content
stringlengths
22
815k
id
int64
0
4.91M
def setToC(doc, toc, collapse=1): """Create new outline tree (table of contents, TOC). Args: toc: (list, tuple) each entry must contain level, title, page and optionally top margin on the page. None or '()' remove the TOC. collapse: (int) collapses entries beyond this level. Zero or None shows all entries unfolded. Returns: the number of inserted items, or the number of removed items respectively. """ if doc.isClosed or doc.isEncrypted: raise ValueError("document closed or encrypted") if not doc.isPDF: raise ValueError("not a PDF") if not toc: # remove all entries return len(doc._delToC()) # validity checks -------------------------------------------------------- if type(toc) not in (list, tuple): raise ValueError("'toc' must be list or tuple") toclen = len(toc) pageCount = doc.pageCount t0 = toc[0] if type(t0) not in (list, tuple): raise ValueError("items must be sequences of 3 or 4 items") if t0[0] != 1: raise ValueError("hierarchy level of item 0 must be 1") for i in list(range(toclen - 1)): t1 = toc[i] t2 = toc[i + 1] if not -1 <= t1[2] <= pageCount: raise ValueError("row %i: page number out of range" % i) if (type(t2) not in (list, tuple)) or len(t2) not in (3, 4): raise ValueError("bad row %i" % (i + 1)) if (type(t2[0]) is not int) or t2[0] < 1: raise ValueError("bad hierarchy level in row %i" % (i + 1)) if t2[0] > t1[0] + 1: raise ValueError("bad hierarchy level in row %i" % (i + 1)) # no formal errors in toc -------------------------------------------------- # -------------------------------------------------------------------------- # make a list of xref numbers, which we can use for our TOC entries # -------------------------------------------------------------------------- old_xrefs = doc._delToC() # del old outlines, get their xref numbers old_xrefs = [] # TODO do not reuse them currently # prepare table of xrefs for new bookmarks xref = [0] + old_xrefs xref[0] = doc._getOLRootNumber() # entry zero is outline root xref# if toclen > len(old_xrefs): # too few old xrefs? for i in range((toclen - len(old_xrefs))): xref.append(doc._getNewXref()) # acquire new ones lvltab = {0: 0} # to store last entry per hierarchy level # ------------------------------------------------------------------------------ # contains new outline objects as strings - first one is the outline root # ------------------------------------------------------------------------------ olitems = [{"count": 0, "first": -1, "last": -1, "xref": xref[0]}] # ------------------------------------------------------------------------------ # build olitems as a list of PDF-like connnected dictionaries # ------------------------------------------------------------------------------ for i in range(toclen): o = toc[i] lvl = o[0] # level title = getPDFstr(o[1]) # title pno = min(doc.pageCount - 1, max(0, o[2] - 1)) # page number page = doc[pno] # load the page ictm = ~page._getTransformation() # get inverse transformation matrix top = Point(72, 36) * ictm # default top location dest_dict = {"to": top, "kind": LINK_GOTO} # fall back target if o[2] < 0: dest_dict["kind"] = LINK_NONE if len(o) > 3: # some target is specified if type(o[3]) in (int, float): # convert a number to a point dest_dict["to"] = Point(72, o[3]) * ictm else: # if something else, make sure we have a dict dest_dict = o[3] if type(o[3]) is dict else dest_dict if "to" not in dest_dict: # target point not in dict? dest_dict["to"] = top # put default in else: # transform target to PDF coordinates point = dest_dict["to"] * ictm dest_dict["to"] = point d = {} d["first"] = -1 d["count"] = 0 d["last"] = -1 d["prev"] = -1 d["next"] = -1 d["dest"] = getDestStr(page.xref, dest_dict) d["top"] = dest_dict["to"] d["title"] = title d["parent"] = lvltab[lvl - 1] d["xref"] = xref[i + 1] lvltab[lvl] = i + 1 parent = olitems[lvltab[lvl - 1]] # the parent entry if collapse and lvl > collapse: # suppress expansion parent["count"] -= 1 # make /Count negative else: parent["count"] += 1 # positive /Count if parent["first"] == -1: parent["first"] = i + 1 parent["last"] = i + 1 else: d["prev"] = parent["last"] prev = olitems[parent["last"]] prev["next"] = i + 1 parent["last"] = i + 1 olitems.append(d) # ------------------------------------------------------------------------------ # now create each outline item as a string and insert it in the PDF # ------------------------------------------------------------------------------ for i, ol in enumerate(olitems): txt = "<<" if ol["count"] != 0: txt += "/Count %i" % ol["count"] try: txt += ol["dest"] except: pass try: if ol["first"] > -1: txt += "/First %i 0 R" % xref[ol["first"]] except: pass try: if ol["last"] > -1: txt += "/Last %i 0 R" % xref[ol["last"]] except: pass try: if ol["next"] > -1: txt += "/Next %i 0 R" % xref[ol["next"]] except: pass try: if ol["parent"] > -1: txt += "/Parent %i 0 R" % xref[ol["parent"]] except: pass try: if ol["prev"] > -1: txt += "/Prev %i 0 R" % xref[ol["prev"]] except: pass try: txt += "/Title" + ol["title"] except: pass if i == 0: # special: this is the outline root txt += "/Type/Outlines" # so add the /Type entry txt += ">>" doc._updateObject(xref[i], txt) # insert the PDF object doc.initData() return toclen
5,343,100
def test_card_update_rect(): """ Called whenever the application size changes to ensure that the rectangle that contains the screen to be drawn is also updated in size (so the background colour / image is updated, if required). """ card = Card("title") card.rect = mock.MagicMock() instance = mock.MagicMock() instance.pos = 400 instance.size = 500 card._update_rect(instance, 100) assert card.rect.pos == instance.pos assert card.rect.size == instance.size
5,343,101
def _map_dvector_permutation(rd,d,eps): """Maps the basis vectors to a permutation. Args: rd (array-like): 2D array of the rotated basis vectors. d (array-like): 2D array of the original basis vectors. eps (float): Finite precision tolerance. Returns: RP (list): The permutation of the basis vectors. """ n_d = len(rd) # of d-vectors found = [False]*n_d RP = [] for iD in range(n_d): for jD in range(n_d): if found[jD]: continue if np.allclose(rd[iD],d[jD],atol=eps,rtol=0): RP.append(jD) found[jD] = True break if len(RP) != len(d): #pragma: no cover print("d-vector didn't permute in map_dvector_permutation " "This usually means that the d-set from the input structure and the d-set" " from the struct_enum.out have a different origin or don't live in the same" " unit cell. This probably isn't your fault---the code should overcome this." ,RP) exit() return(RP)
5,343,102
def get_vacsi_non_vacsi(name, column, statut, multi, filter = False, region = True): """Process each geozone for Rate type of KPIs with exception. Specific function dedicated to vaccin_vaccines_couv """ indicateurResult = get_empty_kpi() config = get_config(name) log.debug('Processing - '+name) indicateurResult['nom'] = config['nom'] indicateurResult['unite'] = config['unite'] indicateurResult['unite_short'] = config['unite_short'] indicateurResult['trendType'] = config['trendType'] df = pd.read_csv("files_new/" + config['res_id_fra'], sep=None, engine='python', dtype={'reg': str, 'dep': str}) if filter: df = df[df['age'] != '[0,19]'] df = df.groupby(['date', 'vac_statut'], as_index = False).sum() if statut == 'Vaccination complète': df = df[~df['vac_statut'].isin(['Non-vaccinés', 'Primo dose efficace', 'Primo dose récente'])] df = df.groupby('date', as_index = False).sum() else: df = df[df['vac_statut'] == statut] df = df.sort_values('date', ascending = True) df['numerateur'] = multi * df[column].rolling(window = 7).sum() df['denominateur'] = df['effectif'].rolling(window = 7).mean() df = df[~df['denominateur'].isnull()] df['res'] = df['numerateur'] / df['denominateur'] for country in tqdm(countries, desc="Processing National"): res = process_stock( df, 'nat', 'fra', config['trendType'], 'res' ) indicateurResult['france'].append(res) if region: df = pd.read_csv("files_new/" + config['res_id_reg'], sep=None, engine='python', dtype={'reg': str, 'dep': str}) df = df[df['vac_statut'] == statut] tri_reg = pd.read_csv("utils/region2021.csv", sep=None, engine='python', dtype={'reg': str, 'dep': str}) for reg in tqdm(df['region'].unique(), desc="Processing Régions"): df_reg = df[df['region'] == reg] df_reg = df_reg.sort_values('date', ascending = True) df_reg['numerateur'] = multi * df_reg[column].rolling(window = 7).sum() df_reg['denominateur'] = df_reg['effectif'].rolling(window = 7).mean() df_reg = df_reg[~df_reg['denominateur'].isnull()] df_reg['res'] = df_reg['numerateur'] / df_reg['denominateur'] res = process_stock( df_reg, 'reg', tri_reg.loc[tri_reg['trigramme'] == reg, 'reg'].iloc[0], config['trendType'], 'res' ) indicateurResult['regions'].append(res) save_result(indicateurResult, name)
5,343,103
def dump_lightcurves_with_grcollect(photfileglob, lcdir, maxmemory, objectidcol=3, lcextension='grcollectilc', observatory='tess'): """ Given a list of photometry files (text files at various times output by fiphot with rows that are objects), make lightcurve files (text files for various objects whose rows are times). (For TESS, the timestamp imprinted here is JD_UTC midtime.) This routine uses the `fitsh` routine `grcollect` to do the dumping. This is comparably fast to the postgresql indexing approach without heavy optimization (dumps ~1 photometry file per second). An important intermediate step, implemented here, is prepending times and filenames to *.iphot lightcurve files, to make *.iphottemp files. *.iphot photometry files look like: HAT-381-0000004 1482.093 521.080 1482.10899 521.079941 1.86192159 -0.217043415 -0.152707564 0.35 0.41 583942.10 334.31 5.54226 0.00062 G 605285.46 340.12 5.50328 0.00061 G 619455.38 344.29 5.47816 0.00060 G Args: photfileglob (str): bash glob to pass to grcollect, e.g., the first input line below grcollect /home/mypath/rsub-3f62ef9f-tess201913112*.iphot \ --col-base 1 --prefix /nfs/phtess1/ar1/TESS/SIMFFI/LC/ISP_1-1/ \ --extension grcollectilc --max-memory 4g objectidcol (int): column of object id in *.iphottemp files (default: 3) lcdir (str): directory where lightcurves get dumped maxmemory (str): e.g., "2g", "100m" for 2gb, or 100mb. Maximum amount of memory for `grcollect`. See https://fitsh.net/wiki/man/grcollect for terse details. Keyword args: lcextension (str): e.g., "grcollectilc" for the extension you want your dumped lightcurves to have. Also common is "ilc" for "image-subtracted lightcurve". Returns: diddly-squat. """ if not os.path.exists(lcdir): os.mkdir(lcdir) starttime = time.time() photpaths = glob.glob(photfileglob) print('%sZ: called dump lightcurves for %d photfiles' % (datetime.utcnow().isoformat(), len(photpaths))) if len(photpaths)==0: print('ERR! %sZ: failed to find %s, continuing' % (datetime.utcnow().isoformat(), frametoshift)) return 0 # *.iphot files need to have timestamp and filenames prepended on each # line, otherwise lightcurves will have no times. make the correctly # formatted ".iphottemp" files here. for ix, photpath in enumerate(photpaths): if observatory=='tess': framekey = re.findall( 'tess20.*?-[0-9][0-9][0-9][0-9]_cal_img_bkgdsub', photpath) if not len(framekey) == 1: raise AssertionError( 'expected only one photframe, got {:s}'. format(repr(framekey))) originalframe = os.path.join(os.path.dirname(photpath), framekey[0]+'.fits') elif observatory=='hatpi': framekey = re.findall('(.-.{7}_.)\.iphot', photpath) assert len(framekey) == 1, 'HATPI specific regex!' originalframe = os.path.join(os.path.dirname(photpath), framekey[0]+'.fits') else: raise NotImplementedError # check these files exist, and populate the dict if they do if os.path.exists(originalframe): tempphotpath = photpath.replace('.iphot','.iphottemp') if os.path.exists(tempphotpath): print('%sZ: skipping %d/%d frame, found .iphottemp file %s' % (datetime.utcnow().isoformat(), ix, len(photpaths), tempphotpath)) continue print('%sZ: writing %d/%d frame, %s to .iphottemp file %s' % (datetime.utcnow().isoformat(), ix, len(photpaths), photpath, tempphotpath)) # this is the ORIGINAL FITS frame, since the subtracted one # contains some weird JD header (probably inherited from the # photref frame) if observatory=='tess': from astropy.time import Time # observation start and stop time as BJD_UTC calendar dates. # calculated by SPOC. (these include the leapseconds). the # wrong barycentric correction has been applied to all # available timestamps (and the sign convention for how the # correction is applied -- is it added, or subtracted? -- has # been confirmed via private comm. with Jon Jenkins) tstart_bjd_utc_str = get_header_keyword( originalframe, 'DATE-OBS') tstop_bjd_utc_str = get_header_keyword( originalframe, 'DATE-END') ltt_barycenter_spoc = get_header_keyword( originalframe, 'BARYCORR') # record the midtime in JD_UTC with grcollect. barycentric # correction comes later. (once ra/dec are accessible). tstart_bjd_utc = Time(tstart_bjd_utc_str, format='isot', scale='utc') tstop_bjd_utc = Time(tstop_bjd_utc_str, format='isot', scale='utc') tmid_bjd_utc = ( tstart_bjd_utc.jd + (tstop_bjd_utc.jd - tstart_bjd_utc.jd)/2. ) # WANT: bjd_tdb_me = jd_utc_spoc + ltt_barycenter_me + leapseconds (eq 1) # HAVE: bjd_utc_spoc = jd_utc_spoc + ltt_barycenter_spoc (eq 2) # use eq (2) to get jd_tdb_spoc: tmid_jd_utc = tmid_bjd_utc - ltt_barycenter_spoc frametime = tmid_jd_utc elif observatory=='hatpi': frametime = get_header_keyword(originalframe, 'JD') else: raise NotImplementedError # now open the phot file, read it, and write to the tempphot file. output = StringIO() with open(photpath, 'rb') as photfile: # write time precise to 1e-7 days = 8.6 milliseconds. for line in photfile: output.write('%.7f\t%s\t%s' % ( frametime, framekey[0], line.decode('utf-8')) ) with open(tempphotpath, 'w') as tempphotfile: output.seek(0) shutil.copyfileobj(output, tempphotfile) output.close() grcollectglob = photfileglob.replace('.iphot', '.iphottemp') cmdtorun = GRCOLLECTCMD.format(fiphotfileglob=grcollectglob, lcdir=lcdir, objectidcol=objectidcol, lcextension=lcextension, maxmemory=maxmemory) if DEBUG: print(cmdtorun) # execute the grcollect shell command. NB we execute through a shell # interpreter to get correct wildcards applied. grcollectproc = subprocess.Popen(cmdtorun, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, stderr = grcollectproc.communicate() if grcollectproc.returncode == 0: print('%sZ: grcollect dump succeeded' % datetime.utcnow().isoformat()) else: print('ERR! %sZ: grcollect failed' % datetime.utcnow().isoformat()) print('error was %s' % stderr ) print('%sZ: done, time taken: %.2f minutes' % (datetime.utcnow().isoformat(), (time.time() - starttime)/60.0))
5,343,104
def main(): # pragma: no cover """Entrypoint invoked via a console script.""" try: while True: print(format_datetime()) sleep(1) except KeyboardInterrupt: pass
5,343,105
def varPostV(self,name,value): """ Moving all the data from entry to treeview """ regex = re.search("-[@_!#$%^&*()<>?/\|}{~: ]", name) #Prevent user from giving special character and space character print(regex) if not regex == None: tk.messagebox.showerror("Forbidden Entry","The variable name for vehicle must not contain special character or space character") return None if not name.strip(): tk.messagebox.showerror("Empty entry","The variable name for vehicle is empty") return None if not value.strip(): tk.messagebox.showerror("Empty entry","The variable value for vechicle is empty") return None if not value.isdigit(): tk.messagebox.showerror("Empty entry","The variable value for vechicle must be number") return None self.varVContent = self.varDispV self.varVContent.insert("",index="end",text=name,value=float(value))
5,343,106
def _mysql_int_length(subtype): """Determine smallest field that can hold data with given length.""" try: length = int(subtype) except ValueError: raise ValueError( 'Invalid subtype for Integer column: {}'.format(subtype) ) if length < 3: kind = 'TINYINT' elif length < 4: kind = 'SMALLINT' elif length < 7: kind = 'MEDIUMINT' elif length <= 10: kind = 'INT' else: kind = 'BIGINT' return '{}({})'.format(kind, length)
5,343,107
def get_ci(vals, percent=0.95): """Confidence interval for `vals` from the Students' t distribution. Uses `stats.t.interval`. Parameters ---------- percent : float Size of the confidence interval. The default is 0.95. The only requirement is that this be above 0 and at or below 1. Returns ------- tuple The first member is the upper end of the interval, the second the lower end of the interval. """ if len(set(vals)) == 1: return (vals[0], vals[0]) mu = np.mean(vals) df = len(vals)-1 sigma = np.std(vals) / np.sqrt(len(vals)) return stats.t.interval(percent, df, loc=mu, scale=sigma)
5,343,108
def kb_overview_rows(mode=None, max=None, locale=None, product=None, category=None): """Return the iterable of dicts needed to draw the new KB dashboard overview""" if mode is None: mode = LAST_30_DAYS docs = Document.objects.filter(locale=settings.WIKI_DEFAULT_LANGUAGE, is_archived=False, is_template=False) docs = docs.exclude(html__startswith=REDIRECT_HTML) select = OrderedDict([ ('num_visits', 'SELECT `wdv`.`visits` ' 'FROM `dashboards_wikidocumentvisits` as `wdv` ' 'WHERE `wdv`.`period`=%s ' 'AND `wdv`.`document_id`=`wiki_document`.`id`'), ]) docs = docs.extra(select=select, select_params=(mode,)) if product: docs = docs.filter(products__in=[product]) if category: docs = docs.filter(category__in=[category]) docs = docs.order_by('-num_visits', 'title') if max: docs = docs[:max] rows = [] if docs.count(): max_visits = docs[0].num_visits for d in docs: data = { 'url': reverse('wiki.document', args=[d.slug], locale=settings.WIKI_DEFAULT_LANGUAGE), 'trans_url': reverse('wiki.show_translations', args=[d.slug], locale=settings.WIKI_DEFAULT_LANGUAGE), 'title': d.title, 'num_visits': d.num_visits, 'ready_for_l10n': d.revisions.filter(is_approved=True, is_ready_for_localization=True).exists() } if d.current_revision: data['expiry_date'] = d.current_revision.expires if d.num_visits: data['visits_ratio'] = float(d.num_visits) / max_visits if 'expiry_date' in data and data['expiry_date']: data['stale'] = data['expiry_date'] < datetime.now() # Check L10N status if d.current_revision: unapproved_revs = d.revisions.filter( reviewed=None, id__gt=d.current_revision.id)[:1] else: unapproved_revs = d.revisions.all() if unapproved_revs.count(): data['revision_comment'] = unapproved_revs[0].comment else: data['latest_revision'] = True # Get the translated doc if locale != settings.WIKI_DEFAULT_LANGUAGE: transdoc = d.translations.filter( locale=locale, is_archived=False).first() if transdoc: data['needs_update'] = transdoc.is_outdated() else: # For en-US we show the needs_changes comment. data['needs_update'] = d.needs_change data['needs_update_comment'] = d.needs_change_comment rows.append(data) return rows
5,343,109
def test_query_devicecontrolalert_facets(monkeypatch): """Test a Device Control alert facet query.""" _was_called = False def _run_facet_query(url, body, **kwargs): nonlocal _was_called assert url == "/appservices/v6/orgs/Z100/alerts/devicecontrol/_facet" assert body == {"query": "Blort", "criteria": {"workflow": ["OPEN"]}, "terms": {"rows": 0, "fields": ["REPUTATION", "STATUS"]}, "rows": 100} _was_called = True return StubResponse({"results": [{"field": {}, "values": [{"id": "reputation", "name": "reputationX", "total": 4}]}, {"field": {}, "values": [{"id": "status", "name": "statusX", "total": 9}]}]}) api = CBCloudAPI(url="https://example.com", token="ABCD/1234", org_key="Z100", ssl_verify=True) patch_cbc_sdk_api(monkeypatch, api, POST=_run_facet_query) query = api.select(DeviceControlAlert).where("Blort").set_workflows(["OPEN"]) f = query.facets(["REPUTATION", "STATUS"]) assert _was_called assert f == [{"field": {}, "values": [{"id": "reputation", "name": "reputationX", "total": 4}]}, {"field": {}, "values": [{"id": "status", "name": "statusX", "total": 9}]}]
5,343,110
def plot_logs(experiments: List[Summary], smooth_factor: float = 0, ignore_metrics: Optional[Set[str]] = None, pretty_names: bool = False, include_metrics: Optional[Set[str]] = None) -> Figure: """A function which will plot experiment histories for comparison viewing / analysis. Args: experiments: Experiment(s) to plot. smooth_factor: A non-negative float representing the magnitude of gaussian smoothing to apply (zero for none). pretty_names: Whether to modify the metric names in graph titles (True) or leave them alone (False). ignore_metrics: Any keys to ignore during plotting. include_metrics: A whitelist of keys to include during plotting. If None then all will be included. Returns: The handle of the pyplot figure. """ # Sort to keep same colors between multiple runs of visualization experiments = humansorted(to_list(experiments), lambda exp: exp.name) n_experiments = len(experiments) if n_experiments == 0: return make_subplots() ignore_keys = ignore_metrics or set() ignore_keys = to_set(ignore_keys) ignore_keys |= {'epoch'} include_keys = to_set(include_metrics) # TODO: epoch should be indicated on the axis (top x axis?). Problem - different epochs per experiment. # TODO: figure out how ignore_metrics should interact with mode # TODO: when ds_id switches during training, prevent old id from connecting with new one (break every epoch?) ds_ids = set() metric_histories = defaultdict(_MetricGroup) # metric: MetricGroup for idx, experiment in enumerate(experiments): history = experiment.history # Since python dicts remember insertion order, sort the history so that train mode is always plotted on bottom for mode, metrics in sorted(history.items(), key=lambda x: 0 if x[0] == 'train' else 1 if x[0] == 'eval' else 2 if x[0] == 'test' else 3 if x[0] == 'infer' else 4): for metric, step_val in metrics.items(): base_metric, ds_id, *_ = f'{metric}|'.split('|') # Plot acc|ds1 and acc|ds2 on same acc graph if len(step_val) == 0: continue # Ignore empty metrics if metric in ignore_keys or base_metric in ignore_keys: continue # Here we intentionally check against metric and not base_metric. If user wants to display per-ds they # can specify that in their include list: --include mcc 'mcc|usps' if include_keys and metric not in include_keys: continue metric_histories[base_metric].add(idx, mode, ds_id, step_val) ds_ids.add(ds_id) metric_list = list(sorted(metric_histories.keys())) if len(metric_list) == 0: return make_subplots() ds_ids = humansorted(ds_ids) # Sort them to have consistent ordering (and thus symbols) between plot runs n_plots = len(metric_list) if len(ds_ids) > 9: # 9 b/c None is included print("FastEstimator-Warn: Plotting more than 8 different datasets isn't well supported. Symbols will be " "reused.") # Non-Shared legends aren't supported yet. If they get supported then maybe can have that feature here too. # https://github.com/plotly/plotly.js/issues/5099 # https://github.com/plotly/plotly.js/issues/5098 # map the metrics into an n x n grid, then remove any extra columns. Final grid will be n x m with m <= n n_rows = math.ceil(math.sqrt(n_plots)) n_cols = math.ceil(n_plots / n_rows) metric_grid_location = {} nd1_metrics = [] idx = 0 for metric in metric_list: if metric_histories[metric].ndim() == 1: # Delay placement of the 1D plots until the end nd1_metrics.append(metric) else: metric_grid_location[metric] = (idx // n_cols, idx % n_cols) idx += 1 for metric in nd1_metrics: metric_grid_location[metric] = (idx // n_cols, idx % n_cols) idx += 1 titles = [k for k, v in sorted(list(metric_grid_location.items()), key=lambda e: e[1][0] * n_cols + e[1][1])] if pretty_names: titles = [prettify_metric_name(title) for title in titles] fig = make_subplots(rows=n_rows, cols=n_cols, subplot_titles=titles, shared_xaxes='all') fig.update_layout({'plot_bgcolor': '#FFF', 'hovermode': 'closest', 'margin': {'t': 50}, 'modebar': {'add': ['hoverclosest', 'hovercompare'], 'remove': ['select2d', 'lasso2d']}, 'legend': {'tracegroupgap': 5, 'font': {'size': 11}}}) # Set x-labels for idx, metric in enumerate(titles, start=1): plotly_idx = idx if idx > 1 else "" x_axis_name = f'xaxis{plotly_idx}' y_axis_name = f'yaxis{plotly_idx}' if metric_histories[metric].ndim() > 1: fig['layout'][x_axis_name]['title'] = 'Steps' fig['layout'][x_axis_name]['showticklabels'] = True fig['layout'][x_axis_name]['linecolor'] = "#BCCCDC" fig['layout'][y_axis_name]['linecolor'] = "#BCCCDC" else: # Put blank data onto the axis to instantiate the domain row, col = metric_grid_location[metric][0], metric_grid_location[metric][1] fig.add_annotation(text='', showarrow=False, row=row + 1, col=col + 1) # Hide the axis stuff fig['layout'][x_axis_name]['showgrid'] = False fig['layout'][x_axis_name]['zeroline'] = False fig['layout'][x_axis_name]['visible'] = False fig['layout'][y_axis_name]['showgrid'] = False fig['layout'][y_axis_name]['zeroline'] = False fig['layout'][y_axis_name]['visible'] = False # If there is only 1 experiment, we will use alternate colors based on mode color_offset = defaultdict(lambda: 0) n_colors = n_experiments if n_experiments == 1: n_colors = 4 color_offset['eval'] = 1 color_offset['test'] = 2 color_offset['infer'] = 3 colors = get_colors(n_colors=n_colors) alpha_colors = get_colors(n_colors=n_colors, alpha=0.3) # exp_id : {mode: {ds_id: {type: True}}} add_label = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: True)))) # {row: {col: (x, y)}} ax_text = defaultdict(lambda: defaultdict(lambda: (0.0, 0.9))) # Where to put the text on a given axis # Set up ds_id markers. The empty ds_id will have no extra marker. After that there are 4 configurations of 3-arm # marker, followed by 'x', '+', '*', and pound. After that it will just repeat the symbol set. ds_id_markers = [None, 37, 38, 39, 40, 34, 33, 35, 36] # https://plotly.com/python/marker-style/ ds_id_markers = {k: v for k, v in zip(ds_ids, cycle(ds_id_markers))} # Plotly doesn't support z-order, so delay insertion until all the plots are figured out: # https://github.com/plotly/plotly.py/issues/2345 z_order = defaultdict(list) # {order: [(plotly element, row, col), ...]} # Figure out the legend ordering legend_order = [] for exp_idx, experiment in enumerate(experiments): for metric, group in metric_histories.items(): for mode in group.modes(exp_idx): for ds_id in group.ds_ids(exp_idx, mode): ds_title = f"{ds_id} " if ds_id else '' title = f"{experiment.name} ({ds_title}{mode})" if n_experiments > 1 else f"{ds_title}{mode}" legend_order.append(title) legend_order.sort() legend_order = {legend: order for order, legend in enumerate(legend_order)} # Actually do the plotting for exp_idx, experiment in enumerate(experiments): for metric, group in metric_histories.items(): row, col = metric_grid_location[metric][0], metric_grid_location[metric][1] if group.ndim() == 1: # Single value for mode in group.modes(exp_idx): for ds_id in group.ds_ids(exp_idx, mode): ds_title = f"{ds_id} " if ds_id else '' prefix = f"{experiment.name} ({ds_title}{mode})" if n_experiments > 1 else f"{ds_title}{mode}" plotly_idx = row * n_cols + col + 1 if row * n_cols + col + 1 > 1 else '' fig.add_annotation(text=f"{prefix}: {group.get_val(exp_idx, mode, ds_id)}", font={'color': colors[exp_idx + color_offset[mode]]}, showarrow=False, xref=f'x{plotly_idx} domain', xanchor='left', x=ax_text[row][col][0], yref=f'y{plotly_idx} domain', yanchor='top', y=ax_text[row][col][1], exclude_empty_subplots=False) ax_text[row][col] = (ax_text[row][col][0], ax_text[row][col][1] - 0.1) if ax_text[row][col][1] < 0: ax_text[row][col] = (ax_text[row][col][0] + 0.5, 0.9) elif group.ndim() == 2: for mode, dsv in group[exp_idx].items(): color = colors[exp_idx + color_offset[mode]] for ds_id, data in dsv.items(): ds_title = f"{ds_id} " if ds_id else '' title = f"{experiment.name} ({ds_title}{mode})" if n_experiments > 1 else f"{ds_title}{mode}" if data.shape[0] < 2: x = data[0][0] y = data[0][1] y_min = None y_max = None if isinstance(y, ValWithError): y_min = y.y_min y_max = y.y_max y = y.y marker_style = 'circle' if mode == 'train' else 'diamond' if mode == 'eval' \ else 'square' if mode == 'test' else 'hexagram' limit_data = [(y_max, y_min)] if y_max is not None and y_min is not None else None tip_text = "%{x}: (%{customdata[1]:.3f}, %{y:.3f}, %{customdata[0]:.3f})" if \ limit_data is not None else "%{x}: %{y:.3f}" error_y = None if limit_data is None else {'type': 'data', 'symmetric': False, 'array': [y_max - y], 'arrayminus': [y - y_min]} z_order[2].append((go.Scatter(x=[x], y=[y], name=title, legendgroup=title, customdata=limit_data, hovertemplate=tip_text, mode='markers', marker={'color': color, 'size': 12, 'symbol': _symbol_mash(marker_style, ds_id_markers[ds_id]), 'line': {'width': 1.5, 'color': 'White'}}, error_y=error_y, showlegend=add_label[exp_idx][mode][ds_id]['patch'], legendrank=legend_order[title]), row, col)) add_label[exp_idx][mode][ds_id]['patch'] = False else: # We can draw a line y = data[:, 1] y_min = None y_max = None if isinstance(y[0], ValWithError): y = np.stack(y) y_min = y[:, 0] y_max = y[:, 2] y = y[:, 1] if smooth_factor != 0: y_min = gaussian_filter1d(y_min, sigma=smooth_factor) y_max = gaussian_filter1d(y_max, sigma=smooth_factor) # TODO - for smoothed lines, plot original data in background but greyed out if smooth_factor != 0: y = gaussian_filter1d(y, sigma=smooth_factor) x = data[:, 0] linestyle = 'solid' if mode == 'train' else 'dash' if mode == 'eval' else 'dot' if \ mode == 'test' else 'dashdot' limit_data = [(mx, mn) for mx, mn in zip(y_max, y_min)] if y_max is not None and y_min is \ not None else None tip_text = "%{x}: (%{customdata[1]:.3f}, %{y:.3f}, %{customdata[0]:.3f})" if \ limit_data is not None else "%{x}: %{y:.3f}" z_order[1].append((go.Scatter(x=x, y=y, name=title, legendgroup=title, mode="lines+markers" if ds_id_markers[ds_id] else 'lines', marker={'color': color, 'size': 8, 'line': {'width': 2, 'color': 'DarkSlateGrey'}, 'maxdisplayed': 10, 'symbol': ds_id_markers[ds_id]}, line={'dash': linestyle, 'color': color}, customdata=limit_data, hovertemplate=tip_text, showlegend=add_label[exp_idx][mode][ds_id]['line'], legendrank=legend_order[title]), row, col)) add_label[exp_idx][mode][ds_id]['line'] = False if limit_data is not None: z_order[0].append((go.Scatter(x=x, y=y_max, mode='lines', line={'width': 0}, legendgroup=title, showlegend=False, hoverinfo='skip'), row, col)) z_order[0].append((go.Scatter(x=x, y=y_min, mode='lines', line={'width': 0}, fillcolor=alpha_colors[exp_idx + color_offset[mode]], fill='tonexty', legendgroup=title, showlegend=False, hoverinfo='skip'), row, col)) else: # Some kind of image or matrix. Not implemented yet. pass for z in sorted(list(z_order.keys())): plts = z_order[z] for plt, row, col in plts: fig.add_trace(plt, row=row + 1, col=col + 1) # If inside a jupyter notebook then force the height based on number of rows if in_notebook(): fig.update_layout(height=280 * n_rows) return fig
5,343,111
def regularity(sequence): """ Compute the regularity of a sequence. The regularity basically measures what percentage of a user's visits are to a previously visited place. Parameters ---------- sequence : list A list of symbols. Returns ------- float 1 minus the ratio between unique and total symbols in the sequence. """ n = len(sequence) n_unique = len(set(sequence)) if n_unique <= 1: return 1.0 if n_unique == n: return .0 return 1 - (n_unique / n)
5,343,112
def _make_tick_labels( tick_values: List[float], axis_subtractor: float, tick_divisor_power: int, ) -> List[str]: """Given a collection of ticks, return a formatted version. Args: tick_values (List[float]): The ticks positions in ascending order. tick_divisor_power (int): The power of ten the tick labels will be divided by. axis_subtractor (float): The amount to subtract from the tick values. Returns: Generator[str, None, None]: The generated tick labels. """ tick_divisor_prefix = _get_metric_prefix(tick_divisor_power) return [ f"{(tick - axis_subtractor) / 10 ** tick_divisor_power:0.2f}" f"{tick_divisor_prefix}" for tick in tick_values ]
5,343,113
def load_coco(dataset_file, map_file): """ Load preprocessed MSCOCO 2017 dataset """ print('\nLoading dataset...') h5f = h5py.File(dataset_file, 'r') x = h5f['x'][:] y = h5f['y'][:] h5f.close() split = int(x.shape[0] * 0.8) # 80% of data is assigned to the training set x_train, y_train = x[:split], y[:split] x_test, y_test = x[split:], y[split:] with open(map_file, 'rb') as mapping: category_id_map = pickle.load(mapping) id_category = category_id_map['id_category'] print('Done.') return (x_train, y_train), (x_test, y_test), id_category
5,343,114
def eval_rule(call_fn, abstract_eval_fn, *args, **kwargs): """ Python Evaluation rule for a numba4jax function respecting the XLA CustomCall interface. Evaluates `outs = abstract_eval_fn(*args)` to compute the output shape and preallocate them, then executes `call_fn(*outs, *args)` which is the Numba kernel. Args: call_fn: a (numba.jit) function respecting the calling convention of XLA CustomCall, taking first the outputs by reference then the inputs. abstract_eval_fn: The abstract evaluation function respecting jax interface args: The arguments to the `call_fn` kwargs: Optional keyword arguments for the numba function. """ # compute the output shapes output_shapes = abstract_eval_fn(*args) # Preallocate the outputs outputs = tuple(np.empty(shape.shape, dtype=shape.dtype) for shape in output_shapes) # convert inputs to a tuple inputs = tuple(np.asarray(arg) for arg in args) # call the kernel call_fn(outputs + inputs, **kwargs) # Return the outputs return tuple(outputs)
5,343,115
def bev_box_overlap(boxes, qboxes, criterion=-1): """ Calculate rotated 2D iou. Args: boxes: qboxes: criterion: Returns: """ riou = rotate_iou_gpu_eval(boxes, qboxes, criterion) return riou
5,343,116
def filter_shape(image): """画像にぼかしフィルターを適用。""" weight = ( (1, 1, 1), (1, 1, 1), (1, 1, 1) ) offset = 0 div = 9 return _filter(image, weight, offset, div)
5,343,117
def ppretty(obj, indent=' ', depth=4, width=72, seq_length=5, show_protected=False, show_private=False, show_static=False, show_properties=False, show_address=False, str_length=50): """Represents any python object in a human readable format. :param obj: An object to represent. :type obj: object :param indent: Fill string for indents. Default is ' '. :type indent: str :param depth: Depth of introspecion. Default is 4. :type depth: int :param width: Width of line in output string. It may be exceeded when representation doesn't fit. Default is 72. :type width: int :param seq_length: Maximum sequence length. Also, used for object's members enumeration. Default is 5. :type seq_length: int :param show_protected: Examine protected members. Default is False. :type show_protected: bool :param show_private: Examine private members. To take effect show_protected must be set to True. Default is False. :type show_private: bool :param show_static: Examine static members. Default is False. :type show_static: bool :param show_properties: Examine properties members. Default is False. :type show_properties: bool :param show_address: Show address. Default is False. :type show_address: bool :param str_length: Maximum string length. Default is 50. :type str_length: int :return: The final representation of the object. :rtype: str """ seq_brackets = {list: ('[', ']'), tuple: ('(', ')'), set: ('set([', '])'), dict: ('{', '}')} seq_types = tuple(seq_brackets.keys()) basestring_type = basestring if sys.version_info[0] < 3 else str def inspect_object(current_obj, current_depth, current_width, seq_type_descendant=False): inspect_nested_object = partial(inspect_object, current_depth=current_depth - 1, current_width=current_width - len(indent)) # Basic types if isinstance(current_obj, Number): return [repr(current_obj)] # Strings if isinstance(current_obj, basestring_type): if len(current_obj) <= str_length: return [repr(current_obj)] return [repr(current_obj[:int(str_length / 2)] + '...' + current_obj[int((1 - str_length) / 2):])] # Class object if isinstance(current_obj, type): module = current_obj.__module__ + '.' if hasattr(current_obj, '__module__') else '' return ["<class '" + module + current_obj.__name__ + "'>"] # None if current_obj is None: return ['None'] # Format block of lines def format_block(lines, open_bkt='', close_bkt=''): new_lines = [] # new_lines will be returned if width exceeded one_line = '' # otherwise, one_line will be returned. if open_bkt: new_lines.append(open_bkt) one_line += open_bkt for line in lines: new_lines.append(indent + line) if len(one_line) <= current_width: one_line += line if close_bkt: if lines: new_lines.append(close_bkt) else: new_lines[-1] += close_bkt one_line += close_bkt return [one_line] if len(one_line) <= current_width and one_line else new_lines class SkipElement(object): pass class ErrorAttr(object): def __init__(self, e): self.e = e def cut_seq(seq): if current_depth < 1: return [SkipElement()] if len(seq) <= seq_length: return seq elif seq_length > 1: seq = list(seq) if isinstance(seq, tuple) else seq return seq[:int(seq_length / 2)] + [SkipElement()] + seq[int((1 - seq_length) / 2):] return [SkipElement()] def format_seq(extra_lines): r = [] items = cut_seq(obj_items) for n, i in enumerate(items, 1): if type(i) is SkipElement: r.append('...') else: if type(current_obj) is dict or seq_type_descendant and isinstance(current_obj, dict): (k, v) = i k = inspect_nested_object(k) v = inspect_nested_object(v) k[-1] += ': ' + v.pop(0) r.extend(k) r.extend(format_block(v)) elif type(current_obj) in seq_types or seq_type_descendant and isinstance(current_obj, seq_types): r.extend(inspect_nested_object(i)) else: (k, v) = i k = [k] if type(v) is ErrorAttr: e_message = '<Attribute error: ' + type(v.e).__name__ if hasattr(v.e, 'message'): e_message += ': ' + v.e.message e_message += '>' v = [e_message] else: v = inspect_nested_object(v) k[-1] += ' = ' + v.pop(0) r.extend(k) r.extend(format_block(v)) if n < len(items) or extra_lines: r[-1] += ', ' return format_block(r + extra_lines, *brackets) # Sequence types # Others objects are considered as sequence of members extra_lines = [] if type(current_obj) in seq_types or seq_type_descendant and isinstance(current_obj, seq_types): if isinstance(current_obj, dict): obj_items = list(current_obj.items()) else: obj_items = current_obj if seq_type_descendant: brackets = seq_brackets[[seq_type for seq_type in seq_types if isinstance(current_obj, seq_type)].pop()] else: brackets = seq_brackets[type(current_obj)] else: obj_items = [] for k in sorted(dir(current_obj)): if not show_private and k.startswith('_') and '__' in k: continue if not show_protected and k.startswith('_'): continue try: v = getattr(current_obj, k) if isroutine(v): continue if not show_static and hasattr(type(current_obj), k) and v is getattr(type(current_obj), k): continue if not show_properties and hasattr(type(current_obj), k) and isinstance( getattr(type(current_obj), k), property): continue except Exception as e: v = ErrorAttr(e) obj_items.append((k, v)) if isinstance(current_obj, seq_types): # If object's class was inherited from one of basic sequence types extra_lines += inspect_nested_object(current_obj, seq_type_descendant=True) module = current_obj.__module__ + '.' if hasattr(current_obj, '__module__') else '' address = ' at ' + hex(id(current_obj)) + ' ' if show_address else '' brackets = (module + type(current_obj).__name__ + address + '(', ')') return format_seq(extra_lines) return '\n'.join(inspect_object(obj, depth, width))
5,343,118
def traj_colormap(ax, traj, array, plot_mode, min_map, max_map, title=""): """ color map a path/trajectory in xyz coordinates according to an array of values :param ax: plot axis :param traj: trajectory.PosePath3D or trajectory.PoseTrajectory3D object :param array: Nx1 array of values used for color mapping :param plot_mode: PlotMode :param min_map: lower bound value for color mapping :param max_map: upper bound value for color mapping :param title: plot title """ pos = traj.positions_xyz norm = mpl.colors.Normalize(vmin=min_map, vmax=max_map, clip=True) mapper = cm.ScalarMappable( norm=norm, cmap=SETTINGS.plot_trajectory_cmap) # cm.*_r is reversed cmap mapper.set_array(array) colors = [mapper.to_rgba(a) for a in array] line_collection = colored_line_collection(pos, colors, plot_mode) ax.add_collection(line_collection) if plot_mode == PlotMode.xyz: ax.set_zlim( np.amin(traj.positions_xyz[:, 2]), np.amax(traj.positions_xyz[:, 2])) if SETTINGS.plot_xyz_realistic: set_aspect_equal_3d(ax) fig = plt.gcf() cbar = fig.colorbar( mapper, ticks=[min_map, (max_map - (max_map - min_map) / 2), max_map]) cbar.ax.set_yticklabels([ "{0:0.3f}".format(min_map), "{0:0.3f}".format(max_map - (max_map - min_map) / 2), "{0:0.3f}".format(max_map) ]) if title: ax.legend(frameon=True) plt.title(title)
5,343,119
def dict2pkl(mydict, path): """ Saves a dictionary object into a pkl file. :param mydict: dictionary to save in a file :param path: path where my_dict is stored :return: """ import cPickle if path[-4:] == '.pkl': extension = '' else: extension = '.pkl' with open(path + extension, 'w') as f: cPickle.dump(mydict, f, protocol=cPickle.HIGHEST_PROTOCOL)
5,343,120
def makeTriangularMAFdist(low=0.02, high=0.5, beta=5): """Fake a non-uniform maf distribution to make the data more interesting - more rare alleles """ MAFdistribution = [] for i in xrange(int(100*low),int(100*high)+1): freq = (51 - i)/100.0 # large numbers of small allele freqs for j in range(beta*i): # or i*i for crude exponential distribution MAFdistribution.append(freq) return MAFdistribution
5,343,121
def export_inference_graph( config_path: str, trained_ckpt_dir: str, input_type: str, output_dir: str, config_override: Optional[pipeline_pb2.TrainEvalPipelineConfig] = None, use_side_inputs: bool = False, side_input_shapes: str = '', side_input_types: str = '', side_input_names: str = '', ) -> None: """Exports inference graph for the model specified in the pipeline config. This function creates `output_dir` if it does not already exist, which will hold a copy of the pipeline config with filename `pipeline.config`, and two subdirectories named `checkpoint` and `saved_model` (containing the exported checkpoint and SavedModel respectively). Args: config_path: A path to a pipeline config file. trained_ckpt_dir: Path to the trained checkpoint file. input_type: Type of input for the graph. Can be one of ['image_tensor', 'encoded_image_string_tensor', 'tf_example']. output_dir: Path to write outputs. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override the config from `config_path`. use_side_inputs: boolean that determines whether side inputs should be included in the input signature. side_input_shapes: forward-slash-separated list of comma-separated lists describing input shapes. side_input_types: comma-separated list of the types of the inputs. side_input_names: comma-separated list of the names of the inputs. Raises: ValueError: if input_type is invalid. """ # config pipeline_config = _get_pipeline_config(config_path, config_override) # build model detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](pipeline_config.model, is_training=False) # restore checkpoint ckpt = tf.train.Checkpoint(model=detection_model) manager = tf.train.CheckpointManager(ckpt, trained_ckpt_dir, max_to_keep=1) status = ckpt.restore(manager.latest_checkpoint).expect_partial() if input_type not in DETECTION_MODULE_MAP: raise ValueError('Unrecognized `input_type`') if use_side_inputs and input_type != 'image_tensor': raise ValueError('Side inputs supported for image_tensor input type only.') zipped_side_inputs = [] if use_side_inputs: zipped_side_inputs = _combine_side_inputs(side_input_shapes, side_input_types, side_input_names) detection_module = DETECTION_MODULE_MAP[input_type](detection_model, use_side_inputs, list(zipped_side_inputs)) # get concrete function traces the graph and forces variables to be constructed only after this can we save the # checkpoint and saved model concrete_function = detection_module.__call__.get_concrete_function() status.assert_existing_objects_matched() # output output_ckpt_dir = os.path.join(output_dir, 'checkpoint') output_saved_model_dir = os.path.join(output_dir, 'saved_model') # export checkpoint exported_manager = tf.train.CheckpointManager(ckpt, output_ckpt_dir, max_to_keep=1) exported_manager.save(checkpoint_number=0) # export saved model tf.saved_model.save(detection_module, output_saved_model_dir, signatures=concrete_function) # export config config_util.save_pipeline_config(pipeline_config, output_dir)
5,343,122
def create_structures_hdf5_stitched_ref_gene_file_npy(stitching_file, joining, nr_pixels, reference_gene, blend = 'non linear'): """Takes an HDF5 file handle and creates the necessary structures. Modification of create_structures_hdf5_files to work with .npy list of files Creates groups and data sets, when the groups or data sets already exists, they are kept as they are, as long as the data sets have the right size and data type. Incompatible data sets will be overwritten. Stitching file has the following structure: __________________Groups____________|___Data sets____ gene_stitched: StitchedImage: final_image blending_mask Parameters: ----------- stitching_file: pointer HDF5 file handle. The file where the stitched images will be saved. joining: dict Dictionary containing keys 'corner_list and 'final_image_shape'. Corner_list is a list of list, each list is a pair of an image number (int) and it's coordinates (numpy array containing floats). Final_image_shape is a tuple of size 2 or 3 depending on the number of dimensions and contains ints. nr_pixels: int Height and length of the tile in pixels, tile is assumed to be square. reference_gene: str The name of the gene we are stitching.This will be used to place the data in the right group in stitching_file. blend: str When 'non linear' or 'linear',blending will be applied, so we will need to create the structures necessary for saving the blended tiles. When it has another value or is None no blending at all will be applied, so we can skip this. This variable also determines to return value of linear_blending. Returns: -------- stitched_group: pointer HDF5 reference to the group where the final will be. linear_blending: bool When True later blending should be linear and when False, blending should be non-linear. blend: str When 'non linear' or 'linear', blending should be applied. When it has another value or is None no blending at all will be applied. """ logger.info("Generating stitching file structures.") # Create a group for the stitched images in the stitching file stitching_file.require_group(reference_gene) stitched_group = stitching_file[reference_gene].require_group('StitchedImage') # Create the final image in this file try: final_image = stitched_group.require_dataset('final_image', joining['final_image_shape'], dtype = np.float64) except TypeError as err: logger.info("Incompatible 'final_image' data set already existed, deleting old dataset.\n {}" .format(err)) del stitched_group['final_image'] inout.free_hdf5_space(stitching_file) final_image = stitched_group.require_dataset('final_image', joining['final_image_shape'], dtype = np.float64) # If blending is required initialize the blending mask in the # hdf5 file if blend is not None: # For the blending masks use only the last 2 dimensions of final # image shape, because also when working in 3D the masks can be # 2D as there is the same shift in x and y direction for the # whole stack. try: blending_mask = stitched_group.require_dataset('blending_mask', joining['final_image_shape'][-2:], dtype = np.float64) except TypeError as err: logger.info("Incompatible 'blending_mask' data set already existed, deleting old dataset.\n {}" .format(err)) del stitched_group['blending_mask'] inout.free_hdf5_space(stitching_file) final_image = stitched_group.require_dataset('blending_mask', joining['final_image_shape'][-2:], dtype = np.float64) # Check type of blending if blend == 'non linear': linear_blending = False elif blend == 'linear': linear_blending = True else: linear_blending = False logger.warning("Blend not defined correctly, \ using non-linear blending, \ blend is: {}".format(blend)) if False: logger.info("Flushing hdf5 file to clean up after delete operations") before_flush = stitching_file.id.get_filesize() stitching_file.flush() after_flush = stitching_file.id.get_filesize() logger.debug("Size in bytes before flush: {} after flush: {} space freed: {}".format(before_flush, after_flush, before_flush - after_flush)) return stitched_group, linear_blending, blend
5,343,123
def contains_whitespace(s : str): """ Returns True if any whitespace chars in input string. """ return " " in s or "\t" in s
5,343,124
def get_files_to_check(files, filter_function): # type: (List[str], Callable[[str], bool]) -> List[str] """Get a list of files that need to be checked based on which files are managed by git.""" # Get a list of candidate_files candidates_nested = [expand_file_string(f) for f in files] candidates = list(itertools.chain.from_iterable(candidates_nested)) if len(files) > 0 and len(candidates) == 0: raise ValueError("Globs '%s' did not find any files with glob." % (files)) repos = get_repos() valid_files = list( itertools.chain.from_iterable( [r.get_candidates(candidates, filter_function) for r in repos])) if len(files) > 0 and len(valid_files) == 0: raise ValueError("Globs '%s' did not find any files with glob in git." % (files)) return valid_files
5,343,125
def main(argv): """Parse the argv, verify the args, and call the runner.""" args = arg_parse(argv) return run(args.top_foods, args.top_food_categories)
5,343,126
def _failover_read_request(request_fn, endpoint, path, body, headers, params, timeout): """ This function auto-retries read-only requests until they return a 2xx status code. """ try: return request_fn('GET', endpoint, path, body, headers, params, timeout) except (requests.exceptions.RequestException, Non200ResponseException) as ex: raise FailoverException(ex)
5,343,127
def update_image_viewer_state(rec, context): """ Given viewer session information, make sure the session information is compatible with the current version of the viewers, and if not, update the session information in-place. """ if '_protocol' not in rec: # Note that files saved with protocol < 1 have bin settings saved per # layer but they were always restricted to be the same, so we can just # use the settings from the first layer rec['state'] = {} rec['state']['values'] = {} # TODO: could generalize this into a mapping properties = rec.pop('properties') viewer_state = rec['state']['values'] viewer_state['color_mode'] = 'st__Colormaps' viewer_state['reference_data'] = properties['data'] data = context.object(properties['data']) # TODO: add an id method to unserializer x_index = properties['slice'].index('x') y_index = properties['slice'].index('y') viewer_state['x_att_world'] = str(uuid.uuid4()) context.register_object(viewer_state['x_att_world'], data.world_component_ids[x_index]) viewer_state['y_att_world'] = str(uuid.uuid4()) context.register_object(viewer_state['y_att_world'], data.world_component_ids[y_index]) viewer_state['x_att'] = str(uuid.uuid4()) context.register_object(viewer_state['x_att'], data.pixel_component_ids[x_index]) viewer_state['y_att'] = str(uuid.uuid4()) context.register_object(viewer_state['y_att'], data.pixel_component_ids[y_index]) viewer_state['x_min'] = -0.5 viewer_state['x_max'] = data.shape[1] - 0.5 viewer_state['y_min'] = -0.5 viewer_state['y_max'] = data.shape[0] - 0.5 viewer_state['aspect'] = 'st__equal' # Slicing with cubes viewer_state['slices'] = [s if np.isreal(s) else 0 for s in properties['slice']] # RGB mode for layer in rec['layers'][:]: if layer['_type'].split('.')[-1] == 'RGBImageLayerArtist': for icolor, color in enumerate('rgb'): new_layer = {} new_layer['_type'] = 'glue.viewers.image.layer_artist.ImageLayerArtist' new_layer['layer'] = layer['layer'] new_layer['attribute'] = layer[color] new_layer['norm'] = layer[color + 'norm'] new_layer['zorder'] = layer['zorder'] new_layer['visible'] = layer['color_visible'][icolor] new_layer['color'] = color rec['layers'].append(new_layer) rec['layers'].remove(layer) viewer_state['color_mode'] = 'st__One color per layer' layer_states = [] for layer in rec['layers']: state_id = str(uuid.uuid4()) state_cls = STATE_CLASS[layer['_type'].split('.')[-1]] state = state_cls(layer=context.object(layer.pop('layer'))) for prop in ('visible', 'zorder'): value = layer.pop(prop) value = context.object(value) setattr(state, prop, value) if 'attribute' in layer: state.attribute = context.object(layer['attribute']) else: state.attribute = context.object(properties['attribute']) if 'norm' in layer: norm = context.object(layer['norm']) state.bias = norm.bias state.contrast = norm.contrast state.stretch = norm.stretch if norm.clip_hi is not None: state.percentile = norm.clip_hi else: if norm.vmax is not None: state.v_min = norm.vmin state.v_max = norm.vmax state.percentile = 'Custom' if 'color' in layer: state.global_sync = False state.color = layer['color'] context.register_object(state_id, state) layer['state'] = state_id layer_states.append(state) list_id = str(uuid.uuid4()) context.register_object(list_id, layer_states) rec['state']['values']['layers'] = list_id
5,343,128
def test_block_legacy_send_from_dict(): """ When deserializing a legacy send block, the balance has to be hex-formatted """ block_data = BLOCKS["send"]["data"].copy() block_data["balance"] = "10000000" with pytest.raises(InvalidBalance) as exc: Block.from_dict(block_data) assert "needs to be a hex" in str(exc.value)
5,343,129
def GenerateConfig(context): """Generates configuration.""" image = ''.join(['https://www.googleapis.com/compute/v1/', 'projects/google-containers/global/images/', context.properties['containerImage']]) default_network = ''.join(['https://www.googleapis.com/compute/v1/projects/', context.env['project'], '/global/networks/default']) instance_template = { 'name': context.env['name'] + '-it', 'type': 'compute.v1.instanceTemplate', 'properties': { 'properties': { 'metadata': { 'items': [{ 'key': 'google-container-manifest', 'value': GenerateManifest(context) }] }, 'machineType': 'f1-micro', 'disks': [{ 'deviceName': 'boot', 'boot': True, 'autoDelete': True, 'mode': 'READ_WRITE', 'type': 'PERSISTENT', 'initializeParams': {'sourceImage': image} }], 'networkInterfaces': [{ 'accessConfigs': [{ 'name': 'external-nat', 'type': 'ONE_TO_ONE_NAT' }], 'network': default_network }] } } } outputs = [{'name': 'instanceTemplateSelfLink', 'value': '$(ref.' + instance_template['name'] + '.selfLink)'}] return {'resources': [instance_template], 'outputs': outputs}
5,343,130
async def read_all_orders( status_order: Optional[str] = None, priority: Optional[int] = None, age: Optional[str] = None, value: Optional[str] = None, start_date: Optional[str] = None, end_date: Optional[str] = None, db: AsyncIOMotorClient = Depends(get_database), ) -> List[OrderSchema]: """[summary] Get all item by ID. [description] Endpoint to retrieve an specific item. [optional] [ON CREATE] Filter order by status: ['to-do', 'doing', 'done'] """ filters = { "status": status_order, "priority": priority, "age": age, "value": value, "start_date": start_date, "end_date": end_date, } orders_list = await orders.get_all(db, filters) if not orders_list: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="Note not found" ) return list(map(fix_item_id, orders_list))
5,343,131
def read_log_file(path): """ Read the log file for 3D Match's log files """ with open(path, "r") as f: log_lines = f.readlines() log_lines = [line.strip() for line in log_lines] num_logs = len(log_lines) // 5 transforms = [] for i in range(0, num_logs, 5): meta_data = np.fromstring(log_lines[i], dtype=int, sep=" \t") transform = np.zeros((4, 4), dtype=float) for j in range(4): transform[j] = np.fromstring(log_lines[i + j + 1], dtype=float, sep=" \t") transforms.append((meta_data, transform)) return transforms
5,343,132
def visualize_OOP_and_F_timeseries(OOP_list,J_list,folder_name): """Plot timeseries.""" external_folder_name = 'ALL_MOVIES_PROCESSED' out_analysis = external_folder_name + '/' + folder_name + '/analysis' plt.figure() plt.subplot(1,2,1) plt.plot(OOP_list) plt.xlabel('frame number') plt.ylabel('OOP') plt.tight_layout() plt.subplot(1,2,2) plt.plot(J_list) plt.xlabel('frame number') plt.ylabel('average deformation J') plt.tight_layout() plt.savefig(out_analysis + '/OOP_J_timeseries') return
5,343,133
def divide_list(l, n): """Divides list l into n successive chunks.""" length = len(l) chunk_size = int(math.ceil(length/n)) expected_length = n * chunk_size chunks = [] for i in range(0, expected_length, chunk_size): chunks.append(l[i:i+chunk_size]) for i in range(len(chunks), n): chunks.append([]) return chunks
5,343,134
def sigma(n): """Calculate the sum of all divisors of N.""" return sum(divisors(n))
5,343,135
def ATOMPAIRSfpDataFrame(chempandas,namecol,smicol): """ AtomPairs-based fingerprints 2048 bits. """ assert chempandas.shape[0] <= MAXLINES molsmitmp = [Chem.MolFromSmiles(x) for x in chempandas.iloc[:,smicol]] i = 0 molsmi = [] for x in molsmitmp: if x is not None: x.SetProp("_Name",chempandas.iloc[i,namecol]) molsmi.append(x) i += 1 # ATOMPAIRS Fingerprints. fps = [Pairs.GetAtomPairFingerprintAsBitVect(x) for x in molsmi] fpsmat = np.matrix(fps) df = DataFrame(fpsmat,index = [x.GetProp("_Name") for x in molsmi]) # how to name the col? df['SMILES'] = [Chem.MolToSmiles(x) for x in molsmi] df['CHEMBL'] = df.index return(df)
5,343,136
def test_backend_get_set_pin_mode() -> None: """Test that we can get and set pin modes.""" pin = 2 backend = SBArduinoHardwareBackend("COM0", SBArduinoSerial) assert backend.get_gpio_pin_mode(pin) is GPIOPinMode.DIGITAL_INPUT backend.set_gpio_pin_mode(pin, GPIOPinMode.DIGITAL_OUTPUT) assert backend.get_gpio_pin_mode(pin) is GPIOPinMode.DIGITAL_OUTPUT
5,343,137
def filter_by_minimum(X, region): """Filter synapses by minimum. # Arguments: X (numpy array): A matrix in the NeuroSynapsis matrix format. # Returns: numpy array: A matrix in the NeuroSynapsis matrix format. """ vals = np.where((X[:,2] >= i[0])*(X[:,3] >= i[1])*(X[:,4] >= i[2]))[0] return X[vals,:]
5,343,138
def gen_graphs(sizes): """ Generate community graphs. """ A = [] for V in tqdm(sizes): G = nx.barabasi_albert_graph(V, 3) G = nx.to_numpy_array(G) P = np.eye(V) np.random.shuffle(P) A.append(P.T @ G @ P) return np.array(A)
5,343,139
def daemonize(identity: str, kind: str = 'workspace') -> DaemonID: """Convert to DaemonID :param identity: uuid or DaemonID :param kind: defaults to 'workspace' :return: DaemonID from identity """ try: return DaemonID(identity) except TypeError: return DaemonID(f'j{kind}-{identity}')
5,343,140
def count_gender(data_list:list): """ Contar a população dos gêneros args: data_list (list): Lista de dados que possui a propriedade 'Gender' return (list): Retorna uma lista com o total de elementos do gênero 'Male' e 'Female', nessa ordem """ genders = column_to_list(data_list, "Gender") genders_counter = Counter(genders) male = genders_counter["Male"] female = genders_counter["Female"] return [male, female]
5,343,141
async def card_balance(request: Request): """ 返回用户校园卡余额 """ cookies = await get_cookies(request) balance_data = await balance.balance(cookies) return success(data=balance_data)
5,343,142
def _grid_vals(grid, dist_name, scn_save_fs, mod_thy_info, constraint_dct): """ efef """ # Initialize the lists locs_lst = [] enes_lst = [] # Build the lists of all the locs for the grid grid_locs = [] for grid_val_i in grid: if constraint_dct is None: grid_locs.append([[dist_name], [grid_val_i]]) else: grid_locs.append([constraint_dct, [dist_name], [grid_val_i]]) # Get the energies along the grid for locs in grid_locs: if scn_save_fs[-1].exists(locs): scn_path = scn_save_fs[-1].path(locs) sp_save_fs = autofile.fs.single_point(scn_path) enes_lst.append(sp_save_fs[-1].file.energy.read(mod_thy_info[1:4])) locs_lst.append(locs) return locs_lst, enes_lst
5,343,143
def group_images_by_label(label_arr, gid_arr): """ Input: Length N list of labels and ids Output: Length M list of unique labels, and lenth M list of lists of ids """ # Reverse the image to cluster index mapping import vtool as vt labels_, groupxs_ = vt.group_indices(label_arr) sortx = np.array(list(map(len, groupxs_))).argsort()[::-1] labels = labels_.take(sortx, axis=0) groupxs = ut.take(groupxs_, sortx) label_gids = vt.apply_grouping(gid_arr, groupxs) return labels, label_gids
5,343,144
def ask_user(prompt: str, default: str = None) -> Optional[str]: """ Prompts the user, with a default. Returns user input from ``stdin``. """ if default is None: prompt += ": " else: prompt += " [" + default + "]: " result = input(prompt) return result if len(result) > 0 else default
5,343,145
def fetch_lords_mocks_data(): """Fetch mocks data for unit tests of Lords.""" # Download Lords l = lords.fetch_lords_raw() validate.write(l, 'lords_raw') time.sleep(constants.API_PAUSE_TIME) # Download Lords memberships l_cm = lords.fetch_lords_memberships_raw() validate.write(l_cm, 'lords_memberships_raw') time.sleep(constants.API_PAUSE_TIME) # Download Lords party memberships l_pm = lords.fetch_lords_party_memberships_raw() validate.write(l_pm, 'lords_party_memberships_raw') time.sleep(constants.API_PAUSE_TIME) # Download Lords government roles l_gor = lords.fetch_lords_government_roles_raw() validate.write(l_gor, 'lords_government_roles_raw') time.sleep(constants.API_PAUSE_TIME) # Download Lords opposition roles l_opr = lords.fetch_lords_opposition_roles_raw() validate.write(l_opr, 'lords_opposition_roles_raw') time.sleep(constants.API_PAUSE_TIME) # Download Lords committee memberships l_ctm = lords.fetch_lords_committee_memberships_raw() validate.write(l_ctm, 'lords_committee_memberships_raw') time.sleep(constants.API_PAUSE_TIME)
5,343,146
def tensor_index_by_tuple(data, tuple_index): """Tensor getitem by tuple of various types with None""" if not tuple_index: return data op_name = const_utils.TENSOR_GETITEM tuple_index = _transform_ellipsis_to_slice(data, tuple_index, op_name) data, tuple_index = _expand_data_dims(data, tuple_index) min_data_dim, max_data_dim = 1, 8 const_utils.judge_data_dim(data.ndim, min_data_dim, max_data_dim) indexes_types = hyper_map(F.typeof, tuple_index) contain_type = const_utils.tuple_index_type_cnt(indexes_types, op_name) if contain_type == const_utils.ALL_BASIC: return _tensor_getitem_by_tuple_slice(data, tuple_index) return _tensor_getitem_by_tuple(data, tuple_index, op_name)
5,343,147
def extract_text(savelocation, file): """Splits text into seperate files starting from 1. to the next 1. Args: savelocation (string): directory to where it should extract files to file (string): file you want to extra files FROM """ # If the save location doesn't exist, we create one. if not os.path.exists(savelocation): os.makedirs(savelocation) # Open the File you want to orginze text from. with open(file, 'r', encoding='utf-8') as f: # read all the lines of the file this gives you a large list with each line. lines = f.readlines() # creating a list to store all the lines that have '1.' written on that line. ones_index = [] # loop over every line inside the lines list. for idx, line in enumerate(lines): # if the line has `1.` then add that to the ones_index list. # if '1.' in line and not '11.' in line and not '21.' in line and not '31.' in line and not '41.' in line and not '51.' in line and not '61.' in line: if line[0] == '1' and line[1] == '.': lineIndex0 = line[0] lineIndex1 = line[1] # if not '11.' in line and not '21.' in line and not '31.' in line and not '41.' in line and not '51.' in line and not '61.' in line: if lineIndex0 == '1' and lineIndex1 == '.': ones_index.append(idx) ''' here we a the last line of the text file to the ones_index We do so when the last `1.` is found it gets all the text. It's more important for layer. ''' ones_index[len(lines):] = [len(lines)] # We loop over all the ones_indexs elements. for j, i in enumerate(range(len(ones_index)-1)): # we set a variable to be the number we are currently in the iteration start = ones_index[i] # our stop variale is the next element in a list. stop = ones_index[i+1] ''' -=-=-=-=-= Make title =-=-=-=-=-=- ''' # We set our title variable to the current lines text. title = lines[start].replace('\n', '') # if our title has punctiation at the end we want to remove it. # if title.endswith(',') or title.endswith('-') or title.endswith('.'): # title = title[:-1] title = title.replace(',', '') title = title.replace('?', '') title = title.replace('!', '') title = title.replace("'", '') title = title.replace("’", '') title = title.replace(":", '') title = title.replace("|", '') title = title.replace('\n', '') # we split the title into a list where ever a space is (' ') title = title.split('.') # We remove the first element in our splited list, because it always contains a number title.pop(0) # title = title.replace('.', '') # we join our title back together again with spaces (' ') title = ' '.join(title) # We set the number to be the number of the iteration we are in, in the loop. title = title.split(',') title1 = title[0] title2 = lines[start+1].replace('\n', '') if (title1.endswith('-')): title1 = title1.replace('-', '') title2 = title2.replace(',', ' ') title2 = title2.replace('!', '') title2 = title2.replace("'", '') title = str(j + 1) + '.' + title1 + title2 else: title = str(j + 1) + '.' + title1 title = title.replace('\t', ' ') ''' Create a new file that is called what we set our title to. Write all the lines from the start variable to the stop variable. ''' with open('{}\\{}.txt'.format(savelocation, title), 'w+', encoding='utf-8') as f: f.write(''.join(lines[start:stop]))
5,343,148
def are_neurons_responsive(spike_times, spike_clusters, stimulus_intervals=None, spontaneous_period=None, p_value_threshold=.05): """ Return which neurons are responsive after specific stimulus events, compared to spontaneous activity, according to a Wilcoxon test. :param spike_times: times of spikes, in seconds :type spike_times: 1D array :param spike_clusters: spike neurons :type spike_clusters: 1D array, same length as spike_times :type stimulus_intervals: the times of the stimulus events onsets and offsets :param stimulus_intervals: 2D array :type spontaneous_period: the period of spontaneous activity :param spontaneous_period: 1D array with 2 elements :param p_value_threshold: the threshold for the p value in the Wilcoxon test. :type p_value_threshold: float :rtype: 1D boolean array with `n_neurons` elements (clusters are sorted by increasing cluster id as appearing in spike_clusters). """ stimulus_counts = _get_spike_counts_in_bins( spike_times, spike_clusters, stimulus_intervals) # Find spontaneous intervals. stimulus_durations = np.diff(stimulus_intervals, axis=1).squeeze() t0, t1 = spontaneous_period spontaneous_starts = np.linspace( t0, t1 - stimulus_durations.max(), len(stimulus_intervals)) spontaneous_intervals = np.c_[ spontaneous_starts, spontaneous_starts + stimulus_durations] # Count the spontaneous counts. spontaneous_counts = _get_spike_counts_in_bins( spike_times, spike_clusters, spontaneous_intervals) assert stimulus_counts.shape == stimulus_counts.shape # Generate the responsive vector (for every neuron, whether it is # responsive). responsive = np.zeros(stimulus_counts.shape[0], dtype=bool) n_neurons = stimulus_counts.shape[0] for i in range(n_neurons): x = stimulus_counts[i, :] y = spontaneous_counts[i, :] try: _, p = scipy.stats.wilcoxon(x, y) except ValueError: pass responsive[i] = p < p_value_threshold return responsive
5,343,149
def _get_book(**keywords): """Get an instance of :class:`Book` from an excel source Where the dictionary should have text as keys and two dimensional array as values. """ source = factory.get_book_source(**keywords) sheets = source.get_data() filename, path = source.get_source_info() return sheets, filename, path
5,343,150
def handler( state_store: StateStore, hardware_api: HardwareAPI, movement_handler: MovementHandler, ) -> PipettingHandler: """Create a PipettingHandler with its dependencies mocked out.""" return PipettingHandler( state_store=state_store, hardware_api=hardware_api, movement_handler=movement_handler, )
5,343,151
def get_domain(domain_name): """ Query the Rackspace DNS API to get a domain object for the domain name. Keyword arguments: domain_name -- the domain name that needs a challenge record """ base_domain_name = get_tld("http://{0}".format(domain_name)) domain = rax_dns.find(name=base_domain_name) return domain
5,343,152
def lobatto(n): """Get Gauss-Lobatto-Legendre points and weights. Parameters ---------- n : int Number of points """ if n == 2: return ([0, 1], [sympy.Rational(1, 2), sympy.Rational(1, 2)]) if n == 3: return ([0, sympy.Rational(1, 2), 1], [sympy.Rational(1, 6), sympy.Rational(2, 3), sympy.Rational(1, 6)]) if n == 4: return ([0, (1 - 1 / sympy.sqrt(5)) / 2, (1 + 1 / sympy.sqrt(5)) / 2, 1], [sympy.Rational(1, 12), sympy.Rational(5, 12), sympy.Rational(5, 12), sympy.Rational(1, 12)]) if n == 5: return ([0, (1 - sympy.sqrt(3) / sympy.sqrt(7)) / 2, sympy.Rational(1, 2), (1 + sympy.sqrt(3) / sympy.sqrt(7)) / 2, 1], [sympy.Rational(1, 20), sympy.Rational(49, 180), sympy.Rational(16, 45), sympy.Rational(49, 180), sympy.Rational(1, 20)]) if n == 6: return ([0, (1 - sympy.sqrt(sympy.Rational(1, 3) + (2 * sympy.sqrt(7) / 21))) / 2, (1 - sympy.sqrt(sympy.Rational(1, 3) - (2 * sympy.sqrt(7) / 21))) / 2, (1 + sympy.sqrt(sympy.Rational(1, 3) - (2 * sympy.sqrt(7) / 21))) / 2, (1 + sympy.sqrt(sympy.Rational(1, 3) + (2 * sympy.sqrt(7) / 21))) / 2, 1], [sympy.Rational(1, 30), (14 - sympy.sqrt(7)) / 60, (14 + sympy.sqrt(7)) / 60, (14 + sympy.sqrt(7)) / 60, (14 - sympy.sqrt(7)) / 60, sympy.Rational(1, 30)]) if n == 7: return ([0, (1 - sympy.sqrt((5 + 2 * sympy.sqrt(5) / sympy.sqrt(3)) / 11)) / 2, (1 - sympy.sqrt((5 - 2 * sympy.sqrt(5) / sympy.sqrt(3)) / 11)) / 2, sympy.Rational(1, 2), (1 + sympy.sqrt((5 - 2 * sympy.sqrt(5) / sympy.sqrt(3)) / 11)) / 2, (1 + sympy.sqrt((5 + 2 * sympy.sqrt(5) / sympy.sqrt(3)) / 11)) / 2, 1], [sympy.Rational(1, 42), (124 - 7 * sympy.sqrt(15)) / 700, (124 + 7 * sympy.sqrt(15)) / 700, sympy.Rational(128, 525), (124 + 7 * sympy.sqrt(15)) / 700, (124 - 7 * sympy.sqrt(15)) / 700, sympy.Rational(1, 42)]) raise NotImplementedError()
5,343,153
def login(): """Login.""" username = request.form.get('username') password = request.form.get('password') if not username: flask.flash('Username is required.', 'warning') elif password is None: flask.flash('Password is required.', 'warning') else: user = models.User.login_user(username, password) if user: session['user'] = user.username return flask.redirect(flask.url_for('catalog')) flask.flash('Invalid username/password.', 'danger') return flask.redirect(flask.url_for('home'))
5,343,154
def comp_periodicity(self, p=None): """Compute the periodicity factor of the lamination Parameters ---------- self : LamSlotMulti A LamSlotMulti object Returns ------- per_a : int Number of spatial periodicities of the lamination is_antiper_a : bool True if an spatial anti-periodicity is possible after the periodicities per_t : int Number of time periodicities of the lamination is_antiper_t : bool True if an time anti-periodicity is possible after the periodicities """ if self.sym_dict_enforced is not None: self.get_logger().debug("Enforcing symmetry for LamSlotMulti") return ( self.sym_dict_enforced["per_a"], self.sym_dict_enforced["is_antiper_a"], self.sym_dict_enforced["per_t"], self.sym_dict_enforced["is_antiper_t"], ) else: Zs = self.get_Zs() is_aper = False # TODO compute it self.get_logger().debug("Symmetry not available yet for LamSlotMulti") return 1, is_aper, 1, is_aper
5,343,155
def tagger(c): """ Find usage value or AWS Tags. Using a json input to stdin we gather enough data to be able to specify the usage of some resources. """ p_log("Task: Tagger") params = {} lines = [x.strip() for x in sys.stdin.readlines()] lines = list(filter(None, lines)) if len(lines) != 0: params = json.loads(",".join(lines)) c = {"usage": "NULL"} # Change the args to vessel and quadrant if re.match("dev|stage", params["vpc_name"]): c["usage"] = "non-prod" if "client_name" in params and re.match("ops", params["client_name"]): c["usage"] = "devops" elif re.match("prod", params["vpc_name"]): c["usage"] = "prod" if "client_name" in params and re.match("demo|preview", params["client_name"]): c["usage"] = "sales" print(json.dumps(c))
5,343,156
def sha2_384(data: bytes) -> hashes.MessageDigest: """ Convenience function to hash a message. """ return HashlibHash.hash(hashes.sha2_384(), data)
5,343,157
def cat(arr, match="CAT", upper_bound=None, lower_bound=None): """ Basic idea is if a monkey typed randomly, how long would it take for it to write `CAT`. Practically, we are mapping generated numbers onto the alphabet. >"There are 26**3 = 17 576 possible 3-letter words, so the average number of keystrokes necessary to produce CAT should be around 17 576" [1] Example ------- Parameters ---------- word: string or list-type object All elements of the string must be the same number of characters match: string or list-type object The keyword to search for. Other than length, doesn't really matter. If you pass in a list of strings, it will give you a result for each passed in string. upper_bound: int (optional) Upper bound of random values. If not set, will calculate the minimum value from the array passed. lower_bound: int (optional) Lower bound of random values. If not set, will calculate the maximum value from the array passed. Returns ------- dict Key is the string passed into match, the value is a list of the iteration cycles it was found at Notes ----- [1]: Marsaglia, G. and Zaman, A., (1995), Monkey tests for random number generators, Computers & Mathematics with Applications, 9, No. 9, 1–10. """ if upper_bound is None: upper_bound = np.max(arr) if lower_bound is None: lower_bound = np.min(arr) if isinstance(match, str): match = [match] match = list(map(str.upper, match)) num_letters = len(match[0]) assert all([len(match_i) == num_letters for match_i in match]), \ "All elements of `match` must have the same number of characters" n_uppercase = len(string.ascii_uppercase) # {...number: letter...} mapping mapping = dict(zip(range(n_uppercase), string.ascii_uppercase)) # Scale the array so that everything is between 0 and 26 arr_norm = np.floor((arr - lower_bound) * (n_uppercase/upper_bound)) # Map the integer component to letters letters = [mapping[i] for i in arr_norm.astype(np.int)] # Split the array of letters into words words = chunker(letters, batch_size=num_letters, complete=True) iter_counts = {match_i: [] for match_i in match} for i, letter_list in enumerate(words): word = ''.join(letter_list) if word in match: iter_counts[word].append(i) return iter_counts
5,343,158
def encrypt_data(key: bytes, data: str) -> str: """ Encrypt the data :param key: key to encrypt the data :param data: data to be encrypted :returns: bytes encrypted """ # instance class cipher_suite = Fernet(key) # convert our data into bytes mode data_to_bytes = bytes(data, "utf-8") encrypted = cipher_suite.encrypt(data_to_bytes) return encrypted.decode("utf-8")
5,343,159
def make_doi_table(dataset: ObservatoryDataset) -> List[Dict]: """Generate the DOI table from an ObservatoryDataset instance. :param dataset: the Observatory Dataset. :return: table rows. """ records = [] for paper in dataset.papers: # Doi, events and grids doi = paper.doi.upper() events = make_doi_events(doi, paper.events) # Affiliations: institutions, countries, regions, subregion, funders, journals, publishers institutions = make_doi_institutions(paper.authors) countries = make_doi_countries(paper.authors) regions = make_doi_regions(paper.authors) subregions = make_doi_subregions(paper.authors) funders = make_doi_funders(paper.funders) journals = make_doi_journals(paper.journal) publishers = make_doi_publishers(paper.publisher) # Make final record records.append( { "doi": doi, "crossref": { "title": paper.title, "published_year": paper.published_date.year, "published_month": paper.published_date.month, "published_year_month": f"{paper.published_date.year}-{paper.published_date.month}", "funder": [{"name": funder.name, "DOI": funder.doi} for funder in paper.funders], }, "unpaywall": {}, "unpaywall_history": {}, "mag": {}, "open_citations": {}, "events": events, "affiliations": { "doi": doi, "institutions": institutions, "countries": countries, "subregions": subregions, "regions": regions, "groupings": [], "funders": funders, "authors": [], "journals": journals, "publishers": publishers, }, } ) # Sort to match with sorted results records.sort(key=lambda r: r["doi"]) return records
5,343,160
def do_volume_connector_list(cc, args): """List the volume connectors.""" params = {} if args.node is not None: params['node'] = args.node if args.detail: fields = res_fields.VOLUME_CONNECTOR_DETAILED_RESOURCE.fields field_labels = res_fields.VOLUME_CONNECTOR_DETAILED_RESOURCE.labels elif args.fields: utils.check_for_invalid_fields( args.fields[0], res_fields.VOLUME_CONNECTOR_DETAILED_RESOURCE.fields) resource = res_fields.Resource(args.fields[0]) fields = resource.fields field_labels = resource.labels else: fields = res_fields.VOLUME_CONNECTOR_RESOURCE.fields field_labels = res_fields.VOLUME_CONNECTOR_RESOURCE.labels sort_fields = res_fields.VOLUME_CONNECTOR_DETAILED_RESOURCE.sort_fields sort_field_labels = ( res_fields.VOLUME_CONNECTOR_DETAILED_RESOURCE.sort_labels) params.update(utils.common_params_for_list(args, sort_fields, sort_field_labels)) volume_connector = cc.volume_connector.list(**params) cliutils.print_list(volume_connector, fields, field_labels=field_labels, sortby_index=None, json_flag=args.json)
5,343,161
def get_output_file_path(file_path: str) -> str: """ get the output file's path :param file_path: the file path :return: the output file's path """ split_file_path: List[str] = list(os.path.splitext(file_path)) return f'{split_file_path[0]}_sorted{split_file_path[1]}'
5,343,162
def test_custom_grain_with_annotations(grains_dir): """ Load custom grain with annotations. """ opts = salt.config.DEFAULT_MINION_OPTS.copy() opts["grains_dirs"] = [grains_dir] grains = salt.loader.grains(opts, force_refresh=True) assert grains.get("example") == "42"
5,343,163
def test_relative_and_other_root_dirs(offline, request): """Test styles in relative and in other root dirs.""" another_dir = TEMP_ROOT_PATH / "another_dir" # type: Path project = ( ProjectMock(request) .named_style( "{}/main".format(another_dir), """ [nitpick.styles] include = "styles/pytest.toml" """, ) .named_style( "{}/styles/pytest".format(another_dir), """ ["pyproject.toml".tool.pytest] some-option = 123 """, ) .named_style( "{}/styles/black".format(another_dir), """ ["pyproject.toml".tool.black] line-length = 99 missing = "value" """, ) .named_style( "{}/poetry".format(another_dir), """ ["pyproject.toml".tool.poetry] version = "1.0" """, ) ) common_pyproject = """ [tool.black] line-length = 99 [tool.pytest] some-option = 123 """ # Use full path on initial styles project.pyproject_toml( """ [tool.nitpick] style = ["{another_dir}/main", "{another_dir}/styles/black"] {common_pyproject} """.format( another_dir=another_dir, common_pyproject=common_pyproject ) ).flake8(offline=offline).assert_single_error( """ NIP318 File pyproject.toml has missing values:\x1b[32m [tool.black] missing = "value"\x1b[0m """ ) # Reuse the first full path that appears project.pyproject_toml( """ [tool.nitpick] style = ["{}/main", "styles/black.toml"] {} """.format( another_dir, common_pyproject ) ).flake8().assert_single_error( """ NIP318 File pyproject.toml has missing values:\x1b[32m [tool.black] missing = "value"\x1b[0m """ ) # Allow relative paths project.pyproject_toml( """ [tool.nitpick] style = ["{}/styles/black", "../poetry"] {} """.format( another_dir, common_pyproject ) ).flake8(offline=offline).assert_single_error( """ NIP318 File pyproject.toml has missing values:\x1b[32m [tool.black] missing = "value" [tool.poetry] version = "1.0"\x1b[0m """ )
5,343,164
def binarySearch(arr, val): """ array values must be sorted """ left = 0 right = len(arr) - 1 half = (left + right) // 2 while arr[half] != val: if val < arr[half]: right = half - 1 else: left = half + 1 half = (left + right) // 2 if arr[half] == val: return half return -1
5,343,165
def foreign_key( recipe: Union[Recipe[M], str], one_to_one: bool = False ) -> RecipeForeignKey[M]: """Return a `RecipeForeignKey`. Return the callable, so that the associated `_model` will not be created during the recipe definition. This resolves recipes supplied as strings from other module paths or from the calling code's module. """ if isinstance(recipe, str): # Load `Recipe` from string before handing off to `RecipeForeignKey` try: # Try to load from another module recipe = baker._recipe(recipe) except (AttributeError, ImportError, ValueError): # Probably not in another module, so load it from calling module recipe = _load_recipe_from_calling_module(cast(str, recipe)) return RecipeForeignKey(cast(Recipe[M], recipe), one_to_one)
5,343,166
def posterize(image, num_bits): """Equivalent of PIL Posterize.""" shift = 8 - num_bits return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)
5,343,167
def cli( from_proj: str, from_x_column: str, from_y_column: str, from_x_format: str, from_y_format: str, to_proj: str, to_x_header: str, to_y_header: str, input_filename: str, output_filename: str ): """Reproject a CSV from one Coordinate Reference System to another.""" from_proj = Proj(init=from_proj) to_proj = Proj(init=to_proj) transformer = Transformer.from_proj(from_proj, to_proj) with open(input_filename) as input_file, \ open(output_filename, 'w') as output_file: reader = CsvProjReader( input_file, from_x_column, from_y_column, from_x_format, from_y_format ) writer = CsvProjWriter( output_file, to_x_header, to_y_header ) input_headers = reader.read_headers() writer.write_headers(input_headers) for csv_proj_row in reader.read_proj_rows(): new_x, new_y = [None, None] if csv_proj_row.x is not None and csv_proj_row.y is not None: new_x, new_y = transformer.transform( csv_proj_row.x, csv_proj_row.y ) writer.write_row(csv_proj_row.row, new_x, new_y)
5,343,168
def validate_targetRegionBedFile_for_runType( value, field_label, runType, reference, nucleotideType=None, applicationGroupName=None, isPrimaryTargetRegion=True, barcodeId="", runType_label=ugettext_lazy("workflow.step.application.fields.runType.label"), ): """ validate targetRegionBedFile based on the selected reference and the plan's runType """ errors = [] value = value.strip() if value else "" if value: missing_file = check_uploaded_files(bedfilePaths=[value]) if missing_file: errors.append("%s : %s not found" % (field_label, value)) logger.debug( "plan_validator.validate_targetRegionBedFile_for_run() SKIPS validation due to no targetRegion file exists in db. value=%s" % (value) ) return errors logger.debug( "plan_validator.validate_targetRegionBedFile_for_runType() value=%s; runType=%s; reference=%s; nucleotideType=%s; applicationGroupName=%s" % (value, runType, reference, nucleotideType, applicationGroupName) ) if not isPrimaryTargetRegion: logger.debug( "plan_validator.validate_targetRegionBedFile_for_run() SKIPS validation due to no validation rules for non-primary targetRegion. value=%s" % (value) ) return errors if reference: if runType: runType = runType.strip() applProducts = ApplProduct.objects.filter( isActive=True, applType__runType=runType, applicationGroup__name=applicationGroupName, ) or ApplProduct.objects.filter(isActive=True, applType__runType=runType) if applProducts: applProduct = applProducts[0] if applProduct: if ( validation.has_value(value) and not applProduct.isTargetRegionBEDFileSupported ): errors.append( validation.invalid_invalid_related( field_label, ScientificApplication.verbose_name ) ) else: isRequired = ( applProduct.isTargetRegionBEDFileSelectionRequiredForRefSelection ) if ( isRequired and not validation.has_value(value) and not barcodeId ): # skip for now if ( runType in ["AMPS_DNA_RNA", "AMPS_HD_DNA_RNA"] and nucleotideType and nucleotideType.upper() == "RNA" ): logger.debug( "plan_validator.validate_targetRegionBedFile_for_runType() ALLOW MISSING targetRegionBed for runType=%s; nucleotideType=%s" % (runType, nucleotideType) ) elif runType in ["AMPS_RNA", "AMPS_HD_RNA"]: logger.debug( "plan_validator.validate_targetRegionBedFile_for_runType() ALLOW MISSING targetRegionBed for runType=%s; applicationGroupName=%s" % (runType, applicationGroupName) ) else: errors.append( validation.invalid_required_related( field_label, ScientificApplication.verbose_name ) ) elif value: if not os.path.isfile(value): errors.append( validation.invalid_invalid_value(field_label, value) ) else: errors.append( validation.invalid_invalid_value_related( runType_label, runType, ScientificApplication.verbose_name ) ) else: errors.append( validation.invalid_required_related( runType_label, ScientificApplication.verbose_name ) ) return errors
5,343,169
def run_find_markers( input_h5ad_file: str, output_file: str, label_attr: str, de_key: str = "de_res", n_jobs: int = -1, min_gain: float = 1.0, random_state: int = 0, remove_ribo: bool = False, ) -> None: """ For command line use. """ import xlsxwriter from natsort import natsorted data = read_input(input_h5ad_file) markers = find_markers( data, label_attr, de_key=de_key, n_jobs=n_jobs, min_gain=min_gain, random_state=random_state, remove_ribo=remove_ribo, ) keywords = [("strong", "strong_gain"), ("weak", "weak_gain"), ("down", "down_gain")] writer = pd.ExcelWriter(output_file, engine="xlsxwriter") for clust_id in natsorted(markers.keys()): clust_markers = markers[clust_id] sizes = [] for keyword in keywords: sizes.append(len(clust_markers[keyword[0]])) arr = np.zeros((max(sizes), 8), dtype=object) arr[:] = "" for i in range(3): arr[0 : sizes[i], i * 3] = clust_markers[keywords[i][0]] arr[0 : sizes[i], i * 3 + 1] = clust_markers[keywords[i][1]] df = pd.DataFrame( data=arr, columns=[ "strongly up-regulated", "gain", "", "weakly up-regulated", "gain", "", "down-regulated", "gain", ], ) df.to_excel(writer, sheet_name=clust_id, index=False) writer.save()
5,343,170
def polyFit(x, y): """ Function to fit a straight line to data and estimate slope and intercept of the line and corresponding errors using first order polynomial fitting. Parameters ---------- x : ndarray X-axis data y : ndarray Y-axis data Returns ------- ndarray slope, intercept, SDslope, SDintercept Reference --------- """ # Number of input points N = x.shape[0] # Estimate slope and intercept of fitted line slope, intercept = np.polyfit(x, y, 1) # Calculate standard deviation of slope and intercept yhat = intercept + slope * x residual = y - yhat Sx2 = np.sum(x**2) Sxx = np.sum((x - np.mean(x))**2) Sy_x = np.sqrt(np.sum(residual**2) / (N -2)) SDslope = Sy_x / np.sqrt(Sxx) SDintercept = Sy_x * np.sqrt(Sx2 / (N * Sxx)) return np.array([[slope, intercept], [SDslope, SDintercept]])
5,343,171
def test_delete_no_pk(): """Validate a delete returning a pkdict without specifying the primary key.""" _logger.debug(stack()[0][3]) config = deepcopy(_CONFIG) t = table(config) returning = t.delete('{id}={target}', {'target': 7}, ('uid',), container='pkdict') row = t.select('WHERE {id} = 7', columns=( 'id', 'left', 'right', 'uid', 'metadata', 'name')) assert len(returning) == 1 assert row == []
5,343,172
def stability_test_standard( umbrella: Path, outdir: Path | None = None, tests: str | list[str] = "all", ) -> None: """Perform a battery of standard stability tests. This function expects a rigid `umbrella` directory structure, based on the output of results that are generated by rexpy_. .. _rexpy: https://github.com/douglasdavis/rexpy Parameters ---------- umbrella : pathlib.Path Umbrella directory containing all fits run via rexpy's standard fits. outdir : pathlib.Path, optional Directory to save results (defaults to current working directory). tests : str or list(str) Which tests to execute. (default is "all"). The possible tests include: * ``"sys-drops"``, which shows the stability test for dropping some systematics. * ``"indiv-camps"``, which shows the stability test for limiting the fit to individual campaigns. * ``"regions"``, which shows the stability test for limiting the fit to subsets of the analysis regions. * ``"b0-check"``, which shows the stability test for limiting the fit to individual analysis regions and checking the B0 eigenvector uncertainty. """ import tdub.internal.stab_tests as tist umbrella = umbrella.resolve() curdir = Path.cwd().resolve() if outdir is None: outdir = curdir else: outdir.mkdir(parents=True, exist_ok=True) if tests == "all": tests = ["sys-drops", "indiv-camps", "regions", "b0-check"] os.chdir(outdir) if "sys-drops" in tests: nom, names, labels, vals = tist.excluded_systematics_delta_mu_summary( umbrella / "main.force-data.d" / "tW" ) fig, ax = plt.subplots(figsize=(5.2, 1.5 + len(names) * 0.315)) fig.subplots_adjust(left=0.50, right=0.925) tist.make_delta_mu_plot( ax, nom.sig_hi, nom.sig_lo, vals["c"], vals["d"], vals["u"], labels ) fig.savefig("stability-tests-sys-drops.pdf") if "indiv-camps" in tests: nom, names, labels, vals = tist.indiv_camp_delta_mu_summary(umbrella) fig, ax = plt.subplots(figsize=(5.2, 1.5 + len(names) * 0.315)) fig.subplots_adjust(left=0.350, right=0.925, bottom=0.3, top=0.99) tist.make_delta_mu_plot( ax, nom.sig_hi, nom.sig_lo, vals["c"], vals["d"], vals["u"], labels ) fig.savefig("stability-tests-indiv-camps.pdf") if "regions" in tests: nom, names, labels, vals = tist.region_delta_mu_summary(umbrella) fig, ax = plt.subplots(figsize=(5.2, 1.5 + len(names) * 0.315)) fig.subplots_adjust(left=0.350, right=0.925, bottom=0.3, top=0.99) tist.make_delta_mu_plot( ax, nom.sig_hi, nom.sig_lo, vals["c"], vals["d"], vals["u"], labels ) fig.savefig("stability-tests-regions.pdf") if "b0-check" in tests: fig, ax = tist.b0_by_year_fig_and_ax(umbrella) fig.subplots_adjust(left=0.350, right=0.925, bottom=0.3, top=0.8) fig.savefig("stability-tests-b0-check.pdf") os.chdir(curdir) return None
5,343,173
def evaluate_error(X, y, w): """Returns the mean squared error. X : numpy.ndarray Numpy array of data. y : numpy.ndarray Numpy array of outputs. Dimensions are n * 1, where n is the number of rows in `X`. w : numpy.ndarray Numpy array with dimensions (m + 1) * 1, where m is the number of columns in `X`. Returns ------- float The mean squared error """ X_b = np.hstack((np.ones((X.shape[0], 1)), X)) y_predict = X_b.dot(w) dist = (y - y_predict) ** 2 return float(np.sum(dist)) / X.shape[0]
5,343,174
def call_later(fn, args=(), delay=0.001): """ Calls the provided function in a new thread after waiting some time. Useful for giving the system some time to process an event, without blocking the current execution flow. """ thread = _Thread(target=lambda: (_time.sleep(delay), fn(*args))) thread.start()
5,343,175
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up ha_reef_pi from a config entry.""" websession = async_get_clientsession(hass) coordinator = ReefPiDataUpdateCoordinator(hass, websession, entry) await coordinator.async_config_entry_first_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady undo_listener = entry.add_update_listener(update_listener) hass.data[DOMAIN][entry.entry_id] = { "coordinator": coordinator, "undo_update_listener": undo_listener, } for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True
5,343,176
def get_list(client): """ """ request = client.__getattr__(MODULE).ListIpBlocks() response, _ = request.result() return response['results']
5,343,177
def g(z: Set[str]): """ Test set default """ print(z)
5,343,178
def file_asset(class_obj): """ Decorator to annotate the FileAsset class. Registers the decorated class as the FileAsset known type. """ assert isinstance(class_obj, six.class_types), "class_obj is not a Class" global _file_asset_resource_type _file_asset_resource_type = class_obj return class_obj
5,343,179
def main(username: str, output: str, file_format: str, token: str) -> None: """A Python CLI to backup all your GitHub repositories.""" # More info: # - https://ghapi.fast.ai/core.html#GhApi # - https://ghapi.fast.ai/core.html#Operations # (if don't pass the token parameter, then your GITHUB_TOKEN environment variable # will be used, if available) # - https://ghapi.fast.ai/page.html#paged api = GhApi(owner=username, token=token) # click.echo(api.headers) # click.echo(api.func_dict) # More info: # - https://ghapi.fast.ai/fullapi.html#repos # - https://docs.github.com/en/rest/reference/repos#list-public-repositories # (it is not for a specific user) # - https://docs.github.com/en/rest/reference/repos#list-repositories-for-a-user # (public repositories) # - https://docs.github.com/en/rest/reference/repos#list-repositories-for-the-authenticated-user # (all repositories) # repos = api.repos.list_for_user(username=username, type="all", sort="pushed") repos: Generator = paged( api.repos.list_for_authenticated_user, visibility="all", affiliation="owner", sort="full_name", ) # More info: # - https://stackoverflow.com/a/50110841 # - https://docs.python.org/3.6/library/pathlib.html#pathlib.Path.mkdir # - https://stackoverflow.com/a/32490661 # - https://docs.python.org/3.6/library/pathlib.html#pathlib.Path.open timestamp: str = datetime.today().strftime(f"%Y%m%d{OUTPUT_FOLDER_SEP}%H%M%S") output_folder = ( Path(output) / f"{OUTPUT_FOLDER_PREFIX}{OUTPUT_FOLDER_SEP}{timestamp}" ) output_folder.mkdir(parents=False, exist_ok=False) click.echo(f"Output folder: {output_folder}") # More info: # - https://docs.github.com/en/rest/reference/repos#download-a-repository-archive-zip # - https://docs.github.com/en/rest/reference/repos#download-a-repository-archive-tar # - https://github.com/fastai/ghapi/issues/22 # - https://github.com/fastai/fastcore/pull/308 # - https://github.com/fastai/fastcore/blob/1.3.27/fastcore/net.py#L203 # - https://stackoverflow.com/a/67964008 # (ref="" for the master/main branch) # Note: It is not working. Use an alternative. See error message for debugging. # It would work if the execution was via this if branch, for example: # https://github.com/fastai/fastcore/blob/1.3.27/fastcore/net.py#L209 # api.repos.download_zipball_archive(repo="glone", ref="") # api.repos.download_zipball_archive(repo="glone", ref="", archive_format="zip") # Workaround: # - https://fastcore.fast.ai/net.html#urlsend # - https://docs.github.com/en/rest/reference/actions#download-an-artifact # - https://docs.python.org/3.6/library/functions.html#open # - https://stackoverflow.com/a/6633693 # - https://click.palletsprojects.com/en/7.x/options/?highlight=choice#choice-options # zip_url = ( # f"{GH_HOST}/repos/{username}/" + "{repo}/" + f"{file_format}ball" + "/{ref}" # ) # route = {"repo": "glone", "ref": "", "archive_format": file_format} # or # route = {"repo": "glone", "ref": "", "archive_format": "zip"} # click.echo(zip_url) # click.echo(route) # res, headers = urlsend( # zip_url, "GET", headers=api.headers, route=route, return_headers=True # ) # click.echo(headers) # _, _, output_filename = headers["content-disposition"].partition("filename=") # click.echo(output_filename) # with open(output_folder / output_filename, "wb") as fh: # fh.write(res) zip_url = ( f"{GH_HOST}/repos/{username}/" + "{repo}/" + f"{file_format}ball" + "/{ref}" ) for page in repos: # click.echo(len(page)) for repo in page: click.echo(f"Repo: {repo.name}") route = {"repo": repo.name, "ref": "", "archive_format": file_format} res, headers = urlsend( zip_url, "GET", headers=api.headers, route=route, return_headers=True ) _, _, output_filename = headers["content-disposition"].partition( "filename=" ) output_file_path = output_folder / output_filename with open(output_file_path, "wb") as fh: fh.write(res) click.echo(f"Archive file: {output_file_path}") # break # break click.echo(f"Number of archive files/repos: {get_folder_file_count(output_folder)}") # Compare with: # du -ch <OUTPUT_FOLDER>/* # du -sh <OUTPUT_FOLDER> size = get_folder_size(output_folder) click.echo( "Output folder size (approximate): " f"{naturalsize(size, binary=False, gnu=False)}" ) click.echo("Done!")
5,343,180
def get_bam_list(args): """ Retrieve bam list from given tumor bam directory """ bamList = [] for bam in glob.glob(os.path.join(args.tumor_bams_directory, "*.bam")): # Todo: CMO bams don't always end in 'T' # if os.path.basename(bam).split('_')[0].split('-')[-1].startswith('T'): bamList.append(bam) return bamList
5,343,181
def test_init_raw(): """ tests whether the ADPBulk object can be instantiated correctly """ adat = build_adat() # tests singular group conditions for group in adat.obs.columns: _ = ADPBulk(adat, groupby=group, use_raw=True) # tests multiple group conditions _ = ADPBulk(adat, groupby=["cA", "cD"], use_raw=True) assert True
5,343,182
def run_time_it(): """Trigger timeit""" dynamicArray(n, queries)
5,343,183
def scheming_field_by_name(fields, name): """ Simple helper to grab a field from a schema field list based on the field name passed. Returns None when not found. """ for f in fields: if f.get('field_name') == name: return f
5,343,184
def saveResult(img_file, img, boxes, dirname='./result/', verticals=None, texts=None): """ save text detection result one by one Args: img_file (str): image file name img (array): raw image context boxes (array): array of result file Shape: [num_detections, 4] for BB output / [num_detections, 4] for QUAD output Return: None """ img = np.array(img) #print("image shape:", img.shape) height = img.shape[0] width = img.shape[1] #img = clustering(img) alpha = 1.25 # Contrast control (1.0-3.0) beta = 0# Brightness control (0-100) img= cv2.convertScaleAbs(img, alpha=alpha, beta=beta) # make result file list filename, file_ext = os.path.splitext(os.path.basename(img_file)) # result directory res_file = dirname + "res_" + filename + '.txt' res_img_file = dirname + "res_" + filename + '.jpg' if not os.path.isdir(dirname): os.mkdir(dirname) # ignore top bboxes boxes = boxes[2:] # enlist top left corner of bboxes top_l_points = [] textd = [] #texts = [i for i, _ in enumerate(boxes)] with open(res_file, 'w') as f: for i, box in enumerate(boxes): poly = np.array(box).astype(np.int32).reshape((-1)) strResult = ','.join([str(p) for p in poly]) + '\r\n' f.write(strResult) #### these points contain edges of boxes or polygons, dependin ## on argument of SaveResult poly = poly.reshape(-1, 2) #### these points contain edges of boxes ## #x, y, w, h = poly[0][0 ], poly[0][1], poly[2][0], poly[2][1] # draw first point of box #cv2.circle(img, (poly[0][0], poly[0][1]), 6, (255,0,0), 2) # x, y = tuple(poly[0]) # w, h = tuple(poly[2]) y, x = tuple(poly[0]) h, w = tuple(poly[2]) #print(f"Coordinates are x {x}, y {y}, w {w}, h {h}") img_copy = img.copy() cropped_boxes = img_copy[int(min(x,w)-4):int(max(x,w)+4), int(min(y,h)-4):int(max(y,h)+4)] #print("cropped boxes: ",cropped_boxes ) #print("min and max (w,x), min and max (y,h)", if cropped_boxes is not None: cv2.imwrite("saved_{}_box.png".format(i), cropped_boxes) dilated_img = cv2.dilate(cropped_boxes[:,:,1], np.ones((33,33 ), np.uint8)) #bg_img = cv2.GaussianBlur(dilated_img, (9,9),0) bg_img = cv2.medianBlur(dilated_img, 11) #--- finding absolute difference to preserve edges --- diff_img = 255 - cv2.absdiff(cropped_boxes[:,:,1], bg_img) #--- normalizing between 0 to 255 --- norm_img = cv2.normalize(diff_img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1) #--- Otsu threshold --- #th = cv2.adaptiveThreshold(norm_img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2) cropped_boxes = cv2.threshold(norm_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] #cropped_boxes = clustering(cropped_boxes) text = pytesseract.image_to_string(cropped_boxes, lang="spa", config='--psm 6') #print("text by crop box {}".format(i), text) top_l_points.append(tuple(poly[0])) text_w_n_blanks = text.strip() textd.append(text_w_n_blanks) # Check where DoB is check_dob = re.search("[0-9]{1,2}(/)[0-9]{1,2}(/)[0-9]{4}", text_w_n_blanks) if check_dob: x_b, y_b = tuple(poly[0]) DoB_point = tuple(poly[0]) DoB_text = text #print("DoB point: ", poly[0]) print("DoB: ", DoB_text) # Check where curp is check_curp = re.search("[a-zA-Z]{4}[0-9]{6}[a-zA-Z]{4}", text_w_n_blanks) if check_curp: curp = text.split(" ")[-1] print("curp: ", curp) # Check where clave de elector is check_clave = re.search("[a-zA-Z]{6}[0-9]{8}[a-zA-Z]{1}", text_w_n_blanks) if check_clave: clave = text.split(" ")[-1] print("clave: ", clave) # Check where registro is check_registro= re.search("[0-9]{4}( )[0-9]{2}", text_w_n_blanks) if check_registro: registro1 = text.split(" ")[-2:-1][0] registro2 = text.split(" ")[-1] registro = registro1+" "+registro2 print("registro: ", registro1, registro2) # Check emisión and vigencia #check_vig_emision= re.search("[0-9]{4}( )[a-zA-Z]{8}( )[0-9]{4}", # text_w_n_blanks) vig = text_w_n_blanks.split(" ")[-1] emi = text_w_n_blanks.split(" ")[0] check_vig= re.search("[0-9]{4}", vig) check_emi= re.search("[0-9]{4}", emi) if check_vig and check_emi: print("vigencia: ", vig) print("emisión: ", emi) vigencia = vig emisión = emi # check if sexo if "sex" in text_w_n_blanks.lower(): sexo = text.split(" ")[-1] print("sexo check", sexo) if "m" in sexo.lower(): sexo = "M" print("sexo: ",sexo) else: sexo = "H" print("sexo: ",sexo) #print("sexo: ", sexo) # check if municipio if "munici" in text_w_n_blanks.lower(): municipio = text.split(" ")[-1] print("municipio: ", municipio) if "esta" in text_w_n_blanks.lower(): estado = text.split(" ")[-1] print("estado: ", estado) #print("debug", text_w_n_blanks) # all text is lowercase text_w_n_blanks = text_w_n_blanks.lower() #print(text_w_n_blanks) print(DoB_point, DoB_text) name_dicts = dict(zip(textd, top_l_points)) #print("name_dicts: ", name_dicts) #print("DoB_point:", DoB_point) for k, v in name_dicts.copy().items(): if v == tuple(DoB_point): #print(k ,"value deleted") del name_dicts[k] top_l_points.remove(tuple(DoB_point)) ## gets the nearest y coordinate initial bounding point name_dicts0= {k:tuple(map(lambda i, j: i - j, v, tuple(DoB_point))) for k, v in name_dicts.items() } #print(name_dicts0) for x,y in top_l_points: if y < y_b+(0.015*height) and y > y_b-(0.015*height) : # if y < y_b+15 and y > y_b-15 : NamePoint = x,y #print(NamePoint) distances_list = [] for point in top_l_points: distances_list.append(distance(point, NamePoint)) #print( distances_list) for k, v in name_dicts.copy().items(): # (for Python 2.x) if v == NamePoint: PrimerApellido = k #print("Primer apellido", k) name_dicts2= {k:tuple(map(lambda i, j: i - j, v, NamePoint)) for k, v in name_dicts.items() } #print(name_dicts2) dist_dict = {k:distance((0,0),v) for k,v in name_dicts2.items()} #print(dist_dict) sorted_dist_dict = {k: v for k, v in sorted(dist_dict.items(), key=lambda item: item[1])} #print(sorted_dist_dict) ## get the next two items (they are in ordered by the tuple) ## and should be the next two bounding boxes names_list= list(sorted_dist_dict.keys())[:5] names_list = [name for name in names_list if "DOMICI" not in name] names_list = [name for name in names_list if "NOM" not in name] names_list = [name for name in names_list if "CREDENCIAL" not in name] Domicilio_list= list(sorted_dist_dict.keys())[5:10] #print(Domicilio_list) Domicilio_list = [name for name in Domicilio_list if "DOMICI" not in name] Domicilio_list = [name for name in Domicilio_list if "MÉXICO" not in name] Domicilio_list = [name for name in Domicilio_list if "CREDENCIAL" not in name] Domicilio_list = [name for name in Domicilio_list if "ELECTOR" not in name] Domicilio_list = [name for name in Domicilio_list if "CLAVE" not in name] Domicilio_list = [name for name in Domicilio_list if "cur" not in name] domicilio_list_str = ' '.join([str(elem) for elem in Domicilio_list]) #print("names_list: ",names_list) names_list_str = ' '.join([str(elem) for elem in names_list]) print() print("Nombre completo: ", names_list_str) print("Domicilio completo: ", domicilio_list_str) #print("Fecha de nacimiento:", DoB_text) # Save result image cv2.imwrite(res_img_file, img) return {"nombre": names_list_str, "fecha_de_nacimiento":DoB_text.strip(), "sexo": sexo, "domicilio":domicilio_list_str,"clave_de_elector": clave.strip(), "CURP": curp.strip(), "registro":registro.strip(), "numero_de_emisión":emisión, "estado": estado.strip(), "municipio": municipio.strip(), "vigencia":vigencia} #, "seccion": seccion}
5,343,185
def merge_sort(items): """Sorts a list of items. Uses merge sort to sort the list items. Args: items: A list of items. Returns: The sorted list of items. """ n = len(items) if n < 2: return items m = n // 2 left = merge_sort(items[:m]) right = merge_sort(items[m:]) return merge(left, right)
5,343,186
def sshkey_generate(private, public, path): """Génération de clé privée , public ssh""" try: from Crypto.PublicKey import RSA key = RSA.generate(2048) public_key = key.publickey() enc_data = public_key.encrypt("""admin-manager-hash""", 32) x = key.decrypt(enc_data) x = x.decode('utf-8') k = key.exportKey('PEM') p = key.publickey().exportKey('PEM') with open(private,'w') as kf: kf.write(k.decode()) kf.close() with open(public,'w') as pf: pf.write(p.decode()) pf.close() os.system("sudo mkdir" " "+path) os.system("sudo mv "+private+" "+path) os.system("sudo mv "+public+" "+path) except NameError: print('Une erreur de type "NameError" a été levée') except AttributeError: print('Une erreur de type "AttributeError" a été levée') except SyntaxError: print('Une erreur de type "SyntaxError" a été levée') except IOError: print('Une erreur de type "IOError" a été levée') except ImportError: print('Une erreur de type "ImportError" a été levée') except IndentationError: print('Une ereur de type "IndentationError" a été levée')
5,343,187
def hunk_boundary( hunk: HunkInfo, operation_type: Optional[str] = None ) -> Optional[HunkBoundary]: """ Calculates boundary for the given hunk, returning a tuple of the form: (<line number of boundary start>, <line number of boundary end>) If operation_type is provided, it is used to filter down only to lines whose line_type matches the operation_type. Possible values: "+", "-", None. If there are no lines of the given type in the hunk, returns None. """ line_type_p = lambda line: True if operation_type is not None: line_type_p = lambda line: line.line_type == operation_type admissible_lines = [line for line in hunk.lines if line_type_p(line)] if not admissible_lines: return None return HunkBoundary( operation_type=operation_type, start=admissible_lines[0].new_line_number, end=admissible_lines[-1].new_line_number, )
5,343,188
def get_activities_list(log, parameters=None): """ Gets the activities list from a log object, sorted by activity name Parameters -------------- log Log parameters Possible parameters of the algorithm Returns ------------- activities_list List of activities sorted by activity name """ from pm4py.statistics.attributes.pandas import get as pd_attributes_filter from pm4py.statistics.attributes.log import get as log_attributes_filter if parameters is None: parameters = {} activity_key = parameters[ constants.PARAMETER_CONSTANT_ACTIVITY_KEY] if constants.PARAMETER_CONSTANT_ACTIVITY_KEY in parameters else xes.DEFAULT_NAME_KEY if type(log) is pd.DataFrame: activities = pd_attributes_filter.get_attribute_values(log, activity_key) else: activities = log_attributes_filter.get_attribute_values(log, activity_key) return sorted(list(activities.keys()))
5,343,189
def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_vocab_size, encoding_embedding_size): """ :return: tuple (RNN output, RNN state) """ embed = tf.contrib.layers.embed_sequence(rnn_inputs, vocab_size=source_vocab_size, embed_dim=encoding_embedding_size) stacked_cells = tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.LSTMCell(rnn_size), keep_prob) for _ in range(num_layers)]) outputs, state = tf.nn.dynamic_rnn(stacked_cells, embed, dtype=tf.float32) return outputs, state
5,343,190
def point_selection(start, end, faces): """ Calculates the intersection points between a line segment and triangle mesh. :param start: line segment start point :type start: Vector3 :param end: line segment end point :type end: Vector3 :param faces: faces: N x 9 array of triangular face vertices :type faces: numpy.ndarray :return: array of intersection points :rtype: numpy.ndarray """ direction = end - start length = direction.length if length < eps or faces is None: return np.array([]) direction /= length distances = segment_triangle_intersection(start, direction, length, faces) if not distances: return np.array([]) distances = np.reshape(distances, (len(distances), 1)) return start + direction * distances
5,343,191
def daysBetweenDates(year1, month1, day1, year2, month2, day2): """Returns the number of days between year1/month1/day1 and year2/month2/day2. Assumes inputs are valid dates in Gregorian calendar, and the first date is not after the second.""" month = month2 year = year2 day = day2 - day1 if (day < 0): day += 30 month -= 1 month = month - month1 if (month < 0): month += 12 year -= 1 year = year - year1 return (year * 360) + month * 30 + day
5,343,192
def derive_sender_1pu(epk, sender_sk, recip_pk, alg, apu, apv, keydatalen): """Generate two shared secrets (ze, zs).""" ze = derive_shared_secret(epk, recip_pk) zs = derive_shared_secret(sender_sk, recip_pk) key = derive_1pu(ze, zs, alg, apu, apv, keydatalen) return key
5,343,193
def collapse(board_u): """ takes a row/column of the board and collapses it to the left """ i = 1 limit = 0 while i < 4: if board_u[i]==0: i += 1 continue up_index = i-1 curr_index = i while up_index>=0 and board_u[up_index]==0: board_u[up_index] = board_u[curr_index] board_u[curr_index] = 0 up_index -= 1 curr_index -= 1 if up_index >= limit and board_u[up_index]==board_u[curr_index]: board_u[up_index] *= 2 board_u[curr_index] = 0 limit = curr_index i += 1 return board_u
5,343,194
def find_match_in_file(search_term, file_location): """ This function is used to query a file search_term = Term to find file_location = Location of file to query. """ try: with open(file_location) as line: for search in line: result = re.match(search_term, search) if result: return result return except Exception as err: print(err)
5,343,195
def write_long(encoder, datum, schema, named_schemas, fname): """int and long values are written using variable-length, zig-zag coding.""" encoder.write_long(datum)
5,343,196
def get_cost_function(cost_function_name: str): """ Given the name of a cost function, retrieve the corresponding function and its partial derivative wrt Y_circ :param cost_function_name: the name of the cost function :return: the corresponding cost function and its partial derivative wrt Y_circ """ try: return cost_functions[cost_function_name] except KeyError: raise UnknownCostFunctionName(cost_function_name)
5,343,197
def create_C1(data_set): """ Create frequent candidate 1-itemset C1 by scaning data set. Args: data_set: A list of transactions. Each transaction contains several items. Returns: C1: A set which contains all frequent candidate 1-itemsets """ C1 = set() for t in data_set: for item in t: item_set = frozenset([item]) C1.add(item_set) return C1
5,343,198
def timezone(name): """ Loads a Timezone instance by name. :param name: The name of the timezone. :type name: str or int :rtype: Timezone """ return Timezone.load(name)
5,343,199