content
stringlengths
22
815k
id
int64
0
4.91M
def p_express_arg_8(p): """ express_arg : express_arg ARITOP express_arg """ p[0] = Expression(p[2], p[1], p[3])
5,340,100
def xy_to_array_origin(image): """Return view of image transformed from Cartesian to array origin.""" return rgb_transpose(image[:, ::-1])
5,340,101
def test_start_test_program(): """ >>> write('t.py', ... ''' ... import time ... time.sleep(1) ... open('x', 'w').close() ... time.sleep(99) ... ''') >>> write('conf', ... ''' ... <runner> ... program %s t.py ... start-test-program cat x ... </runner> ... ''' % sys.executable) >>> import os, time >>> start = time.time() >>> system("./zdaemon -Cconf start") . . daemon process started, pid=21446 >>> os.path.exists('x') True >>> system("./zdaemon -Cconf stop") <BLANKLINE> daemon process stopped """
5,340,102
def read_csv(infile, delimiter=',', encoding='utf-8', named=False): """Reads a csv as a list of lists (unnamed) or a list of named tuples (named) Args: string infile: the file to read in OPTIONAL: string delimiter: the delimiter used (default ',') encoding encoding: the encoding of the file (default 'utf-8') boolean named: if true, loads rows as named tuples (default lists), (default False) Returns list of lists or named tuples""" with open(infile, encoding=encoding) as f: reader = csv.reader(f, delimiter=delimiter) if named: headers = next(reader) # strip spaces and annoying things from headers names = [identifier.replace('-', '_').replace(' ', '_').lower() for identifier in headers] Data = namedtuple("Data", names) named_rows = map(Data._make, reader) return [row for row in named_rows] else: return list(list(row for row in reader))
5,340,103
def publish_ims_legacy(f='ims_legacy'): """ create public version of data by deletion of all email addresses """ out_dir = global_vars['published_files_directory'] data = {} dls = [] infile = open(f + '.txt') instring = infile.read() ##instring = instring.replace(':description',' :citation') ## to be deprecated soon instring = unicode(instring,'utf-8') instring = instring.replace('$time_stamp$', time_stamp) lines = instring.split('\n') lines = [line for line in lines if not line.find('Email') >= 0 ] txt = '\n'.join(lines) + '\n' out_fname = out_dir + 'imslegacy_data' #outfile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.txt','w') outfile = open(out_fname + '.txt','w') outfile.write(txt.encode('utf-8')) outfile.close() print ' wrote to ' + out_fname + '.txt' ##print ' published at http://bibserver.berkeley.edu/tmp/imslegacy/imslegacy_data.txt' #data = read_ims_legacy('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data') data = read_ims_legacy(out_fname) #outfile = open('/accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.json','w') outfile = open(out_fname + '.json','w') outfile.write(json.dumps(data,indent=4).encode('utf-8')) outfile.close() print ' wrote to ' + out_fname + '.json' #print ' wrote to /accounts/projects/jpopen/apache/htdocs/tmp/imslegacy/imslegacy_data.json' #print ' published at http://bibserver.berkeley.edu/tmp/imslegacy/imslegacy_data.json'
5,340,104
def is_ivy_enabled(ctx): """Determine if the ivy compiler should be used to by the ng_module. Args: ctx: skylark rule execution context Returns: Boolean, Whether the ivy compiler should be used. """ # Check the renderer flag to see if Ivy is enabled. # This is intended to support a transition use case for google3 migration. # The `_renderer` attribute will never be set externally, but will always be # set internally as a `string_flag()` with the allowed values of: # "view_engine" or "ivy". if ((hasattr(ctx.attr, "_renderer") and ctx.attr._renderer[BuildSettingInfo].value == "ivy")): return True # This attribute is only defined in google's private ng_module rule and not # available externally. For external users, this is effectively a no-op. if hasattr(ctx.attr, "ivy") and ctx.attr.ivy == True: return True if ctx.var.get("angular_ivy_enabled", None) == "True": return True # Enable Angular targets extracted by Kythe Angular indexer to be compiled with the Ivy compiler architecture. # TODO(ayazhafiz): remove once Ivy has landed as the default in g3. if ctx.var.get("GROK_ELLIPSIS_BUILD", None) != None: return True # Return false to default to ViewEngine compiler return False
5,340,105
def get_directions_id(destination): """Get place ID for directions, which is place ID for associated destination, if an event""" if hasattr(destination, 'destination'): # event with a related destination; use it for directions if destination.destination: return destination.destination.id else: # event without a destination return None else: # not an event return destination.id
5,340,106
def decode_token(params, token_field=None): """ This function is used to decode the jwt token into the data that was used to generate it Args: session_obj: sqlalchemy obj used to interact with the db params: json data received with request token_field: name of the field that token can be found in Return: resulting data from the token decode process """ try: if not token_field: token = params[TOKEN_FIELD] else: token = params[token_field] # token_use_details = find_token_use(session_obj, token) # check_token_validate_period(session_obj, token_use_details) account_details = jwt.decode(token, _SECRET, algorithms=ALGORITHM) # check_login_access_revoked( # session_obj, account_details, token_use_details # ) # extend_token_validity(session_obj, token_use_details) return account_details except orm_exc.NoResultFound: raise exc.LoggedOutError()
5,340,107
def gas_arrow(ods, r, z, direction=None, snap_to=numpy.pi / 4.0, ax=None, color=None, pad=1.0, **kw): """ Draws an arrow pointing in from the gas valve :param ods: ODS instance :param r: float R position of gas injector (m) :param z: float Z position of gas injector (m) :param direction: float Direction of injection (radians, COCOS should match ods.cocos). None = try to guess. :param snap_to: float Snap direction angle to nearest value. Set snap to pi/4 to snap to 0, pi/4, pi/2, 3pi/4, etc. No in-between. :param ax: axes instance into which to plot (default: gca()) :param color: matplotlib color specification :param pad: float Padding between arrow tip and specified (r,z) """ from matplotlib import pyplot def pick_direction(): """Guesses the direction for the arrow (from injector toward machine) in case you don't know""" dr = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['r'] - r dz = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['z'] - z theta = numpy.arctan2(dz, -dr) if snap_to > 0: theta = snap_to * round(theta / snap_to) return theta if direction is None: direction = pick_direction() else: direction = cocos_transform(ods.cocos, 11)['BP'] * direction if ax is None: ax = pyplot.gca() shaft_len = 3.5 * (1 + pad) / 2. da = numpy.pi / 10 # Angular half width of the arrow head x0 = numpy.cos(-direction) * pad y0 = numpy.sin(-direction) * pad head_mark = [ (x0, y0), (x0 + numpy.cos(-direction + da), y0 + numpy.sin(-direction + da)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + shaft_len * numpy.cos(-direction), y0 + shaft_len * numpy.sin(-direction)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + numpy.cos(-direction - da), y0 + numpy.sin(-direction - da)), ] kw.pop('marker', None) # Ignore this return ax.plot(r, z, marker=head_mark, color=color, markersize=100 * (pad + shaft_len) / 5, **kw)
5,340,108
def get_word_vector(text, model, num): """ :param text: list of words :param model: word2vec model in Gensim format :param num: number of the word to exclude :return: average vector of words in text """ # Creating list of all words in the document which are present in the model excl_word = text[num] words = [w for w in text if w in model and w != excl_word] lexicon = list(set(words)) lw = len(lexicon) if lw < 1: print('Empty lexicon in', text, file=sys.stderr) return np.zeros(model.vector_size) vectors = np.zeros((lw, model.vector_size)) # Creating empty matrix of vectors for words for i in list(range(lw)): # Iterate over words in the text word = lexicon[i] vectors[i, :] = model[word] # Adding word and its vector to matrix semantic_fingerprint = np.sum(vectors, axis=0) # Computing sum of all vectors in the document semantic_fingerprint = np.divide(semantic_fingerprint, lw) # Computing average vector return semantic_fingerprint
5,340,109
def find_storage_pool_type(apiclient, storagetype='NetworkFileSystem'): """ @name : find_storage_pool_type @Desc : Returns true if the given storage pool type exists @Input : type : type of the storage pool[NFS, RBD, etc.,] @Output : True : if the type of storage is found False : if the type of storage is not found FAILED In case the cmd failed """ cmd = listStoragePools.listStoragePoolsCmd() cmd_out = apiclient.listStoragePools(cmd) if validateList(cmd_out)[0] != PASS: return FAILED for storage_pool in cmd_out: if storage_pool.type.lower() == storagetype: return True return False
5,340,110
def test_feed_from_annotations_item_guid(factories): """Feed items should use the annotation's HTML URL as their GUID.""" annotation = factories.Annotation( created=datetime.datetime(year=2015, month=3, day=11) ) feed = rss.feed_from_annotations( [annotation], _annotation_url(), mock.Mock(), "", "", "" ) assert feed["entries"][0]["guid"] == ("tag:hypothes.is,2015-09:" + annotation.id)
5,340,111
def parse_year(candidate: Any) -> int: """Parses the given candidate as a year literal. Raises a ValueError when the candidate is not a valid year.""" if candidate is not None and not isinstance(candidate, int): raise TypeError("Argument year is expected to be an int, " "but is {}".format(type(candidate))) return cast(int, candidate)
5,340,112
def dropout2d(tensor: Tensor, p: float = 0.2) -> Tensor: """ Method performs 2D channel-wise dropout with a autograd tensor. :param tensor: (Tensor) Input tensor :param p: (float) Probability that a activation element is set to zero :return: (Tensor) Output tensor """ # Check argument assert 0.0 <= p <= 1.0, 'Parameter p must be in the range of [0, 1].' # Apply dropout mask = (np.random.randint(0, 2, size=tensor.shape[0]) > p).astype(float).reshape(1, -1, 1, 1) output = tensor.data * mask # Check if grad is needed requires_grad = tensor.requires_grad # Add grad function dependencies = [Dependency(tensor, lambda grad: grad * mask)] if requires_grad else None return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
5,340,113
def svn_repos_finish_report(*args): """svn_repos_finish_report(void * report_baton, apr_pool_t pool) -> svn_error_t""" return _repos.svn_repos_finish_report(*args)
5,340,114
def step( read_path: Path, write_path: Path, overrides ) -> None: """ Read config, apply overrides and write out. """ step_config(read_path, write_path, overrides)
5,340,115
def problem451(): """ Consider the number 15. There are eight positive numbers less than 15 which are coprime to 15: 1, 2, 4, 7, 8, 11, 13, 14. The modular inverses of these numbers modulo 15 are: 1, 8, 4, 13, 2, 11, 7, 14 because 1*1 mod 15=1 2*8=16 mod 15=1 4*4=16 mod 15=1 7*13=91 mod 15=1 11*11=121 mod 15=1 14*14=196 mod 15=1 Let I(n) be the largest positive number m smaller than n-1 such that the modular inverse of m modulo n equals m itself. So I(15)=11. Also I(100)=51 and I(7)=1. Find ∑I(n) for 3≤n≤2·10^7 """ LIMIT = 20000000 # Build table of smallest prime factors smallestprimefactor = array.array("L", itertools.repeat(0, LIMIT + 1)) end = eulerlib.sqrt(len(smallestprimefactor) - 1) for i in range(2, len(smallestprimefactor)): if smallestprimefactor[i] == 0: smallestprimefactor[i] = i if i <= end: for j in range(i * i, len(smallestprimefactor), i): if smallestprimefactor[j] == 0: smallestprimefactor[j] = i # Returns all the solutions (in ascending order) such that # for each k, 1 <= k < n and k^2 = 1 mod n. def get_solutions(n): if smallestprimefactor[n] == n: # n is prime return (1, n - 1) else: temp = [] p = smallestprimefactor[n] sols = solutions[n // p] for i in range(0, n, n // p): for j in sols: k = i + j if k * k % n == 1: temp.append(k) return tuple(temp) # Process every integer in range solutions = [(), (), (1,)] ans = 0 for i in range(3, LIMIT + 1): sols = get_solutions(i) if i <= LIMIT // 2: solutions.append(sols) ans += sols[-2] # Second-largest solution return ans
5,340,116
def collate_molgraphs(data): """Batching a list of datapoints for dataloader. Parameters ---------- data : list of 3-tuples or 4-tuples. Each tuple is for a single datapoint, consisting of a SMILES, a DGLGraph, all-task labels and optionally a binary mask indicating the existence of labels. Returns ------- smiles : list List of smiles bg : BatchedDGLGraph Batched DGLGraphs labels : Tensor of dtype float32 and shape (B, T) Batched datapoint labels. B is len(data) and T is the number of total tasks. masks : Tensor of dtype float32 and shape (B, T) Batched datapoint binary mask, indicating the existence of labels. If binary masks are not provided, return a tensor with ones. """ assert len(data[0]) in [3, 4], \ 'Expect the tuple to be of length 3 or 4, got {:d}'.format(len(data[0])) if len(data[0]) == 3: smiles, graphs, labels = map(list, zip(*data)) masks = None else: smiles, graphs, labels, masks = map(list, zip(*data)) bg = dgl.batch(graphs) bg.set_n_initializer(dgl.init.zero_initializer) bg.set_e_initializer(dgl.init.zero_initializer) labels = torch.stack(labels, dim=0) if masks is None: masks = torch.ones(labels.shape) else: masks = torch.stack(masks, dim=0) return smiles, bg, labels, masks
5,340,117
def os_path_abspath(): """将相对路径转换为绝对路径""" os.chdir("C:\\") paths = [ ".", "..", "/one/two/three", "./one/two", ] for path in paths: print("{!r:>21}: {!r}".format(path, os.path.abspath(path)))
5,340,118
def reshape_practice(x): """ Given an input tensor of shape (24,), return a reshaped tensor y of shape (3, 8) such that y = [ [x[0], x[1], x[2], x[3], x[12], x[13], x[14], x[15]], [x[4], x[5], x[6], x[7], x[16], x[17], x[18], x[19]], [x[8], x[9], x[10], x[11], x[20], x[21], x[22], x[23]], ] You must construct y by performing a sequence of reshaping operations on x (view, t, transpose, permute, contiguous, reshape, etc). The input tensor should not be modified. Input: - x: A tensor of shape (24,) Returns: - y: A reshaped version of x of shape (3, 8) as described above. """ y = None ############################################################################# # TODO: Implement this function # ############################################################################# # Replace "pass" statement with your code y = x.contiguous().view(2, 3 , 4) y = y.transpose(0,1) y = y.contiguous().view(3, -1) ############################################################################# # END OF YOUR CODE # ############################################################################# return y
5,340,119
def xnnpack_cc_library( name, srcs = [], psimd_srcs = [], x86_srcs = [], aarch32_srcs = [], aarch64_srcs = [], asmjs_srcs = [], wasm_srcs = [], wasmsimd_srcs = [], copts = [], gcc_copts = [], msvc_copts = [], mingw_copts = [], msys_copts = [], gcc_x86_copts = [], msvc_x86_32_copts = [], msvc_x86_64_copts = [], aarch32_copts = [], aarch64_copts = [], asmjs_copts = [], wasm_copts = [], wasmsimd_copts = [], optimized_copts = ["-O2"], hdrs = [], defines = [], includes = [], deps = [], visibility = []): """C/C++/assembly library with architecture-specific configuration. Define a static library with architecture- and instruction-specific source files and/or compiler flags. Args: name: The name of the library target to define. srcs: The list of architecture-independent source files. psimd_srcs: The list of psimd-specific source files. x86_srcs: The list of x86-specific source files. aarch32_srcs: The list of AArch32-specific source files. aarch64_srcs: The list of AArch64-specific source files. asmjs_srcs: The list of Asm.js-specific source files. wasm_srcs: The list of WebAssembly/MVP-specific source files. wasmsimd_srcs: The list of WebAssembly/SIMD-specific source files. copts: The list of compiler flags to use in all builds. -I flags for include/ and src/ directories of XNNPACK are always prepended before these user-specified flags. gcc_copts: The list of compiler flags to use with GCC-like compilers. msvc_copts: The list of compiler flags to use with MSVC compiler. mingw_copts: The list of compiler flags to use with MinGW GCC compilers. msys_copts: The list of compiler flags to use with MSYS (Cygwin) GCC compilers. gcc_x86_copts: The list of GCC-like compiler flags to use in x86 (32-bit and 64-bit) builds. msvc_x86_32_copts: The list of MSVC compiler flags to use in x86 (32-bit) builds. msvc_x86_64_copts: The list of MSVC compiler flags to use in x86 (64-bit) builds. aarch32_copts: The list of compiler flags to use in AArch32 builds. aarch64_copts: The list of compiler flags to use in AArch64 builds. asmjs_copts: The list of compiler flags to use in Asm.js builds. wasm_copts: The list of compiler flags to use in WebAssembly/MVP builds. wasmsimd_copts: The list of compiler flags to use in WebAssembly/SIMD builds. optimized_copts: The list of compiler flags to use in optimized builds. Defaults to -O2. hdrs: The list of header files published by this library to be textually included by sources in dependent rules. defines: List of predefines macros to be added to the compile line. includes: List of include dirs to be added to the compile line. deps: The list of other libraries to be linked. visibility: The list of packages that can depend on this target. """ native.cc_library( name = name, srcs = srcs + select({ ":linux_k8": psimd_srcs + x86_srcs, ":linux_aarch64": psimd_srcs + aarch64_srcs, ":linux_armhf": psimd_srcs + aarch32_srcs, ":macos_x86_64": psimd_srcs + x86_srcs, ":windows_x86_64_clang": psimd_srcs + x86_srcs, ":windows_x86_64_mingw": psimd_srcs + x86_srcs, ":windows_x86_64_msys": psimd_srcs + x86_srcs, ":windows_x86_64": x86_srcs, ":android_armv7": psimd_srcs + aarch32_srcs, ":android_arm64": psimd_srcs + aarch64_srcs, ":android_x86": psimd_srcs + x86_srcs, ":android_x86_64": psimd_srcs + x86_srcs, ":ios_armv7": psimd_srcs + aarch32_srcs, ":ios_arm64": psimd_srcs + aarch64_srcs, ":ios_arm64e": psimd_srcs + aarch64_srcs, ":ios_x86": psimd_srcs + x86_srcs, ":ios_x86_64": psimd_srcs + x86_srcs, ":watchos_armv7k": psimd_srcs + aarch32_srcs, ":watchos_arm64_32": psimd_srcs + aarch64_srcs, ":watchos_x86": psimd_srcs + x86_srcs, ":watchos_x86_64": psimd_srcs + x86_srcs, ":tvos_arm64": psimd_srcs + aarch64_srcs, ":tvos_x86_64": psimd_srcs + x86_srcs, ":emscripten_asmjs": asmjs_srcs, ":emscripten_wasm": wasm_srcs, ":emscripten_wasmsimd": psimd_srcs + wasmsimd_srcs, "//conditions:default": [], }), copts = [ "-Iinclude", "-Isrc", ] + copts + select({ ":linux_k8": gcc_x86_copts, ":linux_aarch64": aarch64_copts, ":linux_armhf": aarch32_copts, ":macos_x86_64": gcc_x86_copts, ":windows_x86_64_clang": ["/clang:" + opt for opt in gcc_x86_copts], ":windows_x86_64_mingw": mingw_copts + gcc_x86_copts, ":windows_x86_64_msys": msys_copts + gcc_x86_copts, ":windows_x86_64": msvc_x86_64_copts, ":android_armv7": aarch32_copts, ":android_arm64": aarch64_copts, ":android_x86": gcc_x86_copts, ":android_x86_64": gcc_x86_copts, ":ios_armv7": aarch32_copts, ":ios_arm64": aarch64_copts, ":ios_arm64e": aarch64_copts, ":ios_x86": gcc_x86_copts, ":ios_x86_64": gcc_x86_copts, ":watchos_armv7k": aarch32_copts, ":watchos_arm64_32": aarch64_copts, ":watchos_x86": gcc_x86_copts, ":watchos_x86_64": gcc_x86_copts, ":tvos_arm64": aarch64_copts, ":tvos_x86_64": gcc_x86_copts, ":emscripten_asmjs": asmjs_copts, ":emscripten_wasm": wasm_copts, ":emscripten_wasmsimd": wasmsimd_copts, "//conditions:default": [], }) + select({ ":windows_x86_64_clang": ["/clang:" + opt for opt in gcc_copts], ":windows_x86_64_mingw": gcc_copts, ":windows_x86_64_msys": gcc_copts, ":windows_x86_64": msvc_copts, "//conditions:default": gcc_copts, }) + select({ ":optimized_build": optimized_copts, "//conditions:default": [], }), defines = defines, deps = deps, includes = ["include", "src"] + includes, linkstatic = True, linkopts = select({ ":linux_k8": ["-lpthread"], ":linux_aarch64": ["-lpthread"], ":linux_armhf": ["-lpthread"], ":android": ["-lm"], "//conditions:default": [], }), textual_hdrs = hdrs, visibility = visibility, )
5,340,120
def recouvrement_view(request, id): """ Fonction Detail """ user = request.user recouvrement = Recouvrement.objects.filter(user=user).get(id=id) context = { 'recouvrement': recouvrement, } template_name = 'pages/recouvrement/recouvrement_view.html' return render(request, template_name, context)
5,340,121
def getFileServicesNames(fileServices=None, verbose=True): """ Returns the names and description of the fileServices available to the user. :param fileServices: a list of FileService objects (dictionaries), as returned by Files.getFileServices(). If not set, then an extra internal call to Jobs.getFileServices() is made. :param verbose: boolean parameter defining whether warnings will be printed (set to True) or not (set to False). :return: an array of dicts, where each dict has the name and description of a file service available to the user. :raises: Throws an exception if the user is not logged into SciServer (use Authentication.login for that purpose). Throws an exception if the HTTP request to the RACM API returns an error. :example: fileServiceNames = Files.getFileServicesNames(); .. seealso:: Files.getFileServices """ if fileServices is None: fileServices = getFileServices(verbose); fileServiceNames = []; for fileService in fileServices: fileServiceNames.append({"name":fileService.get('name'),"description":fileService.get('description')}) return fileServiceNames
5,340,122
def load_demo_data_from_scratch(*args, **kwargs): """Loads demo data for testing purpose. Do not use this in production""" data_files_1 = os.path.join(BASE_DIR, 'data/data/setup/*.json') data_files_2 = os.path.join(BASE_DIR, 'data/data/admin_units/*.json') data_files_3 = os.path.join(BASE_DIR, 'data/data/v2_data/*.json') data_files_4 = os.path.join(BASE_DIR, 'data/data/demo/*.json') data_files_5 = os.path.join(BASE_DIR, 'data/data/facilities/*.json') data_files_6 = os.path.join(BASE_DIR, 'data/data/geocodes/*.json') data_files_7 = os.path.join(BASE_DIR, 'data/data/approvals/*.json') data_files_8 = os.path.join(BASE_DIR, 'data/data/last/*.json') manage('bootstrap', data_files_1) manage('bootstrap', data_files_2) manage('bootstrap', data_files_3) manage('bootstrap', data_files_4) manage('bootstrap', data_files_5) manage('load_groups') # Needs to occur after base setup data has been loaded load_gis_data() manage('bootstrap', data_files_6) manage('bootstrap', data_files_7) manage('bootstrap', data_files_8) manage("createinitialrevisions")
5,340,123
def username_in_path(username, path_): """Checks if a username is contained in URL""" if username in path_: return True return False
5,340,124
def str_parse_as_utf8(content) -> str: """Returns the provided content decoded as utf-8.""" return content.decode('utf-8')
5,340,125
def IGet(InterfaceItemPath): """ Returns the current value of a ZBrush or ZScript interface item Output: The item value """ pass
5,340,126
def create_wiki_titles(): """ Read global variable DATA and get all available articles titles. After update global variable wiki_articles_titles with them. :return: None :rtype: None """ wiki_articles_titles = [] for article_title, question, answer, article in DATA: wiki_articles_titles.append(article_title) global WIKI_ARTICLES_TITLES_SET WIKI_ARTICLES_TITLES_SET = sorted(set(wiki_articles_titles))
5,340,127
def TypeProviderClient(version): """Return a Type Provider client specially suited for listing types. Listing types requires many API calls, some of which may fail due to bad user configurations which show up as errors that are retryable. We can alleviate some of the latency and usability issues this causes by tuning the client. Args: version: DM API version used for the client. Returns: A Type Provider API client. """ main_client = apis.GetClientInstance('deploymentmanager', version.id) main_client.num_retries = 2 return main_client.typeProviders
5,340,128
def create_indicator( pattern: str, pattern_type: str, created_by: Optional[Identity] = None, name: Optional[str] = None, description: Optional[str] = None, valid_from: Optional[datetime] = None, kill_chain_phases: Optional[List[KillChainPhase]] = None, labels: Optional[List[str]] = None, confidence: Optional[int] = None, object_markings: Optional[List[MarkingDefinition]] = None, x_opencti_main_observable_type: Optional[str] = None, x_opencti_score: Optional[int] = None, ) -> STIXIndicator: """Create an indicator.""" custom_properties: Dict[str, Any] = {X_OPENCTI_SCORE: DEFAULT_X_OPENCTI_SCORE} if x_opencti_score is not None: custom_properties[X_OPENCTI_SCORE] = x_opencti_score if x_opencti_main_observable_type is not None: custom_properties[ X_OPENCTI_MAIN_OBSERVABLE_TYPE ] = x_opencti_main_observable_type return STIXIndicator( id=_create_random_identifier("indicator"), created_by_ref=created_by, name=name, description=description, pattern=pattern, pattern_type=pattern_type, valid_from=valid_from, kill_chain_phases=kill_chain_phases, labels=labels, confidence=confidence, object_marking_refs=object_markings, custom_properties=custom_properties, )
5,340,129
def write_filtered_mtx( raw_barcode_filename, raw_matrix_filename, filtered_barcode_filename, filtered_matrix_filename, ): """wrapper for filter_mtx that will save the filtered matrix We read the the raw barcodes, raw matrix, and filtered barcodes and then yield the rows from the raw matrix file to only include the barcodes in the filtered barcode list and rewrite the index values to match the filtered barcode list. Parameters ---------- raw_barcode_filename : string filename of file containing a list of cell barcode labels for the raw matrix. raw_matrix_filename : string filename of file a matrix market file filtered_barcode_filename : string file name containing a subset of the cell barcodes contained in the raw_barcode_filename with which the raw_matrix will be resized to only contain those indices. filtered_matrix_filename : string filename to write the filtered matrix to """ with open(filtered_matrix_filename, "wt") as outstream: for line in filter_mtx( raw_barcode_filename, raw_matrix_filename, filtered_barcode_filename ): outstream.write(line)
5,340,130
def import_data( path_to_csv: str, response_colname: str, standards_colname: str, header: int = 0, nrows: int = None, skip_rows: int = None, ) -> pd.DataFrame: """Import standard curve data from a csv file. Args: path_to_csv: Refer to pd.read_csv docs. response_colname: Name of column with response data. standards_colname: Name of column with standard concentrations. header: Refer to pd.read_csv(). nrows: Refer to pd.read_csv(). skip_rows: Skips the first n rows when reading data. # kwargs: Additional arguments to parse to pd.read_csv(). Returns: Formatted data as a dataframe. Raises: ValueError: If response_colname or standards_colname not in data.columns """ data = pd.read_csv(path_to_csv, header=header, nrows=nrows) if skip_rows: data = data.iloc[skip_rows:, :] data.dropna(axis=1, how="all", inplace=True) data.dropna(inplace=True) data.rename({response_colname: "response", standards_colname: "standard_concentrations"}, axis=1, inplace=True) try: return data.loc[:, ["standard_concentrations", "response"]] except KeyError: raise ValueError("Check `response_colname` and `standards_colname` values are valid column names.")
5,340,131
def plus(x: np.ndarray, y: np.ndarray) -> np.ndarray: """ 矩阵相加""" if x.shape == y.shape: return x + y
5,340,132
def add_noise(wave, noise, fs, snr, start_time, duration, wave_power): """Add a noise to wave. """ noise_power = np.dot(noise, noise) / noise.shape[0] scale_factor = np.sqrt(10**(-snr/10.0) * wave_power / noise_power) noise = noise * scale_factor offset = int(start_time * fs) add_length = min(wave.shape[0] - offset, int(duration * fs), noise.shape[0]) if add_length > 0: wave[offset: offset + add_length] += noise[0: add_length] return wave
5,340,133
def _sort_factors(factors, **args): """Sort low-level factors in increasing 'complexity' order.""" def order_if_multiple_key(factor): f, n = factor return len(f), n, default_sort_key(f) def order_no_multiple_key(f): return len(f), default_sort_key(f) if args.get('multiple', True): return sorted(factors, key=order_if_multiple_key) else: return sorted(factors, key=order_no_multiple_key)
5,340,134
def get_affix(text): """ This method gets the affix information :param str text: Input text. """ return " ".join( [word[-4:] if len(word) >= 4 else word for word in text.split()])
5,340,135
async def async_setup_entry(hass, config_entry): """Konfigurowanie integracji na podstawie wpisu konfiguracyjnego.""" _LOGGER.info("async_setup_entry " + str(config_entry)) hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, "sensor") ) return True
5,340,136
def analyse_branching(geom,ordering_system,conversionFactor,voxelSize): """ Does a branching analysis on the tree defined by 'geom' Inputs: - geom: A geometry structure consisting of element list, node location and radii/lengths - ordering_system: the ordering system to be used in analysis (e.g. 'strahler', 'horsfield' Returns: Prints to screen a table of branching properties (one per generation, one per order) and overall summary statistics """ elem_cnct = pg_utilities.element_connectivity_1D(geom['nodes'], geom['elems']) orders = evaluate_orders(geom['nodes'], geom['elems']) # Find Results branchGeom = arrange_by_branches(geom, elem_cnct['elem_up'], orders[ordering_system],orders['generation']) [geom, branchGeom] = find_branch_angles(geom, orders, elem_cnct, branchGeom, voxelSize, conversionFactor) major_minor_results=major_minor(geom, elem_cnct['elem_down']) #major/minor child stuff # tabulate data generation_summary_statistics(geom, orders, major_minor_results) summary_statistics(branchGeom, geom, orders, major_minor_results,'strahler') return geom
5,340,137
def remove_start(s: str) -> str: """ Clear string from start '-' symbol :param s: :return: """ return s[1:] if s.startswith('-') else s
5,340,138
async def get_user_requests(user, groups): """Get requests relevant to a user. A user sees requests they have made as well as requests where they are a secondary approver """ dynamo_handler = UserDynamoHandler(user) all_requests = await dynamo_handler.get_all_requests() query = { "domains": config.get("dynamo.get_user_requests.domains", []), "filters": [ { "field": "extendedattributes.attributeName", "values": ["secondary_approvers"], "operator": "EQUALS", }, { "field": "extendedattributes.attributeValue", "values": groups + [user], "operator": "EQUALS", }, ], "size": 500, } approver_groups = await auth.query_cached_groups(query=query) approver_groups = [g["name"] for g in approver_groups] requests = [] for req in all_requests: if user == req.get("username", ""): requests.append(req) continue group = req.get("group") if group is None: continue if group in approver_groups + [user]: requests.append(req) return requests
5,340,139
async def test_import_unknown_exception(opp): """Test we handle unknown exceptions from import.""" await setup.async_setup_component(opp, "persistent_notification", {}) with patch( "openpeerpower.components.foscam.config_flow.FoscamCamera", ) as mock_foscam_camera: mock_foscam_camera.side_effect = Exception("test") result = await opp.config_entries.flow.async_init( config_flow.DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data=VALID_CONFIG, ) await opp.async_block_till_done() assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "unknown"
5,340,140
def list_dirs(path): """遍历文件夹下的文件夹,并返回文件夹路径列表 :param path: :return: """ if not os.path.exists(path): os.mkdir(path) _path_list = [] for lists in os.listdir(path): sub_path = os.path.join(path, lists) # 如果是文件夹 if os.path.isdir(sub_path): _path_list.append(sub_path) return _path_list
5,340,141
def main(reddit_client, subreddit): """ Execute the logic of the bot. Run after init() is successful. :param reddit_client: PRAW Reddit Object :param subreddit: String name of the subreddit to check :return: Nothing """ logging.info('Getting ' + str(config.reddit_commentsPerCheck) + ' comments from r/' + subreddit) for comment in reddit_client.subreddit(subreddit).comments(limit=config.reddit_commentsPerCheck): match = re.findall('(![Cc]limb|[Cc]limb:) (.*)', comment.body) # gives a list of tuples # (because there are two groups in the regex) if match: logging.info('Found command ' + str(match) + ' in comment: ' + comment.id + ' ; ' + comment.permalink) query = match[0][1] # take the first Tuple in the List, and the second regex group from the Tuple if not check_already_commented(comment.id): logging.info('Comment ID has not been processed yet: ' + comment.id) logging.debug('vars(comment): ' + str(vars(comment))) # check for '!climb area' or 'climb: area' area_match = re.findall('[Aa]rea (.*)', query) if area_match: query = area_match[0] logging.info('Found Area command in comment: ' + comment.id) logging.debug('Searching MP for Area query: ' + query) current_area = findmparea(query) if current_area: logging.info('Posting reply to comment: ' + comment.id) comment.reply(current_area.redditstr() + config.bot_footer) logging.info('Reply posted to comment: ' + comment.id) record_comment(comment.id) else: logging.error('ERROR RETRIEVING AREA LINK AND INFO FROM MP. Comment: ' + comment.id + '. Body: ' + comment.body) else: # check for Route command, otherwise assume we are handling a route. route_match = re.findall('[Rr]oute (.*)', query) if route_match: query = route_match[0] logging.info('Found Route command in comment: ' + comment.id) else: logging.info('No additional command found; processing as Route command') # find the MP route link logging.debug('Searching MP for Route query: ' + query) current_route = findmproute(query) if current_route: logging.info('Posting reply to comment: ' + comment.id) comment.reply(current_route.redditstr() + config.bot_footer) # TODO does PRAW return the comment ID of the reply we just submitted? Log permalink logging.info('Reply posted to comment: ' + comment.id) record_comment(comment.id) else: logging.error('ERROR RETRIEVING ROUTE LINK AND INFO FROM MP. Comment: ' + comment.id + '. Body: ' + comment.body) else: logging.info('Already visited comment: ' + comment.id + ' ...no reply needed.')
5,340,142
def seaborn(data, row_labels=None, col_labels=None, **args): """Heatmap based on seaborn. Parameters ---------- data : numpy array data array. row_labels A list or array of length N with the labels for the rows. col_labels A list or array of length M with the labels for the columns. **args : TYPE Various functionalities that can are directly used as input for seaborn. https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.axes.Axes.pcolor.html Returns ------- fig. """ assert not isinstance(data, pd.DataFrame), print('[imagesc] >data input must be numpy array') try: import seaborn as sns except: print('[imagesc] >Error: seaborn is missing! Try to: pip install seaborn') # Set defaults args, args_im = _defaults(args) # Linewidth if required args['linewidth'] = _check_input(data, args['linewidth'], args_im) # Normalize data = _normalize(data, args_im) # Cleaning args try: args.pop('standard_scale') args.pop('distance') args.pop('linkage') except: pass # Set row and col labels row_labels, col_labels = set_labels(data.shape, row_labels, col_labels) # Make dataframe df = pd.DataFrame(data=data, index=row_labels, columns=col_labels) sns.set(color_codes=True) sns.set(font_scale=1.2) # sns.set_style({"savefig.dpi": args_im['dpi']}) # Set figsize based on data shape # args_im['figsize']=_set_figsize(data.shape, args_im['figsize']) [fig, ax] = plt.subplots(figsize=args_im['figsize']) # Make heatmap ax = sns.heatmap(df, **args) # Set labels ax.set_xlabel(args_im['xlabel']) ax.set_ylabel(args_im['ylabel']) if args_im['title'] is not None: ax.set_title(args_im['title']) if args_im['label_orientation'] == 'above': ax.xaxis.tick_top() # Rotate labels ax.set_xticklabels(col_labels, rotation=args_im['xtickRot'], ha='center', minor=False) ax.set_yticklabels(row_labels, rotation=args_im['ytickRot'], ha='right', minor=False) # set the x-axis labels on the top # # fix for mpl bug that cuts off top/bottom of seaborn viz # b, t = plt.ylim() # discover the values for bottom and top # b += 0.5 # Add 0.5 to the bottom # t -= 0.5 # Subtract 0.5 from the top # plt.ylim(b, t) # update the ylim(bottom, top) values # Plot # ax.tight_layout() plt.show() # Return fig = ax.get_figure() return(fig)
5,340,143
def info(context: AnonAPIContext): """Show batch in current directory""" logger.info(context.get_batch().to_string())
5,340,144
def get_artist_title(path): """ Return artist & title information from filename """ directory, filename = os.path.split(path) name, extension = os.path.splitext(filename) # Splitting out artist & title with regular expression result = re.search("^([\w\s\.\',\+\-&]+?) - ([\(\)\w\s\.\',\-\!&]+)", name) if result is None: raise ValueError("Could not detect artist & title for '%s'." % filename) else: artist = result.group(1) title = result.group(2) if filter_regex is not None: artist = filter_regex.sub('', artist) title = filter_regex.sub('', title) return artist.strip(), title.strip()
5,340,145
def normalize_column(df_column, center_at_zero=False): """Converts an unnormalized dataframe column to a normalized 1D numpy array Default: normalizes between [0,1] (center_at_zero == True): normalizes between [-1,1] """ normalized_array = np.array(df_column, dtype="float64") amax, amin = np.max(normalized_array), np.min(normalized_array) normalized_array -= amin if center_at_zero: normalized_array *= 2.0 / (amax - amin) normalized_array -= 1.0 else: normalized_array *= 1.0 / (amax - amin) return normalized_array
5,340,146
def get_tests(): """Grab all of the tests to provide them to setup.py""" start_dir = os.path.dirname(__file__) return unittest.TestLoader().discover(start_dir, pattern='*.py')
5,340,147
def apply_mask(image, mask): """Apply the given mask to the image. """ image = image.astype(np.uint8) image = np.array(image) for c in range(3): image[:, :, c] = np.where(mask == 1, cv2.blur(image[:, :, c],(40,40)), image[:, :, c]) return image
5,340,148
def pairCorrelationFunction_3D(x, y, z, S, rMax, dr): """Compute the three-dimensional pair correlation function for a set of spherical particles contained in a cube with side length S. This simple function finds reference particles such that a sphere of radius rMax drawn around the particle will fit entirely within the cube, eliminating the need to compensate for edge effects. If no such particles exist, an error is returned. Try a smaller rMax...or write some code to handle edge effects! ;) Arguments: x an array of x positions of centers of particles y an array of y positions of centers of particles z an array of z positions of centers of particles S length of each side of the cube in space rMax outer diameter of largest spherical shell dr increment for increasing radius of spherical shell Returns a tuple: (g, radii, interior_indices) g(r) a numpy array containing the correlation function g(r) radii a numpy array containing the radii of the spherical shells used to compute g(r) reference_indices indices of reference particles """ from numpy import zeros, sqrt, where, pi, mean, arange, histogram # Find particles which are close enough to the cube center that a sphere of radius # rMax will not cross any face of the cube bools1 = x > (-S/2 +rMax) bools2 = x < (S/2 - rMax) bools3 = y > (-S/2 +rMax) bools4 = y < (S/2 - rMax) bools5 = z > (-S/2 + rMax) bools6 = z < (S/2 - rMax) interior_indices, = where(bools1 * bools2 * bools3 * bools4 * bools5 * bools6) num_interior_particles = len(interior_indices) if num_interior_particles < 1: raise RuntimeError ("No particles found for which a sphere of radius rMax\ will lie entirely within a cube of side length S. Decrease rMax\ or increase the size of the cube.") edges = arange(0., rMax + 1.1 * dr, dr) num_increments = len(edges) - 1 g = zeros([num_interior_particles, num_increments]) radii = zeros(num_increments) numberDensity = len(x) / S**3 # Compute pairwise correlation for each interior particle for p in range(num_interior_particles): index = interior_indices[p] d = sqrt((x[index] - x)**2 + (y[index] - y)**2 + (z[index] - z)**2) d[index] = 2 * rMax (result, bins) = histogram(d, bins=edges, normed=False) g[p,:] = result / numberDensity # Average g(r) for all interior particles and compute radii g_average = zeros(num_increments) for i in range(num_increments): radii[i] = (edges[i] + edges[i+1]) / 2. rOuter = edges[i + 1] rInner = edges[i] g_average[i] = mean(g[:, i]) / (4.0 / 3.0 * pi * (rOuter**3 - rInner**3)) return (g_average, radii, interior_indices) # Number of particles in shell/total number of particles/volume of shell/number density # shell volume = 4/3*pi(r_outer**3-r_inner**3)
5,340,149
def handle(req): """handle a request to the function Args: req (str): request body """ dir_contents = os.listdir(SECRETS_DIR) print(dir_contents) with open(SECRETS_DIR+"my-new-secret") as fptr: print(fptr.read()) return dir_contents
5,340,150
def _find_endpoints_of_skeleton(binary_image_matrix): """Finds endpoints of skeleton. :param binary_image_matrix: M-by-N numpy array of integers in 0...1. If binary_image_matrix[i, j] = 1, grid cell [i, j] is part of the skeleton. :return: binary_endpoint_matrix: M-by-N numpy array of integers in 0...1. If binary_endpoint_matrix[i, j] = 1, grid cell [i, j] is an endpoint of the skeleton. """ if numpy.sum(binary_image_matrix) == 1: return copy.deepcopy(binary_image_matrix) filtered_image_matrix = numpy.pad( binary_image_matrix, pad_width=2, mode='constant', constant_values=0) filtered_image_matrix = cv2.filter2D( filtered_image_matrix.astype(numpy.uint8), -1, KERNEL_MATRIX_FOR_ENDPOINT_FILTER) filtered_image_matrix = filtered_image_matrix[2:-2, 2:-2] endpoint_flag_matrix = numpy.full(binary_image_matrix.shape, 0, dtype=int) endpoint_flag_matrix[ filtered_image_matrix == FILTERED_VALUE_AT_ENDPOINT] = 1 return endpoint_flag_matrix
5,340,151
def set_up(): """ """ reset_config() config['app']['considering_candles'] = [('Sandbox', 'BTC-USD')] store.reset() store.trades.init_storage()
5,340,152
def get_today_timestamp(): """ Get the formatted timestamp for today """ today = dt.datetime.today() stamp = today.strftime("%d") + today.strftime("%b") + today.strftime("%Y") return stamp
5,340,153
def interpolate_to_mesh( old_mesh, new_mesh, params_to_interp=["VSV", "VSH", "VPV", "VPH"] ): """ Maps both meshes to a sphere and interpolate values from old mesh to new mesh for params to interp. Returns the original coordinate system Values that are not found are given zero """ # store original point locations orig_old_elliptic_mesh_points = np.copy(old_mesh.points) orig_new_elliptic_mesh_points = np.copy(new_mesh.points) # Map both meshes to a sphere map_to_sphere(old_mesh) map_to_sphere(new_mesh) vals = interpolate_to_points(old_mesh, new_mesh.points, params_to_interp) for i, param in enumerate(params_to_interp): new_element_nodal_vals = vals[:, i][new_mesh.connectivity] new_mesh.element_nodal_fields[param][:] = new_element_nodal_vals # Restore original coordinates old_mesh.points = orig_old_elliptic_mesh_points new_mesh.points = orig_new_elliptic_mesh_points
5,340,154
def massAvg(massList, method='weighted', weights=None): """ Compute the average mass of massList according to method. If method=weighted but weights were not properly defined, switch method to harmonic. If massList contains a zero mass, switch method to mean. :parameter method: possible values: harmonic, mean, weighted :parameter weights: weights of elements (only for weighted average) """ if not massList: return massList if massList.count(massList[0]) == len(massList): return massList[0] if method == 'weighted' and (not weights or len(weights) != len(massList)): method = 'harmonic' flatList = [ mass / GeV for mass in _flattenList(massList)] if method == 'harmonic' and 0. in flatList: method = 'mean' for mass in massList: if len(mass) != len(massList[0]) \ or len(mass[0]) != len(massList[0][0]) \ or len(mass[1]) != len(massList[0][1]): logger.error('Mass shape mismatch in mass list:\n' + str(mass) + ' and ' + str(massList[0])) raise SModelSError() avgmass = copy.deepcopy(massList[0]) for ib, branch in enumerate(massList[0]): for ival in enumerate(branch): vals = [ float(mass[ib][ival[0]] / GeV) for mass in massList] if method == 'mean': avg = np.mean(vals) elif method == 'harmonic': avg = stats.hmean(vals) elif method == 'weighted': weights = [ float(weight) for weight in weights ] avg = np.average(vals,weights=weights) avgmass[ib][ival[0]] = float(avg)*GeV return avgmass
5,340,155
def listListenerPortsOnServer(nodeName, serverName): """List all of the Listener Ports on the specified Node/Server.""" m = "listListenerPortsOnServer:" sop(m,"nodeName = %s, serverName = %s" % (nodeName, serverName)) cellName = getCellName() # e.g. 'xxxxCell01' lPorts = _splitlines(AdminControl.queryNames("type=ListenerPort,cell=%s,node=%s,process=%s,*" % (cellName, nodeName, serverName))) sop(m,"returning %s" % (lPorts)) return lPorts
5,340,156
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5): """ 实现具有随机舍弃节点的前向传播。 LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID. 参数: X - 输入数据集,维度为(2,示例数) parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典: W1 - 权重矩阵,维度为(20,2) b1 - 偏向量,维度为(20,1) W2 - 权重矩阵,维度为(3,20) b2 - 偏向量,维度为(3,1) W3 - 权重矩阵,维度为(1,3) b3 - 偏向量,维度为(1,1) keep_prob - 随机删除的概率,实数 返回: A3 - 最后的激活值,维度为(1,1),正向传播的输出 cache - 存储了一些用于计算反向传播的数值的元组 """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = reg_utils.relu(Z1) # 下面的步骤1-4对应于上述的步骤1-4。 D1 = np.random.rand(A1.shape[0], A1.shape[1]) # 步骤1:初始化矩阵D1 = np.random.rand(..., ...) D1 = D1 < keep_prob # 步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值) A1 = A1 * D1 # 步骤3:舍弃A1的一些节点(将它的值变为0或False) A1 = A1 / keep_prob # 步骤4:缩放未舍弃的节点(不为0)的值 """ #不理解的同学运行一下下面代码就知道了。 import numpy as np np.random.seed(1) A1 = np.random.randn(1,3) D1 = np.random.rand(A1.shape[0],A1.shape[1]) keep_prob=0.5 D1 = D1 < keep_prob print(D1) A1 = 0.01 A1 = A1 * D1 A1 = A1 / keep_prob print(A1) 结果是 [[ True False True]] [[0.02 0. 0.02]] """ Z2 = np.dot(W2, A1) + b2 A2 = reg_utils.relu(Z2) # 下面的步骤1-4对应于上述的步骤1-4。 D2 = np.random.rand(A2.shape[0], A2.shape[1]) # 步骤1:初始化矩阵D2 = np.random.rand(..., ...) D2 = D2 < keep_prob # 步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值) A2 = A2 * D2 # 步骤3:舍弃A1的一些节点(将它的值变为0或False) A2 = A2 / keep_prob # 步骤4:缩放未舍弃的节点(不为0)的值 Z3 = np.dot(W3, A2) + b3 A3 = reg_utils.sigmoid(Z3) cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache
5,340,157
def getPotInstance(pot_name): """ Try to get an instance of a give pot_name Return ---------- pot_module: module object of pot_name, if it is a combined list, return None pot_instance: module instance, if it is not 3D or not available, return None """ pot_module = None pot_instance=None if (pot_name in dir(galpy.potential)) & ('Potential' in pot_name): pot_module = galpy.potential.__getattribute__(pot_name) if (type(pot_module) == list): pot_instance = pot_module pot_module = None elif (type(pot_module) == type): # get instance with warnings.catch_warnings(): warnings.simplefilter("ignore") try: pot_instance = pot_module() except (ValueError, TypeError, AttributeError, RuntimeWarning): pot_module = None pot_instance = None else: pot_instance = pot_module pot_module = type(pot_module) if (pot_instance != None): # remove 2D models if (galpy.potential._dim(pot_instance)!=3): pot_instance = None # remove potential without c support if (not _check_c(pot_instance)): pot_instance = None return pot_module, pot_instance
5,340,158
def upload_processed_files(job_context: Dict) -> Dict: """Uploads the processed files and removes the temp dir for the job. If job_context contains a "files_to_upload" key then only those files will be uploaded. Otherwise all files will be uploaded. If job_context contains a "job_dir_prefix" key then that will be passed through to the file methods as the `dir_name` parameter. """ if "files_to_upload" in job_context: files = job_context["files_to_upload"] else: files = File.objects.filter(batch__in=job_context["batches"]) if "job_dir_prefix" in job_context: job_dir_prefix = job_context["job_dir_prefix"] else: job_dir_prefix = None try: for file in files: file.upload_processed_file(job_dir_prefix) except Exception: logger.exception("Exception caught while uploading processed file %s", batch=files[0].batch.id, processor_job=job_context["job_id"]) job_context["job"].failure_reason = "Exception caught while uploading processed file." job_context["success"] = False return job_context finally: # Whether or not uploading was successful, the job is over so # clean up the temp directory. files[0].remove_temp_directory(job_dir_prefix) return job_context
5,340,159
def update_hook(branch, from_rev, to_rev, installdir): """ Function to be called from the update hook """ if from_rev == gitinfo.NULL_COMMIT: from_rev = gitinfo.START_COMMIT changeset_info = githook.UpdateGitInfo(branch, from_rev, to_rev) hooks_ok = run_hooks(changeset_info, installdir) messages_ok = message_check.check_messages(changeset_info.commit_messages()) return hooks_ok and messages_ok
5,340,160
def definition(): """ Most recent student numbers and fees by set (i.e. by year, costcentre and set category.), aggregated by fee, aos code, seesion and fee_category. """ sql = """ select s.set_id, s.acad_year, s.costc, s.set_cat_id, fsc.description as set_cat_description, fs.fee_cat_id as fee_cat, cc.default_aos_code, n.aos_code, n.session, o.description as origin_description, o.origin_id, SUM(n.student_count) as student_count, a.fee_scheme_id, SUM(f.gross_fee-f.waiver) as individual_fee, SUM(n.student_count*(f.gross_fee-f.waiver)) as net_fee FROM s_number n INNER JOIN v_s_instance_mri i ON i.instance_Id = n.instance_id INNER JOIN f_set s ON s.set_id = i.set_id INNER JOIN fs_cost_centre cc ON cc.costc = s.costc INNER JOIN f_set_cat fsc ON fsc.set_cat_id = s.set_cat_id INNER JOIN s_fee_status fs ON fs.fee_status_id = n.fee_status_id INNER JOIN c_aos_code a ON a.aos_code = n.aos_code INNER JOIN s_fee f ON f.acad_year = s.acad_year AND f.fee_cat_id = fs.fee_cat_id AND f.fee_scheme_id = a.fee_scheme_id AND f.session = n.session INNER JOIN s_origin o ON o.origin_id = n.origin_id GROUP BY s.acad_year, s.costc, s.set_cat_id, fs.fee_cat_id, n.aos_code, n.session, a.fee_scheme_id, fsc.description, o.description, s.set_id, cc.default_aos_code, o.origin_id """ return sql
5,340,161
def ssh_connection(): """Returns the current tmate SSH connection string.""" result = subprocess.run(['tmate', 'display', '-p', "#{tmate_ssh}"], text=True, capture_output=True) if result.returncode != 0: raise TmateException('Failed to interact with tmate, are you in a tmate session?') ssh_string: str = result.stdout if not ssh_string.startswith('ssh'): raise TmateException('No ssh string returned, is the tmate session active?') return ssh_string.split(' ')[1].strip()
5,340,162
def get_geo_distance(p1, p2, signed=False): """Returns distance (meters) between to lat/lon points""" d = geopy.distance.vincenty(p1, p2).m # .m for meters return -d if (p2[0] < p1[0] or p2[1] > p1[1]) else d
5,340,163
def bot_info(sub_bots, cfg): """Returns a description for this TweetCredReviewer :param sub_bots: a list of bot items used by this TweetCredReviewer :param cfg: config options :returns: a `TweetCredReviewer` item :rtype: dict """ result = { '@context': ci_context, '@type': 'TweetCredReviewer', 'additionalType': content.super_types('TweetCredReviewer'), 'name': 'ESI Tweet Credibility Reviewer', 'description': 'Reviews the credibility of a tweet by reviewing the sentences in the tweet and the (textual) documents linked by the tweet', 'author': bot_describer.esiLab_organization(), 'dateCreated': '2020-04-02T18:00:00Z', 'applicationCategory': ['Disinformation Detection'], 'softwareRequirements': ['python', 'nltk', 'Cogito'], 'softwareVersion': version, 'executionEnvironment': bot_describer.inspect_execution_env(), 'isBasedOn': sub_bots, 'launchConfiguration': {}, 'taskConfiguration': {} } return { **result, 'identifier': hashu.hash_dict(dictu.select_keys( result, content.ident_keys(result)))}
5,340,164
async def metrics_upload(websocket, client_set: ClientSet, msg, *_): """ Save the performance metrics sent by the client to disk. """ metrics, route_id = msg['metrics'], msg['metrics']['route_id'] logging.info(f"Received performance metrics for routeID '{route_id}'") save_json(route_id, metrics, config.model_type, 'modelPerformance.json')
5,340,165
def in_yelling(channel): """ checks that channel is #yelling exists for test mocking """ chan = bot.channels.get(channel) return chan and chan.name == "yelling"
5,340,166
def draw_adjacency_list(): """Solution to exercise R-14.4. Draw an adjacency list representation of the undirected graph shown in Figure 14.1. --------------------------------------------------------------------------- Solution: --------------------------------------------------------------------------- I will re-use the edge labels from Exercise R-14.3: Snoeyink --- Goodrich a Garg --- Goodrich b Garg --- Tamassia c Goldwasser --- Goodrich d Goldwasser --- Tamassia e Goodrich --- Tamassia f Goodrich --- Vitter g Goodrich --- Chiang h Tamassia --- Tollis i Tamassia --- Vitter j Tamassia --- Preparata k Tamassia --- Chiang l Tollis --- Vitter m Vitter --- Preparata n Preparata --- Chiang o The adjacency list V is a list of vertices v that each point to a collection I(v) that contains the incident edges of v. Snoeyink --> {a} Garg --> {b, c} Goldwasser --> {d, e} Goodrich --> {a, b, d, f, g, h} Tamassia --> {c, e, f, i, j, k, l} Vitter --> {g, j, m, n} Chiang --> {h, l, o} Tollis --> {i, m} Preparata --> {k, n, o} Note that each edge appears twice in the adjacency list, for a total of 2*m = 2*15 = 30 edges. """ return True
5,340,167
def some_path(directory) -> str: """Generate unique path in the directory.""" return os.path.join(directory, str(uuid()))
5,340,168
def get_user_categories(user_id, public=False): """Get a user's categories. Arguments: user_id as int, Boolean 'public' (optional). Returns list of Category objects. Either all private or all public. """ return db_session.query(Category).filter((Category.user_id==user_id)&(Category.public==public)).all()
5,340,169
def dict_to_one(dp_dict): """Input a dictionary, return a dictionary that all items are set to one. Used for disable dropout, dropconnect layer and so on. Parameters ---------- dp_dict : dictionary The dictionary contains key and number, e.g. keeping probabilities. Examples -------- >>> dp_dict = dict_to_one( network.all_drop ) >>> dp_dict = dict_to_one( network.all_drop ) >>> feed_dict.update(dp_dict) """ return {x: 1 for x in dp_dict}
5,340,170
def handle_500(request, response, exception): """Default handler for 500 status code""" logging.exception(exception) response.set_status(500)
5,340,171
def file_io_read_img_slice(path, slicing, axis, is_label, normalize_spacing=True, normalize_intensities=True, squeeze_image=True,adaptive_padding=4): """ :param path: file path :param slicing: int, the nth slice of the img would be sliced :param axis: int, the nth axis of the img would be sliced :param is_label: the img is label :param normalize_spacing: normalized the spacing :param normalize_intensities: normalized the img :param squeeze_image: :param adaptive_padding: padding the img to favored size, (divided by certain number, here is 4), here using default 4 , favored by cuda fft :return: """ normalize_intensities = False if is_label else normalize_intensities im, hdr, spacing, normalized_spacing = fileio.ImageIO().read(path, normalize_intensities, squeeze_image,adaptive_padding) if normalize_spacing: spacing = normalized_spacing else: spacing = spacing if axis == 1: slice = im[slicing] slicing_spacing = spacing[1:] elif axis == 2: slice = im[:,slicing,:] slicing_spacing = np.asarray([spacing[0], spacing[2]]) elif axis == 3: slice = im[:,:,slicing] slicing_spacing = spacing[:2] else: raise ValueError("slicing axis exceed, should be 1-3") info = { 'spacing':slicing_spacing, 'img_size': slice.shape} return slice, info
5,340,172
def get_document_path(workspace_name: str, document_name: str) -> Path: """ TODO docstring """ path = ( Path(".") / Directory.DATA.value / Directory.WORKSPACES.value / workspace_name / document_name ) if not path.exists(): raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=f"Document with name <<{document_name}>>" + f" doesn't exist in workspace <<{workspace_name}>>", ) return path
5,340,173
def upload_lambda_zip(bosslet_config, path): """ Upload a multilambda.domain.zip to the S3 bucket. Useful when developing and small changes need to be made to a lambda function, but a full rebuild of the entire zip file isn't required. """ s3 = bosslet_config.session.client('s3') with open(path, 'rb') as in_file: resp = s3.put_object(Bucket=bosslet_config.LAMBDA_BUCKET, Key=os.path.basename(path), Body=in_file) print(resp)
5,340,174
def is_replaced_image(url): """ >>> is_replaced_image('https://rss.anyant.com/123.jpg?rssant=1') True """ return url and RSSANT_IMAGE_TAG in url
5,340,175
def version(*args, **kwargs): # real signature unknown """ Returns a tuple of major, minor, and patch release numbers of the underlying DB library. """ pass
5,340,176
def notification_server(): """ Starts a HeyU notifier. The specific notifier is specified as a subcommand. """ pass
5,340,177
def get_raw_segment(fast5_fn, start_base_idx, end_base_idx, basecall_group='Basecall_1D_000', basecall_subgroup='BaseCalled_template'): """ Get the raw signal segment given the start and end snp_id of the sequence. fast5_fn: input fast5 file name. start_base_idx: start snp_id of the sequence (0-based) end_base_idx: end snp_id of the sequence (the snp_id is included) basecall_group: group name to search for base information. basecall_subgroup: sub grou#!p name to search for base information. e.g. get_raw_segment('test.fast5', 0, 10) Will return the signal corresponded to the 0-10 bases(The 0th and 10th base are both included.) """ with h5py.File(fast5_fn, 'r') as root: base = root['Analyses/{}/BaseCalled_template'.format(basecall_group)] fastq = base['Fastq'].value.split()[2] seg = fastq[start_base_idx:end_base_idx] event_h = base['Events'] events = event_h.value raw_h = list(root['/Raw/Reads'].values()) raw = raw_h[0]['Signal'] start_time = None if (type(events[0][1]) is np.float64) or (type(events[0][1]) is np.float32): start_time = event_h.attrs['start_time'] pos = list() pos_idx = 0 for event in events: pos_idx += event[5] pos.append(pos_idx) start_idx = next(x[0] for x in enumerate(pos) if x[1] >= start_base_idx) end_idx = next(x[0] - 1 for x in enumerate(pos) if x[1] > end_base_idx) if start_time is None: raw_start = events[start_idx][1] raw_end = events[end_idx][1] else: raw_start = int((events[start_idx][1] - start_time) / 0.00025) raw_end = int((events[end_idx][1] - start_time) / 0.00025) seg_raw = raw[raw_start:raw_end] return seg_raw, seg
5,340,178
def center_distance(gt_box: EvalBox, pred_box: EvalBox) -> float: """ L2 distance between the box centers (xy only). :param gt_box: GT annotation sample. :param pred_box: Predicted sample. :return: L2 distance. """ return np.linalg.norm(np.array(pred_box.translation[:2]) - np.array(gt_box.translation[:2]))
5,340,179
def set_specs(override_spec_data): """ Override Resource Specs """ excludes = [] includes = [] # Extract the exclude list from the override file if 'ExcludeResourceTypes' in override_spec_data: excludes = override_spec_data.pop('ExcludeResourceTypes') if 'IncludeResourceTypes' in override_spec_data: includes = override_spec_data.pop('IncludeResourceTypes') for region, spec in RESOURCE_SPECS.items(): # Merge override spec file into the AWS Resource specification if override_spec_data: RESOURCE_SPECS[region] = merge_spec(override_spec_data, spec) # Grab a list of all resources all_resources = list(RESOURCE_SPECS[region]['ResourceTypes'].keys())[:] resources = [] # Remove unsupported resource using includes if includes: for include in includes: regex = re.compile(include.replace('*', '(.*)') + '$') matches = [string for string in all_resources if re.match(regex, string)] resources.extend(matches) else: resources = all_resources[:] # Remove unsupported resources using the excludes if excludes: for exclude in excludes: regex = re.compile(exclude.replace('*', '(.*)') + '$') matches = [string for string in resources if re.match(regex, string)] for match in matches: resources.remove(match) # Remove unsupported resources for resource in all_resources: if resource not in resources: del RESOURCE_SPECS[region]['ResourceTypes'][resource]
5,340,180
def Dc(z, unit, cosmo): """ Input: z: redshift unit: distance unit in kpc, Mpc, ... cosmo: dicitonary of cosmology parameters Output: res: comoving distance in unit as defined by variable 'unit' """ res = cosmo.comoving_distance(z).to_value(unit) #*cosmo.h return res
5,340,181
def _get_all_answer_ids( column_ids, row_ids, questions, ): """Maps lists of questions with answer coordinates to token indexes.""" answer_ids = [0] * len(column_ids) found_answers = set() all_answers = set() for question in questions: for answer in question.answer.answer_coordinates: all_answers.add((answer.column_index, answer.row_index)) for index in _get_cell_token_indexes(column_ids, row_ids, answer.column_index, answer.row_index): found_answers.add((answer.column_index, answer.row_index)) answer_ids[index] = 1 missing_count = len(all_answers) - len(found_answers) return answer_ids, missing_count
5,340,182
def transduce(source, transducer) -> ObservableBase: """Execute a transducer to transform the observable sequence. Keyword arguments: :param Transducer transducer: A transducer to execute. :returns: An Observable sequence containing the results from the transducer. :rtype: Observable """ def subscribe(observer, scheduler=None): xform = transducer(Observing(observer)) def on_next(value): try: xform.step(observer, value) except Exception as exn: observer.on_error(exn) def on_completed(): xform.complete(observer) return source.subscribe_(on_next, observer.on_error, on_completed) return AnonymousObservable(subscribe)
5,340,183
def readfile(filename): """ Read candidate json trigger file and return dict TODO: add file lock? """ with open(filename, 'r') as fp: dd = json.load(fp) return dd
5,340,184
def isoformViewer(): """ Make a "broken" horizontal bar plot, ie one with gaps """ fig = pylab.figure() ax = fig.add_subplot(111) ax.broken_barh([ (110, 30), (150, 10) ] , (10, 5), facecolors=('gray','blue')) # (position, length) - top row ax.broken_barh([ (10, 50), (100, 20), (130, 10)] , (20, 5), facecolors=('red', 'yellow', 'green')) # (position, length) - next row down ### Straight line pylab.plot((140,150),(12.5,12.5),lw=2,color = 'red') ### x coordinates of the line, y-coordinates of the line, line-thickness - iterate through a list of coordinates to do this ### Curved line verts = [ (140, 15), # P0 (145, 20), # (x coordinate, half distance to this y coordinate) (150, 15), # P2 ] codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, ] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor='none', lw=2, edgecolor = 'green') ax.add_patch(patch) #midpt = cubic_bezier(pts, .5) ax.text(142, 17.7, '25 reads') ### End-curved line ax.set_ylim(5,35) ax.set_xlim(0,200) ax.set_xlabel('Transcript Exons') ax.set_yticks([15,25]) ax.set_yticklabels(['isoform A', 'isoform B']) ax.grid(True) """ ax.annotate('alternative splice site', (61, 25), xytext=(0.8, 0.9), textcoords='axes fraction', arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16, horizontalalignment='right', verticalalignment='top') """ pylab.show()
5,340,185
def get_phonopy_gibbs( energies, volumes, force_constants, structure, t_min, t_step, t_max, mesh, eos, pressure=0, ): """ Compute QHA gibbs free energy using the phonopy interface. Args: energies (list): volumes (list): force_constants (list): structure (Structure): t_min (float): min temperature t_step (float): temperature step t_max (float): max temperature mesh (list/tuple): reciprocal space density eos (str): equation of state used for fitting the energies and the volumes. options supported by phonopy: vinet, murnaghan, birch_murnaghan pressure (float): in GPa, optional. Returns: (numpy.ndarray, numpy.ndarray): Gibbs free energy, Temperature """ # quasi-harmonic approx phonopy_qha = get_phonopy_qha( energies, volumes, force_constants, structure, t_min, t_step, t_max, mesh, eos, pressure=pressure, ) # gibbs free energy and temperature max_t_index = phonopy_qha._qha._len G = phonopy_qha.get_gibbs_temperature()[:max_t_index] T = phonopy_qha._qha._temperatures[:max_t_index] return G, T
5,340,186
def forgot(): """ Allows an administrator to state they forgot their password, triggering a email for further instructions on how to reset their password. """ if current_user.is_authenticated: return redirect(url_for('index')) form = RequestResetPasswordForm() if form.validate_on_submit(): user = Administrator.query.filter_by(email=form.email.data).first() if user: send_password_reset_email(user) flash('Check your email for the instructions to reset your password') return redirect(url_for('auth.login')) return render_template('forgot_password.html', title='Reset Password', form=form)
5,340,187
def install_enterprise(ansible_client): """ Install OpenShift Container Platform from RPMs. :param ansible_client: Ansible client """ install_openshift(ansible_client, 'enterprise')
5,340,188
def test_s3_path_for_public_key(): """ Should get s3 path for public key """ # When: I get S3 path for public key s3path = provider._s3_path('default') # Then: Expected path is returned eq_(s3path, 'totem/keys/default-pub.pem')
5,340,189
def test_tell_total_vaccinated_booster(): """Tests whether results returned by icl.tell_total_vaccinated with dose="booster" and with ranging for date options make sense (i.e. the number of total vaccinated individuals is equal to the sum of the number of vaccinated individuals in three periods into which the whole vaccination timeline is divided).""" try: total_vaccinated_ever = icl.tell_total_vaccinated("booster") vaccinated_first_group = icl.tell_total_vaccinated("booster", stop_date="2020-10-20") vaccinated_second_group = icl.tell_total_vaccinated("booster", start_date="2020-10-21", stop_date="2020-10-22") vaccinated_third_group = icl.tell_total_vaccinated("booster", start_date="2020-10-23") assert total_vaccinated_ever == vaccinated_first_group+vaccinated_second_group+vaccinated_third_group except Exception as e: assert isinstance(e, icl_e.ItaCovidLibConnectionError)
5,340,190
def diffractionAngle(inc): """Return the diffraction angle for the UV yaw system Input graze angle in degrees Output diffraction graze angle in degrees""" alpha0 = np.sin((90.-inc)*np.pi/180) alpha1 = alpha0 - 266e-9/160e-9 dang = 90 - np.arcsin(np.abs(alpha1))*180/np.pi return dang
5,340,191
def check_conf(conf_filepath): """Wrap haproxy -c -f. Args: conf_filepath: Str, path to an haproxy configuration file. Returns: valid_config: Bool, true if configuration passed parsing. """ try: subprocess.check_output(['haproxy', '-c', '-f', conf_filepath], stderr=subprocess.STDOUT) valid_config = True error_output = None except subprocess.CalledProcessError as e: valid_config = False error_output = e.output return (valid_config, error_output)
5,340,192
def get_subject(email): """ Takes an email Message object and returns the Subject as a string, decoding base64-encoded subject lines as necessary. """ subject = email.get('Subject', '') result = decode_header(subject) subject = result[0][0] if isinstance(subject, str): return subject else: return subject.decode('unicode_escape')
5,340,193
def distort(dist_mat, mat): """Apply distortion matrix to lattice vectors or sites. Coordinates are assumed to be Cartesian.""" array = np.array(mat) for i in range(len(mat)): array[i, :] = np.array([np.sum(dist_mat[0, :]*mat[i, :]), np.sum(dist_mat[1, :]*mat[i, :]), np.sum(dist_mat[2, :]*mat[i, :])]) return array
5,340,194
def sample( sampler: Union[typing.RelativeTime, Observable[Any]], scheduler: Optional[abc.SchedulerBase] = None, ) -> Callable[[Observable[_T]], Observable[_T]]: """Samples the observable sequence at each interval. .. marble:: :alt: sample ---1-2-3-4------| [ sample(4) ] ----1---3---4---| Examples: >>> res = sample(sample_observable) # Sampler tick sequence >>> res = sample(5.0) # 5 seconds Args: sampler: Observable used to sample the source observable **or** time interval at which to sample (specified as a float denoting seconds or an instance of timedelta). scheduler: Scheduler to use only when a time interval is given. Returns: An operator function that takes an observable source and returns a sampled observable sequence. """ from ._sample import sample_ return sample_(sampler, scheduler)
5,340,195
def test_positive_judgement(module_headers, observable, observable_type): """Perform testing for enrich observe observables endpoint to get judgement for observable from CyberCrime Tracker ID: CCTRI-844-4e53f335-d803-4c3e-a582-af02c94cf727 Steps: 1. Send request to enrich deliberate observable endpoint Expectedresults: 1. Check that data in response body contains expected judgement for observable from CyberCrime Tracker Importance: Critical """ observables = [{'type': observable_type, 'value': observable}] response_from_all_modules = enrich_observe_observables( payload=observables, **{'headers': module_headers} ) response_from_cybercrime_module = get_observables( response_from_all_modules, MODULE_NAME) assert response_from_cybercrime_module['module'] == MODULE_NAME assert response_from_cybercrime_module['module_instance_id'] assert response_from_cybercrime_module['module_type_id'] judgements = response_from_cybercrime_module['data']['judgements'] assert len(judgements['docs']) > 0 for judgement in judgements['docs']: assert judgement['valid_time']['start_time'] assert judgement['valid_time']['end_time'] assert judgement['type'] == 'judgement' assert judgement['schema_version'] assert judgement['source'] == MODULE_NAME assert judgement['disposition'] == 2 assert judgement['observable'] == observables[0] assert judgement['source_uri'] == (f'{CYBER_CRIME_URL}' f'/index.php?search={observable}') assert judgement['disposition_name'] assert judgement['priority'] == 90 assert judgement['id'].startswith('transient:judgement-') assert judgement['severity'] == 'Medium' assert judgement['confidence'] == 'Low' assert judgements['count'] == len(judgements['docs']) <= CTR_ENTITIES_LIMIT
5,340,196
def get_genome_dir(infra_id, genver=None, annver=None, key=None): """Return the genome directory name from infra_id and optional arguments.""" dirname = f"{infra_id}" if genver is not None: dirname += f".gnm{genver}" if annver is not None: dirname += f".ann{annver}" if key is not None: dirname += f".{key}" return dirname
5,340,197
def stream_with_context(func: Callable) -> Callable: """Share the current request context with a generator. This allows the request context to be accessed within a streaming generator, for example, .. code-block:: python @app.route('/') def index() -> AsyncGenerator[bytes, None]: @stream_with_context async def generator() -> bytes: yield request.method.encode() yield b' ' yield request.path.encode() return generator() """ request_context = _request_ctx_stack.top.copy() @wraps(func) async def generator(*args: Any, **kwargs: Any) -> Any: async with request_context: async for data in func(*args, **kwargs): yield data return generator
5,340,198
def silence_removal(signal, sampling_rate, st_win, st_step, smooth_window=0.5, weight=0.5, plot=False): """ Event Detection (silence removal) ARGUMENTS: - signal: the input audio signal - sampling_rate: sampling freq - st_win, st_step: window size and step in seconds - smoothWindow: (optinal) smooth window (in seconds) - weight: (optinal) weight factor (0 < weight < 1) the higher, the more strict - plot: (optinal) True if results are to be plotted RETURNS: - seg_limits: list of segment limits in seconds (e.g [[0.1, 0.9], [1.4, 3.0]] means that the resulting segments are (0.1 - 0.9) seconds and (1.4, 3.0) seconds """ if weight >= 1: weight = 0.99 if weight <= 0: weight = 0.01 # Step 1: feature extraction # signal = audioBasicIO.stereo_to_mono(signal) st_feats, _ = feature_extraction(signal, sampling_rate, st_win * sampling_rate, st_step * sampling_rate) # Step 2: train binary svm classifier of low vs high energy frames # keep only the energy short-term sequence (2nd feature) st_energy = st_feats[1, :] en = np.sort(st_energy) # number of 10% of the total short-term windows st_windows_fraction = int(len(en) / 10) # compute "lower" 10% energy threshold low_threshold = np.mean(en[0:st_windows_fraction]) + 1e-15 # compute "higher" 10% energy threshold high_threshold = np.mean(en[-st_windows_fraction:-1]) + 1e-15 # get all features that correspond to low energy low_energy = st_feats[:, np.where(st_energy <= low_threshold)[0]] # get all features that correspond to high energy high_energy = st_feats[:, np.where(st_energy >= high_threshold)[0]] # form the binary classification task and ... features = [low_energy.T, high_energy.T] # normalize and train the respective svm probabilistic model # (ONSET vs SILENCE) features_norm, mean, std = normalize_features(features) svm = train_svm(features_norm, 1.0) # Step 3: compute onset probability based on the trained svm prob_on_set = [] for index in range(st_feats.shape[1]): # for each frame cur_fv = (st_feats[:, index] - mean) / std # get svm probability (that it belongs to the ONSET class) prob_on_set.append(svm.predict_proba(cur_fv.reshape(1, -1))[0][1]) prob_on_set = np.array(prob_on_set) # smooth probability: prob_on_set = smooth_moving_avg(prob_on_set, smooth_window / st_step) # Step 4A: detect onset frame indices: prog_on_set_sort = np.sort(prob_on_set) # find probability Threshold as a weighted average # of top 10% and lower 10% of the values nt = int(prog_on_set_sort.shape[0] / 10) threshold = (np.mean((1 - weight) * prog_on_set_sort[0:nt]) + weight * np.mean(prog_on_set_sort[-nt::])) max_indices = np.where(prob_on_set > threshold)[0] # get the indices of the frames that satisfy the thresholding index = 0 seg_limits = [] time_clusters = [] # Step 4B: group frame indices to onset segments while index < len(max_indices): # for each of the detected onset indices cur_cluster = [max_indices[index]] if index == len(max_indices)-1: break while max_indices[index+1] - cur_cluster[-1] <= 2: cur_cluster.append(max_indices[index+1]) index += 1 if index == len(max_indices)-1: break index += 1 time_clusters.append(cur_cluster) seg_limits.append([cur_cluster[0] * st_step, cur_cluster[-1] * st_step]) # Step 5: Post process: remove very small segments: min_duration = 0.2 seg_limits_2 = [] for s_lim in seg_limits: if s_lim[1] - s_lim[0] > min_duration: seg_limits_2.append(s_lim) return seg_limits_2
5,340,199