content
stringlengths
22
815k
id
int64
0
4.91M
def sgrib_variable_crop(tmp_grib, nthreads_w, fp_out, logger): """ Take the small grib file from grib_to_small_grib and cut it down to the variables we need Args: tmp_grib: File path to small grib2 file nthreads_w: Number of threads for running wgrib2 commands fp_out: Path for outputting final grib2 file Returns: """ # call to grab correct variables action2 = "wgrib2 {} -ncpu {} -match \ 'TMP:2 m|UGRD:10 m|VGRD:10 m|TCDC:' -GRIB {}" action2 = action2.format(tmp_grib, nthreads_w, fp_out) fatl = call_wgrib2(action2, logger) if fatl: logger.warning( 'Cutting variables from grib did not work') os.remove(tmp_grib) return not fatl
8,700
def cs_geo(): """Geographic lat/lon coordinates in WGS84 datum. """ cs = CSGeo() cs.inventory.datumHoriz = "WGS84" cs.inventory.datumVert = "mean sea level" cs.inventory.spaceDim = 2 cs._configure() cs.initialize() return cs
8,701
def make_range(value): """ Given an integer 'value', return the value converted into a range. """ return range(value)
8,702
def run(actor, observer, content): """ Shortcut to run an Onirim and return the result. Returns: True if win, False if lose, None if other exception thrown. """ return Flow(Core(actor, observer, content)).whole()
8,703
def sort_bedfile(infile, outfile, add_header: bool = True, sort_by_bedtools: bool = False): """ sort bed file @2020.10.10 by Zhang Yiming: several modifications 1. if infile and outfile is same, use a temp file 2. add parameter to contol the bed header 3. using check_output to better handle the output from command line tools """ if infile == outfile: outfile = outfile + ".sorted" if sort_by_bedtools: pb.BedTool(infile).sort().saveas(outfile) else: with open(outfile, 'w') as o: if add_header: o.write('track name=\"' + os.path.basename(infile).replace('.bed', '') + '\"\n') cmd = ['sort', '-k1,1', '-k2,2n', '-T', os.path.dirname(outfile), infile] stdout, _ = run_command(cmd) if stdout: o.write(stdout.decode("utf-8")) o.close() if outfile.endswith(".sorted"): os.rename(outfile, outfile.replace(".sorted", ""))
8,704
def GetPoseBoneFCurveFromArmature(armatureObj, poseBoneName, data_path, parameterIndex): """ In Blender the FCurves are used to define the Key Frames. In general, for a single object, there's one FCurve for each of the following properties. data_path, index 'location', 0 (.x) 'location', 1 (.y) 'location', 2 (.z) 'rotation_quaternion', 0 (.w) 'rotation_quaternion', 1 (.x) 'rotation_quaternion', 2 (.y) 'rotation_quaternion', 3 (.z) 'scale', 0 (.x) 'scale', 1 (.y) 'scale', 2 (.z) For more tips about this, see: https://docs.blender.org/api/blender_python_api_2_75_release/info_quickstart.html#animation Returns a bpy.types.FCurve """ completePath = BuildPoseBoneFCurveDataPath(poseBoneName, data_path) return armatureObj.animation_data.action.fcurves.find(completePath, index=parameterIndex)
8,705
def get_document_instance(conf=None): """ Helper function to get a database Document model instance based on CLA configuration. :param conf: Same as get_database_models(). :type conf: dict :return: A Document model instance based on configuration specified. :rtype: cla.models.model_interfaces.Document """ return get_database_models(conf)['Document']()
8,706
def test_execute_empty_resolved(_mock_call_insights): """Test the function execute.""" with open("tests/data/stack_aggregator_empty_resolved.json", "r") as f: payload = json.load(f) r = RecommendationTask() out = r.execute(arguments=payload, persist=False) assert out['recommendation'] == "success" assert not out["result"]["recommendations"][0]["companion"] assert not out["result"]["recommendations"][0]["alternate"] assert not out["result"]["recommendations"][0]["usage_outliers"] r = RecommendationTask() out = r.execute(arguments=payload, check_license=True, persist=False) assert out['recommendation'] == "success" out = r.execute(arguments=payload, persist=True) assert out['recommendation'] == "database error"
8,707
def test_apptuit_send_exception_repr(): """ Test __repr__ for ApptuitSendException """ err = repr(ApptuitSendException( "test", 400, 1, 1, [{"datapoint": "test", "error": "test_error"}] )) assert_equals(err, "1 points failed with status: 400\ntest_error error occurred in the " "datapoint test\n")
8,708
def get_full_private_keys(gpg: gnupg.GPG) -> List[GPGKey]: """Get a list of private keys with a full private part. GPG supports exporting only the subkeys for a given key, and in this case a stub of the primary private key is also exported (the stub). This stub cannot be used to do anything with the primary key, so it's useful to list only keys that can actually be used. :param gpg: The GPG interface used by the gnupg library :return: The list of fully available private keys in the keyring """ return [key for key in get_private_keys(gpg) if key.key_token == KeyToken.FULL]
8,709
def create_blueprint(): """Creates a Blueprint""" blueprint = Blueprint('Health Check Blueprint', __name__) blueprint.route('/')(healthcheck.healthcheck) return blueprint
8,710
def main() -> None: """Run Sub Manager though the CLI.""" submanager.cli.main()
8,711
def show_Permissions(dx): """ Show where permissions are used in a specific application :param dx : the analysis virtual machine :type dx: a :class:`VMAnalysis` object """ p = dx.get_permissions( [] ) for i in p: print i, ":" for j in p[i]: show_Path( dx.get_vm(), j )
8,712
def playable_card(card, fireworks, n_colors): # if isinstance(card, pyhanabi.HanabiCard): # card = {'color':colors[card.color],'rank':card.rank} """A card is playable if it can be placed on the fireworks pile.""" if (card.color == pyhanabi.HanabiCard.ColorType.kUnknownColor and card().rank != pyhanabi.HanabiCard.RankType.kUnknownRank): for color in range(n_colors): if fireworks[color] == card.rank: continue else: return False return True # elif card['color'] == None or card['rank'] == None: if (card.color == pyhanabi.HanabiCard.ColorType.kUnknownColor and card().rank == pyhanabi.HanabiCard.RankType.kUnknownRank): return False else: return card.rank == fireworks[card.color]
8,713
def get_transformation_id(action): """ Get the id of a transformation. Parameters ---------- action: function The transformation function Returns ------- int The id of the action (-1 if not found) """ for index, trans in TRANSFORMATIONS.items(): if trans == action: return index return -1
8,714
def getString(t): """If t is of type string, return it, otherwise raise InvalidTypeError. """ s = c_char_p() if PL_get_chars(t, byref(s), REP_UTF8|CVT_STRING): return s.value else: raise InvalidTypeError("string")
8,715
def prep_data(filename, in_len, pred_len): """load data from the file and chunk it into windows of input""" # Columns are # 0:datetime, 1:temperature, 2:humidity, 3:pressure, 4:wind_direction, 5:wind_speed data = np.genfromtxt(filename, delimiter=',', skip_header=1, usecols=(1, 2, 3, 4, 5), dtype=float) # Remove rows that are missing values data = data[~np.isnan(data).any(axis=1)] # We will save the last 1/8th of the data for validation/testing data, # 1/16 for validation, 1/16 for testing total_len = data.shape[0] val_len = total_len // 16 test_len = total_len // 16 train_len = total_len - val_len - test_len train_data = data[:train_len] val_data = data[train_len:train_len + val_len] test_data = data[train_len + val_len:] # To stay in the most accurate ranges of the ESN, and to put the various # features on equal footing, we standardize the training data. train_data, mu_arr, sigma_arr = standardize_traindata(train_data) # We now need to scale our validation and test data by the means and standard # deviations determined from the training data val_data = scale_data(val_data, mu_arr, sigma_arr) test_data = scale_data(test_data, mu_arr, sigma_arr) # We need to convert the time series data to forecast form for one-step # prediction training. For simplicity we will discard the remainder batches rU, rY train_batch_size = 200 val_batch_size = in_len + pred_len + 1 test_batch_size = in_len + pred_len + 1 trainU, trainY, rU, rY = to_forecast_form(train_data, batch_size=train_batch_size) valU, valY, rU, rY = to_forecast_form(val_data, batch_size=val_batch_size) testU, testY, rU, rY = to_forecast_form(test_data, batch_size=test_batch_size) return trainU, trainY, valU, valY, testU, testY, mu_arr, sigma_arr
8,716
def should_build_ib(): """ Helper function that detects the system's IB support and returns if we should build with IB support. """ ib_util_found = False ib_lib_found = False ib_header_found = False try: # If the command doesn't exist, we can directly return instead of # making a subprocess call full_cmd_path = get_command_path(IB_DEVINFO_CMD) if not full_cmd_path: ib_util_found = False subprocess.check_output([full_cmd_path, "--list"]) # Here we just would like to simply run the command to test if IB # related tools / lib are installed without parsing the output. We # will enable IB build as long as the command runs successfully. # # The output should look like either: # # > ibv_devinfo --list # 0 HCAs founds: # # or # # > ibv_devinfo --list # 4 HCAs found: # mlx5_3 # mlx5_2 # mlx5_1 # mlx5_0 ib_util_found = True except Exception: # We just take all the exceptions here without affecting the build ib_util_found = False lib_paths = list(filter(bool, [ "/usr/lib/", "/usr/lib/x86_64-linux-gnu/", "/usr/lib/powerpc64le-linux-gnu/", "/usr/lib/aarch64-linux-gnu/", ] + gather_paths([ "LIBRARY_PATH", ]) + gather_paths([ "LD_LIBRARY_PATH", ]))) include_paths = [ "/usr/include/", ] if IS_CONDA: lib_paths.append(os.path.join(CONDA_DIR, "lib")) include_paths.append(os.path.join(CONDA_DIR, "include")) for path in lib_paths: if path is None or not os.path.exists(path): continue ib_libraries = sorted(glob.glob(os.path.join(path, "libibverbs*"))) if ib_libraries: ib_lib_found = True break for path in include_paths: if path is None or not os.path.exists(path): continue if os.path.exists(os.path.join(path, "infiniband/verbs.h")): ib_header_found = True break return ib_util_found and ib_lib_found and ib_lib_found
8,717
def run_reporter(): """ Entry point to reporter service """ parser = argparse.ArgumentParser() parser.add_argument( "--host", help="Reporter's host, defaults to localhost", default="localhost", action="store", ) parser.add_argument( "--port", help="Reporter's port, defaults to 8555", default=8555, action="store", ) args = parser.parse_args() reporter_service(args.host, int(args.port))
8,718
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
8,719
def run_fn(fn_args: tfx.components.FnArgs): """Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. """ tf_transform_output = tft.TFTransformOutput(fn_args.transform_output) train_dataset = _input_fn( fn_args.train_files, fn_args.data_accessor, tf_transform_output, batch_size=_TRAIN_BATCH_SIZE) eval_dataset = _input_fn( fn_args.eval_files, fn_args.data_accessor, tf_transform_output, batch_size=_EVAL_BATCH_SIZE) model = _build_keras_model() model.fit( train_dataset, steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps) # NEW: Save a computation graph including transform layer. signatures = { 'serving_default': _get_serve_tf_examples_fn(model, tf_transform_output), } model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
8,720
def _get_security_group_id(connection, security_group_name): """ Takes a security group name and returns the ID. If the name cannot be found, the name will be attempted as an ID. The first group found by this name or ID will be used.) :param connection: :param security_group_name: :return: """ if not security_group_name: print('The bees need a security group to run under. Need to open a port from where you are to the target ' 'subnet.') return # Try by name security_groups = connection.describe_security_groups( Filters=[{'Name': 'group-name', 'Values': [security_group_name, ]}, ] ) security_groups = security_groups['SecurityGroups'] if not security_groups: # Try by id security_groups = connection.describe_security_groups( Filters=[{'Name': 'group-id', 'Values': [security_group_name, ]}, ] ) security_groups = security_groups['SecurityGroups'] if not security_groups: print('The bees need a security group to run under. The one specified was not found. ' 'Create a sg that has access to port 22 ie. from 0.0.0.0/0') return return security_groups[0]['GroupId'] if security_groups else None
8,721
def viz_preprocessing(df_path): """ Preprocess the aggregation csv into a good format for visualization """ df = pd.read_csv(df_path) res = df.T res = res.rename(columns=res.iloc[0]).drop(res.index[0]) res = res.astype("int64") res.reset_index(inplace=True) res["index"] = res["index"].apply( lambda x: "{}-{}-{}".format(x[0:4], x[4:6], x[6:]) ) res["index"] = pd.to_datetime(res["index"]) return res
8,722
def test_get_filenames_with_multiple_attachments_data( signal_notification_service: SignalNotificationService, ) -> None: """Test getting filenames with multiple 'attachments' in data.""" data = {"attachments": ["test", "test2"]} result = signal_notification_service.get_filenames(data) assert result == ["test", "test2"]
8,723
def build_encoded_broadcast_from_model(model_fn, encoder_fn): """Builds `StatefulBroadcastFn` for weights of model returned by `model_fn`. This method creates a `SimpleEncoder` for every weight of model created by `model_fn`, as returned by `encoder_fn`. Args: model_fn: A Python callable with no arguments function that returns a `tff.learning.Model`. encoder_fn: A Python callable with a single argument, which is expected to be a `tf.Tensor` of shape and dtype to be encoded. The function must return a `tensor_encoding.core.SimpleEncoder`, which expects a `tf.Tensor` with compatible type as the input to its `encode` method. Returns: A `StatefulBroadcastFn` for encoding and broadcasting the weights of model created by `model_fn`. Raises: TypeError: If `model_fn` or `encoder_fn` are not callable objects. """ py_typecheck.check_callable(model_fn) py_typecheck.check_callable(encoder_fn) # TODO(b/144382142): Keras name uniquification is probably the main reason we # still need this. with tf.Graph().as_default(): values = model_utils.enhance(model_fn()).weights encoders = tf.nest.map_structure(encoder_fn, values) return tff.utils.build_encoded_broadcast(values, encoders)
8,724
def adjacency(G, nodelist=None, weight="weight"): """ Returns the sparse adjacency matrix representation of the graph. """ if nodelist is None: nodelist = G.nodes() A = nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight, format="csr") return A
8,725
def sample_movie(user, **params): """Create and return a movie""" defaults = { 'title': 'A Walk to Remember', 'duration': datetime.timedelta(hours=2, minutes=15), 'price': 8.99 } defaults.update(params) return Movie.objects.create(user=user, **defaults)
8,726
def set_edit(): """ Set to Edit Mode - Note may be buggy """ try: bpy.ops.object.mode_set(mode = "EDIT") except: pass
8,727
def lines_diff(lines1, lines2): """Show difference between lines.""" is_diff = False diffs = list() for line in difflib.ndiff(lines1, lines2): if not is_diff and line[0] in ('+', '-'): is_diff = True diffs.append(line) return is_diff, diffs
8,728
def parse_ipmi_hpm(output): """Parse the output of the hpm info retrieved with ipmitool""" hrdw = [] line_pattern = re.compile(r'^\|[^0-9]*([0-9]+)\|[^a-zA-Z ]* ?([^\|]*)\|([^\|]*)\|([^\|]*)\|([^\|]*)\|') for line in output: match = line_pattern.match(line) if match: name = match.group(2).strip() version = match.group(3).strip().split(" ")[0] hrdw.append(('firmware', name, 'version', version)) return hrdw
8,729
def export_trust_stores() -> None: """Export the content of the trust store of each supported platform to a PEM file at ./export. """ certs_repo = RootCertificatesRepository.get_default() out_pem_folder = ROOT_PATH / 'export' out_pem_folder.mkdir(exist_ok=True) # Export each trust store as a PEM file to ./export print(f'Exporting stores as PEM to {out_pem_folder}...') for platform in PlatformEnum: print(f'Exporting {platform.name}...') store = TrustStore.get_default_for_platform(platform) all_certs_pem = store.export_trusted_certificates_as_pem(certs_repo) out_pem_path = out_pem_folder / f'{platform.name.lower()}.pem' with open(out_pem_path, mode='w') as out_pem_file: out_pem_file.write(all_certs_pem)
8,730
def visualize_model(model, num_images=8, figsize=(15,15)): """Show a grid of predictions""" was_training = model.training model.eval() images_so_far = 0 fig = plt.figure(figsize=figsize) dataloader_val = dataloaders['val'] with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloader_val): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images // 6, 6, images_so_far) ax.axis("off") ax.set_title( "predicted: {}\nTrue {}".format(dataloader_val.dataset.classes[preds[j]], dataloader_val.dataset.classes[labels[j]]) ) if dataloader_val.dataset.classes[preds[j]] != dataloader_val.dataset.classes[labels[j]]: ax.set_title(dataloader_val.dataset.classes[preds[j]],color='red') else: ax.set_title(dataloader_val.dataset.classes[preds[j]],color='green') plt.imshow( inputs.cpu().data[j].numpy()[0], interpolation="bicubic", cmap='seismic' ) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training)
8,731
def get_genes_and_pathways(reactions, r_numbers, species): """Returns a CSV-formatted string with the list of genes and pathways where the reaction(s) of 'species' appear. :param reactions: list of reactions for species :param r_numbers: RNumbers object :param species: KEGG organism code :return: CSV-formatted string with genes and pathways where reactions of species are present """ gene_set = set() pathway_set = set() for reaction in reactions: organism = r_numbers.find(reaction).find(species) assert organism is not None for gene in organism.genes: gene_set.add(gene.replace(species + ':', '')) for pathway in organism.pathways: pathway_set.add(pathway) gene_col = ' '.join(sorted(gene_set)) pathway_col = ' '.join(sorted(pathway_set)) return gene_col.rstrip() + ';' + pathway_col.rstrip() + ';'
8,732
def set(key, value): """Sets the value for a key. Sets the value of the specified configuration key in bob's global configuration file. \b Arguments --------- key : str The key to set the value for. value : str The value of the key. \b Fails ----- * If something goes wrong. """ try: rc[key] = value _saverc(rc) except Exception: logger.error("Could not configure the rc file", exc_info=True) raise click.ClickException("Failed to change the configuration.")
8,733
def datasetFiles(request): """ Return a list all dataset files in the datasets directory, by looking for files ending with .h5 suffix. eg. ['/Users/jarnyc/BioPyramid/data/datasets/lanner.1.0.h5'] """ # This is the dataset directory, set by the config file datadir = request.registry.settings['biopyramid.model.datadir'] # Go through each file in the directory and fetch files with .h5 suffix filepaths = [] for filename in os.listdir(datadir): if filename.endswith(".h5"): filepaths.append(os.path.join(datadir, filename)) return filepaths
8,734
def relate_ca(assessment, template): """Generates custom attribute list and relates it to Assessment objects Args: assessment (model instance): Assessment model template: Assessment Temaplte instance (may be None) """ if not template: return None ca_definitions = all_models.CustomAttributeDefinition.query.options( orm.undefer_group('CustomAttributeDefinition_complete'), ).filter_by( definition_id=template.id, definition_type="assessment_template", ).order_by( all_models.CustomAttributeDefinition.id ) created_cads = [] for definition in ca_definitions: cad = all_models.CustomAttributeDefinition( title=definition.title, definition=assessment, attribute_type=definition.attribute_type, multi_choice_options=definition.multi_choice_options, multi_choice_mandatory=definition.multi_choice_mandatory, mandatory=definition.mandatory, helptext=definition.helptext, placeholder=definition.placeholder, ) db.session.add(cad) created_cads.append(cad) return created_cads
8,735
def getSenderNumberMgtURL(request): """ λ°œμ‹ λ²ˆν˜Έ 관리 νŒμ—… URL을 λ°˜ν™˜ν•©λ‹ˆλ‹€. - λ³΄μ•ˆμ •μ±…μ— 따라 λ°˜ν™˜λœ URL은 30초의 μœ νš¨μ‹œκ°„μ„ κ°–μŠ΅λ‹ˆλ‹€. - https://docs.popbill.com/fax/python/api#GetSenderNumberMgtURL """ try: # νŒλΉŒνšŒμ› μ‚¬μ—…μžλ²ˆν˜Έ CorpNum = settings.testCorpNum # νŒλΉŒνšŒμ› 아이디 UserID = settings.testUserID url = faxService.getSenderNumberMgtURL(CorpNum, UserID) return render(request, 'url.html', {'url': url}) except PopbillException as PE: return render(request, 'exception.html', {'code': PE.code, 'message': PE.message})
8,736
def closest_match(match, specs, depth=0): """ Recursively iterates over type, group, label and overlay key, finding the closest matching spec. """ new_specs = [] match_lengths = [] for i, spec in specs: if spec[0] == match[0]: new_specs.append((i, spec[1:])) else: if all(isinstance(s[0], basestring) for s in [spec, match]): match_length = max(i for i in range(len(match[0])) if match[0].startswith(spec[0][:i])) elif is_number(match[0]) and is_number(spec[0]): m = bool(match[0]) if isinstance(match[0], np.bool_) else match[0] s = bool(spec[0]) if isinstance(spec[0], np.bool_) else spec[0] match_length = -abs(m-s) else: match_length = 0 match_lengths.append((i, match_length, spec[0])) if len(new_specs) == 1: return new_specs[0][0] elif new_specs: depth = depth+1 return closest_match(match[1:], new_specs, depth) else: if depth == 0 or not match_lengths: return None else: return sorted(match_lengths, key=lambda x: -x[1])[0][0]
8,737
def average(w, axis=-1): """Calculate average Example: >>> w1=Waveform([range(2), range(2)],array([[1.0, 3.0], [0.0, 5.0]])) >>> average(w1) Waveform(array([0, 1]), array([ 2. , 2.5])) >>> w1=Waveform([range(2), range(2)],array([[1.0, 3.0], [0.0, 5.0]]), \ xlabels=['row','col']) >>> average(w1, axis='row') Waveform(array([0, 1]), array([ 0.5, 4. ])) """ return reducedim(w, np.mean(w._y, axis=w.getaxis(axis)), axis=w.getaxis(axis))
8,738
def random(): """Return a random parameter set for the model.""" total_thickness = 10**np.random.uniform(2, 4.7) Nlayers = np.random.randint(2, 200) d_spacing = total_thickness / Nlayers thickness = d_spacing * np.random.uniform(0, 1) length_head = thickness * np.random.uniform(0, 1) length_tail = thickness - length_head Caille_parameter = np.random.uniform(0, 0.8) pars = dict( length_head=length_head, length_tail=length_tail, Nlayers=Nlayers, d_spacing=d_spacing, Caille_parameter=Caille_parameter, ) return pars
8,739
def InformationalBuilders(site_config, boards_dict, ge_build_config): """Create all informational builders. We have a number of informational builders that are built, but whose output is not directly used for anything other than reporting success or failure. Args: site_config: config_lib.SiteConfig to be modified by adding templates and configs. boards_dict: A dict mapping board types to board name collections. ge_build_config: Dictionary containing the decoded GE configuration file. """ external_board_configs = CreateBoardConfigs( site_config, boards_dict, ge_build_config) internal_board_configs = CreateInternalBoardConfigs( site_config, boards_dict, ge_build_config) _chrome_boards = frozenset( board for board, config in internal_board_configs.iteritems() if config.get('sync_chrome', True)) hw_test_list = HWTestList(ge_build_config) _chrome_informational_hwtest_boards = frozenset([ 'caroline', 'eve', 'peach_pit', 'reks', 'tricky', 'veyron_minnie', ]) _chrome_informational_swarming_boards = frozenset([ 'eve', ]) # We have to mark all autogenerated PFQs as not important so the master # does not wait for them. http://crbug.com/386214 # If you want an important PFQ, you'll have to declare it yourself. informational_boards = ( (boards_dict['all_release_boards'] & _chrome_boards)) _tot_chrome_pfq_informational_board_configs = UpdateBoardConfigs( internal_board_configs, _chrome_informational_hwtest_boards, hw_tests=hw_test_list.DefaultListChromePFQInformational( pool=constants.HWTEST_CONTINUOUS_POOL)) _tot_chrome_pfq_informational_board_configs = UpdateBoardConfigs( _tot_chrome_pfq_informational_board_configs, _chrome_informational_swarming_boards, active_waterfall=waterfall.WATERFALL_SWARMING) site_config.AddForBoards( 'tot-chrome-pfq-informational', informational_boards, _tot_chrome_pfq_informational_board_configs, site_config.templates.chrome_pfq_informational, important=False) # TODO(ihf): Remove as obsolete. site_config.Add( 'x86-generic-tot-asan-informational', site_config.templates.tot_asan_informational, boards=['x86-generic'], ) site_config.Add( 'amd64-generic-asan', site_config.templates.asan, site_config.templates.incremental, site_config.templates.no_hwtest_builder, display_label=config_lib.DISPLAY_LABEL_INFORMATIONAL, boards=['amd64-generic'], description='Build with Address Sanitizer (Clang)', # THESE IMAGES CAN DAMAGE THE LAB and cannot be used for hardware testing. disk_layout='4gb-rootfs', ) site_config.Add( 'amd64-generic-tot-asan-informational', site_config.templates.tot_asan_informational, site_config.templates.no_hwtest_builder, # THESE IMAGES CAN DAMAGE THE LAB and cannot be used for hardware testing. disk_layout='4gb-rootfs', boards=['amd64-generic'], ) site_config.Add( 'betty-asan', site_config.templates.asan, site_config.templates.incremental, site_config.templates.no_hwtest_builder, site_config.templates.internal, display_label=config_lib.DISPLAY_LABEL_INFORMATIONAL, boards=['betty'], description='Build with Address Sanitizer (Clang)', # THESE IMAGES CAN DAMAGE THE LAB and cannot be used for hardware testing. disk_layout='4gb-rootfs', ) site_config.Add( 'betty-tot-asan-informational', site_config.templates.tot_asan_informational, site_config.templates.no_hwtest_builder, # THESE IMAGES CAN DAMAGE THE LAB and cannot be used for hardware testing. disk_layout='4gb-rootfs', boards=['betty'], ) site_config.Add( 'amd64-generic-fuzzer', site_config.templates.fuzzer, boards=['amd64-generic'], description='Build for fuzzing testing', # THESE IMAGES CAN DAMAGE THE LAB and cannot be used for hardware testing. disk_layout='4gb-rootfs', ) site_config.Add( 'amd64-generic-goma-canary-chromium-pfq-informational', site_config.templates.chromium_pfq_informational, site_config.templates.no_hwtest_builder, site_config.templates.no_vmtest_builder, important=False, description='Test canary versions of goma.', boards=[ 'amd64-generic', ], ) _chrome_perf_boards = frozenset([ 'daisy', 'reef', ]) site_config.AddForBoards( 'chrome-perf', _chrome_perf_boards, internal_board_configs, site_config.templates.chrome_perf, ) site_config.AddForBoards( 'telem-chromium-pfq-informational', ['x86-generic', 'amd64-generic'], internal_board_configs, site_config.templates.chromium_pfq_informational, site_config.templates.telemetry, site_config.templates.chrome_try, ) _tot_chromium_pfq_informational_swarming_boards = frozenset([ 'amd64-generic', 'daisy', ]) _tot_chromium_pfq_informational_board_configs = UpdateBoardConfigs( external_board_configs, _tot_chromium_pfq_informational_swarming_boards, active_waterfall=waterfall.WATERFALL_SWARMING) site_config.AddForBoards( 'tot-chromium-pfq-informational', (boards_dict['all_full_boards'] & _chrome_boards), _tot_chromium_pfq_informational_board_configs, site_config.templates.chromium_pfq_informational, site_config.templates.build_external_chrome, important=False, internal=False, manifest_repo_url=site_config.params['MANIFEST_URL'], overlays=constants.PUBLIC_OVERLAYS) _telemetry_boards = frozenset([ 'amd64-generic', 'arm-generic', 'betty', ]) site_config.AddForBoards( 'telemetry', _telemetry_boards, internal_board_configs, site_config.templates.telemetry, )
8,740
def test_fva(ec_model_core, fva_targets): """Test that fva returns the expected results.""" df = flux_variability_analysis(ec_model_core) assert ((df.maximum - df.minimum) > 1e-3).sum() == 38
8,741
def extract_features_to_dict(image_dir, list_file): """extract features and save them with dictionary""" label, img_list = load_image_list(image_dir, list_file) ftr = feature integer_label = label_list_to_int(label) feature_dict = {'features': ftr, 'label': integer_label, 'label_original': string_list_to_cells(label), 'image_path': string_list_to_cells(img_list)} return feature_dict
8,742
def database_connection( autocommit: bool = False, ) -> typing.Iterator[psycopg2.extensions.connection]: """Context manager for database transactions. By default the transaction is commited when exiting the context manager normally or rolled back in case of unhandled exception. But since e.g. VACUUM can not be issued inside transaction, the connection commit behaviour can be altered with `autocommit=True`. """ conn = pool.getconn() conn.autocommit = autocommit try: yield conn except Exception: conn.rollback() raise else: conn.commit() finally: pool.putconn(conn)
8,743
def roi_heads_forward( self, features, # type: Dict[str, Tensor] proposals, # type: List[Tensor] image_shapes, # type: List[Tuple[int, int]] targets=None, # type: Optional[List[Dict[str, Tensor]]] ): # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]] """ Args: features (List[Tensor]) proposals (List[Tensor[N, 4]]) image_shapes (List[Tuple[H, W]]) targets (List[Dict]) """ if targets is not None: for t in targets: # TODO: https://github.com/pytorch/pytorch/issues/26731 floating_point_types = (torch.float, torch.double, torch.half) assert t["boxes"].dtype in floating_point_types, "target boxes must of float type" assert t["labels"].dtype == torch.int64, "target labels must of int64 type" if self.has_keypoint(): assert t["keypoints"].dtype == torch.float32, "target keypoints must of float type" if self.training: proposals, matched_idxs, labels, regression_targets, length_labels = self.select_training_samples(proposals, targets) else: labels = None regression_targets = None matched_idxs = None box_features = self.box_roi_pool(features, proposals, image_shapes) box_features = self.box_head(box_features) class_logits, box_regression, length_logits = self.box_predictor(box_features) result: List[Dict[str, torch.Tensor]] = [] losses = {} if self.training: assert labels is not None and regression_targets is not None and length_labels is not None loss_classifier, loss_box_reg, loss_length = fastrcnn_loss(class_logits, box_regression, labels, regression_targets, length_labels, length_logits) losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg, "loss_vessel_length": loss_length} else: boxes, scores, labels, lengths = postprocess_detections(class_logits, box_regression, proposals, image_shapes, length_logits) num_images = len(boxes) for i in range(num_images): result.append( { "boxes": boxes[i], "labels": labels[i], "scores": scores[i], "lengths": lengths[i] } ) if self.has_mask(): mask_proposals = [p["boxes"] for p in result] if self.training: assert matched_idxs is not None # during training, only focus on positive boxes num_images = len(proposals) mask_proposals = [] pos_matched_idxs = [] for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] mask_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None if self.mask_roi_pool is not None: mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes) mask_features = self.mask_head(mask_features) mask_logits = self.mask_predictor(mask_features) else: raise Exception("Expected mask_roi_pool to be not None") loss_mask = {} if self.training: assert targets is not None assert pos_matched_idxs is not None assert mask_logits is not None gt_masks = [t["masks"] for t in targets] gt_labels = [t["labels"] for t in targets] rcnn_loss_mask = maskrcnn_loss(mask_logits, mask_proposals, gt_masks, gt_labels, pos_matched_idxs) loss_mask = {"loss_mask": rcnn_loss_mask} else: labels = [r["labels"] for r in result] masks_probs = maskrcnn_inference(mask_logits, labels) for mask_prob, r in zip(masks_probs, result): r["masks"] = mask_prob losses.update(loss_mask) # keep none checks in if conditional so torchscript will conditionally # compile each branch if ( self.keypoint_roi_pool is not None and self.keypoint_head is not None and self.keypoint_predictor is not None ): keypoint_proposals = [p["boxes"] for p in result] if self.training: # during training, only focus on positive boxes num_images = len(proposals) keypoint_proposals = [] pos_matched_idxs = [] assert matched_idxs is not None for img_id in range(num_images): pos = torch.where(labels[img_id] > 0)[0] keypoint_proposals.append(proposals[img_id][pos]) pos_matched_idxs.append(matched_idxs[img_id][pos]) else: pos_matched_idxs = None keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes) keypoint_features = self.keypoint_head(keypoint_features) keypoint_logits = self.keypoint_predictor(keypoint_features) loss_keypoint = {} if self.training: assert targets is not None assert pos_matched_idxs is not None gt_keypoints = [t["keypoints"] for t in targets] rcnn_loss_keypoint = keypointrcnn_loss( keypoint_logits, keypoint_proposals, gt_keypoints, pos_matched_idxs ) loss_keypoint = {"loss_keypoint": rcnn_loss_keypoint} else: assert keypoint_logits is not None assert keypoint_proposals is not None keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals) for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result): r["keypoints"] = keypoint_prob r["keypoints_scores"] = kps losses.update(loss_keypoint) return result, losses
8,744
def capitalize(s): """capitalize(s) -> string Return a copy of the string s with only its first character capitalized. """ return s.capitalize()
8,745
def S_tunnel_e0(self, mu, sig, Efl, Efr, Tl, Tr): """energy flux Conduction band edge 0 at higher of the two """ a = mu-sig/2 b = mu+sig/2 kTl = sc.k*Tl kTr = sc.k*Tr Blr = (a/kTl+1)*np.exp(-a/kTl)-(b/kTl+1)*np.exp(-b/kTl) Brl = (a/kTr+1)*np.exp(-a/kTr)-(b/kTr+1)*np.exp(-b/kTr) Slr = kTl**3*Blr*np.exp(Efl/kTl) Srl = -kTr**3*Brl*np.exp(Efr/kTr) # Slr = kTl**3*Blr # Srl = -kTr**3*Brl ret = self._cS*(Slr+Srl) return ret
8,746
def to_camel_java(text, first_lower=True): """Returns the text in camelCase or CamelCase format for Java """ return to_camelcase(text, first_lower=first_lower, reserved_keywords=JAVA_KEYWORDS, suffix="_")
8,747
def parse_resources(resource_name, resource_data, book_node, **auth_info): """ Creates resource topics """ resource_data = resource_data or [] resource_str = "{}-{}".format(book_node.source_id, resource_name.replace(' ', '-').lower()) # Create resource topic resource_node = nodes.TopicNode(source_id=resource_str, title=resource_name) book_node.add_child(resource_node) # Add resource documents for resource in resource_data: if resource.get('link_document_url') and resource['link_document_url'].endswith(".pdf"): description = parse_description(resource.get('resource_description')) add_file_node(resource_node, resource.get("link_document_url"), resource.get('resource_heading'), description=description, **auth_info)
8,748
def rectangle_field(N_1, N_2, B_1, B_2, H, D, r_b): """ Build a list of boreholes in a rectangular bore field configuration. Parameters ---------- N_1 : int Number of borehole in the x direction. N_2 : int Number of borehole in the y direction. B_1 : float Distance (in meters) between adjacent boreholes in the x direction. B_2 : float Distance (in meters) between adjacent boreholes in the y direction. H : float Borehole length (in meters). D : float Borehole buried depth (in meters). r_b : float Borehole radius (in meters). Returns ------- boreField : list of Borehole objects List of boreholes in the rectangular bore field. Examples -------- >>> boreField = gt.boreholes.rectangle_field(N_1=3, N_2=2, B_1=5., B_2=5., H=100., D=2.5, r_b=0.05) The bore field is constructed line by line. For N_1=3 and N_2=2, the bore field layout is as follows:: 3 4 5 0 1 2 """ borefield = [] for j in range(N_2): for i in range(N_1): borefield.append(Borehole(H, D, r_b, x=i*B_1, y=j*B_2)) return borefield
8,749
def mask_outputs(machine): """Erase outputs from each edge where they are zero.""" for u, v, d in machine.edges(data=True): for k in d: if k in machine.outputs and d[k] == 0: d.pop(k)
8,750
def convertHunit(conc, from_unit='H/10^6 Si', to_unit='ppm H2O', phase='Fo90', printout=True): """ Convert hydrogen concentrations to/from H/10^6 Si and ppm H2O. Based on Table 3 of Denis et al. 2013 """ if phase == 'Fo90': H_to_1_ppm = 16.35 elif phase == 'opx': H_to_1_ppm = 11.49 elif phase == 'cpx': H_to_1_ppm = 11.61 else: print('Valid options for phase are Fo90, opx, and cpx') return if from_unit == 'H/10^6 Si': if to_unit == 'ppm H2O': new_conc = conc / H_to_1_ppm elif to_unit == 'per m3': new_conc = conc * (1.0/308.67) * (1e30) else: print('only going to units "ppm H2O" and "per m3"') return elif from_unit == 'ppm H2O': if to_unit == 'H/10^6 Si': new_conc = conc * H_to_1_ppm elif to_unit == 'per m3': new_conc = (conc * H_to_1_ppm) * (1.0/308.67) * (1e30) else: print('only going to "H/10^6 Si" or "per m3"') return elif from_unit == 'per m3': if to_unit == 'H/10^6 Si': new_conc = conc / ((1.0/308.67) * (1e30)) elif to_unit == 'ppm H2O': new_conc = (conc / ((1.0/308.67) * (1e30))) / H_to_1_ppm else: print('only going to "H/10^6 Si" or "ppm H2O"') return else: print('Only going from H/10^6 Si, ppm H2O, and per m3 for now') return if printout is True: output = ' '.join(('{:.2f}'.format(conc), from_unit, '=', '{:.2f}'.format(new_conc), to_unit, 'for', phase)) print(output) return new_conc
8,751
def run(file: str, expected: str) -> None: """ Run with input """ rv, out = getstatusoutput(f'{RUN} {file}') assert rv == 0 assert out.rstrip() == expected
8,752
def countBasesInFasta(fastaFile): """ Given a fasta file, return a dict where the number of records and the total number of bases are given by 'records' and 'bases' respectively. """ recordRE = re.compile(r'^>') whiteSpaceRE = re.compile(r'\s+') total_bases = 0 total_seqs = 0 with open(fastaFile) as f: for line in f: if recordRE.match(line): total_seqs += 1 continue total_bases += len(whiteSpaceRE.sub('', line)) return {'records': total_seqs, 'bases': total_bases}
8,753
def load_mnist_denoising(path_raw_dataset, batch_size=1, mu=0., sigma=0.6, deterministic=True): """ 1. Get the MNIST dataset via PyTorch built-in APIs. 2. Wrap it with customized wrapper with additive Gaussian noise processor 3. Build PyTorch data loader objects. :param path_raw_dataset: :param batch_size: :param mu: :param sigma: :param deterministic: :return: dict of pytorch DataLoader objects. { 'train': (iterable) [noisy_image, (clean_image, noise)] noisy_image shape: [batch, c, w, h] clean_image shape: [batch, c, w, h] noise shape: [batch, 1, c, w, h] 'val': (iterable) [noisy_image, (clean_image, noise)] noisy_image shape: [batch, c, w, h] clean_image shape: [batch, c, w, h] noise shape: [batch, 1, c, w, h] } """ MNIST = P.data_processor_wrapper(torchvision.datasets.MNIST, P.Processor_Denoising_AddGau(mu, sigma, deterministic, grayscale=True)) transform_input = transforms.Compose([ transforms.ToTensor(), P.TransTo3Channels() ]) try: data_train = MNIST(root=path_raw_dataset, train=True, download=False, transform=transform_input) except: torch_dataset_download_helper() data_train = MNIST(root=path_raw_dataset, train=True, download=True, transform=transform_input) try: data_val = MNIST(root=path_raw_dataset, train=False, download=False, transform=transform_input) except: torch_dataset_download_helper() data_val = MNIST(root=path_raw_dataset, train=False, download=True, transform=transform_input) datasets = {'train': data_train, 'val': data_val} data_loaders = {i: torch.utils.data.DataLoader(datasets[i], batch_size=batch_size, shuffle=False) for i in ['train', 'val']} return data_loaders
8,754
def test_create_env_def_file_cwl(): """testing create_env_def_file with cwl option and an input Env variable""" envfilename = 'someenvfile' runjson_dict = {'Job': {'App': {'language': 'cwl_v1', 'cwl_url': 'someurl', 'main_cwl': 'somecwl', 'other_cwl_files': 'othercwl1,othercwl2'}, 'Input': {'Env': {'SOME_ENV': '1234'}}, 'Output': {'output_bucket_directory': 'somebucket'}, 'JOBID': 'somejobid'}, 'config': {'log_bucket': 'somebucket'}} runjson = AwsemRunJson(**runjson_dict) create_env_def_file(envfilename, runjson, 'cwl') with open(envfilename, 'r') as f: envfile_content = f.read() right_content = ('export LANGUAGE=cwl_v1\n' 'export CWL_URL=someurl\n' 'export MAIN_CWL=somecwl\n' 'export CWL_FILES="othercwl1 othercwl2"\n' 'export SOME_ENV=1234\n' 'export PRESERVED_ENV_OPTION="--preserve-environment SOME_ENV "\n' 'export DOCKER_ENV_OPTION="-e SOME_ENV "\n') assert envfile_content == right_content os.remove(envfilename)
8,755
def help_systempowerlimiton(self, commands): """ limiton: Activates the powerlimit for a server, and enables power throttling. ================================================================== Usage: set system power limiton -i {serverid} -i -- serverid, the target server number. Typically 1-48 [-h] -help; display the correct syntax """
8,756
def make_triplet_freqs(sentence, triplet_freqs): """ ζ–‡ε­—εˆ—γ‚’3぀硄にする """ # Janomeで単θͺžγ«εˆ†ε‰²γ™γ‚‹ t = Tokenizer() morphemes = [token.surface for token in t.tokenize(sentence)] if len(morphemes) < 3: return {} # ηΉ°γ‚ŠθΏ”γ— for i in range(len(morphemes) - 2): triplet = tuple(morphemes[i:i+3]) triplet_freqs[triplet] += 1 # beginγ‚’θΏ½εŠ  triplet = (BEGIN, morphemes[0], morphemes[1]) triplet_freqs[triplet] = 1 # endγ‚’θΏ½εŠ  triplet = (morphemes[-2], morphemes[-1], END) triplet_freqs[triplet] = 1 return triplet_freqs
8,757
def test_train_val_split(patient_id, sub_dataset_ids, cv_fold_number): """ if cv_fold_number == 1: if patient_id in sub_dataset_ids[-5:]: return 'test' elif patient_id in sub_dataset_ids[-7:-5]: return 'validation' else: return 'train' elif cv_fold_number == 2: if patient_id in sub_dataset_ids[-10:-5]: return 'test' elif patient_id in sub_dataset_ids[-12:-10]: return 'validation' else: return 'train' # used for accumulating results of tests on cv1 and cv2 if cv_fold_number == 3: if patient_id in sub_dataset_ids[-10:]: return 'test' elif patient_id in sub_dataset_ids[-12:-11]: return 'validation' else: return 'train' """ if patient_id in [1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]: return 'test' elif patient_id == 36: return 'validation' else: return 'train'
8,758
def f_rank(iterable, start=1): """Fractional ranking""" last, fifo = None, [] for n, item in enumerate(iterable, start): if item[0] != last: if fifo: mean = sum(f[0] for f in fifo) / len(fifo) while fifo: yield mean, fifo.pop(0)[1] last = item[0] fifo.append((n, item)) if fifo: mean = sum(f[0] for f in fifo) / len(fifo) while fifo: yield mean, fifo.pop(0)[1]
8,759
def generate_data_design_config( random_generator: np.random.Generator, ) -> Iterable[DataSetParameters]: """Generates the data design configuration for evaluating M3 strategy.""" keys = LEVELS.keys() levels = [len(LEVELS[k]) for k in keys] for i, sample in enumerate( lhs(n=len(levels), samples=NUM_SAMPLES_FOR_LHS, criterion="maximin") ): design_parameters = {"id": str(i)} for key, level in zip(keys, sample): design_parameters[key] = LEVELS[key][int(level * len(LEVELS[key]))] if design_parameters["overlap_generator_params"].name == "Independent": raw_overlap_params = design_parameters["overlap_generator_params"] design_parameters["overlap_generator_params"] = raw_overlap_params._replace( params={ "universe_size": int( design_parameters["largest_publisher_size"] / raw_overlap_params.params["largest_pub_to_universe_ratio"] ), "random_generator": raw_overlap_params.params["random_generator"], } ) yield DataSetParameters(**design_parameters)
8,760
def get_convertible_info(): """ D:\Trade\TDX\cjzq_tdx\T0002\hq_cache\speckzzdata.txt :return: """ filename = '{}{}{}'.format(TDX_DIR, os.sep, 'T0002\\hq_cache\\speckzzdata.txt') columns = [ 'exchange', 'code', 'stock_code', 'convert_price', 'current_interest', 'list_amount', 'call_price', 'redeem_price', 'convert_start', 'due_price', 'convert_end', 'convert_code', 'current_amount', 'list_date', 'convert_ratio(%)' ] df = pd.read_csv(filename, names=columns) df['exchange'] = df['exchange'].apply(lambda x: 'sse' if x else 'szse') df[['code', 'stock_code']] = df[['code', 'stock_code']].applymap(lambda x: '{:0>6d}'.format(x)) df[['list_amount', 'current_amount']] = df[['list_amount', 'current_amount']] * 10000 return df
8,761
def test_striplog_colour_plot(): """ Tests mpl image of striplog with the ladder option. """ legend = Legend.builtin('NSDOE') imgfile = "tutorial/M-MG-70_14.3_135.9.png" striplog = Striplog.from_image(imgfile, 14.3, 135.9, legend=legend) for iv in striplog: iv.data['porosity'] = iv.top.z/100 fig = striplog.plot(colour='porosity', aspect=3, return_fig=True) return fig
8,762
def fetch_data( o_included: str, flowcharts: dict, o_metadata_file: str, o_biom_file: str, p_redbiom_context: str, p_bloom_sequences: str, p_reads_filter: int, unique: bool, update: bool, dim: bool) -> pd.DataFrame: """ Parameters ---------- o_included : str Path to output metadata for the included samples only. flowcharts : dict Steps of the workflow with samples counts (simpler representation). o_metadata_file : str [if --fetch] Path to the output metadata table file. o_biom_file : str [if --fetch] Path to the output biom table file. p_redbiom_context : str [if --fetch] Redbiom context for fetching 16S data from Qiita. p_bloom_sequences : str [if --fetch] Fasta file containing the sequences known to bloom in fecal samples. p_reads_filter : int [if --fetch] Minimum number of reads per sample. unique : bool [if --fetch] Whether to keep a unique sample per host or not. update : bool [if --fetch] Update the sample names to remove Qiita-prep info. dim : bool [if --fetch] Whether to add the number of samples in the final biom file name before extension or not. Returns ------- included : pd.DataFrame Metadata for the included samples only. """ cmd = 'Xrbfetch' cmd += ' -m %s' % o_included if o_metadata_file: o_meta = o_metadata_file else: o_meta = '%s_fetched.tsv' % splitext(o_included)[0] cmd += ' -o %s' % o_meta if o_biom_file: cmd += ' -b %s' % o_biom_file else: cmd += ' -b %s_fetched.biom' % splitext(o_included)[0] if p_bloom_sequences: cmd += ' -s %s' % p_bloom_sequences cmd += ' -r %s' % p_redbiom_context cmd += ' -f %s' % p_reads_filter if unique: cmd += ' --unique' if update: cmd += ' --update' if dim: cmd += ' --dim' cmd += ' --force' cmd += ' --no-simple' print('- fetch on redbiom:') redbiom_fetching = subprocess.getoutput(cmd).split('\n') print('Done.') flowcharts['data'] = [] for step in redbiom_fetching: step_line = step.strip() if step_line.startswith('- Load biom table...'): print('[fetch]', step_line) n = step_line.split()[6] flowcharts['data'].append( ['Fetch', n, 'redbiom', p_redbiom_context, None]) elif step_line.startswith('- Filter blooms...'): print('[fetch]', step_line) n = step_line.split()[5] flowcharts['data'].append( ['Filter blooms', n, None, None, None]) elif step_line.startswith('- Get best samples from ambiguous'): print('[fetch]', step_line) n = step_line.split()[8] flowcharts['data'].append( ['Solve redbiom ambiguous', n, 'most reads', '...or... ', 'most features']) elif step_line.startswith('- Filter biom for min'): print('[fetch]', step_line) f = step_line.split()[5] n = step_line.split()[11] flowcharts['data'].append( ['Filter reads', n, 'min %s' % f, None]) elif step_line.startswith('- Already one sample per host_subject_id'): print('[fetch]', step_line) n = step_line.split()[8] flowcharts['data'].append( ['One per sample ID', n, None, None, None]) elif step_line.startswith('- Keep the best sample per host_subject_id'): print('[fetch]', step_line) n = step_line.split()[9] flowcharts['data'].append( ['One per sample ID', n, None, None, None]) if 'Outputs:' in redbiom_fetching: outs = redbiom_fetching[(redbiom_fetching.index('Outputs:') + 1):] if len(outs): return read_meta_pd(outs[0]) print('nothing fetched: check command:\n%s\nExiting...' % cmd) sys.exit(1)
8,763
def searchArtist(artistName, session=models.session): """Search for artist. Returns models.ArtistSearch""" return models.ArtistSearch(artistName, session)
8,764
def _ddnone(): """allow defaultdict to be pickled""" return defaultdict(_none)
8,765
def apply_join(query: Select, table: Table, join_table: Table, join: TableJoin): """ Performs a inner or outer join between two tables on a given query object. TODO: enable multiple joins :param query: A SQLAlchemy select object. :param table: The Table we are joining from. :param join_table: The Table we are joining to. :param join: The Join object describing how to join the tables. :return: A SQLAlchemy select object modified to join two tables. """ error_msg = 'Invalid join, "{}" is not a column on table "{}"' join_conditions = [] for column_pair in join.column_pairs: from_col = table.columns.get(column_pair.from_column) to_col = join_table.columns.get(column_pair.to_column) if from_col is None: raise ValueError(error_msg.format(column_pair.from_column, table.name)) if to_col is None: raise ValueError(error_msg.format(column_pair.to_column, join_table.name)) join_conditions.append(from_col == to_col) return query.select_from(table.join(join_table, onclause=and_(*join_conditions), isouter=join.outer_join))
8,766
def filter_shapely(feature): """ feature1 = feature_extract(feature) feature2 = filter_shapely(feature1) """ tmp = extract_Accumulation_entropy_list(feature) tmp2=[] for i in range(len(tmp)): if i!=0: tmp2.append(tmp[i]-tmp[i-1]) else: tmp2.append(tmp[i]) return tmp2
8,767
def stations_by_river(stations): """Returns a dictionary mapping river names (key) to a list of stations (object)""" rivers_stations_dict = {} # Create empty dictionary for i in range(len(stations)): # Iterate through list of stations # Data type checks if type(stations[i]) is MonitoringStation: pass # Checks if stations are correct class else: raise TypeError("ERROR: Station is not a MonitoringStation") if type(stations[i].name) is str: # Checks if name is string pass else: raise TypeError("ERROR: Station 'name' attribute is not a string") if type(stations[i].river) is str: # Checks if river is string pass else: raise TypeError("ERROR: Station 'river' attribute is not a string") if not stations[i].river in rivers_stations_dict: # Checks if river is not in dictionary rivers_stations_dict[stations[i].river] = [] # Adds river to dictionary with blank list if not stations[i].name in rivers_stations_dict: rivers_stations_dict[stations[i].river].append(stations[i].name) # Adds station name to object list return rivers_stations_dict
8,768
def getCurrentProfile(): """ Get the name of the current profile. """ return __createJSON("GetCurrentProfile", {})
8,769
def get_params_from_request(req: web.Request) -> QueryParams: """ This function need for convert query string to filter parameters. """ page = int(req.rel_url.query.get('page', '1')) cursor = req.rel_url.query.get('cursor') sort = req.rel_url.query.get('sort') sort_dir = req.rel_url.query.get('sortDir') if sort and sort_dir == 'desc': sort = f'-{sort}' return QueryParams( page=page, cursor=int(cursor) if cursor else None, order_by=sort, )
8,770
def norm_mem_interval(pt): """Normalize membership in interval.""" return pt.on_prop(arg_conv(binop_conv(auto.auto_conv())))
8,771
def create_figure(): """ Creates a simple example figure. """ fig = Figure() a = fig.add_subplot(111) t = np.arange(0.0, 3.0, 0.01) s = np.sin(2 * np.pi * t) a.plot(t, s) return fig
8,772
def train(): """ Main script. """ args = get_args() # Get context. from nnabla.contrib.context import extension_context extension_module = args.context if args.context is None: extension_module = 'cpu' logger.info("Running in %s" % extension_module) ctx = extension_context(extension_module, device_id=args.device_id) nn.set_default_context(ctx) # Dataset # We use Tiny ImageNet from Stanford CS231N class. # https://tiny-imagenet.herokuapp.com/ # Tiny ImageNet consists of 200 categories, each category has 500 images # in training set. The image size is 64x64. To adapt ResNet into 64x64 # image inputs, the input image size of ResNet is set as 56x56, and # the stride in the first conv and the first max pooling are removed. data = data_iterator_tiny_imagenet(args.batch_size, 'train') vdata = data_iterator_tiny_imagenet(args.batch_size, 'val') num_classes = 200 tiny = True # TODO: Switch ILSVRC2012 dataset and TinyImageNet. t_model = get_model( args, num_classes, test=False, tiny=tiny) t_model.pred.persistent = True # Not clearing buffer of pred in backward v_model = get_model( args, num_classes, test=True, tiny=tiny) v_model.pred.persistent = True # Not clearing buffer of pred in forward # Create Solver. solver = S.Momentum(args.learning_rate, 0.9) solver.set_parameters(nn.get_parameters()) # Create monitor. import nnabla.monitor as M monitor = M.Monitor(args.monitor_path) monitor_loss = M.MonitorSeries("Training loss", monitor, interval=10) monitor_err = M.MonitorSeries("Training error", monitor, interval=10) monitor_vloss = M.MonitorSeries("Validation loss", monitor, interval=10) monitor_verr = M.MonitorSeries("Validation error", monitor, interval=10) monitor_time = M.MonitorTimeElapsed("Training time", monitor, interval=10) # Training loop. for i in range(args.max_iter): # Save parameters if i % args.model_save_interval == 0: nn.save_parameters(os.path.join( args.model_save_path, 'param_%06d.h5' % i)) # Validation if i % args.val_interval == 0: # Clear all intermediate memory to save memory. # t_model.loss.clear_recursive() l = 0.0 e = 0.0 for j in range(args.val_iter): images, labels = vdata.next() v_model.image.d = images v_model.label.d = labels v_model.image.data.cast(np.uint8, ctx) v_model.label.data.cast(np.int32, ctx) v_model.loss.forward(clear_buffer=True) l += v_model.loss.d e += categorical_error(v_model.pred.d, v_model.label.d) monitor_vloss.add(i, l / args.val_iter) monitor_verr.add(i, e / args.val_iter) # Clear all intermediate memory to save memory. # v_model.loss.clear_recursive() # Training l = 0.0 e = 0.0 solver.zero_grad() # Gradient accumulation loop for j in range(args.accum_grad): images, labels = data.next() t_model.image.d = images t_model.label.d = labels t_model.image.data.cast(np.uint8, ctx) t_model.label.data.cast(np.int32, ctx) t_model.loss.forward(clear_no_need_grad=True) t_model.loss.backward(clear_buffer=True) # Accumulating gradients l += t_model.loss.d e += categorical_error(t_model.pred.d, t_model.label.d) solver.weight_decay(args.weight_decay) solver.update() monitor_loss.add(i, l / args.accum_grad) monitor_err.add(i, e / args.accum_grad) monitor_time.add(i) # Learning rate decay at scheduled iter if i in args.learning_rate_decay_at: solver.set_learning_rate(solver.learning_rate() * 0.1) nn.save_parameters(os.path.join(args.model_save_path, 'param_%06d.h5' % args.max_iter)) nnp_file = os.path.join( args.model_save_path, 'resnet_%06d.nnp' % (args.max_iter)) runtime_contents = { 'networks': [ {'name': 'Validation', 'batch_size': v_model.pred.shape[0], 'outputs': {'y': v_model.pred}, 'names': {'x': v_model.image}}], 'executors': [ {'name': 'Runtime', 'network': 'Validation', 'data': ['x'], 'output': ['y']}]} save.save(nnp_file, runtime_contents) from cpp_forward_check import check_cpp_forward check_cpp_forward(args.model_save_path, [v_model.image.d], [ v_model.image], v_model.pred, nnp_file)
8,773
def rdf_reader(src): """rdf = rdf_reader(src) src rdf filename rdf The RDF mapping object""" return RDF(*list(rdf_include(src)))
8,774
def get_batches_xy(x, y, batch_size): """ Generate inputs and targets in a batch-wise fashion for feed-dict Args: x: entire source sequence array y: entire output sequence array batch_size: batch size Returns: x_batch, y_batch, source_sentence_length, target_sentence_length """ for batch_i in range(0, len(x) // batch_size): start_i = batch_i * batch_size x_batch = x[start_i:start_i + batch_size] y_batch = y[start_i:start_i + batch_size] source_sentence_length = [np.count_nonzero(seq) for seq in x_batch] target_sentence_length = [np.count_nonzero(seq) for seq in y_batch] yield x_batch, y_batch, source_sentence_length, target_sentence_length
8,775
def test_run_failure_filenotfounderror(tmp_path, sample_catalog_minimal): """Test failure of _run on RemoveCmd in specifying a nonexistent file.""" # Create a temporary catalog file with responsible-parties content_type = FileContentType.JSON catalog_def_dir, catalog_def_file = test_utils.prepare_trestle_project_dir( tmp_path, content_type, sample_catalog_minimal, test_utils.CATALOGS_DIR ) # 6. oscal_read fails because file is not found # Must specify catalogs/ location, not catalogs/my_test_model/. testargs = [ 'trestle', 'remove', '-f', re.sub('my_test_model/', '', str(catalog_def_file)), '-e', 'catalog.metadata' ] with patch.object(sys, 'argv', testargs): exitcode = Trestle().run() assert exitcode == 1
8,776
def notImplementedYet(): """ shows a dialog that says that this feature its not implemented """ wx.GenericMessageDialog( parent=wx.GetActiveWindow(), message=loc('popup.notimplemented.text'), caption=loc('popup.notimplemented.title'), style=wx.ICON_INFORMATION | wx.STAY_ON_TOP | wx.OK ).ShowModal()
8,777
def test_nf_calc(gain, nf_expected, enabled, setup_edfa, si): """ compare the 2 amplifier models (polynomial and estimated from nf_min and max) => nf_model vs nf_poly_fit for boundary gain values: gain_min (and below) & gain_flatmax same values are expected between the 2 models => unitary test for Edfa._calc_nf() (and Edfa.interpol_params)""" edfa = setup_edfa frequencies = np.array([c.frequency for c in si.carriers]) pin = np.array([c.power.signal+c.power.nli+c.power.ase for c in si.carriers]) baud_rates = np.array([c.baud_rate for c in si.carriers]) edfa.operational.gain_target = gain edfa.params.nf_model_enabled = enabled edfa.interpol_params(frequencies, pin, baud_rates) nf = edfa.nf dif = abs(nf[0] - nf_expected) assert dif < 0.01
8,778
def draw_signalData(Nsamp=1, alpha=__alpha, beta=__beta, **kwargs): """ draw an SNR from the signal distribution """ return np.array([ncx2.rvs(__noise_df, nc) for nc in __draw_truncatedPareto(Nsamp, alpha=alpha, beta=beta)])
8,779
def choose_weighted_images_forced_distribution(num_images, images, nodes): """Returns a list of images to cache Enforces the distribution of images to match the weighted distribution as closely as possible. Factors in the current distribution of images cached across nodes. It is important to note that there may be circumstances which prevent this function from attaining the desired ideal distribution, but the function will always try its best to reach the desired distribution based on the specified weights. num_images - the number (integer) of images to choose to cache images - a list of to ImageInputs consider for caching nodes - a list of NodeInputs to use for determining which images need to be cached the most """ named_distribution = _get_named_image_distribution(images, nodes) # Take the difference of the desired distribution with the current # one. scaled_weights = _get_scaled_weights( images, _get_scale_factor_for_caching_nodes(num_images, images, nodes)) distribution_difference = [ [image, (scaled_weights[image.name] - named_distribution[image.name])] for image in images ] def decrement_distribution(distribution_pair, diff_dict): distribution_pair[1] -= 1 return _pick_images( images, distribution_difference, num_images, picker_func=lambda diff: max(diff, key=lambda pair: pair[1]), distribution_mutator_func=decrement_distribution)
8,780
def predict_lumbar_ankles_model(data): """Generate lumbar + 2 ankles model predictions for data. Args: data (dict): all data matrices/lists for a single subject. Returns: labels (dict): columns include 'probas' (from model) and 'true' (ground truth). One row for each fold. """ RESULT_DIR = '../results/imus6_subjects7/sensors03_lumbar_ankles/'\ 'iteration0/' data = selectFeats(data, ['lumbar','ankle_r','ankle_l']) test_dset = (data['X'], data['y']) subject = str(int(data['subjectID'])) model = load_model_and_weights(subject, RESULT_DIR) labels = make_predictions(model, test_dset) return labels
8,781
def breakOnEnter(func=None, *, debugger='pdb'): """ A function wrapper that causes debug mode to be entered when the wrapped function is called. Parameters ---------- func : The function to wrap. debugger : The debugger used when debug mode is entered. This can be either the debugging module itself or a string containing the name of the debugging module. Currently, pdb and ipdb are supported. """ if func is None: return partial(breakOnEnter, debugger=debugger) debugger = import_(debugger) @wraps(func) def wrapper(*args, **kwargs): return debugger.runcall(func, *args, **kwargs) return wrapper
8,782
def linear_search(iterable, item): """Returns the index of the item in the unsorted iterable. Iterates through a collection, comparing each item to the target item, and returns the index of the first item that is equal to the target item. * O(n) time complexity * O(1) space complexity Args: iterable: A collection that is iterable. item: An object to search for. Returns: The index of the item in the sorted iterable, or -1 if not found. Raises: TypeError: If iterable is not iterable. """ try: _ = iter(iterable) except TypeError: raise TypeError('\'{}\' object is not iterable'.format( type(iterable).__name__)) for index, _item in enumerate(iterable): if _item == item: return index return -1
8,783
def create_MD_tag(reference_seq, query_seq): """Create MD tag Args: reference_seq (str) : reference sequence of alignment query_seq (str) : query bases of alignment Returns: md_tag(str) : md description of the alignment """ no_change = 0 md = [] for ref_base, query_base in zip(reference_seq, query_seq): if ref_base.upper() == query_base: no_change += 1 else: if no_change > 0: md.append(str(no_change)) md.append(ref_base) no_change = 0 if no_change > 0: md.append(str(no_change)) return ''.join(md)
8,784
def HDFScopyMerge (src_dir, dst_file, overwrite=False, deleteSource=False): """ copyMerge() merges files from an HDFS directory to an HDFS files. File names are sorted in alphabetical order for merge order. Inspired by https://hadoop.apache.org/docs/r2.7.1/api/src-html/org/apache/hadoop/fs/FileUtil.html#line.382 :param src_dir: source directory to get files from :param dst_file: destination file to merge file to :param overwrite: overwrite destination file if already exists? this would also overwrite temp file if exists :param deleteSource: drop source directory after merge is complete """ sparkutils_init() def debug_print (message): if debug: print("HDFScopyMerge(): " + message) # check files that will be merged files = [] for f in fs.listStatus(hadoop.fs.Path(src_dir)): if f.isFile(): files.append(f.getPath()) if not files: raise ValueError("Source directory {} is empty".format(src_dir)) # determine order of files in which they will be written: files.sort(key=lambda f: str(f)) if overwrite and hdfs_exists(dst_file): hdfs_drop(dst_file) debug_print("Target file {} dropped".format(dst_file)) # use temp file for the duration of the merge operation dst_file_tmp = "{}.IN_PROGRESS.tmp".format(dst_file) # dst_permission = hadoop.fs.permission.FsPermission.valueOf(permission) # , permission='-rw-r-----' out_stream = fs.create(hadoop.fs.Path(dst_file_tmp), overwrite) try: # loop over files in alphabetical order and append them one by one to the target file for filename in files: debug_print("Appending file {} into {}".format(filename, dst_file_tmp)) in_stream = fs.open(filename) # InputStream object try: hadoop.io.IOUtils.copyBytes(in_stream, out_stream, conf, False) # False means don't close out_stream finally: in_stream.close() finally: out_stream.close() if deleteSource: hdfs_drop(src_dir) debug_print("Source directory {} removed.".format(src_dir)) try: hdfs_rename(dst_file_tmp, dst_file) debug_print("Temp file renamed to {}".format(dst_file)) except: hdfs_drop(dst_file_tmp) # drop temp file if we can't rename it to target name raise
8,785
def get_diff(base, head=None): """Return a git diff between the base and head revision. :type base: str :type head: str | None :rtype: list[str] """ if not head or head == 'HEAD': head = subprocess.check_output(['git', 'rev-parse', 'HEAD']).strip() cache = '/tmp/git-diff-cache-%s-%s.log' % (base, head) if os.path.exists(cache): with open(cache, 'r') as cache_fd: lines = cache_fd.read().splitlines() else: lines = subprocess.check_output(['git', 'diff', base, head]).splitlines() with open(cache, 'w') as cache_fd: cache_fd.write('\n'.join(lines)) assert lines return lines
8,786
def split_last(dataframe, target_col, sort_col='date', cut=.9): """Splits the dataframe on sort_column at the given cut ratio, and splits the target column Args: dataframe: dataframe to be cut sort_col: column to be sorted on. Default='date' cut: cut ratio for the train/eval sets Returns: X_train: dataframe of the first cut of the data set without the target y_train: dataframe of the first cut of the data set only target values X_eval: dataframe of the remaining slice of the data set without target y_eval: dataframe of the remaining slice of the data set only targets """ if sort_col != None: dataframe = dataframe.sort_values(by=sort_col, axis='columns') cutoff = dataframe.shape[0]*cut first_df = dataframe.reset_index(drop=True).loc[:cutoff] last_df = dataframe.reset_index(drop=True).loc[cutoff:] X_train = first_df.drop(columns=[target_col]) y_train = np.array(first_df[target_col]).ravel() X_eval = last_df.drop(columns=[target_col]) y_eval = np.array(last_df[target_col]).ravel() return X_train, y_train, X_eval, y_eval
8,787
def genparams_rst255(ctx: click.Context) -> None: """ Generate Ristretto255 system parameters. For details about Ristretto255, refer to https://ristretto.group/ """ from .ristretto_255 import create_ristretto_255_parameters pvss = pvss_from_datadir(ctx.obj) params = create_ristretto_255_parameters(pvss) ctx.obj.mkdir(exist_ok=True) write_public(ctx.obj / "parameters", params)
8,788
def assert_almost_equal( actual: numpy.float64, desired: numpy.float64, err_msg: Literal["orth.chebyt(1)"] ): """ usage.scipy: 1 """ ...
8,789
def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings()
8,790
def readCSV(associated_ipaddr, ipaddr, timestamp): """ Method that extracts observations from a CSV file. Parameters: associated_ipaddr (str): The name of the column that specifies IP addresses of VPN clients ipaddr (str): The name of the column that specifies IP addresses of users on the public internet timestamp (str): The name of the column that specifies the observation creation time Returns: observations (list): A list of observation dictionaries """ observations = [] with open(CSV_FILE, "rt", encoding="ascii") as f: reader = csv.reader(f) header = next(reader, None) for row in reader: observations.append( { "associated_ipaddr": row[header.index(associated_ipaddr)], "ipaddr": row[header.index(ipaddr)], "timestamp": translateTime(row[header.index(timestamp)]), } ) return observations
8,791
def interp2d(x, y, z, outshape, verbose=True, doplot=True): """ Parameters ---------- x, y : int X and Y indices of `z`. z : float Values for given `x` and `y`. outshape : tuple of int Shape of 2D output array. verbose : bool, optional Print info to screen. doplot : bool, optional Plot results. Returns ------- im : float array 2-D array of interpolated data. """ # Print the data to screen for checking if verbose: print 'DATA USED FOR INTERPOLATION:' for i, (xx, yy, zz) in enumerate(zip(x, y, z), start=1): print '{}: {} {} {}'.format(i, xx, yy, zz) # Perform 2D interpolation func = interpolate.interpolate.interp2d(x, y, z) im = func(np.mgrid[:outshape[1]], np.mgrid[:outshape[0]]) if doplot: # Get min/max to use same colorbar on for base and overlay pmin = im.min() pmax = im.max() fig, ax = plt.subplots() # Show interpolated 2D image p = ax.imshow(im, vmin=pmin, vmax=pmax) # Overlay data points used for interpolation ax.scatter(x, y, s=100, c=z, vmin=pmin, vmax=pmax, marker='s') # Display colorbar. # Shrink to make it same width as display. c = fig.colorbar(p, orientation='horizontal', shrink=0.7) c.set_label('Pixel value') # Plot labels ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_title('Interpolated image') plt.draw() return im
8,792
def setup_app(app_name=__name__, db_uri=None): """ Set up Flask application and database. Args: app_name: Name of the Flask application. db_uri: Database URI for SQLAlchemy to connected to. """ global app, db # Flask application app = Flask(app_name) # Application configuration app.config.update({ "SQLALCHEMY_DATABASE_URI": db_uri, "SQLALCHEMY_TRACK_MODIFICATIONS": False }) # Database object db = SQLAlchemy(app) # Depot DepotManager.configure("default", { "depot.storage_path": DATA_ROOT }) app.wsgi_app = DepotManager.make_middleware(app.wsgi_app, replace_wsgi_filewrapper=True) # Import all related modules import_module("app.models") import_module("app.views")
8,793
def run_cmd(cmd: Text, split: bool = True, shell=False, verbose: bool = True): """Run a system command and print output.""" print(f'CMD: {cmd}') cmd = shlex.split(cmd) if split else [cmd] process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=shell) while True: output = process.stdout.readline().decode('utf-8').strip() if output == '' and process.poll() is not None: break if output and verbose: print(output) return_code = process.poll() if return_code != 0: print(f'\tERROR ({return_code}) running command!') return return_code
8,794
def upload_command(): """ Upload object into MWDB """ pass
8,795
def _nms_boxes(detections, nms_threshold): """Apply the Non-Maximum Suppression (NMS) algorithm on the bounding boxes with their confidence scores and return an array with the indexes of the bounding boxes we want to keep. # Args detections: Nx7 numpy arrays of [[x, y, w, h, box_confidence, class_id, class_prob], ......] """ x_coord = detections[:, 0] y_coord = detections[:, 1] width = detections[:, 2] height = detections[:, 3] box_confidences = detections[:, 4] * detections[:, 6] areas = width * height ordered = box_confidences.argsort()[::-1] keep = list() while ordered.size > 0: # Index of the current element: i = ordered[0] keep.append(i) xx1 = np.maximum(x_coord[i], x_coord[ordered[1:]]) yy1 = np.maximum(y_coord[i], y_coord[ordered[1:]]) xx2 = np.minimum(x_coord[i] + width[i], x_coord[ordered[1:]] + width[ordered[1:]]) yy2 = np.minimum(y_coord[i] + height[i], y_coord[ordered[1:]] + height[ordered[1:]]) width1 = np.maximum(0.0, xx2 - xx1 + 1) height1 = np.maximum(0.0, yy2 - yy1 + 1) intersection = width1 * height1 union = (areas[i] + areas[ordered[1:]] - intersection) iou = intersection / union indexes = np.where(iou <= nms_threshold)[0] ordered = ordered[indexes + 1] keep = np.array(keep) return keep
8,796
def test_list_registered_one_private(caplog, store_mock): """List registered with one private item in the response.""" caplog.set_level(logging.INFO, logger="charmcraft.commands") store_response = [ Charm(name='charm', private=True, status='status'), ] store_mock.list_registered_names.return_value = store_response ListNamesCommand('group').run(noargs) assert store_mock.mock_calls == [ call.list_registered_names(), ] expected = [ "Name Visibility Status", "charm private status", ] assert expected == [rec.message for rec in caplog.records]
8,797
def dht_get_key(data_key): """ Given a key (a hash of data), go fetch the data. """ dht_client = get_dht_client() ret = dht_client.get(data_key) if ret is not None: if type(ret) == types.ListType: ret = ret[0] if type(ret) == types.DictType and ret.has_key("value"): ret = ret["value"] else: raise Exception("No data returned from %s" % data_key) return ret
8,798
def dumpJSON(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, cls=None, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True, bigint_as_string=False, sort_keys=False, item_sort_key=None, for_json=False, int_as_string_bitcount=None, **kw): """Serialize ``obj`` as a JSON formatted stream to ``fp`` (a ``.write()``-supporting file-like object). If *skipkeys* is true then ``dict`` keys that are not basic types (``str``, ``unicode``, ``int``, ``long``, ``float``, ``bool``, ``None``) will be skipped instead of raising a ``TypeError``. If *ensure_ascii* is false, then the some chunks written to ``fp`` may be ``unicode`` instances, subject to normal Python ``str`` to ``unicode`` coercion rules. Unless ``fp.write()`` explicitly understands ``unicode`` (as in ``codecs.getwriter()``) this is likely to cause an error. If *check_circular* is false, then the circular reference check for container types will be skipped and a circular reference will result in an ``OverflowError`` (or worse). If *indent* is a string, then JSON array elements and object members will be pretty-printed with a newline followed by that string repeated for each level of nesting. ``None`` (the default) selects the most compact representation without any newlines. An integer is also accepted and is converted to a string with that many spaces. If specified, *separators* should be an ``(item_separator, key_separator)`` tuple. The default is ``(', ', ': ')`` if *indent* is ``None`` and ``(',', ': ')`` otherwise. To get the most compact JSON representation, you should specify ``(',', ':')`` to eliminate whitespace. *encoding* is the character encoding for str instances, default is UTF-8. *default(obj)* is a function that should return a serializable version of obj or raise ``TypeError``. The default simply raises ``TypeError``. If *use_decimal* is true (default: ``True``) then decimal.Decimal will be natively serialized to JSON with full precision. If *namedtuple_as_object* is true (default: ``True``), :class:`tuple` subclasses with ``_asdict()`` methods will be encoded as JSON objects. If *tuple_as_array* is true (default: ``True``), :class:`tuple` (and subclasses) will be encoded as JSON arrays. If *bigint_as_string* is true (default: ``False``), ints 2**53 and higher or lower than -2**53 will be encoded as strings. This is to avoid the rounding that happens in Javascript otherwise. Note that this is still a lossy operation that will not round-trip correctly and should be used sparingly. If *int_as_string_bitcount* is a positive number (n), then int of size greater than or equal to 2**n or lower than or equal to -2**n will be encoded as strings. If specified, *item_sort_key* is a callable used to sort the items in each dictionary. This is useful if you want to sort items other than in alphabetical order by key. This option takes precedence over *sort_keys*. If *sort_keys* is true (default: ``False``), the output of dictionaries will be sorted by item. If *for_json* is true (default: ``False``), objects with a ``for_json()`` method will use the return value of that method for encoding as JSON instead of the object. To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the ``.default()`` method to serialize additional types), specify it with the ``cls`` kwarg. NOTE: You should use *default* or *for_json* instead of subclassing whenever possible. """ # cached encoder if (not skipkeys and ensure_ascii and check_circular and cls is None and indent is None and separators is None and encoding == 'utf-8' and default is None and use_decimal and namedtuple_as_object and tuple_as_array and not bigint_as_string and not sort_keys and not item_sort_key and not for_json and int_as_string_bitcount is None and not kw ): iterable = _default_json_encoder.iterencode(obj) else: if cls is None: cls = JSONEncoder iterable = cls(skipkeys=skipkeys, ensure_ascii=ensure_ascii, check_circular=check_circular, indent=indent, separators=separators, encoding=encoding, default=default, use_decimal=use_decimal, namedtuple_as_object=namedtuple_as_object, tuple_as_array=tuple_as_array, bigint_as_string=bigint_as_string, sort_keys=sort_keys, item_sort_key=item_sort_key, for_json=for_json, int_as_string_bitcount=int_as_string_bitcount, **kw).iterencode(obj) # could accelerate with writelines in some versions of Python, at # a debuggability cost for chunk in iterable: fp.write(chunk)
8,799