content
stringlengths
22
815k
id
int64
0
4.91M
def log_loss( predictions: ArrayLike, targets: ArrayLike, ) -> ArrayLike: """Calculates the log loss of predictions wrt targets. Args: predictions: a vector of probabilities of arbitrary shape. targets: a vector of probabilities of shape compatible with predictions. Returns: a vector of same shape of `predictions`. """ base.type_assert([predictions, targets], float) return -jnp.log(likelihood(predictions, targets))
9,100
def GetAccessTokenOrDie(options): """Generates a fresh access token using credentials passed into the script. Args: options: Flag values passed into the script. Returns: A fresh access token. Raises: ValueError: response JSON could not be parsed, or has no access_token. """ cred = GetDSApiCredOrDie(options) [cid, csc, refresh_token] = cred.split(",") query_string_template = ( "refresh_token=%s&client_id=%s&client_secret=%s" "&grant_type=refresh_token" ) output = RunCommand( [ "curl", "--data", query_string_template % (refresh_token, cid, csc), "https://accounts.google.com/o/oauth2/token", ] ) json_output = json.loads(output) if "access_token" in json_output: return json_output["access_token"] else: raise ValueError("missing access_token in response: %s" % output)
9,101
def test_races2000(): """Test module races2000.py by downloading races2000.csv and testing shape of extracted data has 77 rows and 5 columns """ test_path = tempfile.mkdtemp() x_train, metadata = races2000(test_path) try: assert x_train.shape == (77, 5) except: shutil.rmtree(test_path) raise()
9,102
def remove_whitespace(tokens): """Remove any top-level whitespace and comments in a token list.""" return tuple( token for token in tokens if token.type not in ('whitespace', 'comment'))
9,103
def _closefile(fpath, modnames): """ An api to remove dependencies from code by "closing" them. CommandLine: xdoctest -m ~/code/netharn/netharn/export/closer.py _closefile xdoctest -m netharn.export.closer _closefile --fpath=~/code/boltons/tests/test_cmdutils.py --modnames=ubelt, Example: >>> # SCRIPT >>> # ENTRYPOINT >>> import scriptconfig as scfg >>> config = scfg.quick_cli({ >>> 'fpath': scfg.Path(None), >>> 'modnames': scfg.Value([]), >>> }) >>> fpath = config['fpath'] = ub.expandpath('~/code/boltons/tests/test_cmdutils.py') >>> modnames = config['modnames'] = ['ubelt'] >>> _closefile(**config) """ from xdoctest import static_analysis as static modpath = fpath expand_names = modnames source = open(fpath, 'r').read() calldefs = static.parse_calldefs(source, fpath) calldefs.pop('__doc__', None) closer = Closer() for key in calldefs.keys(): closer.add_static(key, modpath) closer.expand(expand_names) #print(ub.repr2(closer.body_defs, si=1)) print(closer.current_sourcecode())
9,104
def update(args): """ For LdaCgsMulti """ (docs, doc_indices, mtrand_state, dtype) = args start, stop = docs[0][0], docs[-1][1] global Ktype if _K.value < 2 ** 8: Ktype = np.uint8 elif _K.value < 2 ** 16: Ktype = np.uint16 else: raise NotImplementedError("Invalid Ktype. k={}".format(_K)) corpus = np.frombuffer(_corpus, dtype=dtype)[start:stop] Z = np.frombuffer(_Z, dtype=Ktype)[start:stop].copy() gbl_word_top = np.frombuffer(_word_top, dtype=np.float32) gbl_word_top = gbl_word_top.reshape(_V.value, _K.value) loc_word_top = gbl_word_top.copy() inv_top_sums = np.frombuffer(_inv_top_sums, dtype=np.float32).copy() top_doc = np.frombuffer(_top_doc, dtype=np.float32) top_doc = top_doc.reshape(_K.value, int(top_doc.size/_K.value)) top_doc = top_doc[:, doc_indices[0]:doc_indices[1]].copy() log_p = 0 log_wk = np.log(gbl_word_top * inv_top_sums[np.newaxis, :]) log_kc = np.log(top_doc / top_doc.sum(0)[np.newaxis, :]) indices = np.array([(j - start) for (i,j) in docs], dtype='i') if dtype == np.uint16 and Ktype == np.uint8: update_fn = cgs_update[cython.ushort,cython.uchar] elif dtype == np.uint16 and Ktype == np.uint16: update_fn = cgs_update[cython.ushort,cython.ushort] elif dtype == np.uint32 and Ktype == np.uint8: update_fn = cgs_update[cython.uint,cython.uchar] elif dtype == np.uint32 and Ktype == np.uint16: update_fn = cgs_update[cython.uint,cython.ushort] else: raise NotImplementedError results = update_fn(_iteration.value, corpus, loc_word_top, inv_top_sums, top_doc, Z, indices, mtrand_state[0], mtrand_state[1], mtrand_state[2], mtrand_state[3], mtrand_state[4]) #final_results = [np.asarray(result, dtype=dtype) # for result,dtype in zip(results[:4], # [Ktype, np.float32, np.float32, np.float32])] #final_results.extend(results[4:]) (loc_word_top, inv_top_sums, top_doc, Z, log_p, mtrand_str, mtrand_keys, mtrand_pos, mtrand_has_gauss, mtrand_cached_gaussian) = results loc_word_top -= gbl_word_top return (Z, top_doc, loc_word_top, log_p, mtrand_str, mtrand_keys, mtrand_pos, mtrand_has_gauss, mtrand_cached_gaussian)
9,105
def GetPackages(manifest, conf, cache_dir, interactive=False): """ Make sure that the packages exist. If they don't, then attempt to download them. If interactive, use lots of dialog messages. """ conf.SetPackageDir(cache_dir) try: manifest.RunValidationProgram(cache_dir, kind=Manifest.VALIDATE_INSTALL) except Exceptions.UpdateInvalidUpdateException as e: if interactive: Dialog.MessageBox(Title(), "Invalid installation:\n\n\t" + str(e), height=20, width=45).run() raise InstallationError(str(e)) except BaseException as e: if conf.SystemManifest() is None: LogIt("No system manifest (duh), can't run validation program") else: LogIt("Trying to run validation program, got exception {}".format(str(e))) raise # Okay, now let's ensure all the packages are downloaded LogIt("Using cache directory {}".format(cache_dir)) try: count = 0 total = len(manifest.Packages()) for pkg in manifest.Packages(): count += 1 LogIt("Locating package file {}-{}".format(pkg.Name(), pkg.Version())) if interactive: if os.path.exists(os.path.join(cache_dir, pkg.FileName())): status = Dialog.MessageBox(Title(), "", height=8, width=60, wait=False) text = "Verifying" else: text = "Downloading and verifying" status = Dialog.Gauge(Title(), "", height=8, width=60) status.prompt = "{} package {} ({} of {})".format(text, pkg.Name(), count, total) status.clear() status.run() LogIt("Started gauge") def DownloadHandler(path, url, size=0, progress=None, download_rate=None): if progress: if status.__class__ == Dialog.Gauge: status.percentage = progress LogIt("DownloadHandler({}, {}, {}, {}, {})".format(path, url, size, progress, download_rate)) try: pkg_file = conf.FindPackageFile(pkg, pkg_type=PkgFileFullOnly, handler=DownloadHandler if interactive else None, save_dir=cache_dir) except Exceptions.ChecksumFailException as e: if interactive: try: Dialog.MessageBox(Title(), "Package {} has an invalid checksum".format(pkg.Name()), height=5, width=50).run() except: pass raise InstallationError("Invalid package checksum") except BaseException as e: LogIt("Got exception {} while trying to download package".format(str(e))) raise finally: if interactive: if status.__class__ == Dialog.Gauge: status.percentage = 100 dc = status.result if pkg_file is None: if interactive: try: Dialog.MessageBox(Title(), "Unable to locate package {}".format(pkg.Name()), height=15, width=30).run() except: pass raise InstallationError("Missing package {}".format(pkg.Name())) else: pkg_file.close() try: # I have no idea why I need this. # Without this, the next YesNo dialog won't be able to use arrow keys. # Investigate this Dialog.MessageBox("", "Packages Verified", wait=False).run() except: pass except InstallationError: raise except BaseException as e: LogIt("Got exception {} while trying to load packages".format(str(e))) raise InstallationError(str(e))
9,106
def warn(string: str) -> str: """Add warn colour codes to string Args: string (str): Input string Returns: str: Warn string """ return "\033[93m" + string + "\033[0m"
9,107
def test_get_latest_certification_period_no_threshold(): """ Tests the get_latest_certification_period function to make sure it returns Nones if there's no prior period """ results = get_latest_certification_period() assert results['quarter'] is None assert results['year'] is None
9,108
def normalized_mean_square_error(logits, labels, axis = [0,1,2,3]): """ logits : [batch_size, w, h, num_classes] labels : [batch_size, w, h, 1] """ with tf.name_scope("normalized_mean_square_error"): nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(logits, labels), axis=[1,2,3])) nmse_b = tf.sqrt(tf.reduce_sum(tf.square(labels), axis=[1,2,3])) nmse = tf.reduce_mean(nmse_a / nmse_b) return nmse
9,109
def load_glove_data(): """ Loads Stanford's dictionary of word embeddings created by using corpus of Twitter posts. Word embeddings are vectors of 200 components. OUTPUT: dictionary containing tweet word embeddings """ glove_path = path.join('..', 'data', 'glove', 'glove.twitter.27B.200d.txt') f = open(glove_path,'r') model = {} for line in f: splitLine = line.split() word = splitLine[0] embedding = np.array([float(val) for val in splitLine[1:]]) model[word] = embedding return model
9,110
def assertIsNotSubdomainOf(testCase, descendant, ancestor): """ Assert that C{descendant} *is not* a subdomain of C{ancestor}. @type testCase: L{unittest.SynchronousTestCase} @param testCase: The test case on which to run the assertions. @type descendant: C{str} @param descendant: The subdomain name to test. @type ancestor: C{str} @param ancestor: The superdomain name to test. """ testCase.assertFalse( dns._isSubdomainOf(descendant, ancestor), '%r is a subdomain of %r' % (descendant, ancestor))
9,111
def test_string_in_filter(query): """ Test in filter on a string field. """ Pet.objects.create(name="Brutus", age=12) Pet.objects.create(name="Mimi", age=3) Pet.objects.create(name="Jojo, the rabbit", age=3) schema = Schema(query=query) query = """ query { pets (name_In: ["Brutus", "Jojo, the rabbit"]) { edges { node { name } } } } """ result = schema.execute(query) assert not result.errors assert result.data["pets"]["edges"] == [ {"node": {"name": "Brutus"}}, {"node": {"name": "Jojo, the rabbit"}}, ]
9,112
def get_partition_to_num_rows( namespace, tablename, partition_column, partition_column_values ): """ Helper function to get total num_rows in hive for given partition_column_values. """ partitions = { "{0}={1}".format(partition_column, partition_column_value) for partition_column_value in partition_column_values } # Setting higher number of retries, as during testing, sometimes default # "retries" values didn't seem enough in some cases. ms = metastore.metastore( namespace=namespace, meta_only=True, retries=10, # timeout in milliseconds. timeout=1800000, ) partition_to_num_rows = {} all_partitions = ms.get_partitions(tablename) for hive_partition in all_partitions: assert "numRows" in hive_partition.parameters, ( "numRows not in hive_partition.parameters," "Do not use Presto tables, only Hive tables!')" ) if hive_partition.partitionName in partitions: patition_column_value = hive_partition.partitionName.split("=")[1] partition_to_num_rows[patition_column_value] = int( hive_partition.parameters["numRows"] ) return partition_to_num_rows
9,113
def get_welcome_response(): """ If we wanted to initialize the session to have some attributes we could add those here """ session_attributes = initialize_game() card_title = "Welcome" speech_output = "Hello! I am Cookoo. Let's play a game. " \ "Are you ready to play?" return build_response(session_attributes, build_speechlet_response( card_title, speech_output))
9,114
def kl_divergence_with_logits(logits_a, logits_b): """ Compute the per-element KL-divergence of a batch. Args: logits_a: tensor, model outputs of input a logits_b: tensor, model outputs of input b Returns: Tensor of per-element KL-divergence of model outputs a and b """ a = tf.nn.softmax(logits_a, axis=1) a_loga = tf.reduce_sum(a * log_softmax(logits_a), 1) a_logb = tf.reduce_sum(a * log_softmax(logits_b), 1) return a_loga - a_logb
9,115
def load_labels(abs_path): """ loads relative path file as dictionary Args: abs_path: absolute path Returns dictionary of mappings """ label_tsv = open(abs_path, encoding="utf-8") labels = list(csv.reader(label_tsv, delimiter="\t")) return labels
9,116
def cut_tree_balanced(linkage_matrix_Z, max_cluster_size, verbose=False): """This function performs a balanced cut tree of a SciPy linkage matrix built using any linkage method (e.g. 'ward'). It builds upon the SciPy and Numpy libraries. The function looks recursively along the hierarchical tree, from the root (single cluster gathering all the samples) to the leaves (i.e. the clusters with only one sample), retrieving the biggest possible clusters containing a number of samples lower than a given maximum. In this way, if a cluster at a specific tree level contains a number of samples higher than the given maximum, it is ignored and its offspring (smaller) sub-clusters are taken into consideration. If the cluster contains a number of samples lower than the given maximum, it is taken as result and its offspring sub-clusters not further processed. Input parameters: linkage_matrix_Z: linkage matrix resulting from calling the method scipy.cluster.hierarchy.ward() I.e. it contains the hierarchical clustering encoded as a linkage matrix. max_cluster_size: maximum number of data samples contained within the resulting clusters. Thus, all resulting clusters will contain a number of data samples <= max_cluster_size. Note that max_cluster_size must be >= 1. verbose: activates (True) / deactivates (False) some output print commands, which can be useful to test and understand the proposed tree cut method. Returns: vec_cluster_id: one-dimensional numpy array of integers containing for each input sample its corresponding cluster id. The cluster id is an integer which is higher for deeper tree levels. vec_last_cluster_level: one-dimensional numpy array of arrays containing for each input sample its corresponding cluster tree level, i.e. a sequence of 0s and 1s. Note that the cluster level is longer for deeper tree levels, being [0] the root cluster, [0, 0] and [0, 1] its offspring, and so on. Also note that in each cluster splitting, the label 0 denotes the bigger cluster, while the label 1 denotes the smallest. """ try: # Assert that the input max_cluster_size is >= 1 assert max_cluster_size >= 1 # Perform a full cut tree of the linkage matrix, i.e. containing all tree levels full_cut = cut_tree(linkage_matrix_Z) if verbose: print("Interim full cut tree (square matrix)") print("Shape = " + str(full_cut.shape)) print(full_cut) print('') # Initialize the vble containing the current cluster id (it will be higher for each newly # found valid cluster, i.e. for each found cluster with <= max_cluster_size data samples) last_cluster_id = 1 # Initialize the resulting cluster id vector (containing for each row in input_data_x_sample # its corresponding cluster id) vec_cluster_id = np.zeros(full_cut.shape[1], dtype=int) # Initialize the resulting cluster level vector (containing for each data sample its # corresponding cluster tree level, i.e. a string of '0's and '1's separated by '.') vec_last_cluster_level = np.empty((full_cut.shape[1],), dtype=object) for i in range(full_cut.shape[1]): vec_last_cluster_level[i] = np.array([0],int) # Scan the full cut matrix from the last column (root tree level) to the first column (leaves tree level) if verbose: print("Note about columns: within the full cut tree, the column " + str(full_cut.shape[1]-1) + " represents the root, while 0 represent the leaves.") print("We now scan the full cut tree from the root (column " + str(full_cut.shape[1]-1) + ") " "to the leaves (column 0).") print('') for curr_column in range(full_cut.shape[1]-1,-1,-1): # Get a list of unique group ids and their count within the current tree level values, counts = np.unique(full_cut[:,curr_column], return_counts=True) # Stop if all samples have been already selected (i.e. if all data samples have been already clustered) if (values.size==1) and (values[0]==-1): break # For each group id within the current tree level for curr_elem_pos in range(values.size): # If it is a valid group id (i.e. not yet marked as processed with -1) ... # Note: data samples which were alredy included in a valid cluster id (i.e. at a higher tree level) # are marked with the group id -1 (see below) if (values[curr_elem_pos] >= 0): # Select the current group id selected_curr_value = values[curr_elem_pos] # Look for the vector positions (related to rows in input_data_x_sample) belonging to # the current group id selected_curr_elems = np.where(full_cut[:,curr_column]==selected_curr_value) # Major step #1: Populate the resulting vector of cluster levels for each data sample # If we are not at the root level (i.e. single cluster gathering all the samples) ... if curr_column < (full_cut.shape[1]-1): # Get the ancestor values and element positions selected_ancestor_value = full_cut[selected_curr_elems[0][0],curr_column+1] selected_ancestor_elems = np.where(full_cut[:,curr_column+1]==selected_ancestor_value) # Compute the values and counts of the offspring (i.e. curr_elem + brothers) and sort them # by their count (so that the biggest cluster gets the offspring_elem_label = 0, see below) offspring_values, offspring_counts = np.unique(full_cut[selected_ancestor_elems,curr_column], return_counts=True) count_sort_ind = np.argsort(-offspring_counts) offspring_values = offspring_values[count_sort_ind] offspring_counts = offspring_counts[count_sort_ind] # If the number of descendants is > 1 (i.e. if the curr_elem has at least one brother) if (offspring_values.shape[0] > 1): # Select the position of the current value (i.e. 0 or 1) and append it to the cluster level offspring_elem_label = np.where(offspring_values==selected_curr_value)[0][0] for i in selected_curr_elems[0]: vec_last_cluster_level[i] = np.hstack((vec_last_cluster_level[i], offspring_elem_label)) # Major step #2: Populate the resulting vector of cluster ids for each data sample, # and mark them as already clustered (-1) # If the number of elements is below max_cluster_size ... if (counts[curr_elem_pos] <= max_cluster_size): if verbose: print("Current column in full cut tree = " + str(curr_column)) print("list_group_ids: " + str(values)) print("list_count_samples: " + str(counts)) print("selected_curr_value: " + str(selected_curr_value) + ", count_samples = " + str(counts[curr_elem_pos]) + ", marked as result") print('') # Relate these vector positions to the current cluster id vec_cluster_id[selected_curr_elems] = last_cluster_id # Delete these vector positions at the lower tree levels for further processing # (i.e. mark these elements as already clustered) full_cut[selected_curr_elems,0:curr_column] = -1 # Update the cluster id last_cluster_id = last_cluster_id + 1 # Return the resulting clustering array (containing for each row in input_data_x_sample its # corresponding cluster id) and the clustering level return vec_cluster_id, vec_last_cluster_level except AssertionError: print("Please use a max_cluster_size >= 1")
9,117
def len_smaller(length: int) -> Callable: """Measures if the length of a sequence is smaller than a given length. >>> len_smaller(2)([0, 1, 2]) False """ def len_smaller(seq): return count(seq) < length return len_smaller
9,118
def e_2e_fun(theta, e_init=e_1f): """ Electron energy after Compton scattering, (using energy e_1f) :param theta: angle for scattered photon :param e_init: initial photon energy :return: """ return e_init / (((m_e * c ** 2) / e_init) * (1 / (1 - np.cos(theta))) + 1)
9,119
def tag_images_for_google_drive( input_files: AbstractSet[Path], database: Optional[Path], extra_tags: Optional[Set[str]], tag_file: Optional[Path] = None, from_files: bool = False, from_db: bool = False, force: bool = False, dry: bool = False, verbose: int = 0) -> Tuple[Mapping[Path, Tuple[str, Sequence[str]]], Mapping[Path, Tuple[str, Sequence[str]]]]: """ Analyse csv and files to extract tag and inject hash tag in description. :param database: The CSV file or None :param input_files: A set of filename :param tag_file: A filename to save all tags or None :param from_file: A boolean value to use only the files names :param from_db: A boolean value to use only the CSV file :param dry: True to simulate the modification in files. :return: A tuple with the new data base and the description of all modified files. """ assert bool(from_files) + bool(from_db) < 2 merge = not from_db and not from_files assert not ((from_db or merge) and not database) if not extra_tags: extra_tags = set() updated_files: Dict[Path, Tuple[str, List[str]]] = {} # Files to update update_descriptions = False ref_descriptions: Dict[Path, Tuple[str, List[str]]] = {} description_date = 0.0 if database and database.is_file(): description_date = database.stat().st_mtime with open(str(database), 'rt', encoding='utf-8') as csv_file: rows = csv.reader(csv_file, delimiter=',') ref_descriptions = {Path(row[0]): _extract_tags(row[1], '#') for row in rows if len(row) == 2} else: update_descriptions = True if not shutil.which("exiftool"): LOGGER.error("Install exiftool in PATH before to use tag_images_for_google_drive") raise OSError(-1, "exiftool not found") with ExifTool() as exif_tool: # 1. Update images files update_descriptions = _manage_files(exif_tool, input_files, from_db, from_files, ref_descriptions, extra_tags, update_descriptions, updated_files, force, verbose) # 2. Apply the descriptions file update_descriptions = _manage_db(exif_tool, description_date, from_db, from_files, merge, ref_descriptions, extra_tags, update_descriptions, updated_files, force, verbose) # 3. Apply update files _manage_updated_files(exif_tool, dry, updated_files) # 4. Update description _manage_updated_db(database, dry, ref_descriptions, update_descriptions) # 5. Count tags all_tags: AbstractSet[str] = set() nb_files = len(ref_descriptions) nb_total_tags = 0 for _, (_, keywords) in ref_descriptions.items(): nb_total_tags += len(keywords) all_tags = set(all_tags).union(keywords) LOGGER.info(f"Use {nb_total_tags} tags in {nb_files} files, with a dictionary of {len(all_tags)} " f"({int(nb_files / nb_total_tags * 100) if nb_total_tags else 0} t/f).") _manage_tags_file(all_tags, dry, tag_file) LOGGER.debug("Done") return ref_descriptions, updated_files
9,120
def xml_reader(filename): """ A method using iterparse as above would be preferable, since we just want to collect the first few tags. Unfortunately, so far iterparse does not work with html (aka broken xml). """ name = os.path.basename(filename) with open(filename, "rb") as file_h: if etree.LXML_VERSION < (3, 3): parser = etree.HTMLParser(encoding="latin1") tree = etree.parse(file_h, parser) row_it = tree.iter(tag="row") element = next(row_it) attrs = [unicode(child.tag) for child in element.iterchildren()] else: row_it = etree.iterparse(file_h, tag="row", html=True) (event, element) = next(row_it) attrs = [unicode(child.tag) for child in element.iterchildren()] return (name, attrs)
9,121
def exercise_10(): """ nucleic acids: RNA """ in_pdb_str = """\ HEADER RNA 26-MAR-97 1MIS CRYST1 1.000 1.000 1.000 90.00 90.00 90.00 P 1 1 ORIGX1 1.000000 0.000000 0.000000 0.00000 ORIGX2 0.000000 1.000000 0.000000 0.00000 ORIGX3 0.000000 0.000000 1.000000 0.00000 SCALE1 1.000000 0.000000 0.000000 0.00000 SCALE2 0.000000 1.000000 0.000000 0.00000 SCALE3 0.000000 0.000000 1.000000 0.00000 ATOM 1 O5' G A 1 -39.305 107.866 -51.789 1.00 0.00 O ATOM 2 C5' G A 1 -38.172 107.974 -50.957 1.00 0.00 C ATOM 3 C4' G A 1 -37.351 109.206 -51.345 1.00 0.00 C ATOM 4 O4' G A 1 -36.833 109.097 -52.674 1.00 0.00 O ATOM 5 C3' G A 1 -38.169 110.487 -51.328 1.00 0.00 C ATOM 6 O3' G A 1 -38.370 110.983 -50.015 1.00 0.00 O ATOM 7 C2' G A 1 -37.260 111.365 -52.146 1.00 0.00 C ATOM 8 O2' G A 1 -36.123 111.712 -51.383 1.00 0.00 O ATOM 9 C1' G A 1 -36.827 110.411 -53.252 1.00 0.00 C ATOM 10 N9 G A 1 -37.778 110.451 -54.399 1.00 0.00 N ATOM 11 C8 G A 1 -38.788 109.567 -54.744 1.00 0.00 C ATOM 12 N7 G A 1 -39.381 109.860 -55.867 1.00 0.00 N ATOM 13 C5 G A 1 -38.736 111.011 -56.303 1.00 0.00 C ATOM 14 C6 G A 1 -38.952 111.785 -57.481 1.00 0.00 C ATOM 15 O6 G A 1 -39.762 111.589 -58.384 1.00 0.00 O ATOM 16 N1 G A 1 -38.098 112.882 -57.536 1.00 0.00 N ATOM 17 C2 G A 1 -37.146 113.193 -56.587 1.00 0.00 C ATOM 18 N2 G A 1 -36.416 114.294 -56.811 1.00 0.00 N ATOM 19 N3 G A 1 -36.930 112.460 -55.487 1.00 0.00 N ATOM 20 C4 G A 1 -37.761 111.387 -55.408 1.00 0.00 C ATOM 21 H5' G A 1 -37.557 107.080 -51.058 1.00 0.00 H ATOM 22 H5'' G A 1 -38.499 108.071 -49.921 1.00 0.00 H ATOM 23 H4' G A 1 -36.512 109.317 -50.658 1.00 0.00 H ATOM 24 H3' G A 1 -39.114 110.342 -51.848 1.00 0.00 H ATOM 25 H2' G A 1 -37.743 112.247 -52.531 1.00 0.00 H ATOM 26 HO2' G A 1 -36.410 112.213 -50.618 1.00 0.00 H ATOM 27 H1' G A 1 -35.830 110.704 -53.596 1.00 0.00 H ATOM 28 H8 G A 1 -39.075 108.696 -54.159 1.00 0.00 H ATOM 29 H1 G A 1 -38.189 113.490 -58.338 1.00 0.00 H ATOM 30 H21 G A 1 -36.579 114.849 -57.640 1.00 0.00 H ATOM 31 H22 G A 1 -35.704 114.571 -56.150 1.00 0.00 H ATOM 32 HO5' G A 1 -39.804 107.089 -51.525 1.00 0.00 H ATOM 33 P C A 2 -39.575 112.019 -49.689 1.00 0.00 P ATOM 34 OP1 C A 2 -39.502 112.375 -48.255 1.00 0.00 O ATOM 35 OP2 C A 2 -40.825 111.449 -50.239 1.00 0.00 O ATOM 36 O5' C A 2 -39.205 113.330 -50.550 1.00 0.00 O ATOM 37 C5' C A 2 -38.206 114.229 -50.120 1.00 0.00 C ATOM 38 C4' C A 2 -38.024 115.328 -51.169 1.00 0.00 C ATOM 39 O4' C A 2 -37.635 114.785 -52.430 1.00 0.00 O ATOM 40 C3' C A 2 -39.302 116.088 -51.460 1.00 0.00 C ATOM 41 O3' C A 2 -39.648 117.004 -50.437 1.00 0.00 O ATOM 42 C2' C A 2 -38.900 116.766 -52.741 1.00 0.00 C ATOM 43 O2' C A 2 -37.943 117.772 -52.478 1.00 0.00 O ATOM 44 C1' C A 2 -38.214 115.608 -53.457 1.00 0.00 C ATOM 45 N1 C A 2 -39.213 114.844 -54.247 1.00 0.00 N ATOM 46 C2 C A 2 -39.629 115.388 -55.459 1.00 0.00 C ATOM 47 O2 C A 2 -39.204 116.482 -55.828 1.00 0.00 O ATOM 48 N3 C A 2 -40.513 114.676 -56.213 1.00 0.00 N ATOM 49 C4 C A 2 -40.964 113.480 -55.805 1.00 0.00 C ATOM 50 N4 C A 2 -41.837 112.816 -56.576 1.00 0.00 N ATOM 51 C5 C A 2 -40.527 112.907 -54.565 1.00 0.00 C ATOM 52 C6 C A 2 -39.665 113.627 -53.828 1.00 0.00 C ATOM 53 H5' C A 2 -37.265 113.700 -49.985 1.00 0.00 H ATOM 54 H5'' C A 2 -38.505 114.679 -49.173 1.00 0.00 H ATOM 55 H4' C A 2 -37.260 116.032 -50.837 1.00 0.00 H ATOM 56 H3' C A 2 -40.104 115.385 -51.660 1.00 0.00 H ATOM 57 H2' C A 2 -39.744 117.164 -53.296 1.00 0.00 H ATOM 58 HO2' C A 2 -38.340 118.429 -51.904 1.00 0.00 H ATOM 59 H1' C A 2 -37.448 115.962 -54.119 1.00 0.00 H ATOM 60 H41 C A 2 -42.140 113.214 -57.454 1.00 0.00 H ATOM 61 H42 C A 2 -42.186 111.915 -56.282 1.00 0.00 H ATOM 62 H5 C A 2 -40.825 111.939 -54.208 1.00 0.00 H ATOM 63 H6 C A 2 -39.333 113.231 -52.894 1.00 0.00 H ATOM 132 P A A 5 -49.440 124.595 -55.324 1.00 0.00 P ATOM 133 OP1 A A 5 -49.855 126.011 -55.204 1.00 0.00 O ATOM 134 OP2 A A 5 -49.735 123.644 -54.229 1.00 0.00 O ATOM 135 O5' A A 5 -50.048 124.002 -56.693 1.00 0.00 O ATOM 136 C5' A A 5 -51.166 123.141 -56.672 1.00 0.00 C ATOM 137 C4' A A 5 -51.363 122.530 -58.060 1.00 0.00 C ATOM 138 O4' A A 5 -50.271 121.673 -58.404 1.00 0.00 O ATOM 139 C3' A A 5 -52.607 121.669 -58.101 1.00 0.00 C ATOM 140 O3' A A 5 -53.761 122.442 -58.379 1.00 0.00 O ATOM 141 C2' A A 5 -52.264 120.728 -59.232 1.00 0.00 C ATOM 142 O2' A A 5 -52.381 121.398 -60.470 1.00 0.00 O ATOM 143 C1' A A 5 -50.787 120.462 -58.947 1.00 0.00 C ATOM 144 N9 A A 5 -50.642 119.381 -57.952 1.00 0.00 N ATOM 145 C8 A A 5 -50.039 119.417 -56.717 1.00 0.00 C ATOM 146 N7 A A 5 -50.053 118.272 -56.091 1.00 0.00 N ATOM 147 C5 A A 5 -50.688 117.412 -56.982 1.00 0.00 C ATOM 148 C6 A A 5 -50.989 116.037 -56.932 1.00 0.00 C ATOM 149 N6 A A 5 -50.698 115.257 -55.883 1.00 0.00 N ATOM 150 N1 A A 5 -51.588 115.490 -58.008 1.00 0.00 N ATOM 151 C2 A A 5 -51.867 116.259 -59.057 1.00 0.00 C ATOM 152 N3 A A 5 -51.638 117.555 -59.224 1.00 0.00 N ATOM 153 C4 A A 5 -51.036 118.077 -58.126 1.00 0.00 C ATOM 154 H5' A A 5 -52.054 123.706 -56.387 1.00 0.00 H ATOM 155 H5'' A A 5 -51.000 122.338 -55.954 1.00 0.00 H ATOM 156 H4' A A 5 -51.445 123.311 -58.809 1.00 0.00 H ATOM 157 H3' A A 5 -52.700 121.122 -57.163 1.00 0.00 H ATOM 158 H2' A A 5 -52.868 119.824 -59.228 1.00 0.00 H ATOM 159 HO2' A A 5 -51.824 122.180 -60.448 1.00 0.00 H ATOM 160 H1' A A 5 -50.247 120.181 -59.845 1.00 0.00 H ATOM 161 H8 A A 5 -49.574 120.307 -56.306 1.00 0.00 H ATOM 162 H61 A A 5 -50.933 114.274 -55.905 1.00 0.00 H ATOM 163 H62 A A 5 -50.244 115.650 -55.071 1.00 0.00 H ATOM 164 H2 A A 5 -52.341 115.756 -59.891 1.00 0.00 H TER 262 C A 8 """ in_h = iotbx.pdb.input(source_info=None, lines=in_pdb_str).construct_hierarchy(sort_atoms=True) out_h = iotbx.pdb.input(source_info=None, lines=in_pdb_str).construct_hierarchy(sort_atoms=False) # print in_h.as_pdb_string() # in_h.sort_atoms_in_place() # print "="*50 # print in_h.as_pdb_string() validate_result(in_h, out_h)
9,122
def interval_list_intersection(A: List[List], B: List[List], visualization: bool = True) -> List[List]: """ LeteCode 986: Interval List Intersections Given two lists of closed intervals, each list of intervals is pairwise disjoint and in sorted order. Return the intersection of these two interval lists. Examples: 1. A: [[0, 2], [5, 10], [13, 23], [24, 25]], B: [[1, 5], [8, 12], [15, 24], [25, 26]] return: [[1, 2], [5, 5], [8, 10], [15, 23], [24, 24], [25, 25]] """ res = [] i = j = 0 while i < len(A) and j < len(B): s = max(A[i][0], B[j][0]) e = min(A[i][1], B[j][1]) if s <= e: res.append([s, e]) if A[i][1] < B[j][1]: i += 1 else: j += 1 if visualization: interval_list_intersection_visualization(A, B, res) return res
9,123
def set_project_user_attribute_name(number: int, value: str) -> None: """ Args: number (int): user attribute number value (str): value """
9,124
def test_amf_classifier_serialization(): """Trains a AMFClassifier on iris, saves and loads it again. Check that everything is the same between the original and loaded forest """ random_state = 42 n_estimators = 1 n_classes = 3 iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=random_state ) X_train_1, X_train_2, y_train_1, y_train_2 = train_test_split( X_train, y_train, test_size=0.2, random_state=random_state ) clf1 = AMFClassifier( n_estimators=n_estimators, n_classes=n_classes, random_state=random_state ) clf1.partial_fit(X_train_1, y_train_1) filename = "amf_on_iris.pkl" clf1.save(filename) clf2 = AMFClassifier.load(filename) os.remove(filename) def test_forests_are_equal(clf1, clf2): # Test samples samples1 = clf1.no_python.samples samples2 = clf2.no_python.samples assert samples1.n_samples_increment == samples2.n_samples_increment n_samples1 = samples1.n_samples n_samples2 = samples2.n_samples assert n_samples1 == n_samples2 assert samples1.n_samples_capacity == samples2.n_samples_capacity assert np.all(samples1.labels[:n_samples1] == samples2.labels[:n_samples2]) assert np.all(samples1.features[:n_samples1] == samples2.features[:n_samples2]) # Test nopython.trees for n_estimator in range(n_estimators): tree1 = clf1.no_python.trees[n_estimator] tree2 = clf2.no_python.trees[n_estimator] # Test tree attributes assert tree1.n_features == tree2.n_features assert tree1.step == tree2.step assert tree1.loss == tree2.loss assert tree1.use_aggregation == tree2.use_aggregation assert tree1.iteration == tree2.iteration assert tree1.n_classes == tree2.n_classes assert tree1.dirichlet == tree2.dirichlet assert np.all(tree1.intensities == tree2.intensities) # Test tree.nodes nodes1 = tree1.nodes nodes2 = tree2.nodes assert np.all(nodes1.index == nodes2.index) assert np.all(nodes1.is_leaf == nodes2.is_leaf) assert np.all(nodes1.depth == nodes2.depth) assert np.all(nodes1.n_samples == nodes2.n_samples) assert np.all(nodes1.parent == nodes2.parent) assert np.all(nodes1.left == nodes2.left) assert np.all(nodes1.right == nodes2.right) assert np.all(nodes1.feature == nodes2.feature) assert np.all(nodes1.weight == nodes2.weight) assert np.all(nodes1.log_weight_tree == nodes2.log_weight_tree) assert np.all(nodes1.threshold == nodes2.threshold) assert np.all(nodes1.time == nodes2.time) assert np.all(nodes1.memory_range_min == nodes2.memory_range_min) assert np.all(nodes1.memory_range_max == nodes2.memory_range_max) assert np.all(nodes1.n_features == nodes2.n_features) assert nodes1.n_nodes == nodes2.n_nodes assert nodes1.n_samples_increment == nodes2.n_samples_increment assert nodes1.n_nodes_capacity == nodes2.n_nodes_capacity assert np.all(nodes1.counts == nodes2.counts) assert nodes1.n_classes == nodes2.n_classes test_forests_are_equal(clf1, clf2) # Test predict proba y_pred = clf1.predict_proba(X_test) y_pred_pkl = clf2.predict_proba(X_test) assert np.all(y_pred == y_pred_pkl) clf1.partial_fit(X_train_2, y_train_2) clf2.partial_fit(X_train_2, y_train_2) test_forests_are_equal(clf1, clf2) y_pred = clf1.predict_proba(X_test) y_pred_pkl = clf2.predict_proba(X_test) assert np.all(y_pred == y_pred_pkl)
9,125
def get(environ: OsEnvironLike = None) -> str: """Get the application ID from the environment. Args: environ: Environment dictionary. Uses os.environ if `None`. Returns: Default application ID as a string. We read from the environment APPLICATION_ID (deprecated) or else GAE_APPLICATION. """ if environ is None: environ = os.environ return environ.get('APPLICATION_ID', environ.get('GAE_APPLICATION', ''))
9,126
def tokenize_query(query): """ Tokenize a query """ tokenized_query = tokenizer.tokenize(query) stop_words = set(nltk.corpus.stopwords.words("english")) tokenized_query = [ word for word in tokenized_query if word not in stop_words] tokenized_query = [stemmer.stem(word) for word in tokenized_query] tokenized_query = [word.lower() for word in tokenized_query] return tokenized_query
9,127
def redo(layer): """Redo any previously undone actions.""" layer.redo()
9,128
def _add_run_common(parser): """Add common args for 'exp run' and 'exp resume'.""" # inherit arguments from `dvc repro` add_repro_arguments(parser) parser.add_argument( "-n", "--name", default=None, help=( "Human-readable experiment name. If not specified, a name will " "be auto-generated." ), metavar="<name>", ) parser.add_argument( "-S", "--set-param", action="append", default=[], help="Use the specified param value when reproducing pipelines.", metavar="[<filename>:]<param_name>=<param_value>", ) parser.add_argument( "--queue", action="store_true", default=False, help="Stage this experiment in the run queue for future execution.", ) parser.add_argument( "--run-all", action="store_true", default=False, help="Execute all experiments in the run queue. Implies --temp.", ) parser.add_argument( "-j", "--jobs", type=int, default=1, help="Run the specified number of experiments at a time in parallel.", metavar="<number>", ) parser.add_argument( "--temp", action="store_true", dest="tmp_dir", help=( "Run this experiment in a separate temporary directory instead of " "your workspace." ), )
9,129
def rewrite_return(func): """Rewrite ret ops to assign to a variable instead, which is returned""" ret_normalization.run(func) [ret] = findallops(func, 'ret') [value] = ret.args ret.delete() return value
9,130
def get_loss_fn(loss_factor=1.0): """Gets a loss function for squad task.""" def _loss_fn(labels, model_outputs): start_positions = labels['start_positions'] end_positions = labels['end_positions'] start_logits, end_logits = model_outputs return squad_loss_fn( start_positions, end_positions, start_logits, end_logits, loss_factor=loss_factor) return _loss_fn
9,131
async def run_command(*args): """ https://asyncio.readthedocs.io/en/latest/subprocess.html """ # Create subprocess process = await asyncio.create_subprocess_exec( *args, # stdout must a pipe to be accessible as process.stdout stdout=asyncio.subprocess.PIPE) # Wait for the subprocess to finish stdout, stderr = await process.communicate() # Return stdout return stdout.decode().strip()
9,132
def replace_config(conf_file_path, src_key, new_value): """Update the config file by a given dict.""" with open(conf_file_path, "a+") as fp: content = json.load(fp) content[src_key].update(new_value) fp.truncate(0) fp.write(json.dumps(content, indent=4))
9,133
def runcmd(ctx, cmdargs): """Execute the given command""" utils.run_solver(cmdargs)
9,134
def get_variants_in_region(db, chrom, start, stop): """ Variants that overlap a region Unclear if this will include CNVs """ xstart = get_xpos(chrom, start) xstop = get_xpos(chrom, stop) variants = list(db.variants.find({ 'xpos': {'$lte': xstop, '$gte': xstart} }, projection={'_id': False}, limit=SEARCH_LIMIT)) #add_consequence_to_variants(variants) return list(variants)
9,135
def get_business(bearer_token, business_id): """Query the Business API by a business ID. Args: business_id (str): The ID of the business to query. Returns: dict: The JSON response from the request. """ business_path = BUSINESS_PATH + business_id #4 return request(API_HOST, business_path, bearer_token)
9,136
def AlexNet_modified(input_shape=None, regularize_weight=0.0001): """ Alexnet convolution layers with added batch-normalization and regularization :param input_shape: :param regularize_weight: :return: """ from keras.layers import Conv2D, Input, MaxPooling2D, ZeroPadding2D from keras.layers.normalization import BatchNormalization from keras.layers.merge import concatenate from keras.models import Model from keras.regularizers import l2 img_input = Input(shape=input_shape) #Branch A (mimic the original alexnet) x = Conv2D(48, (11, 11), strides=(4,4), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(img_input) x = MaxPooling2D((3,3), strides=(2, 2))(x) x = BatchNormalization(axis=-1)(x) x = ZeroPadding2D((2, 2))(x) x = Conv2D(128, (5, 5), strides=(1,1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = BatchNormalization(axis=-1)(x) x = ZeroPadding2D((1, 1))(x) x = Conv2D(192, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(x) x = BatchNormalization(axis=-1)(x) x = ZeroPadding2D((1, 1))(x) x = Conv2D(192, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(x) x = BatchNormalization(axis=-1)(x) x = ZeroPadding2D((1, 1))(x) x = Conv2D(128, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = ZeroPadding2D((1, 1))(x) # Branch B (mimic the original alexnet) y = Conv2D(48, (11, 11), strides=(4, 4), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(img_input) y = MaxPooling2D((3, 3), strides=(2, 2))(y) y = BatchNormalization(axis=-1)(y) y = ZeroPadding2D((2, 2))(y) y = Conv2D(128, (5, 5), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(y) y = MaxPooling2D((3, 3), strides=(2, 2))(y) y = BatchNormalization(axis=-1)(y) y = ZeroPadding2D((1, 1))(y) y = Conv2D(192, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(y) y = BatchNormalization(axis=-1)(y) y = ZeroPadding2D((1, 1))(y) y = Conv2D(192, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(y) y = BatchNormalization(axis=-1)(y) y = ZeroPadding2D((1, 1))(y) y = Conv2D(128, (3, 3), strides=(1, 1), activation='relu', padding='same', kernel_regularizer=l2(regularize_weight))(y) y = MaxPooling2D((3, 3), strides=(2, 2))(y) y = ZeroPadding2D((1, 1))(y) out = concatenate([x,y], axis=-1) inputs = img_input model = Model(inputs, out, name='alexnet') return model
9,137
def main(): """ Make all images in current directory. """ for tex_file in iglob('./*.tex'): jobname = tex_file.split('/')[-1][:-4] os.system(f'pdflatex --shell-escape {jobname}') for ext in ['aux', 'log', 'pdf']: os.system(f'rm {jobname}.{ext}')
9,138
def readblock(fileObj): """ parse the block of data like below ORDINATE ERROR ABSCISSA 2.930E-06 1.8D-07 5.00E+02 X. 8.066E-06 4.8D-07 6.80E+02 .X. 1.468E-05 8.3D-07 9.24E+02 ..X. 2.204E-05 1.2D-06 1.26E+03 ...X... """ data = [] p = re.compile('ORDINATE') q = re.compile('0LINEAR COEFFICIENTS') for line in fileObj: if q.search(line) is not None: break if p.search(line) is None: dataContent = line[0:31] dataContent = dataContent.replace('D', 'E') datarow = list(map(float, dataContent.split())) data.append(datarow) return np.array(data)
9,139
def test_config_override() -> None: """Test config can be overriden.""" bot = Phial( "test-token", config={ "prefix": "/", "registerHelpCommand": False, "baseHelpText": "All commands:", "autoReconnect": False, "loopDelay": 0.5, "hotReload": True, "maxThreads": 1, }, ) assert bot.config == { "prefix": "/", "registerHelpCommand": False, "baseHelpText": "All commands:", "autoReconnect": False, "loopDelay": 0.5, "hotReload": True, "maxThreads": 1, }
9,140
def test_get_svl_data_number_multi_row(test_conn): """ Tests that get_svl_data raises an SvlNumberValueError when the query returns multiple values. """ svl_plot = { "type": "number", "data": "bigfoot", "value": {"field": "number"}, } with pytest.raises(SvlNumberValueError): get_svl_data(svl_plot, test_conn)
9,141
def as_scalar(scalar): """Check and return the input if it is a scalar. If it is not scalar, raise a ValueError. Parameters ---------- scalar : Any the object to check Returns ------- float the scalar if x is a scalar """ if isinstance(scalar, np.ndarray): assert scalar.size == 1 return scalar[0] elif np.isscalar(scalar): return scalar else: raise ValueError('expected scalar, got %s' % scalar)
9,142
def evaluate_dnf( # pylint: disable=too-many-arguments,too-many-locals num_objects: int, num_vars: int, nullary: np.ndarray, unary: np.ndarray, binary: np.ndarray, and_kernel: np.ndarray, or_kernel: np.ndarray, target_arity: int, ) -> np.ndarray: """Evaluate given batch of interpretations.""" # nullary (B, numNullary) # unary (B, O, numUnary) # binary (B, O, O-1, numBinary) # and_kernel (H, IN) # or_kernel (H,) # --------------------------- # We need a binding / permutation matrix that binds every object to every # variable, so we can evaluate the rule. The following list of tuples, # tells us which constant each variable is for each permutation perm_idxs = np.array( list(itertools.permutations(range(num_objects), num_vars)) ) # (K, V) # --- # Binary comparison indices for variables, XY XZ YX YZ ... var_bidxs = np.stack(np.nonzero(1 - np.eye(num_vars))).T # (V*(V-1), 2) perm_bidxs = perm_idxs[:, var_bidxs] # (K, V*(V-1), 2) obj_idxs = np.stack(np.nonzero(1 - np.eye(num_objects))).T # (O*(O-1), 2) # The following matrix tells with variable binding pair is actually the # object pair we're looking for var_obj_pairs = (perm_bidxs[..., None, :] == obj_idxs).all(-1) # (K, V*(V-1), O*(O-1)) # We are guaranteed to have 1 matching pair due to unique bindings, so the # non-zero elements in the last dimension encode the index we want var_obj_pairs = np.reshape(np.nonzero(var_obj_pairs)[-1], var_obj_pairs.shape[:2]) # (K, V*(V-1)) # --------------------------- batch_size = nullary.shape[0] # B # Take the permutations perm_unary = unary[:, perm_idxs] # (B, K, V, numUnary) perm_binary = binary.reshape( (batch_size, -1, binary.shape[-1]) ) # (B, O*(O-1), numBinary) perm_binary = perm_binary[:, var_obj_pairs] # (B, K, V*(V-1), numBinary) perm_binary = perm_binary.reshape( ( batch_size, var_obj_pairs.shape[0], num_vars, num_vars - 1, perm_binary.shape[-1], ) ) # (B, K, V, V-1, numBinary) # --------------------------- # Merge different arities flat_nullary = np.repeat( nullary[:, None], perm_unary.shape[1], axis=1 ) # (B, K, numNullary) interpretation = flatten_interpretation(flat_nullary, perm_unary, perm_binary) # (B, K, IN) # --------------------------- # Evaluate and_eval = np.min( interpretation[:, :, None] * and_kernel + (and_kernel == 0), -1 ) # (B, K, H) # --- # Reduction of existential variables if any, K actually expands to O, O-1 etc numVars many times # If the arity of the target predicate is 0, then we can reduce over K. If # it is 1, then expand once then reduce over remaining variables, i.e. O, K//O, H -> (O, H) shape_range = num_objects - np.arange(num_objects) # [numObjs, numObjs-1, ...] new_shape = np.concatenate( [[batch_size], shape_range[:target_arity], [-1, and_eval.shape[-1]]] ) # [B, O, K//O,, H] and_eval = np.reshape(and_eval, new_shape) # (B, O, K//0, H) perm_eval = np.max(and_eval, -2) # (B, H,) if arity 0, (B, O, H) if 1 etc. # --- or_eval = np.max( or_kernel * perm_eval - (or_kernel == 0), -1 ) # (B,) if arity 0, (B, O) if 1 etc. # --------------------------- return or_eval
9,143
def black_color_func(word, font_size, position, orientation, random_state=None, **kwargs): """Make word cloud black and white.""" return("hsl(0,100%, 1%)")
9,144
def setup(hass, config): """ Setup history hooks. """ hass.http.register_path( 'GET', re.compile( r'/api/history/entity/(?P<entity_id>[a-zA-Z\._0-9]+)/' r'recent_states'), _api_last_5_states) hass.http.register_path('GET', URL_HISTORY_PERIOD, _api_history_period) return True
9,145
def test_rsun_missing(): """Tests output if 'rsun' is missing""" euvi_no_rsun = Map(fitspath) euvi_no_rsun.meta['rsun'] = None assert euvi_no_rsun.rsun_obs.value == sun.solar_semidiameter_angular_size(euvi.date).to('arcsec').value
9,146
def shuffle_file(filename): """Shuffle lines in file. """ sp = filename.split('/') shuffled_filename = '/'.join(sp[:-1] + ['shuffled_{}'.format(sp[-1])]) logger.info(shuffled_filename) os.system('shuf {} > {}'.format(filename, shuffled_filename)) return shuffled_filename
9,147
def fitallseq(digitslist, list): """if there is repeating digits, itertools.permutations() is still usable if fail, still print some print, if i >= threshold, served as start point for new searching """ for p in itertools.permutations(digitslist): #print "".join(pw) i=0 pw="".join(p) for seq in list: if seqfit(seq,pw): i=i+1 continue else: break if i==nlines: print("password sequence is found as:", pw) return True print("password is not found in all %d digits permutations", len(digitslist)) return False
9,148
def adduser(args): """Add or update a user to the database: <username> <password> [[role] [role] ...]""" try: username, password = args[0:2] except (IndexError, ValueError), exc: print >> sys.stderr, "you must include at least a username and password: %s" % exc usage() try: roles = args[2:] except IndexError: roles = [] try: store = _store() user = User(username) user.set_password(password) for role in roles: user.add_role(role) store.put(user) except Exception, exc: print >> sys.stderr, 'unable to create or update user: %s' % exc raise return True
9,149
def register_celery(app: Flask): """Load the celery config from the app instance.""" CELERY.conf.update(app.config.get("CELERY", {})) CELERY.flask_app = app # set flask_app attribute used by FlaskTask app.logger.info( f"Celery settings:\n{CELERY.conf.humanize(with_defaults=False, censored=True)}\n" )
9,150
def test_issue_too_many(web3, issuer, issue_script_owner, customer): """Issue over allowance.""" with pytest.raises(TransactionFailed): issuer.functions.issue(customer, 3000).transact({"from": issue_script_owner})
9,151
def check_linear_dependence(matrix: np.ndarray) -> bool: """ Functions checks by Cauchy-Schwartz inqeuality whether two matrices are linear dependent or not. :param matrix: 2x2 matrix to be processed. :return: Boolean. """ for i in range(matrix.shape[0]): for j in range(matrix.shape[0]): if i != j: inner_product = np.inner(matrix[:, i], matrix[:, j]) norm_i = np.linalg.norm(matrix[:, i]) norm_j = np.linalg.norm(matrix[:, j]) print("I: ", matrix[:, i]) print("J: ", matrix[:, j]) print("Prod: ", inner_product) print("Norm i: ", norm_i) print("Norm j: ", norm_j) if np.abs(inner_product - norm_j * norm_i) < 1e-5: print("Dependent") return True else: print("Independent") return False
9,152
def cors_400(details: str = None) -> cors_response: """ Return 400 - Bad Request """ errors = Model400BadRequestErrors() errors.details = details error_object = Model400BadRequest([errors]) return cors_response( req=request, status_code=400, body=json.dumps(delete_none(error_object.to_dict()), indent=_INDENT, sort_keys=True) if _INDENT != 0 else json.dumps(delete_none(error_object.to_dict()), sort_keys=True), x_error=details )
9,153
def detect_label_column(column_names): """ Detect the label column - which we display as the label for a joined column. If a table has two columns, one of which is ID, then label_column is the other one. """ if (column_names and len(column_names) == 2 and "id" in column_names): return [c for c in column_names if c != "id"][0] return None
9,154
def get_date(): """ get the date """ date = subprocess.check_output(["date"]) date = date.decode("utf-8") date = re.search(r"\w{3} \d{1,2} \w{3} \d{4}", date) date = date.group(0) return date
9,155
def sorted_files(pattern): """Return files matching glob pattern, *effectively* sorted by date """ return sort_files(glob.glob(pattern))
9,156
def random_float_tensor(seed, size, a=22695477, c=1, m=2 ** 32, requires_grad=False): """ Generates random tensors given a seed and size https://en.wikipedia.org/wiki/Linear_congruential_generator X_{n + 1} = (a * X_n + c) % m Using Borland C/C++ values The tensor will have values between [0,1) Inputs: seed (int): an int size (Tuple[int]): the size of the output tensor a (int): the multiplier constant to the generator c (int): the additive constant to the generator m (int): the modulus constant to the generator """ num_elements = 1 for s in size: num_elements *= s arr = [(a * seed + c) % m] for i in range(num_elements - 1): arr.append((a * arr[i] + c) % m) return torch.tensor(arr, requires_grad=requires_grad).float().view(size) / m
9,157
def test_isel_xarray_func(hind_ds_initialized_1d, reconstruction_ds_1d): """Test whether applying isel to the objects works.""" hindcast = HindcastEnsemble(hind_ds_initialized_1d) hindcast = hindcast.add_observations(reconstruction_ds_1d) hindcast = hindcast.isel(lead=0, init=slice(0, 3)).isel(time=slice(5, 10)) assert hindcast.get_initialized().init.size == 3 assert hindcast.get_initialized().lead.size == 1 assert hindcast.get_observations().time.size == 5
9,158
def derivable_rng(spec, *, legacy=False): """ Get a derivable RNG, for use cases where the code needs to be able to reproducibly derive sub-RNGs for different keys, such as user IDs. Args: spec: Any value supported by the `seed` parameter of :func:`seedbank.numpy_rng`, in addition to the following values: * the string ``'user'`` * a tuple of the form (``seed``, ``'user'``) Either of these forms will cause the returned function to re-derive new RNGs. Returns: function: A function taking one (or more) key values, like :func:`derive_seed`, and returning a random number generator (the type of which is determined by the ``legacy`` parameter). """ if spec == 'user': return DerivingRNG(derive_seed(), legacy) elif isinstance(spec, tuple): seed, key = spec if key != 'user': raise ValueError('unrecognized key %s', key) return DerivingRNG(seed, legacy) else: return FixedRNG(rng(spec, legacy=legacy))
9,159
def main() -> None: """Function to start the whole application.""" configure_logger() log: Logger = getLogger(__name__) log.info("Attempting to start application") app = get_flask_application() app.run( host=app.config["PIPWATCH_API_HOST"], port=app.config["PIPWATCH_API_PORT"] ) log.info("Application started") sys.exit(0)
9,160
def gsort_vcf(f, out_file, genome_file='mitylib/reference/b37d5.genome', remove_unsorted_vcf=False): """ use gsort to sort the records in a VCF file according to a .genome file. :param f: the path to an unsorted vcf.gz file :param out_file: the path to a resulting sorted vcf.gz file :param genome_file: the .genome file corresponding to the reference genome. see https://github.com/brentp/gsort :param remove_unsorted_vcf: if True, then the input file 'f' will be deleted. :return: nothing """ logging.debug("Sorting, bgzipping {} -> {}".format(f, out_file)) logging.debug("gsort is using genome file " + genome_file) gsort_cmd = "gsort {} {} | bgzip -cf > {}".format(f, genome_file, out_file) logging.debug(gsort_cmd) subprocess.run(gsort_cmd, shell=True) logging.debug("Tabix indexing {}".format(out_file)) tabix(out_file) if remove_unsorted_vcf: os.remove(f)
9,161
def table(custom_headings, col_headings_formatted, rows, spec): """ Create a LaTeX table Parameters ---------- custom_headings : None, dict optional dictionary of custom table headings col_headings_formatted : list formatted column headings rows : list of lists of cell-strings Data in the table, pre-formatted spec : dict options for the formatter Returns ------- dict : contains key 'latex', which corresponds to a latex string representing the table """ longtables = spec['longtables'] table = "longtable" if longtables else "tabular" if custom_headings is not None \ and "latex" in custom_headings: latex = custom_headings['latex'] else: latex = "\\begin{%s}[l]{%s}\n\hline\n" % \ (table, "|c" * len(col_headings_formatted) + "|") latex += ("%s \\\\ \hline\n" % (" & ".join(col_headings_formatted))) for formatted_rowData in rows: if len(formatted_rowData) > 0: formatted_rowData_latex = [ (formatted_cell['latex'] if isinstance(formatted_cell, dict) else formatted_cell) for formatted_cell in formatted_rowData] latex += " & ".join(formatted_rowData_latex) #MULTI-ROW support for *data* (non-col-header) rows of table. Currently # unused (unneeded) - see multirow formatter that is commented out in formatters.py #multirows = [ ("multirow" in el) for el in formatted_rowData_latex ] #if any(multirows): # latex += " \\\\ " # last = True; lineStart = None; col = 1 # for multi,data in zip(multirows,formatted_rowData_latex): # if last == True and multi == False: # lineStart = col #line start # elif last == False and multi == True: # latex += "\cline{%d-%d} " % (lineStart,col) #line end # last=multi # res = _re.search("multicolumn{([0-9])}",data) # if res: col += int(res.group(1)) # else: col += 1 # if last == False: #need to end last line # latex += "\cline{%d-%d} "%(lineStart,col-1) # latex += "\n" #else: latex += " \\\\ \hline\n" latex += "\end{%s}\n" % table return {'latex': latex}
9,162
def send_async_email(msg, html, text, attach=None, send_independently=True, ctype="other"): """ 发送email :param subject: :param recipients:数组 :param text: :param html: :param attach:(<filename>,<content_type>) :param send_independently:如果为True, 独立给recipients中的每个地址发送信息, 否则,一次发送, 收件人能看到其他收件人的邮箱 :return: """ # 检测插件 data = plugin_manager.call_plug(hook_name="send_email", send_independently=send_independently, msg=msg, html=html, text=text, attach=attach) if data == "__no_plugin__": with app.app_context(): msg_obj = Message( subject=msg["subject"], html=html ) if send_independently: # 独立发送, 先连接好邮件服务器 with mail.connect() as conn: for recipient in msg["recipients"]: msg_obj.recipients = [recipient] status, result_msg = send_email_process(msg_obj, conn) else: msg_obj.recipients = msg["recipients"] status, result_msg = send_email_process(msg_obj) log = { "type": "email", "error_info": result_msg, 'status': status, 'subject': msg_obj.subject, 'from': msg_obj.sender, 'to': list(msg["recipients"]), 'date': msg_obj.date, 'body': msg_obj.body, 'html': msg_obj.html, 'msgid': msg_obj.msgId, 'time': time.time(), 'msg_type': ctype } mdbs["sys"].db.sys_message.insert_one(log)
9,163
def readCommand( argv ): """ Processes the command used to run pacman from the command line. """ from optparse import OptionParser usageStr = """ USAGE: python pacman.py <options> EXAMPLES: (1) python pacman.py - starts an interactive game (2) python pacman.py --layout smallClassic --zoom 2 OR python pacman.py -l smallClassic -z 2 - starts an interactive game on a smaller board, zoomed in """ parser = OptionParser(usageStr) parser.add_option('-n', '--numGames', dest='numGames', type='int', help=default('the number of GAMES to play'), metavar='GAMES', default=1) parser.add_option('-l', '--layout', dest='layout', help=default('the LAYOUT_FILE from which to load the map layout'), metavar='LAYOUT_FILE', default='mediumClassic') parser.add_option('-p', '--pacman', dest='pacman', help=default('the agent TYPE in the pacmanAgents module to use'), metavar='TYPE', default='KeyboardAgent') parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics', help='Display output as text only', default=False) parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics', help='Generate minimal output and no graphics', default=False) parser.add_option('-g', '--ghosts', dest='ghost', help=default('the ghost agent TYPE in the ghostAgents module to use'), metavar = 'TYPE', default='RandomGhost') parser.add_option('-k', '--numghosts', type='int', dest='numGhosts', help=default('The maximum number of ghosts to use'), default=4) parser.add_option('-z', '--zoom', type='float', dest='zoom', help=default('Zoom the size of the graphics window'), default=1.0) parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed', help='Fixes the random seed to always play the same game', default=False) parser.add_option('-r', '--recordActions', action='store_true', dest='record', help='Writes game histories to a file (named by the time they were played)', default=False) parser.add_option('--replay', dest='gameToReplay', help='A recorded game file (pickle) to replay', default=None) parser.add_option('-a','--agentArgs',dest='agentArgs', help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"') parser.add_option('-x', '--numTraining', dest='numTraining', type='int', help=default('How many episodes are training (suppresses output)'), default=0) parser.add_option('--frameTime', dest='frameTime', type='float', help=default('Time to delay between frames; <0 means keyboard'), default=0.1) parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions', help='Turns on exception handling and timeouts during games', default=False) parser.add_option('--timeout', dest='timeout', type='int', help=default('Maximum length of time an agent can spend computing in a single game'), default=30) options, otherjunk = parser.parse_args(argv) if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk)) args = dict() # Fix the random seed if options.fixRandomSeed: random.seed('cs188') # Choose a layout args['layout'] = layout.getLayout( options.layout ) if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found") # Choose a Pacman agent noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics) pacmanType = loadAgent(options.pacman, noKeyboard) agentOpts = parseAgentArgs(options.agentArgs) if options.numTraining > 0: args['numTraining'] = options.numTraining if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs args['pacman'] = pacman # Don't display training games if 'numTrain' in agentOpts: options.numQuiet = int(agentOpts['numTrain']) options.numIgnore = int(agentOpts['numTrain']) # Choose a ghost agent ghostType = loadAgent(options.ghost, noKeyboard) args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )] # Choose a display format if options.quietGraphics: import textDisplay args['display'] = textDisplay.NullGraphics() elif options.textGraphics: import textDisplay textDisplay.SLEEP_TIME = options.frameTime args['display'] = textDisplay.PacmanGraphics() else: import graphicsDisplay args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime) args['numGames'] = options.numGames args['record'] = options.record args['catchExceptions'] = options.catchExceptions args['timeout'] = options.timeout # Special case: recorded games don't use the runGames method or args structure if options.gameToReplay != None: print('Replaying recorded game %s.' % options.gameToReplay) import pickle f = open(options.gameToReplay, 'rb') try: recorded = pickle.load(f) finally: f.close() recorded['display'] = args['display'] replayGame(**recorded) sys.exit(0) return args
9,164
def skipIfNoDB(test): """Decorate a test to skip if DB ``session`` is ``None``.""" @wraps(test) def wrapper(self, db, *args, **kwargs): if db.session is None: pytest.skip('Skip because no DB.') else: return test(self, db, *args, **kwargs) return wrapper
9,165
def rboxes2quads_numpy(rboxes): """ :param rboxes: ndarray, shape = (*, h, w, 5=(4=(t,r,b,l) + 1=angle)) Note that angle is between [-pi/4, pi/4) :return: quads: ndarray, shape = (*, h, w, 8=(x1, y1,... clockwise order from top-left)) """ # dists, shape = (*, h, w, 4=(t,r,b,l)) # angles, shape = (*, h, w) h, w, _ = rboxes.shape[-3:] dists, angles = rboxes[..., :4], rboxes[..., 4] # shape = (*, h, w, 5=(t,r,b,l,offset), 2=(x,y)) pts = np.zeros(list(dists.shape[:-1]) + [5, 2], dtype=np.float32) # assign pts for angle >= 0 dists_pos = dists[angles >= 0] if dists_pos.size > 0: # shape = (*, h, w) tops, rights, bottoms, lefts = np.rollaxis(dists_pos, axis=-1) shape = tops.shape pts[angles >= 0] = np.moveaxis(np.array([[np.zeros(shape), -(tops+bottoms)], [lefts+rights, -(tops+bottoms)], [lefts+rights, np.zeros(shape)], [np.zeros(shape), np.zeros(shape)], [lefts, -bottoms]]), [0, 1], [-2, -1]) # assign pts for angle < 0 dists_neg = dists[angles < 0] if dists_neg.size > 0: # shape = (*, h, w) tops, rights, bottoms, lefts = np.rollaxis(dists_neg, axis=-1) shape = tops.shape pts[angles < 0] = np.moveaxis(np.array([[-(lefts+rights), -(tops+bottoms)], [np.zeros(shape), -(tops+bottoms)], [np.zeros(shape), np.zeros(shape)], [-(lefts+rights), np.zeros(shape)], [-rights, -bottoms]]), [0, 1], [-2, -1]) # note that rotate clockwise is positive, otherwise, negative angles *= -1 # rotate # shape = (*, h, w, 2, 2) R = np.moveaxis(np.array([[np.cos(angles), -np.sin(angles)], [np.sin(angles), np.cos(angles)]]), [0, 1], [-2, -1]) # shape = (*, h, w, 2=(x, y), 5=(t,r,b,l,offset)) pts = np.swapaxes(pts, -1, -2) # shape = (*, h, w, 2=(x, y), 5=(t,r,b,l,offset)) rotated_pts = R @ pts # quads, shape = (*, h, w, 2=(x, y), 4=(t,r,b,l)) # offsets, shape = (*, h, w, 2=(x, y), 1=(offset)) quads, offsets = rotated_pts[..., :4], rotated_pts[..., 4:5] # align widths, heights = np.meshgrid(np.arange(w), np.arange(h)) # shape = (h, w, 2) origins = np.concatenate((np.expand_dims(widths, -1), np.expand_dims(heights, -1)), axis=-1) # shape = (*, h, w, 2=(x,y), 1) origins = np.expand_dims(origins, axis=tuple(i for i in range(-1, rboxes.ndim - 3))) quads += origins - offsets quads[..., 0, :] = np.clip(quads[..., 0, :], 0, w) quads[..., 1, :] = np.clip(quads[..., 1, :], 0, h) # reshape quads = np.swapaxes(quads, -1, -2).reshape(list(rboxes.shape[:-1]) + [8]) return quads
9,166
def _async_register_services( hass: HomeAssistant, coordinator: NZBGetDataUpdateCoordinator, ) -> None: """Register integration-level services.""" def pause(call: ServiceCall) -> None: """Service call to pause downloads in NZBGet.""" coordinator.nzbget.pausedownload() def resume(call: ServiceCall) -> None: """Service call to resume downloads in NZBGet.""" coordinator.nzbget.resumedownload() def set_speed(call: ServiceCall) -> None: """Service call to rate limit speeds in NZBGet.""" coordinator.nzbget.rate(call.data[ATTR_SPEED]) hass.services.async_register(DOMAIN, SERVICE_PAUSE, pause, schema=vol.Schema({})) hass.services.async_register(DOMAIN, SERVICE_RESUME, resume, schema=vol.Schema({})) hass.services.async_register( DOMAIN, SERVICE_SET_SPEED, set_speed, schema=SPEED_LIMIT_SCHEMA )
9,167
def cleanup(f): """ Remove dir if exists :param f: Dir to remove :type f: str """ if os.path.exists(f): shutil.rmtree(f)
9,168
def repr_values(condition: Callable[..., bool], lambda_inspection: Optional[ConditionLambdaInspection], resolved_kwargs: Mapping[str, Any], a_repr: reprlib.Repr) -> List[str]: """ Represent function arguments and frame values in the error message on contract breach. :param condition: condition function of the contract :param lambda_inspection: inspected lambda AST node corresponding to the condition function (None if the condition was not given as a lambda function) :param resolved_kwargs: arguments put in the function call :param a_repr: representation instance that defines how the values are represented. :return: list of value representations """ # Hide _ARGS and _KWARGS if they are not part of the condition for better readability if '_ARGS' in resolved_kwargs or '_KWARGS' in resolved_kwargs: parameters = inspect.signature(condition).parameters malleable_kwargs = cast( MutableMapping[str, Any], resolved_kwargs.copy() # type: ignore ) if '_ARGS' not in parameters: malleable_kwargs.pop('_ARGS', None) if '_KWARGS' not in parameters: malleable_kwargs.pop('_KWARGS', None) selected_kwargs = cast(Mapping[str, Any], malleable_kwargs) else: selected_kwargs = resolved_kwargs # Don't use ``resolved_kwargs`` from this point on. # ``selected_kwargs`` is meant to be used instead for better readability of error messages. if is_lambda(a_function=condition): assert lambda_inspection is not None, "Expected a lambda inspection when given a condition as a lambda function" else: assert lambda_inspection is None, "Expected no lambda inspection in a condition given as a non-lambda function" reprs = None # type: Optional[MutableMapping[str, Any]] if lambda_inspection is not None: variable_lookup = collect_variable_lookup(condition=condition, resolved_kwargs=selected_kwargs) recompute_visitor = icontract._recompute.Visitor(variable_lookup=variable_lookup) recompute_visitor.visit(node=lambda_inspection.node.body) recomputed_values = recompute_visitor.recomputed_values repr_visitor = Visitor( recomputed_values=recomputed_values, variable_lookup=variable_lookup, atok=lambda_inspection.atok) repr_visitor.visit(node=lambda_inspection.node.body) reprs = repr_visitor.reprs # Add original arguments from the call unless they shadow a variable in the re-computation. # # The condition arguments are often not sufficient to figure out the error. The user usually needs # more context which is captured in the remainder of the call arguments. if reprs is None: reprs = dict() for key in sorted(selected_kwargs.keys()): val = selected_kwargs[key] if key not in reprs and _representable(value=val): reprs[key] = val parts = [] # type: List[str] # We need to sort in order to present the same violation error on repeated violations. # Otherwise, the order of the reported arguments may be arbitrary. for key in sorted(reprs.keys()): value = reprs[key] if isinstance(value, icontract._recompute.FirstExceptionInAll): writing = ['{} was False, e.g., with'.format(key)] for input_name, input_value in value.inputs: writing.append('\n') writing.append(' {} = {}'.format(input_name, a_repr.repr(input_value))) parts.append(''.join(writing)) else: parts.append('{} was {}'.format(key, a_repr.repr(value))) return parts
9,169
def human_permissions(permissions, short=False): """Get permissions in readable form. """ try: permissions = int(permissions) except ValueError: return None if permissions > sum(PERMISSIONS.values()) or permissions < min( PERMISSIONS.values() ): return "" rez = [] for k, v in PERMISSIONS.items(): if permissions & v == v: rez.append(k) if short: return "".join(((x.split("_")[1][:1]).lower() for x in rez)) else: return " | ".join(rez)
9,170
def predict(): """ Prediction end point Post a JSON holding the features and expect a prediction Returns ------- JSON The field `predictions` will hold a list of 0 and 1's corresponding to the predictions. """ logger.info('Starting prediction') json_ = request.get_json() query_df = pd.DataFrame(json_) query = tm.prepare_data(query_df, train=False) prediction = clf.predict(query) prediction = [int(x) for x in prediction] logger.info("Prediction is ready") return jsonify({'prediction': prediction})
9,171
def run_program(program, cmdargs, stdin_f, stdout_f, stderr_f, run=True, cmd_prepend="", run_from_cmd=True, **kwargs): """Runs `program` with `cmdargs` using `subprocess.call`. :param str stdin_f: File from which to take standard input :param str stdout_f: File in which to put standard output :param str stderr_f: File in which to put standard error :param bool run: Whether to actually run `program` If `True` the program return code is returned. If false a string pointing to the script which will run the program is returned :param str cmd_prepend: Put in the beginning of the bash script :param bool run_from_cmd: Run `program` using the generated bash script instead of running it directly """ time_file_name = '.'.join(stdout_f.split('.')[:-1])+'.time' cmd_file_name = '.'.join(stdout_f.split('.')[:-1])+'.sh' with open(cmd_file_name, 'w') as cmd_file: cmd = ' '.join([program]+cmdargs) time_cmd = "/usr/bin/time -o {time_file}".format(time_file=time_file_name) cmd = "{time_cmd} {cmd} 1> {stdout} 2> {stderr} \n".format(time_cmd=time_cmd, cmd=cmd, stdout=stdout_f, stderr=stderr_f) cmd = cmd_prepend + cmd cmd_file.write(cmd) if run: with OpenWithNone(stdin_f, 'r') as input_file, open(stdout_f, 'w') as stdout_file, open(stderr_f, 'w') as stderr_file: if run_from_cmd: retcode = call(["bash", cmd_file_name], **kwargs) else: try: with open(time_file_name, 'w') as time_file: with print_time(time_file): retcode = call([program]+cmdargs, stdin=input_file, stdout=stdout_file, stderr=stderr_file, **kwargs) except Exception as e: print(e) print('program ', program) print('cmdargs', cmdargs) print('stdin ', stdin_f) print('stdout ', stdout_f) print('stderr ', stderr_f) # print 'kwargs ', kwargs print(getcwd()) raise replace_string_in_file(stdout_f, '\r', '\n') return retcode else: return cmd_file_name
9,172
def test_invalid_login(test_client, init_database): """ GIVEN a Flask application WHEN the '/login' page is posted to with invalid credentials (POST) THEN check an error message is returned to the user """ response = test_client.post('/login', data=dict(email='bernard@gmail.com', password='badPa33w04d'), follow_redirects=True) assert response.status_code == 200 assert b"ERROR! Incorrect login credentials." in response.data assert b"Feature Request App" in response.data assert b"Logout" not in response.data assert b"Login" in response.data assert b"Register" in response.data
9,173
def second_step_red(x: np.array, y: np.array, z: np.array, px: np.array, py: np.array, pz: np.array, Fx: np.array, Fy: np.array, Fz: np.array, z_start: float, z_stop: float) -> (np.array, np.array, np.array, np.array, np.array, np.array): """ Second step for Relativictic Difference Scheme """ n = int(len(x)) for i in prange(n): if z[i] >= z_start and z[i] <= z_stop: gamma = (1 + px[i]**2 + py[i]**2 + pz[i]**2)**(1/2) vx = px[i]/gamma vy = py[i]/gamma vz = pz[i]/gamma b2 = 1 + Fx[i]**2 + Fy[i]**2 + Fz[i]**2 b1 = 2 - b2 b3 = 2 * (vx*Fx[i] + vy*Fy[i] + vz*Fz[i]) fx = 2 * (vy*Fz[i] - vz*Fy[i]) fy = 2 * (vz*Fx[i] - vx*Fz[i]) fz = 2 * (vx*Fy[i] - vy*Fx[i]) vx = (vx*b1 + fx + Fx[i]*b3)/b2 vy = (vy*b1 + fy + Fy[i]*b3)/b2 vz = (vz*b1 + fz + Fz[i]*b3)/b2 x[i] += vx y[i] += vy z[i] += vz px[i] = vx*gamma py[i] = vy*gamma pz[i] = vz*gamma else: gamma = (1 + px[i]**2 + py[i]**2 + pz[i]**2)**(1/2) vz = pz[i]/gamma z[i] += vz return x, y, z, px, py, pz
9,174
def drop_tabu_points(xf, tabulist, tabulistsize, tabustrategy): """Drop a point from the tabu search list.""" if len(tabulist) < tabulistsize: return tabulist if tabustrategy == 'oldest': tabulist.pop(0) else: distance = np.sqrt(np.sum((tabulist - xf)**2, axis=1)) index = np.argmax(distance) tabulist.pop(index) return tabulist
9,175
def get_atom_feature_dims(list_acquired_feature_names): """ tbd """ return list(map(len, [CompoundKit.atom_vocab_dict[name] for name in list_acquired_feature_names]))
9,176
def parse_selector(selector): """Parses a block of selectors like div .name #tag to class=.name, selector=div and id=#tag. Returns (selector, id, class[]) """ m_class, m_id, m_selector, m_attr = [], None, None, {} if selector is not None and type(selector) == str: selector_labels = selector.split() for label in selector_labels: if label.startswith("."): m_class.append(label) elif label.startswith("#"): if m_id is not None: raise ValueError("Multiple id's are declared in block "+str(selector)) m_id = label elif label.startswith("@@"): attribute_block = str(label).split('=') if len(attribute_block) < 2: raise ValueError('Attribute does not match the \ format @@<attribute_name>=<attribute_value> without space') attr = attribute_block[0] value = attribute_block[1] mattr[attr] = value else: if m_selector is not None: raise ValueError("Multiple selectors are declared in block "+str(selector)) m_selector = label if mattr and not m_selector: raise AssertionError('If selection is done with attribute @@<attr_name>=<attr_value>,\ then it is must to have selector.\n Eg: <selector> @@<attr_name>=<attr_value>"') return m_selector, m_id, m_class, mattr
9,177
def is_batch_enabled(release_id): """ Check whether batching is enabled for a release. """ details = get_release_details_by_id(release_id) return details['data']['attributes']['enable_batching']
9,178
def create(tiles): """Handler.""" with futures.ThreadPoolExecutor(max_workers=8) as executor: responses = executor.map(worker, tiles) with contextlib.ExitStack() as stack: sources = [ stack.enter_context(rasterio.open(tile)) for tile in responses if tile ] dest, output_transform = merge(sources, nodata=-32767) meta = { "driver": "GTiff", "count": 1, "dtype": np.int16, "nodata": -32767, "height": dest.shape[1], "width": dest.shape[2], "compress": "DEFLATE", "crs": "epsg:4326", "transform": output_transform, } memfile = MemoryFile() with memfile.open(**meta) as dataset: dataset.write(dest) return memfile
9,179
def write_rxn_rates(path, lang, specs, reacs, fwd_rxn_mapping): """Write reaction rate subroutine. Includes conditionals for reversible reactions. Parameters ---------- path : str Path to build directory for file. lang : {'c', 'cuda', 'fortran', 'matlab'} Programming language. specs : list of SpecInfo List of species in the mechanism. reacs : list of ReacInfo List of reactions in the mechanism. fwd_rxn_mapping : List of integers The index of the reaction in the original mechanism Returns _______ None """ num_s = len(specs) num_r = len(reacs) rev_reacs = [i for i, rxn in enumerate(reacs) if rxn.rev] num_rev = len(rev_reacs) pdep_reacs = [i for i, rxn in enumerate(reacs) if rxn.thd_body or rxn.pdep] pre = '__device__ ' if lang == 'cuda' else '' filename = 'rates' + utils.header_ext[lang] with open(os.path.join(path, filename), 'w') as file: file.write( '#ifndef RATES_HEAD\n' '#define RATES_HEAD\n' '\n' '#include "header{}"\n'.format(utils.header_ext[lang]) + '\n' '{0}void eval_rxn_rates (const double,' ' const double, const double*, double*, double*);\n' '{0}void eval_spec_rates (const double*,' ' const double*, const double*, double*, double*);\n'.format(pre) ) if pdep_reacs: file.write('{}void get_rxn_pres_mod (const double, const ' 'double, const double*, double*);\n'.format(pre) ) file.write('\n' '#endif\n' ) filename = 'rxn_rates' + utils.file_ext[lang] with open(os.path.join(path, filename), 'w') as file: line = '' if lang == 'cuda': line = '__device__ ' if lang in ['c', 'cuda']: file.write('#include "rates' + utils.header_ext[lang] + '"\n') line += ('void eval_rxn_rates (const double T, const double pres,' ' const double * C, double * fwd_rxn_rates, ' 'double * rev_rxn_rates) {\n' ) elif lang == 'fortran': line += ('subroutine eval_rxn_rates(T, pres, C, fwd_rxn_rates,' ' rev_rxn_rates)\n\n' ) # fortran needs type declarations line += (' implicit none\n' ' double precision, intent(in) :: ' 'T, pres, C({})\n'.format(num_s) ) line += (' double precision, intent(out) :: ' 'fwd_rxn_rates({}), '.format(num_r) + 'rev_rxn_rates({})\n'.format(num_rev) ) line += (' \n' ' double precision :: logT\n' ) kf_flag = True if rev_reacs and any([not r.rev_par for r in reacs]): line += ' double precision :: kf, Kc\n' kf_flag = False if any([rxn.cheb for rxn in reacs]): if kf_flag: line += ' double precision :: kf, Tred, Pred\n' kf_flag = False else: line += ' double precision :: Tred, Pred\n' if any([rxn.plog for rxn in reacs]): if kf_flag: line += ' double precision :: kf, kf2\n' kf_flag = False else: line += ' double precision :: kf2\n' line += '\n' elif lang == 'matlab': line += ('function [fwd_rxn_rates, rev_rxn_rates] = ' 'eval_rxn_rates (T, pres, C)\n\n' ' fwd_rxn_rates = zeros({},1);\n'.format(num_r) + ' rev_rxn_rates = fwd_rxn_rates;\n' ) file.write(line) get_array = utils.get_array pre = ' ' if lang == 'c': pre += 'double ' elif lang == 'cuda': pre += 'register double ' line = (pre + 'logT = log(T)' + utils.line_end[lang] ) file.write(line) file.write('\n') kf_flag = True if rev_reacs and any([not r.rev_par for r in reacs]): kf_flag = False if lang == 'c': file.write(' double kf;\n' ' double Kc;\n' ) elif lang == 'cuda': file.write(' register double kf;\n' ' register double Kc;\n' ) if any([rxn.cheb for rxn in reacs]): # Other variables needed for Chebyshev if lang == 'c': if kf_flag: file.write(' double kf;\n') kf_flag = False file.write(' double Tred;\n' ' double Pred;\n') file.write(utils.line_start + 'double cheb_temp_0, cheb_temp_1' + utils.line_end[lang] ) dim = max(rxn.cheb_n_temp for rxn in reacs if rxn.cheb) file.write(utils.line_start + 'double dot_prod[{}]'.format(dim) + utils.line_end[lang] ) elif lang == 'cuda': if kf_flag: file.write(' register double kf;\n') kf_flag = False file.write(' register double Tred;\n' ' register double Pred;\n') file.write(utils.line_start + 'double cheb_temp_0, cheb_temp_1' + utils.line_end[lang] ) dim = max(rxn.cheb_n_temp for rxn in reacs if rxn.cheb) file.write(utils.line_start + 'double dot_prod[{}]'.format(dim) + utils.line_end[lang] ) if any([rxn.plog for rxn in reacs]): # Variables needed for Plog if lang == 'c': if kf_flag: file.write(' double kf;\n') file.write(' double kf2;\n') if lang == 'cuda': if kf_flag: file.write(' register double kf;\n') file.write(' register double kf2;\n') file.write('\n') def __get_arrays(sp, factor=1.0): # put together all our coeffs lo_array = [nu * factor] + [ sp.lo[6], sp.lo[0], sp.lo[0] - 1.0, sp.lo[1] / 2.0, sp.lo[2] / 6.0, sp.lo[3] / 12.0, sp.lo[4] / 20.0, sp.lo[5] ] lo_array = [x * lo_array[0] for x in [lo_array[1] - lo_array[2]] + lo_array[3:] ] hi_array = [nu * factor] + [ sp.hi[6], sp.hi[0], sp.hi[0] - 1.0, sp.hi[1] / 2.0, sp.hi[2] / 6.0, sp.hi[3] / 12.0, sp.hi[4] / 20.0, sp.hi[5] ] hi_array = [x * hi_array[0] for x in [hi_array[1] - hi_array[2]] + hi_array[3:] ] return lo_array, hi_array for i_rxn in range(len(reacs)): file.write(utils.line_start + utils.comment[lang] + 'rxn {}'.format(fwd_rxn_mapping[i_rxn]) + '\n') rxn = reacs[i_rxn] # if reversible, save forward rate constant for use if rxn.rev and not rxn.rev_par and not (rxn.cheb or rxn.plog): line = (' kf = ' + rxn_rate_const(rxn.A, rxn.b, rxn.E) + utils.line_end[lang] ) file.write(line) elif rxn.cheb: file.write(get_cheb_rate(lang, rxn)) elif rxn.plog: # Special forward rate evaluation for Plog reacions vals = rxn.plog_par[0] file.write(' if (pres <= {:.4e}) {{\n'.format(vals[0]) + ' kf = ' + rxn_rate_const(vals[1], vals[2], vals[3]) + utils.line_end[lang] ) for idx, vals in enumerate(rxn.plog_par[:-1]): vals2 = rxn.plog_par[idx + 1] line = (' }} else if ((pres > {:.4e}) '.format(vals[0]) + '&& (pres <= {:.4e})) {{\n'.format(vals2[0])) file.write(line) line = (' kf = log(' + rxn_rate_const(vals[1], vals[2], vals[3]) + ')' ) file.write(line + utils.line_end[lang]) line = (' kf2 = log(' + rxn_rate_const(vals2[1], vals2[2], vals2[3]) + ')' ) file.write(line + utils.line_end[lang]) pres_log_diff = math.log(vals2[0]) - math.log(vals[0]) line = (' kf = exp(kf + (kf2 - kf) * (log(pres) - ' + '{:.16e}) / '.format(math.log(vals[0])) + '{:.16e})'.format(pres_log_diff) ) file.write(line + utils.line_end[lang]) vals = rxn.plog_par[-1] file.write( ' }} else if (pres > {:.4e}) {{\n'.format(vals[0]) + ' kf = ' + rxn_rate_const(vals[1], vals[2], vals[3]) + utils.line_end[lang] + ' }\n' ) line = ' ' + get_array(lang, 'fwd_rxn_rates', i_rxn) + ' = ' # reactants for i, isp in enumerate(rxn.reac): nu = rxn.reac_nu[i] # check if stoichiometric coefficient is double or integer if utils.is_integer(nu): # integer, so just use multiplication for i in range(int(nu)): line += '' + get_array(lang, 'C', isp) + ' * ' else: line += ('pow(' + get_array(lang, 'C', isp) + ', {}) *'.format(nu) ) # Rate constant: print if not reversible, or reversible but # with explicit reverse parameters. if (rxn.rev and not rxn.rev_par) or rxn.plog or rxn.cheb: line += 'kf' else: line += rxn_rate_const(rxn.A, rxn.b, rxn.E) line += utils.line_end[lang] file.write(line) if rxn.rev: if not rxn.rev_par: # line = ' Kc = 0.0' + utils.line_end[lang] # file.write(line) # sum of stoichiometric coefficients sum_nu = 0 coeffs = {} # go through product species for isp, prod_sp in enumerate(rxn.prod): # check if species also in reactants if prod_sp in rxn.reac: isp2 = rxn.reac.index(prod_sp) nu = rxn.prod_nu[isp] - rxn.reac_nu[isp2] else: nu = rxn.prod_nu[isp] # Skip species with zero overall # stoichiometric coefficient. if (nu == 0): continue sum_nu += nu # get species object sp = specs[prod_sp] if not sp: print('Error: species ' + prod_sp + ' in reaction ' '{} not found.\n'.format(i_rxn) ) sys.exit() lo_array, hi_array = __get_arrays(sp) if not sp.Trange[1] in coeffs: coeffs[sp.Trange[1]] = lo_array, hi_array else: coeffs[sp.Trange[1]] = [ lo_array[i] + coeffs[sp.Trange[1]][0][i] for i in range(len(lo_array)) ], [ hi_array[i] + coeffs[sp.Trange[1]][1][i] for i in range(len(hi_array)) ] # now loop through reactants for isp, reac_sp in enumerate(rxn.reac): # Check if species also in products; # if so, already considered). if reac_sp in rxn.prod: continue nu = rxn.reac_nu[isp] sum_nu -= nu # get species object sp = specs[reac_sp] if not sp: print('Error: species ' + reac_sp + ' in reaction ' '{} not found.\n'.format(i_rxn) ) sys.exit() lo_array, hi_array = __get_arrays(sp, factor=-1.0) if not sp.Trange[1] in coeffs: coeffs[sp.Trange[1]] = lo_array, hi_array else: coeffs[sp.Trange[1]] = [ lo_array[i] + coeffs[sp.Trange[1]][0][i] for i in range(len(lo_array)) ], [hi_array[i] + coeffs[sp.Trange[1]][1][i] for i in range(len(hi_array)) ] isFirst = True for T_mid in coeffs: # need temperature conditional for equilibrium constants line = ' if (T <= {:})'.format(T_mid) if lang in ['c', 'cuda']: line += ' {\n' elif lang == 'fortran': line += ' then\n' elif lang == 'matlab': line += '\n' file.write(line) lo_array, hi_array = coeffs[T_mid] if isFirst: line = ' Kc = ' else: if lang in ['cuda', 'c']: line = ' Kc += ' else: line = ' Kc = Kc + ' line += ('({:.16e} + '.format(lo_array[0]) + '{:.16e} * '.format(lo_array[1]) + 'logT + T * (' '{:.16e} + T * ('.format(lo_array[2]) + '{:.16e} + T * ('.format(lo_array[3]) + '{:.16e} + '.format(lo_array[4]) + '{:.16e} * T))) - '.format(lo_array[5]) + '{:.16e} / T)'.format(lo_array[6]) + utils.line_end[lang] ) file.write(line) if lang in ['c', 'cuda']: file.write(' } else {\n') elif lang in ['fortran', 'matlab']: file.write(' else\n') if isFirst: line = ' Kc = ' else: if lang in ['cuda', 'c']: line = ' Kc += ' else: line = ' Kc = Kc + ' line += ('({:.16e} + '.format(hi_array[0]) + '{:.16e} * '.format(hi_array[1]) + 'logT + T * (' '{:.16e} + T * ('.format(hi_array[2]) + '{:.16e} + T * ('.format(hi_array[3]) + '{:.16e} + '.format(hi_array[4]) + '{:.16e} * T))) - '.format(hi_array[5]) + '{:.16e} / T)'.format(hi_array[6]) + utils.line_end[lang] ) file.write(line) if lang in ['c', 'cuda']: file.write(' }\n\n') elif lang == 'fortran': file.write(' end if\n\n') elif lang == 'matlab': file.write(' end\n\n') isFirst = False line = (' Kc = ' '{:.16e}'.format((chem.PA / chem.RU) ** sum_nu) + ' * exp(Kc)' + utils.line_end[lang] ) file.write(line) line = ' ' + get_array(lang, 'rev_rxn_rates', rev_reacs.index(i_rxn) ) + ' = ' # reactants (products from forward reaction) for isp in rxn.prod: nu = rxn.prod_nu[rxn.prod.index(isp)] # check if stoichiometric coefficient is double or integer if utils.is_integer(nu): # integer, so just use multiplication for i in range(int(nu)): line += '' + get_array(lang, 'C', isp) + ' * ' else: line += ('pow(' + get_array(lang, 'C', isp) + ', {}) * '.format(nu) ) # rate constant if rxn.rev_par: # explicit reverse Arrhenius parameters line += rxn_rate_const(rxn.rev_par[0], rxn.rev_par[1], rxn.rev_par[2] ) else: # use equilibrium constant line += 'kf / Kc' line += utils.line_end[lang] file.write(line) file.write('\n') if lang in ['c', 'cuda']: file.write('} // end eval_rxn_rates\n\n') elif lang == 'fortran': file.write('end subroutine eval_rxn_rates\n\n') elif lang == 'matlab': file.write('end\n\n') return
9,180
def executeMouseEvent(flags, x, y, data=0): """ Mouse events generated with this rapper for L{winUser.mouse_event} will be ignored by NVDA. Consult https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-mouse_event for detailed parameter documentation. @param flags: Controls various aspects of mouse motion and button clicking. The supplied value should be one or a combination of the C{winUser.MOUSEEVENTF_*} constants. @type flags: int @param x: The mouse's absolute position along the x-axis or its amount of motion since the last mouse event was generated. @type x: int @param y: The mouse's absolute position along the y-axis or its amount of motion since the last mouse event was generated. @type y: int @param data: Additional data depending on what flags are specified. This defaults to 0. @type data: int """ with ignoreInjection(): winUser.mouse_event(flags, x, y, data, None)
9,181
def _rfftn_empty_aligned(shape, axes, dtype, order='C', n=None): """Patched version of :func:`sporco.fft.rfftn_empty_aligned`. """ ashp = list(shape) raxis = axes[-1] ashp[raxis] = ashp[raxis] // 2 + 1 cdtype = _complex_dtype(dtype) return cp.empty(ashp, cdtype, order)
9,182
def createErrLog(contents, path="."): """Writes an errors.log file with the formatting characters removed. Args: contents (str): The stuff to write to the log file. path (str): Path to write errors.log (by default CWD). Returns: Nothing. """ fd = open(path + "/errors.log", "w") toWrite = bcolors.stripFormatting(contents) fd.write(toWrite) fd.close()
9,183
def get_test_config(): """ Returns a basic FedexConfig to test with. """ # Test server (Enter your credentials here) return FedexConfig(key='xxxxxxxxxxxxxxxxx', password='xxxxxxxxxxxxxxxxxxxxxxxxx', account_number='xxxxxxxxx', meter_number='xxxxxxxxxx', use_test_server=True)
9,184
def write_data(movies, user, data_format='json'): """ """ assert movies, 'no data to write' date = datetime.now().strftime('%Y%m%d') movies_clean = itertools.chain.from_iterable((json.loads(el) for el in movies)) movies_clean = tuple(movies_clean) if data_format == 'all': file_formats = ('csv', 'json') else: file_formats = (data_format, ) if 'json' in file_formats: file_name = f'{user}_filmweb_{date}.json' with open(file_name, 'w', encoding='utf-8') as out_file: out_file.write(json.dumps(movies_clean)) logging.info(f'{file_name} written!') if 'csv' in file_formats: file_name = f'{user}_filmweb_{date}.csv' with open(file_name, 'w', encoding='utf-8') as out_file: writer = csv.DictWriter(out_file, fieldnames=CSV_ROWS, dialect='unix') writer.writeheader() for movie in movies_clean: writer.writerow(movie) logging.info(f'{file_name} written!') return file_name
9,185
def download_file_insecure(url, target, cookies=None): """ Use Python to download the file, even though it cannot authenticate the connection. """ if cookies: raise NotImplementedError src = dst = None try: src = urlopen(url) # Read/write all in one block, so we don't create a corrupt file # if the download is interrupted. data = src.read() dst = open(target, "wb") dst.write(data) finally: if src: src.close() if dst: dst.close()
9,186
def get_genotypes( single_end: list, paired_end: list, metadata: str, bam_dir: str, intermediate_dir: str, reference_genome_path: str, mapping_quality: int, blacklist_path: str, snps_path: str, processes: int, memory: int, skip_preprocessing: bool = False, write_bam: bool = False, algorithm_switch_bp: int = 70, algorithm=None, temp_dir=None ): """Obtain genotypes from sequencing data using QuASAR Parameters ---------- single_end : list List of single-end input files paired_end : list List of paired-end input files metadata : dict Dict of input file metadata bam_dir : str Directory to write BAM files intermediate_dir : str Directory to write intermediate pileup / bed files reference_genome_path : str Path to reference genome mapping_quality : int Minimum quality score for filtering alignment blacklist_path : str Path to ENCODE mappability blacklist snps_path : str Path to file containing SNPs to genotype processes : int Number of processes memory : int Memory limit skip_preprocessing : bool Indicator to skip preprocessing steps write_bam : bool Indicator to write a BAM file to disk algorithm_switch_bp : int Read length threshold for switching to `bwa mem` algorithm : str or None Force use of either `aln` or `mem` algorithm, if supplied temp_dir directory to use for temporary files """ n_single_end = len(single_end) n_paired_end = len(paired_end) if not metadata: metadata_dict = {} else: with open(metadata, 'r') as f: metadata_dict = json.load(f) n_metadata = sum(len(x['libraries']) for x in metadata_dict.values()) def prepare_quasar_input_params(temp_dir_name, n, pe=False): return { 'bam_dir': bam_dir if bam_dir else temp_dir_name, 'intermediate_dir': ( intermediate_dir if intermediate_dir else temp_dir_name ), 'reference_genome_path': reference_genome_path, 'mapping_quality': mapping_quality, 'blacklist_path': blacklist_path, 'snps_path': snps_path, 'processes': max(1, int(processes / n)), 'memory': memory / min(processes, n), 'paired_end': pe, 'skip_preprocessing': skip_preprocessing, 'write_bam': write_bam, 'algorithm_switch_bp': algorithm_switch_bp, 'algorithm': algorithm, 'temp_dir': temp_dir } with tempfile.TemporaryDirectory(dir=temp_dir) as temp_dir_name: with Pool(processes=min(processes, max(n_single_end, n_paired_end, n_metadata))) as pool: if n_single_end > 0: single_end_quasar_input_paths = pool.map( partial( prepare_quasar_input, **prepare_quasar_input_params(temp_dir_name, n_single_end, pe=False) ), single_end ) else: single_end_quasar_input_paths = [] if n_paired_end > 0: paired_end_quasar_input_paths = pool.map( partial( prepare_quasar_input, **prepare_quasar_input_params(temp_dir_name, n_paired_end, pe=True) ), paired_end ) else: paired_end_quasar_input_paths = [] if n_metadata > 0: meta_se, meta_pe = collate_metadata(metadata_dict) if len(meta_se) > 0: metadata_quasar_input_paths_se = pool.starmap( partial( prepare_quasar_input_from_metadata, **prepare_quasar_input_params(temp_dir_name, len(meta_se), pe=False) ), meta_se ) else: metadata_quasar_input_paths_se = [] if len(meta_pe) > 0: metadata_quasar_input_paths_pe = pool.starmap( partial( prepare_quasar_input_from_metadata, **prepare_quasar_input_params(temp_dir_name, len(meta_pe), pe=True) ), meta_pe ) else: metadata_quasar_input_paths_pe = [] else: metadata_quasar_input_paths_se, metadata_quasar_input_paths_pe = [], [] return pyQuASAR.genotype( *filter( None, single_end_quasar_input_paths + paired_end_quasar_input_paths + metadata_quasar_input_paths_se + metadata_quasar_input_paths_pe ) )
9,187
def async_handle_google_actions(hass, cloud, payload): """Handle an incoming IoT message for Google Actions.""" result = yield from ga.async_handle_message( hass, cloud.gactions_config, payload) return result
9,188
def get_picture_landmarks(filepath, predictor, logs=True): """ Do the doc! """ if logs: print("Processing file: {}".format(filepath)) frame = cv2.imread(filepath) lm = FLandmarks() lm.extract_points(frame, predictor) return lm if logs: print('\n')
9,189
def query_master(h5in, query, idfile='sami_query.lis', verbose=True, returnID=True, overwrite=True): """ Read a SAMI master table and perform a query """ """ The query should be passed either as a string argument or as an ascii file containing such a string. Adding '@list' functionality will facilitate browser-generated queries farther down the track. """ import tables # Interpret the 'query' argument (look for a filename). if os.path.isfile(query): fq = open(query, 'r') query = fq.readlines()[0] # Open-read h5file. h5file = tables.openFile(h5in, mode = "r") # Optionally open an ascii file to write IDs returned by the query. if returnID: # Check if the file exists, check overwrite flag: if os.path.isfile(idfile): if not overwrite: raise SystemExit("The nominated output file ('"+idfile+"') "+ "already exists. Please raise the 'overwrite'"+ " flag or enter a different filename. ") f = open(idfile, 'w') idlist = [] # Identify the SAMI master table -- assumed to live in the root directory master = h5file.root.SAMI_MASTER # Define a Row Iterator for screen output. def print_sami(s): counter = 0 for tables.row in s: name, z = tables.row['CATID'], tables.row['z_spec'] if verbose: print(" Found SAMI galaxy %s at redshift z=%g" % (name, z)) counter += 1 idlist.append(name) if returnID: f.write(str(name)+'\n') print("\n Found "+str(counter)+" galaxies satisfying query:\n "+query) print_sami(master.where(query)) h5file.close() if returnID: f.close()
9,190
def conflict(next_x: int, s: tuple) -> bool: """Return a boolean that defines the conflict condition of the next queen's position""" next_i = len(s) for i in range(next_i): if abs(s[i] - next_x) in (0, next_i - i): return True else: return False
9,191
async def main_page(): """Main page. Just for example.""" return APIResponse(message="ok")
9,192
def split_to_sublists(initial_list:list, n:int, strict:bool=True) -> List[list]: """Takes a list and splits it into sublists of size n Parameters ---------- initial_list : list The initial list to split into sublists n : int The size of each sublist strict: bool Whether to force an error if the length of the initial list is not divisible by n (split into even groups), default True Returns ------- List[list] A list of lists of size n (unless strict is False, then the last list may be > n) Examples -------- ### Split gallery images into sublists of 3 #### JINJA USAGE ```jinja2 {% if gallery|length % 3 == 0 %} {% for sublist in gallery|split_to_sublists(3) %} <div class="row"> <div class="col-md-4"> <img src="{{ sublist.0[0]['file_path'] }}" alt="{{ sublist.0[0]['file_path'].split()[-1] }}"> </div> <div class="col-md-4"> <img src="{{ sublist.1[0]['file_path'] }}" alt="{{ sublist.1[0]['file_path'].split()[-1]}}"> </div> <div class="col-md-4"> <img src="{{ sublist.2[0]['file_path'] }}" alt="{{ sublist.2[0]['file_path'].split()[-1] }}"> </div> </div> {% endfor %} {% endif } ``` The above jinja is roughly equivalent to something like this in pure python: ```python gallery = ["image 1" , "image 2", "image 3", "image 4" , "image 5", "image 6"] if len(images) % 3 == 0: for sublist in split_to_sublists(gallery, 3): # Returns [["image 1" , "image 2", "image 3"], ["image 4" , "image 5", "image 6"]] ... # Do stuff with each sublist ``` """ if strict: if not len(initial_list) % n == 0: raise ValueError(f"Provided list was not of correct size: \n\tList: {initial_list}\n\tSegment size {n}") result = [] for i in range(0, len(initial_list), n): # Create sublists up to size n result.append( initial_list[i:i + n]) return result
9,193
def get_matched_files(dirPath=".", regex=None): """Get the abspath of the files whose name matches a regex Only files will be returned, and directories are excluded. Args: dirPath (str): the directory to search regex (regex): the regular expression to match the filename Returns: tuple of strings """ # check the exisitence of path fns = [] _absDir = os.path.abspath(dirPath) if os.path.isdir(_absDir): for i in os.listdir(_absDir): if regex != None: if not re.match(regex, i): continue _fpath = os.path.join(_absDir, i) if os.path.isfile(_fpath): fns.append(_fpath) return tuple(fns)
9,194
def get_sha1(req_path: Path) -> str: """ For larger files sha1 algorithm is significantly faster than sha256 """ return get_hash(req_path, sha1)
9,195
def upload_attachment(page_id, file, comment, confluence_api_url, username, password, raw = None): """ Upload an attachement :param page_id: confluence page id :param file: attachment file :param comment: attachment comment :return: boolean """ content_type = mimetypes.guess_type(file)[0] filename = os.path.basename(file) if raw is None: r = requests.get(file, stream=True) r.raw.decode_content = True else: r = raw file_to_upload = { 'comment': comment, 'file': (urlEncodeNonAscii(filename), r.raw, content_type, {'Expires': '0'}) } attachment = get_attachment(page_id, filename, confluence_api_url, username, password) if attachment: url = '%s/rest/api/content/%s/child/attachment/%s/data' % (confluence_api_url, page_id, attachment.id) else: url = '%s/rest/api/content/%s/child/attachment/' % (confluence_api_url, page_id) session = requests.Session() session.auth = (username, password) session.headers.update({'X-Atlassian-Token': 'no-check'}) res = session.post(url, files=file_to_upload) return True
9,196
def test_run_and_track_job_failure(mocked_get_job_pods): """ Tests that a Failure phase in a pod triggers an exception in run_and_track_job """ client = MagicMock() labels = {"l1": "label1"} pod = pod_spec_from_dict("name_of_pod", dummy_pod_spec, labels=labels) job = job_definition("my_job", 100, pod, labels, "my_namespace") pod.status = MagicMock() pod.status.phase = "Failed" mocked_get_job_pods.return_value = [pod] with pytest.raises(FailedJob) as e: run_and_track_job(client, job, lambda x: x) assert e.job == job assert e.pod.metadata.name == pod.metadata.name
9,197
def _make_note(nl_transcript: str, tl_audio_file: str) -> Note: """ Creates an Anki note from a native langauge transcript and a target language audio file. """ return Note(model=_MODEL, fields=[f"[sound:{tl_audio_file}]", nl_transcript])
9,198
def bed2beddb_status(connection, **kwargs): """Searches for small bed files uploaded by user in certain types Keyword arguments: lab_title -- limit search with a lab i.e. Bing+Ren, UCSD start_date -- limit search to files generated since a date formatted YYYY-MM-DD run_time -- assume runs beyond run_time are dead (default=24 hours) """ start = datetime.utcnow() check = CheckResult(connection, 'bed2beddb_status') my_auth = connection.ff_keys check.action = "bed2beddb_start" check.brief_output = [] check.full_output = {} check.status = 'PASS' check.summary = '' # These are the accepted file types for this check accepted_types = ['LADs', 'boundaries', 'domain calls', 'peaks'] # check indexing queue check, skip = wfr_utils.check_indexing(check, connection) if skip: return check # Build the query (find bg files without bw files) query = ("/search/?type=FileProcessed&file_format.file_format=bed" "&extra_files.file_format.display_title!=beddb" "&status!=uploading&status!=to be uploaded by workflow" "&status!=archived&status!=archived to project") query += "".join(["&file_type=" + i for i in accepted_types]) # add date s_date = kwargs.get('start_date') if s_date: query += '&date_created.from=' + s_date # add lab lab = kwargs.get('lab_title') if lab: query += '&lab.display_title=' + lab # build a second query for checking failed ones query_f = ("/search/?type=FileProcessed&file_format.file_format=bed" "&extra_files.file_format.display_title=beddb" "&extra_files.status=uploading" "&extra_files.status=to be uploaded by workflow" "&status!=uploading&status!=to be uploaded by workflow") # add date s_date = kwargs.get('start_date') if s_date: query_f += '&date_created.from=' + s_date # add lab lab = kwargs.get('lab_title') if lab: query_f += '&lab.display_title=' + lab # The search res_one = ff_utils.search_metadata(query, key=my_auth) res_two = ff_utils.search_metadata(query_f, key=my_auth) res_all = res_one + res_two missing = [] for a_file in res_all: if not a_file.get('genome_assembly'): missing.append(a_file['accession']) res_all = [i for i in res_all if i.get('genome_assembly')] if not res_all: check.summary = 'All Good!' return check check = wfr_utils.check_runs_without_output(res_all, check, 'bedtobeddb', my_auth, start) if missing: check.full_output['missing_assembly'] = missing msg = str(len(missing)) + ' files missing genome assembly' check.brief_output.insert(0, msg) return check
9,199