content
stringlengths
22
815k
id
int64
0
4.91M
def upload_to_sql(git_commit_filename, commit_people_filename, cc, git_checkout_path, commits_after_date): # pragma: no cover """Writes suspicious git commits to a Cloud SQL database Args: cc: a cursor for the Cloud SQL connection git_checkout_path(str): path to a local git checkout """ write_to_csv(git_commit_filename, commit_people_filename, cc, git_checkout_path, commits_after_date) csql.write_to_sql_table(cc, commit_people_filename, 'commit_people') csql.write_to_sql_table(cc, git_commit_filename, 'git_commit')
8,900
def l2_normalize_rows(frame): """ L_2-normalize the rows of this DataFrame, so their lengths in Euclidean distance are all 1. This enables cosine similarities to be computed as dot-products between these rows. Rows of zeroes will be normalized to zeroes, and frames with no rows will be returned as-is. """ if frame.shape[0] == 0: return frame index = frame.index return pd.DataFrame( data=normalize(frame, norm='l2', copy=False, axis=1), index=index )
8,901
def install(): """ Installs the webapp code in the virtual environemnt 'web' on the server. """ with cd('/home/genomics.www/status'): with prefix('workon web'): sudo('python setup.py develop', user='genomics.www')
8,902
def unregister_custom_op(op_name: str) -> None: """ Unregister a custom operator. Args: op_name (str): Name of the custom operator """ bound_op_map.pop(op_name)
8,903
def canonical_ipv4_address(ip_addr): """Return the IPv4 address in a canonical format""" return socket.inet_ntoa(socket.inet_aton(ip_addr))
8,904
def _build_dynatree(site, expanded): """Returns a dynatree hash representation of our pages and menu hierarchy.""" subtree = _pages_subtree(site.doc_root, site.default_language, True, 1, expanded) subtree['activate'] = True pages_node = { 'title': 'Pages', 'key': 'system:pages', 'expand': True, 'icon': 'fatcow/folders_explorer.png', 'children': [subtree, ], } language = site.default_language menus = [] for menu in Menu.objects.filter(site=site): items = [] for item in menu.first_level.all(): items.append(_menuitem_subtree(item, language, True, 1, expanded)) menus.append({ 'title': menu.name, 'key': 'menu:%d' % menu.id, 'expand': True, 'icon': 'fatcow/folders.png', 'children':items, }) menus_node = { 'title': 'Menus', 'key': 'system:menus', 'expand': True, 'icon': 'fatcow/folders_explorer.png', 'children': menus, } tags = [] for tag in Tag.objects.filter(site=site): title = tag.display_text(language) if not title: title = '<i>None</i>' tags.append({ 'title': title, 'key':'tag:%d' % tag.id, 'icon': 'fatcow/document_tag.png', 'expand': False, }) tags_node = { 'title':'Tags', 'key':'system:tags', 'expand':False, 'icon': 'fatcow/folders_explorer.png', 'children': tags, } tree = [pages_node, menus_node, tags_node] return tree
8,905
def check_tie_condition(board): """ tie = if no empty cells and no win """ logging.debug('check_tie_condition()') # is the board full and no wins empty_cells = board.count('-') logging.debug(f'Number of empty cells {empty_cells}') tie = (empty_cells == 0) return tie
8,906
def aggregator(df, groupbycols): """ Aggregates flowbyactivity or flowbysector df by given groupbycols :param df: Either flowbyactivity or flowbysector :param groupbycols: Either flowbyactivity or flowbysector columns :return: """ # tmp replace null values with empty cells df = replace_NoneType_with_empty_cells(df) # drop columns with flowamount = 0 df = df[df['FlowAmount'] != 0] # list of column headers, that if exist in df, should be aggregated using the weighted avg fxn possible_column_headers = ('Spread', 'Min', 'Max', 'DataReliability', 'TemporalCorrelation', 'GeographicalCorrelation', 'TechnologicalCorrelation', 'DataCollection') # list of column headers that do exist in the df being aggregated column_headers = [e for e in possible_column_headers if e in df.columns.values.tolist()] df_dfg = df.groupby(groupbycols).agg({'FlowAmount': ['sum']}) # run through other columns creating weighted average for e in column_headers: df_dfg[e] = weighted_average(df, e, 'FlowAmount', groupbycols) df_dfg = df_dfg.reset_index() df_dfg.columns = df_dfg.columns.droplevel(level=1) # if datatypes are strings, ensure that Null values remain NoneType df_dfg = replace_strings_with_NoneType(df_dfg) return df_dfg
8,907
def test_svr_linear_rfe(): """ Test to see if normalized SVR dataset is a pandas core dataframe """ test_x_train = vse.get_data_rfe()[0] test_y_train = vse.get_data_rfe()[2] test_result = vse.svr_linear_rfe(test_x_train, test_y_train) assert isinstance(test_result[1], pd.core.frame.DataFrame), \ "Not a pandas core dataframe"
8,908
def setup_logging(): """Set up logging based on provided log params.""" formatter = logging.Formatter(LOG_FORMAT) ROOTLOGGER.setLevel(config["app"]["log_level"].upper()) sh = logging.StreamHandler() sh.setLevel(config["app"]["log_level"].upper()) sh.setFormatter(formatter) ROOTLOGGER.addHandler(sh) LOGGER.info("-------------------------STARTING-------------------------") LOGGER.info("INFO Logging Level -- Enabled") LOGGER.warning("WARNING Logging Level -- Enabled") LOGGER.critical("CRITICAL Logging Level -- Enabled") LOGGER.debug("DEBUG Logging Level -- Enabled")
8,909
def unpack(X): """ Unpack a comma separated list of values into a flat list """ return flatten([x.split(",") for x in list(X)])
8,910
def doize(tock=0.0, **opts): """ Decorator that returns Doist compatible decorated generator function. Usage: @doize def f(): pass Parameters: tock is default tock attribute of doized f opts is dictionary of remaining parameters that becomes .opts attribute of doized f """ def decorator(f): # must create copy not wrapper so inspect.isgeneratorfunction works # result of decoration g = helping.copy_func(f) g.tock = tock # default tock attributes g.done = None # default done state g.opts = dict(opts) # default opts attribute return g return decorator
8,911
def get_env(path): """ Read the environment file from given path. :param path: Path to the environment file. :return: the environment (loaded yaml) """ with codecs.open(path, 'r', 'UTF-8') as env_file: conf_string = env_file.read() env = yaml.load(conf_string) logging.debug('env: %s', env) return env
8,912
def put_value(obj, value): """Sets the value of `obj` reference to `value`. See [ECMA-262 8.7.2] for details.""" if isinstance(obj, Reference): obj.put_value(value) else: raise ReferenceError("Can't put a value of non-reference object %r" % obj)
8,913
def make_chained_transformation(tran_fns, *args, **kwargs): """Returns a dataset transformation function that applies a list of transformations sequentially. Args: tran_fns (list): A list of dataset transformation. *args: Extra arguments for each of the transformation function. **kwargs: Extra keyword arguments for each of the transformation function. Returns: A transformation function to be used in :tf_main:`tf.data.Dataset.map <data/Dataset#map>`. """ def _chained_fn(data): for tran_fns_i in tran_fns: data = tran_fns_i(data, *args, **kwargs) return data return _chained_fn
8,914
def configure_optimizer(learning_rate): """Configures the optimizer used for training. Args: learning_rate: A scalar or `Tensor` learning rate. Returns: An instance of an optimizer. Raises: ValueError: if FLAGS.optimizer is not recognized. """ if FLAGS.optimizer == 'adadelta': optimizer = tf.train.AdadeltaOptimizer( learning_rate, rho=FLAGS.adadelta_rho, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'adagrad': optimizer = tf.train.AdagradOptimizer( learning_rate, initial_accumulator_value=FLAGS.adagrad_initial_accumulator_value) elif FLAGS.optimizer == 'adam': optimizer = tf.train.AdamOptimizer( learning_rate, beta1=FLAGS.adam_beta1, beta2=FLAGS.adam_beta2, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'ftrl': optimizer = tf.train.FtrlOptimizer( learning_rate, learning_rate_power=FLAGS.ftrl_learning_rate_power, initial_accumulator_value=FLAGS.ftrl_initial_accumulator_value, l1_regularization_strength=FLAGS.ftrl_l1, l2_regularization_strength=FLAGS.ftrl_l2) elif FLAGS.optimizer == 'momentum': optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=FLAGS.momentum, name='Momentum') elif FLAGS.optimizer == 'rmsprop': optimizer = tf.train.RMSPropOptimizer( learning_rate, decay=FLAGS.rmsprop_decay, momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.opt_epsilon) elif FLAGS.optimizer == 'sgd': optimizer = tf.train.GradientDescentOptimizer(learning_rate) elif FLAGS.optimizer == "adamweightdecay": optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=0.01, beta_1=FLAGS.adam_beta1, beta_2=FLAGS.adam_beta2, epsilon=FLAGS.opt_epsilon, exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) else: raise ValueError('Optimizer [%s] was not recognized' % FLAGS.optimizer) return optimizer
8,915
def train_and_evaluate(config, workdir): """Runs a training and evaluation loop. Args: config: Configuration to use. workdir: Working directory for checkpoints and TF summaries. If this contains checkpoint training will be resumed from the latest checkpoint. Returns: Training state. """ rng = jax.random.PRNGKey(config.seed) rng, data_rng = jax.random.split(rng) # Make sure config defines num_epochs and num_train_steps appropriately. utils.check_epochs_and_steps(config) # Check that perturbed-topk is selection method. assert config.selection_method == "perturbed-topk", ( "ntsnet only supports perturbed-topk as selection method. Got: {}".format( config.selection_method)) train_preprocessing_fn, eval_preprocessing_fn = data.parse_preprocessing_strings( config.get("train_preprocess_str", ""), config.get("eval_preprocess_str", "")) assert config.batch_size % jax.local_device_count() == 0, ( f"Batch size ({config.batch_size}) should be divisible by number of " f"devices ({jax.local_device_count()}).") per_device_batch_size = config.batch_size // jax.local_device_count() train_ds, eval_ds, num_classes = data.get_dataset( config.dataset, per_device_batch_size, data_rng, train_preprocessing_fn=train_preprocessing_fn, eval_preprocessing_fn=eval_preprocessing_fn, **config.get("data", {})) module = AttentionNet.partial(config=config, num_classes=num_classes) optimizer = create_optimizer(config) loss_fn = functools.partial(ntsnet_loss, config=config) train_metrics_dict = { "train_loss": loss_fn, "train_loss_raw": cross_entropy_raw_logits, "train_loss_concat": cross_entropy_concat_logits, "train_loss_part": cross_entropy_part_logits, "train_accuracy": accuracy, "train_rpn_scores_entropy": rpn_scores_entropy, } eval_metrics_dict = { "eval_loss": loss_fn, "eval_loss_raw": cross_entropy_raw_logits, "eval_loss_concat": cross_entropy_concat_logits, "eval_loss_part": cross_entropy_part_logits, "eval_accuracy": accuracy, "eval_rpn_scores_entropy": rpn_scores_entropy, } # Enables relevant statistics aggregator. stats_aggregators = [] def add_image_prefix(image_aggregator): def aggregator(stats): d = image_aggregator(stats) return {f"image_{k}": v for k, v in d.items()} return aggregator if config.get("log_images", True): @add_image_prefix def plot_patches(stats): d = { "part_imgs": (stats["part_imgs"] + 1.0) / 2.0, "x": (stats["x"] + 1.0) / 2.0 } for i, sc in enumerate(stats["scores"]): d[f"scores_{i}"] = sc return d stats_aggregators.append(plot_patches) stats_aggregators.append(lambda x: {"sigma": x["sigma"]}) state = classification_lib.training_loop( module=module, rng=rng, train_ds=train_ds, eval_ds=eval_ds, loss_fn=loss_fn, optimizer=optimizer, train_metrics_dict=train_metrics_dict, eval_metrics_dict=eval_metrics_dict, stats_aggregators=stats_aggregators, config=config, workdir=workdir) return state
8,916
def flail(robot: DynamixelRobotComponent): """Commands the robot to flail if it's stuck on an obstacle.""" for _ in range(6): robot.set_state( {'all': RobotState(qpos=(np.random.rand(12) - .5) * 3)}, **SET_PARAMS, timeout=.15, )
8,917
def deploy(version): """ depoly app to cloud """ with cd(app_path): get_app(version) setup_app(version) config_app() nginx_config() nginx_enable_site('growth-studio.conf') circus_config() circus_upstart_config() circus_start() nginx_restart()
8,918
def test_publishing_the_same_volumes_with_a_different_target_path(): """Publishing the same volumes with a different target_path."""
8,919
def increment(i,k): """ this is a helper function for a summation of the type :math:`\sum_{0 \leq k \leq i}`, where i and k are multi-indices. Parameters ---------- i: numpy.ndarray integer array, i.size = N k: numpy.ndarray integer array, k.size = N Returns ------- changes k on return Example ------- k = [1,0,1] i = [2,0,2] increment(i, k) # changes k to [1,0,2] increment(i, k) # changes k to [2,0,0] increment(i, k) # changes k to [2,0,1] """ carryover = 1 if len(k) != len(i): raise ValueError('size of i and k do not match up') for n in range(len(k))[::-1]: if i[n] == 0: continue tmp = k[n] + carryover # print 'tmp=',tmp carryover = tmp // (i[n]+1) # print 'carryover=',carryover k[n] = tmp % (i[n]+1) if carryover == 0: break return k
8,920
def sample_lopt(key: chex.PRNGKey) -> cfgobject.CFGObject: """Sample a small lopt model.""" lf = cfgobject.LogFeature rng = hk.PRNGSequence(key) task_family_cfg = para_image_mlp.sample_image_mlp(next(rng)) lopt_name = parametric_utils.choice( next(rng), [ "LearnableAdam", "LearnableSGDM", "LearnableSGD", "MLPLOpt", "AdafacMLPLOpt" ]) kwargs = {} if lopt_name in ["MLPLOpt", "AdafacMLPLOpt"]: kwargs["hidden_size"] = lf(parametric_utils.log_int(next(rng), 2, 512)) kwargs["hidden_layers"] = parametric_utils.log_int(next(rng), 1, 4) kwargs["exp_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1)) kwargs["step_mult"] = lf(parametric_utils.log_float(next(rng), 1e-5, 1)) lopt_cfg = cfgobject.CFGObject(lopt_name, kwargs) num_steps = lf(parametric_utils.log_int(next(rng), 1, 100)) outer_bs = lf(parametric_utils.log_int(next(rng), 1, 8)) return cfgobject.CFGObject( "ParametricLOpt", { "lopt": lopt_cfg, "task_family": task_family_cfg, "num_steps": num_steps, "outer_batch_size": outer_bs, })
8,921
def helper_describe_zones(): """ Create the zones list in the project :return: """ global zones_list request = compute_service.zones().list(project=project) while request is not None: response = request.execute() for zone in response['items']: zones_list.append(zone['name']) request = compute_service.zones().list_next(previous_request=request, previous_response=response) return
8,922
def gen_df_groupby_usecase(method_name, groupby_params=None, method_params=''): """Generate df groupby method use case""" groupby_params = {} if groupby_params is None else groupby_params groupby_params = get_groupby_params(**groupby_params) func_text = groupby_usecase_tmpl.format(**{ 'method_name': method_name, 'groupby_params': groupby_params, 'method_params': method_params }) global_vars = {'np': numpy, 'time': time} loc_vars = {} exec(func_text, global_vars, loc_vars) _df_groupby_usecase = loc_vars[f'df_groupby_{method_name}_usecase'] return _df_groupby_usecase
8,923
def run_successful_task(action: Action, action_owner_name: str): """Run action and expect it succeeds""" task = action.run() try: wait_for_task_and_assert_result(task, status="success") except AssertionError as error: raise AssertionError( f'Action {action.name} should have succeeded when ran on {action_owner_name}:\n{error}' ) from error
8,924
def _processor_startup_fn( pull_port, push_port, sockets_connected_evt, process_fn, event_queue, debug ): """ Parameters ---------- pull_port : push_port : sockets_connected_evt : process_fn : event_queue : debug : Returns ------- """ bridge = Bridge(debug=debug) push_socket = bridge._connect_push(pull_port) pull_socket = bridge._connect_pull(push_port) if debug: print("image processing sockets connected") sockets_connected_evt.set() def process_and_sendoff(image_tags_tuple, original_dtype): """ Parameters ---------- image_tags_tuple : Returns ------- """ if len(image_tags_tuple) != 2: raise Exception("If image is returned, it must be of the form (pixel, metadata)") pixels = image_tags_tuple[0] metadata = image_tags_tuple[1] # only accepts same pixel type as original if not np.issubdtype(image_tags_tuple[0].dtype, original_dtype) and not np.issubdtype( original_dtype, image_tags_tuple[0].dtype ): raise Exception( "Processed image pixels must have same dtype as input image pixels, " "but instead they were {} and {}".format(image_tags_tuple[0].dtype, pixels.dtype) ) metadata["PixelType"] = "GRAY8" if pixels.dtype.itemsize == 1 else "GRAY16" processed_img = { "pixels": pixels.tobytes(), "metadata": metadata, } push_socket.send(processed_img) while True: message = None while message is None: message = pull_socket.receive(timeout=30) # check for new message if "special" in message and message["special"] == "finished": push_socket.send(message) # Continue propagating the finihsed signal push_socket.close() pull_socket.close() return metadata = message["metadata"] pixels = deserialize_array(message["pixels"]) image = np.reshape(pixels, [metadata["Height"], metadata["Width"]]) params = signature(process_fn).parameters if len(params) == 2 or len(params) == 4: processed = None try: if len(params) == 2: processed = process_fn(image, metadata) elif len(params) == 4: processed = process_fn(image, metadata, bridge, event_queue) except Exception as e: warnings.warn("exception in image processor: {}".format(e)) continue else: raise Exception( "Incorrect number of arguments for image processing function, must be 2 or 4" ) if processed is None: continue if type(processed) == list: for image in processed: process_and_sendoff(image, pixels.dtype) else: process_and_sendoff(processed, pixels.dtype)
8,925
def hydra_breakpoints(in_bam, pair_stats): """Detect structural variation breakpoints with hydra. """ in_bed = convert_bam_to_bed(in_bam) if os.path.getsize(in_bed) > 0: pair_bed = pair_discordants(in_bed, pair_stats) dedup_bed = dedup_discordants(pair_bed) return run_hydra(dedup_bed, pair_stats) else: return None
8,926
def merge_csvfiles(options): """ Think of this as a 'join' across options.mergefiles on equal values of the column options.timestamp. This function takes each file in options.mergefiles, reads them, and combines their columns in options.output. The only common column should be options.timestamp. The results are undefined if the mergefiles share other column names. Args: options.mergefiles - list of csv filenames options.output - filename of merged csv file from this operation Returns: bool - True if success Raises: AssertionError - if merging encounters an error. """ records = {} all_header_names = [] records_list = [] # collect all header fields from mergefiles for filename in options.mergefiles: records = read_csvfile(filename, True) records_list.append(records) all_header_names += records.fieldnames all_header_names = sorted(set(all_header_names)) # eliminate duplicate $header output_fd = open(options.output,'w') writer = csv.DictWriter(output_fd, all_header_names) writer.writeheader() try: # read all values until StopIteration is reached. while True: merge_list = [ records.next() for records in records_list ] merge_dict = merge_rows(merge_list, options) writer.writerow(merge_dict) except StopIteration: pass output_fd.close() return True
8,927
def data_generator(samples, shape, batch_size, correction, sensitivity, angle_threshold): """Used to build an augmented data set for training Args: samples (list(str)): list of samples to process shape (tuple(int)): shape of input batch_size (int): number of samples to process in each batch correction (float): offset to apply to left and right camera angles * left will have the correction added * right will have the correction deducted sensitivity (float): used to set upper limit and lower limit within which the correction value can fluctuate angle_threshold (float): angles below this will be considered for exclusion from the generator in order to balance the distribution of angles the training model will see. """ num_samples = len(samples) rows, cols, ch = shape factors = [0, 1, -1] samples = shuffle(samples) while True: for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset + batch_size] X = [] y = [] for i, sample in enumerate(batch_samples): # get steering angle angle = float(sample[3]) # camera selection # -> drop near-0 angle data with probability # -> [0, 1, 2] = [center, left, right] if abs(angle) < angle_threshold and np.random.random() < 0.5: camera = np.random.choice([1, 2]) else: camera = np.random.choice([0, 1, 2]) adjustment = np.random.uniform(correction - sensitivity, correction + sensitivity) # adjust angle if needed # -> factors[0, 1, -1] = [center, left, right] angle += (factors[camera] * adjustment) # read image img_path = os.path.join(repo_dir, sample[camera]) img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # randomly choose to flip if np.random.random() < 0.5: img = np.fliplr(img) angle *= -1 # randomly amend brightness # https://discussions.udacity.com/t/still-having-some-issues-with-project-behavioral-cloning-any-advice/234354/45 if np.random.random() < 0.5: random_bright = .25 + np.random.uniform() img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) img[:, :, 2] = img[:, :, 2] * random_bright img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) img = np.clip(img, 0, 255) X.append(img) y.append(angle) yield shuffle(np.array(X), np.array(y))
8,928
async def euphoria(): """ Trigger a state of "euphoria" emotion, extremely happy and positive bot """ async with db.DiscordDB("emotions") as db_obj: db_obj.write( { "happy": EMOTION_CAPS["happy"][1], "anger": EMOTION_CAPS["anger"][0], "bored": 0, "confused": 0, } )
8,929
def row_component(cards): """ Creates a horizontal row used to contain cards. The card and row_component work together to create a layout that stretches and shrinks when the user changes the size of the window, or accesses the dashboard from a mobile device. See https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout for more information. """ return html.Div( cards, className="govuk-list card-container", style={"alignItems": "stretch"} )
8,930
def recCopyElement(oldelement): """Generates a copy of an xml element and recursively of all child elements. :param oldelement: an instance of lxml.etree._Element :returns: a copy of the "oldelement" .. warning:: doesn't copy ``.text`` or ``.tail`` of xml elements """ newelement = ETREE.Element(oldelement.tag, oldelement.attrib) if len(oldelement.getchildren()) > 0: for childelement in oldelement.getchildren(): newelement.append(recCopyElement(childelement)) return newelement
8,931
def NameExpansionIterator(command_name, debug, logger, gsutil_api, url_strs, recursion_requested, all_versions=False, cmd_supports_recursion=True, project_id=None, ignore_symlinks=False, continue_on_error=False, bucket_listing_fields=None): """Static factory function for instantiating _NameExpansionIterator. This wraps the resulting iterator in a PluralityCheckableIterator and checks that it is non-empty. Also, allows url_strs to be either an array or an iterator. Args: command_name: name of command being run. debug: Debug level to pass to underlying iterators (range 0..3). logger: logging.Logger object. gsutil_api: Cloud storage interface. Settable for testing/mocking. url_strs: Iterable URL strings needing expansion. recursion_requested: True if -r specified on command-line. If so, listings will be flattened so mapped-to results contain objects spanning subdirectories. all_versions: Bool indicating whether to iterate over all object versions. cmd_supports_recursion: Bool indicating whether this command supports a '-r' flag. Useful for printing helpful error messages. project_id: Project id to use for the current command. ignore_symlinks: If True, ignore symlinks during iteration. continue_on_error: If true, yield no-match exceptions encountered during iteration instead of raising them. bucket_listing_fields: Iterable fields to include in expanded results. Ex. ['name', 'acl']. Underyling iterator is responsible for converting these to list-style format ['items/name', 'items/acl']. If this is None, only the object name is included in the result. Raises: CommandException if underlying iterator is empty. Returns: Name expansion iterator instance. For example semantics, see comments in NameExpansionIterator.__init__. """ url_strs = PluralityCheckableIterator(url_strs) name_expansion_iterator = _NameExpansionIterator( command_name, debug, logger, gsutil_api, url_strs, recursion_requested, all_versions=all_versions, cmd_supports_recursion=cmd_supports_recursion, project_id=project_id, ignore_symlinks=ignore_symlinks, continue_on_error=continue_on_error, bucket_listing_fields=bucket_listing_fields) name_expansion_iterator = PluralityCheckableIterator(name_expansion_iterator) if name_expansion_iterator.IsEmpty(): raise CommandException(NO_URLS_MATCHED_GENERIC) return name_expansion_iterator
8,932
def KETAMA(key): """ MD5-based hashing algorithm used in consistent hashing scheme to compensate for servers added/removed from memcached pool. """ d = hashlib.md5(key).digest() c = _signed_int32 h = c((ord(d[3])&0xff) << 24) | c((ord(d[2]) & 0xff) << 16) | \ c((ord(d[1]) & 0xff) << 8) | c(ord(d[0]) & 0xff) return h
8,933
def add_months(dt, months): """ 月加减 """ month = dt.month - 1 + months year = dt.year + month / 12 month = month % 12 + 1 day = min(dt.day, calendar.monthrange(year, month)[1]) return dt.replace(year=year, month=month, day=day)
8,934
def create_plot( file_names, output_folder_name, output_prefix, gat_TATA_constitutive_output, gat_TATA_variable_output, palette, variable1_name, variable2_name, ): """import and process the raw outputs after running gat (Genomic association tester). Then create barplot of constitutive and variable gene TATA enrichment""" # import gat output files as dfs constitutive = pd.read_table( gat_TATA_constitutive_output, sep="\t", header=0 ) variable = pd.read_table(gat_TATA_variable_output, sep="\t", header=0) # merge dfs merged = pd.concat([constitutive, variable], ignore_index=True) # set style to ticks sns.set(style="ticks", color_codes=True) # set colour palette colours = sns.color_palette(palette) # bar chart, 95% confidence intervals plot = sns.barplot( x="annotation", y="l2fold", data=merged, order=[variable1_name, variable2_name], palette=colours, ) plot.axhline(0, color="black") plt.xlabel("Gene type") plt.ylabel("Log2-fold enrichment over background").get_figure().savefig( f"../../data/output/{file_names}/TATA/{output_folder_name}plots/{output_prefix}_log2fold.pdf", format="pdf", )
8,935
def install_plugins(): """Check for existing plugins and removed if they exist...""" vim_plugins = os.path.join(str(pathlib.Path.home()), '.vim', 'bundle', ) print("Removing existing bundles...") subprocess.Popen(['rm', '-rf', vim_plugins]).wait() print("Installing plugins...") subprocess.Popen(['vim', '-c', ':PluginInstall', '-c', 'x', '-c', 'x']).wait()
8,936
def _decomposer_interp(fp, x=None, xp=None): """Do the actual interpolation for multiprocessing""" return np.interp(x, xp, fp)
8,937
def create_nn(x, x_shape, is_training): """ Args: x: input hits array x_shape: input tensor shape for single event is_training: placeholder for indicating train or valid/test phase Note: Only code in `create_nn` function scope will be exctracted and saved in model directory. It's important to provide all necessary imports within. """ import tensorflow as tf from nn4omtf import utils import numpy as np arr = [0, 5, 10, 15, 20, 25, 30] out_sz = 2 * len(arr) + 1 in_sz = np.prod(x_shape) hidden_layers = [128, 64, 64] x = tf.reshape(x, [-1, in_sz]) for sz in hidden_layers: # Pass is_training to setup batch normalization on these layers x = utils.mk_fc_layer(x, sz, act_fn=tf.nn.relu, is_training=is_training) logits = utils.mk_fc_layer(x, out_sz, is_training=is_training) return logits, arr
8,938
def create_new_case(case_dir): """Creates new case directory""" # Check that the specified case directory does not already exist if os.path.exists(case_dir): call(["rm", "-r", "snappy"]) #raise RuntimeError( # 'Refusing to write to existing path: {}'.format(case_dir) #) # Create the case return Case(case_dir)
8,939
def generate_outlier_bounds_iqr(df, column, multiplier=1.5): """ Takes in a dataframe, the column name, and can specify a multiplier (default=1.5). Returns the upper and lower bounds for the values in that column that signify outliers. """ q1 = df[column].quantile(.25) q3 = df[column].quantile(.75) iqr = q3 - q1 upper = q3 + (multiplier * iqr) lower = q1 - (multiplier * iqr) return upper, lower
8,940
def generate_data(Type): """ 随机生成CAN帧中所包含的数据 :param Type: 需要生成数据的类型 :return: 生成的随机数据序列,长度为8,如['88', '77', '55', '44', '22', '11', '33'', '44'] """ data = [] if Type == 1: # 生成反馈帧单体电池Cell1-24电压信息 standard_vol = 35 offset = random.randint(0, 15) max_vol = standard_vol + offset min_vol = standard_vol - offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append(str(min_vol)) offset = random.randint(0, 15) max_vol = standard_vol + offset min_vol = standard_vol - offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append(str(min_vol)) elif Type == 2: # 生成反馈帧单体电池Cell1-8温度信息 stanard_temp = 45 offest = random.randint(0, 20) max_temp = stanard_temp + offest min_temp = stanard_temp - offest - 5 data.append(str(max_temp)) data.append('6c') data.append(str(min_temp)) data.append('6c') offest = random.randint(0, 20) max_temp = stanard_temp + offest min_temp = stanard_temp - offest - 5 data.append(str(max_temp)) data.append('6c') data.append(str(min_temp)) data.append('6c') elif Type == 3: # 生成反馈帧单体电池最高最低电压温度信息 standard_vol = 35 standard_temp = 45 vol_offset = random.randint(0, 15) temp_offset = random.randint(0, 20) max_temp = standard_temp + temp_offset min_temp = standard_temp - temp_offset - 5 max_vol = standard_vol + vol_offset min_vol = standard_vol - vol_offset // 2 data.append('44') data.append(str(max_vol)) data.append('44') data.append((str(min_vol))) data.append(str(max_temp)) data.append('5c') data.append(str(min_temp)) data.append('5c') elif Type == 4: # 生成常发帧系统电压信息 standard_vol = 55 offset = random.randint(0, 10) max_vol = standard_vol * offset * 10 min_vol = standard_vol - offset - 5 data.append('c5') data.append(str(max_vol)) data.append('f2') data.append(str(min_vol)) data.append('ed') for i in range(3): data.append(str(standard_vol + 5 * i)) elif Type == 5: pass else: pass return data
8,941
def counting_sort(array): """ SORTING FUNCTION USING COUNTING SORT ALGORITHM ARG array = LIST(ARRAY) OF NUMBERS """ ## counter lists has elements for every maximum = max(array) counter = [0]*(maximum+1) for i in range(len(array)): counter[array[i]] += 1 for i in range(1, maximum + 1): counter[i] = counter[i] + counter[i-1] #print_array(counter) result = [0]*len(array) for i in range(len(array)): result[counter[array[i]] -1] = array[i] counter[array[i]] -= 1 return result
8,942
def indexedcolor(i, num, npersat=15, lightness=60): """Returns an rgb color triplet for a given index, with a finite max 'num'. Thus if you need 10 colors and want to get color #5, you would call this with (5, 10). The colors are "repeatable". """ import math from PIL import ImageColor nsats = int(math.ceil(num/float(npersat))) sat = 100 - int((i//npersat)*(100/nsats)) l = lightness nhues = int(math.ceil(num/float(nsats))) hue = (i % nhues) * (360//nhues) #print >>sys.stderr, 'For i %d, num %d, got %d sats, %d hues -> %d, %d, %d' % (i, num, nsats, nhues, hue, sat, l) return ImageColor.getrgb('hsl(%d,%d%%,%d%%)' % (hue, sat, l))
8,943
def make_customer_satisfaction(branch_index='A'): """Create average customer satisfaction heat map""" customer_satisfaction = make_heat_map(branch_index, 'mean(Rating)', 'Average Satisfaction') return customer_satisfaction
8,944
def extract_infos(fpath): """Extract information about file""" try: pe = pefile.PE(fpath) except pefile.PEFormatError: return {} res = {} res['Machine'] = pe.FILE_HEADER.Machine res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader res['Characteristics'] = pe.FILE_HEADER.Characteristics res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode try: res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData except AttributeError: res['BaseOfData'] = 0 res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes # Sections res['SectionsNb'] = len(pe.sections) entropy = list(map(lambda x: x.get_entropy(), pe.sections)) res['SectionsMeanEntropy'] = sum(entropy) / float(len(entropy)) res['SectionsMinEntropy'] = min(entropy) res['SectionsMaxEntropy'] = max(entropy) raw_sizes = list(map(lambda x: x.SizeOfRawData, pe.sections)) res['SectionsMeanRawsize'] = sum(raw_sizes) / float(len(raw_sizes)) res['SectionsMinRawsize'] = min(raw_sizes) res['SectionsMaxRawsize'] = max(raw_sizes) virtual_sizes = list(map(lambda x: x.Misc_VirtualSize, pe.sections)) res['SectionsMeanVirtualsize'] = sum( virtual_sizes) / float(len(virtual_sizes)) res['SectionsMinVirtualsize'] = min(virtual_sizes) res['SectionMaxVirtualsize'] = max(virtual_sizes) # Imports try: res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT) imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], []) res['ImportsNb'] = len(imports) res['ImportsNbOrdinal'] = len( list(filter(lambda x: x.name is None, imports))) except AttributeError: res['ImportsNbDLL'] = 0 res['ImportsNb'] = 0 res['ImportsNbOrdinal'] = 0 # Exports try: res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols) except AttributeError: # No export res['ExportNb'] = 0 # Resources resources = get_resources(pe) res['ResourcesNb'] = len(resources) if len(resources) > 0: entropy = list(map(lambda x: x[0], resources)) res['ResourcesMeanEntropy'] = sum(entropy) / float(len(entropy)) res['ResourcesMinEntropy'] = min(entropy) res['ResourcesMaxEntropy'] = max(entropy) sizes = list(map(lambda x: x[1], resources)) res['ResourcesMeanSize'] = sum(sizes) / float(len(sizes)) res['ResourcesMinSize'] = min(sizes) res['ResourcesMaxSize'] = max(sizes) else: res['ResourcesNb'] = 0 res['ResourcesMeanEntropy'] = 0 res['ResourcesMinEntropy'] = 0 res['ResourcesMaxEntropy'] = 0 res['ResourcesMeanSize'] = 0 res['ResourcesMinSize'] = 0 res['ResourcesMaxSize'] = 0 # Load configuration size try: res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size except AttributeError: res['LoadConfigurationSize'] = 0 # Version configuration size try: version_infos = get_version_info(pe) res['VersionInformationSize'] = len(version_infos.keys()) except AttributeError: res['VersionInformationSize'] = 0 return res
8,945
def calibrate_eye_in_hand(calibration_inputs): """Perform eye-in-hand calibration. Args: calibration_inputs: List of HandEyeInput Returns: A HandEyeOutput instance containing the eye-in-hand transform """ return HandEyeOutput( _zivid.calibration.calibrate_eye_in_hand( [ calibration_input._HandEyeInput__impl # pylint: disable=protected-access for calibration_input in calibration_inputs ] ) )
8,946
def get_intersect(A: np.ndarray, B: np.ndarray, C: np.ndarray, D: np.ndarray) -> Optional[np.ndarray]: """ Get the intersection of [A, B] and [C, D]. Return False if segment don't cross. :param A: Point of the first segment :param B: Point of the first segment :param C: Point of the second segment :param D: Point of the second segment :return: The intersection if any, otherwise None. """ det = (B[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (B[1] - A[1]) if det == 0: # Parallel return None else: t1 = ((C[0] - A[0]) * (C[1] - D[1]) - (C[0] - D[0]) * (C[1] - A[1])) / det t2 = ((B[0] - A[0]) * (C[1] - A[1]) - (C[0] - A[0]) * (B[1] - A[1])) / det if t1 > 1 or t1 < 0 or t2 > 1 or t2 < 0: # not intersect return None else: xi = A[0] + t1 * (B[0] - A[0]) yi = A[1] + t1 * (B[1] - A[1]) return np.array([xi, yi])
8,947
def _make_vector_laplace_scipy_nd(bcs: Boundaries) -> Callable: """ make a vector Laplacian using the scipy module This only supports uniform discretizations. Args: bcs (:class:`~pde.grids.boundaries.axes.Boundaries`): |Arg_boundary_conditions| Returns: A function that can be applied to an array of values """ scaling = bcs._uniform_discretization**-2 args = bcs._scipy_border_mode dim = bcs.grid.dim shape_out = (dim,) + bcs.grid.shape def vector_laplace(arr, out=None): """ apply vector Laplacian operator to array `arr` """ if out is None: out = np.empty(shape_out) for i in range(dim): ndimage.laplace(arr[i], output=out[i], **args) return out * scaling return vector_laplace
8,948
def dot_to_dict(values): """Convert dot notation to a dict. For example: ["token.pos", "token._.xyz"] become {"token": {"pos": True, "_": {"xyz": True }}}. values (iterable): The values to convert. RETURNS (dict): The converted values. """ result = {} for value in values: path = result parts = value.lower().split(".") for i, item in enumerate(parts): is_last = i == len(parts) - 1 path = path.setdefault(item, True if is_last else {}) return result
8,949
def _draw_edges(G, pos, nodes, ax): """Draw the edges of a (small) networkx graph. Params: G (nx.classes.*) a networkx graph. pos (dict) returned by nx.layout methods. nodes (dict) of Circle patches. ax (AxesSubplot) mpl axe. Return: (dict) of Circle patches. """ pointer = ArrowStyle.Fancy(head_width=10, head_length=15) curved_edge = ConnectionStyle('arc3', rad=.2) arrow_kwargs = {'arrowstyle': pointer, 'antialiased': True, 'connectionstyle': curved_edge, 'edgecolor': None, 'facecolor': None, 'linewidth': None} edges = {} for i, (a, b, attr) in enumerate(G.edges.data()): arrow_kwargs['edgecolor'] = attr['color'] arrow_kwargs['facecolor'] = attr['color'] arrow_kwargs['linewidth'] = 1.0 edge = FancyArrowPatch(pos[a], pos[b], patchA=nodes[a], patchB=nodes[b], shrinkA=5, shrinkB=5, **arrow_kwargs) ax.add_patch(edge) edges[(a, b)] = edge return edges
8,950
def benjamini_hochberg_stepup(p_vals): """ Given a list of p-values, apply FDR correction and return the q values. """ # sort the p_values, but keep the index listed index = [i[0] for i in sorted(enumerate(p_vals), key=lambda x:x[1])] # keep the p_values sorted p_vals = sorted(p_vals) q_vals = [None]*len(p_vals) # initialize an empty list prev_q = 0 # BH Step Up begins here. for i, p in enumerate(p_vals): q = len(p_vals)/(i+1)*p # calculate the q_value for the current point q = min(q, 1) # if q >1, make it == 1 q = max(q, prev_q) # preserve monotonicity q_vals[i] = q # store the q_value prev_q = q # update the previous q_value # prevent the lowest q value from going to zero if np.sum(q_vals == 0) > 0: # set the min q-value to 10x less than the smallest non-zero value q_vals[np.where(q_vals == 0)] = np.min(q_vals[np.where(q_vals != 0)])/10 # return q_vals and the index so we can match up each q-value to its index return q_vals, index
8,951
def test_3(): """ Test PCE coefficients w/ lasso """ polynomial_basis = TensorProductBasis(dist, max_degree) lasso = LassoRegression() pce = PolynomialChaosExpansion(polynomial_basis=polynomial_basis, regression_method=lasso) pce.fit(x, y) assert round(pce.coefficients[0][0], 4) == 0.0004
8,952
def remove_transcription_site(rna, foci, nuc_mask, ndim): """Distinguish RNA molecules detected in a transcription site from the rest. A transcription site is defined as as a foci detected within the nucleus. Parameters ---------- rna : np.ndarray, np.int64 Coordinates of the detected RNAs with shape (nb_spots, 4) or (nb_spots, 3). One coordinate per dimension (zyx or yx coordinates) plus the index of the foci assigned to the RNA. If no foci was assigned, value is -1. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per dimension for the foci centroid (zyx or yx coordinates), the number of RNAs detected in the foci and its index. nuc_mask : np.ndarray, bool Binary mask of the nuclei region with shape (y, x). ndim : int Number of spatial dimensions to consider (2 or 3). Returns ------- rna_out_ts : np.ndarray, np.int64 Coordinates of the detected RNAs with shape (nb_spots, 4) or (nb_spots, 3). One coordinate per dimension (zyx or yx coordinates) plus the index of the foci assigned to the RNA. If no foci was assigned, value is -1. RNAs from transcription sites are removed. foci : np.ndarray, np.int64 Array with shape (nb_foci, 5) or (nb_foci, 4). One coordinate per dimension for the foci centroid (zyx or yx coordinates), the number of RNAs detected in the foci and its index. ts : np.ndarray, np.int64 Array with shape (nb_ts, 5) or (nb_ts, 4). One coordinate per dimension for the transcription site centroid (zyx or yx coordinates), the number of RNAs detected in the transcription site and its index. """ # check parameters check_array(rna, ndim=2, dtype=np.int64) # discriminate foci from transcription sites ts, foci = identify_objects_in_region( nuc_mask, foci, ndim) # filter out rna from transcription sites rna_in_ts = ts[:, ndim + 1] mask_rna_in_ts = np.isin(rna[:, ndim], rna_in_ts) rna_out_ts = rna[~mask_rna_in_ts] return rna_out_ts, foci, ts
8,953
def make_div_interp(dirname, profs, pout, gui=False): """Interpolate each of the given profiles to the corresponding new levels in list p and write out.""" make_dirs(dirname, profs['nprof'], gui) for p in range(profs['nprof']): if gui: proffn = dirname + '/{:03d}.py'.format(p + 1) write_list(proffn, pout[p], True, 'P') else: profdir = dirname + '/{:03d}/atm/'.format(p + 1) write_list(profdir + 'p.txt', pout[p]) logpin = np.log(profs[p]['p']) logpout = np.log(pout[p]) for v in PROF_LIST: if v in profs[p]: dout = np.interp(x=logpout, xp=logpin, fp=profs[p][v]) #, left=-999., right=-999.) if gui: gn = v.upper() write_list(proffn, dout, True, gn) else: write_list(profdir + v + '.txt', dout) write_common(profs, dirname, gui)
8,954
def hexagonal_numbers(length: int) -> list[int]: """ :param len: max number of elements :type len: int :return: Hexagonal numbers as a list Tests: >>> hexagonal_numbers(10) [0, 1, 6, 15, 28, 45, 66, 91, 120, 153] >>> hexagonal_numbers(5) [0, 1, 6, 15, 28] >>> hexagonal_numbers(0) Traceback (most recent call last): ... ValueError: Length must be a positive integer. """ if length <= 0 or not isinstance(length, int): raise ValueError("Length must be a positive integer.") return [n * (2 * n - 1) for n in range(length)]
8,955
def _meta_model_test(): """ 1. input: [b, c, h, w] 2. get weight and bias like `maml` 3. return : [batch_size, num_classes] """ import torch input = torch.rand(32, 3, 84, 84) model = MetaConvModel(3, 5, hidden_size=64, feature_size=5 * 5 * 64, embedding=True) out = model(input) print(out.shape)
8,956
def get_free_remote_port(node: Node) -> int: """Returns a free remote port. Uses a Python snippet to determine a free port by binding a socket to port 0 and immediately releasing it. :param node: Node to find a port on. """ output = node.run("python -c 'import socket; s=socket.socket();" " s.bind((str(), 0)); print(s.getsockname()[1]);" " s.close()'") return int(output)
8,957
def read_conll_data(data_file_path: str) -> Tuple[List[Sentence], List[DependencyTree]]: """ Reads Sentences and Trees from a CONLL formatted data file. Parameters ---------- data_file_path : ``str`` Path to data to be read. """ sentences: List[Sentence] = [] trees: List[DependencyTree] = [] with open(data_file_path, 'r') as file: sentence_tokens = [] tree = DependencyTree() for line in tqdm(file): line = line.strip() array = line.split('\t') if len(array) < 10: if sentence_tokens: trees.append(tree) sentences.append(sentence_tokens) tree = DependencyTree() sentence_tokens = [] else: word = array[1] pos = array[4] head = int(array[6]) dep_type = array[7] token = Token(word=word, pos=pos, head=head, dep_type=dep_type) sentence_tokens.append(token) tree.add(head, dep_type) if not sentences: raise Exception(f"No sentences read from {data_file_path}. " f"Make sure you have not replaced tabs with spaces " f"in conll formatted file by mistake.") return sentences, trees
8,958
def get_algo_meta(name: AlgoMeta) -> Optional[AlgoMeta]: """ Get meta information of a built-in or registered algorithm. Return None if not found. """ for algo in get_all_algo_meta(): if algo.name == name: return algo return None
8,959
def do_eval(sess,input_ids,input_mask,segment_ids,label_ids,is_training,loss,probabilities,vaildX, vaildY, num_labels,batch_size,cls_id): """ evalution on model using validation data """ num_eval=1000 vaildX = vaildX[0:num_eval] vaildY = vaildY[0:num_eval] number_examples = len(vaildX) eval_loss, eval_counter, eval_f1_score, eval_p, eval_r = 0.0, 0, 0.0, 0.0, 0.0 label_dict = init_label_dict(num_labels) print("do_eval.number_examples:",number_examples) f1_score_micro_sklearn_total=0.0 # batch_size=1 # TODO for start, end in zip(range(0, number_examples, batch_size), range(batch_size, number_examples, batch_size)): input_mask_, segment_ids_, input_ids_ = get_input_mask_segment_ids(vaildX[start:end],cls_id) feed_dict = {input_ids: input_ids_,input_mask:input_mask_,segment_ids:segment_ids_, label_ids:vaildY[start:end],is_training:False} curr_eval_loss, prob = sess.run([loss, probabilities],feed_dict) target_labels=get_target_label_short_batch(vaildY[start:end]) predict_labels=get_label_using_logits_batch(prob) if start%100==0: print("prob.shape:",prob.shape,";prob:",prob) print("predict_labels:",predict_labels) #print("predict_labels:",predict_labels) label_dict=compute_confuse_matrix_batch(target_labels,predict_labels,label_dict,name='bert') eval_loss, eval_counter = eval_loss + curr_eval_loss, eval_counter + 1 f1_micro, f1_macro = compute_micro_macro(label_dict) # label_dictis a dict, key is: accusation,value is: (TP,FP,FN). where TP is number of True Positive f1_score_result = (f1_micro + f1_macro) / 2.0 return eval_loss / float(eval_counter+0.00001), f1_score_result, f1_micro, f1_macro
8,960
def read_gbt_target(sdfitsfile, objectname, verbose=False): """ Give an object name, get all observations of that object as an 'obsblock' """ bintable = _get_bintable(sdfitsfile) whobject = bintable.data['OBJECT'] == objectname if verbose: print("Number of individual scans for Object %s: %i" % (objectname,whobject.sum())) calON = bintable.data['CAL'] == 'T' # HACK: apparently bintable.data can sometimes treat itself as scalar... if np.isscalar(calON): calON = np.array([(val in ['T',True]) for val in bintable.data['CAL']]) n_nods = np.unique(bintable.data['PROCSIZE']) blocks = {} for sampler in np.unique(bintable.data[whobject]['SAMPLER']): whsampler = bintable.data['SAMPLER'] == sampler nods = np.unique(bintable.data['PROCSEQN'][whsampler*whobject]) for nod in nods: whnod = bintable.data['PROCSEQN'] == nod for onoff in ('ON','OFF'): calOK = (calON - (onoff=='OFF')) whOK = (whobject*whsampler*calOK*whnod) if whOK.sum() == 0: continue if verbose: print("Number of spectra for sampler %s, nod %i, cal%s: %i" % (sampler,nod,onoff,whOK.sum())) crvals = bintable.data[whOK]['CRVAL1'] if len(crvals) > 1: maxdiff = np.diff(crvals).max() else: maxdiff = 0 freqres = np.max(bintable.data[whOK]['FREQRES']) if maxdiff < freqres: splist = [read_gbt_scan(bintable,ii) for ii in np.where(whOK)[0]] blocks[sampler+onoff+str(nod)] = pyspeckit.ObsBlock(splist,force=True) blocks[sampler+onoff+str(nod)]._arithmetic_threshold = np.diff(blocks[sampler+onoff+str(nod)].xarr).min() / 5. else: print("Maximum frequency difference > frequency resolution: %f > %f" % (maxdiff, freqres)) return blocks
8,961
def regression_target(label_name=None, weight_column_name=None, target_dimension=1): """Creates a _TargetColumn for linear regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. target_dimension: dimension of the target for multilabels. Returns: An instance of _TargetColumn """ return _RegressionTargetColumn(loss_fn=_mean_squared_loss, label_name=label_name, weight_column_name=weight_column_name, target_dimension=target_dimension)
8,962
def write_bin(f, pixel_list, width): """Save image in MONO_HMSB format.""" index = 0 list_bytes = [] image_byte = 0 windex = 0 for pix in pixel_list: image_byte = set_bit(image_byte, index, pix > 0) index += 1 windex += 1 if index > 7 or windex >= width: list_bytes.append(image_byte) image_byte = 0 index = 0 if windex >= width: windex = 0 f.write(bytearray(list_bytes))
8,963
def rdoublegauss(mu1, mu2, sigma1, sigma2, ratio, size=None): """random variable from double gaussian""" r1 = ratio / (1. + ratio) r2 = 1 - r1 R = np.asarray(np.random.random(size)) Rshape = R.shape R = np.atleast1d(R) mask1 = (R < r1) mask2 = ~mask1 N1 = mask1.sum() N2 = R.size - N1 R[mask1] = norm(mu1, sigma1).rvs(N1) R[mask2] = norm(mu2, sigma2).rvs(N2) return R.reshape(Rshape)
8,964
def check_add_role(store, id, name): """ Checks if role exist and then adds record if it doesn't """ role = store.find_role(name) if role == None: return store.create_role(id=id, name=name) else: return role
8,965
def report_map(): """ update DB with new version of a container instance's id map :return: str. 'true' if successful """ if not request.json: logger.error('received non-json data') abort(400) logger.info('Received map update from {}'.format(request.remote_addr)) logger.debug('Map update {}'.format(request.json)) _map = request.json for k,v in _map.iteritems(): container_attributes = copy.deepcopy(v) try: container_attributes['cadvisor_url'] = \ "http://{}:9070/docker/{}".format( container_attributes['instance_ip'], container_attributes['container_id']) container_attributes['graylog_url'] = \ settings.graylog_url.format(graylog_fqdn=settings.graylog_fqdn, container_id=container_attributes['container_id'][:12]) except KeyError as e: logger.error('Unable to find keys in response: {}'.format(e)) _map[k] = container_attributes db.batch_put(_map, 'ecs_id_mapper_hash') return 'true'
8,966
def delta_path(base_path: Path, item_path: Path, new_base_path: Path) -> Path: """ Removes a base path from an item, and appends result to a new path :param base_path: The :py:class:`pathlib.Path` to be removed from `item_path` :param item_path: The :py:class:`pathlib.Path` to be delta-ed :param new_base_path: The new base :py:class:`pathlib.Path` for `item_path`. :raises ValueError: If base_path is not a sub-path of item_path. :return: The new combined path. """ path_stub = item_path.relative_to(base_path) new_item_path = new_base_path / path_stub return new_item_path
8,967
async def async_validate_config(hass, config): """Validate config.""" automations = list( filter( lambda x: x is not None, await asyncio.gather( *( _try_async_validate_config_item(hass, p_config, config) for _, p_config in config_per_platform(config, DOMAIN) ) ), ) ) # Create a copy of the configuration with all config for current # component removed and add validated config back in. config = config_without_domain(config, DOMAIN) config[DOMAIN] = automations return config
8,968
def vm_sanity_check(): """ Handles periodic VM sanity check Invoked when scheduler runs task of type 'vm_sanity' """ logger.info("ENTERNING VM SANITY CHECK........") try: check_vm_sanity() except: log_exception() pass finally: logger.debug("EXITING VM SANITY CHECK........")
8,969
def judge_result(problem_id, commit_id, data_num): """对输出数据进行评测""" logging.debug("Judging result") correct_result = os.path.join( data_dir, str(problem_id), 'data%s.out' % data_num) user_result = os.path.join( work_dir, str(commit_id), 'out%s.txt' % data_num) try: correct = file( correct_result).read( ).replace( '\r', '').rstrip( ) # 删除\r,删除行末的空格和换行 user = file(user_result).read().replace('\r', '').rstrip() except: return False if correct == user: # 完全相同:AC return "Accepted" if correct.split() == user.split(): # 除去空格,tab,换行相同:PE return "Presentation Error" if correct in user: # 输出多了 return "Output limit" return "Wrong Answer"
8,970
def _fwd6(y, dt): # pragma: no cover """Compute the first derivative of a uniformly-spaced-in-time array with a sixth-order forward difference scheme. Parameters ---------- y : (7,...) ndarray Data to differentiate. The derivative is taken along the first axis. Returns ------- dy0 : float or (...) ndarray Approximate derivative of y at the first entry, i.e., dy[0] / dt. """ return (-147*y[0] + 360*y[1] - 450*y[2] + 400*y[3] - 225*y[4] \ + 72*y[5] - 10*y[6]) / (60*dt)
8,971
def minimize_newton_cg(nrgs, x0, num_params): """ Minimzes a structure using a Newton-CG method. This requires a hopefully fully invertible analytic Hessian that will be used to minimize geometries. Parameters ---------- nrgs: [list of functionals] Energy functions used to compute the energy, hessian, and mixed partials. x0: np.array Structure of the molecule to be minimized. num_params: int total number of parameters of the model. (ytz): this should be refactored out. """ assert x0.shape[1] == 3 N = x0.shape[0] def hessian(conf): conf = conf.reshape((N,3)) hess = None for e in nrgs: _, _, test_hessians, _ = e.total_derivative(conf, num_params) if hess is None: hess = test_hessians else: hess += test_hessians return hess.reshape((N*3, N*3)) def gradient(conf): conf = conf.reshape((N,3)) grads = np.zeros_like(conf) for e in nrgs: _, test_grads, _, _ = e.total_derivative(conf, num_params) grads += test_grads return grads.reshape(-1) def energy(conf): conf = conf.reshape((N,3)) nrg = 0 for e in nrgs: test_nrg, _, _, _ = e.total_derivative(conf, num_params) nrg += test_nrg return nrg res = minimize( energy, x0.reshape(-1), # method='Newton-CG', method='L-BFGS-B', jac=gradient, # hess=hessian, # options={'xtol': 1e-8, 'disp': False} ) # print("before and after") # print(x0) # print(np.array(res.x).reshape((N,3))) return res.x.reshape((N,3)) # print(energy(x0), gradient(x0), hessian(x0).shape)
8,972
def currency(price, currency): """ Returns price in currency format """ price = float(price) price *= float(currency.exchange_rate) try: return currency.display_format.format(price) except Exception as e: raise ImproperlyConfigured('Invalid currency format string: "%s" for currency "%s". %s' % (currency.display_format, currency.name, e.message))
8,973
def project_point(x, R, T, f, c, k, p): """ Args x: Nx3 points in world coordinates R: 3x3 Camera rotation matrix T: 3x1 Camera translation parameters f: 2x1 Camera focal length c: 2x1 Camera center k: 3x1 Camera radial distortion coefficients p: 2x1 Camera tangential distortion coefficients Returns ypixel.T: Nx2 points in pixel space depth: N points """ if 'aist' in config.DATASET.TEST_DATASET: xcam = R.dot(x.T) + T # [B, 3, PJ] else: xcam = R.dot(x.T - T) # [B, 3, PJ] y = xcam[:2] / (xcam[2] + 1e-5) # === add camera distortion r = np.sum(y ** 2, axis=0) d = 1 + k[0] * r + k[1] * r * r + k[2] * r * r * r u = y[0, :] * d + 2 * p[0] * y[0, :] * y[1, :] + p[1] * (r + 2 * y[0, :] * y[0, :]) v = y[1, :] * d + 2 * p[1] * y[0, :] * y[1, :] + p[0] * (r + 2 * y[1, :] * y[1, :]) y[0, :] = u y[1, :] = v ypixel = np.multiply(f, y) + c depth = xcam[2] return ypixel.T, depth
8,974
def sum_to_scalar(*args): """Adding losses/nmsks together that were evaluated in parallel""" new_args = list() for arg in args: new_args.append({k: v.sum() for (k, v) in arg.items()}) return new_args
8,975
def overlay_test(): """Demonstrates color fading in current overlay technique (mean). Suggestion: use addition instead of averaging colors. Update: Average wasn't the problem- no difference in fact due to normalization. Will revert to that method. Suggeston: Maybe a different color space?""" infolder = "../data/in/Training/" outfolder = f"../data/out/{time.time()}" print(f"Creating outfolder: {outfolder}") os.makedirs(outfolder) paths = glob.glob(os.path.join(infolder, "Training_*.jpg")) images = [dm.Image(path) for path in paths] od_stack = [ci.scale_by_max(img.od.reshape(img.shape)[:1000,:1000], 255).astype(np.uint8) for img in images] ol_stack = [] for i in range(1, len(od_stack)-1): ol_stack.append(viz.overlay(od_stack[:i])) for i, im in enumerate(ol_stack): plt.imshow(im) plt.suptitle(f"ol_{i}") plt.show() cv2.imwrite(os.path.join(outfolder, str(i) + ".jpg"), im) print("Done")
8,976
def test_valid_certificate_200(client): """Test that a request for a valid certificate with signatories results in a 200""" certificate = MicromastersCourseCertificateFactory.create() signatory = CourseCertificateSignatoriesFactory.create(course=certificate.course) resp = client.get(certificate_url(certificate.hash)) assert resp.status_code == status.HTTP_200_OK assert is_subset_dict( { 'certificate_hash': certificate.hash, 'course_title': certificate.course.title, 'program_title': certificate.course.program.title, 'name': certificate.user.profile.full_name, 'signatories': [signatory], 'certificate': certificate }, resp.context_data ) assert reverse('certificate', args=[certificate.hash]) in resp.content.decode('utf-8')
8,977
def inv(h_array: np.ndarray) -> np.ndarray: """ Calculate pinvh of PSD array. Note pinvh performs poorly if input matrix is far from being Hermitian, so use pinv2 instead in this case. Parameters: ---------- h_array : input matrix, assume to be Hermitian Returns: ---------- h_inv : pseudo inverse of h_array. """ if np.allclose(h_array, h_array.T): h_inv = linalg.pinvh(h_array) else: h_inv = linalg.pinv2(h_array) return h_inv
8,978
def update_risk_cavs(connection): """Parse cavs from html to markdown. Args: connection: SQLAlchemy connection. Returns: ids of risks for which cavs where updated. """ cavs_data = connection.execute( sa.text(""" SELECT cav.id, cav.attribute_value, cav.attributable_id FROM custom_attribute_values AS cav JOIN custom_attribute_definitions AS cad ON cad.id = cav.custom_attribute_id WHERE cad.definition_type = "risk" AND attribute_value REGEXP :reg_exp """), reg_exp=REGEX_HTML ).fetchall() risks_ids = {data[2] for data in cavs_data} cavs_ids = {data[0] for data in cavs_data} cavs_table = sa.sql.table( 'custom_attribute_values', sa.Column('id', sa.Integer()), sa.Column('attribute_value', sa.Text, nullable=False), sa.Column('updated_at', sa.DateTime, nullable=False), ) for cav_id, attribute_value, _ in cavs_data: op.execute(cavs_table.update().values( attribute_value=parse_html(attribute_value), updated_at=datetime.datetime.utcnow(), ).where(cavs_table.c.id == cav_id)) utils.add_to_objects_without_revisions_bulk( connection, cavs_ids, "CustomAttributeValue", "modified", ) return risks_ids
8,979
def prefix_to_number(prefix): """Return the number of the prefix.""" if prefix in PREFIXES: return PREFIXES[prefix] raise ValueError(f'prefix "{prefix}" not found in list of prefixes')
8,980
def package(): """ Do nothing -- this group should never be called without a sub-command. """ pass
8,981
def is_response_going_to_be_used(request, spider): """Check whether the request's response is going to be used.""" callback = get_callback(request, spider) if is_callback_using_response(callback): return True for provider in discover_callback_providers(callback): if is_provider_using_response(provider): return True return False
8,982
def eval_market1501(distmat, q_vids, g_vids, q_camids, g_camids, max_rank=50): """Evaluation with Market1501 metrics Key: for each query identity, its gallery images from the same camera view are discarded. """ num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print(f"Note: number of gallery samples is quite small, got {num_g}") indices = np.argsort(distmat, axis=1) matches = (g_vids[indices] == q_vids[:, np.newaxis]).astype(np.int32) # compute cmc curve for each query all_cmc = [] all_ap = [] num_valid_q = 0. # number of valid query for q_idx in range(num_q): # get query vid and camid q_vid = q_vids[q_idx] q_camid = q_camids[q_idx] # remove gallery samples that have the same vid and camid with query order = indices[q_idx] remove = (g_vids[order] == q_vid) & (g_camids[order] == q_camid) keep = np.invert(remove) # compute cmc curve # binary vector, positions with value 1 are correct matches orig_cmc = matches[q_idx][keep] if not np.any(orig_cmc): # this condition is true when query identity does not appear in gallery continue cmc = orig_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. # compute average precision # https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision num_rel = orig_cmc.sum() tmp_cmc = orig_cmc.cumsum() tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * orig_cmc ap_ = tmp_cmc.sum() / num_rel all_ap.append(ap_) assert num_valid_q > 0, "Error: all query identities do not appear in gallery" all_cmc = np.array(all_cmc, dtype=np.float32) all_cmc = all_cmc.sum(0) / num_valid_q map_ = np.mean(all_ap) return all_cmc, map_
8,983
def get_band_structure_from_vasp_multiple_branches(dir_name, efermi=None, projections=False): """ This method is used to get band structure info from a VASP directory. It takes into account that the run can be divided in several branches named "branch_x". If the run has not been divided in branches the method will turn to parsing vasprun.xml directly. The method returns None is there"s a parsing error Args: dir_name: Directory containing all bandstructure runs. efermi: Efermi for bandstructure. projections: True if you want to get the data on site projections if any. Note that this is sometimes very large Returns: A BandStructure Object """ #ToDo: Add better error handling!!! if os.path.exists(os.path.join(dir_name, "branch_0")): #get all branch dir names branch_dir_names = [os.path.abspath(d) for d in glob.glob("{i}/branch_*" .format(i=dir_name)) if os.path.isdir(d)] #sort by the directory name (e.g, branch_10) sort_by = lambda x: int(x.split("_")[-1]) sorted_branch_dir_names = sorted(branch_dir_names, key=sort_by) # populate branches with Bandstructure instances branches = [] for dir_name in sorted_branch_dir_names: xml_file = os.path.join(dir_name, "vasprun.xml") if os.path.exists(xml_file): run = Vasprun(xml_file, parse_projected_eigen=projections) branches.append(run.get_band_structure(efermi=efermi)) else: # It might be better to throw an exception warnings.warn("Skipping {}. Unable to find {}" .format(d=dir_name, f=xml_file)) return get_reconstructed_band_structure(branches, efermi) else: xml_file = os.path.join(dir_name, "vasprun.xml") #Better handling of Errors if os.path.exists(xml_file): return Vasprun(xml_file, parse_projected_eigen=projections)\ .get_band_structure(kpoints_filename=None, efermi=efermi) else: return None
8,984
def pytype_raise(): """A pytest.raises wrapper for catching TypeErrors. Parameters ---------- match : str, default=None Regular expression to match exception error text against. Returns ------- RaisesContext pytest context manager for catching exception-raising blocks. """ def _pytype_raise(match=None): return pytest.raises(TypeError, match=match) _pytype_raise.__doc__ = pyvalue_raise.__doc__ return _pytype_raise
8,985
def delete_dir(dir_path, recursive=False): """ 删除目录 :param dir_path: :param recursive: :return: """ if os.path.exists(dir_path): if recursive: fps = get_sub_files(dir_path) for sub_dir in fps: if os.path.isdir(sub_dir): delete_dir(sub_dir, recursive) shutil.rmtree(dir_path)
8,986
def test_block_average_save(): """Test the save of a file.""" block = exma.electrochemistry.statistics.BlockAverage( [3.14, 3.15, 3.13, 3.13, 3.15, 3.15, 3.16, 3.12] ) block.calculate() block.save() with open("block_average.csv", "r") as fin: readed = fin.read() os.remove("block_average.csv") assert readed == ( "data_size,mean,var,varerr\n" "8,3.141250e+00,2.299107e-05,1.228924e-05\n" "4,3.141250e+00,2.656250e-05,2.168819e-05\n" )
8,987
def test_batch_08(): """ Test batch: num_parallel_workers=1, drop_remainder default """ logger.info("test_batch_08") # define parameters batch_size = 6 num_parallel_workers = 1 # apply dataset operations data1 = ds.TFRecordDataset(DATA_DIR, shuffle=ds.Shuffle.FILES) data1 = data1.batch(batch_size, num_parallel_workers=num_parallel_workers) assert sum([1 for _ in data1]) == 2 filename = "batch_08_result.npz" save_and_check_dict(data1, filename, generate_golden=GENERATE_GOLDEN)
8,988
def lift_split_buffers(lines): """Lift the split buffers in the program For each module, if we find any split buffers with the name "buf_data_split", we will lift them out of the for loops and put them in the variable declaration section at the beginning of the module. Parameters ---------- lines: contains the codelines of the program """ code_len = len(lines) for pos in range(code_len): line = lines[pos] if line.find("variable=buf_data_split") != -1: # Search for the variable declaration section decl_pos = -1 prev_pos = pos - 1 while prev_pos >= 0: prev_line = lines[prev_pos] if prev_line.find("Variable Declaration") != -1: decl_pos = prev_pos break prev_pos -= 1 # Move the two code lines at [pos - 1] and [pos] to [decl_pos] and # [decl_pos + 1] indent = lines[decl_pos].find("/*") line1 = " " * indent + lines[pos - 1].lstrip() line2 = " " * indent + lines[pos].lstrip() del lines[pos - 1] del lines[pos - 1] lines.insert(decl_pos, line1) lines.insert(decl_pos + 1, line2) return lines
8,989
def peak_finder( df_run, cd, windowlength, polyorder, datatype, lenmax, peak_thresh): """Determines the index of each peak in a dQdV curve V_series = Pandas series of voltage data dQdV_series = Pandas series of differential capacity data cd = either 'c' for charge and 'd' for discharge. Output: i = list of indexes for each found peak""" (cycle_ind_col, data_point_col, volt_col, curr_col, dis_cap_col, char_cap_col, charge_or_discharge) = col_variables(datatype) V_series = df_run[volt_col] # this makes the peak finding smoothing independent of any smoothing that # has already occured. dQdV_series = df_run['Smoothed_dQ/dV'] sigx, sigy = cd_dataframe(V_series, dQdV_series, cd) # the below is to make sure the window length ends up an odd number - even # though we are basing it on the length of the df wl = lenmax / 20 wlint = int(round(wl)) if wlint % 2 == 0: windowlength_new = wlint + 1 else: windowlength_new = wlint if len(sigy) > windowlength_new and windowlength_new > polyorder: # has to be larger than 69 so that windowlength > 3 - necessary for sav # golay function sigy_smooth = scipy.signal.savgol_filter( sigy, windowlength_new, polyorder) else: sigy_smooth = sigy peak_thresh_ft = float(peak_thresh) i = peakutils.indexes( sigy_smooth, thres=peak_thresh_ft, min_dist=lenmax / 50) if i is not None and len(i) > 0: sigx_volts = list(sigx[i]) peak_heights = list(sigy[i]) else: sigx_volts = [] peak_heights = [] return i, sigx_volts, peak_heights
8,990
def model_output_pipeline(model_outputs=True, visualize_anchors=False, visualize_anchor_gt_pair=False, verbose=False, very_verbose=False): """ model_outputs - flag to enable plotting model outputs visualize_anchors - flag to visualize anchors visualize_anchor_gt_pair - flag to visualize ground truth bboxes and respective anchors """ params = Params(constants.params_path.format(general_config.model_id)) if model_outputs: model = model_setup(params) model = load_weigths_only(model, params) model.to(device) model.eval() valid_loader = dataloaders.get_dataloaders_test(params) with torch.no_grad(): total_iou, total_maps = 0, np.array([0, 0, 0, 0, 0, 0]) for batch_idx, (batch_images, batch_targets, images_info) in enumerate(valid_loader): if model_outputs: batch_images = batch_images.to(device) predictions = model(batch_images) else: n_classes = len(classes_config.training_ids) predictions = [torch.randn(params.batch_size, 4, anchor_config.total_anchors), torch.randn(params.batch_size, n_classes, anchor_config.total_anchors)] for idx in range(len(batch_images)): non_background = batch_targets[1][idx] != 100 all_anchor_classes = batch_targets[1][idx] gt_bbox = batch_targets[0][idx][non_background] gt_class = batch_targets[1][idx][non_background] iou, maps = anchor_mapping.test_anchor_mapping( image=batch_images[idx], bbox_predictions=predictions[0][idx].permute(1, 0), classification_predictions=predictions[1][idx].permute(1, 0), gt_bbox=gt_bbox, gt_class=gt_class, image_info=images_info[idx], params=params, model_outputs=model_outputs, visualize_anchors=visualize_anchors, visualize_anchor_gt_pair=visualize_anchor_gt_pair, all_anchor_classes=all_anchor_classes, verbose=verbose, very_verbose=very_verbose) total_iou += iou total_maps += maps avg = (batch_idx + 1) * params.batch_size print("Mean iou so far: ", total_iou / avg) print("Mean maps so far: ", total_maps / avg) if batch_idx == 10: return
8,991
def make_box(world, x_dim, y_dim, z_dim, mass=0.5): """Makes a new axis-aligned box centered at the origin with dimensions width x depth x height. The box is a RigidObject with automatically determined inertia. """ boxgeom = Geometry3D() boxgeom.loadFile("data/objects/cube.tri") # box is centered at the origin boxgeom.transform([x_dim, 0, 0, 0, y_dim, 0, 0, 0, z_dim], [-x_dim * 0.5, -y_dim * 0.5, -z_dim * 0.5]) print "Making a box a rigid object" bmass = Mass() bmass.setMass(mass) bmass.setCom([0, 0, 0]) bmass.setInertia([x_dim / 12, y_dim / 12, z_dim / 12]) box = world.makeRigidObject("box") box.geometry().set(boxgeom) box.appearance().setColor(0.6, 0.3, 0.2, 1.0) box.setMass(bmass) cparams = box.getContactParameters() cparams.kFriction = 1.5 cparams.kStiffness = 100000 cparams.kDamping = 30000 cparams.kRestitution = 0.5 return box
8,992
def as_file(uri): """ If the URI is a file (either the ``file`` scheme or no scheme), then returns the normalized path. Otherwise, returns ``None``. """ if _IS_WINDOWS: # We need this extra check in Windows before urlparse because paths might have a drive # prefix, e.g. "C:" which will be considered a scheme for urlparse below path = uri.replace('/', '\\') if os.path.exists(path): return os.path.normpath(path) url = urlparse.urlparse(uri) scheme = url.scheme if (not scheme) or (scheme == 'file'): path = url.path if _IS_WINDOWS: path = path.replace('/', '\\') return os.path.normpath(path) return None
8,993
def add_full_name(obj): """ A decorator to add __full_name__ to the function being decorated. This should be done for all decorators used in pywikibot, as any decorator that does not add __full_name__ will prevent other decorators in the same chain from being able to obtain it. This can be used to monkey-patch decorators in other modules. e.g. <xyz>.foo = add_full_name(<xyz>.foo) @param obj: The function to decorate @type obj: callable @return: decorating function @rtype: function """ def outer_wrapper(*outer_args, **outer_kwargs): """Outer wrapper. The outer wrapper may be the replacement function if the decorated decorator was called without arguments, or the replacement decorator if the decorated decorator was called without arguments. @param outer_args: args @type outer_args: list @param outer_kwargs: kwargs @type outer_kwargs: dict """ def inner_wrapper(*args, **kwargs): """Replacement function. If the decorator supported arguments, they are in outer_args, and this wrapper is used to process the args which belong to the function that the decorated decorator was decorating. @param args: args passed to the decorated function. @param kwargs: kwargs passed to the decorated function. """ add_decorated_full_name(args[0]) return obj(*outer_args, **outer_kwargs)(*args, **kwargs) inner_wrapper.__doc__ = obj.__doc__ inner_wrapper.__name__ = obj.__name__ inner_wrapper.__module__ = obj.__module__ inner_wrapper.__signature__ = signature(obj) # The decorator being decorated may have args, so both # syntax need to be supported. if (len(outer_args) == 1 and len(outer_kwargs) == 0 and callable(outer_args[0])): add_decorated_full_name(outer_args[0]) return obj(outer_args[0]) else: return inner_wrapper if not __debug__: return obj return outer_wrapper
8,994
def LikelihoodRedshiftMeasure( measure='', data=[], scenario=False, measureable=False): """ returns likelihood functions of redshift for observed data of measure, can be used to obtain estimate and deviation Parameters ---------- measure : string indicate which measure is probed data : array-like 1D array contain extragalactic component of observed values scenario : dictionary list of models combined to one scenario prior : boolean """ if not measure: exit( "you must provide a measure. Try: 'DM', 'RM', 'tau'" ) if scenario.redshift: exit( "requires scenario with telescope and population" ) ## prepare scenario for increasing redshift tmp = scenario.copy() tmp.population = False tmp.telescope = False ## container for likelihoods and deviation at incrasing redshift Ps = np.zeros( [len(DMs),len(redshift_bins)] ) devs= Ps.copy() ## for each redshift for iz, z in enumerate( redshift_bins ): tmp.redshift = z L = GetLikelihood( measure, tmp ) if measureable: L.Measureable() Ps[:,iz], devs[:,iz] = L.Likelihoods( DMs, density=True ) ### use probability density to compare same value of DM at different redshifts. Otherwise influenced by different binning Ls = [] for P, dev in Ps, devs: L = LikelihoodFunction( P=P, x=redshift_range, dev=dev ) Ls.append(L) return Ls
8,995
def plural_suffix(count: int) -> str: """"s" when count is not one""" suffix = '' if count != 1: suffix = 's' return suffix
8,996
def _pr_exists(user, namespace, repo, idx): """ Utility method checking if a given PR exists. """ repo_obj = pagure.lib.query.get_authorized_project( flask.g.session, project_name=repo, user=user, namespace=namespace ) if not repo_obj: return False pr_obj = pagure.lib.query.search_pull_requests( flask.g.session, project_id=repo_obj.id, requestid=idx ) if not pr_obj: return False return pr_obj
8,997
def readData(filename): """ Read in our data from a CSV file and create a dictionary of records, where the key is a unique record ID and each value is dict """ data_d = {} with open(filename) as f: reader = csv.DictReader(f) for row in reader: clean_row = [(k, preProcess(v)) for (k, v) in row.items()] row_id = int(row['activity_nr']) data_d[row_id] = dict(clean_row) return data_d
8,998
def write_last_activity_index(settings_dir, activity_index, format): """ Persists the index of the last exported activity for the given export format (see also method read_settings()) :param settings_dir: Path to the pickle file :param activity_index: Positive integer :param format: Value of args["format"] """ settings = read_settings(settings_dir) settings['activity_indices'][format] = activity_index file_name = join(settings_dir, ".settings") with open(file_name, "wb") as f: pickle.dump(settings, f)
8,999