_list) + 1)] helper(1, visited, low_link, dt, -1, ap) for i in range(len(ap)): if ap[i]: print(f"AP: %s" % i) def helper(node, visited, low_link, dt, parent, ap): id = max(dt) + 1 dt[node] = low_link[node] = id visited[node] = True children = 0 for neighbour in adjacent_list[node]: if not visited[neighbour]: children += 1 helper(neighbour, visited, low_link, dt, node, ap) low_link[node] = min(low_link[node], low_link[neighbour]) if parent != -1 and low_link[neighbour] >= dt[node]: ap[node] = True if parent == -1 and children > 1: ap[node] = True else: low_link[node] = min(low_link[node], dt[neighbour]) find_articulation_points()
true
75104a69fcd4c02cf00847e242e5573e1f8907d4
Python
shawn-hurley/testproject
/inventory/models.py
UTF-8
1,432
2.75
3
[]
no_license
from django.db import models # Create your models here. class Category(models.Model): """Category for each item.""" name = models.CharField("Category Name", max_length=50) description = models.TextField("Description") def save(self): super(Category, self).save() def get_category(cate): return Category.objects.filter(name=cate) def __unicode__(self): return self.name class Item(models.Model): """Item, this should never be updated unless by admins These will only be managed by admins through either the admin interface or what will eventually be the dashboard """ name = models.CharField("Item Name", max_length=150) category = models.ForeignKey(Category) min_num = models.PositiveIntegerField("Minumum Number") def save(self): super(Item, self).save() def get_item(item): return Item.objects.get(name=item) def __unicode__(self): return self.name class InventoryRecord(models.Model): """This will record that is manipulated trough the interface. This will keep track of quantity of that item, and the last time it was edited """ item = models.ForeignKey(Item) quantity = models.PositiveIntegerField("Quantity") last_update = models.DateTimeField("Last Update", auto_now_add=True) def save(self): super(InventoryRecord, self).save() def get_inventory_recorded(record): return InventoryRecord.objects.get(name=record) def __unicode__(self): return unicode(self.item)
true
3a267bb21aa82f8e57e754b4a442afc2e9dc7dd1
Python
ushahamsaraju/sampleproject
/EMS/submodules/add.py
UTF-8
2,045
3.25
3
[]
no_license
import re from randompwd import id_generator,get_emp_details import smtplib class employee(): def add_employee(self): Eid=raw_input("Enter Employee Number:") while True: if Eid in get_emp_details(0): print "NUmber Already exists" print "Enter a number once again" else: break Ename=raw_input("Enter Employee Name:") Designation=raw_input("Enter Employee Designation:") Deptno=raw_input("Enter Employee Department Number:") flag=True while flag: try: Salary=int(raw_input("Enter Employee Salary:")) except Exception as e: print "Enter only Integer values" continue if int(Salary)>0: flag=False else: print "Salary Should be Positive, please enter correctely" flag = True while flag: Email = raw_input("Please Enter Email :") if re.search('\w+[.|\w]\w+@\w+[.]\w+[.|\w+]\w+',Email): flag = False else: print "Invalid Email, Please try again." Address=raw_input("Enter Employee Address:") flag = True while flag: try: Phno = int(raw_input("Please Enter 10 digit Mobile Number :")) except Exception: print "Enter only numbers, Please try again." continue if len(str(Phno)) == 10: flag = False else: print "Invalid Phone Number, Please try again." f=open("employee.txt","a") data="%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n"%(Eid,Ename,Designation,Deptno,Salary,Email,Address,Phno) f.write(data) f.close() s=raw_input("enter y or n") print "If You want to enter one more employee:",s if s=='y': add_employee() else: exit() e=employee() e.add_employee()
true
2990621417909474964bc9bf6e533fd8ae944164
Python
mhhennig/spikeforest
/spikeforest/forestview/recording_views/currentstateview.py
UTF-8
670
2.734375
3
[ "Apache-2.0" ]
permissive
import vdomr as vd import json class CurrentStateView(vd.Component): def __init__(self, context): vd.Component.__init__(self) self._context = context self._context.onAnyStateChanged(self.refresh) self._size = (100, 100) def tabLabel(self): return 'Current state' def setSize(self, size): if self._size == size: return self._size = size self.refresh() def size(self): return self._size def render(self): state0 = self._context.stateObject() return vd.div( vd.pre( json.dumps(state0, indent=4) ) )
true
f310e66f222609ac41b2284ce325a45a984281a5
Python
giuliano-sider/preparing-for-the-quantum-apocalypse
/ntru_implementations/python/ntru_a_new_hope.py
UTF-8
31,640
3.0625
3
[]
no_license
#!/usr/bin/env python3 """ntru: a new hope""" import secrets import hashlib import random import re import math import sys def extended_euclidean_algorithm(a, b): """purely iterative version of the extended euclidean algorithm. compute gcd of integers a and b, as well as integers x and y""" """ such that ax + by = gcd(x,y). return (x,y,gcd(a,b)).""" assert type(a) is int and type(b) is int sign_a = 1 sign_b = 1 if a < 0: sign_a = -1 a = -a if b < 0: sign_b = -1 b = -b # maintain the loop invariant: r_j = s_j * a + t_j * b, for all j > 0 r_j_2 = a; s_j_2 = 1; t_j_2 = 0 r_j_1 = b; s_j_1 = 0; t_j_1 = 1 while r_j_1 > 0: q_j_1 = r_j_2 // r_j_1 r_j = r_j_2 - q_j_1 * r_j_1 s_j = s_j_2 - q_j_1 * s_j_1 t_j = t_j_2 - q_j_1 * t_j_1 r_j_1, r_j_2 = r_j, r_j_1 s_j_1, s_j_2 = s_j, s_j_1 t_j_1, t_j_2 = t_j, t_j_1 return (sign_a * s_j_2, sign_b * t_j_2, r_j_2) def mod_inverse(num, m): """calculate multiplicative inverse of num, modulo a positive integer m""" assert(m > 0) a, b, g = extended_euclidean_algorithm(num, m) if g != 1: raise ArithmeticError('the number %d does not have a multiplicative inverse modulo %d' % (num, m)) return a % m def str2coefflist(s): """convert a string representation of a polynomial to a list of coefficients.""" """ last element of the list (highest degree term) is non zero. the zero polynomial""" """ is represented by an empty list.""" coefflist = [] degree = -1 s = s.replace('-', '+-') terms = s.split('+') for term in terms: term = term.replace(' ', '') match = re.fullmatch(r"""(?xi) (-?\d+)? (?# group 1: coefficient for this term) (\*? x (?: (?:\^|\*\*) (?# group 2: is there an x?) (\d+) (?# group 3: exponent) )?)?""", term) if match is None: # match failed raise SyntaxError('polynomial must be a sum of terms k*x^e') coeff, xterm, exponent = match.groups() if coeff is None and xterm is None: continue coeff = 1 if coeff is None else int(coeff) if exponent is None and xterm is None: exponent = 0 elif exponent is None: exponent = 1 else: exponent = int(exponent) if coeff != 0: for i in range(degree + 1, exponent + 1): coefflist.append(0) degree += 1 coefflist[exponent] += coeff return coefflist def coefflist2str(coefflist): """convert a coefficient list of a polynomial to a string representation""" noitems = True s = '' for i in range(len(coefflist) - 1, -1, -1): if coefflist[i] != 0: if coefflist[i] > 0: if noitems == False: sign = '+' else: sign = '' else: sign = '-' if abs(coefflist[i]) != 1 or i == 0: coeff = ' ' + str(abs(coefflist[i])) else: coeff = '' if i > 0: x = ' x' else: x = '' if i > 1: exponent = '^%d' % i else: exponent = '' s += ' %s%s%s%s' % (sign, coeff, x, exponent) noitems = False if noitems == True: s = '0' return s.strip() class conv_poly(): """represents polynomials in the ring Z[x]/(x^n - 1) or Z/pZ[x]/(x^n - 1) invariant: coefficients in [0, self.coeff_mod) if self.coeff_mod is not None. otherwise there is no restriction. degree is maintained as the highest non-zero term or -1 if equal to the zero polynomial""" def __init__(self, n, p=None, polynomial=None): self.coefflist = [0] * (n + 1) # zero polynomial with n coefficients, going from a_0, ..., a_{n - 1} (but we leave space for an extra coefficient) self.n = n self.coeff_mod = p # polynomial in Z[x]/(x^n - 1) ring by default self.degree = -1 # zero polynomial if polynomial is not None: lst = str2coefflist(polynomial) for i, c in enumerate(lst): self.coefflist[i] = c if p is not None: self.coefflist[i] %= p if self.coefflist[i] != 0: self.degree = i def __str__(self): return coefflist2str(self.coefflist) def __repr__(self): return 'conv_poly(polynomial=%s, n=%d, p=%s)' % (self.__str__(), self.n, str(self.coeff_mod)) def leading_coeff(self): if self.degree == -1: return 0 else: return self.coefflist[self.degree] def get_degree(self): for i in range(len(self.coefflist) - 1, -1, -1): if self.coefflist[i] != 0: return i return -1 def set_coeff_mod(self, coeff_mod): """!!mutates!! the polynomial by taking every coefficient modulo a new value and changing the modulus of the polynomial""" self.coeff_mod = coeff_mod for i in range(len(self.coefflist)): self.coefflist[i] %= coeff_mod self.degree = self.get_degree() def lift(self): """!!mutates!! the polynomial and """ """provides a way of mapping polynomials from Z/pZ[x]/(x^n - 1) to Z[x]/(x^n - 1) that is used in ntru""" if self.coeff_mod == None: raise Exception('polynomial already belongs to the Z[x]/(x^n - 1) ring') for i in range(0, self.degree + 1): if self.coefflist[i] > self.coeff_mod // 2: self.coefflist[i] -= self.coeff_mod self.coeff_mod = None def copy(self, new_coeff_mod=None): """if new_coeff_mod is not None, the modulus for the new polynomial given by this parameter""" new_poly = conv_poly(self.n, self.coeff_mod) new_poly.coefflist = self.coefflist.copy() new_poly.degree = self.degree if new_coeff_mod is not None and new_coeff_mod != self.coeff_mod: new_poly.set_coeff_mod(new_coeff_mod) return new_poly def __eq__(self, other): if self.degree != other.degree: return False for i in range(self.degree, -1, -1): if self.coefflist[i] != other.coefflist[i]: return False return True def __ne__(self, other): return not self.__eq__(other) def __add__(self, other, op='add'): """creates a new polynomial that is the sum or difference of the two operands""" sign = 1 if op == 'add' else -1 assert (self.coeff_mod == other.coeff_mod) new_poly = conv_poly(self.n, self.coeff_mod) i = 0 while i <= self.degree or i <= other.degree: new_poly.coefflist[i] = self.coefflist[i] + sign * other.coefflist[i] if new_poly.coeff_mod is not None: new_poly.coefflist[i] %= new_poly.coeff_mod if new_poly.coefflist[i] != 0: new_poly.degree = i i += 1 return new_poly def __sub__(self, other): """creates a new polynomial that is the difference of the two operands""" return self.__add__(other, 'sub') def __mul__(self, other): """creates a new polynomial that is the product of the two operands""" assert self.coeff_mod == other.coeff_mod and self.n == other.n new_poly = conv_poly(self.n, self.coeff_mod) for i in range(self.n): for j in range(self.n): new_poly.coefflist[i] += self.coefflist[j] * other.coefflist[(i - j) % self.n] if new_poly.coeff_mod is not None: new_poly.coefflist[i] %= new_poly.coeff_mod if new_poly.coefflist[i] != 0: new_poly.degree = i return new_poly def mult_by_term(self, coeff, power): """this operation multiplies a polynomial by coeff * x^power (a new polynomial is returned). it assumes that self.degree + power <= self.n, so there is space is the coefflist""" new_poly = conv_poly(self.n, self.coeff_mod) for i in range(self.degree, -1, -1): new_poly.coefflist[power + i] = coeff * self.coefflist[i] if new_poly.coeff_mod is not None: new_poly.coefflist[power + i] %= new_poly.coeff_mod new_poly.degree = new_poly.get_degree() return new_poly def make_monic(self): """returns a new non-zero polynomial that is monic by dividing through by the leading coefficient""" if self.degree == -1: # zero polynomial cannot be monic raise ValueError('tried to make the zero polynomial monic, which is not possible') else: return self.mult_by_term(coeff=mod_inverse(self.leading_coeff(), self.coeff_mod), power=0) def poly_extended_euclidean_algorithm(self, b): """iterative version of the extended euclidean algorithm for polynomials takes 2 polynomials with coefficients in Z_p and returns a gcd for them, as well as polynomials x and y such that ax + by = gcd""" a = self assert a.coeff_mod is not None and a.coeff_mod == b.coeff_mod and a.n == b.n p = a.coeff_mod zero_poly = conv_poly(self.n, p=p) one_poly = conv_poly(self.n, p=p) one_poly.coefflist[0] = 1 one_poly.degree = 0 # maintain the loop invariant: r_j = s_j * a + t_j * b, for all j > 0 r_j_2 = a; s_j_2 = one_poly; t_j_2 = zero_poly r_j_1 = b; s_j_1 = zero_poly; t_j_1 = one_poly while r_j_1.degree != -1: # while r_j_1 is not the zero polynomial if r_j_2.degree < r_j_1.degree: # must switch the two r_j_1, r_j_2 = r_j_2, r_j_1 s_j_1, s_j_2 = s_j_2, s_j_1 t_j_1, t_j_2 = t_j_2, t_j_1 continue # must compute r_j = r_j_2 - a_n * b_k_inv * x^(n - k) * r_j_1 b_k_inv = mod_inverse(r_j_1.leading_coeff(), p) a_n = r_j_2.leading_coeff() n_minus_k = r_j_2.degree - r_j_1.degree r_j = r_j_2 - r_j_1.mult_by_term(coeff=((b_k_inv * a_n) % p), power=n_minus_k) s_j = s_j_2 - s_j_1.mult_by_term(coeff=((b_k_inv * a_n) % p), power=n_minus_k) t_j = t_j_2 - t_j_1.mult_by_term(coeff=((b_k_inv * a_n) % p), power=n_minus_k) r_j_1, r_j_2 = r_j, r_j_1 s_j_1, s_j_2 = s_j, s_j_1 t_j_1, t_j_2 = t_j, t_j_1 return (s_j_2, t_j_2, r_j_2) def invert_with_prime_mod_coeffs(self): """designed for polynomials with coefficients in Z_p, p prime""" assert self.coeff_mod is not None mod_poly = conv_poly(self.n, self.coeff_mod) mod_poly.coefflist[self.n] = 1 mod_poly.coefflist[0] = self.coeff_mod - 1 mod_poly.degree = self.n x, y, g = self.poly_extended_euclidean_algorithm(mod_poly) if g.degree != 0: # if not a constant, non-zero polynomial, the polynomial is not invertible raise ArithmeticError('the polynomial does not have a multiplicative inverse modulo') x_adjusted = x.mult_by_term(coeff=mod_inverse(g.leading_coeff(), self.coeff_mod), power=0) if x_adjusted.coefflist[self.n] != 0: x_adjusted.coefflist[0] = (x_adjusted.coefflist[0] + x_adjusted.coefflist[self.n]) % self.coeff_mod x_adjusted.coefflist[self.n] = 0 x_adjusted.degree = x_adjusted.get_degree() return x_adjusted def invert_with_prime_power_mod_coeffs(self, q=None, p=None): """invert a polynomial in (Z/qZ[x] / x^n - 1), where q = p^k, p being a prime""" if q is None: q = self.coeff_mod if p is None: p = q if q is None: raise Exception('modulus for calculating the inverse polynomial was not specified') two_poly = conv_poly(self.n) two_poly.coefflist[0] = 2 two_poly.degree = 0 tmp_poly = self.copy(new_coeff_mod=p) inv = tmp_poly.invert_with_prime_mod_coeffs() while p < q: p = p * p two_poly.coeff_mod = p inv.coeff_mod = p tmp_poly = self.copy(new_coeff_mod=p) inv = inv * (two_poly - tmp_poly * inv) inv.set_coeff_mod(q) return inv def msgtext_to_msgpoly(msg_text, n, p, secret_generator=secrets.SystemRandom()): """converts a string of text, msg_text (considered in UTF-8 encoding), into an array of bytes with given output_length in bits for delivery to NTRU (zero padded on the right to byte boundary), or throws an exception if output length is not enough to pack the message""" bits_per_coefficient = math.floor(math.log(p, 2)) output_length = n * bits_per_coefficient # 256 is the size of the 160 sha-1 hash field, 16 bit message bit length and 80 bit mandatory padding HEADER_SIZE = 256 msg_text_bytes = msg_text.encode() text_bitlength = len(msg_text_bytes) * 8 # text bit length field if HEADER_SIZE + text_bitlength > output_length: raise ValueError('the text "%s", with %d bytes in length, is too large;' ' only %d bytes of payload are possible to encode with a message length of %d bits' % (msg_text, len(msg_text_bytes), (output_length - HEADER_SIZE) // 8, output_length)) msg_bits = bytearray(20) # sha-1 hash field msg_bits.append((text_bitlength & 0xFF00) >> 8) msg_bits.append(text_bitlength & 0xFF) for i in range(10): # mandatory random padding field msg_bits.append(secret_generator.randrange(0, 256)) for b in msg_text_bytes: msg_bits.append(b) bitcount = HEADER_SIZE + text_bitlength while bitcount < output_length: # fill out extra random padding up to bit output length b = 0 for i in range(7,-1,-1): b |= secret_generator.randrange(0, 2) << i bitcount += 1 if bitcount >= output_length: break msg_bits.append(b) h = hashlib.sha1() # fill out hash field h.update(msg_bits[20:]) msg_bits[0:20] = h.digest() #convert a byte like object to a string of bits in a list""" msg_bitstring = [] for b in msg_bits: for i in range(7,-1,-1): msg_bitstring.append((b & (1 << i)) >> i) # copy ith bit # generate a polynomial from a sequence of message bits (encoded as a list of bits). # the first n * floor(log(p)) bits in the msg_bits are turned into coefficients, a_0, ..., a_{n - 1}""" bitindex = 0 poly = conv_poly(n, p) for c in range(n): coeff_val = 0 for bit in range(bits_per_coefficient): coeff_val = 2 * coeff_val + msg_bitstring[bitindex] bitindex += 1 poly.coefflist[c] = coeff_val return poly class decryption_failure(Exception): pass def msgpoly_to_msgtext(poly): bits_per_coefficient = math.floor(math.log(poly.coeff_mod, 2)) maxval = 2 ** bits_per_coefficient total_bit_count = bits_per_coefficient * poly.n bitlist = [] for c in poly.coefflist: if c >= maxval: raise decryption_failure('encoding error: message polynomial coefficient too large') for i in range(bits_per_coefficient - 1, -1, -1): bitlist.append((c & (1 << i)) >> i) # copy ith bit bitcount = 0 msg_bits = bytearray() while bitcount < len(bitlist): v = 0 for i in range(7,-1,-1): v |= bitlist[bitcount] << i bitcount += 1 if bitcount >= len(bitlist): break msg_bits.append(v) hasher = hashlib.sha1() hasher.update(msg_bits[20:]) check_hash = hasher.digest() hsh = msg_bits[:20] if hsh != check_hash: raise decryption_failure('encoding error: hash values in message do not match up') HEADER_SIZE = 256 msg_size = msg_bits[20] << 8 msg_size += msg_bits[21] if HEADER_SIZE + msg_size > total_bit_count: raise decryption_failure('encoding error: msg_size overflowed the end of the transmitted data') if msg_size % 8 != 0: raise decryption_failure('encoding error: must be an incorrect msg_size number of bits in the transmitted data') return msg_bits[32:32 + msg_size // 8].decode() def bits_to_poly(bits, n, p): """generate a polynomial from a sequence of bits (encoded as a byte-like object). the first n * ceil(log(p)) bits are turned into coefficients, a_0, ..., a_{n - 1}""" # convert a byte like object to a string of bits in a list bitstring = [] for b in bits: for i in range(7,-1,-1): bitstring.append((b & (1 << i)) >> i) # copy ith bit bits_per_coefficient = math.ceil(math.log(p, 2)) if len(bitstring) < n * bits_per_coefficient: raise ValueError('expected at least %d * %d = %d bits in byte sequence to be encoded into a polynomial, ' 'but only %d were found\n' % (n, bits_per_coefficient, n * bits_per_coefficient, len(bitstring))) bitindex = 0 poly = conv_poly(n, p) for i in range(n): coeff_val = 0 for b in range(bits_per_coefficient): coeff_val = 2 * coeff_val + bitstring[bitindex] bitindex += 1 if coeff_val >= p: raise ValueError('encoding error: value of %d for coefficient %d is too large' % (coeff_val, i)) poly.coefflist[i] = coeff_val if coeff_val != 0: poly.degree = i return poly def poly_to_bits(poly): """returns a sequence of bytes having a bit prefix of length n * ceil(log(p))""" bits_per_coefficient = math.ceil(math.log(poly.coeff_mod, 2)) total_bits = poly.n * bits_per_coefficient bitlist = [] for c in poly.coefflist: for i in range(bits_per_coefficient - 1, -1, -1): bitlist.append((c & (1 << i)) >> i) # copy ith bit bitcount = 0 msg_bits = bytearray() while bitcount < len(bitlist): v = 0 for i in range(7,-1,-1): v |= bitlist[bitcount] << i bitcount += 1 if bitcount >= len(bitlist): break msg_bits.append(v) return msg_bits def generate_random_polynomial(n, ones, minus_ones, secret_generator=secrets.SystemRandom()): poly_coeff_list = (n + 1) * [0] ones_filled = 0 minus_ones_filled = 0 degree = -1 while ones_filled < ones: idx = secret_generator.randrange(0, n) if poly_coeff_list[idx] == 0: poly_coeff_list[idx] = 1 ones_filled += 1 if idx > degree: degree = idx while minus_ones_filled < minus_ones: idx = secret_generator.randrange(0, n) if poly_coeff_list[idx] == 0: poly_coeff_list[idx] = -1 minus_ones_filled += 1 if idx > degree: degree = idx poly = conv_poly(n) poly.coefflist = poly_coeff_list poly.degree = degree return poly def ntru_keygen(param_set, secret_generator=secrets.SystemRandom()): # by default use high entropy bits obtained from the operating system """generate an NTRU key pair, param_set is a dictionary with keys for parameters n, p, q, d_f, d_g, d_r return key_info in the format {'f': ____, 'g': ____, 'f_inv_q': ____, 'f_inv_p': ____, 'h': ____, 'params': _____}, where the polynomials are bytearray objects.""" n = param_set['n'] q = param_set['q'] p = param_set['p'] d_f = param_set['d_f']; d_g = param_set['d_g']; d_r = param_set['d_r'] assert 2 * d_f + 1 < n and 2 * d_g < n and 2 * d_r < n # generate f and its inverses in the large and small convolution rings valid_f = False while not valid_f: f = generate_random_polynomial(n, d_f + 1, d_f, secret_generator) try: # q = b^k, information provided in the instance of ntru f_inv_q = f.invert_with_prime_power_mod_coeffs(q, param_set['prime_factor_q']) except ArithmeticError as error: print('%s: could not invert polynomial %s\n%s\n' % (error.args, f, error.args)) continue try: # p is assumed to be a prime f_inv_p = f.copy(new_coeff_mod=param_set['p']).invert_with_prime_mod_coeffs() except ArithmeticError as error: print('%s: could not invert polynomial %s\n%s\n' % (error.args, f, error.args)) continue valid_f = True g = generate_random_polynomial(n, d_g, d_g, secret_generator) g.set_coeff_mod(q) f.set_coeff_mod(q) h = (f_inv_q * g).mult_by_term(coeff=p, power=0) return { 'param': param_set, 'f': poly_to_bits(f), 'g': poly_to_bits(g), 'f_inv_q': poly_to_bits(f_inv_q), 'f_inv_p': poly_to_bits(f_inv_p), 'h': poly_to_bits(h) } def ntru_encrypt(message, params, h, secret_generator=secrets.SystemRandom()): msg_poly = msgtext_to_msgpoly(message, params['n'], params['p']) msg_poly.lift() msg_poly.set_coeff_mod(params['q']) r = generate_random_polynomial(params['n'], ones=params['d_r'], minus_ones=params['d_r'], secret_generator=secret_generator) r.set_coeff_mod(params['q']) e = bits_to_poly(h, params['n'], params['q']) * r + msg_poly return poly_to_bits(e) def ntru_decrypt(encrypted_message, params, key_info): a = bits_to_poly(key_info['f'], params['n'], params['q']) * bits_to_poly(encrypted_message, params['n'], params['q']) a.lift() a.set_coeff_mod(params['p']) m = bits_to_poly(key_info['f_inv_p'], params['n'], params['p']) * a return msgpoly_to_msgtext(m) def test_expr_equality(test_cases): """test the equality of the value of a bunch of expressions; input taken in the form [ (test_expr1, expected_result1), . . . (test_exprN, expected_resultN) ] note that the expressions should be strings (or convertible to string), as they will be executed with eval, and then compared via __eq__""" successcount = 0 for i in range(len(test_cases)): result = eval(str(test_cases[i][0])) expected_result = eval(str(test_cases[i][1])) if result != expected_result: print('test %d FAILED!\nexpression "%s"\nyielded value "%s"\nbut we expected value"%s"\n' % (i, test_cases[i][0], repr(result), repr(expected_result))) else: print('test %d PASSED:\nexpression "%s"\nyielded value "%s"\nwhich is what we expected\n' % (i, test_cases[i][0], repr(result))) successcount += 1 print('%d out of %d tests passed\n\n' % (successcount, len(test_cases))) def test_ntru(param_sets, messages): rand_gen = random.Random(42) # seeded generator for testing passed = 0; failed = 0 for params in param_sets: print('testing the parameter set %s\n' % params) key_info = ntru_keygen(params, rand_gen) print('take note that \n', 'f = %s\n' % bits_to_poly(key_info['f'], params['n'], params['q']), 'f_inv_q = %s\n' % bits_to_poly(key_info['f_inv_q'], params['n'], params['q']), 'f_inv_p = %s\n' % bits_to_poly(key_info['f_inv_p'], params['n'], params['p']), 'g = %s\n' % bits_to_poly(key_info['g'], params['n'], params['q']), 'h = %s\n' % bits_to_poly(key_info['h'], params['n'], params['q']), 'are the polynomials of the generated key pair\n', 'and\n', 'f = %s\n' % key_info['f'], 'f_inv_q = %s\n' % key_info['f_inv_q'], 'f_inv_p = %s\n' % key_info['f_inv_p'], 'g = %s\n' % key_info['g'], 'h = %s\n' % key_info['h'], 'are the raw encoded bits', sep='') for msg in messages: msg_bytes = bytearray(msg.encode(encoding='utf-8')) print('testing the message "%s" of length %d bytes\n' % (msg, len(msg_bytes))) e = ntru_encrypt(msg, params, key_info['h'], rand_gen) print('take note that the encrypted message is encoded as the polynomial %s\n' % bits_to_poly(e, params['n'], params['q']), 'and\n', '%s\n' % e, 'are the raw bytes to transmitted\n', sep='') try: m = ntru_decrypt(e, params, key_info) except decryption_failure as de: print('failed to decrypt due to %s, %s\n' % (e.args, e)) print('FAILED') failed += 1 continue print('the decrypted message is %s\n' % m) if m == msg: print('PASSED') passed += 1 else: print('FAILED') failed += 1 print('results:\npassed %d tests, failed %d' % (passed, failed)) def test_extended_euclidean_algorithm(arglist): successcount = 0; i = 0 for a, b, correct_g in arglist: x, y, g = extended_euclidean_algorithm(a, b) if a * x + b * y != g or g != correct_g: print('\nFAILED test %d: extended_euclid(%d, %d) returned x = %d, y = %d, g = %d\n' 'where %d * %d + %d * %d = %d, and expected gcd was %d\n' % (i, a, b, x, y, g, a, x, b, y, g, correct_g)) else: print('\nPASSED test %d: extended_euclid(%d, %d) returned x = %d, y = %d, g = %d\n' 'where %d * %d + %d * %d = %d, and expected gcd was %d\n' % (i, a, b, x, y, g, a, x, b, y, g, correct_g)) successcount += 1 i += 1 print('%d out of %d tests passed\n\n' % (successcount, len(arglist))) def test_poly_extended_euclidean_algorithm(arglist): successcount = 0; i = 0 for a, b, correct_g in arglist: x, y, g = conv_poly.poly_extended_euclidean_algorithm(a, b) if a * x + b * y != g or conv_poly.make_monic(g) != conv_poly.make_monic(correct_g): print('\nFAILED test %d: poly_extended_extended_euclid(%s, %s) returned x = (%s), y = (%s), g = (%s)\n' 'where (%s) * (%s) + (%s) * (%s) = (%s), and expected gcd was (%s)\n' % (i, a, b, x, y, g, a, x, b, y, a*x + b*y, correct_g)) else: print('\nPASSED test %d: poly_extended_extended_euclid(%s, %s) returned x = (%s), y = (%s), g = (%s)\n' 'where (%s) * (%s) + (%s) * (%s) = (%s), and expected gcd was (%s)\n' % (i, a, b, x, y, g, a, x, b, y, g, correct_g)) successcount += 1 i += 1 print('%d out of %d tests passed\n\n' % (successcount, len(arglist))) def run_unit_tests(): test_extended_euclidean_algorithm( # each test case has format: (a, b, gcd(a, b)) [(16, 4, 4), (12, 8, 4), (-12, 8, 4), (1000000007, 15, 1), (-1, -13, 1)] ) test_poly_extended_euclidean_algorithm( # each test case has format: (a, b, gcd(a, b)) [(conv_poly(polynomial='x + 4', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107) * conv_poly(polynomial='x + 4', p=1000000007, n=107), conv_poly(polynomial='x + 5', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107) * conv_poly(polynomial='x + 4', p=1000000007, n=107), conv_poly(polynomial='x + 4', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107))] ) poly_extended_euclidean_algorithm_test_cases = [ ("conv_poly.poly_extended_euclidean_algorithm(conv_poly(polynomial='x + 4', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107) * conv_poly(polynomial='x + 4', p=1000000007, n=107), " "conv_poly(polynomial='x + 5', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107) * conv_poly(polynomial='x + 4', p=1000000007, n=107))[2].make_monic()", "conv_poly(polynomial='x + 4', p=1000000007, n=107) * conv_poly(polynomial='x + 7', p=1000000007, n=107)") ] test_expr_equality(poly_extended_euclidean_algorithm_test_cases) poly_test_cases = [ ("conv_poly(polynomial='x^2 + x', p=2, n=107) + conv_poly(polynomial='x + 1', p=2, n=107)", "conv_poly(polynomial='x^2 + 1', p=2, n=107)"), ] test_expr_equality(poly_test_cases) test_ntru([ # parameter sets specified in the IEEE STD 1363.1-2008, "public key cryptography based on hard lattice problems" # note: q = b^k # optimized for "size". {'param_set': 'ees401ep1', 'n': 401, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 113, 'd_g': 133, 'd_r': 113}, # 112-bit security level {'param_set': 'ees449ep1', 'n': 449, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 134, 'd_g': 149, 'd_r': 134}, # 128-bit security level {'param_set': 'ees677ep1', 'n': 677, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 157, 'd_g': 225, 'd_r': 157}, # 192-bit security level {'param_set': 'ees1087ep2', 'n': 1087, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 120, 'd_g': 362, 'd_r': 120}, # 256-bit security level # optimized for "cost", defined as running_time^2 * size. {'param_set': 'ees541ep1', 'n': 541, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 49, 'd_g': 180, 'd_r': 49}, # 112-bit decurity level {'param_set': 'ees613ep1', 'n': 613, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 55, 'd_g': 204, 'd_r': 55}, # 128-bit security level {'param_set': 'ees887ep1', 'n': 887, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 81, 'd_g': 295, 'd_r': 81}, # 192-bit security level {'param_set': 'ees1171ep1', 'n': 1171, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 106, 'd_g': 390, 'd_r': 106}, # 256-bit security level # optimized for running time {'param_set': 'ees659ep1', 'n': 659, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 38, 'd_g': 219, 'd_r': 38}, # 112-bit decurity level {'param_set': 'ees761ep1', 'n': 761, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 42, 'd_g': 253, 'd_r': 42}, # 128-bit security level {'param_set': 'ees1087ep1', 'n': 1087, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 63, 'd_g': 362, 'd_r': 63}, # 192-bit security level {'param_set': 'ees1499ep1', 'n': 1499, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 79, 'd_g': 499, 'd_r': 79}, # 256-bit security level ], [ 'mc938-2s2017', 'oi', 'tchau', '99 bottles', 'g4389hg8hg', 'cryptobunda' ] ) if __name__ == '__main__': #import ipdb #ipdb.set_trace() run_unit_tests() while 1: print('enter a line with a message to see it encrypted and decrypted. enter an empty line to quit') msg = sys.stdin.readline() if msg == '': break test_ntru([{'param_set': 'ees761ep1', 'n': 761, 'p': 3, 'q': 2048, 'prime_factor_q': 2, 'd_f': 42, 'd_g': 253, 'd_r': 42}], # 128-bit security level [msg])
true
ba1af6eab9b9926669b68beacad631a68be6ec16
Python
daviddwlee84/LeetCode
/Contest/LeetCodeWeeklyContest/WeeklyContest334/3/Sorted3.py
UTF-8
581
2.78125
3
[]
no_license
from typing import List class Solution: def maxNumOfMarkedIndices(self, nums: List[int]) -> int: nums.sort() double_nums = [num * 2 for num in nums] left = len(nums) - 1 right = len(nums) - 1 while double_nums[left] > nums[right]: left -= 1 right_end = left temp = 2 while left >= 0 and right > right_end: if double_nums[left] <= nums[right]: answer += temp temp = 0 else: left -= 1 # Not finished
true
5ea8d6b5ab68f791cb948ebea915f2ec9369ab12
Python
l-henri/gan-movie-maker
/ganMovieMaker.py
UTF-8
2,235
2.546875
3
[]
no_license
import sys sys.path.append('./gantools/gantools') import cli as ganBreederCli import os import shutil import ffmpeg import json movieFrameRate = 5 workdir = "output/01_test_global" outputVideo = "output/test.mp4" if not os.path.exists(workdir): os.makedirs(workdir) ######## # An image is caracterized by a vector, labels and a truncation value ######## def main(): print("Starting program") keysList = ["1664c75e5b4856155775f062", "9556db302ee5a7b2c04907ea"] durations = [1, 1] # Calculating frame number from transition duration frameNumberPerDuration=[] for duration in durations: frameNumberPerDuration.append(int(movieFrameRate*duration)) folderNames = [] secretData = loadSecretData() arguments = ["-u%s" % secretData["username"], "-p%s" % secretData["password"], "--no-loop", "-o"+workdir] i = 0 # Appel de la fonction sur chaque objet for key in keysList: # Creating arguments # print(frameNumberPerDuration[i]) if i == len(keysList)-1: # arguments.append("-k '" + key + "' '" + keysList[0] + "'") arguments.append("-k" + key ) arguments.append("-l" + keysList[0]) arguments.append("-n"+str(frameNumberPerDuration[i])) # arguments.append("-o"+folderNames[i]) else: # arguments.append("-k" + key + " " + keysList[i+1]) arguments.append("-k" + key ) arguments.append("-l" + keysList[i+1]) arguments.append("-n"+str(frameNumberPerDuration[i])) # arguments = ["-o outpout", "-uhenri.lieutaud@gmail.com", "-pAB6hzKSXYBf7", "-k" + key , "-l" + keysList[i+1]] # arguments.append("-o"+folderNames[i]) arguments.append("-P"+ str(i).zfill(4)) i += 1 # print(arguments) # # Vérification des arguments # args = ganBreederCli.handle_args(arguments) # print(args) # Appel de la fonction principale ganBreederCli.main(arguments) ## Saving as movie stream = ffmpeg.input(workdir+ '/*.png', pattern_type='glob', framerate=movieFrameRate) #stream = ffmpeg.framerate(24) stream = ffmpeg.output(stream, outputVideo) ffmpeg.run(stream) # ffmpeg # .input('/path/to/jpegs/*.jpg', pattern_type='glob', framerate=25) # .output('movie.mp4') # .run() def loadSecretData(): with open("secretData.json") as json_file: return json.load(json_file) if __name__ == '__main__': main()
true
3642063494aa7e39f65b69007a491d1eff2eb925
Python
roberzguerra/rover
/events/auth.py
UTF-8
446
2.515625
3
[ "BSD-3-Clause" ]
permissive
# -*- coding:utf-8 -*- from django.contrib.auth.decorators import permission_required def events_permission_required(perm, login_url='/admin/login', raise_exception=False): """ Sobrescreve o metodo que exige login para acessar a view Usar com decorator sobre o metodo que desejar o login: @method_decorator(events_login_required) """ return permission_required(perm, login_url=login_url, raise_exception=raise_exception)
true
e452873f6304a88a7f6c28ac4a5a3deeb6627f51
Python
NoahViste/Chronon
/levels.py
UTF-8
1,813
2.8125
3
[]
no_license
from tiles import Tile from textures import Texture from matrix import Grid from settings import * import os def exporter(grid, name): with open(name, "w+") as file: file.write("{0},{1}\n".format(grid.width, grid.height)) for tile in grid.all(): file.write("|,{0}\n".format(int(tile[2].collision))) for image in tile[2].image: file.write("{0},{1}\n".format(image.name, image.position)) file.write("/\n") def importer(name, texture_size): with open(name, "r") as file: lines = file.readlines() size = lines[0].split(",") size = int(size[0]), int(size[1]) grid = Grid(size) useless = None collision = False x, y = 0, 0 state = "new" for line in lines[1:]: if "/" in line: state = "new" x += 1 if x >= size[0]: y += 1 x = 0 continue if "|" in line: useless, collision = line.split(",") continue if state == "new": texture, position = line.split(",") tile = Tile(Texture(texture, int(position), texture_size)) tile.collision = bool(int(collision)) grid.put(x, y, tile) state = "added" continue if state == "added": texture, position = line.split(",") grid.get(x, y).add(Texture(texture, int(position), texture_size)) return grid def list_all(folder): all_files = os.listdir(folder) filtered_files = [] for file in all_files: if G.MAP_EXTENSION in file: filtered_files.append(file) return filtered_files
true
0630767b2c23d71a4cd35d7fabf8c860f9c07359
Python
ivanserendipity/SVM-on-iris
/SVM_iris.py
UTF-8
708
2.65625
3
[]
no_license
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Oct 12 19:24:50 2017 @author: Serendipity """ import numpy as np import pandas as pd from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn import svm from sklearn import metrics iris = datasets.load_iris() X = iris.data Y = iris.target Y = Y.reshape(150,1) data = np.hstack((X,Y)) train,test = train_test_split(data,test_size = 0.1) train_X = train[:,0:4] train_Y = train[:,4] test_X = test[:,0:4] test_Y = test[:,4] model = svm.SVC() model.fit(train_X,train_Y) prediction = model.predict(test_X) accuracy = metrics.accuracy_score(prediction,test_Y) print 'The accuracy is %f' %accuracy
true
e36e5841261dd929d9f952f24d97f0fd3b5290b5
Python
DivineJK/Colorful_QM_Program
/Spin_Synthesizer.py
UTF-8
16,743
3.015625
3
[]
no_license
# issquare # bit_digits, issquare def bit_digits(n): tmp = n cnt = 0 while tmp: tmp >>= 1 cnt += 1 return cnt def issquare(n: int): l, r = 0, n + 1 d = (l + r) // 2 cnt = bit_digits(n+1) for _ in range(cnt + 1): if d * d <= n: l = d d = (l + r) // 2 else: r = d d = (l + r) // 2 return d # integer operation # gcd, factorization def gcd(a, b): k, l = a, b while l: k, l = l, k % l return k def factorization(n): D = {} p = 2 a = n while a != 1: cnt = 0 while a % p == 0: cnt += 1 a //= p if cnt: D[p] = cnt p += 1 if p * p > n and a != 1: D[a] = 1 break return D # fraction operation # frac_sum, frac_prod, fracted def frac_sum(f1, f2, sign=1): # f1[0] / f1[1] + sign * f2[0] / f2[1] f = [f1[0]*f2[1]+sign*f1[1]*f2[0], f1[1]*f2[1]] g = gcd(f[0], f[1]) f[0] //= g f[1] //= g return f def frac_prod(f1, f2): # (f1[0] / f1[1]) * (f2[0] / f2[1]) f = [f1[0]*f2[0], f1[1]*f2[1]] g = gcd(f[0], f[1]) f[0] //= g f[1] //= g return f def fracted(f): g = gcd(f[0], f[1]) a = f[0] // g b = f[1] // g return [a, b] # sqrt operation # sqrt_sum, parse_sqrt, sqrt_prod, sqrt_frac, parse_number # ----- note: 0 is {}, so DO NOT use 0 as sqrt dictionary's key. ----- def sqrt_sum(d1, d2, sign = 1): #d = {s1: c1, s2: c2, ...} => c1*sqrt(s1) + c2*sqrt(s2) + ... dres = {i: d1[i][:] for i in d1} for i in d2: if i in d1: dres[i] = frac_sum(dres[i][:], frac_prod([sign, 1], d2[i])) else: dres[i] = frac_prod([sign, 1], d2[i]) real_dres = {} for i in dres: if dres[i][0]: real_dres[i] = dres[i][:] return real_dres def parse_sqrt(n: int): # n -> sqrt(n) sign = 1 if n < 0: sign = -1 n = -n D = factorization(n) coeff = 1 res = 1 for i in D: coeff *= i ** (D[i] // 2) res *= i * (D[i] % 2) + 1 * (1 - D[i] % 2) return {sign * res: [coeff, 1]} def sqrt_prod(d1, d2): # d1 * d2 dres = {} for i in d1: for j in d2: coeff = frac_prod(d1[i], d2[j]) res = i * j if i < 0 and j < 0: coeff[0] *= -1 light_d = parse_sqrt(res) light_L = [[i, light_d[i]] for i in light_d] coeff = frac_prod(coeff, light_L[0][1]) res = light_L[0][0] if res in dres: dres[res] = frac_sum(dres[res][:], coeff) else: dres[res] = coeff[:] dres2 = {} for i in dres: if dres[i][0]: dres2[i] = dres[i][:] return dres2 def sqrt_frac(d1, d2): # d1 / d2 upper = {} downer = {} for i in d1: if d1[i][0]: upper[i] = d1[i][:] for i in d2: if d2[i][0]: downer[i] = d2[i][:] if downer == {}: raise ZeroDivisionError("division by zero") while len(downer) != 1 or 1 not in downer: conj_d2 = {} left = {} right = {} k = 0 for j in downer: if j != 1 and k == 0: k = j for j in downer: if j % k == 0: right[j] = downer[j][:] conj_d2[j] = frac_prod([-1, 1], downer[j][:]) else: left[j] = downer[j][:] conj_d2[j] = downer[j][:] left = sqrt_prod(left, left) right = sqrt_prod(right, right) downer = sqrt_sum(left, right, -1) upper = sqrt_prod(upper, conj_d2) res = {} for i in upper: res[i] = frac_prod(upper[i][:], [downer[1][1], downer[1][0]]) return res def parse_number(d1: dict): res = 0 for i in d1: res += d1[i][0] * i**(0.5) / d1[i][1] return res # matrix operation # kronecker_product, mat_sum, mat_prod, identity_matrix def kronecker_product(mat1, mat2): n1, m1 = len(mat1), len(mat1[0]) n2, m2 = len(mat2), len(mat2[0]) res = [[{} for _ in range(m1*m2)] for __ in range(n1*n2)] for i in range(n2*n1): for j in range(m1*m2): res[i][j] = sqrt_prod(mat1[i//n2][j//m2], mat2[i%n2][j%m2]) return res def mat_sum(mat1, mat2, sign=1): n1, m1 = len(mat1), len(mat1[0]) n2, m2 = len(mat2), len(mat2[0]) if n1 != n2 or m1 != m2: raise ValueError("matrix size is invalid") res = [[{} for _ in range(m1)] for __ in range(n1)] for i in range(n1): for j in range(m1): res[i][j] = sqrt_sum(mat1[i][j], mat2[i][j], sign) return res def mat_prod(mat1, mat2): n1, m1 = len(mat1), len(mat1[0]) n2, m2 = len(mat2), len(mat2[0]) if m1 != n2: raise ValueError("matrix size is invalid") res = [[{} for _ in range(m2)] for __ in range(n1)] for i in range(n1): for j in range(m2): S = {} for k in range(m1): S = sqrt_sum(S, sqrt_prod(mat1[i][k], mat2[k][j])) res[i][j] = S return res def identity_matrix(matrix_size): res = [[{} for _ in range(matrix_size)] for __ in range(matrix_size)] for i in range(matrix_size): res[i][i] = {1: [1, 1]} return res # vector operator def inner_product(vec1, vec2): n = len(vec1) m = len(vec2) res = {} if n != m: raise ValueError("vector length is invalid") for i in range(n): res = sqrt_sum(res, sqrt_prod(vec1[i], vec2[i])) return res def narrow_normalization(vec): n = len(vec) res = [vec[i] for i in range(n)] norm = inner_product(vec, vec) if norm == {}: raise ValueError("zero-vector cannot be normalize") else: norm = sqrt_frac(parse_sqrt(norm[1][0]), parse_sqrt(norm[1][1])) for i in range(n): res[i] = sqrt_frac(res[i], norm) return res def scalar_multiplication(c, vec): n = len(vec) res = [sqrt_prod(vec[i], c) for i in range(n)] return res def vec_sum(vec1, vec2, sign=1): n = len(vec1) m = len(vec2) if n != m: raise ValueError("invalid vectors") res = [sqrt_sum(vec1[i], vec2[i], sign) for i in range(n)] return res def normalization(vec): n = len(vec) norm = 0 for i in range(n): norm += vec[i]*vec[i] if norm: norm = norm**0.5 return [vec[i] / norm for i in range(n)] else: raise ValueError("zero-vector cannot be normalize.") def gramm_schmidt(vecs): vec_num = len(vecs) dim_flg = True for i in range(vec_num-1): dim_flg *= (len(vecs[i]) == len(vecs[i+1])) if not dim_flg: raise ValueError("invalid vectors") vec_dim = len(vecs[0]) res = [[vecs[i][j] for j in range(vec_dim)] for i in range(vec_num)] for i in range(vec_num): for j in range(i): res[i] = vec_sum(res[i], scalar_multiplication(inner_product(vecs[i], res[j]), res[j]), -1) res[i] = narrow_normalization(res[i]) return res # equation solver # quadratic_equation_int, quadratic_equation_float def quadratic_equation_int(a: int, b: int, c: int): if a == 0: if b == 0: if c == 0: return "any number" return "no solution" return [{1: frac_sum([0, 1], [-c, b])}] x = parse_sqrt(b*b - 4*a*c) y = {} if b: y[1] = [-b, 1] x1 = sqrt_sum(y, x) x2 = sqrt_sum(y, x, -1) for i in x1: x1[i][1] *= 2*a x1[i] = frac_prod([1, 1], x1[i]) for i in x2: x2[i][1] *= 2*a x2[i] = frac_prod([1, 1], x2[i]) return [x1, x2] def quadratic_equation_float(a, b, c): if a == 0: if b == 0: if c == 0: return "any number" return "no solution" return [-c / b] x = (b*b - 4*a*c) ** 0.5 y = -b return [(y + x) / (2*a), (y - x) / (2*a)] def linear_equation(mat, vec): # type == dict; key: "solution", "subsolution" n, m = len(mat), len(mat[0]) nv = len(vec) ext_mat = [[{} for _ in range(m+1)] for __ in range(n)] if n != nv: raise ValueError("invalid equation, and there is no solution") for i in range(n): for j in range(m): ext_mat[i][j] = mat[i][j] for i in range(n): ext_mat[i][m] = vec[i] pnt = 0 for i in range(m+1): row_pnt = pnt flg = False while row_pnt < n: if ext_mat[row_pnt][i] == {}: row_pnt += 1 else: flg = True break if flg: for j in range(m+1): ext_mat[pnt][j], ext_mat[row_pnt][j] = ext_mat[row_pnt][j], ext_mat[pnt][j] keep = ext_mat[pnt][i] for j in range(m+1): ext_mat[pnt][j] = sqrt_frac(ext_mat[pnt][j], keep) for j in range(pnt+1, n): raw_keep = ext_mat[j][i] for k in range(m+1): ext_mat[j][k] = sqrt_sum(ext_mat[j][k], sqrt_prod(raw_keep, ext_mat[pnt][k]), -1) pnt += 1 flg = True for i in range(n): fflg = True for j in range(m): if ext_mat[i][j] != {}: fflg = False if fflg and ext_mat[i][m] != {}: flg = False if flg: for i in range(n, 0, -1): pnt = 0 fflg = False while pnt <= m: if ext_mat[i-1][pnt] == {}: pnt += 1 else: fflg = True break if fflg: keep = ext_mat[i-1][pnt] for j in range(i-1): raw_keep = ext_mat[j][pnt] for k in range(m+1): ext_mat[j][k] = sqrt_sum(ext_mat[j][k], sqrt_prod(raw_keep, ext_mat[i-1][k]), -1) chk = [-1 for _ in range(m)] D = {} cnt = 0 for i in range(n): for j in range(m): if ext_mat[i][j] != {}: chk[j] = i D[i] = j cnt += 1 break solution = {"solution": [{} for _ in range(m)], "subspace": [[{} for _ in range(m)] for __ in range(n-cnt)]} pos = 0 for i in range(m): if chk[i] == -1: solution["subspace"][pos][i] = {1: [1, 1]} for k in D: solution["subspace"][pos][D[k]] = sqrt_prod({1: [-1, 1]}, ext_mat[k][i]) pos += 1 else: solution["solution"][i] = ext_mat[chk[i]][m] for i in range(n-cnt): keep = {} for j in range(m): keep = sqrt_sum(sqrt_prod(solution["subspace"][i][j], solution["subspace"][i][j]), keep) keep = sqrt_frac(parse_sqrt(keep[1][0]), parse_sqrt(keep[1][1])) for j in range(m): solution["subspace"][i][j] = sqrt_frac(solution["subspace"][i][j], keep) return solution return "no solution" # angular momentum algebra # updown_operator, momentum_x, momentum_y, momentum_z, momentum_synthesis # J_x = (J_+ + J_-) / 2 # J_y = (J_+ - J_-) / 2i # J^2 = (J_+J_- + J_+J_-) / 2 + J_z^2 def updown_operator(n, op): res = [[{} for _ in range(n)] for __ in range(n)] if op == "upper": for i in range(n-1): res[i][i+1] = parse_sqrt((i+1)*(n-i-1)) return res elif op == "lower": for i in range(n-1): res[i+1][i] = parse_sqrt((i+1)*(n-i-1)) return res else: raise ValueError("operator valuable (2nd valuable) is not correct. it must be 'upper' or 'lower'.") def momentum_x(n): upper = updown_operator(n, "upper") lower = updown_operator(n, "lower") res = mat_sum(upper, lower) for i in range(n): for j in range(n): res[i][j] = sqrt_prod(res[i][j], {1: [1, 2]}) return res def momentum_y(n): upper = updown_operator(n, "upper") lower = updown_operator(n, "lower") res = mat_sum(upper, lower, -1) for i in range(n): for j in range(n): res[i][j] = sqrt_prod(res[i][j], {-1: [-1, 2]}) return res def momentum_z(n): val = fracted([n-1, 2]) res = [[{} for _ in range(n)] for __ in range(n)] for i in range(n): if val[0]: res[i][i] = {1: val[:]} val = frac_sum(val, [1, 1], -1) return res def momentum_synthesis(n, m): #J_1 + J_2, dim(J_1) = n, dim(J_2) = m left_x = kronecker_product(momentum_x(n), identity_matrix(m)) left_y = kronecker_product(momentum_y(n), identity_matrix(m)) left_z = kronecker_product(momentum_z(n), identity_matrix(m)) right_x = kronecker_product(identity_matrix(n), momentum_x(m)) right_y = kronecker_product(identity_matrix(n), momentum_y(m)) right_z = kronecker_product(identity_matrix(n), momentum_z(m)) synth_x = mat_sum(left_x, right_x) synth_y = mat_sum(left_y, right_y) synth_z = mat_sum(left_z, right_z) synth_x = mat_prod(synth_x, synth_x) synth_y = mat_prod(synth_y, synth_y) synth_z = mat_prod(synth_z, synth_z) res = [[{} for __ in range(n*m)] for _ in range(n*m)] res = mat_sum(res, synth_x) res = mat_sum(res, synth_y) res = mat_sum(res, synth_z) return res # test input / output N = int(input()) # <- number of spins A = list(map(int, input().split())) # <- sizes of spins' matrix (0 -> 1, 1/2 -> 2, ...) dim = 1 ms = [[[[{1: [1, 1]}]] for __ in range(3)] for _ in range(N)] for i in range(N): dim *= A[i] for j in range(N): if i == j: ms[j][0] = kronecker_product(ms[j][0], momentum_x(A[i])) ms[j][1] = kronecker_product(ms[j][1], momentum_y(A[i])) ms[j][2] = kronecker_product(ms[j][2], momentum_z(A[i])) else: for k in range(3): ms[j][k] = kronecker_product(ms[j][k], identity_matrix(A[i])) msx = [[{} for _ in range(dim)] for __ in range(dim)] msy = [[{} for _ in range(dim)] for __ in range(dim)] msz = [[{} for _ in range(dim)] for __ in range(dim)] for i in range(N): msx = mat_sum(msx, ms[i][0]) msy = mat_sum(msy, ms[i][1]) msz = mat_sum(msz, ms[i][2]) mssz = [[{} for _ in range(dim)] for __ in range(dim)] for i in range(dim): for j in range(dim): mssz[i][j] = msz[i][j] msx = mat_prod(msx, msx) msy = mat_prod(msy, msy) msz = mat_prod(msz, msz) mss = mat_sum(msx, msy) mss = mat_sum(mss, msz) spin_size = sum(A) - N zeros = [{} for _ in range(dim)] for i in range(spin_size, -1, -2): SS = {} if i: SS = {1: fracted([i*(i+2), 4])} tmps = [[{} for __ in range(dim)] for _ in range(dim)] for j in range(dim): for k in range(dim): tmps[j][k] = mss[j][k] if j == k: tmps[j][k] = sqrt_sum(tmps[j][k], SS, -1) sol = linear_equation(tmps, zeros) sstr = "" if i % 2: sstr = str(i) + "/" + str(2) else: sstr = str(i//2) if sol["subspace"] != {}: dictM = {} for j in sol["subspace"]: vec = [j[k] for k in range(dim)] nve = [{} for _ in range(dim)] for k in range(dim): SSS = {} for l in range(dim): SSS = sqrt_sum(SSS, sqrt_prod(vec[l], mssz[k][l])) nve[k] = SSS MM = {} for k in range(dim): MM = sqrt_sum(MM, sqrt_prod(vec[k], nve[k])) mstr = "" if MM == {}: mstr = "0" else: if MM[1][1] == 1: mstr = str(MM[1][0]) else: mstr = str(MM[1][0]) + "/" + str(MM[1][1]) if mstr in dictM: dictM[mstr][0] += 1 dictM[mstr].append(j) else: dictM[mstr] = [1, j[:]] for j in dictM: z = gramm_schmidt(dictM[j][1:]) for k in range(dictM[j][0]): print("|S = {}, M = {}, cnt = {}> =".format(sstr, j, k+1), end = ' ') ccnt = 0 for l in range(dim): if z[k][l] != {}: tmpk = l tmpt = [0 for _ in range(N)] for m in range(N, 0, -1): tmpt[m-1] = tmpk % A[m-1] tmpk //= A[m-1] if ccnt: print(" +", end = '') print(z[k][l], end = '') for m in range(N): print("|{}>".format(tmpt[m]), end = '') ccnt += 1 print()
true
bfff55e694c7ac494f1b79064bf9a8c8a423769d
Python
deepakdeedar/translator
/Translator/turtle.py
UTF-8
116
2.8125
3
[]
no_license
from turtle import Turtle, Screen timmy = Turtle() timmy.shape("turtle") timmy.color("coral") my_screen = Screen()
true
4e97199dc4908ce6d98a2df7a4a9b3b60ac9b296
Python
Valerii9123/Python111
/Lessons5/random_gen.py
UTF-8
276
3.140625
3
[]
no_license
import random # randrange for _ in range(15): print(random.randrange(1, 10 , 1), end=', ') print() # randint for _ in range(15): print(random.redint(1, 10), end=', ') print() # random for _ in range(15): print(random.random(1, 10), end=', ') print() # uniform
true
eaec74c4849283fe1934825624484630db7a4473
Python
surajshrestha-0/python-Basic-II
/Question3.py
UTF-8
822
4.34375
4
[]
no_license
""" Write code that will print out the anagrams (words that use the same letters) from a paragraph of text. """ from collections import defaultdict def anagramsWord(input_paragraph): words = list(set(input_paragraph.split())) grouped_words = defaultdict(list) # Put all anagram words together in a dictionary # where key is sorted word for word in words: grouped_words["".join(sorted(word))].append(word) for group in grouped_words.values(): # if length of group is greater than 1 than anagram words exist if len(group) > 1: print("Anagram words in the given paragraph are as follows : ") print(" ".join(group)) if __name__ == "__main__": paragraph = """ A cat was made to act as if it eats a rat. """ anagramsWord(paragraph)
true
e2ce552a024dff712e2b568b3daa9bab64eb00f1
Python
charu11/opencv
/demo10.py
UTF-8
1,271
2.78125
3
[]
no_license
import numpy as np import cv2 as cv def val_change(x): pass; cv.namedWindow('tracking') cv.createTrackbar('LH', 'tracking', 0, 255, val_change) # LH- lower hue cv.createTrackbar('LS', 'tracking', 0, 255, val_change) # LS- lower saturation cv.createTrackbar('LV', 'tracking', 0, 255, val_change) # LV- lower value cv.createTrackbar('UH', 'tracking', 255, 255, val_change) cv.createTrackbar('US', 'tracking', 255, 255, val_change) cv.createTrackbar('UV', 'tracking', 255, 255, val_change) while True : frame = cv.imread('smarties.png') hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) low_hue = cv.getTrackbarPos('LH', 'tracking') low_sat = cv.getTrackbarPos('LS', 'tracking') low_val = cv.getTrackbarPos('LV', 'tracking') up_hue = cv.getTrackbarPos('UH', 'tracking') up_sat = cv.getTrackbarPos('US', 'tracking') up_val = cv.getTrackbarPos('UV', 'tracking') low_bound = np.array([low_hue, low_sat, low_val]) up_bound = np.array([up_hue, up_sat, up_val]) mask = cv.inRange(hsv, low_bound, up_bound) res = cv.bitwise_and(frame, frame, mask = mask) cv.imshow('frame', frame) cv.imshow('mask', mask) cv.imshow('res', res) key = cv.waitKey(1) if key == 27: break cv.destroyAllWindows()
true
c3b56db7f9dbc015436523f3dc52ba32f9889f51
Python
shark1033/Python-Stepik
/list_summ.py
UTF-8
258
2.78125
3
[]
no_license
for i in range(0,len(s)): if len(s)==1: print(s[0]) break elif i==0: l.insert(i, s[1]+s[len(s)-1]) elif i==len(s)-1: l.insert(i, s[0]+s[i-1]) else: l.insert(i, s[i-1]+s[i+1]) print(l[i], '',end='')
true