content
stringlengths
22
815k
id
int64
0
4.91M
def _metric_list_for_check(maas_store, entity, check): """ Computes the metrics list for a given check. Remote checks return a metric for each monitoring zone and each type of metric for the check type. Agent checks return a metric for each metric type on the check type. Check types that Mimic doesn't know about generate an empty list. """ if check.type not in maas_store.check_types: return [] if REMOTE_CHECK_TYPE_REGEX.match(check.type): return [{'name': '{0}.{1}'.format(mz, metric.name), 'type': metric.type, 'unit': metric.unit} for metric in maas_store.check_types[check.type].metrics for mz in check.monitoring_zones_poll] return [{'name': metric.name, 'type': metric.type, 'unit': metric.unit} for metric in maas_store.check_types[check.type].metrics]
5,342,900
def plot_MA_values(t,X,**kwargs): """ Take the numpy.ndarray time array (t) of size (N,) and the state space numpy.ndarray (X) of size (2,N), (4,N), or (8,N), and plots the moment are values of the two muscles versus time and along the moment arm function. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **kwargs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1) InputString - must be a string. Used to alter the figure Title. Default is None. """ import matplotlib.pyplot as plt import numpy as np assert (np.shape(X)[0] in [2,4,8]) \ and (np.shape(X)[1] == len(t)) \ and (str(type(X)) == "<class 'numpy.ndarray'>"), \ "X must be a (2,N), (4,N), or (8,N) numpy.ndarray, where N is the length of t." assert np.shape(t) == (len(t),) and str(type(t)) == "<class 'numpy.ndarray'>", "t must be a (N,) numpy.ndarray." InputString = kwargs.get("InputString",None) assert InputString is None or type(InputString)==str, "InputString must either be a string or None." if InputString is None: DescriptiveTitle = "Moment arm equations" else: assert type(InputString)==str, "InputString must be a string" DescriptiveTitle = "Moment arm equations\n(" + InputString + " Driven)" fig, ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2,figsize=(8,6)) plt.subplots_adjust(left = 0.15,hspace=0.1,bottom=0.1) plt.suptitle(DescriptiveTitle) ax1.plot(np.linspace(0,np.pi*(160/180),1001),\ np.array(list(map(lambda x1: R1([x1]),np.linspace(0,np.pi*(160/180),1001)))),\ '0.70') ax1.plot(np.linspace(min(X[0,:]),max(X[0,:]),101),\ np.array(list(map(lambda x1: R1([x1]),np.linspace(min(X[0,:]),max(X[0,:]),101)))),\ 'g',lw=3) ax1.set_xticks([0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]) ax1.set_xticklabels([""]*len(ax1.get_xticks())) ax1.set_ylabel("Moment Arm for\n Muscle 1 (m)") """ Note: Need to Transpose X in order for Map to work. """ ax2.plot(t,np.array(list(map(lambda X: R1(X),X.T))),'g') ax2.set_ylim(ax1.get_ylim()) ax2.set_yticks(ax1.get_yticks()) ax2.set_yticklabels([""]*len(ax1.get_yticks())) ax2.set_xticklabels([""]*len(ax2.get_xticks())) ax3.plot(np.linspace(0,np.pi*(160/180),1001),\ np.array(list(map(lambda x1: R2([x1]),np.linspace(0,np.pi*(160/180),1001)))),\ '0.70') ax3.plot(np.linspace(min(X[0,:]),max(X[0,:]),101),\ np.array(list(map(lambda x1: R2([x1]),np.linspace(min(X[0,:]),max(X[0,:]),101)))),\ 'r',lw=3) ax3.set_xticks([0,np.pi/4,np.pi/2,3*np.pi/4,np.pi]) ax3.set_xticklabels([r"$0$",r"$\frac{\pi}{4}$",r"$\frac{\pi}{2}$",r"$\frac{3\pi}{4}$",r"$\pi$"]) ax3.set_xlabel("Joint Angle (rads)") ax3.set_ylabel("Moment Arm for\n Muscle 2 (m)") ax4.plot(t,np.array(list(map(lambda X: R2(X),X.T))),'r') ax4.set_ylim(ax3.get_ylim()) ax4.set_yticks(ax3.get_yticks()) ax4.set_yticklabels([""]*len(ax3.get_yticks())) ax4.set_xlabel("Time (s)") return(fig,[ax1,ax2,ax3,ax4])
5,342,901
def filter_pdf_files(filepaths): """ Returns a filtered list with strings that end with '.pdf' Keyword arguments: filepaths -- List of filepath strings """ return [x for x in filepaths if x.endswith('.pdf')]
5,342,902
def index_file(path: str) -> dict: """ Indexes the files and directory under a certain directory Arguments: path {str} - the path of the DIRECTORY to index Return: {dict} - structures of the indexed directory """ structure = {} # Represents the directory structure for dirpath, directory, files in os.walk(path): all_files = {} for file in files: all_files.update(get_file_info(path, dirpath, file)) node_info = get_directory_info(path, dirpath, all_files, directory) structure.update({dirpath: node_info}) return structure
5,342,903
def hue_quadrature(h: FloatingOrArrayLike) -> FloatingOrNDArray: """ Return the hue quadrature from given hue :math:`h` angle in degrees. Parameters ---------- h Hue :math:`h` angle in degrees. Returns ------- :class:`numpy.floating` or :class:`numpy.ndarray` Hue quadrature. Examples -------- >>> hue_quadrature(196.3185839) # doctest: +ELLIPSIS 237.6052911... """ h = as_float_array(h) h_i = HUE_DATA_FOR_HUE_QUADRATURE["h_i"] e_i = HUE_DATA_FOR_HUE_QUADRATURE["e_i"] H_i = HUE_DATA_FOR_HUE_QUADRATURE["H_i"] # :math:`h_p` = :math:`h_z` + 360 if :math:`h_z` < :math:`h_1, i.e. h_i[0] h[h <= h_i[0]] += 360 # *np.searchsorted* returns an erroneous index if a *nan* is used as input. h[np.asarray(np.isnan(h))] = 0 i = as_int_array(np.searchsorted(h_i, h, side="left") - 1) h_ii = h_i[i] e_ii = e_i[i] H_ii = H_i[i] h_ii1 = h_i[i + 1] e_ii1 = e_i[i + 1] H = H_ii + ( (100 * (h - h_ii) / e_ii) / ((h - h_ii) / e_ii + (h_ii1 - h) / e_ii1) ) return as_float(H)
5,342,904
def AddMigCreateStatefulIPsFlags(parser): """Adding stateful IPs flags to the parser.""" stateful_internal_ips_help = textwrap.dedent( """ Internal IPs considered stateful by the instance group. {} Use this argument multiple times to make more internal IPs stateful. At least one of the following is required: {} {} Additional arguments: {} """.format(STATEFUL_IPS_HELP_BASE, STATEFUL_IP_ENABLED_ARG_HELP, STATEFUL_IP_INTERFACE_NAME_ARG_WITH_ENABLED_HELP, STATEFUL_IP_AUTO_DELETE_ARG_HELP)) parser.add_argument( '--stateful-internal-ip', type=arg_parsers.ArgDict( allow_key_only=True, spec={ 'enabled': None, 'interface-name': str, 'auto-delete': AutoDeleteFlag.ValidatorWithFlagName( '--stateful-internal-ip'), }), action='append', help=stateful_internal_ips_help, ) stateful_external_ips_help = textwrap.dedent( """ External IPs considered stateful by the instance group. {} Use this argument multiple times to make more external IPs stateful. At least one of the following is required: {} {} Additional arguments: {} """.format(STATEFUL_IPS_HELP_BASE, STATEFUL_IP_ENABLED_ARG_HELP, STATEFUL_IP_INTERFACE_NAME_ARG_WITH_ENABLED_HELP, STATEFUL_IP_AUTO_DELETE_ARG_HELP)) parser.add_argument( '--stateful-external-ip', type=arg_parsers.ArgDict( allow_key_only=True, spec={ 'enabled': None, 'interface-name': str, 'auto-delete': AutoDeleteFlag.ValidatorWithFlagName( '--stateful-external-ip'), }), action='append', help=stateful_external_ips_help, )
5,342,905
def compare(inputpath1: str, inputpath2: str, output: str, verbose: bool): """ Parse two RST-trees (or two sets of RST-tree pairs), \ from INPUTPATH1 and INPUTPATH2 respectively, compare their annotated \ relations, and create comparison tables. If INPUTPATH1 and INPUTPATH2 \ both point to files then both single files will be compared with \ each other. If INPUTPATH1 and INPUTPATH2 both point to directories \ then all '.rs3' files in both directories will be compared with each other. \ If '-o' is set, then the results will be written to OUTPUTPATH. Otherwise, the results will be printed back on the command line. """ if isFile(inputpath1) and isFile(inputpath2): compareTwoFiles(inputpath1, inputpath2, output, verbose) elif isDirectory(inputpath1) and isDirectory(inputpath2): compareTwoFolders(inputpath1, inputpath2, output, verbose) else: print("Error: INPUTPATH1 and INPUTPATH2 must either both point to files or \ both to directories. -> Abort") pass
5,342,906
def aa_find_devices_ext (devices, unique_ids): """usage: (int return, u16[] devices, u32[] unique_ids) = aa_find_devices_ext(u16[] devices, u32[] unique_ids) All arrays can be passed into the API as an ArrayType object or as a tuple (array, length), where array is an ArrayType object and length is an integer. The user-specified length would then serve as the length argument to the API funtion (please refer to the product datasheet). If only the array is provided, the array's intrinsic length is used as the argument to the underlying API function. Additionally, for arrays that are filled by the API function, an integer can be passed in place of the array argument and the API will automatically create an array of that length. All output arrays, whether passed in or generated, are passed back in the returned tuple.""" if not AA_LIBRARY_LOADED: return AA_INCOMPATIBLE_LIBRARY # devices pre-processing __devices = isinstance(devices, int) if __devices: (devices, num_devices) = (array_u16(devices), devices) else: (devices, num_devices) = isinstance(devices, ArrayType) and (devices, len(devices)) or (devices[0], min(len(devices[0]), int(devices[1]))) if devices.typecode != 'H': raise TypeError("type for 'devices' must be array('H')") # unique_ids pre-processing __unique_ids = isinstance(unique_ids, int) if __unique_ids: (unique_ids, num_ids) = (array_u32(unique_ids), unique_ids) else: (unique_ids, num_ids) = isinstance(unique_ids, ArrayType) and (unique_ids, len(unique_ids)) or (unique_ids[0], min(len(unique_ids[0]), int(unique_ids[1]))) if unique_ids.typecode != 'I': raise TypeError("type for 'unique_ids' must be array('I')") # Call API function (_ret_) = api.py_aa_find_devices_ext(num_devices, num_ids, devices, unique_ids) # devices post-processing if __devices: del devices[max(0, min(_ret_, len(devices))):] # unique_ids post-processing if __unique_ids: del unique_ids[max(0, min(_ret_, len(unique_ids))):] return (_ret_, devices, unique_ids)
5,342,907
def decode_varint_in_reverse(byte_array, offset, max_varint_length=9): """ This function will move backwards through a byte array trying to decode a varint in reverse. A InvalidVarIntError will be raised if a varint is not found by this algorithm used in this function. The calling logic should check for this case in case it is encountered which is likely in the context of carving. Note: This cannot determine if the field being parsed was originally a varint or not and may give false positives. Please keep this in mind when calling this function. Note: If the array runs out of bytes while parsing in reverse, the currently determined varint will be returned. Note: Since the parsing starts from the left of the offset specified, the resulting byte string that represents this varint can be determined by byte_array[varint_relative_offset:offset]. The length of the varint in bytes can be determined likewise either from the len() of the above or offset - varint_relative_offset. :param byte_array: bytearray The byte array to parse for the varint in reverse. :param offset: int The offset to move backwards from. The offset specified is not included in the parsing and the algorithm starts with the last byte of the varint at offset - 1. If you want to start at the end of the byte array then the offset should be the length of the byte array (where the offset would refer to a non-existing index in the array). :param max_varint_length: int The maximum number of varint bytes to go back in reverse. The default is 9 since this is the maximum number of bytes a varint can be. :return: :raise: InvalidVarIntError: If a varint is not determined while parsing the byte array in reverse using the algorithm in this function. This error is not logged as an error but rather a debug statement since it is very likely to occur during carving and should be handled appropriately. """ if offset > len(byte_array): log_message = "The offset: {} is greater than the size of the byte array: {} for the bytes: {}." log_message = log_message.format(offset, len(byte_array), hexlify(byte_array)) getLogger(LOGGER_NAME).error(log_message) raise ValueError(log_message) unsigned_integer_value = 0 varint_inverted_relative_offset = 0 varint_byte = ord(byte_array[offset - 1 - varint_inverted_relative_offset:offset - varint_inverted_relative_offset]) varint_byte &= 0x7f unsigned_integer_value |= varint_byte varint_inverted_relative_offset += 1 while offset - varint_inverted_relative_offset - 1 >= 0: if varint_inverted_relative_offset > max_varint_length: """ Since this exception is not considered a important exception to log as an error, it will be logged as a debug statement. There is a good chance of this use case occurring and is even expected during carving. """ log_message = "A varint was not determined from byte array: {} starting at offset: {} in reverse." log_message = log_message.format(byte_array, offset) getLogger(LOGGER_NAME).debug(log_message) return InvalidVarIntError(log_message) varint_byte = ord(byte_array[offset - 1 - varint_inverted_relative_offset: offset - varint_inverted_relative_offset]) msb_set = varint_byte & 0x80 if msb_set: varint_byte &= 0x7f varint_byte <<= (7 * varint_inverted_relative_offset) unsigned_integer_value |= varint_byte varint_inverted_relative_offset += 1 else: break varint_relative_offset = offset - varint_inverted_relative_offset return unsigned_integer_value, varint_relative_offset
5,342,908
def manager_version(request): """ Context processor to add the rhgamestation-manager version """ # Tricky way to know the manager version because its version lives out of project path root = imp.load_source('__init__', os.path.join(settings.BASE_DIR, '__init__.py')) return {'manager_version': root.__version__}
5,342,909
def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data' : None, 'rois' : None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) #print ('lll: ', blobs['rois']) return blobs, im_scale_factors
5,342,910
def string_limiter(text, limit): """ Reduces the number of words in the string to length provided. Arguments: text -- The string to reduce the length of limit -- The number of characters that are allowed in the string """ for i in range(len(text)): if i >= limit and text[i] == " ": break return text[:i]
5,342,911
def in_ellipse(xy_list,width,height,angle=0,xy=[0,0]): """ Find data points inside an ellipse and return index list Parameters: xy_list: Points needs to be deteced. width: Width of the ellipse height: Height of the ellipse angle: anti-clockwise rotation angle in degrees xy: the origin of the ellipse """ if isinstance(xy_list,list): xy_list = np.array(xy_list) if not isinstance(xy_list,np.ndarray): raise Exception(f"Unrecoginzed data type: {type(xy_list)}, \ should be list or np.ndarray") new_xy_list = xy_list.copy() new_xy_list = new_xy_list - xy #------------ define coordinate conversion matrix---------- theta = angle/180*np.pi # degree to radians con_mat = np.zeros((2,2)) con_mat[:,0] = [np.cos(theta),np.sin(theta)] con_mat[:,1] = [np.sin(theta),-np.cos(theta)] tmp = np.matmul(con_mat,new_xy_list.T) con_xy_list = tmp.T #------------ check one by one ---------------------------- idxs = [] for i,[x,y] in enumerate(con_xy_list): if ((x/(width/2))**2+(y/(height/2))**2) < 1: idxs.append(i) return idxs
5,342,912
def test39(): """ test fetching a priority class list """ res = PriorityClassList.listPriorityClass() assert res.obj assert isinstance(res.obj, PriorityClassList) assert len(res.obj.items) > 0
5,342,913
def get_real_images(dataset, num_examples, split=None, failure_on_insufficient_examples=True): """Get num_examples images from the given dataset/split. Args: dataset: `ImageDataset` object. num_examples: Number of images to read. split: Split of the dataset to use. If None will use the default split for eval defined by the dataset. failure_on_insufficient_examples: If True raise an exception if the dataset/split does not images. Otherwise will log to error and return fewer images. Returns: 4-D NumPy array with images with values in [0, 256]. Raises: ValueError: If the dataset/split does not of the number of requested number requested images and `failure_on_insufficient_examples` is True. """ logging.info("Start loading real data.") with tf.Graph().as_default(): ds = dataset.eval_input_fn(split=split) # Get real images from the dataset. In the case of a 1-channel # dataset (like MNIST) convert it to 3 channels. next_batch = ds.make_one_shot_iterator().get_next()[0] shape = [num_examples] + next_batch.shape.as_list() is_single_channel = shape[-1] == 1 if is_single_channel: shape[-1] = 3 real_images = np.empty(shape, dtype=np.float32) with tf.Session() as sess: for i in range(num_examples): try: b = sess.run(next_batch) b *= 255.0 if is_single_channel: b = np.tile(b, [1, 1, 3]) real_images[i] = b except tf.errors.OutOfRangeError: logging.error("Reached the end of dataset. Read: %d samples.", i) real_images = real_images[:i] break if real_images.shape[0] != num_examples: if failure_on_insufficient_examples: raise DatasetOutOfRangeError("Not enough examples in the dataset %s: %d / %d" % (dataset, real_images.shape[0], num_examples)) else: logging.error("Not enough examples in the dataset %s: %d / %d", dataset, real_images.shape[0], num_examples) logging.info("Done loading real data.") return real_images
5,342,914
def save_opt_state(opt, # optimizer epoch): # epoch to save the optimizer state of """ Save optimizer state to temporary directory and then log it with mlflow. Args: opt: Optimizer epoch: Epoch to save the optimizer state of """ # create temporary directory with tempfile.TemporaryDirectory() as temp_dir: # compute optimizer checkpoint path opt_checkpoint_path = os.path.join(temp_dir, "opt_epoch_{}.pt".format(str(epoch))) # save optimizer state to checkpoint path torch.save(opt.state_dict(), opt_checkpoint_path) # log checkpoint file as artifact mlflow.log_artifact(opt_checkpoint_path, artifact_path="model_checkpoints")
5,342,915
def wait_complete(): """ 等待当前音频播放完毕。 :param 空: :returns: 0: 成功,其他: 失败 :raises OSError: EINVAL """ pass
5,342,916
async def call(fn: Callable, *args, **kwargs) -> Any: """ Submit function `fn` for remote execution with arguments `args` and `kwargs` """ async with websockets.connect(WS_SERVER_URI) as websocket: task = serialize((fn, args, kwargs)) await websocket.send(task) message = await websocket.recv() results = deserialize(message) if isinstance(results, TaskExecutionError): raise results return results
5,342,917
def assert_frame_equal( left: pandas.core.frame.DataFrame, right: pandas.core.frame.DataFrame, check_dtype: bool, ): """ usage.dask: 1 """ ...
5,342,918
def wrap_array_func(func): """ Returns a version of the function func() that works even when func() is given a NumPy array that contains numbers with uncertainties. func() is supposed to return a NumPy array. This wrapper is similar to uncertainties.wrap(), except that it handles an array argument instead of float arguments. func -- version that takes and returns a single NumPy array. """ @uncertainties.set_doc("""\ Version of %s(...) that works even when its first argument is a NumPy array that contains numbers with uncertainties. Warning: elements of the first argument array that are not AffineScalarFunc objects must not depend on uncertainties.Variable objects in any way. Otherwise, the dependence of the result in uncertainties.Variable objects will be incorrect. Original documentation: %s""" % (func.__name__, func.__doc__)) def wrapped_func(arr, *args): # Nominal value: arr_nominal_value = nominal_values(arr) func_nominal_value = func(arr_nominal_value, *args) # The algorithm consists in numerically calculating the derivatives # of func: # Variables on which the array depends are collected: variables = set() for element in arr.flat: # floats, etc. might be present if isinstance(element, uncertainties.AffineScalarFunc): variables |= set(element.derivatives.iterkeys()) # If the matrix has no variables, then the function value can be # directly returned: if not variables: return func_nominal_value # Calculation of the derivatives of each element with respect # to the variables. Each element must be independent of the # others. The derivatives have the same shape as the output # array (which might differ from the shape of the input array, # in the case of the pseudo-inverse). derivatives = numpy.vectorize(lambda _: {})(func_nominal_value) for var in variables: # A basic assumption of this package is that the user # guarantees that uncertainties cover a zone where # evaluated functions are linear enough. Thus, numerical # estimates of the derivative should be good over the # standard deviation interval. This is true for the # common case of a non-zero standard deviation of var. If # the standard deviation of var is zero, then var has no # impact on the uncertainty of the function func being # calculated: an incorrect derivative has no impact. One # scenario can give incorrect results, however, but it # should be extremely uncommon: the user defines a # variable x with 0 standard deviation, sets y = func(x) # through this routine, changes the standard deviation of # x, and prints y; in this case, the uncertainty on y # might be incorrect, because this program had no idea of # the scale on which func() is linear, when it calculated # the numerical derivative. # The standard deviation might be numerically too small # for the evaluation of the derivative, though: we set the # minimum variable shift. shift_var = max(var._std_dev/1e5, 1e-8*abs(var._nominal_value)) # An exceptional case is that of var being exactly zero. # In this case, an arbitrary shift is used for the # numerical calculation of the derivative. The resulting # derivative value might be quite incorrect, but this does # not matter as long as the uncertainty of var remains 0, # since it is, in this case, a constant. if not shift_var: shift_var = 1e-8 # Shift of all the elements of arr when var changes by shift_var: shift_arr = array_derivative(arr, var)*shift_var # Origin value of array arr when var is shifted by shift_var: shifted_arr_values = arr_nominal_value + shift_arr func_shifted = func(shifted_arr_values, *args) numerical_deriv = (func_shifted-func_nominal_value)/shift_var # Update of the list of variables and associated # derivatives, for each element: for (derivative_dict, derivative_value) in ( zip(derivatives.flat, numerical_deriv.flat)): if derivative_value: derivative_dict[var] = derivative_value # numbers with uncertainties are build from the result: return numpy.vectorize(uncertainties.AffineScalarFunc)( func_nominal_value, derivatives) # It is easier to work with wrapped_func, which represents a # wrapped version of 'func', when it bears the same name as # 'func' (the name is used by repr(wrapped_func)). wrapped_func.__name__ = func.__name__ return wrapped_func
5,342,919
def fx_cmd_line_args_clone_prefix(): """ Before: adds args_to_add to cmd line so can be accessed by ArgParsers Sets 2 args for clone, a workflow to clone and a new type for the workflow After: Set the cmd line args back to its original value """ original_cmd_line = copy.deepcopy(sys.argv) args_to_add = [ "clone", "-w", "mock_workflow_two", "mock_workflow_one", "-m", "fn_main_mock_integration", "-f", "mock_function_one", "--rule", "Mock Manual Rule", "Mock: Auto Rule", "Mock Task Rule", "Mock Script Rule", "Mock Manual Rule Message Destination", "-pre", "v2" ] _add_to_cmd_line_args(args_to_add) yield sys.argv = original_cmd_line
5,342,920
def checkCrash(player, upperPipes, lowerPipes): """returns True if player collides with base or pipes.""" pi = player['index'] player['w'] = fImages['player'][0].get_width() player['h'] = fImages['player'][0].get_height() # if player crashes into ground if player['y'] + player['h'] >= nBaseY - 1: return [True, True] else: playerRect = pygame.Rect(player['x'], player['y'], player['w'], player['h']) pipeW = fImages['pipe'][0].get_width() pipeH = fImages['pipe'][0].get_height() for uPipe in upperPipes: # pipe rect uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = fHitMask['player'][pi] uHitmask = fHitMask['pipe'][0] # if bird collided with pipe uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask) if uCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if bFuryMode: return [True, False, True, uPipe] # normal mode return [True, False] for lPipe in lowerPipes: # pipe rect lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = fHitMask['player'][pi] lHitmask = fHitMask['pipe'][0] # if bird collided with pipe lCollide = pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask) if lCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if bFuryMode: return [True, False, False, lPipe] # normal mode return [True, False] return [False, False]
5,342,921
def alter_subprocess_kwargs_by_platform(**kwargs): """ Given a dict, populate kwargs to create a generally useful default setup for running subprocess processes on different platforms. For example, `close_fds` is set on posix and creation of a new console window is disabled on Windows. This function will alter the given kwargs and return the modified dict. """ kwargs.setdefault('close_fds', os.name == 'posix') if os.name == 'nt': CONSOLE_CREATION_FLAGS = 0 # Default value # See: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863%28v=vs.85%29.aspx CREATE_NO_WINDOW = 0x08000000 # We "or" them together CONSOLE_CREATION_FLAGS |= CREATE_NO_WINDOW kwargs.setdefault('creationflags', CONSOLE_CREATION_FLAGS) return kwargs
5,342,922
def convert_gwp(context, qty, to): """Helper for :meth:`convert_unit` to perform GWP conversions.""" # Remove a leading 'gwp_' to produce the metric name metric = context.split('gwp_')[1] if context else context # Extract the species from *qty* and *to*, allowing supported aliases species_from, units_from = extract_species(qty[1]) species_to, units_to = extract_species(to) try: # Convert using a (magnitude, unit) tuple with only units, and explicit # input and output units result = iam_units.convert_gwp(metric, (qty[0], units_from), species_from, species_to) except (AttributeError, ValueError): # Missing *metric*, or *species_to* contains invalid units. pyam # promises UndefinedUnitError in these cases. Use a subclass (above) to # add a usage hint. raise UndefinedUnitError(species_to) from None except pint.DimensionalityError: # Provide an exception with the user's inputs raise pint.DimensionalityError(qty[1], to) from None # Other exceptions are not caught and will pass up through convert_unit() if units_to: # Also convert the units result = result.to(units_to) else: # *to* was only a species name. Provide units based on input and the # output species name. to = iam_units.format_mass(result, species_to, spec=':~') return result, to
5,342,923
def appdataPath(appname): """ Returns the generic location for storing application data in a cross platform way. :return <str> """ # determine Mac OS appdata location if sys.platform == 'darwin': # credit: MHL try: from AppKit import NSSearchPathForDirectoriesInDomains # NSApplicationSupportDirectory = 14 # NSUserDomainMask = 1 # True for expanding the tilde into a fully qualified path basepath = NSSearchPathForDirectoriesInDomains(14, 1, True) return os.path.join(basepath[0], appname) except (ImportError, AttributeError, IndexError): basepath = os.path.expanduser("~/Library/Application Support") return os.path.join(basepath, appname) # determine Windows OS appdata location elif sys.platform == 'win32': return os.path.join(os.environ.get('APPDATA'), appname) # determine Linux OS appdata location else: return os.path.expanduser(os.path.join('~', '.' + appname))
5,342,924
def getAction(board, policy, action_set): """ return action for policy, chooses max from classifier output """ # if policy doesn't exist yet, choose action randomly, else get from policy model if policy == None: valid_actions = [i for i in action_set if i[0] > -1] if len(valid_actions) == 0: return (-1,-1,0) rand_i = random.randint(0, len(valid_actions)-1) # du_policy = [-12.63, 6.60, -9.22,-19.77,-13.08,-10.49,-1.61, -24.04] # action = nextInitialMove(du_policy, board) action = valid_actions[rand_i] else: piece = [0]*7 # one hot encode piece piece[board.currentShape.shape -1] = 1 tot_features = np.append(board.getFeatures(), [piece]) action_scores = policy.predict([tot_features]) best_scores = np.argwhere(action_scores == np.amax(action_scores)).flatten().tolist() max_score = np.random.choice(best_scores) action = action_set[max_score] return action
5,342,925
def f_assert_must_between(value_list, args): """ 检测列表中的元素是否为数字或浮点数且在args的范围内 :param value_list: 待检测列表 :param args: 范围列表 :return: 异常或原值 example: :value_list [2, 2, 3] :args [1,3] :value_list ['-2', '-3', 3] :args ['-5',3] """ assert len(args) == 2 for value in value_list: if not (str(value).count('.') <= 1 and str(value).replace('.', '').lstrip('-').isdigit() and float(args[0]) <= float(value) <= float(args[1])): raise FeatureProcessError('%s f_assert_must_between %s Error' % (value_list, args)) return value_list
5,342,926
def annotate_muscle_zscore(raw, threshold=4, ch_type=None, min_length_good=0.1, filter_freq=(110, 140), n_jobs=1, verbose=None): """Create annotations for segments that likely contain muscle artifacts. Detects data segments containing activity in the frequency range given by ``filter_freq`` whose envelope magnitude exceeds the specified z-score threshold, when summed across channels and divided by ``sqrt(n_channels)``. False-positive transient peaks are prevented by low-pass filtering the resulting z-score time series at 4 Hz. Only operates on a single channel type, if ``ch_type`` is ``None`` it will select the first type in the list ``mag``, ``grad``, ``eeg``. See :footcite:`Muthukumaraswamy2013` for background on choosing ``filter_freq`` and ``threshold``. Parameters ---------- raw : instance of Raw Data to estimate segments with muscle artifacts. threshold : float The threshold in z-scores for marking segments as containing muscle activity artifacts. ch_type : 'mag' | 'grad' | 'eeg' | None The type of sensors to use. If ``None`` it will take the first type in ``mag``, ``grad``, ``eeg``. min_length_good : float | None The shortest allowed duration of "good data" (in seconds) between adjacent annotations; shorter segments will be incorporated into the surrounding annotations.``None`` is equivalent to ``0``. Default is ``0.1``. filter_freq : array-like, shape (2,) The lower and upper frequencies of the band-pass filter. Default is ``(110, 140)``. %(n_jobs)s %(verbose)s Returns ------- annot : mne.Annotations Periods with muscle artifacts annotated as BAD_muscle. scores_muscle : array Z-score values averaged across channels for each sample. References ---------- .. footbibliography:: """ from scipy.stats import zscore from scipy.ndimage import label raw_copy = raw.copy() if ch_type is None: raw_ch_type = raw_copy.get_channel_types() if 'mag' in raw_ch_type: ch_type = 'mag' elif 'grad' in raw_ch_type: ch_type = 'grad' elif 'eeg' in raw_ch_type: ch_type = 'eeg' else: raise ValueError('No M/EEG channel types found, please specify a' ' ch_type or provide M/EEG sensor data') logger.info('Using %s sensors for muscle artifact detection' % (ch_type)) if ch_type in ('mag', 'grad'): raw_copy.pick_types(meg=ch_type, ref_meg=False) else: ch_type = {'meg': False, ch_type: True} raw_copy.pick_types(**ch_type) raw_copy.filter(filter_freq[0], filter_freq[1], fir_design='firwin', pad="reflect_limited", n_jobs=n_jobs) raw_copy.apply_hilbert(envelope=True, n_jobs=n_jobs) data = raw_copy.get_data(reject_by_annotation="NaN") nan_mask = ~np.isnan(data[0]) sfreq = raw_copy.info['sfreq'] art_scores = zscore(data[:, nan_mask], axis=1) art_scores = art_scores.sum(axis=0) / np.sqrt(art_scores.shape[0]) art_scores = filter_data(art_scores, sfreq, None, 4) scores_muscle = np.zeros(data.shape[1]) scores_muscle[nan_mask] = art_scores art_mask = scores_muscle > threshold # return muscle scores with NaNs scores_muscle[~nan_mask] = np.nan # remove artifact free periods shorter than min_length_good min_length_good = 0 if min_length_good is None else min_length_good min_samps = min_length_good * sfreq comps, num_comps = label(art_mask == 0) for com in range(1, num_comps + 1): l_idx = np.nonzero(comps == com)[0] if len(l_idx) < min_samps: art_mask[l_idx] = True annot = _annotations_from_mask(raw_copy.times, art_mask, 'BAD_muscle', orig_time=raw.info['meas_date']) _adjust_onset_meas_date(annot, raw) return annot, scores_muscle
5,342,927
def circ_dist2(a, b): """Angle between two angles """ phi = np.e**(1j*a) / np.e**(1j*b) ang_dist = np.arctan2(phi.imag, phi.real) return ang_dist
5,342,928
def print_hugo_install_instructions(): """Prints out instructions on how to install Hugo """ click.secho( ''' It appears that Hugo isn't installed, which is needed to launch the preview server. If you have Homebrew, you can install Hugo using "brew install hugo". Otherwise, you can get the binary from here: https://gohugo.io/getting-started/installing/. After you have Hugo installed and can run "hugo -h" successfully, try running "journal preview" again. If you run into any issues, reach out on GitHub and we'll be happy to help.''', fg='yellow')
5,342,929
def hinge_loss(positive_scores, negative_scores, margin=1.0): """ Pairwise hinge loss [1]: loss(p, n) = \sum_i [\gamma - p_i + n_i]_+ [1] http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf :param positive_scores: (N,) Tensor containing scores of positive examples. :param negative_scores: (N,) Tensor containing scores of negative examples. :param margin: Margin. :return: Loss value. """ hinge_losses = tf.nn.relu(margin - positive_scores + negative_scores) loss = tf.reduce_sum(hinge_losses) return loss
5,342,930
def build(req): """Builder for this format. Args: req: flask request Returns: Json containing the creative data """ errors = [] v = {} tdir = "/tmp/" + f.get_tmp_file_name() index = get_html() ext = f.get_ext(req.files["videofile"].filename) if ext != "mp4": return {"errors": ["Only mp4 files allowed"]} f.save_file(req.files["videofile"], tdir + "/video.mp4") v["backgroundColor"] = f.get_param("background_color") v["autoclose"] = str(f.get_int_param("autoclose")) return {"errors": errors, "dir": tdir, "index": index, "vars": v}
5,342,931
def add_s3(command_table, session, **kwargs): """ This creates a new service object for the s3 plugin. It sends the old s3 commands to the namespace ``s3api``. """ utils.rename_command(command_table, 's3', 's3api') command_table['s3'] = S3(session)
5,342,932
def reflect(old, centroid, new): """Reflect the old point around the centroid into the new point on the sphere. Parameters ---------- old : SPHER_T centroid : SPHER_T new : SPHER_T """ x = old['x'] y = old['y'] z = old['z'] ca = centroid['cosaz'] sa = centroid['sinaz'] cz = centroid['coszen'] sz = centroid['sinzen'] new['x'] = ( 2*ca*cz*sz*z + x*(ca*(-ca*cz**2 + ca*sz**2) - sa**2) + y*(ca*sa + sa*(-ca*cz**2 + ca*sz**2)) ) new['y'] = ( 2*cz*sa*sz*z + x*(ca*sa + ca*(-cz**2*sa + sa*sz**2)) + y*(-ca**2 + sa*(-cz**2*sa + sa*sz**2)) ) new['z'] = 2*ca*cz*sz*x + 2*cz*sa*sz*y + z*(cz**2 - sz**2) fill_from_cart(new)
5,342,933
def search(query, data, metric='euclidean', verbose=True): """ do search, return ranked list according to distance metric: hamming/euclidean query: one query per row dat: one data point per row """ #calc dist of query and each data point if metric not in ['euclidean', 'hamming']: print 'metric must be one of (euclidean, hamming)' sys.exit(0) #b=time.clock() dist=scipy.spatial.distance.cdist(query,data,metric) sorted_idx=np.argsort(dist,axis=1) #e=time.clock() if verbose: #calc avg dist to nearest 200 neighbors nearpoints=sorted_idx[:,0:200] d=[np.mean(dist[i][nearpoints[i]]) for i in range(nearpoints.shape[0])] sys.stdout.write('%.4f, '% np.mean(d)) #print 'search time %.4f' % (e-b) return sorted_idx
5,342,934
def create_circle_widget(canvas: Canvas, x: int, y: int, color: str, circle_size: int): """create a centered circle on cell (x, y)""" # in the canvas the 1st axis is horizontal and the 2nd is vertical # we want the opposite so we flip x and y for the canvas # to create an ellipsis, we give (x0, y0) and (x1, y1) that define the containing rectangle pad = (CELL_SIZE - circle_size) / 2 i0 = 5 + y * CELL_SIZE + pad + 1 j0 = 5 + x * CELL_SIZE + pad + 1 i1 = 5 + (y + 1) * CELL_SIZE - pad j1 = 5 + (x + 1) * CELL_SIZE - pad return canvas.create_oval(i0, j0, i1, j1, fill=color, outline="")
5,342,935
def _format_program_counter_relative(state): """Program Counter Relative""" program_counter = state.program_counter operand = state.current_operand if operand & 0x80 == 0x00: near_addr = (program_counter + operand) & 0xFFFF else: near_addr = (program_counter - (0x100 - operand)) & 0xFFFF return '${:04X}'.format(near_addr)
5,342,936
def compile_program( program: PyTEAL, mode: Mode = Mode.Application, version: int = 5 ) -> bytes: """Compiles a PyTEAL smart contract program to the TEAL binary code. Parameters ---------- program A function which generates a PyTEAL expression, representing an Algorand program. mode The mode with which to compile the supplied PyTEAL program. version The version with which to compile the supplied PyTEAL program. Returns ------- bytes The TEAL compiled binary code. """ source = compileTeal(program(), mode=mode, version=version) return _compile_source(source)
5,342,937
def fetch_url(url): """ Fetches a URL and returns contents - use opener to support HTTPS. """ # Fetch and parse logger.debug(u'Fetching %s', url) # Use urllib2 directly for enabled SSL support (LXML doesn't by default) timeout = 30 try: opener = urllib2.urlopen(url, None, timeout) # Fetch HTTP data in one batch, as handling the 'file-like' object to # lxml results in thread-locking behaviour. htmldata = opener.read() except urllib2.URLError, urllib2.HTTPError: # These type of errors are non-fatal - but *should* be logged. logger.exception(u'HTTP Error for %s, returning emtpy string.', url ) return None return htmldata
5,342,938
def predict(yolo_outputs, image_shape, anchors, class_names, obj_threshold, nms_threshold, max_boxes = 1000): """ Process the results of the Yolo inference to retrieve the detected bounding boxes, the corresponding class label, and the confidence score associated. The threshold value 'obj_threshold' serves to discard low confidence predictions. The 'nms_threshold' value is used to discard duplicate boxes for a same object (IoU metric). """ # Init anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] total_boxes = [] total_box_scores = [] input_shape = tf.shape(yolo_outputs[0])[1 : 3] * 32 # Process output tensors for i in range(len(yolo_outputs)): # Get bboxes and associated scores detected_boxes, box_scores = boxes_and_scores(yolo_outputs[i], anchors[anchor_mask[i]], len(class_names), input_shape, image_shape) # Append bboxes and level of confidence to list total_boxes.append(detected_boxes) total_box_scores.append(box_scores) # Concatenate results total_boxes = tf.concat(total_boxes, axis=0) total_box_scores = tf.concat(total_box_scores, axis=0) #print('------------------------------------') #print('Boxe scores', box_scores) # Mask to filter out low confidence detections mask = box_scores >= obj_threshold # Set boxes limit max_boxes_tensor = tf.constant(max_boxes, dtype = tf.int32) boxes_ = [] scores_ = [] classes_ = [] items_ = [] for c in range(len(class_names)): # Get boxes labels class_boxes = tf.boolean_mask(total_boxes, mask[:, c]) # Get associated score class_box_scores = tf.boolean_mask(total_box_scores[:, c], mask[:, c]) # Concatenate label and score item = [class_boxes, class_box_scores] # Filter out duplicates when multiple boxes are predicted for a same object nms_index = tf.image.non_max_suppression(class_boxes, class_box_scores, max_boxes_tensor, iou_threshold = nms_threshold) # Remove the duplicates from the list of classes and scores class_boxes = tf.gather(class_boxes, nms_index) class_box_scores = tf.gather(class_box_scores, nms_index) # Multiply score by class type classes = tf.ones_like(class_box_scores, 'int32') * c # Append results to lists boxes_.append(class_boxes) scores_.append(class_box_scores) classes_.append(classes) # Concatenate results boxes_ = tf.concat(boxes_, axis = 0) scores_ = tf.concat(scores_, axis = 0) classes_ = tf.concat(classes_, axis = 0) return boxes_, scores_, classes_
5,342,939
def get_event_details(entry, workday_user, demisto_user, days_before_hire_to_sync, days_before_hire_to_enable_ad, deactivation_date_field, display_name_to_user_profile, email_to_user_profile, employee_id_to_user_profile, source_priority): """ This function detects the event type and creates a dictionary which holds the event details. If the event should not be created, None is returned. Args: entry: The employee's report entry. workday_user: Workday user in XSOAR format. demisto_user: The user profile in XSOAR. deactivation_date_field: Deactivation date field - "lastdayofwork" or "terminationdate". days_before_hire_to_sync: Number of days before hire date to sync hires, -1 if should sync instantly. days_before_hire_to_enable_ad: Number of days before hire date to enable Active Directory account, -1 if should sync instantly. display_name_to_user_profile: A dictionary that maps display names to user profile indicators in XSOAR. email_to_user_profile: A dictionary that maps email addresses to user profile indicators in XSOAR. employee_id_to_user_profile: A dictionary that maps employee ids to user profile indicators in XSOAR. source_priority: The source priority number. Returns: event: The event details. """ user_email = workday_user.get(EMAIL_ADDRESS_FIELD) changed_fields = get_profile_changed_fields_str(demisto_user, workday_user) demisto.debug(f'{changed_fields=}') # type: ignore if not has_reached_threshold_date(days_before_hire_to_sync, workday_user) \ or new_hire_email_already_taken(workday_user, demisto_user, email_to_user_profile) \ or is_report_missing_required_user_data(workday_user) \ or not is_valid_source_of_truth(demisto_user, source_priority) \ or is_event_processed(demisto_user): return None if is_new_hire_event(demisto_user, workday_user, deactivation_date_field): event_type = NEW_HIRE_EVENT_TYPE event_details = 'The user has been hired.' elif is_ad_activation_event(demisto_user, workday_user, days_before_hire_to_enable_ad): event_type = ACTIVATE_AD_EVENT_TYPE event_details = 'Active Directory user account was enabled.' elif is_ad_deactivation_event(demisto_user, workday_user, days_before_hire_to_enable_ad, source_priority): event_type = DEACTIVATE_AD_EVENT_TYPE event_details = 'Active Directory user account was disabled due to hire date postponement.' elif is_rehire_event(demisto_user, workday_user, changed_fields): event_type = REHIRE_USER_EVENT_TYPE event_details = 'The user has been rehired.' elif is_termination_event(workday_user, demisto_user, deactivation_date_field): event_type = TERMINATE_USER_EVENT_TYPE event_details = 'The user has been terminated.' elif is_update_event(workday_user, changed_fields): event_type = UPDATE_USER_EVENT_TYPE event_details = f'The user has been updated:\n{changed_fields}' workday_user[OLD_USER_DATA_FIELD] = demisto_user if demisto_user.get(SOURCE_PRIORITY_FIELD) != source_priority: workday_user[CONVERSION_HIRE_FIELD] = True event_details = f'A conversion hire was detected:\n{changed_fields}' else: demisto.debug(f'Could not detect changes in report for user with email address {user_email} - skipping.') return None if is_tufe_user(demisto_user) and event_type != REHIRE_USER_EVENT_TYPE: return None if is_display_name_already_taken(demisto_user, workday_user, display_name_to_user_profile) \ and event_type in [NEW_HIRE_EVENT_TYPE, REHIRE_USER_EVENT_TYPE, UPDATE_USER_EVENT_TYPE]: event_details = f'Detected an "{event_type}" event, but display name already exists. Please review.' if changed_fields: event_details += f'\n{changed_fields}' event_type = DEFAULT_INCIDENT_TYPE entry[USER_PROFILE_INC_FIELD] = workday_user return { 'name': user_email, 'rawJSON': json.dumps(entry), 'type': event_type, 'details': event_details }
5,342,940
def test_qamats_gadol_next_accent(): """`qamats` with first accent on syllable is `qamats-gadol` (qamats-gadol-next-accent)""" word = r"אָז֩" # az (Leviticus 26:34) parts = ["alef", "qamats-gadol", "zayin"] assert parts == Parser().parse(word).flat()
5,342,941
def kill_test_logger(logger): """Cleans up a test logger object by removing all of its handlers. Args: logger: The logging object to clean up. """ for h in list(logger.handlers): logger.removeHandler(h) if isinstance(h, logging.FileHandler): h.close()
5,342,942
def ae_model(inputs, train=True, norm=True, **kwargs): """ AlexNet model definition as defined in the paper: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf You will need to EDIT this function. Please put your AlexNet implementation here. Note: 1.) inputs['images'] is a [BATCH_SIZE x HEIGHT x WIDTH x CHANNELS] array coming from the data provider. 2.) You will need to return 'output' which is a dictionary where - output['pred'] is set to the output of your model - output['conv1'] is set to the output of the conv1 layer - output['conv1_kernel'] is set to conv1 kernels - output['conv2'] is set to the output of the conv2 layer - output['conv2_kernel'] is set to conv2 kernels - and so on... The output dictionary should include the following keys for AlexNet: ['conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'pool1', 'pool2', 'pool5', 'fc6', 'fc7', 'fc8'] as well as the respective ['*_kernel'] keys for the kernels 3.) Set your variable scopes to the name of the respective layers, e.g. with tf.variable_scope('conv1'): outputs['conv1'] = ... outputs['pool1'] = ... and with tf.variable_scope('fc6'): outputs['fc6'] = ... and so on. 4.) Use tf.get_variable() to create variables, while setting name='weights' for each kernel, and name='bias' for each bias for all conv and fc layers. For the pool layers name='pool'. These steps are necessary to correctly load the pretrained alexnet model from the database for the second part of the assignment. """ # propagate input targets outputs = inputs # dropout = .5 if train else None input_to_network = inputs['images'] outputs['input'] = input_to_network with tf.variable_scope('conv'): outputs['relu'], outputs['conv_kernel'] = get_conv(input_to_network,[7,7,3,64],16) with tf.variable_scope('deconv'): outputs['deconv'] = get_deconv(outputs['relu'],[12,12,3,64],12,input_to_network.shape) # shape = input_to_network.get_shape().as_list() # stride = 16 # hidden_size = 2 # deconv_size = 12 # ### YOUR CODE HERE # outputs['input'] = input_to_network # conv_layer = K.layers.Conv2D(64,7,strides=(stride,stride), # padding='same', # kernel_initializer='glorot_normal') # outputs['conv_kernel'] = conv_layer # outputs['conv'] = conv_layer(input_to_network) # outputs['relu'] = K.layers.Activation('relu')(outputs['conv']) # outputs['deconv'] = K.layers.Conv2DTranspose(3,deconv_size, # deconv_size,padding='valid', # kernel_initializer='glorot_normal')(outputs['relu']) ### END OF YOUR CODE for k in ['deconv']: assert k in outputs, '%s was not found in outputs' % k return outputs, {}
5,342,943
def filter_by_country(data, country=DEFAULT_COUNTRY): """ Filter provided data by country (defaults to Czechia). data: pandas.DataFrame country: str """ # Filter data by COUNTRY return data[data[COLUMN_FILTER] == country]
5,342,944
def draw_soil_maps(): """make four-panel map of soil COS fluxes and resulting drawdown The four panels show soil COS surface fluxes (top row) and the resulting STEM-simulated drawdowns (bottom row) for both the Whelan-Kettle "hybrid" fluxes (left panels) as well as Kettle et al (2002) fluxes (right panels). """ maps_soil = MapPanel(nrows=2, ncols=2) fcos_mean, fcos_total = map_grid.get_JulAug_total_flux( 'fCOS', ('Fsoil_Kettle', 'Fsoil_Hybrid5Feb')) all_vals = np.vstack((fcos_mean['Fsoil_Kettle'], fcos_mean['Fsoil_Hybrid5Feb'])).flatten() vmin, vmax = np.nanpercentile(all_vals, (1, 99)) cb_midpt = 0.0 maps_soil.draw_map(fcos_mean['Fsoil_Kettle'], map_axis_idx=(0, 0), label_lat=True, vmin=vmin, vmax=vmax, midpoint=cb_midpt, bands_above_mdpt=5, bands_below_mdpt=5, cmap=plt.get_cmap('BrBG_r'), cbar_t_str='COS [pmol m$^{-2}$ s$^{-1}$]', extend='both', panel_lab='a') maps_soil.draw_map(fcos_mean['Fsoil_Hybrid5Feb'], map_axis_idx=(0, 1), vmin=vmin, vmax=vmax, midpoint=cb_midpt, bands_above_mdpt=5, bands_below_mdpt=5, cmap=plt.get_cmap('BrBG_r'), cbar_t_str='COS [pmol m$^{-2}$ s$^{-1}$]', extend='both', panel_lab='b') aqc, dd_soil_whelan, raw_data = get_COS_concentration('Fsoil_Hybrid5Feb') aqc, dd_soil_kettle, raw_data = get_COS_concentration('Fsoil_Kettle') all_vals = np.vstack((dd_soil_whelan, dd_soil_kettle)).flatten() vmin, vmax = np.nanpercentile(all_vals, (1, 99)) cb_midpt = 0.0 maps_soil.draw_map(dd_soil_kettle, map_axis_idx=(1, 0), label_lon=True, vmin=vmin, vmax=vmax, midpoint=cb_midpt, bands_above_mdpt=5, bands_below_mdpt=5, cmap=plt.get_cmap('PuOr'), cbar_t_str='COS [ppt]', extend='both', panel_lab='c') maps_soil.draw_map(dd_soil_whelan, map_axis_idx=(1, 1), label_lat=True, label_lon=True, vmin=vmin, vmax=vmax, midpoint=cb_midpt, bands_above_mdpt=5, bands_below_mdpt=5, cmap=plt.get_cmap('PuOr'), cbar_t_str='COS [ppt]', extend='both', panel_lab='d') maps_soil.save(fname=os.path.join(os.getenv('HOME'), 'plots', 'map_soil.pdf'))
5,342,945
def get_instance_id() -> str: """Returns the AWS instance id where this is running or "local".""" global INSTANCE_ID if INSTANCE_ID is None: if get_env_variable("RUNNING_IN_CLOUD") == "True": @retry(stop_max_attempt_number=3) def retrieve_instance_id(): return requests.get(os.path.join(METADATA_URL, "instance-id")).text INSTANCE_ID = retrieve_instance_id() else: INSTANCE_ID = "local" return INSTANCE_ID
5,342,946
def test_array__sized_dump_too_small__unsized_iterable(): """Crash if writing a generator with too few values.""" field = fields.Array(fields.Int32(), count=100) with pytest.raises(errors.ArraySizeError) as err: field.to_bytes(x for x in range(6)) assert err.value.n_expected == 100 assert err.value.n_given == 6
5,342,947
def scans_from_csvs(*inps, names=None): """ Read from csvs. :param inps: file names of the csvs :param names: names of the Scans :return: list of Scans """ ns, temp_vals, heat_flow_vals = read_csvs(inps) names = ns if names is None else names return [Scan(*vals) for vals in zip(temp_vals, heat_flow_vals, names)]
5,342,948
def part_b(puzzle_input): """ Calculate the answer for part_b. Args: puzzle_input (list): Formatted as the provided input from the website. Returns: string: The answer for part_b. """ return str(collect_letters(puzzle_input)[1])
5,342,949
def main(): """Driver Function.""" parser = argparse.ArgumentParser( description="ARMA Plotting Script for EPRI Data" ) parser.add_argument( "-t", "--add-tables", action="store_true", help="Add descriptive tables to plot margin.", ) parser.add_argument( "-e", "--embed-xml", action="store_true", help="Embed current xml file into image output." ) parser.add_argument( 'xml', type=Path, help="Path to RAVEN input file" ) # Add subcommands to this tool subparsers = parser.add_subparsers(dest="subparser") single_plot_parser = subparsers.add_parser("single-plot") single_plot_parser.add_argument("function", type=str) single_plot_parser.add_argument("--year", required=False, default=2025, type=int) extract_xml_parser = subparsers.add_parser("extract-xml") extract_xml_parser.add_argument("png", type=Path) args = parser.parse_args() # Add parent directory so we can use it throughout the script. args.parent_xml = args.xml.resolve().parent if args.subparser == "extract-xml": extract_xml(args.png) elif args.subparser == "single-plot": create_single_plot(args) else: create_multiyear_plots(args)
5,342,950
def data_encoder(data): """ Encode all categorical values in the dataframe into numeric values. @param data: the original dataframe @return data: the same dataframe with all categorical variables encoded """ le = preprocessing.LabelEncoder() cols = data.columns numcols = data._get_numeric_data().columns catecols = list(set(cols) - set(numcols)) le = preprocessing.LabelEncoder() data[catecols] = data[catecols].astype(str).apply(le.fit_transform) return data
5,342,951
def _search_settings(method_settings_keys, settings): """ We maintain a dictionary of dimensionality reduction methods in dim_settings_keys where each key (method) stores another dictionary (md) holding that method's settings (parameters). The keys of md are component ids and the values are parameter names that will be passed to dim_reduce. For example, dim_settings_keys['dim-PCA'] holds a dictionary dim_pca_settings_keys = { 'dim-PCA-n-components': 'n_components', 'dim-PCA-whiten': 'whiten', 'dim-PCA-solver': 'svd_solver', 'dim-PCA-random-state': 'random_state' } where the keys (dim-PCA-key) is the widget id and the value is the parameter name to pass to sklearn's PCA. Parameters __________ method_settings_keys: dict Dicionary holding setting id's and parameter names. settings: tuple of list of dicts of ... Holds all children in the method-settings elements. This is a mixture of lists, tuples, and dicts. We recursively search this element to find the children with id's as determined by dim_pca_settings_keys[dim_method]. By doing this we avoid having to write new Input elements into our callbacks every time we add a new setting. All that needs to be done is add the setting's id into the settings_keys dict and it will be parsed automatically. """ kwargs = {} for key in method_settings_keys: child = next(_recur_search(settings, key)) # if there exists a component with 'key' as its 'id' # then child should never be None. 'value' may be missing # if not manually specified when constructing the widget. if child is None or 'value' not in child: raise InternalError("'value' key not found in child.") kwargs[method_settings_keys[key]] = child['value'] return kwargs
5,342,952
def svn_opt_resolve_revisions(*args): """ svn_opt_resolve_revisions(svn_opt_revision_t peg_rev, svn_opt_revision_t op_rev, svn_boolean_t is_url, svn_boolean_t notice_local_mods, apr_pool_t pool) -> svn_error_t """ return _core.svn_opt_resolve_revisions(*args)
5,342,953
def write_midi( path: Union[str, Path], music: "Music", backend: str = "mido", **kwargs: Any ): """Write a Music object to a MIDI file. Parameters ---------- path : str or Path Path to write the MIDI file. music : :class:`muspy.Music` Music object to write. backend: {'mido', 'pretty_midi'} Backend to use. Defaults to 'mido'. """ if backend == "mido": return write_midi_mido(path, music, **kwargs) if backend == "pretty_midi": return write_midi_pretty_midi(path, music) raise ValueError("`backend` must by one of 'mido' and 'pretty_midi'.")
5,342,954
def find_star_column(file, column_type, header_length) : """ For an input .STAR file, search through the header and find the column numbers assigned to a given column_type (e.g. 'rlnMicrographName', ...) """ with open(file, 'r') as f : line_num = 0 for line in f : line_num += 1 # extract column number for micrograph name if column_type in line : for i in line.split()[1]: if i in string.digits : column_num = int(i) # search header and no further to find setup values if line_num >= header_length : if VERBOSE: # print("Read though header (%s lines total)" % header_length) print("Column value for %s is %d" % (column_type, column_num)) return column_num
5,342,955
def recalculate_bb(df, customization_dict, image_dir): """After resizing images, bb coordinates are recalculated. Args: df (Dataframe): A df for image info. customization_dict (dict): Resize dict. image_dir (list): Image path list Returns: Dataframe: Updated dataframe. """ img = cv2.imread(image_dir[0]) h, w, _ = img.shape new_width = customization_dict['width'] new_height = customization_dict['height'] w_ratio = new_width/w h_ratio = new_height/h df['x_min'] = df['x_min']*w_ratio df['x_max'] = df['x_max']*w_ratio df['y_min'] = df['y_min']*h_ratio df['y_max'] = df['y_max']*h_ratio df.x_min = df.x_min.astype("int16") df.x_max = df.x_max.astype("int16") df.y_min = df.y_min.astype("int16") df.y_max = df.y_max.astype("int16") return df
5,342,956
def free_port(): """Returns a free port on this host """ return get_free_port()
5,342,957
def gen_treasure_img(): """ Get National Treasure values and Tweet its image """ if len(db_schedule.get( 'date == "{}" AND category == "TD"'.format( datetime.today().strftime('%d/%m/%Y')))) == 0: status, treasure = Treasure().buy() if status == 200: image = TreasureImg() image.add_title( 100, 'Confira os preços e taxas de hoje no tesouro direto') img_status = image.render(treasure) if img_status == 200: tweet.send_media( './assets/treasure.png', 'Confira as taxas do Tesouro Direto' ) db_schedule.insert( datetime.today().strftime('%d/%m/%Y'), 'TD', )
5,342,958
def test_unregister_non_existing_file_obj(psql_fixture): # noqa: F811 """Test unregistering not existing file object and expect corresponding error.""" non_existing_file_obj = psql_fixture.non_existing_file_infos[0] with pytest.raises(DrsObjectNotFoundError): psql_fixture.database.unregister_drs_object(non_existing_file_obj.file_id)
5,342,959
async def websocket_lovelace_update_card(hass, connection, msg): """Receive lovelace card config over websocket and save.""" error = None try: await hass.async_add_executor_job( update_card, hass.config.path(LOVELACE_CONFIG_FILE), msg['card_id'], msg['card_config'], msg.get('format', FORMAT_YAML)) message = websocket_api.result_message( msg['id'] ) except FileNotFoundError: error = ('file_not_found', 'Could not find ui-lovelace.yaml in your config dir.') except UnsupportedYamlError as err: error = 'unsupported_error', str(err) except CardNotFoundError as err: error = 'card_not_found', str(err) except HomeAssistantError as err: error = 'save_error', str(err) if error is not None: message = websocket_api.error_message(msg['id'], *error) connection.send_message(message)
5,342,960
def justify_to_box( boxstart: float, boxsize: float, itemsize: float, just: float = 0.0) -> float: """ Justifies, similarly, but within a box. """ return boxstart + (boxsize - itemsize) * just
5,342,961
def newton(oracle, x_0, tolerance=1e-5, max_iter=100, line_search_options=None, trace=False, display=False): """ Newton's optimization method. Parameters ---------- oracle : BaseSmoothOracle-descendant object Oracle with .func(), .grad() and .hess() methods implemented for computing function value, its gradient and Hessian respectively. If the Hessian returned by the oracle is not positive-definite method stops with message="newton_direction_error" x_0 : np.array Starting point for optimization algorithm tolerance : float Epsilon value for stopping criterion. max_iter : int Maximum number of iterations. line_search_options : dict, LineSearchTool or None Dictionary with line search options. See LineSearchTool class for details. trace : bool If True, the progress information is appended into history dictionary during training. Otherwise None is returned instead of history. display : bool If True, debug information is displayed during optimization. Returns ------- x_star : np.array The point found by the optimization procedure message : string 'success' or the description of error: - 'iterations_exceeded': if after max_iter iterations of the method x_k still doesn't satisfy the stopping criterion. - 'newton_direction_error': in case of failure of solving linear system with Hessian matrix (e.g. non-invertible matrix). - 'computational_error': in case of getting Infinity or None value during the computations. history : dictionary of lists or None Dictionary containing the progress information or None if trace=False. Dictionary has to be organized as follows: - history['time'] : list of floats, containing time passed from the start of the method - history['func'] : list of function values f(x_k) on every step of the algorithm - history['grad_norm'] : list of values Euclidian norms ||g(x_k)|| of the gradient on every step of the algorithm - history['x'] : list of np.arrays, containing the trajectory of the algorithm. ONLY STORE IF x.size <= 2 Example: -------- >> oracle = QuadraticOracle(np.eye(5), np.arange(5)) >> x_opt, message, history = newton(oracle, np.zeros(5), line_search_options={'method': 'Constant', 'c': 1.0}) >> print('Found optimal point: {}'.format(x_opt)) Found optimal point: [ 0. 1. 2. 3. 4.] """ if tolerance <= 0.: tolerance = 1e-32 history = defaultdict(list) if trace else None line_search_tool = get_line_search_tool(line_search_options) x = np.copy(x_0) start_time = time.time() grad_norm_0 = np.linalg.norm(oracle.grad(x)) def get_alpha(x, d): if line_search_tool.is_correct(oracle, x, d, 1.): return 1. return line_search_tool.line_search(oracle, x, d) def has_nans(*args): for arg in args: if np.isnan(arg).any() or np.isinf(arg).any(): return True return False for _ in range(max_iter): func = oracle.func(x) grad = oracle.grad(x) hess = oracle.hess(x) grad_norm = np.linalg.norm(grad) if has_nans(func, grad, hess): return x, 'computational_error', history if grad_norm ** 2 <= tolerance * (grad_norm_0 ** 2): _log_if_needed(display, 'Gradient descent done, x =', x, 'f(x) =', func) _fill_history_if_needed(history, func, grad_norm, x, start_time) return x, 'success', history # could be saddle point, and we can try to use solve_saddle implemented above try: c, low = cho_factor(hess) if has_nans(c, low): return x, 'computational_error', history d = cho_solve((c, low), -grad) except: _log_if_needed(display, 'Failure of solving linear system with Hessian matrix') return x, 'newton_direction_error', history alpha = get_alpha(x, d) if alpha is None: return x, 'computational_error', history _fill_history_if_needed(history, func, grad_norm, x, start_time) x = x + alpha * d _fill_history_if_needed(history, oracle.func(x), np.linalg.norm(oracle.grad(x)), x, start_time) return do_check_result(oracle, x, tolerance, grad_norm_0, history, display)
5,342,962
def generate_hostname(domain, hostname): """If hostname defined, returns FQDN. If not, returns FQDN with base32 timestamp. """ # Take time.time() - float, then: # - remove period # - truncate to 17 digits # - if it happen that last digits are 0 (and will not be displayed, so # string is shorter - pad it with 0. # # The result ensures that timestamp is 17 char length and is increasing. timestamp = str(time.time()).replace('.', '')[:17].ljust(17, '0') b32time = aws.int2str(number=int(timestamp), base=32) if hostname[-1] == '-': hostname = '{}{}'.format(hostname, '{time}') return '{}.{}'.format(hostname.format(time=b32time), domain)
5,342,963
def symmetrize(M): """Return symmetrized version of square upper/lower triangular matrix.""" return M + M.T - np.diag(M.diagonal())
5,342,964
def process_checksums_get(storage_share, hash_type, url): """Run StorageShare get_object_checksum() method to get checksum of file/object. Run StorageShare get_object_checksum() method to get the requested type of checksum for file/object whose URL is given. The client also needs to sp If the StorageShare does not support the method, the client will get an error message and the process will exit. Arguments: storage_share -- dynafed_storagestats StorageShare object. hash_type -- string that indicates the type of has requested. url -- string containing url to the desired file/object. Returns: String containing checksum or 'None'. """ try: _checksum = storage_share.get_object_checksum(hash_type, url) except dynafed_storagestats.exceptions.ChecksumWarningMissingChecksum as WARN: _logger.warning("[%s]%s", storage_share.id, WARN.debug) return None except AttributeError as ERR: _logger.error( "[%s]Checksum GET operation not supported for %s. %s", storage_share.id, storage_share.storageprotocol, ERR ) print( "[ERROR][%s]Checksum GET operation not supported %s. %s" % ( storage_share.id, storage_share.storageprotocol, ERR ), file=sys.stderr ) sys.exit(1) else: return _checksum
5,342,965
def train_model(model_path, epoch): """ Train the specified model. :param model_path: The path to save model. :param epoch: Number of iterations to train model. :return: Trained model. """ train_path = input("Please input the path of training data: ") if train_path[-1] != '/': train_path += '/' test_path = input("Please input the path of test data: ") if test_path[-1] != '/': test_path += '/' writer = SummaryWriter(comment="ResNet") # get training Dataset dataset = get_dataset(train_path) # get training DataLoader train_loader = torch.utils.data.dataloader.DataLoader(dataset, batch_size=64) # get test Dataset dataset = get_dataset(test_path) # get test DataLoader test_loader = torch.utils.data.dataloader.DataLoader(dataset, batch_size=256) criterion = nn.CrossEntropyLoss().cuda() model = resnet_34().cuda() # the input of tensorboard temp = torch.rand(32, 3, 224, 224).cuda() writer.add_graph(model, (temp,)) optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) best_accuracy = 0.0 step = 0 for i in range(epoch): print("epoch:", i) model.train() for j, data in enumerate(train_loader): x, y = data x = x.cuda() y = y.cuda() x_var = torch.autograd.Variable(x) y_var = torch.autograd.Variable(y.long()) prediction = model(x_var) loss = criterion(prediction, y_var) optimizer.zero_grad() loss.backward() optimizer.step() # save loss and epoch writer.add_scalar("Loss", loss, step) step += 1 print('--------Validation--------') correct = torch.zeros(1).squeeze().cuda() total = torch.zeros(1).squeeze().cuda() model.eval() with torch.no_grad(): for j, data in enumerate(test_loader): x, y = data x = x.cuda() y = y.cuda() output = model(x) prediction = torch.argmax(output, 1) correct += (prediction == y.long()).sum().float() total += len(y) accuracy = (correct / total).cpu().item() writer.add_scalar("Accuracy", accuracy, i) if accuracy > best_accuracy: # save best model torch.save(model, "".join(model_path.split('.')[:-1]) + "_best.pth") best_accuracy = accuracy torch.save(model, model_path) writer.close()
5,342,966
def test_parser_nested_let_assign(): """ To validate the parser solves nested let. """ parser = Parser(Lexer(Scanner("let:\n let:\n a <- 1 + 2\n b <- a * 3\n\n"))) assign = parser() assert assign.name == NodeType.Let assert str(assign) == "Let(Let(MutableAssign(Name(a), Add(Num(1), Num(2)))), MutableAssign(Name(b), Mul(Name(a), Num(3))))" parser = Parser(Lexer(Scanner("let:\n let:\n a <- 1 + 2\n\n b <- a * 3\n\n"))) assign = parser() assert assign.name == NodeType.Let assert str(assign) == "Let(Let(MutableAssign(Name(a), Add(Num(1), Num(2)))), MutableAssign(Name(b), Mul(Name(a), Num(3))))"
5,342,967
def test_fake_corrupt_json_file(tmpdir): """ Creates a bad JSON file and tests the code responds properly""" try: d = tmpdir.mkdir("./testdir") bad_json = d.join("bad_json.txt") bad_json.write('{"test": }') filename = os.path.join(bad_json.dirname, bad_json.basename) json.load(open(filename)) except json.decoder.JSONDecodeError as exc: print('[INFO] Corrupt JSON file found.') pass
5,342,968
def prep_public_water_supply_fraction() -> pd.DataFrame: """calculates public water supply deliveries for the commercial and industrial sectors individually as a ratio to the sum of public water supply deliveries to residential end users and thermoelectric cooling. Used in calculation of public water supply demand to commercial and industrial sectors. :return: DataFrame of public water supply ratios for commercial and industrial sector. """ # read in data df = prep_water_use_1995(variables=['FIPS', 'State', 'PS-DelDO', 'PS-DelPT', 'PS-DelCO', 'PS-DelIN']) df_loc = prep_water_use_2015() # prepared list of 2015 counties with FIPS codes # calculate ratio of commercial pws to sum of domestic and thermoelectric cooling pws df['com_pws_fraction'] = np.where((df['PS-DelDO'] + df['PS-DelPT'] <= 0), np.nan, (df['PS-DelCO'] / (df['PS-DelDO'] + df['PS-DelPT']))) # calculate ratio of industrial pws to sum of domestic and thermoelectric cooling pws df["ind_pws_fraction"] = np.where(((df['PS-DelDO'] + df['PS-DelPT']) <= 0), np.nan, df['PS-DelIN'] / (df['PS-DelDO'] + df['PS-DelPT'])) # reduce dataframe df = df[['FIPS', 'State', 'com_pws_fraction', 'ind_pws_fraction']] # fill counties with 0 commercial or industrial public water supply ratios with state averages df_mean = df.groupby('State', as_index=False).mean() rename_list = df_mean.columns[1:].to_list() for col in rename_list: new_name = f"{col}_state" df_mean = df_mean.rename(columns={col: new_name}) df_mean_all = pd.merge(df, df_mean, how='left', on=['State']) # replace counties with consumption fractions of zero with the state average to replace missing data rep_list = df.columns[2:].to_list() for col in rep_list: mean_name = f"{col}_state" df_mean_all[col].fillna(df_mean_all[mean_name], inplace=True) # reduce dataframe to required output df_output = df_mean_all[['FIPS', 'State', 'com_pws_fraction', 'ind_pws_fraction']] # merge with full list of counties from 2015 water data df_output = pd.merge(df_loc, df_output, how='left', on=['FIPS', 'State']) return df_output
5,342,969
def box3d_overlap_kernel(boxes, qboxes, rinc, criterion=-1, z_axis=1, z_center=1.0): """ z_axis: the z (height) axis. z_center: unified z (height) center of box. """ N, K = boxes.shape[0], qboxes.shape[0] for i in range(N): for j in range(K): if rinc[i, j] > 0: min_z = min( boxes[i, z_axis] + boxes[i, z_axis + 3] * (1 - z_center), qboxes[j, z_axis] + qboxes[j, z_axis + 3] * (1 - z_center)) max_z = max( boxes[i, z_axis] - boxes[i, z_axis + 3] * z_center, qboxes[j, z_axis] - qboxes[j, z_axis + 3] * z_center) iw = min_z - max_z if iw > 0: area1 = boxes[i, 3] * boxes[i, 4] * boxes[i, 5] area2 = qboxes[j, 3] * qboxes[j, 4] * qboxes[j, 5] inc = iw * rinc[i, j] if criterion == -1: ua = (area1 + area2 - inc) elif criterion == 0: ua = area1 elif criterion == 1: ua = area2 else: ua = 1.0 rinc[i, j] = inc / ua else: rinc[i, j] = 0.0
5,342,970
def set_matchq_in_constraint(a, cons_index): """ Takes care of the case, when a pattern matching has to be done inside a constraint. """ lst = [] res = '' if isinstance(a, list): if a[0] == 'MatchQ': s = a optional = get_default_values(s, {}) r = generate_sympy_from_parsed(s, replace_Int=True) r, free_symbols = add_wildcards(r, optional=optional) free_symbols = sorted(set(free_symbols)) # remove common symbols r = sympify(r, locals={"Or": Function("Or"), "And": Function("And"), "Not":Function("Not")}) pattern = r.args[1].args[0] cons = r.args[1].args[1] pattern = rubi_printer(pattern, sympy_integers=True) pattern = setWC(pattern) res = ' def _cons_f_{}({}):\n return {}\n'.format(cons_index, ', '.join(free_symbols), cons) res += ' _cons_{} = CustomConstraint(_cons_f_{})\n'.format(cons_index, cons_index) res += ' pat = Pattern(UtilityOperator({}, x), _cons_{})\n'.format(pattern, cons_index) res += ' result_matchq = is_match(UtilityOperator({}, x), pat)'.format(r.args[0]) return "result_matchq", res else: for i in a: if isinstance(i, list): r = set_matchq_in_constraint(i, cons_index) lst.append(r[0]) res = r[1] else: lst.append(i) return lst, res
5,342,971
def training_main(): """ main api to train a model. """ training_config = parse_training_args() # get training and validation sample names with open(training_config.train_fnames_path, "r", encoding="utf-8") as f: train_base_fnames = [line.strip() for line in f] if training_config.val_fnames_path is not None and os.path.exists(training_config.val_fnames_path): with open(training_config.val_fnames_path, "r", encoding="utf-8") as f: val_base_fnames = [line.strip() for line in f] else: val_base_fnames = [] n_train, n_val = len(train_base_fnames), len(val_base_fnames) # if steps are set to 0, all the samples will be used if training_config.steps_per_epoch == 0: training_config.steps_per_epoch = n_train // training_config.batch_size if training_config.steps_per_epoch_val == 0: training_config.steps_per_epoch_val = n_val // training_config.batch_size print(">>>> training configurations:") pprint(training_config.__dict__) model = SemanticSegmentationModel(model_name=training_config.model_name, input_shape=(training_config.image_height, training_config.image_width, training_config.image_channel), n_class=training_config.n_class, encoder_name=training_config.encoder_name, encoder_weights=training_config.encoder_weights, init_filters=net_config.init_filters, dropout=net_config.dropout, weight_decay=net_config.weight_decay, kernel_initializer=net_config.kernel_initializer, bn_epsilon=net_config.bn_epsilon, bn_momentum=net_config.bn_momentum, upscaling_method=net_config.upsampling_method) # load or build model if os.path.exists(training_config.load_model_name): print(">>>> load model from ", training_config.load_model_name) model.load_weights(training_config.load_model_name) else: print(">>>> build new model: ", training_config.save_model_name) plot_model(model, training_config.save_model_name.replace(".h5", ".png"), show_shapes=True) if training_config.model_summary: model.summary() model.compile(loss=training_config.loss, optimizer=training_config.optimizer, metrics=[training_config.metric]) print("+ " * 80) print("+ training data size = %d" % n_train) print("+ validation data size = %d" % n_val) print("+ training iteration/epoch = %d" % training_config.steps_per_epoch) print("+ validation iteration/epoch = %d" % training_config.steps_per_epoch_val) print("+ model save path: %s" % training_config.save_model_name) print("+ " * 80) train_datagen = ImageDataGenerator(channel_shift_range=augment_config.channel_shift_range, horizontal_flip=augment_config.horizontal_flip, vertical_flip=augment_config.vertical_flip # TODO: include all the augmentations here ) val_datagen = ImageDataGenerator() if n_val == 0: print("%s starting training without validation..." % datetime.datetime.now().strftime("%y-%m-%d %H:%M:%S")) model.fit_generator( generator=train_datagen.flow_from_directory( base_fnames=train_base_fnames, image_dir=training_config.image_dir, image_suffix=training_config.image_suffix, image_color_mode=training_config.image_color_mode, label_dir=training_config.label_dir, label_suffix=training_config.label_suffix, n_class=training_config.n_class, feed_onehot_label=training_config.feed_onehot_label, cval=training_config.cval, label_cval=training_config.label_cval, crop_mode=training_config.crop_mode, target_size=(training_config.image_height, training_config.image_width), batch_size=training_config.batch_size, shuffle=True, debug=training_config.debug, dataset_name=training_config.dataset_name ), steps_per_epoch=training_config.steps_per_epoch, validation_steps=training_config.steps_per_epoch_val, epochs=training_config.epoch, callbacks=training_config.callbacks, verbose=training_config.verbose ) else: print("%s starting training and validation..." % datetime.datetime.now().strftime("%y-%m-%d %H:%M:%S")) model.fit_generator( generator=train_datagen.flow_from_directory( base_fnames=train_base_fnames, image_dir=training_config.image_dir, image_suffix=training_config.image_suffix, image_color_mode=training_config.image_color_mode, label_dir=training_config.label_dir, label_suffix=training_config.label_suffix, n_class=training_config.n_class, feed_onehot_label=training_config.feed_onehot_label, cval=training_config.cval, label_cval=training_config.label_cval, crop_mode=training_config.crop_mode, target_size=(training_config.image_height, training_config.image_width), batch_size=training_config.batch_size, shuffle=True, debug=training_config.debug, dataset_name=training_config.dataset_name ), validation_data=val_datagen.flow_from_directory( base_fnames=val_base_fnames, image_dir=training_config.image_dir, image_suffix=training_config.image_suffix, image_color_mode=training_config.image_color_mode, label_dir=training_config.label_dir, label_suffix=training_config.label_suffix, n_class=training_config.n_class, feed_onehot_label=training_config.feed_onehot_label, cval=training_config.cval, label_cval=training_config.label_cval, crop_mode=training_config.crop_mode, target_size=(training_config.image_height, training_config.image_width), batch_size=training_config.batch_size, shuffle=False), steps_per_epoch=training_config.steps_per_epoch, validation_steps=training_config.steps_per_epoch_val, epochs=training_config.epoch, callbacks=training_config.callbacks, verbose=training_config.verbose ) print("%s training success!" % datetime.datetime.now().strftime("%y-%m-%d %H:%M:%S"))
5,342,972
def istype(klass, object): """Return whether an object is a member of a given class.""" try: raise object except klass: return 1 except: return 0
5,342,973
def call(results): """Call results.func on the attributes of results :params result: dictionary-like object :returns: None """ results = vars(results) places = Places(config=results.pop('config'), messages=results.pop('messages')) func = results.pop('func') func(places, **results)
5,342,974
def _embed_from_mapping(mapping: Mapping[str, Any], ref: str) -> mapry.Embed: """ Parse the embed from the mapping. All the fields are parsed except the properties, which are parsed in a separate step. :param mapping: to be parsed :param ref: reference to the embeddable structure in the mapry schema :return: embeddable structure without the properties """ return mapry.Embed( name=mapping['name'], description=mapping['description'], ref=ref)
5,342,975
def generate_csv_from_pnl(pnl_file_name): """在.pnl文件的源路径下新生成一个.csv文件. 拷贝自export_to_csv函数. pnl_file_name需包含路径. """ pnlc = alib.read_pnl_from_file(pnl_file_name) pnl = pnlc[1] if pnl is None: print('pnl文件{}不存在!'.format(pnl_file_name)) pdb.set_trace() csv_file_name = pnl_file_name[:-4] + '.csv' outf = open(csv_file_name, 'w') outf.write(alib.pnl_columns + '\n') f = ','.join(['%g'] * 14) + ',%d,%d,%d' for d in pnl: outf.write((f + '\n') % d) outf.close() return csv_file_name
5,342,976
def parse_number(text, allow_to_fail): """ Convert to integer, throw if fails :param text: Number as text (decimal, hex or binary) :return: Integer value """ try: if text in defines: return parse_number(defines.get(text), allow_to_fail) return to_number(text) except ValueError: if allow_to_fail: return 0 else: raise ASMSyntaxError(f'Invalid number format: {text}')
5,342,977
def pick_vis_func(options: EasyDict): """Pick the function to visualize one batch. :param options: :return: """ importlib.invalidate_caches() vis_func = getattr( import_module("utils.vis.{}".format(options.vis.name[0])), "{}".format(options.vis.name[1]) ) return vis_func
5,342,978
def scale_quadrature(quad_func, order, lower, upper, **kwargs): """ Scale quadrature rule designed for unit interval to an arbitrary interval. Args: quad_func (Callable): Function that creates quadrature abscissas and weights on the unit interval. order (int): The quadrature order passed to the quadrature function. lower (float): The new lower limit for the quadrature function. upper (float): The new upper limit for the quadrature function. kwargs (Any): Extra keyword arguments passed to `quad_func`. Returns: Same as ``quad_func(order, **kwargs)`` except scaled to a new interval. Examples: >>> def my_quad(order): ... return (numpy.linspace(0, 1, order+1)[numpy.newaxis], ... 1./numpy.full(order+1, order+2)) >>> my_quad(2) (array([[0. , 0.5, 1. ]]), array([0.25, 0.25, 0.25])) >>> scale_quadrature(my_quad, 2, lower=0, upper=2) (array([[0., 1., 2.]]), array([0.5, 0.5, 0.5])) >>> scale_quadrature(my_quad, 2, lower=-0.5, upper=0.5) (array([[-0.5, 0. , 0.5]]), array([0.25, 0.25, 0.25])) """ abscissas, weights = quad_func(order=order, **kwargs) assert numpy.all(abscissas >= 0) and numpy.all(abscissas <= 1) assert numpy.sum(weights) <= 1+1e-10 assert numpy.sum(weights > 0) weights = weights*(upper-lower) abscissas = (abscissas.T*(upper-lower)+lower).T return abscissas, weights
5,342,979
def ask_for_region(self): """ask user for region to select (2-step process)""" selection = ["BACK"] choices = [] while "BACK" in selection: response = questionary.select( "Select area by (you can go back and combine these choices):", choices=["continents", "regions", "countries"], ).ask() selection_items = getattr(self, response) if response == "regions": choices = ( [Choice(r) for r in selection_items if "EU" in r] + [Separator()] + [Choice(r) for r in selection_items if "EU" not in r] ) else: choices = [Choice(r) for r in selection_items.keys()] # preselect previous choices for choice in choices: if choice.value in selection: choice.checked = True current_selection = questionary.checkbox("Please select", choices=choices).ask() selection = selection + current_selection if "BACK" not in current_selection: selection = clean_results(selection) print(f"Selection: {clean_results(selection)}") selection = list(set(clean_results(selection))) return self._extract_countries(selection)
5,342,980
def peakAlign(refw,w): """ Difference between the maximum peak positions of the signals. This function returns the difference, in samples, between the peaks position of the signals. If the reference signal has various peaks, the one chosen is the peak which is closer to the middle of the signal, and if the other signal has more than one peak also, the chosen is the one closer to the reference peak signal. The first signal introduced is the reference signal. Parameters ---------- refw: array-like the input reference signal. w: array-like the input signal. Returns ------- al: int the difference between the two events position Example ------- >>> peakAlign([5,7,3,20,13,5,7],[5,1,8,4,3,10,3]) 1 See also: maxAlign(), minAlign(), peakNegAlign(), infMaxAlign(), infMinAlign() """ p_mw = array ( peaks(array(refw),min(refw)) ) p_w = array ( peaks(array(w),min(w)) ) if (len(p_mw)>1): min_al = argmin(abs( (len(refw)/2) - p_mw)) #to choose the peak closer to the middle of the signal p_mw=p_mw[min_al] if (list(p_w) == [] ): p_w = p_mw elif (len(p_w)>1): min_al = argmin(abs(p_w - p_mw)) #to choose the peak closer to the peak of the reference signal p_w=p_w[min_al] return int(array(p_mw-p_w))
5,342,981
def get_games(by_category, n_games): """ This function imports the dataframe of most popular games and returns a list of game names with the length of 'n_games' selected by 'by_category'. Valid options for 'by_category': rank, num_user_ratings """ df = pd.read_csv('../data/popular_games_with_image_url.csv', index_col = 0) if by_category == 'rank': ascending = True elif by_category == 'num_user_ratings': ascending = False df = df.sort_values(by_category, ascending = ascending) df = df.head(n_games) game_list = [] image_list = [] for row in df.iterrows(): #game_name = row[1]['name'] + ' (' + str(row[1]['year_published']) + ')' game_name = row[1]['name'] game_list.append(game_name) image_url = row[1]['image_url'] image_list.append(image_url) return game_list, image_list
5,342,982
def download_images(url_list, internal_id, auth): """ Download all images in a url list. The files are saved in a directory named with the uuid of the article. @param url_list: dict of files, in format {"filename" : "x.tiff", "url" : "y"} @type url_list: dict @param internal_id: uuid of article @type internal_id: string """ target_dir = create_directory(internal_id) for url in url_list: path = os.path.join(target_dir, url["filename"]) img_data = requests.get(url["url"], auth=auth).content with open(path, 'wb') as handler: handler.write(img_data)
5,342,983
def test_close_a_project(): """Close a created project -> create a zip file and delete the project folder""" runner = CliRunner() project_path = Path("temp/test1") # Run test isolated with runner.isolated_filesystem(): create_dummy_project(runner, project_path) # Close the project result = runner.invoke( project_meta, ["close", "--password=abcd", str(project_path)] ) assert result.exit_code == os.EX_OK # Check if the zip file exist assert Path(f"{project_path}.zip").is_file() # Check if the project initial files are still present assert not project_path.is_dir()
5,342,984
def clean_hook(conduit): """ This function cleans the plugin cache file if exists. The function is called when C{yum [options] clean [plugins | all ]} is executed. """ global hostfilepath if hostfilepath and hostfilepath[0] != '/': hostfilepath = conduit._base.conf.cachedir + '/' + hostfilepath if os.path.exists(hostfilepath): conduit.info(2, "Cleaning up list of fastest mirrors") try: os.unlink(hostfilepath) except Exception, e: conduit.info(2, "Cleanup failed: %s" % e)
5,342,985
def diurnalPDF( t, amplitude=0.5, phase=pi8 ): """ "t" must be specified in gps seconds we convert the time in gps seconds into the number of seconds after the most recent 00:00:00 UTC return (1 + amplitude*sin(2*pi*t/day - phase))/day """ if amplitude > 1: raise ValueError("amplitude cannot be larger than 1") t = gps2relativeUTC(t) return (1 + amplitude*np.sin(twopi*t/day - phase))/day
5,342,986
def imap_workers(workers, size=2, exception_handler=None): """Concurrently converts a generator object of Workers to a generator of Responses. :param workers: a generator of worker objects. :param size: Specifies the number of workers to make at a time. default is 2 :param exception_handler: Callback function, called when exception occured. Params: Worker, Exception """ pool = Pool(size) def start(r): return r.start() for worker in pool.imap_unordered(start, workers): if worker.response is not None: yield worker.response elif exception_handler: exception_handler(worker, worker.exception) pool.join()
5,342,987
def output_time(time_this:float=None,end:str=" | ")->float: """输入unix时间戳,按格式输出时间。默认为当前时间""" if not time_this: time_this=time.time()-TIMEZONE print(time.strftime('%Y-%m-%d %H:%M:%S',time.gmtime(time_this)),end=end) # return time_this
5,342,988
def blend_color(color1, color2, blend_ratio): """ Blend two colors together given the blend_ration :param color1: pygame.Color :param color2: pygame.Color :param blend_ratio: float between 0.0 and 1.0 :return: pygame.Color """ r = color1.r + (color2.r - color1.r) * blend_ratio g = color1.g + (color2.g - color1.g) * blend_ratio b = color1.b + (color2.b - color1.b) * blend_ratio a = color1.a + (color2.a - color1.a) * blend_ratio return pygame.Color(int(r), int(g), int(b), int(a))
5,342,989
def delete_video(video_id): """Permanently delete a video.""" _video_request('vimeo.videos.delete', 'POST', video_id=video_id, error_msg=('Error deleting video {video_id}: <{code} {msg}> ' '{expl}'))
5,342,990
def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False): """Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`_ at the first time you use it. Parameters ------------ tag : string or None If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`_. If you want to get all images, set to ``None``. path : string The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int, number of thread to read image. printable : bool, print infomation when reading images, default is ``False``. Examples ----------- - Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') - Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True) """ path = os.path.join(path, 'flickr25k') filename = 'mirflickr25k.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr25k/' ## download dataset if folder_exists(path+"/mirflickr") is False: print("[*] Flickr25k is nonexistent in {}".format(path)) maybe_download_and_extract(filename, path, url, extract=True) del_file(path+'/'+filename) ## return images by the given tag. # 1. image path list folder_imgs = path+"/mirflickr" path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) path_imgs.sort(key=natural_keys) # print(path_imgs[0:10]) # 2. tag path list folder_tags = path+"/mirflickr/meta/tags" path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False) path_tags.sort(key=natural_keys) # print(path_tags[0:10]) # 3. select images if tag is None: print("[Flickr25k] reading all images") else: print("[Flickr25k] reading images with tag: {}".format(tag)) images_list = [] for idx in range(0, len(path_tags)): tags = read_file(folder_tags+'/'+path_tags[idx]).split('\n') # print(idx+1, tags) if tag is None or tag in tags: images_list.append(path_imgs[idx]) images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable) return images
5,342,991
def solve_a_star(start_id: str, end_id: str, nodes, edges): """ Get the shortest distance between two nodes using Dijkstra's algorithm. :param start_id: ID of the start node :param end_id: ID of the end node :return: Shortest distance between start and end node """ solution_t_start = perf_counter() solution = [] associations = {start_id: None} closed = set() # Nodes that have been resolved fringe = [] # Min-heap that holds nodes to check (aka. fringe) start_y, start_x = nodes[start_id] end_y, end_x = nodes[end_id] start_node = (0 + calc_distance(start_y, start_x, end_y, end_x), 0, start_id) heappush(fringe, start_node) while len(fringe) > 0: c_node = heappop(fringe) c_f, c_distance, c_id = c_node c_y, c_x = nodes[c_id] if c_id == end_id: return c_distance, solution, perf_counter() - solution_t_start, associations_to_path(associations, c_id, nodes) if c_id not in closed: closed.add(c_id) for child_id, c_to_child_distance in edges[c_id]: if child_id not in closed: # Add to solution path if child_id not in associations: associations[child_id] = c_id child_distance = c_distance + c_to_child_distance # Cost function child_y, child_x = nodes[child_id] child_node = ( child_distance + calc_distance(child_y, child_x, end_y, end_x), child_distance, child_id) heappush(fringe, child_node) solution.append(((c_y, c_x), (child_y, child_x))) return None
5,342,992
def initialize_components(): """Initializes external interfaces and saved calibration data""" analysis.setup_calibration() interfaces.setup_interfaces()
5,342,993
def get_dhcp_relay_statistics(dut, interface="", family="ipv4", cli_type="", skip_error_check=True): """ API to get DHCP relay statistics Author Chaitanya Vella (chaitanya-vella.kumar@broadcom.com) :param dut: :type dut: :param interface: :type interface: """ cli_type = st.get_ui_type(dut, cli_type=cli_type) if cli_type in ['click', 'klish']: ip_val = "ip" if family == "ipv4" else "ipv6" if interface: command = "show {} dhcp-relay statistics {}".format(ip_val, interface) else: command = "show {} dhcp-relay statistics".format(ip_val) return st.show(dut, command, type=cli_type, skip_error_check=skip_error_check) elif cli_type in ['rest-patch', 'rest-put']: return _get_rest_dhcp_relay_statistics(dut, interface=interface, family=family) else: st.error("Unsupported CLI_TYPE: {}".format(cli_type)) return False
5,342,994
def _runcmd(cmd, proc): """Run a command""" cmdstr = proc.template(cmd, **proc.envs).render(dict(proc=proc, args=proc.args)) logger.info('Running command from pyppl_runcmd ...', proc=proc.id) logger.debug(' ' + cmdstr, proc=proc.id) cmd = cmdy.bash(c=cmdstr, _raise=False).iter for line in cmd: logger.cmdout(line, proc=proc.id) cmd.wait() if cmd.rc == 0: return True for line in cmd.stderr.splitlines(): logger.cmderr(line, proc=proc.id) return False
5,342,995
def graph_to_raw(g, raw_directory, lines_per_file = 1000): """ Fills a directory with gzip files corresponding to the raw format. :param g: the graph :param raw_directory: the destination :param lines_per_file: how many lines per file (per gzip file) """ # ensure the directory is there Path(raw_directory).mkdir(parents = True, exist_ok = True) coll = [] file_number = 1 for i, e in enumerate(g.edges()): entity = { "Device": "", "IP": "", "Identity": "", "Location": "", "Cookie": "" } u, v = e source = g.nodes()[u] target = g.nodes()[v] entity[source["label"]] = source["id"] entity[target["label"]] = target["id"] entity = {str.lower(k): entity[k] for k in entity} line = create_raw_line(**entity) coll.append(line) if i % lines_per_file == 0 and i > 0: file_path = os.path.join(raw_directory, f"data{file_number}.gz") file_number += 1 with gzip.open(file_path, 'wb') as f: f.write("\n".join(coll).encode()) coll = [] if len(coll) > 0: file_path = os.path.join(raw_directory, f"data{file_number}.gz") with gzip.open(file_path, 'wb') as f: f.write("\n".join(coll).encode()) print(f"Written {file_number} file(s) in '{raw_directory}'.")
5,342,996
def check_rule_for_Azure_ML(rule): """Check if the ports required for Azure Machine Learning are open""" required_ports = ['29876', '29877'] if check_source_address_prefix(rule.source_address_prefix) is False: return False if check_protocol(rule.protocol) is False: return False if check_direction(rule.direction) is False: return False if check_provisioning_state(rule.provisioning_state) is False: return False if rule.destination_port_range is not None: if check_ports_in_destination_port_ranges( required_ports, [rule.destination_port_range]) is False: return False else: if check_ports_in_destination_port_ranges( required_ports, rule.destination_port_ranges) is False: return False return True
5,342,997
def text_cleanup(text: str) -> str: """ A simple text cleanup function that strips all new line characters and substitutes consecutive white space characters by a single one. :param text: Input text to be cleaned. :return: The cleaned version of the text """ text.replace('\n', '') return re.sub(r'\s{2,}', ' ', text)
5,342,998
def geocode(): """ Call a Geocoder service """ if "location" in request.vars: location = request.vars.location else: session.error = T("Need to specify a location to search for.") redirect(URL(r=request, f="index")) if "service" in request.vars: service = request.vars.service else: # @ToDo: service=all should be default service = "google" if service == "google": return s3base.GoogleGeocoder(location, db).get_kml() if service == "yahoo": return s3base.YahooGeocoder(location, db).get_xml()
5,342,999