content
stringlengths
22
815k
id
int64
0
4.91M
def _get_vcf_breakends(hydra_file, genome_2bit, options=None): """Parse BEDPE input, yielding VCF ready breakends. """ if options is None: options = {} for features in group_hydra_breakends(hydra_parser(hydra_file, options)): if len(features) == 1 and is_deletion(features[0], options): yield build_vcf_deletion(features[0], genome_2bit) elif len(features) == 1 and is_tandem_dup(features[0], options): yield build_tandem_deletion(features[0], genome_2bit) elif len(features) == 2 and is_inversion(*features): yield build_vcf_inversion(features[0], features[1], genome_2bit) elif len(features) == 2 and is_translocation(*features): info = get_translocation_info(features[0], features[1]) for feature in features: for brend in build_vcf_parts(feature, genome_2bit, info): yield brend else: for feature in features: for brend in build_vcf_parts(feature, genome_2bit): yield brend
5,340,200
def get_line_pixels(start, end): """Bresenham's Line Algorithm Produces a list of tuples from start and end >>> points1 = get_line((0, 0), (3, 4)) >>> points2 = get_line((3, 4), (0, 0)) >>> assert(set(points1) == set(points2)) >>> debuginfo(points1) [(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)] >>> debuginfo(points2) [(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)] """ # Setup initial conditions x1, y1 = start x2, y2 = end dx = x2 - x1 dy = y2 - y1 # Determine how steep the line is is_steep = abs(dy) > abs(dx) # Rotate line if is_steep: x1, y1 = y1, x1 x2, y2 = y2, x2 # Swap start and end points if necessary and store swap state swapped = False if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 swapped = True # Recalculate differentials dx = x2 - x1 dy = y2 - y1 # Calculate error error = int(dx / 2.0) ystep = 1 if y1 < y2 else -1 # Iterate over bounding box generating points between start and end y = y1 points = [] for x in range(x1, x2 + 1): coord = (y, x) if is_steep else (x, y) points.append(coord) error -= abs(dy) if error < 0: y += ystep error += dx # Reverse the list if the coordinates were swapped if swapped: points.reverse() return points
5,340,201
def extrema(x): """ Gets the local extrema points from a time series. This includes endpoints if necessary. Note that the indices will start counting from 1 to match MatLab. Args: x: time series vector Returns: imin: indices of XMIN """ x = np.asarray(x) imin = signal.argrelextrema(x, np.less)[0] if(x[-1] < x[-2]): # Check last point imin = np.append(imin, len(x)-1) if(x[0] < x[1]): # Check first point imin = np.insert(imin, 0, 0) xmin = x[imin] minorder = np.argsort(xmin) imin = imin[minorder] return imin+1
5,340,202
def mv_single_gpu_test(model, data_loader, runstate, draw_contours=False, draw_target=True, out_dir=None): """Test with single GPU. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. show (bool): Whether show results during infernece. Default: False. out_dir (str, optional): If specified, the results will be dumped into the directory to save output results. Returns: list: The prediction results. """ if not osp.isdir(out_dir): os.mkdir(out_dir) log_path = osp.join(out_dir, 'test_log.csv') if osp.isfile(log_path): os.remove(log_path) test_log = CSV(log_path) log_head = ['Image_ID'] test_log.append(log_head) out_pt = osp.join(out_dir, 'test_predict') mmcv.mkdir_or_exist(out_pt) if draw_contours: out_cnt = osp.join(out_dir, 'test_drawContours') mmcv.mkdir_or_exist(out_cnt) model.eval() dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) draw_target_flag = False for img_id, data in enumerate(data_loader): if runstate[0] == 0: sys.exit(0) if 'gt_semantic_seg' in data and draw_target: draw_target_flag = True target = data.pop('gt_semantic_seg')[0] target = target.cpu().numpy()[0] # 1*h*w ==> h*w with torch.no_grad(): result = model(return_loss=False, return_logit=True, **data) img_metas = data['img_metas'][0].data[0] img_path = img_metas[0]['filename'] img_name = osp.basename(img_path) ## output pt map base_name = img_name.split('.')[0] for chn in range(1, result.size(1)): probability = np.uint8(result[0, chn, :, :].cpu() * 255) out_path = osp.join(out_pt, '{}_{}.png'.format(base_name, chn)) # imwrite(probability, out_path) cv2.imwrite(out_path, probability) ## output image with draw_contours if draw_contours: image = cv2.imread(img_path, cv2.IMREAD_COLOR) h, w = image.shape[:2] line = max(int(np.sqrt(h*w) // 512), 1) predict = torch.max(result, 1)[1].cpu().numpy() predict = np.uint8(np.squeeze(predict)) contours, _ = cv2.findContours(predict, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(image, contours, -1, (0, 0, 255), line) if draw_target_flag: contours, _ = cv2.findContours(target, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(image, contours, -1, (0, 255, 0), line) cv2.imwrite(osp.join(out_cnt, img_name), image) test_log.append(img_id) batch_size = data['img'][0].size(0) for _ in range(batch_size): prog_bar.update()
5,340,203
def d2X_dt2_Vanderpol(X, t=0): """ Return the Jacobian matrix evaluated in X. """ return array([[0, 1 ], [-2*r*X[1]*X[0]-w**2 , r*(1-X[0]**2)]])
5,340,204
def multiply_scalar(s, q, qout): """Multiply scalar by quaternion s*q""" qout[0] = s * q[0] qout[1] = s * q[1] qout[2] = s * q[2] qout[3] = s * q[3]
5,340,205
def list_used_variables(node, ARGS=None): """ thanks Avi https://software.ecmwf.int/wiki/pages/viewpage.action?pageId=53513079 """ if ARGS is None: ARGS = object() ARGS.var_name = None ARGS.not_value = None # make a list of all nodes up the parent hierarchy parent_hierarchy = [] parent_hierarchy.append(node) parent = node.get_parent() while parent: parent_hierarchy.append(parent) parent = parent.get_parent() # now reverse the list parent_hierarchy.reverse() # now create a map of all used variables going down the hierarchy. # Allow variable lower down the hierarchy to override parent variables variable_map = {} for node in parent_hierarchy: for var in node.variables: variable_map[var.name()] = var.value() # finally print the used variables if ARGS.var_name: if ARGS.not_value: # use exact match for key for key in variable_map: if ARGS.var_name == key: if ARGS.not_value != variable_map[key]: print("edit " + key + " '" + variable_map[key] + "'") else: # use substring match for variable name for key in variable_map: if ARGS.var_name in key: print("edit " + key + " '" + variable_map[key] + "'") else: for key in variable_map: print("edit " + key + " '" + variable_map[key] + "'")
5,340,206
def main(): """Opened ports getting and their protocols recognizing.""" host, ports = argument_parse() print("Analysing...") ports_analysers = [] with ThreadPoolExecutor(max_workers=WORKERS_COUNT) as thread_pool: for port in ports: if 0 <= port <= 65535: port_analyser = PortAnalyser(host, port) thread_pool.submit(port_analyser.run) ports_analysers.append(port_analyser) else: warning("Incorrect port: %s", port) while True: if active_count() == 1: # Only one active interface thread. All of ports have been anaysed. break # Making a table. print() print("\tPorts of {}".format(host)) print("--------------------------------") print("Port\tTCP\tUDP\tProtocol") for analyser in ports_analysers: print("{}\t{}\t{}\t{}".format(analyser.port, analyser.opened_tcp, \ analyser.opened_udp, analyser.protocol))
5,340,207
def domain(domain): """Locate the given domain in our database and render an info page for it. """ current_app.logger.info('domain [%s]' % domain) g.domain = current_app.iwn.domain(domain) if g.domain is None: return Response('', 404) else: return render_template('domain.jinja')
5,340,208
def gaussian_filter(img, kernel_size, sigma=0): """take value weighted by pixel distance in the neighbourhood of center pixel. """ return cv2.GaussianBlur(img, ksize=kernel_size, sigmaX=sigma, sigmaY=sigma)
5,340,209
def extractBillAdoptedLinks(soup): """Extract list of links for Adopted Bill Texts (HTML & PDF Versions) """ tables = soup.find_all("table") content_table = [t for t in tables if t.text.strip().startswith("View Available Bill Summaries")][-1] adopted_links = {} for row in content_table.find_all('tr'): cols = row.find_all('td') if len(cols) > 1: label = cols[0].text.strip('[HTML]').strip().encode('utf8').replace(b'\xc2\xa0', b' ') if label in [b'Adopted', b'Ratified']: links = cols[0].find_all('a') pdf_link = links[0]['href'] html_link = links[1]['href'] adopted_links = {'label' : label, 'pdf' : pdf_link, 'html' : html_link} return(adopted_links)
5,340,210
def do_flavor_access_list(cs, args): """Print access information about the given flavor.""" if args.flavor: flavor = _find_flavor(cs, args.flavor) if flavor.is_public: raise exceptions.CommandError(_("Access list not available " "for public flavors.")) kwargs = {'flavor': flavor} else: raise exceptions.CommandError(_("Unable to get all access lists. " "Specify --flavor")) try: access_list = cs.flavor_access.list(**kwargs) except NotImplementedError as e: raise exceptions.CommandError("%s" % str(e)) columns = ['Flavor_ID', 'Tenant_ID'] utils.print_list(access_list, columns)
5,340,211
def copy_sheets_to_packages(sheets: Union[str,list[str]], template: str = None) -> None: """Copy designated sheets from template to all package Excel files. This is intended to be used for updating the non-user-edited sheets :param sheets: list of sheet names to copy, or a single name that will be listified :param template: path to template file; defaults to 'package template.xlsx' in root """ # set template to default if unspecified if template is None: root = git.Repo('.', search_parent_directories=True).working_tree_dir template = os.path.join(root, 'package template.xlsx') if isinstance(sheets,str): sheets = [sheets] # open template file and check that all sheets are there with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UserWarning) # filter the "data validation not supported" warning template_excel = openpyxl.open(template, data_only=True) for s in sheets: template_excel[s] # KeyError will be thrown if any sheet doesn't exist # for each package for package in package_dirs(): # open the package excel file package_excel_file = package_excel(package) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UserWarning) # filter the "data validation not supported" warning target_excel = openpyxl.open(package_excel_file, data_only=True) # copy the sheets print(f'Copying sheets to {package_excel_file}') for s in sheets: print(f' Copying sheet "{s}"') target_index = target_excel.index(target_excel[s]) # remove old sheet, create a blank, then copy values target_excel.remove_sheet(target_excel[s]) target_excel.create_sheet(s,target_index) copy_sheet(template_excel[s], target_excel[s]) # save target_excel.save(package_excel_file) print(f' Saved after copying all sheets')
5,340,212
def uniq(string): """Removes duplicate words from a string (only the second duplicates). The sequence of the words will not be changed. """ words = string.split() return ' '.join(sorted(set(words), key=words.index))
5,340,213
def git_repo_empty(tmpdir): """Create temporary empty git directory, meaning no commits/users/repository-url to extract (error)""" cwd = str(tmpdir) version = subprocess.check_output("git version", shell=True) # decode "git version 2.28.0" to (2, 28, 0) decoded_version = tuple(int(n) for n in version.decode().strip().split(" ")[-1].split(".") if n.isdigit()) if decoded_version >= (2, 28): # versions starting from 2.28 can have a different initial branch name # configured in ~/.gitconfig subprocess.check_output("git init --initial-branch=master", cwd=cwd, shell=True) else: # versions prior to 2.28 will create a master branch by default subprocess.check_output("git init", cwd=cwd, shell=True) yield cwd
5,340,214
def l2_regularizer( params: kfac_jax.utils.Params, haiku_exclude_batch_norm: bool, haiku_exclude_biases: bool, ) -> chex.Array: """Computes an L2 regularizer.""" if haiku_exclude_batch_norm: params = hk.data_structures.filter( lambda m, n, p: "batchnorm" not in m, params) if haiku_exclude_biases: params = hk.data_structures.filter( lambda m, n, p: n != "b", params) return 0.5 * kfac_jax.utils.inner_product(params, params)
5,340,215
def _on_monitor_deleted(ref): """Remove the weakreference from the set of active MONITORS. We no longer care about keeping track of it """ MONITORS.remove(ref)
5,340,216
def _normalize(log_weights): """Normalize log-weights into weights and return resulting weights and log-likelihood increment.""" n = log_weights.shape[0] max_logw = jnp.max(log_weights) w = jnp.exp(log_weights - max_logw) w_mean = w.mean() log_likelihood_increment = jnp.log(w_mean) + max_logw w = w / (n * w_mean) return w, log_likelihood_increment
5,340,217
def schedule_notification(*, event, affected_object, extra_data): """ Schedule notifying users about a given event. @returns right after scheduling the event. Notification delivery, retries and failures is handled separately """ # TODO: Currently only resolves email sending. Later on, weekly letters, notification center in the news section # and others should be added # All other events triggering emails should also migrate to use notification center once API is figured out ScheduledNotification.objects.create( event=event.value, serialized_model=serializers.serialize("json", [affected_object]), extra_data=json.dumps(extra_data), )
5,340,218
def pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories, file_client=None, nproc=32): """Evaluate the metrics of Panoptic Segmentation with multithreading. Same as the function with the same name in `panopticapi`. Args: matched_annotations_list (list): The matched annotation list. Each element is a tuple of annotations of the same image with the format (gt_anns, pred_anns). gt_folder (str): The path of the ground truth images. pred_folder (str): The path of the prediction images. categories (str): The categories of the dataset. file_client (object): The file client of the dataset. If None, the backend will be set to `disk`. nproc (int): Number of processes for panoptic quality computing. Defaults to 32. When `nproc` exceeds the number of cpu cores, the number of cpu cores is used. """ if PQStat is None: raise RuntimeError( 'panopticapi is not installed, please install it by: ' 'pip install git+https://github.com/cocodataset/' 'panopticapi.git.') if file_client is None: file_client_args = dict(backend='disk') file_client = mmcv.FileClient(**file_client_args) cpu_num = min(nproc, multiprocessing.cpu_count()) annotations_split = np.array_split(matched_annotations_list, cpu_num) print('Number of cores: {}, images per core: {}'.format( cpu_num, len(annotations_split[0]))) workers = multiprocessing.Pool(processes=cpu_num) processes = [] for proc_id, annotation_set in enumerate(annotations_split): p = workers.apply_async(pq_compute_single_core, (proc_id, annotation_set, gt_folder, pred_folder, categories, file_client)) processes.append(p) # Close the process pool, otherwise it will lead to memory # leaking problems. workers.close() workers.join() pq_stat = PQStat() for p in processes: pq_stat += p.get() return pq_stat
5,340,219
def logout(): """ Function that handles logout of user --- POST: description: remove curent user in the session responses: 200: description: Successfuly log out user from the session. """ logout_user() # flask logout library return redirect("/", code=200)
5,340,220
def edit_line(file_name: str, regex: str, replace: str, mode: str = 'status', show_ok: bool = False): """ Edit line in file matching a regular expression. :param file_name: Full path and name of file to write content to. :param regex: Regular expression for matching line to edit. :param replace: Replace line with this. Matching groups from regex are matched with {1}...{10} :param mode: Choices are: "status", "regular" and "quiet": "status": Print command and status. "regular": Print command, stdout and stderr to screen (just as usual). "verbose": Print status, command, stdout and stderr to screen. "quiet": Only print errors. :param show_ok: If ok status should be shown. """ error = '' # Insert values from run_cmd_vars in "regex" and "replace" # (if they exist) for key, val in run_cmd_vars.items(): var = '{' + key + '}' if var in regex: regex = regex.replace(var, val) if var in replace: replace = replace.replace(var, val) # Set OK status message status_string = 'Replaced "{old}" with "{replace}" in file "{file_name}"' status_string = status_string.replace('{replace}', replace) status_string = status_string.replace('{file_name}', file_name) # Read file try: file = open(file_name, 'r', encoding='utf-8') line_list = file.readlines() line_list = [i.strip('\n') for i in line_list] file.close() except BaseException as e: status_string = 'Error editing file "{file_name}"' status_string = status_string.format(file_name=file_name) error = str(e) # Edit line in file if error == '': for i in range(len(line_list)): match = re.match(pattern=regex, string=line_list[i]) # Replace line in memory if match is not None: # Insert matching groups in replace (if any) for n in range(1, 11): group_string = '{' + str(n) + '}' if group_string in replace: replace = replace.replace(group_string, match.group(n)) # Complete status string status_string = status_string.format(old=line_list[i]) # Replace line in memory line_list[i] = replace break # Not finding a match is an error so we set error status if match is None: status_string = 'No match was found for "{regex}" in "{file_name}"' status_string = status_string.format(regex=regex, file_name=file_name) error = None # Write file if error == '': try: tmp_file_name = file_name + '~' file = open(tmp_file_name, 'w', encoding='utf-8') file.writelines('\n'.join(line_list)) file.close() os.rename(tmp_file_name, file_name) except BaseException as e: status_string = 'Error editing file "{file_name}"' status_string = status_string.format(file_name=file_name) error = str(e) # Print quiet mode if mode == 'quiet' and error != '': status = '[ \033[1;91mERROR\033[0m ] ' status_string = status + status_string print(status_string, flush=True) if error is not None: print(error, flush=True) # Print regular mode elif mode == 'regular' and (error != '' or show_ok): print(status_string, flush=True) # Print verbose and status mode elif (mode == 'verbose' or mode == 'status') and (error != '' or show_ok): status = '[ \033[1;32m OK \033[0m ] ' if error != '': status = '[ \033[1;91mERROR\033[0m ] ' status_string = status + status_string print(status_string, flush=True) if error != '' and error is not None: print(error, flush=True)
5,340,221
def header(data): """Create class based on decode of a PCI configuration space header from raw data.""" buf = ctypes.create_string_buffer(data, len(data)) addr = ctypes.addressof(buf) field_list = header_field_list(addr) return header_factory(field_list).from_buffer_copy(data)
5,340,222
def downscale_fit(fitter, data, seed, Pool): """Do a fit for a given Fitter (for multiple locations) """ n_sample, is_print, n_thread = get_fit_parser() pool = None if n_thread is None: pool = Pool() else: pool = Pool(n_thread) fitter.fit(data, seed, n_sample, pool, is_print) pool.join()
5,340,223
def FilterByKeyUsingSideInput(pcoll, lookup_entries, filter_key): """Filters a single collection by a single lookup collection, using a common key. Given: - a `PCollection` (lookup_entries) of `(V)`, as a lookup collection - a `PCollection` (pcoll) of `(V)`, as values to be filtered - a common key (filter_key) A dictionary called `filter_dict` - is created by mapping the value of `filter_key` for each entry in `lookup_entries` to True. Then, for each item in pcoll, the value associated with `filter_key` checkd against `filter_dict`, and if it is found, the entry passes through. Otherwise, the entry is discarded. Note: `lookup_entries` will be used as a **side input**, so care must be taken regarding the size of the `lookup_entries` """ filter_dict_prepared = beam.pvalue.AsDict( lookup_entries | beam.Map(lambda row: (row[filter_key], True)) ) def _filter_fn(row, filter_dict): return row[filter_key] in filter_dict return pcoll | beam.Filter(_filter_fn, filter_dict=filter_dict_prepared)
5,340,224
def sw_maxent_irl(x, xtr, phi, phi_bar, max_path_length, nll_only=False): """Maximum Entropy IRL using our exact algorithm Returns NLL and NLL gradient of the demonstration data under the proposed reward parameters x. N.b. the computed NLL here doesn't include the contribution from the MDP dynamics for each path - this term is independent of the parameter x, so doesn't affect the optimization result. Args: x (numpy array): Current reward function parameter vector estimate xtr (mdp_extras.BaseExtras): Extras object for the MDP being optimized phi (mdp_extras.FeatureFunction): Feature function to use with linear reward parameters. We require len(phi) == len(x). phi_bar (numpy array): Feature expectation. N.b. if using a weighted feature expectation, it is very important to make sure the weights you used sum to 1.0! max_path_length (int): Maximum path length nll_only (bool): If true, only return NLL Returns: (float): Negative Log Likelihood of a MaxEnt model with x as the reward parameters and the given feature expectation (numpy array): Downhill gradient of negative log likelihood at the given point """ # Store current argument guess r_linear = Linear(x) if isinstance(xtr, DiscreteExplicitExtras): # Process tabular MDP # Explode reward function to indicator arrays rs, rsa, rsas = r_linear.structured(xtr, phi) # Catch float overflow as an error - reward magnitude is too large for # exponentiation with this max path length with np.errstate(over="raise"): # Compute backward message alpha_log = nb_backward_pass_log( xtr.p0s, max_path_length, xtr.t_mat, gamma=xtr.gamma, rs=rs, rsa=rsa, rsas=rsas, ) # Compute partition value Z_theta_log = log_partition( max_path_length, alpha_log, padded=xtr.is_padded ) # Compute NLL nll = Z_theta_log - x @ phi_bar if nll_only: return nll else: # Compute gradient with np.errstate(over="raise"): # Compute forward message beta_log = nb_forward_pass_log( max_path_length, xtr.t_mat, gamma=xtr.gamma, rs=rs, rsa=rsa, rsas=rsas, ) # Compute transition marginals pts_log, ptsa_log, ptsas_log = nb_marginals_log( max_path_length, xtr.t_mat, alpha_log, beta_log, Z_theta_log, gamma=xtr.gamma, rsa=rsa, rsas=rsas, ) # Compute gradient based on feature type if phi.type == Disjoint.Type.OBSERVATION: s_counts = np.sum(np.exp(pts_log), axis=-1) efv_s = np.sum([s_counts[s] * phi(s) for s in xtr.states], axis=0) nll_grad = efv_s - phi_bar elif phi.type == Disjoint.Type.OBSERVATION_ACTION: sa_counts = np.sum(np.exp(ptsa_log), axis=-1) efv_sa = np.sum( [ sa_counts[s1, a] * phi(s1, a) for s1 in xtr.states for a in xtr.actions ], axis=0, ) nll_grad = efv_sa - phi_bar elif phi.type == Disjoint.Type.OBSERVATION_ACTION_OBSERVATION: sas_counts = np.sum(np.exp(ptsas_log), axis=-1) efv_sas = np.sum( [ sas_counts[s1, a, s2] * phi(s1, a, s2) for s1 in xtr.states for a in xtr.actions for s2 in xtr.states ], axis=0, ) nll_grad = efv_sas - phi_bar else: raise ValueError return nll, nll_grad elif isinstance(xtr, DiscreteImplicitExtras): # Handle Implicit dynamics MDP # Only supports state features - otherwise we run out of memory assert ( phi.type == phi.Type.OBSERVATION ), "For DiscreteImplicit MPDs only state-based rewards are supported" # Only supports deterministic transitions assert ( xtr.is_deterministic ), "For DiscreteImplicit MPDs only deterministic dynamics are supported" rs = np.array([r_linear(phi(s)) for s in xtr.states]) # Catch float overflow as an error - reward magnitude is too large for # exponentiation with this max path length with np.errstate(over="raise"): # Compute alpha_log alpha_log = nb_backward_pass_log_deterministic_stateonly( xtr.p0s, max_path_length, xtr.parents_fixedsize, rs, gamma=xtr.gamma, padded=xtr.is_padded, ) # Compute partition value Z_theta_log = log_partition( max_path_length, alpha_log, padded=xtr.is_padded ) # Compute NLL nll = Z_theta_log - x @ phi_bar if nll_only: return nll else: # Compute NLL gradient as well with np.errstate(over="raise"): # Compute beta_log beta_log = nb_forward_pass_log_deterministic_stateonly( max_path_length, xtr.children_fixedsize, rs, gamma=xtr.gamma ) # Compute transition marginals pts_log (not ptsa, ptsas) pts_log = nb_marginals_log_deterministic_stateonly( max_path_length, xtr.children_fixedsize, alpha_log, beta_log, Z_theta_log, ) # Compute gradient s_counts = np.sum(np.exp(pts_log), axis=-1) efv_s = np.sum([s_counts[s] * phi(s) for s in xtr.states], axis=0) nll_grad = efv_s - phi_bar return nll, nll_grad else: # Unknown MDP type raise ValueError(f"Unknown MDP class {xtr}")
5,340,225
def __multiprocess_point_in_poly(df: pd.DataFrame, x: str, y: str, poly: Polygon): """ Return rows in dataframe who's values for x and y are contained in some polygon coordinate shape Parameters ---------- df: Pandas.DataFrame Data to query x: str name of x-axis plane y: str name of y-axis plane poly: shapely.geometry.Polygon Polygon object to search Returns -------- Pandas.DataFrame Masked DataFrame containing only those rows that fall within the Polygon """ mask = df.apply(lambda r: poly.contains(Point(r[x], r[y])), axis=1) return df.loc[mask]
5,340,226
def print_runtime(func, create_global_dict=True): """ A timer decorator that creates a global dict for reporting times across multiple runs """ def function_timer(*args, **kwargs): """ A nested function for timing other functions """ import time from collections import defaultdict start = time.time() value = func(*args, **kwargs) end = time.time() runtime = end - start print(f"The runtime for {func.__name__} took {round(runtime, 2)} \ seconds to complete") return value return function_timer
5,340,227
def generate_astrometry(kop, time_list): """ Simulates observational data. :param kop: Keplerian orbit parameters :param time_list: List of observation times :return: astrometry """ trajectory = generate_complete_trajectory(kop, time_list) return {'t':time_list, 'x':trajectory['position'].T[0], 'y':trajectory['position'].T[1], 'vz':trajectory['velocity'].T[2]}
5,340,228
def _open_remote(file_ref): """Retrieve an open handle to a file. """ return io.StringIO(_run_gsutil(["cat", file_ref]).decode())
5,340,229
def fit(image, labels, featurizer="../model/saved_model/UNet_hpa_4c_mean_8.pth"): """Train a pixel classifier. Parameters ---------- image: np.ndarray Image data to be classified. labels: np.ndarray Sparse classification, where 0 pixels are ingored, and other integer values correspond to class membership. multichannel: bool, optional If image data is multichannel. Returns ---------- classifier: sklearn.ensemble.RandomForestClassifier Object that can perform classifications """ print(featurizer) # pad input image w,h = image.shape[-2:] w_padding = int((16-w%16)/2) if w%16 >0 else 0 h_padding = int((16-h%16)/2) if h%16 >0 else 0 if len(image.shape) == 3: image = np.pad(image, ((0,0),(w_padding, w_padding),(h_padding, h_padding)), 'constant') elif len(image.shape) == 2: image = np.pad(image, ((w_padding, w_padding),(h_padding, h_padding)), 'constant') # make sure image has four dimentions (b,c,w,h) while len(image.shape) < 4: image = np.expand_dims(image, 0) image = np.transpose(image, (1,0,2,3)) # choose filter or unet featurizer if featurizer == "filter": features = filter_featurize(image) else: features = unet_featurize(image, featurizer) # crop out paddings if w_padding > 0: features = features[w_padding:-w_padding] if h_padding > 0: features = features[:,h_padding:-h_padding] # reshape and extract data X = features.reshape([-1, features.shape[-1]]) y = labels.reshape(-1) X = X[y != 0] y = y[y != 0] # define and fit classifier clf = RandomForestClassifier(n_estimators=10) if len(X) > 0: clf = clf.fit(X, y) return clf, features
5,340,230
def test_register_algorithm_with_missing_fields( host: str, token: str, project: int) -> None: """ Unit test for the ReigsterAlgorithm endpoint focused on missing request body fields Request bodies are created with missing required fields and a workflow tries to be registered with these incorrect request bodies. Args: host: Project URL token: User token used for connecting to the host project: Unique identifier of test project """ NAME = str(uuid.uuid1()) DESCRIPTION = 'description' CLUSTER = 1 FILES_PER_JOB = 1 # Setup the interface to tator and get the user ID tator_api = tator.get_api(host=host, token=token) user = tator_api.whoami() user_id = user.id # Upload a manifest file response = _upload_test_algorithm_manifest( host=host, token=token, project=project, manifest_name='test.yaml') manifest_url = response.url # Missing name field caught_exception = False try: spec = tator.models.Algorithm( project=project, user=user_id, description=DESCRIPTION, manifest=manifest_url, cluster=CLUSTER, files_per_job=FILES_PER_JOB) response = tator_api.register_algorithm(project=project, algorithm_spec=spec) except: caught_exception = True assert caught_exception # Missing user field caught_exception = False try: spec = tator.models.Algorithm( name=NAME, project=project, description=DESCRIPTION, manifest=manifest_url, cluster=CLUSTER, files_per_job=FILES_PER_JOB) response = tator_api.register_algorithm(project=project, algorithm_spec=spec) except: caught_exception = True assert caught_exception # Missing description field caught_exception = False try: spec = tator.models.Algorithm( name=NAME, project=project, user=user_id, description=DESCRIPTION, manifest=manifest_url, cluster=CLUSTER, files_per_job=FILES_PER_JOB) response = tator_api.register_algorithm(project=project, algorithm_spec=spec) except: caught_exception = True assert caught_exception # Missing manifest caught_exception = False try: spec = tator.models.Algorithm( name=NAME, project=project, user=user_id, description=DESCRIPTION, cluster=CLUSTER, files_per_job=FILES_PER_JOB) response = tator_api.register_algorithm(project=project, algorithm_spec=spec) except: caught_exception = True assert caught_exception # Missing fields per job caught_exception = False try: spec = tator.models.Algorithm( name=NAME, project=project, user=user_id, description=DESCRIPTION, manifest=manifest_url, cluster=CLUSTER) response = tator_api.register_algorithm(project=project, algorithm_spec=spec) except: caught_exception = True assert caught_exception
5,340,231
def overlay_data( graph: BELGraph, data: Mapping[BaseEntity, Any], label: Optional[str] = None, overwrite: bool = False, ) -> None: """Overlay tabular data on the network. :param graph: A BEL Graph :param data: A dictionary of {tuple node: data for that node} :param label: The annotation label to put in the node dictionary :param overwrite: Should old annotations be overwritten? """ if label is None: label = 'weight' for node, value in data.items(): if node not in graph: logger.debug('%s not in graph', node) continue if label in graph.nodes[node] and not overwrite: logger.debug('%s already on %s', label, node) continue graph.nodes[node][label] = value
5,340,232
def himydata_client(args): """Returns an instance of Himydata Client or DryRunClient""" if args.dry_run: return DryRunClient() else: with open(args.config) as input: config = json.load(input) if not config.get('disable_collection', True): logger.info('Sending version information to stitchdata.com. ' + 'To disable sending anonymous usage data, set ' + 'the config parameter "disable_collection" to true') threading.Thread(target=collect).start() missing_fields = [] if 'client_id' in config: client_id = config['client_id'] else: missing_fields.append('client_id') if 'himydata_url' in config: himydata_url = config['himydata_url'] else: himydata_url = DEFAULT_HIMYDATA_URL if 'api_key' in config: api_key = config['api_key'] else: missing_fields.append('api_key') if missing_fields: raise Exception('Configuration is missing required fields: {}' .format(missing_fields)) return Client(client_id, api_key, himydata_url=himydata_url, callback_function=write_last_state)
5,340,233
def KeywordString(): """Returns the specified Keyword String @note: not used by most modules """ return ST_KEYWORDS[1]
5,340,234
def coo_index_to_data(index): """ Converts data index (row, col) to 1-based pixel-centerd (x,y) coordinates of the center ot the pixel index: (int, int) or int (row,col) index of the pixel in dtatabel or single row or col index """ return (index[1] + 1.0, index[0] + 1.0)
5,340,235
def prepare_output_well(df, plates, output, rawdata, identifier_features, location_features): """ Prepare the output file with plate, row and column information Calculate penetrance and p-value Args: df: Existing combined dictionary plates: Plates in this screen output: Output filenames identifier_features: List of strain identifiers location_features: List of Plate - Row - Column - Filename Return: final_df_output: Combined outlier detection results """ print('Preparing the output values by well...') log_write(output['log'], 'Preparing penetrance results by well...\n') # Create new dataframe from dict append_list = identifier_features + location_features + ['Is_Inlier'] final_df = dataframe_from_dict(df, append_list) if 'Row' in final_df.columns: well_identifier = 'Row_Col' else: for f in location_features: if 'well' in f.lower(): well_identifier = f try: final_df[well_identifier] = final_df.Row.map(int).map(str) + '_' + final_df.Column.map(int).map(str) except AttributeError: final_df[well_identifier] = final_df[well_identifier].map(str) # Initialize output folder final_df_output = pd.DataFrame(columns = identifier_features + location_features + ['Num_cells', 'Penetrance', 'P-value']) this_row = 0 # Regroup this dataframes by plates then row column info WT_cells, WT_cells_outliers = p_value(df) plate_column = 'Plate' for p in plates: final_df_plate = final_df[final_df[plate_column] == p] # Regroup this dataframes by Row and Column row_col = final_df_plate[well_identifier].unique().tolist() for rc in row_col: df_rc = final_df_plate[final_df_plate[well_identifier] == rc] is_inlier_rc = np.asarray(df_rc['Is_Inlier']) num_cells = df_rc.shape[0] num_outliers = sum(is_inlier_rc == 0) pene = float(num_outliers) / num_cells * 100 pval = 1 - stats.hypergeom.cdf(num_outliers, WT_cells, WT_cells_outliers, num_cells) # Append them to corresponding variables line = [] for i in identifier_features + location_features: if 'plate' in i.lower(): i = 'Plate' line.append(df_rc[i].unique()[0]) line.append(num_cells) line.append(pene) line.append(pval) final_df_output.loc[this_row, ] = line this_row += 1 # Save into a dataframe final_df_output = final_df_output.sort_values('Penetrance', ascending=False) final_df_output = final_df_output.reset_index(drop=True) final_df_output.to_csv(path_or_buf=output['ODresultsWell'], index=False) return final_df_output
5,340,236
def main(input_file): """Solve puzzle and connect part 1 with part 2 if needed.""" inp = read_input(input_file) p1, p2 = part_1_and_2(inp) print(f"Solution to part 1: {p1}") print(f"Solution to part 2: {p2}") return p1, p2
5,340,237
def extract_fields(): """Compiles all the fields within an object on a Tkinter Listbox""" global object_name object_name = select(entity, 0) options = sf.query_all( ("SELECT ID, QualifiedAPIName from FieldDefinition " "where EntityDefinitionId = '" + select(entity, 0) + "' order by QualifiedApiName") ) optionList = [] fields.delete(0, END) for record in options['records']: optionList.append(record['QualifiedApiName']) for each_item in range(len(optionList)): fields.insert(END, optionList[each_item])
5,340,238
def generateListPermutations(elements, level=0): """Generate all possible permutations of the list 'elements'.""" #print(" " * level, "gP(", elements, ")") if len(elements) == 0: return [[]] permutations = [] for e in elements: reduced = elements[:] reduced.remove(e) reducedPermutations = generateListPermutations(reduced, level + 1) #print(" "*level, "reduced", reducedPermutations) for p in reducedPermutations: p.insert(0, e) permutations.append(p) return permutations
5,340,239
def save_config(config_dict, filename=None, update=False): """ Writes configuration to a file """ filename = filename or default_config_filename config = configparser.RawConfigParser() if update: if os.path.exists(filename): config.read(filename) else: bootstrap_config_parser(config) for section, section_content in config_dict.items(): if not config.has_section(section): config.add_section(section) for option, option_value in section_content.items(): config.set(section, option, option_value) with open(filename, 'wt') as f: os.chmod(filename, stat.S_IRUSR | stat.S_IWUSR) config.write(f)
5,340,240
def test_tree_with_one_node_root_exists(one_t): """Root of tree should exist if it has one node.""" assert one_t.root
5,340,241
def main(provider: Provider, args: List[str]) -> None: # args not in use? """For use as the `main` in programs that wrap a custom Provider implementation into a Pulumi-compatible gRPC server. :param provider: an instance of a Provider subclass :args: command line arguiments such as os.argv[1:] """ argp = argparse.ArgumentParser(description='Pulumi provider plugin (gRPC server)') argp.add_argument('engine', help='Pulumi engine address') engine_address: str = argp.parse_args().engine async def serve() -> None: server = grpc.aio.server(options=_GRPC_CHANNEL_OPTIONS) servicer = ProviderServicer(provider, args, engine_address=engine_address) provider_pb2_grpc.add_ResourceProviderServicer_to_server(servicer, server) port = server.add_insecure_port(address='0.0.0.0:0') await server.start() sys.stdout.buffer.write(f'{port}\n'.encode()) sys.stdout.buffer.flush() await server.wait_for_termination() try: loop = asyncio.get_event_loop() try: loop.run_until_complete(serve()) finally: loop.close() except KeyboardInterrupt: pass
5,340,242
def run_tfa(tfalclist_path, trendlisttfa_paths, datestfa_path, lcdirectory, statsdir, nworkers=16, do_bls_ls_killharm=True, npixexclude=10, blsqmin=0.002, blsqmax=0.1, blsminper=0.2, blsmaxper=30.0, blsnfreq=20000, blsnbins=1000, lsminp=0.1, lsmaxp=30.0, lssubsample=0.1, killharmnharm=10, tfafromirm=False, outlcdir_tfa=None): """ Run TFA on all apertures. Optionally, if do_bls_ls_killharm, include a sequence of BLS, then Lomb-Scargle, then harmonic killing, then BLS on the harmonic-subtracted residual. If tfafromirm is True, TFA is called on IRM mags, otherwise it is called on EPD mags. If running TFA alone, of order ~10k lightcurves per minute are created in os.path.join(lcdirectory, 'TFA_LCS'). If also doing BLS etc, it's of order 50-100 processed lightcurves per minute. Periodograms are expensive. TFA parameters: npixexclude: trend stars exclusion radius, in units of pixels. BLS parameters blsqmin: minimum transit duration in phase units blsqmax blsminper blsmaxper blsnfreq blsnbins GLS parameters lsminp lsmaxp lssubsample Killharm parameters killharmnharm """ trendlist_tfa_ap1 = [t for t in trendlisttfa_paths if 'ap1' in t][0] trendlist_tfa_ap2 = [t for t in trendlisttfa_paths if 'ap2' in t][0] trendlist_tfa_ap3 = [t for t in trendlisttfa_paths if 'ap3' in t][0] outblsmodeldir_iter1 = os.path.join(lcdirectory,'BLS_MODEL_ITER1') outblsmodeldir_iter2 = os.path.join(lcdirectory,'BLS_MODEL_ITER2') if not isinstance(outlcdir_tfa,str): outlcdir_tfa = os.path.join(lcdirectory,'TFA_LCS') outstatsfile = os.path.join(statsdir, 'vartools_tfa_stats.txt') for d in [outblsmodeldir_iter1, outblsmodeldir_iter2, outlcdir_tfa]: if not os.path.exists(d): os.mkdir(d) if do_bls_ls_killharm: cmdtorun = tfablslskillharmcmd.format( lc_list_tfa = tfalclist_path, trendlist_tfa_ap1 = trendlist_tfa_ap1, trendlist_tfa_ap2 = trendlist_tfa_ap2, trendlist_tfa_ap3 = trendlist_tfa_ap3, dates_tfa = datestfa_path, npixexclude = npixexclude, outblsmodeldir_iter1 = outblsmodeldir_iter1, outblsmodeldir_iter2 = outblsmodeldir_iter2, outlcdir_tfa = outlcdir_tfa, outstatsfile = outstatsfile, nproc = nworkers, blsqmin = blsqmin, blsqmax = blsqmax, blsminper = blsminper, blsmaxper = blsmaxper, blsnfreq = blsnfreq, blsnbins = blsnbins, lsminp = lsminp, lsmaxp = lsmaxp, lssubsample = lssubsample, killharmnharm = killharmnharm ) else: if tfafromirm: cmdtorun = tfafromirmcmd.format( lc_list_tfa = tfalclist_path, trendlist_tfa_ap1 = trendlist_tfa_ap1, trendlist_tfa_ap2 = trendlist_tfa_ap2, trendlist_tfa_ap3 = trendlist_tfa_ap3, dates_tfa = datestfa_path, npixexclude = npixexclude, outblsmodeldir_iter1 = outblsmodeldir_iter1, outblsmodeldir_iter2 = outblsmodeldir_iter2, outlcdir_tfa = outlcdir_tfa, outstatsfile = outstatsfile, nproc = nworkers ) else: cmdtorun = tfaonlycmd.format( lc_list_tfa = tfalclist_path, trendlist_tfa_ap1 = trendlist_tfa_ap1, trendlist_tfa_ap2 = trendlist_tfa_ap2, trendlist_tfa_ap3 = trendlist_tfa_ap3, dates_tfa = datestfa_path, npixexclude = npixexclude, outblsmodeldir_iter1 = outblsmodeldir_iter1, outblsmodeldir_iter2 = outblsmodeldir_iter2, outlcdir_tfa = outlcdir_tfa, outstatsfile = outstatsfile, nproc = nworkers ) print(cmdtorun) returncode = os.system(cmdtorun) if returncode == 0: print('{}Z: TFA+BLS+LS+KILLHARM cmd ran'.format( datetime.utcnow().isoformat())) return 1 else: print('ERR! {}Z: TFA+BLS+LS+KILLHARM cmd failed'.format( datetime.utcnow().isoformat())) raise AssertionError return 0
5,340,243
def write_abundance(species_path, markers_path, species_abundance, markers_abundance): """ Write species results to specified output file """ # Sort the species by median_coverage output_order = sorted(species_abundance.keys(), key=lambda sid: species_abundance[sid]['median_coverage'], reverse=True) with OutputStream(species_path) as outfile: outfile.write('\t'.join(species_profile_schema.keys()) + '\n') for species_id in output_order: r = species_abundance[species_id] record = [species_id, r['read_counts'], r['median_coverage'], r['coverage'], r['relative_abundance'], r['total_covered'], r['unique_covered'], r['ambiguous_covered'], r['total_marker_counts'], r['unique_fraction_covered'], r['total_marker_length']] outfile.write("\t".join(map(format_data, record, repeat(DECIMALS6, len(record)))) + "\n") with OutputStream(markers_path) as outfile: outfile.write('\t'.join(species_marker_profile_schema.keys()) + '\n') for species_id in output_order: for mid, md in markers_abundance[species_id].items(): record = [species_id, mid, md['length'], md["gene_id"], md['total_reads'], md['total_alnbps'], md['coverage'], md['uniq_reads'], md['ambi_reads'], md['uniq_alnbps'], md['ambi_alnbps']] outfile.write("\t".join(map(format_data, record, repeat(DECIMALS6, len(record)))) + "\n")
5,340,244
def has_security_updates(update_list): """ Returns true if there are security updates available. """ return filter_updates(update_list, 'category', lambda x: x == 'security')
5,340,245
def lobby(): """Return an unchecked place named lobby.""" return UncheckedPlace("Lobby")
5,340,246
def get_random_sample_indices( seq_len, num_samples=100, device=torch.device("cpu")): """ Args: seq_len: int, the sampled indices will be in the range [0, seq_len-1] num_samples: sample size device: torch.device Returns: 1D torch.LongTensor consisting of sorted sample indices (sort should not affect the results as we use transformers) """ if num_samples >= seq_len: # return all indices sample_indices = np.arange(seq_len) else: sample_indices = np.random.choice( seq_len, size=num_samples, replace=False) sample_indices = np.sort(sample_indices) return torch.from_numpy(sample_indices).long().to(device)
5,340,247
def render_mesh_as_dot(mesh, template=DOT_TEMPLATE): """Renders the given mesh in the Graphviz dot format. :param Mesh mesh: the mesh to be rendered :param str template: alternative template to use :returns: textual dot representation of the mesh """ custom_filters = { 'hash': lambda s: "id" + hashlib.md5(s).hexdigest()[:6], # alternative hash for provides ports to avoid conflicts with needs ports with same name 'hash_p': lambda s: "idp" + hashlib.md5(s).hexdigest()[:6], 'escape': lambda s: re.sub(r'([{}|"<>])', r'\\\1', s), } return render(mesh, template, custom_filters=custom_filters)
5,340,248
def snrest(noisy: np.ndarray, noise: np.ndarray, axis=None): """ Computes SNR [in dB] when you have: "noisy" signal+noise time series "noise": noise only without signal """ Psig = ssq(noisy, axis) Pnoise = ssq(noise) return 10 * np.log10(Psig / Pnoise)
5,340,249
def test_sgp4(client): """ test the sgp4 device interface """ tsince = np.linspace(0, 100, client.n, dtype=np.float64) sgp4.sgp4(tsince, client.whichconst_array, client.satrec_array) array = [] for ts in tsince: r, v = prop.sgp4(client.Satrec(), ts, wgs72) array.append([r[0], r[1], r[2], v[0], v[1], v[2]]) expected = np.array(array) assert np.allclose(expected, client.satrec_array[:, 94:])
5,340,250
async def trace_bek(client: Client, message: Message): """ Reverse Search Anime Clips/Photos """ x = await message.reply_text("Reverse searching the given media") dls_loc = await media_to_image(client, message, x) if dls_loc: async with ClientSession() as session: tracemoe = tracemoepy.AsyncTrace(session=session) search = await tracemoe.search(dls_loc, upload_file=True) os.remove(dls_loc) result = search["docs"][0] caption = ( f"**Title**: {result['title_english']} (`{result['title_native']}`)\n" f"\n**Anilist ID:** `{result['anilist_id']}`" f"\n**Similarity**: `{(str(result['similarity']*100))[:5]}`" f"\n**Episode**: `{result['episode']}`" ) preview = await tracemoe.natural_preview(search) if await check_if_adult(int(result['anilist_id']))=="True" and await (SFW_GRPS.find_one({"id": message.chat.id})): await message.reply_text("The results parsed seems to be 18+ and not allowed in this group") return with open("preview.mp4", "wb") as f: f.write(preview) await session.close() await message.reply_video( "preview.mp4", caption=caption, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton("More Info", url=f"https://anilist.co/anime/{result['anilist_id']}")]])) os.remove("preview.mp4") else: await message.reply_text("Couldn't parse results!!!") await x.delete()
5,340,251
def load(spect_path, spect_format=None): """load spectrogram and related arrays from a file, return as an object that provides Python dictionary-like access Parameters ---------- spect_path : str, Path to an array file. spect_format : str Valid formats are defined in vak.io.spect.SPECT_FORMAT_LOAD_FUNCTION_MAP. Default is None, in which case the extension of the file is used. Returns ------- spect_dict : dict-like either a dictionary or dictionary-like object that provides access to arrays from the file via keys, e.g. spect_dict['s'] for the spectrogram. See docstring for vak.audio.to_spect for default keys for spectrogram array files that function creates. """ spect_path = Path(spect_path) if spect_format is None: # "replace('.', '')", because suffix returns file extension with period included spect_format = spect_path.suffix.replace('.', '') spect_dict = constants.SPECT_FORMAT_LOAD_FUNCTION_MAP[spect_format](spect_path) return spect_dict
5,340,252
def register_blueprints(app): """Register Flask blueprints.""" app.register_blueprint(views.blueprint, url_prefix='/api') app.register_blueprint(pipeline.views.blueprint, url_prefix='/api') app.register_blueprint(job.views.blueprint, url_prefix='/api') app.register_blueprint(stage.views.blueprint, url_prefix='/api') app.register_blueprint(result.views.blueprint) app.register_blueprint(starter.views.blueprint)
5,340,253
def PSNR(a, b, max_val=255.0, name=None): """Returns the Peak Signal-to-Noise Ratio between a and b. Arguments: a: first set of images. b: second set of images. max_val: the dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). name: namespace to embed the computation in. Returns: The scalar PSNR between a and b. The shape of the returned tensor is [batch_size, 1]. """ with tf.name_scope(name, 'PSNR', [a, b]): psnr = tf.image.psnr(a, b, max_val=max_val, name=name) _, _, checks = VerifyCompatibleImageShapes(a, b) with tf.control_dependencies(checks): return tf.identity(psnr)
5,340,254
def split_list(iterable: Iterable, size: Optional[int] = 5) -> List[list]: """Takes an iterable and splits it into lists of its elements. The size of each sub-list depends on the provided size argument.""" for i in range(0, len(iterable), size): yield iterable[i:i + size]
5,340,255
def command(f): """ indicate it's a command of naviseccli :param f: function that returns the command in list :return: command execution result """ @functools.wraps(f) def func_wrapper(self, *argv, **kwargs): if 'ip' in kwargs: ip = kwargs['ip'] del kwargs['ip'] else: ip = None commands = _get_commands(f, self, *argv, **kwargs) return self.execute(commands, ip=ip) return func_wrapper
5,340,256
def top(): """ CPU和内存监测 CPU and memory monitoring :return: None """ from . import dir_char if dir_char == '\\': from .SystemTools.Monitor import top top() else: import sys sys.argv = ['bpytop'] + sys.argv[2:] from . import requirePackage requirePackage('bpytop', 'main')()
5,340,257
def clean_data(file_name): """ file_name: file to be cleaned This function converts the data types in the original dataframe into more suitable type. The good news is that the orginal dataframe is already in good shape so there's less to do. """ df_input = pd.read_excel(file_name,sheet_name = "IPU2016") #Checking the basic information about the dataframe (optional) #print(df_input.info(), df_input.describe()) #print(df_input["Lokasi"].unique()) #Making a copy of the dataframe df_output = df_input.copy() #Change column name for consistency df_output = df_input.rename(columns = {"Tarikh":"Date", "API":"API_Values", "Masa":"Time"}) #Note that there is no dominant pollutant data for this dataset #Converting the date into datetime df_output["Date"] = df_output["Date"].astype(str) df_output["Time"] = df_output["Time"].astype(str) df_output["Datetime"] = df_output[["Date","Time"]].agg("-".join, axis = 1) df_output["Datetime"] = pd.to_datetime(df_output["Datetime"], format = "%Y%m%d-%I:%M:%S") #Creating new columns "Area" based on "Lokasi" for consistency #The area and state allocated are based on the categorization of other dataframes #the dictionary is organized in the following form: Lokasi: Area #Note that there are subtle differences in the input Lokasi values so the directory from previous data cleaning python doc is not applicable df_output["Lokasi"] = df_output["Lokasi"].astype(str) df_output["Lokasi"] = df_output["Lokasi"].str.rstrip() area_directory = {"Sek. Men. Pasir Gudang 2, Pasir Gudang": "Pasir Gudang", "Institut Perguruan Malaysia, Temenggong Ibrahim, Larkin, Johor Bharu": "Lakrin Lama", "Sek. Men. Teknik Muar, Muar, Johor": "Muar", "SMA, Bandar Penawar, Kota Tinggi": "Kota Tinggi", "Sek. Keb. Bakar Arang, Sungai Petani": "Bakar Arang, Sg. Petani", "Komplek Sukan Langkawi, Kedah": "Langkawi", "Sek. Men. Agama Mergong, Alor Setar": "Alor Setar", "Sek. Men. Keb. Tanjung Chat, Kota Bahru": "SMK Tanjung Chat, Kota Bharu", "SMK. Tanah Merah": "Tanah Merah", "Sek. Men. Keb. Bukit Rambai": "Bukit Rambai", "Sek. Men. Tinggi Melaka, Melaka": "Bandaraya Melaka", "Tmn. Semarak (Phase II), Nilai": "Nilai", "Sek. Men. Teknik Tuanku Jaafar, Ampangan, Seremban": "Seremban", "Pusat Sumber Pendidikan N.S. Port Dickson": "Port Dickson", "Pej. Kajicuaca Batu Embun, Jerantut": "Jerantut", "Sek. Keb. Indera Mahkota, Kuantan": "Indera Mahkota, Kuantan", "Sek. Keb. Balok Baru, Kuantan": "Balok Baru, Kuantan", "Sek. Men. Jalan Tasek, Ipoh": "Jalan Tasek, Ipoh", "Sek. Men. Keb. Air Puteh, Taiping": "Kg. Air Putih, Taiping", "Pejabat Pentadbiran Daerah Manjung, Perak": "Seri Manjung", "Universiti Pendidikan Sultan Idris, Tanjung Malim": "Tanjung Malim", "Sek. Men. Pegoh, Ipoh, Perak": "S K Jalan Pegoh, Ipoh", "Institut Latihan Perindustrian (ILP) Kangar": "Kangar", "Sek. Keb. Cederawasih, Taman Inderawasih, Perai": "Perai", "Sek. Keb. Seberang Jaya II, Perai": "Seberang Jaya 2, Perai", "Universiti Sains Malaysia, Pulau Pinang": "USM", "Sek. Men. Keb Putatan, Tg Aru, Kota Kinabalu": "Kota Kinabalu", "Pejabat JKR Tawau, Sabah": "Tawau", "Sek. Men. Keb Gunsanad, Keningau": "Keningau", "Pejabat JKR Sandakan, Sandakan": "Sandakan", "Medical Store, Kuching": "Kuching", "Ibu Pejabat Polis Sibu, Sibu": "Sibu", "Balai Polis Pusat Bintulu": "Bintulu", "Sek. Men. Dato Permaisuri Miri": "Miri", "Balai Polis Pusat Sarikei": "Sarikei", "Dewan Suarah, Limbang": "Limbang", "Pejabat Daerah Samarahan, Kota Samarahan": "Samarahan", "Kompleks Sukan, Sri Aman": "Sri Aman", "Stadium Tertutup, Kapit": "Kapit", "ILP MIRI": "ILP Miri", "Sek. Men. (P) Raja Zarina, Kelang": "Pelabuhan Kelang", "Sek. Keb. Bandar Utama, Petaling Jaya": "Petaling Jaya", "Sek. Keb. TTDI Jaya, Shah Alam": "Shah Alam", "Sekolah Menengah Sains, Kuala Selangor": "Kuala Selangor", "Kolej MARA, Banting": "Banting", "Sek. Ren. Keb. Bukit Kuang, Teluk Kalung, Kemaman": "Kemaman", "Kuarters TNB, Paka-Kertih": "Paka", "Sek. Keb. Chabang Tiga, Kuala Terengganu": "Kuala Terengganu", "Taman Perumahan Majlis Perbandaran Labuan": "Labuan", "Sek. Keb. Putrajaya 8(2), Jln P8/E2, Presint 8, Putrajaya": "Putrajaya", "Sek.Men.Keb.Seri Permaisuri, Cheras": "Cheras,Kuala Lumpur", "Sek. Keb. Batu Muda, Batu Muda, Kuala Lumpur": "Batu Muda,Kuala Lumpur"} #Create column "Area" df_output["Area"] = df_output["Lokasi"].map(area_directory) #Create column "State" #Since there is very little tokens, mapping a dictionary will be faster state_directory = {"JOHOR": "Johor", "KEDAH": "Kedah", "KELANTAN": "Kelantan", "MELAKA": "Melaka", "N.SEMBILAN": "Negeri Sembilan", "PAHANG": "Pahang", "PERAK": "Perak", "PERLIS": "Perlis", "PULAU PINANG": "Pulau Pinang", "SABAH": "Sabah", "SARAWAK": "Sarawak", "SELANGOR": "Selangor", "TERENGGANU": "Terengganu", "WILAYAH PERSEKUTUAN": "Wilayah Persekutuan"} df_output["State"] = df_output["Negeri"].map(state_directory) df_output = df_output.drop(columns = ["Date", "Time", "Lokasi", "Negeri"]) #Checking the basic information about the final dataframe (optional) #print(df_output.info()) #Export output to new csv file (edit path and name as needed) df_extract.to_csv(r"file_path\file_name.csv") return df_output
5,340,258
def get_contact_pages(buffer, domain): """ Returns links to all possible contact pages found on the site index page """ usual_contact_titles = [u'Contact', u'Contacts', u'About', u'Контакты', u'Связаться с нами'] usual_contact_urls = ['/contact', '/contacts', '/info'] result = list() html = fromstring(buffer) for a in html.xpath('//a'): title = a.text_content().strip() url = a.get('href') if url is None: continue if title in usual_contact_titles or url in usual_contact_urls: result.append(normalize_url(url, domain)) del html return list(set(result))
5,340,259
def _hydrate_active_votes(vote_csv): """Convert minimal CSV representation into steemd-style object.""" if not vote_csv: return [] votes = [] for line in vote_csv.split("\n"): voter, rshares, percent, reputation = line.split(',') votes.append(dict(voter=voter, rshares=rshares, percent=percent, reputation=rep_to_raw(reputation))) return votes
5,340,260
def skew(width, height, magnitude, mode='random'): """ Skew the ChArUco in 4 different modes. :param width: :param height: :param magnitude: :param mode: 0: top narrow, 1: bottom narrow, 2: left skew, 3 right skew :return: """ # Randomize skew if mode == 'random': mode = random.randint(0, 3) # Translate skew mode into transform coefficients if mode == 0: coeffs = find_coeffs( [(magnitude, 0), (width - magnitude, 0), (width, height), (0, height)], [(0, 0), (width, 0), (width, height), (0, height)]) elif mode == 1: coeffs = find_coeffs( [(0, 0), (width, 0), (width - magnitude, height), (magnitude, height)], [(0, 0), (width, 0), (width, height), (0, height)]) elif mode == 2: coeffs = find_coeffs( [(0, 0), (width, 0), (width + magnitude, height), (magnitude, height)], [(0, 0), (width, 0), (width, height), (0, height)]) elif mode == 3: coeffs = find_coeffs( [(magnitude, 0), (width + magnitude, 0), (width, height), (0, height)], [(0, 0), (width, 0), (width, height), (0, height)]) return coeffs
5,340,261
def reset_env(exit=True): """Reset the environment by cleaning out all temporary outputs.""" print('NOTE: Resetting the environment...') wd.database.init() wd.database.delete_temp() wd.outputtools.delete_temp() wd.database.close() if exit: print('NOTE: Exiting the program... Goodbye!\n')
5,340,262
def aws_ec2_pricing(): """--- get: tags: - aws produces: - application/json description: &desc Get EC2 pricing per gibabyte in all regions and storage types summary: *desc responses: 200: description: List of instance types schema: properties: instances: type: array items: properties: instanceType: type: string location: type: string prices: type: array items: properties: type: type: string costPerHour: type: float upfrontCost: type: float reservationYears: type: integer 403: description: Not logged in """ return jsonify(instances=ec2pricing.get_pricing_data())
5,340,263
def create_app(): """ Create the application and return it to the user :return: flask.Flask application """ app = Flask(__name__, static_folder=None) app.url_map.strict_slashes = False # Load config and logging load_config(app) logging.config.dictConfig( app.config['SLACKBACK_LOGGING'] ) # Register extensions api = Api(app) # Add end points api.add_resource(SlackFeedback, '/feedback/slack') return app
5,340,264
def before_feature(context, feature): """ HOOK: To be executed before each Feature. """ __logger__.info("Starting execution of feature") __logger__.info("##############################") __logger__.info("##############################")
5,340,265
def _get_graph_cls(name): """Get scaffoldgraph class from name string.""" if name == 'network': return ScaffoldNetwork elif name == 'tree': return ScaffoldTree elif name == 'hiers': return HierS else: msg = f'scaffold graph type: {name} not known' raise ValueError(msg)
5,340,266
def benchmark_index( indices_dict, gt_test, test_points, vectors_size_in_bytes, save_path=None, speed_dict=None, size_dict=None ): """ Compute recall curves for the indices. """ perfect_index_label = "perfect index" if perfect_index_label not in indices_dict: indices_dict[perfect_index_label] = None if speed_dict: speed_dict[perfect_index_label] = vectors_size_in_bytes k_max = gt_test.shape[1] plt.figure(figsize=(16, 8)) k_values = np.arange(0, k_max + 1) avg_one_recall_at_r = {} avg_r_recall_at_r = {} timout_s = 5.0 comp_size = vectors_size_in_bytes for index_key in tq(list(sorted(indices_dict.keys()))): if index_key not in indices_dict: continue index = indices_dict[index_key] if index_key == "Flat" or (index is None): y_r_recall_at_r = np.arange(1, k_max + 1) y_one_recall_at_r = np.ones(k_max) tot = 1 else: y_r_recall_at_r = np.zeros(k_max) y_one_recall_at_r = np.zeros(k_max) tot = 0 start_time = time.time() for i, item in enumerate(test_points): y_r_recall_at_r += np.array(r_recall_at_r_single(item, gt_test[i], index, k_max)) y_one_recall_at_r += np.array(one_recall_at_r_single(item, gt_test[i], index, k_max)) tot += 1 if time.time() - start_time > timout_s and tot > 150: break avg_r_recall_at_r[index_key] = y_r_recall_at_r / tot avg_one_recall_at_r[index_key] = y_one_recall_at_r / tot info_string = {index_key: "" for index_key in indices_dict} initial_size_string = cast_bytes_to_memory_string(comp_size) for index_key in indices_dict: if index_key in speed_dict: info_string[index_key] += f"avg speed: {format_speed_ms_per_query(speed_dict[index_key])}, " if index_key in size_dict: info_string[index_key] += ( f"(Size: {cast_bytes_to_memory_string(size_dict[index_key])} " f"({(100*size_dict[index_key]/comp_size):.1f}% of {initial_size_string})" ) plt.subplot(121) for index_key in sorted(indices_dict.keys()): if index_key not in indices_dict: continue label = f"{index_key:<30} Index, {info_string[index_key]}" plt.plot(k_values, np.concatenate(([0], avg_r_recall_at_r[index_key])), label=label) plt.xlabel("k, number of nearests items") plt.ylabel("k-recall@k") plt.vlines(40, 0, k_max) plt.legend() plt.tight_layout() plt.subplot(122) for index_key in sorted(indices_dict.keys()): if index_key not in indices_dict: continue label = f"{index_key:<30} Index, {info_string[index_key]}" plt.plot(k_values, np.concatenate(([0], 100 * avg_one_recall_at_r[index_key])), label=label) plt.xlabel("k, number of nearests items") plt.ylabel("1-Recall@k") plt.vlines(100, 0, k_max) plt.legend() plt.tight_layout() if save_path: plt.savefig(save_path) plt.show()
5,340,267
def getgrayim(ra, dec, size=240, output_size=None, filter="g", format="jpg"): """Get grayscale image at a sky position ra, dec = position in degrees size = extracted image size in pixels (0.25 arcsec/pixel) output_size = output (display) image size in pixels (default = size). output_size has no effect for fits format images. filter = string with filter to extract (one of grizy) format = data format (options are "jpg", "png") Returns the image """ if format not in ("jpg","png"): raise ValueError("format must be jpg or png") if filter not in list("grizy"): raise ValueError("filter must be one of grizy") url = geturl(ra,dec,size=size,filters=filter,output_size=output_size,format=format) r = requests.get(url[0]) im = Image.open(BytesIO(r.content)) return im
5,340,268
def get_logger(base_name, file_name=None): """ get a logger that write logs to both stdout and a file. Default logging level is info so remember to :param base_name: :param file_name: :param logging_level: :return: """ if (file_name is None): file_name = base_name logger = logging.getLogger(base_name) logger.setLevel(logging.INFO) # create console handler & file handler ch = logging.StreamHandler() ch.setStream(sys.stdout) fi = logging.FileHandler(filename="..\logs\\" + file_name + ".log") # create formatter formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # add formatter to channels ch.setFormatter(formatter) fi.setFormatter(formatter) # add channels to logger logger.addHandler(ch) logger.addHandler(fi) return logger
5,340,269
def elastic_transform(x, alpha, sigma, mode="constant", cval=0, is_random=False): """Elastic transformation for image as described in `[Simard2003] <http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf>`__. Parameters ----------- x : numpy.array A greyscale image. alpha : float Alpha value for elastic transformation. sigma : float or sequence of float The smaller the sigma, the more transformation. Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. mode : str See `scipy.ndimage.filters.gaussian_filter <https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html>`__. Default is `constant`. cval : float, Used in conjunction with `mode` of `constant`, the value outside the image boundaries. is_random : boolean Default is False. Returns ------- numpy.array A processed image. Examples --------- >>> x = tl.prepro.elastic_transform(x, alpha=x.shape[1]*3, sigma=x.shape[1]*0.07) References ------------ - `Github <https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a>`__. - `Kaggle <https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a>`__ """ if is_random is False: random_state = np.random.RandomState(None) else: random_state = np.random.RandomState(int(time.time())) # is_3d = False if len(x.shape) == 3 and x.shape[-1] == 1: x = x[:, :, 0] is_3d = True elif len(x.shape) == 3 and x.shape[-1] != 1: raise Exception("Only support greyscale image") if len(x.shape) != 2: raise AssertionError("input should be grey-scale image") shape = x.shape dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode=mode, cval=cval) * alpha x_, y_ = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij') indices = np.reshape(x_ + dx, (-1, 1)), np.reshape(y_ + dy, (-1, 1)) if is_3d: return map_coordinates(x, indices, order=1).reshape((shape[0], shape[1], 1)) else: return map_coordinates(x, indices, order=1).reshape(shape)
5,340,270
def create_markdown( escape=True, renderer=None, plugins=None, acronyms=None, bibliography="", chapters=False, toc=False, ): """Create a Markdown instance based on the given condition. :param escape: Boolean. If using html renderer, escape html. :param renderer: renderer instance or string of ``html`` and ``ast``. :param plugins: List of plugins, string or callable. This method is used when you want to re-use a Markdown instance:: markdown = create_markdown( escape=False, renderer='html', plugins=['url', 'strikethrough', 'footnotes', 'table'], ) # re-use markdown function markdown('.... your text ...') """ if renderer is None or renderer == "latex": renderer = LaTeXRenderer(acronym_file=acronyms, chapters=chapters) if renderer == "html": renderer = HTMLRenderer(escape=escape) elif renderer == "ast": renderer = AstRenderer() if plugins: _plugins = [] for p in plugins: if isinstance(p, str): _plugins.append(PLUGINS[p]) else: _plugins.append(p) plugins = _plugins return ExtendedMarkdown( renderer, inline=ExtendedInlineParser(renderer, chapters=chapters), block=ExtendedBlockParser(), plugins=plugins, bibliography=bibliography, chapters=chapters, toc=toc, )
5,340,271
def make_game_from_level(level: int, options: Optional[GameOptions] = None) -> textworld.Game: """ Make a Cooking game of the desired difficulty level. Arguments: level: Difficulty level (see notes). options: For customizing the game generation (see :py:class:`textworld.GameOptions <textworld.generator.game.GameOptions>` for the list of available options). Returns: Generated game. Notes: Difficulty levels are defined as follows: TODO """ if level == 1: mode = "easy" elif level == 2: mode = "medium" elif level == 3: mode = "hard" else: raise ValueError("Only level 1, 2 or 3 is supported for this game.") return make_game(mode, options)
5,340,272
def _split(num): """split the num to a list of every bits of it""" # xxxx.xx => xxxxxx num = num * 100 result = [] for i in range(16): tmp = num // 10 ** i if tmp == 0: return result result.append(tmp % 10) return result
5,340,273
def genGameMap(): """This is an "abstract function" to hold this docstring and information. A GameMap function defines Places and connects all the Places it defines in a graph, but simpler graph than CommandGraph. It simply uses Place.nextnodes. A GameMap function returns the starting location."""
5,340,274
def getHitmask(image): """returns a hitmask using an image's alpha.""" mask = [] for x in xrange(image.get_width()): mask.append([]) for y in xrange(image.get_height()): mask[x].append(bool(image.get_at((x,y))[3])) return mask
5,340,275
def get_args_kwargs_param_names(fparams) -> (str, str): """fparams is inspect.signature(f).parameters for some function f. Doctests: >>> import inspect >>> def f(): pass >>> get_args_kwargs_param_names(inspect.signature(f).parameters) (None, None) >>> def f(*args): pass >>> get_args_kwargs_param_names(inspect.signature(f).parameters) ('args', None) >>> def f(a, b, *filters, **kwargs): pass >>> get_args_kwargs_param_names(inspect.signature(f).parameters) ('filters', 'kwargs') >>> def f(x, y, z, user='Joe', **other_users): pass >>> get_args_kwargs_param_names(inspect.signature(f).parameters) (None, 'other_users') """ args_name = None kwargs_name = None for name in fparams: param = fparams[name] if param.kind == param.VAR_KEYWORD: kwargs_name = name elif param.kind == param.VAR_POSITIONAL: args_name = name if args_name and kwargs_name: break # found both: done return args_name, kwargs_name
5,340,276
def clean_up_tokenization_spaces(out_string): """Converts an output string (de-BPE-ed) using de-tokenization algorithm from OpenAI GPT.""" out_string = out_string.replace('<unk>', '') out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ',' ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't" ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re") return out_string
5,340,277
def upload_pkg(go_workspace, pkg_file, service_url, tags, service_account): """Uploads existing *.cipd file to the storage and tags it. Args: go_workspace: path to 'infra/go' or 'infra_internal/go'. pkg_file: path to *.cipd file to upload. service_url: URL of a package repository service. tags: a list of tags to attach to uploaded package instance. service_account: path to *.json file with service account to use. Returns: {'package': <name>, 'instance_id': <sha1>} Raises: UploadException on error. """ print_title('Uploading: %s' % os.path.basename(pkg_file)) args = ['-service-url', service_url] for tag in sorted(tags): args.extend(['-tag', tag]) args.extend(['-ref', 'latest']) if service_account: args.extend(['-service-account-json', service_account]) args.append(pkg_file) exit_code, json_output = run_cipd(go_workspace, 'pkg-register', args) if exit_code: print print >> sys.stderr, 'FAILED! ' * 10 raise UploadException('Failed to upload the CIPD package, see logs') info = json_output['result'] print '%s %s' % (info['package'], info['instance_id']) return info
5,340,278
def train_world_model(env, data_dir, output_dir, hparams, epoch): """Train the world model on problem_name.""" train_steps = hparams.model_train_steps * ( epoch + hparams.inital_epoch_train_steps_multiplier) model_hparams = trainer_lib.create_hparams(hparams.generative_model_params) # Hardcoded for now. TODO(koz4k): Make it a hparam. model_hparams.video_num_input_frames = 4 model_hparams.video_num_target_frames = 1 model_hparams.learning_rate = model_hparams.learning_rate_constant if epoch > 0: model_hparams.learning_rate *= hparams.learning_rate_bump train_supervised( problem=env, model_name=hparams.generative_model, hparams=model_hparams, data_dir=data_dir, output_dir=output_dir, train_steps=train_steps, eval_steps=100, local_eval_frequency=2000 )
5,340,279
def make_rgg(n: int, kbar: float) -> ig.Graph: """Make Random Geometric Graph with given number of nodes and average degree. """ radius = np.sqrt(kbar/(np.pi*(n-1))) return ig.Graph.GRG(n, radius=radius, torus=True)
5,340,280
def list_directory(bucket, prefix, s3=None, request_pays=False): """AWS s3 list directory.""" if not s3: session = boto3_session(region_name=region) s3 = session.client('s3') pag = s3.get_paginator('list_objects_v2') params = { 'Bucket': bucket, 'Prefix': prefix, 'Delimiter': '/'} if request_pays: params['RequestPayer'] = 'requester' directories = [] for subset in pag.paginate(**params): if 'CommonPrefixes' in subset.keys(): directories.extend(subset.get('CommonPrefixes')) return [r['Prefix'] for r in directories]
5,340,281
def manual_overrides(): """Read the overrides file. Read the overrides from cache, if available. Otherwise, an attempt is made to read the file as it currently stands on GitHub, and then only if that fails is the included file used. The result is cached for one day. """ return _manual_overrides(datetime.date.today())
5,340,282
def _ExtractCLPath(output_of_where): """Gets the path to cl.exe based on the output of calling the environment setup batch file, followed by the equivalent of `where`.""" # Take the first line, as that's the first found in the PATH. for line in output_of_where.strip().splitlines(): if line.startswith('LOC:'): return line[len('LOC:'):].strip()
5,340,283
def preprocess_data_for_clustering(df): """Prepare data in order to apply a clustering algorithm Parameters ---------- df : pandas.DataFrame Input data, *i.e.* city-related timeseries, supposed to have `station_id`, `ts` and `nb_bikes` columns Returns ------- pandas.DataFrame Simpified version of `df`, ready to be used for clustering """ # Filter unactive stations max_bikes = df.groupby("station_id")["nb_bikes"].max() unactive_stations = max_bikes[max_bikes==0].index.tolist() active_station_mask = np.logical_not(df['station_id'].isin(unactive_stations)) df = df[active_station_mask] # Set timestamps as the DataFrame index and resample it with 5-minute periods df = (df.set_index("ts") .groupby("station_id")["nb_bikes"] .resample("5T") .mean() .bfill()) df = df.unstack(0) # Drop week-end records df = df[df.index.weekday < 5] # Gather data regarding hour of the day df['hour'] = df.index.hour df = df.groupby("hour").mean() return df / df.max()
5,340,284
def chars(line): """Returns the chars in a TerminalBuffer line. """ return "".join(c for (c, _) in notVoids(line))
5,340,285
def map_is_finite(query_points: tf.Tensor, observations: tf.Tensor) -> Dataset: """ :param query_points: A tensor. :param observations: A tensor. :return: A :class:`~trieste.data.Dataset` containing all the rows in ``query_points``, along with the tensor result of mapping the elements of ``observations`` to: `1` if they are a finite number, else `0`, with dtype `tf.uint8`. :raise ValueError or InvalidArgumentError: If ``query_points`` and ``observations`` do not satisfy the shape constraints of :class:`~trieste.data.Dataset`. """ return Dataset(query_points, tf.cast(_is_finite(observations), tf.uint8))
5,340,286
def docker_image_exists(args, image): # type: (EnvironmentConfig, str) -> bool """Return True if the image exists, otherwise False.""" try: docker_command(args, ['image', 'inspect', image], capture=True) except SubprocessError: return False return True
5,340,287
def remove_local(path): """Remove a local file or directory. Arguments: path (str): Absolute path to the file or directory. Returns: Boolean indicating result. """ if os.path.isfile(path): # Regular file remover = os.remove elif os.path.isdir(path): # Directory remover = shutil.rmtree else: # What? cprint(m.PATH_NOEXIST % path, 'red') return False try: remover(path) except Exception as e: # Something failed cprint(m.RM_ERR % (path, e), 'red') return False return True
5,340,288
def get_g2_fit_general_two_steps( g2, taus, function="simple_exponential", second_fit_range=[0, 20], sequential_fit=False, *argv, **kwargs, ): """ Fit g2 in two steps, i) Using the "function" to fit whole g2 to get baseline and beta (contrast) ii) Then using the obtained baseline and beta to fit g2 in a "second_fit_range" by using simple_exponential function """ g2_fit_result, taus_fit, g2_fit = get_g2_fit_general( g2, taus, function, sequential_fit, *argv, **kwargs ) guess_values = {} for k in list(g2_fit_result[0].params.keys()): guess_values[k] = np.array( [g2_fit_result[i].params[k].value for i in range(g2.shape[1])] ) if "guess_limits" in kwargs: guess_limits = kwargs["guess_limits"] else: guess_limits = dict( baseline=[1, 1.8], alpha=[0, 2], beta=[0.0, 1], relaxation_rate=[0.001, 10000], ) g2_fit_result, taus_fit, g2_fit = get_g2_fit_general( g2, taus, function="simple_exponential", sequential_fit=sequential_fit, fit_range=second_fit_range, fit_variables={ "baseline": False, "beta": False, "alpha": False, "relaxation_rate": True, }, guess_values=guess_values, guess_limits=guess_limits, ) return g2_fit_result, taus_fit, g2_fit
5,340,289
def run_doctest(module, verbosity=None): """Run doctest on the given module. Return (#failures, #tests). If optional argument verbosity is not specified (or is None), pass test_support's belief about verbosity on to doctest. Else doctest's usual behavior is used (it searches sys.argv for -v). """ import doctest if verbosity is None: verbosity = verbose else: verbosity = None # Direct doctest output (normally just errors) to real stdout; doctest # output shouldn't be compared by regrtest. save_stdout = sys.stdout sys.stdout = get_original_stdout() try: f, t = doctest.testmod(module, verbose=verbosity) if f: raise TestFailed("%d of %d doctests failed" % (f, t)) finally: sys.stdout = save_stdout if verbose: print 'doctest (%s) ... %d tests with zero failures' % \ (module.__name__, t) return f, t
5,340,290
def rate_matrix_arrhenius_time_segmented(energies, barriers, segment_temperatures, segment_start_times, t_range): """ Compute the rate matrix for each time ``t`` in ``t_range``, where the bath temperature is a piecewise constant function of time. The bath temperature function, by which the rate matrices are calculated, is a piecewise constant function where each piece is a segment described by the its temperature and the time it starts. First, the temperature for every time, denoted by ``T(t)``, is calculated as follows: ``T(t) = Ti`` where ``t = segment_start_times[i]`` and ``Ti = segment_temperatures[i]``. Then, for every time ``t`` in ``t_range``, a rate matrix is calculated with the corresponding temperature ``T(t)``. The bath temperature is set to the last given temperature ``segment_start_times[-1]`` and stays at this value until the last time ``t`` in ``t_range``. Parameters ---------- energies : (N,) array or sequence of float Energies of the states of the arrhenius, ordered in ascending order. barriers : (N, N) array Energy barriers between states. Must be given as matrix. segment_temperatures : (K,) array Temperature sequence where each temperature corresponds to each segment. segment_start_times : (K,) array Start time sequence where each time corresponds to each segment. t_range : (M,) array Time sequence. Returns ------- rate_matrix_time : (N, N, M) Rate matrices stacked in the depth dimension (axis=2). Raises ----- ValueError If the first segment start time ``segment_start_times[0]`` is not equal to ``t_range[0]``. """ if segment_start_times[0] != t_range[0]: raise ValueError('The first segment start time `segment_start_times[0]` must be equal to `t_range[0]`.') temperature_array = temperature_array_from_segments(segment_temperatures, segment_start_times, t_range) return rate_matrix_arrhenius(energies, barriers, temperature_array)
5,340,291
def div_tensor(tensor, coords=(x, y, z), h_vec=(1, 1, 1)): """ Divergence of a (second order) tensor Parameters ---------- tensor : Matrix (3, 3) Tensor function function to compute the divergence from. coords : Tuple (3), optional Coordinates for the new reference system. This is an optional parameter it takes (x, y, z) as default. h_vec : Tuple (3), optional Scale coefficients for the new coordinate system. It takes (1, 1, 1), as default. Returns ------- divergence: Matrix Divergence of tensor. References ---------- .. [RICHARDS] Rowland Richards. Principles of Solids Mechanics. CRC Press, 2011. """ h1, h2, h3 = h_vec u1, u2, u3 = coords div1 = diff(h2*h3*tensor[0, 0], u1) + diff(h1*h3*tensor[0, 1], u2) \ + diff(h1*h2*tensor[0, 2], u3) + h3*tensor[0, 1]*diff(h1, u2) \ + h2*tensor[0, 2]*diff(h1, u3) - h3*tensor[1, 1]*diff(h2, u1) \ - h2*tensor[2, 2]*diff(h3, u1) div2 = diff(h2*h3*tensor[1, 0], u1) + diff(h1*h3*tensor[1, 1], u2) \ + diff(h1*h2*tensor[1, 2], u3) + h1*tensor[1, 2]*diff(h2, u3) \ + h3*tensor[1, 0]*diff(h2, u1) - h1*tensor[2, 2]*diff(h3, u2) \ - h3*tensor[2, 2]*diff(h1, u2) div3 = diff(h2*h3*tensor[2, 0], u1) + diff(h1*h3*tensor[2, 1], u2) \ + diff(h1*h2*tensor[2, 2], u3) + h2*tensor[2, 0]*diff(h1, u1) \ + h1*tensor[2, 1]*diff(h1, u2) - h1*tensor[1, 1]*diff(h2, u3) \ + h2*tensor[2, 2]*diff(h1, u3) return Matrix([div1, div2, div3])/(h1*h2*h3)
5,340,292
def convert_path_to_repr_exp(path, with_end=False): """ Generate a representative expression for the given path """ exp = "" #print("Path: {}".format(path)) for i in range(len(path)): if with_end == False and \ ((i == 0) or (i == len(path)-1)): continue nd_idx = path[i] if nd_idx == start_state: exp += "BOS" continue if nd_idx == end_state: exp += "EOS" continue node_content = idx_to_node[nd_idx] #print("Node content: {}".format(node_content)) node_dic = ast.literal_eval(str(node_content)) text = "" for key, value in node_dic.items(): text = value[1] break exp += ' ' + text return exp
5,340,293
def test_unicast_ip_incorrect_eth_dst(do_test, ptfadapter, setup, tx_dut_ports, pkt_fields, eth_dst, ports_info): """ @summary: Create packets with multicast/broadcast ethernet dst. """ if "vlan" in tx_dut_ports[ports_info["dut_iface"]].lower(): pytest.skip("Test case is not supported on VLAN interface") log_pkt_params(ports_info["dut_iface"], eth_dst, ports_info["src_mac"], pkt_fields["ipv4_dst"], pkt_fields["ipv4_src"]) pkt = testutils.simple_tcp_packet( eth_dst=eth_dst, # DUT port eth_src=ports_info["src_mac"], # PTF port ip_src=pkt_fields["ipv4_src"], # PTF source ip_dst=pkt_fields["ipv4_dst"], tcp_sport=pkt_fields["tcp_sport"], tcp_dport=pkt_fields["tcp_dport"] ) do_test("L3", pkt, ptfadapter, ports_info, setup["neighbor_sniff_ports"], tx_dut_ports)
5,340,294
def cluster_create(context, values): """Create a cluster from the values dictionary.""" return IMPL.cluster_create(context, values)
5,340,295
def compute_heading_error(est, gt): """ Args: est: the estimated heading as sin, cos values gt: the ground truth heading as sin, cos values Returns: MSE error and angle difference from dot product """ mse_error = np.mean((est-gt)**2) dot_prod = np.sum(est * gt, axis=1) angle = np.arccos(np.clip(dot_prod, a_min=-1, a_max=1)) return mse_error, angle
5,340,296
def _get_count_bid(soup: bs4.BeautifulSoup) -> int: """ Return bidding count from `soup`. Parameters ---------- soup : bs4.BeautifulSoup Soup of a Yahoo Auction page. Returns ------- int Count of total bidding. """ tags = soup.find_all('dt', text='入札件数') if len(tags) > 0: tag = tags[0] if isinstance(tag, bs4.element.Tag): tag = tag.find_next_sibling('dd', {'class': 'Count__number'}) return int(tag.text[:-4]) return 0
5,340,297
def _is_class(s): """Imports from a class/object like import DefaultJsonProtocol._""" return s.startswith('import ') and len(s) > 7 and s[7].isupper()
5,340,298
def evaluate(vsm, wordsim_dataset_path): """Extract Correlation, P-Value for specified vector space mapper.""" return evaluation.extract_correlation_coefficient( score_data_path=wordsim_dataset_path, vsm=vsm )
5,340,299