content
stringlengths
22
815k
id
int64
0
4.91M
def distance_along_glacier(nx, map_dx): """Calculates the distance along the glacier in km. Parameters ---------- nx : int number of grid points map_dx : int grid point spacing Returns ------- ndarray distance along the glacier in km. """ return np.linspace(0, nx, nx) * map_dx * 1e-3
5,342,800
def make_docs(): """Create documentation""" with lcd("docs"): ## generate Sphinx HTML documentation, including API docs try: remove("docs/fab_support.rst") except FileNotFoundError: pass try: remove("docs/modules.rst") except FileNotFoundError: pass local("sphinx-apidoc -o . ../fab_support") # $ (MAKE) - C docs clean local("make html") # $(BROWSER) docs / _build / html / index.html
5,342,801
def p_entity_body_outer(p: YaccProduction) -> None: """entity_body_outer : mls entity_body END""" p[0] = (p[1], p[2])
5,342,802
def make_postdict_to_fetch_token(token_endpoint: str, grant_type: str, code: str, client_id: str, client_secret: str, redirect_uri: str) -> dict: """POST dictionary is the API of the requests library""" return {'url': token_endpoint, 'data': { 'grant_type': grant_type, 'code': code, 'client_id': client_id, 'client_secret': client_secret, 'redirect_uri': redirect_uri, }, 'headers': { 'Content-Type': 'application/x-www-form-urlencoded', }}
5,342,803
def _haxe_std_lib(ctx): """ _haxe_std_lib implementation. Args: ctx: Bazel context. """ toolchain = ctx.toolchains["@rules_haxe//:toolchain_type"] build_source_file = ctx.actions.declare_file("StdBuild.hx") toolchain.create_std_build( ctx, ctx.attr.target, build_source_file, ) hxml = create_hxml_map(ctx, toolchain, for_std_build = True) hxml["classpaths"].append(build_source_file.dirname) hxml["args"].append("--dce no") # Handle the case where we're building in an external directory. if hxml["external_dir"] != "": ext_idx = build_source_file.path.find("external/") hxml["external_dir"] = build_source_file.path[ext_idx:-11] build_file = ctx.actions.declare_file("{}-std-build.hxml".format(ctx.attr.name)) create_build_hxml(ctx, toolchain, hxml, build_file, suffix = "-intermediate") intermediate = ctx.actions.declare_directory(hxml["output_dir"]) # Do the compilation. runfiles = [build_source_file] + find_direct_sources(ctx) + find_direct_resources(ctx) toolchain.compile( ctx, hxml = build_file, runfiles = runfiles, out = intermediate, ) # Post process the output file. output = ctx.actions.declare_file(hxml["output_dir"].replace("-intermediate", "")) output_file = ctx.actions.declare_file("{}/{}".format(ctx.attr.name, hxml["output_file"])) if "output_file" in hxml else None if hxml["target"] == "java": toolchain.create_final_jar( ctx, find_direct_sources(ctx), intermediate, output, hxml["output_file"], False, output_file = output_file, ) else: inputs = [intermediate] hxcpp_include_dir = None if hxml["target"] == "cpp": hxcpp_include_dir = ctx.actions.declare_directory("hxcpp_includes") toolchain.copy_cpp_includes(ctx, hxcpp_include_dir) inputs.append(hxcpp_include_dir) cmd = "mkdir -p {} && cp -r {}/* {}".format(output.path, intermediate.path, output.path) if hxcpp_include_dir != None: cmd += " && cp -r {}/* {}/{}/include".format(hxcpp_include_dir.path, output.path, hxml["name"]) ctx.actions.run_shell( outputs = [output, output_file], inputs = inputs, command = cmd, use_default_shell_env = True, ) return calc_provider_response(ctx, toolchain, hxml, output, output_file = output_file, library_name = "StdBuild")
5,342,804
def detect_vswhere_path(): """ Attempt to detect the location of vswhere, which is used to query the installed visual studio tools (version 2017+) :return: The validated path to vswhere """ # Find VS Where path_program_files_x86 = os.environ['ProgramFiles(x86)'] if not path_program_files_x86 or not os.path.isdir(path_program_files_x86): raise Errors.WafError("Unable to determine folder 'Program Files (x86)'") path_visual_studio_installer = os.path.normpath(os.path.join(path_program_files_x86, 'Microsoft Visual Studio\\Installer\\')) if not os.path.isdir(path_visual_studio_installer): raise Errors.WafError("Unable to locate Visual Studio Installer.") path_vswhere = os.path.normpath(os.path.join(path_visual_studio_installer, 'vswhere.exe')) if not os.path.isfile(path_vswhere): raise Errors.WafError("Unable to locate 'vswhere' in path '{}'.".format(path_visual_studio_installer)) return path_vswhere
5,342,805
def spread_match_network(expr_df_in, node_names_in): """ Matches S (spreadsheet of gene expressions) and N (network) The function returns expr_df_out which is formed by reshuffling columns of expr_df_in. Also, node_names_out is formed by reshuffling node_names_in. The intersection of node_names_out and column names of expr_df_out are placed at the beginning of both lists. Input: expr_df_in: A pandas dataframe corresponding to gene expression node_names_in: Name of the nodes in the network Output: expr_df_out: Reorganized dataframe of gene expressions nodes_names_out: Reordered node names nodes_genes_intersect: Sorted list of shared genes """ node_names_in_set = set(node_names_in) gene_names_in_set = set(expr_df_in.columns.values) nodes_genes_intersect = sorted(list(gene_names_in_set & node_names_in_set)) nodes_minus_genes = sorted(list(node_names_in_set - gene_names_in_set)) genes_minus_nodes = sorted(list(gene_names_in_set - node_names_in_set)) genes_names_out = nodes_genes_intersect + genes_minus_nodes nodes_names_out = nodes_genes_intersect + nodes_minus_genes expr_df_out = expr_df_in[genes_names_out] return(expr_df_out, nodes_names_out, nodes_genes_intersect)
5,342,806
def _InstallNanny(): """Installs the nanny program.""" # We need to copy the nanny sections to the registry to ensure the # service is correctly configured. new_config = config.CONFIG.MakeNewConfig() new_config.SetWriteBack(config.CONFIG["Config.writeback"]) for option in _NANNY_OPTIONS: new_config.Set(option, config.CONFIG.Get(option)) new_config.Write() args = [ config.CONFIG["Nanny.binary"], "--service_key", config.CONFIG["Client.config_key"], "install" ] logging.debug("Calling %s", (args,)) output = subprocess.check_output( args, shell=True, stdin=subprocess.PIPE, stderr=subprocess.PIPE) logging.debug("%s", output)
5,342,807
def top_level(url, data): """Read top level names from compressed file.""" sb = io.BytesIO(data) txt = None with Archive(url, sb) as archive: file = None for name in archive.names: if name.lower().endswith('top_level.txt'): file = name break if file: txt = archive.read(file).decode('utf-8') sb.close() return [name.replace('/', '.') for name in txt.splitlines()] if txt else []
5,342,808
def get_timeseries_data(request): """ AJAX Controller for getting time series data. """ return_obj = {} # -------------------- # # VERIFIES REQUEST # # -------------------- # if not (request.is_ajax() and request.method == "POST"): return_obj["error"] = "Unable to establish a secure connection." return JsonResponse(return_obj) # -------------------------- # # GETS DATA FROM REQUEST # # -------------------------- # layer_code = request.POST.get("layer_code") site_code = request.POST.get("site_code") variable_code = request.POST.get("var_code") site_name = request.POST.get("site_name") variable_name = request.POST.get("var_name") # ------------------------- # # GETS TIME SERIES DATA # # ------------------------- # network_id = layer_code.split(":")[0].split("-")[1] database_id = ":".join(layer_code.split(":")[1:]) request_url = f"{hydroserver_url}/wof/{network_id}/{database_id}/values/" params = { "site_code": site_code, "variable_code": variable_code } response = requests.get(request_url, params=params) waterml = etree.fromstring(response.content) no_data_value = waterml.find("{http://www.cuahsi.org/waterML/1.1/}timeSeries").find("{http://www.cuahsi.org/waterML/1.1/}variable").find("{http://www.cuahsi.org/waterML/1.1/}noDataValue").text try: unit_name = waterml.find("{http://www.cuahsi.org/waterML/1.1/}timeSeries").find("{http://www.cuahsi.org/waterML/1.1/}variable").find("{http://www.cuahsi.org/waterML/1.1/}unit").find("{http://www.cuahsi.org/waterML/1.1/}unitAbbreviation").text except: unit_name = None timeseries_data = [[ x.get('dateTime'), x.text if x.text != no_data_value else None ] for x in waterml.find("{http://www.cuahsi.org/waterML/1.1/}timeSeries").find("{http://www.cuahsi.org/waterML/1.1/}values").iter("{http://www.cuahsi.org/waterML/1.1/}value")] # -------------------------- # # RETURNS DATA TO CLIENT # # -------------------------- # return_obj["timeseries_data"] = timeseries_data return_obj["no_data_value"] = no_data_value return_obj["site_name"] = site_name return_obj["variable_name"] = variable_name return_obj["unit_name"] = unit_name return_obj["variable_code"] = variable_code return_obj["site_code"] = site_code return_obj["layer_code"] = layer_code return JsonResponse(return_obj)
5,342,809
def line_col(lbreaks: List[int], pos: int) -> Tuple[int, int]: """ Returns the position within a text as (line, column)-tuple based on a list of all line breaks, including -1 and EOF. """ if not lbreaks and pos >= 0: return 0, pos if pos < 0 or pos > lbreaks[-1]: # one character behind EOF is still an allowed position! raise ValueError('Position %i outside text of length %s !' % (pos, lbreaks[-1])) line = bisect.bisect_left(lbreaks, pos) column = pos - lbreaks[line - 1] return line, column
5,342,810
def show_img_augmentation(X, Y, sess): """This function is to visulize the result of data augmentation for testing""" i = 0 # show the i-th image img_ori, img_aug, hm_ori, hm_aug = sess.run([x_in, x_batch, y_in, hm_target_batch], feed_dict={x_in: X, y_in: Y}) img_aug = reshape_img(img_aug, i) img_ori = reshape_img(img_ori, i) hm_ori = reshape_hm(hm_ori, i) hm_aug = reshape_hm(hm_aug, i) # plt.figure(1) # plt.imshow(img_ori) # plt.savefig('img/img_orig.png', dpi=300) # plt.clf() plt.figure(2) plt.imshow(img_aug) plt.savefig('img/img_augm.png', dpi=300) plt.clf() # plt.figure(3) # plt.imshow(hm_ori) # plt.savefig('img/hm_orig.png', dpi=300) # plt.clf() plt.figure(4) plt.imshow(hm_aug) plt.savefig('img/hm_augm.png', dpi=300) plt.clf()
5,342,811
def init_setup(dbhost, dbname, dbusername, dbpassword, projectpath): """ This function will check/create the config.json in project root. then it'll check/create the revision table in database """ cwd = get_cwd() json_dict = { "host": dbhost, "database": dbname, "user": dbusername, "password": dbpassword } try: CMobj = ConfigManager() CMobj.init(json_dict, projectpath) except Exception as e: print(e) custom_exit(1, "Issues while creating migration directory.", e) config = CMobj.get_config(cwd) db = DBManager(config.get("database")) db.create_version_table()
5,342,812
def add_scrollbars_with_tags(outer, InnerType, *inner_args, **inner_kw): """ Wrapper around `add_scrollbars`. Returns tuple of InnerType instance and scroll tag. Scroll tag should be added to all `inner` child widgets that affect scrolling. """ scrolltag = "tag_" + str(next(tags_count)) inner = add_scrollbars(outer, InnerType, *inner_args, **inner_kw) inner.bindtags((scrolltag, ) + inner.bindtags()) canvas = inner.master if OS == "Linux" : def _on_mousewheel(event): if event.num == 4: canvas.yview("scroll", -1, "units") elif event.num == 5: canvas.yview("scroll", 1, "units") inner.bind_class(scrolltag, "<ButtonPress-4>", _on_mousewheel, '+' ) inner.bind_class(scrolltag, "<ButtonPress-5>", _on_mousewheel, '+' ) elif OS == "Windows": def _on_mousewheel(event): canvas.yview("scroll", -event.delta // 120, "units") inner.bind_class(scrolltag, "<MouseWheel>", _on_mousewheel, '+' ) else: stderr.write("add_scrollbars_with_tags: OS %s not supported" % (OS)) return inner, scrolltag
5,342,813
def sample_from_script(script_path, num_lines, chars_per_line): """Sample num_lines from a script. Parameters ---------- script_path : str Path to the script num_lines : int Number of lines to sample. chars_per_line : int Numer of consecutive characters considered a line. Returns ------- lines : List All the sampled lines. """ script = read_script(script_path) script = split_n_lines(script, num_chars=chars_per_line) # sample with replacement since some scripts are sparse. lines = np.random.choice(script, num_lines, replace=True) return lines
5,342,814
def is_valid_uuid(x): """Determine whether this is a valid hex-encoded uuid.""" if not x or len(x) != 36: return False return (parse_uuid(x) != None)
5,342,815
def wait_for_needle_list( loops: int, needle_list: list[tuple[str, tuple[int, int, int, int]]], sleep_range: tuple[int, int], ): """ Works like vision.wait_for_needle(), except multiple needles can be searched for simultaneously. Args: loops: The number of tries to look for each needle in needle_list. needle_list: A list of filepaths to the needles to look for. Each item in the list is a 2-tuple containing: - The filepath to the needle. - The region in which to search for that needle. sleep_range: A 2-tuple containing the minimum and maximum number of miliseconds to wait after each loop. Returns: If a needle in needle_list is found, returns a 2-tuple containing the ltwh dimensions of the needle and the index of the needle in needle_list (This is so the function knows which needle was found). Returns false if no needles in needle_list could be found. """ for _ in range(1, loops): for item in needle_list: needle, region = item needle_found = Vision( region=region, needle=needle, loop_num=1 ).wait_for_needle(get_tuple=True) if needle_found is True: return needle_found, needle_list.index(needle) misc.sleep_rand(sleep_range[0], sleep_range[1]) return False
5,342,816
def get_word(): """Returns random word.""" words = ['Charlie', 'Woodstock', 'Snoopy', 'Lucy', 'Linus', 'Schroeder', 'Patty', 'Sally', 'Marcie'] return random.choice(words).upper()
5,342,817
def write_out_tf_examples(objects, path): """Writes out list of objects out as a single tf_example Args: objects (list): list of objects to put into the tf_example path (Path): directory to write this tf_example to, encompassing the name """ num_shards = (len(objects) // 1000) + 1 with open(str(path) + '.numexamples', 'w') as output: output.write(str(len(objects))) with contextlib2.ExitStack() as tf_record_close_stack: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, str(path.absolute()), num_shards) for index, object_item in enumerate(objects): tf_example = object_item.export_as_TFExample() output_shard_index = index % num_shards output_tfrecords[output_shard_index].write( tf_example.SerializeToString())
5,342,818
async def test_get_scm(client): """Test case for get_scm """ headers = { 'Accept': 'application/json', 'Authorization': 'BasicZm9vOmJhcg==', } response = await client.request( method='GET', path='/blue/rest/organizations/{organization}/scm/{scm}'.format(organization='organization_example', scm='scm_example'), headers=headers, ) assert response.status == 200, 'Response body is : ' + (await response.read()).decode('utf-8')
5,342,819
def is_admin(user): """Check if the user is administrator""" admin_user = current_app.config['ADMIN_USER'] if user.email == admin_user or user.email.replace('@cern.ch', '') == admin_user: current_app.logger.debug('User {user} is admin'.format(user=user.email)) return True return False
5,342,820
def test_task_to_data_relationship(dbsession): """Test data integrity across relationship between tables.""" get_id = uuid4() g = GetTickerTask( id=get_id, ticker='AUD_JPY', price='M', granularity='M15', _from=d.strptime('2018-02-01 13:00:00', '%Y-%m-%d %H:%M:%S'), to=d.strptime('2018-04-30 13:00:00', '%Y-%m-%d %H:%M:%S')) s = [SubTickerTask(batch_id=get_id, _from=d.strptime( '2018-02-01 13:00:00', '%Y-%m-%d %H:%M:%S'), to=d.strptime( '2018-03-01 12:45:00', '%Y-%m-%d %H:%M:%S')), SubTickerTask(batch_id=get_id, _from=d.strptime( '2018-03-01 13:00:00', '%Y-%m-%d %H:%M:%S'), to=d.strptime( '2018-04-01 12:45:00', '%Y-%m-%d %H:%M:%S')), SubTickerTask(batch_id=get_id, _from=d.strptime( '2018-04-01 13:00:00', '%Y-%m-%d %H:%M:%S'), to=d.strptime( '2018-04-30 13:00:00', '%Y-%m-%d %H:%M:%S'))] entries = [g] + s dbsession.add_all(entries) assert len(dbsession.query(GetTickerTask).get(get_id).sub_tasks) == 3
5,342,821
def test_get_port_from_range(port_range): """Test getting random port from given range.""" assert get_port(port_range) in list(range(2000, 3000 + 1))
5,342,822
def parsed_json_to_dict(parsed): """ Convert parsed dict into dict with python built-in type param: parsed parsed dict by json decoder """ new_bangumi = {} new_bangumi['name'] = parsed['name'] new_bangumi['start_date'] = datetime.strptime( parsed['start_date'], '%Y-%m-%d').date() if 'translation_team' in parsed: new_bangumi['translation_team'] = parsed['translation_team'] else: new_bangumi['translation_team'] = [] if 'total_ep' in parsed: new_bangumi['total_ep'] = int(parsed['total_ep']) else: new_bangumi['total_ep'] = 99 if 'dled_ep' in parsed: new_bangumi['dled_ep'] = int(parsed['dled_ep']) else: new_bangumi['dled_ep'] = 0 if 'keyword' in parsed: new_bangumi['keyword'] = parsed['keyword'] else: new_bangumi['keyword'] = new_bangumi['name'] new_bangumi['folder'] = parsed['folder'] if 'folder' in parsed and parsed[ 'folder'] is not '' else new_bangumi['name'] new_bangumi['offset'] = int(parsed['offset']) if 'offset' in parsed else 0 return new_bangumi
5,342,823
def download_osmnx_graph(): # pragma: no cover """Load a simple street map from Open Street Map. Generated from: .. code:: python >>> import osmnx as ox # doctest:+SKIP >>> address = 'Holzgerlingen DE' # doctest:+SKIP >>> graph = ox.graph_from_address(address, dist=500, network_type='drive') # doctest:+SKIP >>> pickle.dump(graph, open('osmnx_graph.p', 'wb')) # doctest:+SKIP Returns ------- networkx.classes.multidigraph.MultiDiGraph An osmnx graph of the streets of Holzgerlingen, Germany. Examples -------- >>> from pyvista import examples >>> graph = examples.download_osmnx_graph() # doctest:+SKIP See :ref:`open_street_map_example` for a full example using this dataset. """ import pickle try: import osmnx # noqa except ImportError: raise ImportError('Install `osmnx` to use this example') filename, _ = _download_file('osmnx_graph.p') return pickle.load(open(filename, 'rb'))
5,342,824
def plot_shift_type_by_frequency(tidy_schedule: pandas.DataFrame) -> tuple: """ Plots a bar graph of shift type frequencies. :param tidy_schedule: A pandas data frame containing a schedule, as loaded by load_tidy_schedule(). :type tidy_schedule: pandas.DataFrame :return: A tuple with a figure and an axis containing a matplotlib bar graph. :rtype: tuple """ return_data = ( tidy_schedule .groupby('shift_type') .agg({'shift_type': 'count'}) .query('shift_type > 0') .rename_axis(None) .sort_values(by='shift_type', ascending=False) ) dates = medinetparsepy.get_min_max_dates.get_min_max_dates(tidy_schedule) fig, ax = matplotlib.pyplot.subplots() ax.bar(return_data.index, return_data['shift_type']) ax.set_xlabel('Shift Type') ax.set_ylabel('Frequency') ax.set_title(f'Shift Type by Frequency\nBetween {dates[0]} and {dates[1]}') return (fig, ax)
5,342,825
def main(args): """Main function. Parses the raw uri file and generates a new file without length number at the beginning of the line If the line is empty a warning log will be shown :param args: command-line retrieved arguments :type args: ArgumentParser.parse_args() :raises FileNotFoundError: if file does not exist """ log.info(LOG_INFO_MAIN) output_file_name = output_file_def(args.input, args.output) file_out = open(output_file_name, 'w') file_warn = open(WARN_FILE, 'w') exist_warnings = False try: with open(args.input, 'r', encoding='ISO-8859-1', errors='ignore') as file: count = 1 raw_cp = get_raw_uri_file_compiled_pattern() for line in file: result = raw_cp.search(line) uri = '' if result is not None: uri_first_index = result.span('uri')[0] uri = uri_fixer(line[uri_first_index:]) elif len(line)>0: uri = uri_fixer(line) else: exist_warnings = True file_warn.write(URI_WARN.format(count, line)) if len(uri) > 0: file_out.write(uri) count += 1 file.close() file_out.close() file_warn.close() if exist_warnings: log.warn(URI_LOG_WARN) except FileNotFoundError: log.error(FILE_NOT_EXISTS_ERROR % args.file_location) log.info(LOG_INFO_END % output_file_name)
5,342,826
def experiment(variant): """ This is a job script for running NPG/DAPG on hand tasks and other gym envs. Note that DAPG generalizes PG and BC init + PG finetuning. With appropriate settings of parameters, we can recover the full family. """ import mj_envs job_data = default_job_data.copy() job_data.update(variant) env_params = ENV_PARAMS[variant['env_class']] job_data.update(env_params) assert 'algorithm' in job_data.keys() assert any([job_data['algorithm'] == a for a in ['NPG', 'BCRL', 'DAPG']]) JOB_DIR = logger.get_snapshot_dir() # =============================================================================== # Train Loop # =============================================================================== seed = int(job_data['seedid']) e = GymEnv(job_data['env_id']) policy = MLP(e.spec, hidden_sizes=job_data['policy_size'], seed=seed) baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data['vf_batch_size'], epochs=job_data['vf_epochs'], learn_rate=job_data['vf_learn_rate']) # Get demonstration data if necessary and behavior clone if job_data['algorithm'] != 'NPG': print("========================================") print("Collecting expert demonstrations") print("========================================") demo_paths = load_local_or_remote_file(job_data['demo_file'], 'rb') bc_agent = BC(demo_paths, policy=policy, epochs=job_data['bc_epochs'], batch_size=job_data['bc_batch_size'], lr=job_data['bc_learn_rate'], loss_type='MSE', set_transforms=False) in_shift, in_scale, out_shift, out_scale = bc_agent.compute_transformations() bc_agent.set_transformations(in_shift, in_scale, out_shift, out_scale) bc_agent.set_variance_with_data(out_scale) ts = timer.time() print("========================================") print("Running BC with expert demonstrations") print("========================================") bc_agent.train() print("========================================") print("BC training complete !!!") print("time taken = %f" % (timer.time() - ts)) print("========================================") if job_data['eval_rollouts'] >= 1: score = e.evaluate_policy(policy, num_episodes=job_data['eval_rollouts'], mean_action=True) print("Score with behavior cloning = %f" % score[0][0]) if job_data['algorithm'] != 'DAPG': # We throw away the demo data when training from scratch or fine-tuning with RL without explicit augmentation demo_paths = None # =============================================================================== # RL Loop # =============================================================================== rl_agent = DAPG(e, policy, baseline, demo_paths, normalized_step_size=job_data['rl_step_size'], lam_0=job_data['lam_0'], lam_1=job_data['lam_1'], seed=seed, save_logs=True ) print("========================================") print("Starting reinforcement learning phase") print("========================================") ts = timer.time() train_agent(job_name=JOB_DIR, agent=rl_agent, seed=seed, niter=job_data['rl_num_iter'], gamma=job_data['rl_gamma'], gae_lambda=job_data['rl_gae'], num_cpu=job_data['num_cpu'], sample_mode='trajectories', num_traj=job_data['rl_num_traj'], save_freq=job_data['save_freq'], evaluation_rollouts=job_data['eval_rollouts']) print("time taken = %f" % (timer.time()-ts))
5,342,827
def load_image(path, size=None): """ Load the image from the given file-path and resize it to the given size if not None. Eg: size = (width, height) """ img = Image.open(path) if (size != None) and (size != ''): img = img.resize(size=size, resample=Image.LANCZOS) img = np.array(img) # Scale image-pixels so they fall between 0.0 and 1.0 # img = img / 255.0 # Convert 2-dim gray-scale array to 3-dim RGB array. if (len(img.shape) == 2): img = np.repeat(img[:, :, np.newaxis], 3, axis=2) return np.array(img)
5,342,828
def test_indexer(): """ Test Indexer class """ assert dataclasses.asdict(IdrDex) == { 'Ed25519_Sig': 'A', 'ECDSA_256k1_Sig': 'B', 'Ed448_Sig': '0A', 'Label': '0B' } assert IdrDex.Ed25519_Sig == 'A' # Ed25519 signature. assert IdrDex.ECDSA_256k1_Sig == 'B' # ECDSA secp256k1 signature. assert Indexer.Codex == IdrDex # first character of code with hard size of code assert Indexer.Hards == { 'A': 1, 'B': 1, 'C': 1, 'D': 1, 'E': 1, 'F': 1, 'G': 1, 'H': 1, 'I': 1, 'J': 1, 'K': 1, 'L': 1, 'M': 1, 'N': 1, 'O': 1, 'P': 1, 'Q': 1, 'R': 1, 'S': 1, 'T': 1, 'U': 1, 'V': 1, 'W': 1, 'X': 1, 'Y': 1, 'Z': 1, 'a': 1, 'b': 1, 'c': 1, 'd': 1, 'e': 1, 'f': 1, 'g': 1, 'h': 1, 'i': 1, 'j': 1, 'k': 1, 'l': 1, 'm': 1, 'n': 1, 'o': 1, 'p': 1, 'q': 1, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 1, 'w': 1, 'x': 1, 'y': 1, 'z': 1, '0': 2, '1': 2, '2': 2, '3': 2, '4': 3, '5': 4 } # Codes table with sizes of code (hard) and full primitive material assert Indexer.Sizes == { 'A': Sizage(hs=1, ss=1, fs=88, ls=0), 'B': Sizage(hs=1, ss=1, fs=88, ls=0), '0A': Sizage(hs=2, ss=2, fs=156, ls=0), '0B': Sizage(hs=2, ss=2, fs=None, ls=0) } assert Indexer.Sizes['A'].hs == 1 # hard size assert Indexer.Sizes['A'].ss == 1 # soft size assert Indexer.Sizes['A'].fs == 88 # full size assert Indexer.Sizes['A'].ls == 0 # lead size # verify first hs Sizes matches hs in Codes for same first char for ckey in Indexer.Sizes.keys(): assert Indexer.Hards[ckey[0]] == Indexer.Sizes[ckey].hs # verify all Codes have hs > 0 and ss > 0 and fs >= hs + ss if fs is not None for val in Indexer.Sizes.values(): assert val.hs > 0 and val.ss > 0 if val.fs is not None: assert val.fs >= val.hs + val.ss # Bizes maps bytes of sextet of decoded first character of code with hard size of code # verify equivalents of items for Sizes and Bizes for skey, sval in Indexer.Hards.items(): ckey = b64ToB2(skey) assert Indexer.Bards[ckey] == sval with pytest.raises(EmptyMaterialError): indexer = Indexer() # Test signatures sig = (b"\x99\xd2<9$$0\x9fk\xfb\x18\xa0\x8c@r\x122.k\xb2\xc7\x1fp\x0e'm\x8f@" b'\xaa\xa5\x8c\xc8n\x85\xc8!\xf6q\x91p\xa9\xec\xcf\x92\xaf)\xde\xca' b'\xfc\x7f~\xd7o|\x17\x82\x1d\xd4<o"\x81&\t') assert len(sig) == 64 sig64b = encodeB64(sig) sig64 = sig64b.decode("utf-8") assert len(sig64) == 88 assert sig64 == 'mdI8OSQkMJ9r-xigjEByEjIua7LHH3AOJ22PQKqljMhuhcgh9nGRcKnsz5KvKd7K_H9-1298F4Id1DxvIoEmCQ==' # replace pad "==" with code "AA" qsc = IdrDex.Ed25519_Sig + intToB64(0, l=1) assert qsc == 'AA' qscb = qsc.encode("utf-8") qsig64 = qsc + sig64[:-2] assert qsig64 == 'AAmdI8OSQkMJ9r-xigjEByEjIua7LHH3AOJ22PQKqljMhuhcgh9nGRcKnsz5KvKd7K_H9-1298F4Id1DxvIoEmCQ' assert len(qsig64) == 88 qsig64b = qsig64.encode("utf-8") qsig2b = decodeB64(qsig64b) assert len(qsig2b) == 66 assert qsig2b == (b'\x00\t\x9d#\xc3\x92BC\t\xf6\xbf\xb1\x8a\x08\xc4\x07!#"\xe6\xbb,q\xf7' b'\x00\xe2v\xd8\xf4\n\xaaX\xcc\x86\xe8\\\x82\x1fg\x19\x17\n\x9e\xcc' b'\xf9*\xf2\x9d\xec\xaf\xc7\xf7\xedv\xf7\xc1x!\xddC\xc6\xf2(\x12`\x90') indexer = Indexer(raw=sig) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 0 assert indexer.qb64 == qsig64 assert indexer.qb2 == qsig2b # test wrong size of raw longsig = sig + bytes([10, 11, 12]) indexer = Indexer(raw=longsig) shortsig = sig[:-3] with pytest.raises(RawMaterialError): indexer = Indexer(raw=shortsig) indexer = Indexer(qb64b=qsig64b) # test with bytes not str assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 0 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b indexer = Indexer(qb64=qsig64) # test with str not bytes assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 0 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b # test truncates extra bytes from qb64 parameter longqsig64 = qsig64 + "ABCD" indexer = Indexer(qb64=longqsig64) assert len(indexer.qb64) == Indexer.Sizes[indexer.code].fs # test raises ShortageError if not enough bytes in qb64 parameter shortqsig64 = qsig64[:-4] # too short with pytest.raises(ShortageError): indexer = Indexer(qb64=shortqsig64) indexer = Indexer(qb2=qsig2b) # test with qb2 assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 0 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b # test truncates extra bytes from qb2 parameter longqsig2b = qsig2b + bytearray([1, 2, 3, 4, 5]) # extra bytes in size indexer = Indexer(qb2=longqsig2b) assert indexer.qb2 == qsig2b assert len(indexer.qb64) == Indexer.Sizes[indexer.code].fs # test raises ShortageError if not enough bytes in qb2 parameter shortqsig2b = qsig2b[:-4] # too few bytes in size with pytest.raises(ShortageError): indexer = Indexer(qb2=shortqsig2b) # test with non-zero index=5 # replace pad "==" with code "AF" qsc = IdrDex.Ed25519_Sig + intToB64(5, l=1) assert qsc == 'AF' qscb = qsc.encode("utf-8") qsig64 = qsc + sig64[:-2] assert qsig64 == 'AFmdI8OSQkMJ9r-xigjEByEjIua7LHH3AOJ22PQKqljMhuhcgh9nGRcKnsz5KvKd7K_H9-1298F4Id1DxvIoEmCQ' assert len(qsig64) == 88 qsig64b = qsig64.encode("utf-8") qsig2b = (b'\x00Y\x9d#\xc3\x92BC\t\xf6\xbf\xb1\x8a\x08\xc4\x07!#"\xe6\xbb,q\xf7' b'\x00\xe2v\xd8\xf4\n\xaaX\xcc\x86\xe8\\\x82\x1fg\x19\x17\n\x9e\xcc' b'\xf9*\xf2\x9d\xec\xaf\xc7\xf7\xedv\xf7\xc1x!\xddC\xc6\xf2(\x12`\x90') indexer = Indexer(raw=sig, code=IdrDex.Ed25519_Sig, index=5) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b indexer = Indexer(qb2=qsig2b) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b indexer = Indexer(qb64=qsig64) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b # Label Code (variable length) label = b'Hello_World_Peep' index = len(label) // 4 assert not len(label) % 4 assert index == 4 lraw = decodeB64(label) assert len(lraw) == len(label) * 3 // 4 assert lraw == b'\x1d\xe9e\xa3\xf5\xa8\xaeW\x7f=\xe7\xa9' ltext = encodeB64(lraw) assert ltext == b'Hello_World_Peep' == label qsc = IdrDex.Label + intToB64(index, l=2) assert qsc == '0BAE' qscb = qsc.encode("utf-8") lq64b = qscb + label assert lq64b == b"0BAEHello_World_Peep" lq64 = lq64b.decode("utf-8") indexer = Indexer(raw=lraw, code=IdrDex.Label, index=index) assert indexer.raw == lraw assert indexer.code == IdrDex.Label assert indexer.index == index assert indexer.qb64b == lq64b assert indexer.qb64 == lq64 assert indexer.qb2 == b'\xd0\x10\x04\x1d\xe9e\xa3\xf5\xa8\xaeW\x7f=\xe7\xa9' # index zero for empty label indexer = Indexer(raw=lraw, code=IdrDex.Label, index=0) assert indexer.raw == b'' assert indexer.code == IdrDex.Label assert indexer.index == 0 assert indexer.qb64b == b'0BAA' assert indexer.qb64 == '0BAA' assert indexer.qb2 == b'\xd0\x10\x00' # Test ._bexfil indexer = Indexer(qb64=qsig64) # raw = indexer.raw code = indexer.code index = indexer.index qb2 = indexer.qb2 indexer._bexfil(qb2) assert indexer.raw == raw assert indexer.code == code assert indexer.index == index assert indexer.qb64 == qsig64 assert indexer.qb2 == qb2 # Test ._binfil test = indexer._binfil() assert test == qb2 # test strip ims # strip ignored if qb64 indexer = Indexer(qb64=qsig64) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b ims = bytearray(qsig64b) indexer = Indexer(qb64b=ims, strip=True) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b assert not ims ims = bytearray(qsig2b) indexer = Indexer(qb2=ims, strip=True) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b assert not ims # test extra bytes in ims qb64b extra = bytearray(b"ABCD") ims = bytearray(qsig64b) + extra indexer = Indexer(qb64b=ims, strip=True) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b assert ims == extra # test extra bytes in ims qb2 extra = bytearray([1, 2, 3, 4, 5]) ims = bytearray(qsig2b) + extra indexer = Indexer(qb2=ims, strip=True) assert indexer.raw == sig assert indexer.code == IdrDex.Ed25519_Sig assert indexer.index == 5 assert indexer.qb64 == qsig64 assert indexer.qb64b == qsig64b assert indexer.qb2 == qsig2b assert ims == extra """ Done Test """
5,342,829
def train_linkpred(model, optimizer, train_loader_generator, validation_loader_generator ): """ :param model: :param optimizer: :param train_loader_generator: :param validation_loader_generator: :return: """ for epoch in range(3): count = 0 time_start = time.time() train_loader = train_loader_generator.get_edge_loader() for g in train_loader: for step, (input_nodes, positive_graph, negative_graph, blocks) in enumerate(g): pos_score = model(positive_graph) neg_score = model(positive_graph, negative_graph=negative_graph) score = torch.cat([pos_score, neg_score]) label = torch.cat([torch.ones_like(pos_score), torch.zeros_like(neg_score)]) loss = F.binary_cross_entropy_with_logits(score, label) optimizer.zero_grad() loss.backward() optimizer.step() count += len(input_nodes) # if True or not count % 50: # print(count, loss.item(), time.time() - time_start) print(f"EPOCH {epoch}, time for the epoch : {time.time() - time_start:2f}, last loss {loss.item():2f}") aucs = [] count = 0 model.eval() validation_loader = validation_loader_generator.get_edge_loader() for i, g in enumerate(validation_loader): print("val graph ", i) for input_nodes, positive_graph, negative_graph, blocks in g: with torch.no_grad(): pos_score = model(positive_graph) neg_score = model(positive_graph, negative_graph=negative_graph) score = torch.cat([pos_score, neg_score]).detach().numpy() label = torch.cat([torch.ones_like(pos_score), torch.zeros_like(neg_score)]) label = label.detach().numpy() # print(score, label) aucs.append(roc_auc_score(label, score)) count += 1 print('Time used : ', time.time() - time_start) print("AUC", np.mean(aucs)) pass
5,342,830
def call_wifi(label): """Wifi connect function Parameters ---------- label : str Output label Returns ------- None """ try: # Setup wifi and connection print(wifi.radio.connect(secrets['ssid'], secrets['password'])) print('ip', wifi.radio.ipv4_address) show_text("ip: {}".format(wifi.radio.ipv4_address), label) ipv4 = ipaddress.ip_address('8.8.8.8') ping_result = wifi.radio.ping(ipv4) print('ping', ping_result) show_text("ping: {}".format(ping_result), label) except: return False
5,342,831
def load_normalized_face_landmarks(): """ Loads the locations of each of the 68 landmarks :return: """ normalized_face_landmarks = np.float32([ (0.0792396913815, 0.339223741112), (0.0829219487236, 0.456955367943), (0.0967927109165, 0.575648016728), (0.122141515615, 0.691921601066), (0.168687863544, 0.800341263616), (0.239789390707, 0.895732504778), (0.325662452515, 0.977068762493), (0.422318282013, 1.04329000149), (0.531777802068, 1.06080371126), (0.641296298053, 1.03981924107), (0.738105872266, 0.972268833998), (0.824444363295, 0.889624082279), (0.894792677532, 0.792494155836), (0.939395486253, 0.681546643421), (0.96111933829, 0.562238253072), (0.970579841181, 0.441758925744), (0.971193274221, 0.322118743967), (0.163846223133, 0.249151738053), (0.21780354657, 0.204255863861), (0.291299351124, 0.192367318323), (0.367460241458, 0.203582210627), (0.4392945113, 0.233135599851), (0.586445962425, 0.228141644834), (0.660152671635, 0.195923841854), (0.737466449096, 0.182360984545), (0.813236546239, 0.192828009114), (0.8707571886, 0.235293377042), (0.51534533827, 0.31863546193), (0.516221448289, 0.396200446263), (0.517118861835, 0.473797687758), (0.51816430343, 0.553157797772), (0.433701156035, 0.604054457668), (0.475501237769, 0.62076344024), (0.520712933176, 0.634268222208), (0.565874114041, 0.618796581487), (0.607054002672, 0.60157671656), (0.252418718401, 0.331052263829), (0.298663015648, 0.302646354002), (0.355749724218, 0.303020650651), (0.403718978315, 0.33867711083), (0.352507175597, 0.349987615384), (0.296791759886, 0.350478978225), (0.631326076346, 0.334136672344), (0.679073381078, 0.29645404267), (0.73597236153, 0.294721285802), (0.782865376271, 0.321305281656), (0.740312274764, 0.341849376713), (0.68499850091, 0.343734332172), (0.353167761422, 0.746189164237), (0.414587777921, 0.719053835073), (0.477677654595, 0.706835892494), (0.522732900812, 0.717092275768), (0.569832064287, 0.705414478982), (0.635195811927, 0.71565572516), (0.69951672331, 0.739419187253), (0.639447159575, 0.805236879972), (0.576410514055, 0.835436670169), (0.525398405766, 0.841706377792), (0.47641545769, 0.837505914975), (0.41379548902, 0.810045601727), (0.380084785646, 0.749979603086), (0.477955996282, 0.74513234612), (0.523389793327, 0.748924302636), (0.571057789237, 0.74332894691), (0.672409137852, 0.744177032192), (0.572539621444, 0.776609286626), (0.5240106503, 0.783370783245), (0.477561227414, 0.778476346951)]) return normalized_face_landmarks
5,342,832
def vacuum_vessel(shot): """ Get the coordinates of the Tore Supra / WEST vacuum vessel R_wall, Z_wall = vacuum_vessel(shot) Arguments: - shot: Tore Supra or WEST shot number Returns: - R_wall: radius of the vacuum chamber walls [m] - Z_wall: height of the vacuum chamber walls [m] TODO: once WEST will have started, get the final vacuum vessel coordinates """ if (shot <= 0) or (not isinstance(shot, int)): raise ValueError('Shot number should be a positive integer') elif shot < 50000: # Tore Supra vacuum chamber profile wall = pw.tsmat(shot, 'APOLO;+Parametres;Paroi') R_wall = wall[:,0] Z_wall = wall[:,1] else: # WEST vacuum chamber profile # get the absolute path of the filename, in order to work even if launched from other dir filename = os.path.dirname(__file__) + os.sep + 'WEST_vacuum_vessel.txt' R_wall, Z_wall = np.loadtxt(filename, skiprows=1, unpack=True) return R_wall, Z_wall
5,342,833
def backup_file(file): """Create timestamp'd backup of a file Args: file (str): filepath Returns: backupfile(str) """ current_time = datetime.now() time_stamp = current_time.strftime("%b-%d-%y-%H.%M.%S") backupfile = file +'.bkp_'+ time_stamp copyfile(file, backupfile) return(backupfile)
5,342,834
def svn_client_mergeinfo_log_eligible(*args): """ svn_client_mergeinfo_log_eligible(char path_or_url, svn_opt_revision_t peg_revision, char merge_source_path_or_url, svn_opt_revision_t src_peg_revision, svn_log_entry_receiver_t receiver, svn_boolean_t discover_changed_paths, apr_array_header_t revprops, svn_client_ctx_t ctx, apr_pool_t pool) -> svn_error_t """ return _client.svn_client_mergeinfo_log_eligible(*args)
5,342,835
def share_nodes_sockets(): """ Create a shared node layout where the simulation and analysis ranks share compute nodes. Furthermore, they share sockets of the node. """ shared_sockets = SummitNode() for i in range(10): shared_sockets.cpu[i] = "simulation:{}".format(i) shared_sockets.cpu[21+i] = "simulation:{}".format(10+i) for i in range(10): shared_sockets.cpu[10+i] = "pdf_calc:{}".format(i) shared_sockets.cpu[21+10+i] = "pdf_calc:{}".format(10+i) return [shared_sockets]
5,342,836
def imlist(img_dir, valid_exts=None, if_recursive=False): """ List images under directory :param img_dir: :param valid_exts: :param if_recursive: :return: """ from glob import glob if is_str(valid_exts): valid_exts = [valid_exts.strip(".")] valid_exts = list(valid_exts) if is_seq(valid_exts) else ["jpg", "jpeg", "bmp", "tif", "gif", "png"] images = [] for ext in valid_exts: images.extend(glob(os.path.join(img_dir, "**", "*.%s" % ext), recursive=if_recursive)) return images
5,342,837
def add_assignment_to_db(db, assignment): """ Adds an assignment to the database :param db: (string) The database to connect to :param assignment: (Feature) The assignment to add :return: """ conn = sqlite3.connect(db) c = conn.cursor() params = ( assignment.global_id, ) c.execute("INSERT INTO assignments VALUES (?)", params) conn.commit() conn.close()
5,342,838
def _rle_decode(data): """ Decodes run-length-encoded `data`. """ if not data: return data new = b'' last = b'' for cur in data: if last == b'\0': new += last * cur last = b'' else: new += last last = bytes([cur]) return new + last
5,342,839
def blend_and_save(freq_dict, filename, colormap='viridis', dots=600): """Plot a heatmap, upscale it to the keyboard and save a blended image.""" # Clear the heatmap plot and axes plt.clf() plt.xticks([]) plt.yticks([]) plt.axis('off') # Display the data on the heatmap heatmap_data = get_frequencies(freq_dict) plt.imshow( heatmap_data, interpolation='lanczos', zorder=1, cmap=colormap ) # Save the heatmap plot plt.savefig( 'obj/heatmap.png', dpi=dots, pad_inches=0, transparent=True, bbox_inches='tight' ) # Open the heatmap image heatmap = Image.open( 'obj/heatmap.png' ) # Resize the heatmap to the keyboard's size, with antialiasing heatmap = heatmap.resize(keyboard.size, Image.ANTIALIAS) heatmap.save( 'obj/heatmap.png' ) # Blend the images, and save blended = ImageChops.darker(keyboard, heatmap) blended.save( '{0}/{1}'.format(os.getcwd(), filename) )
5,342,840
def flatten(lst): """Helper function used to massage the raw tweet data.""" for el in lst: if (isinstance(el, collections.Iterable) and not isinstance(el, str)): for sub in flatten(el): yield sub else: yield el
5,342,841
def setup(app): """ Set up the sphinx extension. """ app.add_role('f', f_role) app.add_role('ipa', ipa_role)
5,342,842
def find_shift_between_two_models(model_1,model_2,shift_range=5,number_of_evaluations=10,rotation_angles=[0.,0.,0.], cropping_model=0,initial_guess=[0.,0.,0.], method='brute_force',full_output=False): """ Find the correct shift alignment in 3D by using a different optimization algorithms to minimise the distance between the two models. Args: :model_1(float ndarray): 3d ndarray of the fixed object :model_2(float ndarray): 3d ndarray ot the rotatable model Kwargs: :shift_range(float): absolute value of the range in which the brute should be applied :number_of_evaluations(int): number of grid points on which the brute force optimises :rotation_angles(list): set of euler angles for rotating model_2 before applying the shift :method(str): is the optimisation method which is use to minimise the difference, default = brute_force, other option fmin_l_bfgs_b :full_output(bool): returns full output as a dictionary, default = False """ def shifting(x,model_1,model_2): x0, x1, x2 = x #model_2 = nutcracker.utils.rotate.rotation_based_on_euler_angles(model_2, rotation_angles) model_2 = ndimage.interpolation.shift(model_2, shift=(x0, x1, x2), order=0, mode='wrap') #model_2 = np.roll(np.roll(np.roll(model_2,int(x0),axis=0), int(x1), axis=1), int(x2), axis=2) return np.sum(np.abs(model_1 - model_2) ** 2) model_2 = nutcracker.utils.rotate.rotation_based_on_euler_angles(model_2, rotation_angles) # cropping the model if cropping_model: model_1 = model_1[cropping_model/2:-cropping_model/2,cropping_model/2:-cropping_model/2,cropping_model/2:-cropping_model/2] model_2 = model_2[cropping_model/2:-cropping_model/2,cropping_model/2:-cropping_model/2,cropping_model/2:-cropping_model/2] args = (model_1, model_2) if method == 'brute_force': # set parameters r = slice(-float(shift_range),float(shift_range),2.*shift_range/number_of_evaluations) ranges = [r,r,r] # shift retrieval brute force shift = optimize.brute(shifting, ranges=ranges, args=args, full_output=True, finish=optimize.fmin_bfgs) shift = np.array(shift) elif method == 'fmin_l_bfgs_b': #parameter for fmin_l_bfgs_b x0 = np.array(initial_guess) # fmin_l_bfgs_b optimisation shift = optimize.fmin_l_bfgs_b(shifting, x0, args=args, approx_grad=True) shift = np.array(shift) shift_values = shift[0] if full_output: if method == 'brute_force': out = {'shift_values':shift[0], 'shift_fvalues':shift[1], 'shift_grid':shift[2], 'shift_jout':shift[3]} elif method == 'fmin_l_bfgs_b': out = {'shift_values':shift[0], 'shift_fvalues':shift[1]} return out else: return shift_values
5,342,843
def read_cmd(frame, data): """Get the return of the cmd sent to the MicroPython card :param data: The commande sent :type data: str :return: the return of the command sent :rtype: str """ b = frame.serial.read(frame.serial.in_waiting) frame.is_data = False if b: frame.is_data = True b = b.replace(b'\r\n', b'\n') serial_read_data(frame, b) frame.result = GetCmdReturn(frame.last_cmd_red, data)
5,342,844
def get_url( url: str, stream: bool = False, session: Optional[requests.Session] = None ) -> requests.Response: """Call requests.get() on a url and return the requests.Response.""" if not session: session = retry_session() resp = session.get(url, stream=stream) resp.raise_for_status() return resp
5,342,845
def uploadFromPath(localFilePath: str, resource, bucketName: str, fileID: str, headerArgs: Optional[dict] = None, partSize: int = 50 << 20): """ Uploads a file to s3, using multipart uploading if applicable :param str localFilePath: Path of the file to upload to s3 :param S3.Resource resource: boto3 resource :param str bucketName: name of the bucket to upload to :param str fileID: the name of the file to upload to :param dict headerArgs: http headers to use when uploading - generally used for encryption purposes :param int partSize: max size of each part in the multipart upload, in bytes :return: version of the newly uploaded file """ if headerArgs is None: headerArgs = {} client = resource.meta.client file_size, file_time = fileSizeAndTime(localFilePath) version = uploadFile(localFilePath, resource, bucketName, fileID, headerArgs, partSize) info = client.head_object(Bucket=bucketName, Key=compat_bytes(fileID), VersionId=version, **headerArgs) size = info.get('ContentLength') assert size == file_size # Make reasonably sure that the file wasn't touched during the upload assert fileSizeAndTime(localFilePath) == (file_size, file_time) return version
5,342,846
def scale_log2lin(value): """ Scale value from log10 to linear scale: 10**(value/10) Parameters ---------- value : float or array-like Value or array to be scaled Returns ------- float or array-like Scaled value """ return 10**(value/10)
5,342,847
async def test_key_error(opp): """Test Connect returning empty string.""" flow = config_flow.SomaFlowHandler() flow.opp = opp with patch.object(SomaApi, "list_devices", return_value={}): result = await flow.async_step_import({"host": MOCK_HOST, "port": MOCK_PORT}) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "connection_error"
5,342,848
def _cal_tgt_match_pct_worker(in_queue, out_queue, mapped_intervals, tgt_data, src_data, src_samples, ref_match_pct, sample_size, query_ref_match_pct, mapped_len_esp, len_esp, var_esp, sfs_esp): """ Description: Worker function to calculate match percents in target populations. Arguments: in_queue multiprocessing.Queue: multiprocessing.Queue instance to receive parameters from the manager. out_queue multiprocessing.Queue: multiprocessing.Queue instance to send results back to the manager. mapped_intervals dict: Dictionary of tuples containing mapped regions across the genome. tgt_data dict: Genotype data from target populations. src_data dict: Genotype data from source populations. src_samples list: List containing sample information for source populations. ref_match_pct dict: Match percents in reference populations as the null distribution. sample_size int: Number of individuals analyzed. query_ref_match_pct func: Function used to query match percentages from reference popualtions. mapped_len_esp float: Increment of the length of the mapped region. len_esp float: Increment of the length of the haplotype. var_esp float: Increment of the number of derived alleles on the haplotype. sfs_esp float: Increment of mean site frequency spectrum. """ while True: index, data = in_queue.get() res = _cal_pvalue_ind(data, index, mapped_intervals, tgt_data, src_data, src_samples, ref_match_pct, sample_size, query_ref_match_pct, mapped_len_esp, len_esp, var_esp, sfs_esp) out_queue.put("\n".join(res))
5,342,849
def train( train_length:Union[int, TrainLength], model:nn.Module, dls:DataLoaders, loss_func:LossFunction, opt:torch.optim.Optimizer, sched=None, metric:Optional[Metric]=None, device=None, clip_grad:ClipGradOptions=None, callbacks:List[TrainingCallback]=None ) -> TrainingStats: """ Train `model` with the data given by `dls.train` to minimize `loss_func`. Args train_length: if it's an int, number of training epochs; if it's a TrainLength's subclass instance, training won't stop until `train_length.must_stop(...)`, which is called at the end of each epoch, returns `True`. model: module to train. dls: dataloaders that iterates over the training and validation data. If you don't want to evaluate `model` using a validation set, `dls.valid` can be `None`. train_dl: dataloader that iterates over the training data. valid_dl: dataloader that iterates over the validation data. loss_func: loss function to minimize. We assume that this loss function applies reduction over the batch, i.e., it only returns one value. opt: Pytorch optimizer sched: scheduler with a method `step` that will be executed once per step. metric: function that receives a model, a DataLoader `dl` and a `metric_fn` function, computes the metric `metric_fn` for every batch of `dl` and returns the average. device: device, in Pytorch format, where the model and data should be placed to train and calculate metrics. clip_grad: if not None, the gradients of `clip_grad` are clipped to be at most `clip_grad.max_norm` right before each optimizer step. callbacks: list of callbacks that must be called every time an event (end of step, end of epoch, ...) occurs. Returns: statistics of the training run, like a history of the losses/metrics by epoch """ if isinstance(train_length, int): train_length = TrainLengthNEpochs(train_length) assert dls.train is not None if device is None: device = get_best_available_device() if callbacks is None: callbacks = [] n_steps = 0 n_epochs_completed = 0 train_loss_history = [] train_metric_history = [] valid_metric_history = [] while (True): model.train() train_losses_epoch = None n_examples_epoch = 0 for x, y, *extra_xs in dls.train: x, y = x.to(device), y.to(device) opt.zero_grad() preds = model(x, *extra_xs) loss = loss_func(preds, y) loss.backward() if clip_grad is not None: torch.nn.utils.clip_grad_norm_(clip_grad.params, clip_grad.max_norm) opt.step() n_steps += 1 if sched is not None: sched.step() with torch.no_grad(): actual_bs = x.shape[0] n_examples_epoch += actual_bs detached_loss = loss.detach()[None] * actual_bs train_losses_epoch = ( detached_loss if train_losses_epoch is None else torch.cat((train_losses_epoch, detached_loss)) ) for cb in callbacks: cb.on_step_end(loss, model, opt) #losses.append(loss.detach().cpu().item()) #print('Train loss = ', loss.detach()) #print('Epoch completed') model.eval() train_metric, valid_metric, metric_name = None, None, '' if metric is not None: metric_name = metric.name train_metric = metric(model, dls.train, device=device) train_metric_history.append(train_metric) if dls.valid is not None: valid_metric = metric(model, dls.valid, device=device) valid_metric_history.append(valid_metric) avg_train_loss = ((train_losses_epoch.sum()) / n_examples_epoch).item() train_loss_history.append(avg_train_loss) n_epochs_completed += 1 epoch_stats = EpochTrainingStats(avg_train_loss, train_metric, valid_metric, n_epochs_completed, metric_name) for cb in callbacks: cb.on_epoch_end(epoch_stats, model, opt) if train_length.must_stop(epoch_stats): break #valid_metric_str = f'{valid_metric:.4f}' if dls.valid is not None else 'N/A' #last_iter_train_loss = loss.detach().item() #print(f'Avg train loss = {avg_train_loss:.4f}, Last iter train loss = {last_iter_train_loss:.4f}') #print(f'Train metric (f1) = {train_metric}') #print(f'Valid metric (f1) = {valid_metric}') return TrainingStats( np.array(train_loss_history), np.array(train_metric_history), np.array(valid_metric_history), n_epochs_completed, n_steps, )
5,342,850
def _error_to_level(error): """Convert a boolean error field to 'Error' or 'Info' """ if error: return 'Error' else: return 'Info'
5,342,851
def add_review(status): """ Adds the flags on the tracker document. Input: tracker document. Output: sum of the switches. """ cluster = status['cluster_switch'] classify = status['classify_switch'] replace = status['replace_switch'] final = status['final_switch'] finished = status['finished_switch'] num = cluster + classify + replace + final + finished return num
5,342,852
def test_pyramid_conv_encoder_forward_invalid_mask(config, images, masks): """Test PyramidConvEncoder.forward handles some invalid masks.""" encoder = encoders.PyramidConvEncoder(config=config, pretrained=False) masks[-2:] = 0 actual = encoder(images, masks) assert actual.shape == (BATCH_SIZE, *encoder.feature_shape) assert actual[-2:].eq(0).all() assert not actual[:-2].eq(0).all() assert not torch.isnan(actual).any()
5,342,853
def n_floordiv(a, b): """safe floordiv""" return np.where(b != 0, o.floordiv(a, b), 1)
5,342,854
def load_encoder_inputs(encoder_np_vecs='train_body_vecs.npy'): """ Load variables & data that are inputs to encoder. Parameters ---------- encoder_np_vecs : str filename of serialized numpy.array of encoder input (issue title) Returns ------- encoder_input_data : numpy.array The issue body doc_length : int The standard document length of the input for the encoder after padding the shape of this array will be (num_examples, doc_length) """ vectorized_body = np.load(encoder_np_vecs) # Encoder input is simply the body of the issue text encoder_input_data = vectorized_body doc_length = encoder_input_data.shape[1] print('Shape of encoder input: {}'.format(encoder_input_data.shape)) return encoder_input_data, doc_length
5,342,855
def test_parse_args(): """Test argument parser of cli.""" argv = ['hourly', '--startyear', '2008', '--variables', 'total_precipitation', '--statistics', '--endyear', '2008', '--ensemble', '--land'] args = cli._parse_args(argv) assert args.command == 'hourly' assert args.days == list(range(1, 32)) assert args.endyear == 2008 assert args.ensemble assert args.format == 'netcdf' assert args.hours == list(range(0, 24)) assert args.levels == ref.PLEVELS assert args.months == list(range(1, 13)) assert args.outputprefix == 'era5' assert not args.merge assert args.startyear == 2008 assert args.statistics assert not args.threads assert args.variables == ['total_precipitation'] assert args.land assert not args.area
5,342,856
def save_groups(portal, groups, path, f='json', cls=None, **kw): """ Save groups in the portal to disk. """ serializer = _select_serializer(f, cls, **kw) serializer.serialize_groups(groups, path, portal)
5,342,857
def parse_row(row): """Create an Event object from a data row Args: row: Tuple of input data. Returns: Event object. """ # Ignore either 1 or 2 columns that preceed year if len(row) > 6: row = row[2:] else: row = row[1:] # Remove occasional 'r' or 'x' character prefix from year, # I'm not sure what these specify. year = row[0] if not year[0].isdigit(): year = year[1:] return Event(year=int(year), latitude=float(row[1]), longitude=float(row[2]), depth=float(row[3]), magnitude=float(row[4]))
5,342,858
def vertical_log_binning(p, data): """Create vertical log_binning. Used for peak sale.""" import math import operator index, value = zip(*sorted(data.items(), key=operator.itemgetter(1))) bin_result = [] value = list(value) bin_edge = [min(value)] i = 1 while len(value) > 0: num_to_bin = int(math.ceil(p * len(value))) # print num_to_bin edge_value = value[num_to_bin - 1] bin_edge.append(edge_value) to_bin = list(filter(lambda x: x <= edge_value, value)) bin_result += [i] * len(to_bin) value = list(filter(lambda x: x > edge_value, value)) # print len(bin_result) + len(value) i += 1 # print '\n' bin_result_dict = dict(zip(index, bin_result)) bin_distri = Counter(bin_result_dict.values()) # print len(index), len(bin_result) return bin_result_dict, bin_edge, bin_distri
5,342,859
def get_main_name(ext="", prefix=""): """Returns the base name of the main script. Can optionally add an extension or prefix.""" return prefix + op.splitext(op.basename(__main__.__file__))[0] + ext
5,342,860
def _grad_block_to_band(op, grad): """ Gradient associated to the ``block_to_band`` operator. """ grad_block = banded_ops.band_to_block( grad, op.get_attr("block_size"), symmetric=op.get_attr("symmetric"), gradient=True ) return grad_block
5,342,861
def LSTM(nO, nI): """Create an LSTM layer. Args: number out, number in""" weights = LSTM_weights(nO, nI) gates = LSTM_gates(weights.ops) return Recurrent(RNN_step(weights, gates))
5,342,862
def test_setup_polynomial_wrong_weight_shape(small_data): """Ensures that an exception is raised if input weights and data are different shapes.""" weights = np.ones(small_data.shape[0] + 1) with pytest.raises(ValueError): _algorithm_setup._setup_polynomial(small_data, weights=weights)
5,342,863
def test_mse_multiple_hidden_units(): """Test the MSE loss w/ 2 hidden units.""" _check_ae(MSE_MAX_SCORE, hidden_units=(2,))
5,342,864
def get_token(host, port, headers, auth_data): """Return token for a user. """ url = api_url(host, port, '/Users/AuthenticateByName') r = requests.post(url, headers=headers, data=auth_data) return r.json().get('AccessToken')
5,342,865
def generateDateTime(s): """生成时间""" dt = datetime.fromtimestamp(float(s)/1e3) time = dt.strftime("%H:%M:%S.%f") date = dt.strftime("%Y%m%d") return date, time
5,342,866
def get_activation_function(): """ Returns tf.nn activation function """ return ACTIVATION_FUNCTION
5,342,867
def doi_and_title_from_citation(citation): """ Gets the DOI from a plaintext citation. Uses a search to CrossRef.org to retrive paper DOI. Parameters ---------- citation : str Full journal article citation. Example: Senís, Elena, et al. "CRISPR/Cas9‐mediated genome engineering: An adeno‐associated viral (AAV) vector toolbox. Biotechnology journal 9.11 (2014): 1402-1412. Returns ------- doi : str """ # Encode raw citation citation = urllib_quote(citation) # Search for citation on CrossRef.org to try to get a DOI link api_search_url = 'http://search.labs.crossref.org/dois?q=' + citation try: response = requests.get(api_search_url).json() except json.decoder.JSONDecodeError: return None resp = response[0] doi = resp.get('doi') title = resp.get('title') if doi is None: return None # If crossref returns a http://dx.doi.org/ link, retrieve the doi from it # and save the URL to pass to doi_to_info if 'http://dx.doi.org/' in doi: doi = doi.replace('http://dx.doi.org/', '') doi = doi.strip() return doi, title
5,342,868
def prep_ciphertext(ciphertext): """Remove whitespace.""" message = "".join(ciphertext.split()) print("\nciphertext = {}".format(ciphertext)) return message
5,342,869
def setup_sample_file(base_filename, args, num_threads=1): """ Return a sample data file, the ancestors file, a corresponding recombination rate (a single number or a RateMap), a prefix to use for files, and None """ gmap = args.genetic_map sd = tsinfer.load(base_filename + ".samples") anc = tsinfer.generate_ancestors( sd, num_threads=num_threads, path=base_filename + ".ancestors", ) logger.info("GA done") inference_pos = anc.sites_position[:] match = re.search(r'(chr\d+)', base_filename) if match or gmap is not None: if gmap is not None: try: rho=float(gmap) logger.info(f"Using rate {gmap} for the recombination rate") except ValueError: rho = intervals.read_hapmap(gmap) logger.info(f"Using file from {gmap} for the recombination map") else: chr = match.group(1) logger.info(f"Using {chr} from HapMapII_GRCh37 for the recombination map") gmap = stdpopsim.get_species("HomSap").get_genetic_map(id="HapMapII_GRCh37") if not gmap.is_cached(): gmap.download() filename = os.path.join(gmap.map_cache_dir, gmap.file_pattern.format(id=chr)) rho = intervals.read_hapmap(filename) else: rho = 1e-8 # shouldn't matter what this is - it it relative to mismatch #if np.any(d==0): # w = np.where(d==0) # raise ValueError("Zero recombination rates at", w, inference_pos[w]) return sd.path, anc.path, rho, "", None
5,342,870
def main(): """Runs dir().""" call = PROCESS_POOL.submit(call_dir) while True: if call.done(): result = call.result().decode() print("Results: \n\n{}".format(result)) return result
5,342,871
def bacthing_predict_SVGPVAE_rotated_mnist(test_data_batch, vae, svgp, qnet_mu, qnet_var, aux_data_train): """ Get predictions for test data. See chapter 3.3 in Casale's paper. This version supports batching in prediction pipeline (contrary to function predict_SVGPVAE_rotated_mnist) . :param test_data_batch: batch of test data :param vae: fitted (!) VAE object :param svgp: fitted (!) SVGP object :param qnet_mu: precomputed encodings (means) of train dataset (N_train, L) :param qnet_var: precomputed encodings (vars) of train dataset (N_train, L) :param aux_data_train: train aux data (N_train, 10) :return: """ images_test_batch, aux_data_test_batch = test_data_batch _, w, h, _ = images_test_batch.get_shape() # get latent samples for test data from GP posterior p_m, p_v = [], [] for l in range(qnet_mu.get_shape()[1]): # iterate over latent dimensions p_m_l, p_v_l, _, _ = svgp.approximate_posterior_params(index_points_test=aux_data_test_batch, index_points_train=aux_data_train, y=qnet_mu[:, l], noise=qnet_var[:, l]) p_m.append(p_m_l) p_v.append(p_v_l) p_m = tf.stack(p_m, axis=1) p_v = tf.stack(p_v, axis=1) epsilon = tf.random.normal(shape=tf.shape(p_m), dtype=tf.float64) latent_samples = p_m + epsilon * tf.sqrt(p_v) # predict (decode) latent images. # =============================================== # Since this is generation (testing pipeline), could add \sigma_y to images recon_images_test_logits = vae.decode(latent_samples) # Gaussian observational likelihood, no variance recon_images_test = recon_images_test_logits # Bernoulli observational likelihood # recon_images_test = tf.nn.sigmoid(recon_images_test_logits) # Gaussian observational likelihood, fixed variance \sigma_y # recon_images_test = recon_images_test_logits + tf.random.normal(shape=tf.shape(recon_images_test_logits), # mean=0.0, stddev=0.04, dtype=tf.float64) # MSE loss for CGEN (here we do not consider MSE loss, ince ) recon_loss = tf.reduce_sum((images_test_batch - recon_images_test_logits) ** 2) # report per pixel loss K = tf.cast(w, dtype=tf.float64) * tf.cast(h, dtype=tf.float64) recon_loss = recon_loss / K # =============================================== return recon_images_test, recon_loss
5,342,872
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """ Set up Strava Home Assistant config entry initiated through the HASS-UI. """ hass.data.setdefault(DOMAIN, {}) # OAuth Stuff try: implementation = await config_entry_oauth2_flow.async_get_config_entry_implementation( hass=hass, config_entry=entry ) except ValueError: implementation = config_entry_oauth2_flow.LocalOAuth2Implementation( hass, DOMAIN, entry.data[CONF_CLIENT_ID], entry.data[CONF_CLIENT_SECRET], OAUTH2_AUTHORIZE, OAUTH2_TOKEN, ) OAuth2FlowHandler.async_register_implementation(hass, implementation) oauth_websession = config_entry_oauth2_flow.OAuth2Session( hass, entry, implementation ) await oauth_websession.async_ensure_token_valid() # webhook view to get notifications for strava activity updates def strava_update_event_factory(data, event_type=CONF_STRAVA_DATA_UPDATE_EVENT): hass.bus.fire(event_type, data) strava_webhook_view = StravaWebhookView( oauth_websession=oauth_websession, event_factory=strava_update_event_factory, host=get_url(hass, allow_internal=False, allow_ip=False), hass=hass, ) hass.http.register_view(strava_webhook_view) # event listeners async def strava_startup_functions(): await renew_webhook_subscription( hass=hass, entry=entry, webhook_view=strava_webhook_view ) await strava_webhook_view.fetch_strava_data() return True def ha_start_handler(event): """ called when HA rebooted i.e. after all webhook views have been registered and are available """ hass.async_create_task(strava_startup_functions()) def component_reload_handler(event): """called when the component reloads""" hass.async_create_task(strava_startup_functions()) async def async_strava_config_update_handler(): """called when user changes sensor configs""" await strava_webhook_view.fetch_strava_data() return def strava_config_update_handler(event): hass.async_create_task(async_strava_config_update_handler()) def core_config_update_handler(event): """ handles relevant changes to the HA core config. In particular, for URL and Unit System changes """ if "external_url" in event.data.keys(): hass.async_create_task( renew_webhook_subscription( hass=hass, entry=entry, webhook_view=strava_webhook_view ) ) if "unit_system" in event.data.keys(): hass.async_create_task(strava_webhook_view.fetch_strava_data()) # register event listeners hass.data[DOMAIN]["remove_update_listener"] = [] # if hass.bus.async_listeners().get(EVENT_HOMEASSISTANT_START, 0) < 1: hass.data[DOMAIN]["remove_update_listener"].append( hass.bus.async_listen(EVENT_HOMEASSISTANT_START, ha_start_handler) ) # if hass.bus.async_listeners().get(EVENT_CORE_CONFIG_UPDATE, 0) < 1: hass.data[DOMAIN]["remove_update_listener"].append( hass.bus.async_listen(EVENT_CORE_CONFIG_UPDATE, core_config_update_handler) ) if hass.bus.async_listeners().get(CONF_STRAVA_RELOAD_EVENT, 0) < 1: hass.data[DOMAIN]["remove_update_listener"].append( hass.bus.async_listen(CONF_STRAVA_RELOAD_EVENT, component_reload_handler) ) if hass.bus.async_listeners().get(CONF_STRAVA_CONFIG_UPDATE_EVENT, 0) < 1: hass.data[DOMAIN]["remove_update_listener"].append( hass.bus.async_listen( CONF_STRAVA_CONFIG_UPDATE_EVENT, strava_config_update_handler ) ) hass.data[DOMAIN]["remove_update_listener"] = [ entry.add_update_listener(strava_config_update_helper) ] for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True
5,342,873
def normalize_boxes(boxes: List[Tuple], img_shape: Union[Tuple, List]) -> List[Tuple]: """ Transform bounding boxes back to yolo format """ img_height = img_shape[1] img_width = img_shape[2] boxes_ = [] for i in range(len(boxes)): x1, y1, x2, y2 = boxes[i] width = x2 - x1 height = y2 - y1 x_mid = x1 + 0.5 * width y_mid = y1 + 0.5 * height box = [ x_mid / img_width, y_mid / img_height, width / img_width, height / img_height, ] boxes_.append(box) return boxes_
5,342,874
def _make_reference_filters(filters, ref_dimension, offset_func): """ Copies and replaces the reference dimension's definition in all of the filters applied to a dataset query. This is used to shift the dimension filters to fit the reference window. :param filters: :param ref_dimension: :param offset_func: :return: """ reference_filters = [] for ref_filter in filters: if ref_filter.field is ref_dimension: # NOTE: Important to apply the offset function to the start and stop properties because the date math can # become expensive over many rows ref_filter = copy.copy(ref_filter) ref_filter.start = offset_func(ref_filter.start) ref_filter.stop = offset_func(ref_filter.stop) reference_filters.append(ref_filter) return reference_filters
5,342,875
def test_division(): """ Divide two units. """ pc_cgs = cm_per_pc km_cgs = cm_per_km # Create symbols pc_sym = Symbol("pc", positive=True) km_sym = Symbol("km", positive=True) s_sym = Symbol("s", positive=True) # Create units u1 = Unit("pc") u2 = Unit("km * s") u3 = u1 / u2 assert_true(u3.expr == pc_sym / (km_sym * s_sym)) assert_allclose_units(u3.base_value, pc_cgs / km_cgs, 1e-12) assert_true(u3.dimensions == 1 / time)
5,342,876
def detect(): """ Detects the shell the user is currently using. The logic is picked from Docker Machine https://github.com/docker/machine/blob/master/libmachine/shell/shell.go#L13 """ shell = os.getenv("SHELL") if not shell: return None if os.getenv("__fish_bin_dir"): return "fish" return os.path.basename(shell)
5,342,877
def test_sanity_pass_declarative(ini_settings, dbsession): """See database sanity check understands about relationships and don't deem them as missing column.""" engine = engine_from_config(ini_settings, 'sqlalchemy.') conn = engine.connect() trans = conn.begin() Session = sessionmaker(bind=engine) session = Session() Base, DeclarativeTestModel = gen_declarative() try: Base.metadata.drop_all(engine, tables=[DeclarativeTestModel.__table__]) except sqlalchemy.exc.NoSuchTableError: pass Base.metadata.create_all(engine, tables=[DeclarativeTestModel.__table__]) try: assert is_sane_database(Base, session) is True finally: Base.metadata.drop_all(engine)
5,342,878
def load_plane_dataset(name, num_points, flip_axes=False): """Loads and returns a plane dataset. Args: name: string, the name of the dataset. num_points: int, the number of points the dataset should have, flip_axes: bool, flip x and y axes if True. Returns: A Dataset object, the requested dataset. Raises: ValueError: If `name` an unknown dataset. """ try: return { 'gaussian': GaussianDataset, 'crescent': CrescentDataset, 'crescent_cubed': CrescentCubedDataset, 'sine_wave': SineWaveDataset, 'abs': AbsDataset, 'sign': SignDataset, 'four_circles': FourCircles, 'diamond': DiamondDataset, 'two_spirals': TwoSpiralsDataset, 'checkerboard': CheckerboardDataset, 'rings': RingsDataset, '8-gaussians':EightGaussiansDataset }[name](num_points=num_points, flip_axes=flip_axes) except KeyError: raise ValueError('Unknown dataset: {}'.format(name))
5,342,879
def get_toxic(annotated_utterance, probs=True, default_probs=None, default_labels=None): """Function to get toxic classifier annotations from annotated utterance. Args: annotated_utterance: dictionary with annotated utterance, or annotations probs: return probabilities or not default: default value to return. If it is None, returns empty dict/list depending on probs argument Returns: dictionary with toxic probablilties, if probs == True, or toxic labels if probs != True """ default_probs = {} if default_probs is None else default_probs default_labels = [] if default_labels is None else default_labels return _get_etc_model( annotated_utterance, "toxic_classification", probs=probs, default_probs=default_probs, default_labels=default_labels, )
5,342,880
def compute_energy_lapkmode(X,C,l,W,sigma,bound_lambda): """ compute Laplacian K-modes energy in discrete form """ e_dist = ecdist(X,C,squared =True) g_dist = np.exp(-e_dist/(2*sigma**2)) pairwise = 0 Index_list = np.arange(X.shape[0]) for k in range(C.shape[0]): tmp=np.asarray(np.where(l== k)) if tmp.size !=1: tmp = tmp.squeeze() else: tmp = tmp[0] # print('length of tmp ', len(tmp)) # pairwise = pairwise - W[tmp,:][:,tmp].sum() # With potts values -1/0 nonmembers = np.in1d(Index_list,tmp,invert =True) # With potts values 0/1 pairwise = pairwise + W[tmp,:][:,nonmembers].sum() E_kmode = compute_km_energy(l,g_dist.T) print(E_kmode) E = (bound_lambda)*pairwise + E_kmode return E
5,342,881
def set_openid_cookie(response, openid): """Utility method to consistently set the openid cookie.""" print 'SETTING openid cookie to: %s' % openid response.set_cookie('openid', openid, expires=(datetime.datetime.now() + datetime.timedelta(days=3650)), # expires in 10 years httponly=True)
5,342,882
def calc_2d_wave_map(wave_grid, x_dms, y_dms, tilt, oversample=2, padding=10, maxiter=5, dtol=1e-2): """Compute the 2D wavelength map on the detector. :param wave_grid: The wavelength corresponding to the x_dms, y_dms, and tilt values. :param x_dms: the trace x position on the detector in DMS coordinates. :param y_dms: the trace y position on the detector in DMS coordinates. :param tilt: the trace tilt angle in degrees. :param oversample: the oversampling factor of the input coordinates. :param padding: the native pixel padding around the edge of the detector. :param maxiter: the maximum number of iterations used when solving for the wavelength at each pixel. :param dtol: the tolerance of the iterative solution in pixels. :type wave_grid: array[float] :type x_dms: array[float] :type y_dms: array[float] :type tilt: array[float] :type oversample: int :type padding: int :type maxiter: int :type dtol: float :returns: wave_map_2d - an array containing the wavelength at each pixel on the detector. :rtype: array[float] """ os = np.copy(oversample) xpad = np.copy(padding) ypad = np.copy(padding) # No need to compute wavelengths across the entire detector, slightly larger than SUBSTRIP256 will do. dimx, dimy = 2048, 300 y_dms = y_dms + (dimy - 2048) # Adjust y-coordinate to area of interest. # Generate the oversampled grid of pixel coordinates. x_vec = np.arange((dimx + 2*xpad)*os)/os - (os - 1)/(2*os) - xpad y_vec = np.arange((dimy + 2*ypad)*os)/os - (os - 1)/(2*os) - ypad x_grid, y_grid = np.meshgrid(x_vec, y_vec) # Iteratively compute the wavelength at each pixel. delta_x = 0.0 # A shift in x represents a shift in wavelength. for niter in range(maxiter): # Assume all y have same wavelength. wave_iterated = np.interp(x_grid - delta_x, x_dms[::-1], wave_grid[::-1]) # Invert arrays to get increasing x. # Compute the tilt angle at the wavelengths. tilt_tmp = np.interp(wave_iterated, wave_grid, tilt) # Compute the trace position at the wavelengths. x_estimate = np.interp(wave_iterated, wave_grid, x_dms) y_estimate = np.interp(wave_iterated, wave_grid, y_dms) # Project that back to pixel coordinates. x_iterated = x_estimate + (y_grid - y_estimate)*np.tan(np.deg2rad(tilt_tmp)) # Measure error between requested and iterated position. delta_x = delta_x + (x_iterated - x_grid) # If the desired precision has been reached end iterations. if np.all(np.abs(x_iterated - x_grid) < dtol): break # Evaluate the final wavelength map, this time setting out-of-bounds values to NaN. wave_map_2d = np.interp(x_grid - delta_x, x_dms[::-1], wave_grid[::-1], left=np.nan, right=np.nan) # Extend to full detector size. tmp = np.full((os*(dimx + 2*xpad), os*(dimx + 2*xpad)), fill_value=np.nan) tmp[-os*(dimy + 2*ypad):] = wave_map_2d wave_map_2d = tmp return wave_map_2d
5,342,883
def is_pipeline_variable(var: object) -> bool: """Check if the variable is a pipeline variable Args: var (object): The variable to be verified. Returns: bool: True if it is, False otherwise. """ # Currently Expression is on top of all kinds of pipeline variables # as well as PipelineExperimentConfigProperty and PropertyFile # TODO: We should deprecate the Expression and replace it with PipelineVariable return isinstance(var, Expression)
5,342,884
def scan(infile: str = 'scanner_domains.txt', outfile: str = 'scanner_log.txt', signature: str = 'None'): """Scans an input list for metadata and, optionally, for the presence of a given signature and sends the results to be written to a file. :param infile: An optional string containing the path to the input data to use for this scan. :param outfile: An optional string containing the path to the output file to write results to. :param signature: An optional string containing the signature to check each input item for. """ pool = Pool(cpu_count() * 10) batch = read_infile_threaded(infile) batch_counter = 0 batch_count = batch.__len__() for item in batch: batch_counter += 1 print('Batch #{0} | Batches remaining: {1} | {2}% complete'.format( batch_counter, batch_count - batch_counter, round(100 * (batch_counter / batch_count), 3), )) responses = pool.map(get, item) for response in responses: sig_detect = 'N/A' if response[0]: doc_html = response[2] doc_text = response[3] metadata = metadata_parse(doc_html) if signature != 'None': sig_detect = signature_parse(doc_text, signature) write_outfile( '{0}, {1}, {2}, {3}'.format(response[1], metadata.get('title'), metadata.get('desc'), sig_detect), outfile ) else: write_outfile('{0}, \'{1}\''.format(response[1], response[2]), outfile)
5,342,885
def export_data(): """Exports data to a file""" data = {} data['adgroup_name'] = request.args.get('name') if data['adgroup_name']: data['sitelist'] = c['adgroups'].find_one({'name':data['adgroup_name']}, {'sites':1})['sites'] return render_template("export.html", data=data)
5,342,886
def thresh_bin(img, thresh_limit=60): """ Threshold using blue channel """ b, g, r = cv2.split(img) # mask = get_salient(r) mask = cv2.threshold(b, 50, 255, cv2.THRESH_BINARY_INV)[1] return mask
5,342,887
def get_aux(): """Get the entire auxiliary stack. Not commonly used.""" @parser def g(c: Cursor, a: Any): return a, c, a return g
5,342,888
def _destupidize_dict(mylist): """The opposite of _stupidize_dict()""" output = {} for item in mylist: output[item['key']] = item['value'] return output
5,342,889
def test_J5(i): """ Test a property of J from result 2 of the paper with a log base """ d = SD([1 / i] * i) d.set_base('e') assert J(d) == pytest.approx((i - 1) * (np.log(i) - np.log(i - 1)))
5,342,890
def print_on_stderr(msg, *param): """Print msg on stderr""" print(msg.format(*param), file=sys.stderr)
5,342,891
def equipment_add(request, type_, id_=None): """Adds an equipment.""" template = {} if request.method == 'POST': form = EquipmentForm(request.POST) if form.is_valid(): form.save(request.user, id_) return redirect('settings_equipment') template['form'] = form elif id_: template['form'] = EquipmentForm(instance=Equipment.objects.get(pk=id_)) else: template['form'] = EquipmentForm() return render(request, 'settings/equipment_add.html', template)
5,342,892
def sync_app(search_app, batch_size=None, post_batch_callback=None): """Syncs objects for an app to ElasticSearch in batches of batch_size.""" model_name = search_app.es_model.__name__ batch_size = batch_size or search_app.bulk_batch_size logger.info(f'Processing {model_name} records, using batch size {batch_size}') read_indices, write_index = search_app.es_model.get_read_and_write_indices() num_source_rows_processed = 0 num_objects_synced = 0 total_rows = search_app.queryset.count() it = search_app.queryset.values_list('pk', flat=True).iterator(chunk_size=batch_size) batches = slice_iterable_into_chunks(it, batch_size) for batch in batches: objs = search_app.queryset.filter(pk__in=batch) num_actions = sync_objects( search_app.es_model, objs, read_indices, write_index, post_batch_callback=post_batch_callback, ) emit_progress = ( (num_source_rows_processed + num_actions) // PROGRESS_INTERVAL - num_source_rows_processed // PROGRESS_INTERVAL > 0 ) num_source_rows_processed += len(batch) num_objects_synced += num_actions if emit_progress: logger.info( f'{model_name} rows processed: {num_source_rows_processed}/{total_rows} ' f'{num_source_rows_processed*100//total_rows}%', ) logger.info(f'{model_name} rows processed: {num_source_rows_processed}/{total_rows} 100%.') if num_source_rows_processed != num_objects_synced: logger.warning( f'{num_source_rows_processed - num_objects_synced} deleted objects detected while ' f'syncing model {model_name}', )
5,342,893
def _parse_text(val, **options): """ :return: Parsed value or value itself depends on 'ac_parse_value' """ if val and options.get('ac_parse_value', False): return parse_single(val) return val
5,342,894
async def test_zeroconf_host_already_exists(hass: HomeAssistant) -> None: """Test hosts already exists from zeroconf.""" config_entry = MockConfigEntry( domain=DOMAIN, data={ "host": "1.1.1.1", "name": "Envoy", "username": "test-username", "password": "test-password", }, title="Envoy", ) config_entry.add_to_hass(hass) with patch( "homeassistant.components.enphase_envoy.config_flow.EnvoyReader.getData", return_value=True, ), patch( "homeassistant.components.enphase_envoy.async_setup_entry", return_value=True, ) as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( properties={"serialnum": "1234"}, host="1.1.1.1", ), ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "already_configured" assert config_entry.unique_id == "1234" assert config_entry.title == "Envoy 1234" assert len(mock_setup_entry.mock_calls) == 1
5,342,895
def test_get_networkx_graph(dummy_project): """test_get_networkx_graph.""" dummy_project.get_networkx_graph() # TODO # assert...
5,342,896
def output_path(model, model_set): """Return path to model output directory Parameters ---------- model : str model_set : str """ path = model_path(model, model_set=model_set) return os.path.join(path, 'output')
5,342,897
def create_balcony_ungrouped(bm, faces, prop): """Make a balcony on each face selection""" for f in faces: f.select = False if not valid_ngon(f): ngon_to_quad(bm, f) normal = f.normal.copy() split_faces = create_balcony_split(bm, f, prop) for f in split_faces: add_faces_to_map(bm, [f], FaceMap.BALCONY) _, top = extrude_balcony(bm, f, prop.depth, normal) if prop.has_railing: prop.rail.show_extra_props = True add_railing_to_balcony(bm, top, normal, prop) bmesh.ops.delete(bm, geom=[f], context="FACES_ONLY")
5,342,898
def get_rotation_matrix(rotation_angles): """Get the rotation matrix from euler's angles Parameters ----- rotation_angles: array-like or list Three euler angles in the order [sai, theta, phi] where sai = rotation along the x-axis theta = rotation along the y-axis phi = rotation along the z-axis Returns ----- A rotation matrix of shape (3, 3) Refrences ----- Computing Euler angles from a rotation matrix by Gregory G. Slabaugh https://www.gregslabaugh.net/publications/euler.pdf """ sai = rotation_angles[0] # s theta = rotation_angles[1] # t phi = rotation_angles[2] # p # find all the required sines and cosines cs = np.cos(sai) ct = np.cos(theta) cp = np.cos(phi) ss = np.sin(sai) st = np.sin(theta) sp = np.sin(phi) # contruct the rotation matrix along the x-axis rotation_matrix = np.array([ [ct*cp, ss*st*cp-cs*sp, cs*st*cp+ss*sp], [ct*sp, ss*st*sp+cs*cp, cs*st*sp-ss*cp], [ -st, sp*ct, cp*ct] ]) return rotation_matrix
5,342,899