content
stringlengths
22
815k
id
int64
0
4.91M
def xnnpack_unit_test(name, srcs, copts = [], mingw_copts = [], msys_copts = [], deps = []): """Unit test binary based on Google Test. Args: name: The name of the test target to define. srcs: The list of source and header files. copts: The list of additional compiler flags for the target. -I flags for include/ and src/ directories of XNNPACK are always prepended before these user-specified flags. mingw_copts: The list of compiler flags to use with MinGW GCC compilers. msys_copts: The list of compiler flags to use with MSYS (Cygwin) GCC compilers. deps: The list of additional libraries to be linked. Google Test library (with main() function) is always added as a dependency and does not need to be explicitly specified. """ native.cc_test( name = name, srcs = srcs, copts = xnnpack_std_cxxopts() + [ "-Iinclude", "-Isrc", ] + copts + select({ ":windows_x86_64_mingw": mingw_copts, ":windows_x86_64_msys": msys_copts, "//conditions:default": [], }), linkopts = select({ ":emscripten": xnnpack_emscripten_test_linkopts(), "//conditions:default": [], }), linkstatic = True, deps = [ "@com_google_googletest//:gtest_main", ] + deps + select({ ":emscripten": xnnpack_emscripten_deps(), "//conditions:default": [], }), )
5,339,900
def zscore(collection, iteratee=None): """Calculate the standard score assuming normal distribution. If iteratee is passed, each element of `collection` is passed through a iteratee before the standard score is computed. Args: collection (list|dict): Collection to process. iteratee (mixed, optional): Iteratee applied per iteration. Returns: float: Calculated standard score. Example: >>> results = zscore([1, 2, 3]) # [-1.224744871391589, 0.0, 1.224744871391589] .. versionadded:: 2.1.0 """ array = pyd.map_(collection, iteratee) avg = mean(array) sig = std_deviation(array) return pyd.map_(array, lambda item: (item - avg) / sig)
5,339,901
def AND( *logicals: Tuple[func_xltypes.XlExpr] ) -> func_xltypes.XlBoolean: """Determine if all conditions in a test are TRUE https://support.office.com/en-us/article/ and-function-5f19b2e8-e1df-4408-897a-ce285a19e9d9 """ if not logicals: raise xlerrors.NullExcelError('logical1 is required') # Use delayed evaluation to minimize th amount of values to evaluate. for logical in logicals: val = logical() for item in xl.flatten([val]): if func_xltypes.Blank.is_blank(item): continue if not bool(item): return False return True
5,339,902
def check_mask(mask): """Check if mask is valid by its area""" area_ratio = np.sum(mask) / float(mask.shape[0] * mask.shape[1]) return (area_ratio > MASK_THRES_MIN) and (area_ratio < MASK_THRES_MAX)
5,339,903
def supported_estimators(): """Return a `dict` of supported estimators.""" allowed = { 'LogisticRegression': LogisticRegression, 'RandomForestClassifier': RandomForestClassifier, 'DecisionTreeClassifier': DecisionTreeClassifier, 'KNeighborsClassifier': KNeighborsClassifier, 'MultinomialNB': MultinomialNB, 'GaussianNB': GaussianNB, 'BernoulliNB': BernoulliNB } return allowed
5,339,904
def validate_gateway(gateway): """Test that a gateway is correctly set up. Returns True if successful, or an error message.""" from hiicart.gateway.base import GatewayError from hiicart.gateway.amazon.gateway import AmazonGateway from hiicart.gateway.google.gateway import GoogleGateway from hiicart.gateway.paypal.gateway import PaypalGateway from hiicart.gateway.paypal2.gateway import Paypal2Gateway from hiicart.gateway.paypal_adaptive.gateway import PaypalAPGateway from hiicart.gateway.braintree.gateway import BraintreeGateway from hiicart.gateway.authorizenet.gateway import AuthorizeNetGateway from hiicart.gateway.paypal_express.gateway import PaypalExpressCheckoutGateway from hiicart.gateway.stripe.gateway import StripeGateway gateways = { 'amazon': AmazonGateway, 'google': GoogleGateway, 'paypal': PaypalGateway, 'paypal2': Paypal2Gateway, 'paypal_adaptive': PaypalAPGateway, 'paypal_express': PaypalExpressCheckoutGateway, 'braintree': BraintreeGateway, 'authorizenet': AuthorizeNetGateway, 'stripe': StripeGateway } try: cls = gateways[gateway] obj = cls() return obj._is_valid() or "Authentication Error" except GatewayError, err: return err.message
5,339,905
def execute_query(db, query): """get data from database """ result = [] with closing(sqlite3.connect(db)) as conn: conn.row_factory = sqlite3.Row cur = conn.cursor() for row in cur.execute(query): result.append({name: row[name] for name in row.keys()}) return result
5,339,906
def set_seeds(seed: int, env = None) -> None: """ Sets seeds for reproducibility :param seed: Seed Value :param env: Optionally pass gym environment to set its seed :type seed: int :type env: Gym Environment """ torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) random.seed(seed) if env is not None: env.seed(seed)
5,339,907
def test_get_optimal_route(get_routes_in_parts): """Test of the function get_optimal_route. Args: get_routes_in_parts (fixture): Returns each route from the list separately. Each route is represented by a dictionary, dictionary of the form: {'Source': ..., 'Transfer': ..., 'Destination': ...}. represented by a dictionary {source, transfer, destination}. """ for route in get_routes_in_parts: filtered_flight_direction = get_flights_filtered_direction( route.get('Source'), route.get('Destination'), ) optimal_route = get_optimal_route( route.get('Source'), route.get('Destination'), ) median_time_optimal_route = get_median_time(optimal_route) median_price_optimal_route = get_median_price(optimal_route) assert median_time_optimal_route <= get_median_time( filtered_flight_direction, ) assert median_price_optimal_route <= get_median_price( filtered_flight_direction, )
5,339,908
def check_for_tool(tool_name: str) -> None: """Check if analysis tool is present on the file system.""" if sys.platform in ["win32", "msys", "cygwin"]: tool_name += ".exe" if pathlib.Path(f"./resources/ztools/{tool_name}").is_file(): return sys.stderr.write( colored( f"The tool `{tool_name}` was not found in `resources\\ztools`.\n" "You can download this tool using the `downloader.py` script.\n\n", "red", ), )
5,339,909
def module_list(path): """ Return the list containing the names of the modules available in the given folder. :param path: folder path :type path: str :returns: modules :rtype: list """ if os.path.isdir(path): folder_list = os.listdir(path) elif path.endswith('.egg'): from zipimport import zipimporter try: folder_list = [f for f in zipimporter(path)._files] except: folder_list = [] else: folder_list = [] #folder_list = glob.glob(os.path.join(path,'*')) folder_list = [ p for p in folder_list if (os.path.exists(os.path.join(path, p, '__init__.py')) or p[-3:] in {'.py', '.so'} or p[-4:] in {'.pyc', '.pyo', '.pyd'})] folder_list = [os.path.basename(p).split('.')[0] for p in folder_list] return folder_list
5,339,910
def check_weighting_input(z_matrix, c_method, w_method): """ Raise an exception if any argument is inappropriate for the corresponding weighting method """ if w_method.upper() in {"MW", "EM", "SD", "CRITIC", "VIC"}: if not is_normalized_matrix(z_matrix): raise ValueError( "The decision matrix must be normalized in order to apply " + "the {} weighting method".format(w_method), ) if w_method.upper() == "EM": if ( not np.all( np.isclose( np.sum(z_matrix, axis=0), np.ones(z_matrix.shape[1]), ) ) ): raise ValueError( "The columns of the decision matrix must sum to 1 in " + "order to apply the EM weighting method", ) elif w_method.upper() == "CRITIC": if c_method.upper() not in {"PEARSON", "ABSPEARSON", "DCOR"}: raise ValueError( "Unknown compatibility of the CRITIC weighting method " + "with the {} correlation method".format(c_method) ) elif w_method.upper() == "VIC": if c_method.upper() in {"PEARSON"}: raise ValueError( "The VIC weighting method is not compatible with the " + "{} correlation method".format(c_method), ) if c_method.upper() not in {"ABSPEARSON", "DCOR"}: raise ValueError( "Unknown compatibility of the VIC weighting method with " + "the {} correlation method".format(c_method), ) else: raise ValueError("Unknown weighting method ({})".format(w_method))
5,339,911
def to_mgb_supported_dtype(dtype_): """get the dtype supported by megbrain nearest to given dtype""" if ( dtype.is_lowbit(dtype_) or dtype.is_quantize(dtype_) or dtype.is_bfloat16(dtype_) ): return dtype_ return _detail._to_mgb_supported_dtype(dtype_)
5,339,912
def get_reset_state_name(t_fsm): """ Returns the name of the reset state. If an .r keyword is specified, that is the name of the reset state. If the .r keyword is not present, the first state defined in the transition table is the reset state. :param t_fsm: blifparser.BlifParser().blif.fsm object :return str reset_state: name of the reset state """ reset_state = None if t_fsm.r is None: if len(t_fsm.transtable) > 0: reset_state = t_fsm.transtable[0][1] else: reset_state = t_fsm.r.name return reset_state
5,339,913
def gridmake(*arrays): """ Expands one or more vectors (or matrices) into a matrix where rows span the cartesian product of combinations of the input arrays. Each column of the input arrays will correspond to one column of the output matrix. Parameters ---------- *arrays : tuple/list of np.ndarray Tuple/list of vectors to be expanded. Returns ------- out : np.ndarray The cartesian product of combinations of the input arrays. Notes ----- Based of original function ``gridmake`` in CompEcon toolbox by Miranda and Fackler References ---------- Miranda, Mario J, and Paul L Fackler. Applied Computational Economics and Finance, MIT Press, 2002. """ if all([i.ndim == 1 for i in arrays]): d = len(arrays) if d == 2: out = _gridmake2(*arrays) else: out = _gridmake2(arrays[0], arrays[1]) for arr in arrays[2:]: out = _gridmake2(out, arr) return out else: raise NotImplementedError("Come back here")
5,339,914
def pagerotate(document: vp.Document, clockwise: bool): """Rotate the page by 90 degrees. This command rotates the page by 90 degrees counter-clockwise. If the `--clockwise` option is passed, it rotates the page clockwise instead. Note: if the page size is not defined, an error is printed and the page is not rotated. """ page_size = document.page_size if page_size is None: logging.warning("pagerotate: page size is not defined, page not rotated") return document w, h = page_size if clockwise: document.rotate(math.pi / 2) document.translate(h, 0) else: document.rotate(-math.pi / 2) document.translate(0, w) document.page_size = h, w return document
5,339,915
def create_new_deployment(runner: Runner, args: argparse.Namespace) -> Tuple[str, str]: """Create a new Deployment, return its name and Kubernetes label.""" run_id = str(uuid4()) def remove_existing_deployment(): runner.get_kubectl( args.context, args.namespace, [ "delete", "--ignore-not-found", "all", "--selector=telepresence=" + run_id, ] ) atexit.register(remove_existing_deployment) remove_existing_deployment() command = [ "run", # This will result in using Deployment: "--restart=Always", "--limits=memory=256Mi", "--requests=memory=64Mi", args.new_deployment, "--image=" + TELEPRESENCE_REMOTE_IMAGE, "--labels=telepresence=" + run_id, ] for port in args.expose.remote(): command.append("--port={}".format(port)) if args.expose.remote(): command.append("--expose") # If we're on local VM we need to use different nameserver to prevent # infinite loops caused by sshuttle: if args.method == "vpn-tcp" and args.in_local_vm: command.append( "--env=TELEPRESENCE_NAMESERVER=" + get_alternate_nameserver() ) if args.needs_root: override = { "apiVersion": "extensions/v1beta1", "spec": { "template": { "spec": { "securityContext": { "runAsUser": 0 } } } } } command.append("--overrides=" + json.dumps(override)) runner.get_kubectl(args.context, args.namespace, command) return args.new_deployment, run_id
5,339,916
def inv_send_rheader(r): """ Resource Header for Send """ if r.representation == "html" and r.name == "send": record = r.record if record: db = current.db s3db = current.s3db T = current.T s3 = current.response.s3 settings = current.deployment_settings tabs = [(T("Edit Details"), None), (T("Items"), "track_item"), ] if settings.get_inv_send_packaging(): tabs.append((T("Packaging"), "send_package")) if settings.get_inv_document_filing(): tabs.append((T("Documents"), "document")) rheader_tabs = s3_rheader_tabs(r, tabs) table = r.table stable = s3db.org_site send_id = record.id status = record.status site_id = record.site_id if site_id: site = db(stable.site_id == site_id).select(stable.organisation_id, stable.instance_type, limitby = (0, 1), ).first() from .org import org_organisation_logo logo = org_organisation_logo(site.organisation_id) instance_table = s3db[site.instance_type] if "phone1" in instance_table.fields: site = db(instance_table.site_id == site_id).select(instance_table.phone1, instance_table.phone2, limitby = (0, 1), ).first() phone1 = site.phone1 phone2 = site.phone2 else: phone1 = None phone2 = None else: logo = "" phone1 = None phone2 = None to_site_id = record.to_site_id if to_site_id: site = db(stable.site_id == to_site_id).select(stable.location_id, limitby = (0, 1), ).first() address = s3db.gis_LocationRepresent(address_only = True)(site.location_id) else: address = NONE if settings.get_inv_send_req(): req_ref_label = TH("%s: " % table.req_ref.label) ltable = s3db.inv_send_req rtable = s3db.inv_req query = (ltable.send_id == send_id) & \ (ltable.req_id == rtable.id) rows = db(query).select(rtable.id, rtable.req_ref, ) if len(rows) == 1: row = rows.first() req_ref_value = TD(inv_ReqRefRepresent(show_link = True)(row.req_ref, row)) else: # Cache values in class refs = [row.req_ref for row in rows] represent = inv_ReqRefRepresent(show_link = True) represent.bulk(refs, rows, show_link = True) refs_repr = [s3_str(represent(ref)) for ref in refs] refs_repr = ", ".join(refs_repr) req_ref_value = TD(XML(refs_repr)) elif settings.get_inv_send_req_ref(): req_ref_label = TH("%s: " % table.req_ref.label) #req_ref_value = TD(inv_ReqRefRepresent(show_link = True)(record.req_ref)) req_ref_value = TD(record.req_ref) else: req_ref_label = "" req_ref_value = "" shipment_details = TABLE(TR(TD(T(settings.get_inv_send_form_name().upper()), _colspan = 2, _class = "pdf_title", ), TD(logo, _colspan = 2, ), ), TR(TH("%s: " % table.status.label), table.status.represent(status), ), TR(TH("%s: " % table.send_ref.label), TD(table.send_ref.represent(record.send_ref)), req_ref_label, req_ref_value, ), TR(TH("%s: " % table.date.label), table.date.represent(record.date), TH("%s: " % table.delivery_date.label), table.delivery_date.represent(record.delivery_date), ), TR(TH("%s: " % table.to_site_id.label), table.to_site_id.represent(record.to_site_id), TH("%s: " % table.site_id.label), table.site_id.represent(record.site_id), ), TR(TH("%s: " % T("Address")), TD(address, _colspan=3), ), TR(TH("%s: " % table.transported_by.label), table.transported_by.represent(record.transported_by), TH("%s: " % table.transport_ref.label), table.transport_ref.represent(record.transport_ref), ), TR(TH("%s: " % table.sender_id.label), table.sender_id.represent(record.sender_id), TH("%s: " % table.recipient_id.label), table.recipient_id.represent(record.recipient_id), ), TR(TH("%s: " % T("Complete? Please call")), phone1 or "", TH("%s: " % T("Problems? Please call")), phone2 or phone1 or "", ), TR(TH("%s: " % table.comments.label), TD(record.comments or "", _colspan=3) ) ) rfooter = TAG[""]() if status != SHIP_STATUS_CANCEL and \ r.method != "form": if current.auth.s3_has_permission("update", "inv_send", record_id = record.id, ): packaging = None # Don't show buttons unless Items have been added tracktable = s3db.inv_track_item query = (tracktable.send_id == send_id) item = db(query).select(tracktable.id, limitby = (0, 1), ).first() if item: actions = DIV() jappend = s3.js_global.append if s3.debug: s3.scripts.append("/%s/static/scripts/S3/s3.inv_send_rheader.js" % r.application) else: s3.scripts.append("/%s/static/scripts/S3/s3.inv_send_rheader.min.js" % r.application) if status == SHIP_STATUS_IN_PROCESS: actions.append(A(ICON("print"), " ", T("Picking List"), _href = URL(args = [record.id, "pick_list.xls", ] ), _class = "action-btn", ) ) if settings.get_inv_send_packaging(): actions.append(A(ICON("print"), " ", T("Labels"), _href = URL(args = [record.id, "labels.xls", ] ), _class = "action-btn", ) ) actions.append(A(T("Send Shipment"), _href = URL(args = [record.id, "process", ] ), _id = "send-process", _class = "action-btn", ) ) jappend('''i18n.send_process_confirm="%s"''' % \ T("Do you want to send this shipment?")) elif status == SHIP_STATUS_RETURNING: actions.append(A(T("Complete Returns"), _href = URL(c = "inv", f = "send", args = [record.id, "return_complete", ] ), _id = "return-process", _class = "action-btn" ) ) jappend('''i18n.return_process_confirm="%s"''' % \ T("Do you want to complete the return process?")) elif status == SHIP_STATUS_SENT: actions.append(A(T("Manage Returns"), _href = URL(c = "inv", f = "send", args = [record.id, "return", ], vars = None, ), _id = "send-return", _class = "action-btn", _title = T("Only use this button to accept back into stock some items that were returned from a delivery.") ) ) jappend('''i18n.send_return_confirm="%s"''' % \ T("Confirm that some items were returned from a delivery and they will be accepted back into stock.")) actions.append(A(T("Confirm Shipment Received"), _href = URL(f = "send", args = [record.id, "received", ], ), _id = "send-receive", _class = "action-btn", _title = T("Only use this button to confirm that the shipment has been received by a destination which will not record the shipment directly into the system.") ) ) jappend('''i18n.send_receive_confirm="%s"''' % \ T("Confirm that the shipment has been received by a destination which will not record the shipment directly into the system.")) if status != SHIP_STATUS_RECEIVED: if settings.get_inv_send_packaging(): if status == SHIP_STATUS_IN_PROCESS: # Insert in front of 'Send Shipment' index = -1 else: # Append at end index = len(actions) actions.insert(index, A(ICON("print"), " ", T("Packing List"), _href = URL(args = [record.id, "packing_list.xls", ] ), _class = "action-btn", ) ) if settings.get_inv_send_gift_certificate(): if status == SHIP_STATUS_IN_PROCESS: # Insert in front of 'Send Shipment' index = -1 else: # Append at end index = len(actions) actions.insert(index, A(ICON("print"), " ", T("Gift Certificate"), _href = URL(c = "inv", f = "send", args = [record.id, "gift_certificate.xls", ] ), _class = "action-btn" ) ) if status != SHIP_STATUS_IN_PROCESS: actions.append(A(T("Cancel Shipment"), _href = URL(c = "inv", f = "send", args = [record.id, "cancel", ] ), _id = "send-cancel", _class = "delete-btn" ) ) jappend('''i18n.send_cancel_confirm="%s"''' % \ T("Do you want to cancel this sent shipment? The items will be returned to the Warehouse. This action CANNOT be undone!")) shipment_details.append(TR(TH(actions, _colspan = 2, ))) s3.rfooter = rfooter rheader = DIV(shipment_details, rheader_tabs, #rSubdata ) return rheader return None
5,339,917
def gauss_reparametrize(mu, logvar, n_sample=1): """Gaussian reparametrization""" std = logvar.mul(0.5).exp_() size = std.size() eps = Variable(std.data.new(size[0], n_sample, size[1]).normal_()) z = eps.mul(std[:, None, :]).add_(mu[:, None, :]) z = torch.clamp(z, -4., 4.) return z.view(z.size(0)*z.size(1), z.size(2), 1, 1)
5,339,918
def run_setup_py(cmd, pypath=None, path=None, data_stream=0, env=None): """ Execution command for tests, separate from those used by the code directly to prevent accidental behavior issues """ if env is None: env = dict() for envname in os.environ: env[envname] = os.environ[envname] # override the python path if needed if pypath is not None: env["PYTHONPATH"] = pypath # override the execution path if needed if path is not None: env["PATH"] = path if not env.get("PATH", ""): env["PATH"] = _which_dirs("tar").union(_which_dirs("gzip")) env["PATH"] = os.pathsep.join(env["PATH"]) cmd = [sys.executable, "setup.py"] + list(cmd) # http://bugs.python.org/issue8557 shell = sys.platform == 'win32' try: proc = _Popen( cmd, stdout=_PIPE, stderr=_PIPE, shell=shell, env=env, ) if isinstance(data_stream, tuple): data_stream = slice(*data_stream) data = proc.communicate()[data_stream] except OSError: return 1, '' # decode the console string if needed if hasattr(data, "decode"): # use the default encoding data = data.decode() data = unicodedata.normalize('NFC', data) # communicate calls wait() return proc.returncode, data
5,339,919
def test(): """Run all the tests in the `tests/` directory using pytest """ import pytest here = os.path.abspath(os.path.dirname(__file__)) pytest.main([os.path.join(here, 'tests')])
5,339,920
def forward_pass(img, session, images_placeholder, phase_train_placeholder, embeddings, image_size): """Feeds an image to the FaceNet model and returns a 128-dimension embedding for facial recognition. Args: img: image file (numpy array). session: The active Tensorflow session. images_placeholder: placeholder of the 'input:0' tensor of the pre-trained FaceNet model graph. phase_train_placeholder: placeholder of the 'phase_train:0' tensor of the pre-trained FaceNet model graph. embeddings: placeholder of the 'embeddings:0' tensor from the pre-trained FaceNet model graph. image_size: (int) required square image size. Returns: embedding: (numpy array) of 128 values after the image is fed to the FaceNet model. """ # If there is a human face if img is not None: # Normalize the pixel values of the image for noise reduction for better accuracy and resize to desired size image = load_img( img=img, do_random_crop=False, do_random_flip=False, do_prewhiten=True, image_size=image_size ) # Run forward pass on FaceNet model to calculate embedding feed_dict = {images_placeholder: image, phase_train_placeholder: False} embedding = session.run(embeddings, feed_dict=feed_dict) return embedding else: return None
5,339,921
def restore_tf_variable(tf_sess, target_paras, model_name): """restore explorer variable with tf.train.checkpoint""" reader = tf.train.NewCheckpointReader(model_name) var_names = reader.get_variable_to_shape_map().keys() result = dict() for _name in var_names: result[_name] = reader.get_tensor(_name) logging.debug("read variable-{} from model file: {}".format(_name, model_name)) with tf_sess.as_default(): # must work with sess for var_key in target_paras: try: var_key.load(result[var_key.name]) logging.debug("load {} success".format(var_key.name)) except BaseException as err: raise KeyError("update {} encounter error:{}".format(var_key.name, err))
5,339,922
def check_url(url): """Returns True if the url returns a response code between 200-300, otherwise return False. """ try: req = urllib.request.Request(url, headers=headers) response = urllib.request.urlopen(req) return response.code in range(200, 209) except Exception: return False
5,339,923
def build_permutation_importance( data, data_labels, feature_names, model, metrics, repeats=100, random_seed=42 ): """Calculates permutation feature importance.""" pi_results = {} for metric in metrics: pi = sklearn.inspection.permutation_importance( model, data, data_labels, n_repeats=repeats, scoring=metric, random_state=random_seed) pi_results[metric] = [] for feature_id, feature_name in enumerate(feature_names): pi_results[metric].append(( feature_name, pi.importances_mean[feature_id], pi.importances_std[feature_id] )) # for i in pi.importances_mean.argsort()[::-1]: # if pi.importances_mean[i] - 2 * pi.importances_std[i] > 0: # print(f'{feature_name:<8}' # f'{pi.importances_mean[feature_id]:.3f}' # f' +/- {pi.importances_std[feature_id]:.3f}') return pi_results
5,339,924
def _load_parent(collection, meta): """Determine the parent document for the document that is to be ingested.""" parent = ensure_dict(meta.get("parent")) parent_id = meta.get("parent_id", parent.get("id")) if parent_id is None: return parent = Document.by_id(parent_id, collection=collection) if parent is None: raise BadRequest( response=jsonify( {"status": "error", "message": "Cannot load parent document"}, status=400, ) ) return parent
5,339,925
def get_latest_sensor_reading(sensor_serial, metric): """ Get latest sensor reading from MT sensor metrics: 'temperature', 'humidity', 'water_detection' or 'door' """ headers = { "Content-Type": "application/json", "Accept": "application/json", "X-Cisco-Meraki-API-Key": meraki_api_key } params = { "serials[]": sensor_serial, "metric": metric } try: msg = requests.request('GET', f"{base_url}/networks/{network_id}/sensors/stats/latestBySensor", headers=headers, params=params) if msg.ok: data = msg.json() return data except Exception as e: print("API Connection error: {}".format(e))
5,339,926
def border_msg(msg: str): """ This function creates boarders in the top and bottom of text """ row = len(msg) h = ''.join(['+'] + ['-' * row] + ['+']) return h + "\n" + msg + "\n" + h
5,339,927
def test_visualization_empty_visu_file(data_file_Fujita, condition_file_Fujita, visu_file_Fujita_empty): """ Test: Empty visualization spezification file should default to routine for no file at all """ plot_data_and_simulation(data_file_Fujita, condition_file_Fujita, visu_file_Fujita_empty)
5,339,928
def create_app(config_name='development'): """Returns flask app based on the configuration""" flask_app = Flask(__name__) flask_app.config.from_object(app_config[config_name]) flask_app.config['JSON_SORT_KEYS'] = False flask_app.url_map.strict_slashes = False flask_app.register_error_handler(400, handle_bad_request) flask_app.register_error_handler(404, handle_not_found) flask_app.register_blueprint(v1_bp) flask_app.register_blueprint(party_bp) flask_app.register_blueprint(office_bp) flask_app.register_blueprint(user_bp) return flask_app
5,339,929
def test_exists(keys, key, expected_result): """ GIVEN keys to add, key to check for and expected exists result WHEN keys are added to the bucket and exists is called with the key THEN the expected result is returned. """ test_bucket = bucket.Bucket() for insert_key in keys: test_bucket.insert(insert_key, "value") result = test_bucket.exists(key) assert result == expected_result
5,339,930
def auto_merge_paths(data, auto_merge_distance, auto_close_paths=True): """ This function connects all paths in the given dataset, for which the start or endpoints are closer than auto_merge_distance. :param data: Should be a list or tuple containing paths, attributes, svg_attributes. :param auto_merge_distance: If the start or endpoint of a pair of paths is closer than this distance in units of milli meters, they are automatically merged. If one of the paths has to be reversed to do so, this is automatically done. A line is added to the path to bridge the gap. :param auto_close_paths: If set the paths are automatically closed after the merging operation if the start and end point of one path are closer than the auto_merge_distance. It is closed by a line and it's closed flag is set. :return paths, attributes, svg_attributes, iters, numclosed: Modified paths, modified attributes, svg_attributes, number of pairs connected and number of paths that were closed. """ paths, attributes, svg_attributes = data def fix_first_pair(paths_, attributes_): """ Helper function that fixes the next best pair of paths, if they fulfill the condition :rtype: NoneType in case paths_ is empty. Else fixed paths_ and attributes_. """ for i_ in range(len(paths_)): # Get start end end points start1 = paths_[i_][0].start end1 = paths_[i_][-1].end for j in range(len(paths_)): if i_ != j: start2 = paths_[j][0].start end2 = paths_[j][-1].end # Calculate all relevant distances for this pair distance_ = px2mm(np.abs(start2 - end1)) distance_r1 = px2mm(np.abs(start2 - start1)) distance_r2 = px2mm(np.abs(end2 - end1)) # Perform merger if distance_ < auto_merge_distance or distance_r2 < auto_merge_distance: first = i_ second = j else: first = j second = i_ if distance_r1 < auto_merge_distance or distance_r2 < auto_merge_distance: # Reverse paths_[j] if necessary paths_[j] = svgpathtools.path.Path( *[svgpathtools.path.bpoints2bezier(segment.bpoints()[::-1]) for segment in paths_[j]]) if min([distance_, distance_r1, distance_r2]) < auto_merge_distance: # Merge both paths paths_[first] = svgpathtools.path.Path(*[segment for segment in paths_[first]] + [ svgpathtools.path.Line(paths_[first][-1].end, paths_[second][0].start)] + [segment for segment in paths_[second]]) return paths_[:second] + paths_[second + 1:], attributes_[:second] + attributes_[second + 1:] return None iters = 0 while True: ret = fix_first_pair(paths, attributes) if ret is not None: paths, attributes = ret iters += 1 else: break # Make sure, paths are closed... numclosed = 0 if auto_close_paths: for i, path in enumerate(paths): # Get start end end point distance start = path[0].start end = path[-1].end distance = px2mm(np.abs(start - end)) if distance < auto_merge_distance: # Close the path paths[i] = svgpathtools.path.Path(*[segment for segment in path] + [svgpathtools.path.Line(end, start)]) paths[i].closed = True numclosed += 1 return paths, attributes, svg_attributes, iters, numclosed
5,339,931
def is_authorized(secure: AccessRestriction): """Returns authorization status based on the given access restriction. :param secure: access restriction :type secure: AccessRestriction :return: authorization status (``True`` or ``False``) """ if secure == AccessRestriction.ALL: return True elif secure == AccessRestriction.STAFF: return is_staff(get_course()) elif secure == AccessRestriction.STUDENT: return is_enrolled(get_course()) else: raise Exception(f"{secure} is not a valid AccessRestriction")
5,339,932
def create_link_forum(**attrs): """Save a new link forum.""" link = build_link_forum(**attrs) link.save() return link
5,339,933
def open_report(): """Probe Services: Open report --- parameters: - in: body name: open report data required: true schema: type: object properties: data_format_version: type: string format: type: string probe_asn: type: string probe_cc: type: string software_name: type: string software_version: type: string test_name: type: string test_start_time: type: string test_version: type: string responses: '200': description: Open report confirmation content: application/json: schema: type: object properties: backend_version: type: string report_id: type: string supported_formats: type: array items: type: string """ log = current_app.logger try: data = req_json() except Exception as e: log.error(e) return jerror("JSON expected") log.info("Open report %r", data) asn = data.get("probe_asn", "AS0").upper() if len(asn) > 8 or len(asn) < 3 or not asn.startswith("AS"): asn = "AS0" try: asn_i = int(asn[2:]) except: asn_i = 0 cc = data.get("probe_cc", "ZZ").upper().replace("_", "") if len(cc) != 2: cc = "ZZ" test_name = data.get("test_name", "").lower().replace("_", "") ts = datetime.utcnow().strftime("%Y%m%dT%H%M%SZ") cid = "1" # collector id TODO read from conf rand = b64encode(urandom(12), b"oo").decode() rid = f"{ts}_{test_name}_{cc}_{asn_i}_n{cid}_{rand}" return jsonify( backend_version="1.3.5", supported_formats=["yaml", "json"], report_id=rid )
5,339,934
def prepare_scan(): """ Returns a lexical scanner for HTSQL grammar. """ # Start a new grammar. grammar = LexicalGrammar() # Regular context. query = grammar.add_rule('query') # Whitespace characters and comments (discarded). query.add_token(r''' SPACE: [\s]+ | [#] [^\0\r\n]* ''', is_junk=True) # A sequence of characters encloses in single quotes. query.add_token(r''' STRING: ['] ( [^'\0] | [']['] )* ['] ''', unquote=(lambda t: t[1:-1].replace("''", "'"))) # An opening quote character without a closing quote. query.add_token(r''' BAD_STRING: ['] ''', error="cannot find a matching quote mark") # A number in exponential notation. query.add_token(r''' FLOAT: ( [0-9]+ ( [.] [0-9]* )? | [.] [0-9]+ ) [eE] [+-]? [0-9]+ ''') # A number with a decimal point. query.add_token(r''' DECIMAL: [0-9]+ [.] [0-9]* | [.] [0-9]+ ''') # An unsigned integer number. query.add_token(r''' INTEGER: [0-9]+ ''') # A sequence of alphanumeric characters (not starting with a digit). query.add_token(r''' NAME: [\w]+ ''') # Operators and punctuation characters. The token code coincides # with the token value. query.add_token(r''' SYMBOL: [~] | [!][~] | [<][=] | [<] | [>][=] | [>] | [=][=] | [=] | [!][=][=] | [!][=] | [\^] | [?] | [-][>] | [@] | [:][=] | [!] | [&] | [|] | [+] | [-] | [*] | [/] | [(] | [)] | [{] | [}] | [.] | [,] | [:] | [;] | [$] ''', is_symbol=True) # The `[` character starts an identity constructor. query.add_token(r''' LBRACKET: [\[] ''', is_symbol=True, push='identity') # An unmatched `]`. query.add_token(r''' BAD_RBRACKET: [\]] ''', error="cannot find a matching '['") # The input end. query.add_token(r''' END: $ ''', is_symbol=True, pop=1) # Identity constructor context. identity = grammar.add_rule('identity') # Whitespace characters (discarded). identity.add_token(r''' SPACE: [\s]+ ''', is_junk=True) # Start of a nested label group. identity.add_token(r''' LBRACKET: [\[] | [(] ''', is_symbol=True, push='identity') # End of a label group or the identity constructor. identity.add_token(r''' RBRACKET: [\]] | [)] ''', is_symbol=True, pop=1) # Label separator. identity.add_token(r''' SYMBOL: [.] ''', is_symbol=True) # Unquoted sequence of alphanumeric characters and dashes. identity.add_token(r''' LABEL: [\w-]+ ''') # A sequence of characters encloses in single quotes. identity.add_token(r''' STRING: ['] ( [^'\0] | [']['] )* ['] ''', unquote=(lambda t: t[1:-1].replace("''", "'"))) # An opening quote character without a closing quote. identity.add_token(r''' BAD_STRING: ['] ''', error="cannot find a matching quote mark") # A reference indicator. identity.add_token(r''' REFERENCE: [$] ''', is_symbol=True, push='name') # Unexpected end of input. identity.add_token(r''' END: $ ''', error="cannot find a matching ']'") # A context for an identifier following the `$` indicator # in an identity constructor. We need a separate rule because # `%NAME` and `%LABEL` productions intersect. name = grammar.add_rule('name') # Whitespace characters (discarded). name.add_token(r''' SPACE: [\s]+ ''', is_junk=True) # An integer number; not expected here, but ensures that the following # `%NAME` production does not start with a digit. name.add_token(r''' INTEGER: [0-9]+ ''', pop=1) # A sequence of alphanumeric characters (not starting with a digit). name.add_token(r''' NAME: [\w]+ ''', pop=1) # Anything else. name.add_token(r''' OTHER: () ''', is_junk=True, pop=1) # Add a `%DIRSIG` token in front of `+` and `-` direction indicators # to distinguish them from addition/subtraction operators. grammar.add_signal(''' DIRSIG: ( `+` | `-` )+ ( `:` | `,` | `;` | `)` | `}` ) ''') # Add `%PIPESIG` in front of `/:` pipe indicator to prevent it from # being recognized as a division operator. grammar.add_signal(''' PIPESIG: `/` `:` ''') # Add `%LHSSIG` in front of a left-hand side of an assignment expression. grammar.add_signal(''' LHSSIG: `$`? %NAME ( `.` `$`? %NAME )* ( `(` ( `$`? %NAME ( `,` `$`? %NAME )* `,`? )? `)` )? `:=` ''') # Generate and return the scanner. return grammar()
5,339,935
def check_arc(val): """Used to check if unlawful inverse trig function is executed by users raise errors if happened. Cannot take inverse trig function that is not between -1 and 1 Args: val ([int or float]) Raises: raise error if number is not between -1 and 1 """ if isinstance(val, np.ndarray): if not np.all(val > -1 and val < 1): raise ValueError( f"error raised by undefined: invalid values {val}, which should all be within (-1, 1)") elif isinstance(val, (int, float)): if not (val > -1 and val < 1): raise ValueError( f"error raised by undefined: invalid value {val}, which should be within (-1, 1)")
5,339,936
def test_s3_hook_file_delete_404( client_hook_s3_storage_1: object, s3_client: object, s3_resource: object, s3_bucket: str ) -> None: """Testing DELETE resource Args: client_hook_s3_storage_1 (fixture): The test client. s3_client (fixture): A S3 client object. s3_resource (fixture): A S3 resource object. s3_bucket (fixture): The s3 bucket name. """ key = f'{uuid4()}' params = {'filename': f'{key}.txt'} response: Result = client_hook_s3_storage_1.simulate_delete('/middleware', params=params) assert response.status_code == 404
5,339,937
def generate_question_answer(data_dir): """ 根据三元组,生成问答数据集 :return: """ # 将json文件的内容导出列表 # path = '/Users/admin/Desktop/words2.json' data = get_data() ralations = ['审计', '子单位', '涉及', '简称', '存在', '审计日期', '篇章', '条款'] qa = [] # with open(path, 'r') as f: # data = json.load(f) for one_data in data: if one_data[1] == '审计': shen = '[' + one_data[0] + ']' + "审计了哪个单位" qa_shen = [shen, one_data[2]] print(qa_shen) qa.append(qa_shen) elif one_data[1] == "子单位": zi = '[' + one_data[0] + ']' + "的子单位是什么" qa_zi = [zi, one_data[2]] print(qa_zi) qa.append(qa_zi) elif one_data[1] == "涉及": she = '[' + one_data[0] + ']' + "涉及的资金是多少" qa_she = [she, one_data[2]] print(qa_she) qa.append(qa_she) elif one_data[1] == "简称": jian = '[' + one_data[0] + ']' + "的简称是什么" qa_jian = [jian, one_data[2]] print(qa_jian) qa.append(qa_jian) elif one_data[1] == "存在": cun = '[' + one_data[0] + ']' + "存在哪些审计问题" qa_cun = [cun, one_data[2]] print(qa_cun) qa.append(qa_cun) elif one_data[1] == "篇章": cun = '[' + one_data[0] + ']' + "有哪些篇章" qa_cun = [cun, one_data[2]] print(qa_cun) qa.append(qa_cun) elif one_data[1] == "条款": cun = '[' + one_data[0] + ']' + "有哪些条款" qa_cun = [cun, one_data[2]] print(qa_cun) qa.append(qa_cun) print(f"生成的问答对数据集大小:{len(qa)}") train_data_num = int(len(qa) * 0.8) valid_data_num = int(len(qa) * 0.1) train_data, valid_data, test_data = qa[:train_data_num], qa[train_data_num:train_data_num + valid_data_num], qa[ train_data_num + valid_data_num:] # 保存到json格式的文件中 with open(os.path.join(data_dir, 'train.json'), 'w', encoding='utf-8') as f: json.dump(train_data, f, ensure_ascii=False) with open(os.path.join(data_dir, 'valid.json'), 'w', encoding='utf-8') as f: json.dump(valid_data, f, ensure_ascii=False) with open(os.path.join(data_dir, 'test.json'), 'w', encoding='utf-8') as f: json.dump(test_data, f, ensure_ascii=False) print("生成问答数据集完成")
5,339,938
def get_test_server(ctxt, **kw): """Return a Server object with appropriate attributes. NOTE: The object leaves the attributes marked as changed, such that a create() could be used to commit it to the DB. """ kw['object_type'] = 'server' get_db_server_checked = check_keyword_arguments( db_utils.get_test_server) db_server = get_db_server_checked(**kw) # Let DB generate ID if it isn't specified explicitly if 'id' not in kw: del db_server['id'] server = objects.Server(ctxt, **db_server) return server
5,339,939
def main(): """ Initializes and executes the program. """ print("%s\n\n%s %s (%s)\n" % (BANNER, NAME, VERSION, URL)) args = parse_args() if args.update: update() exit() if args.list: representations = list_representations() for _ in representations: print("- %s" % _) print("\n") exit() inputs = [] params = {} output = "" representations = list_representations() if args.only: representations = [representation for representation in representations if representation in args.only] elif args.exclude: representations = [representation for representation in representations if representation not in args.exclude] print("%s Loaded %d %s to apply." % (INFO, len(representations), "representations" if len(representations) == 1 else "representations")) if args.load_file: if not isfile(args.load_file): print("%s could not find the file \"%s\"" % (WARN, color(args.load_file))) exit() _ = sum(1 for line in open(args.load_file, "r")) if _ < 1: print("%s the file \"%s\" doesn't contain any valid input." % (WARN, color(args.load_file))) exit() inputs += [line.rstrip('\n') for line in open(args.load_file, "r")] print("%s Loaded %d input strings%s from \"%s\".\n" % (INFO, _, "s" if _ != 1 else "", color(args.load_file))) if args.input: inputs.append(args.input) if(args.params): params = parseParams(args.params) print("%s Starting tests at: \"%s\"\n" % (INFO, color(strftime("%X"), BW))) if not exists(OUTPUT_DIR): makedirs(OUTPUT_DIR) modules = load_representations(representations) for string in inputs: print("%s\n\n%s applying transformation...\n" % (string, INFO)) for module in modules: transformation = module.transform(string, params[module.__class__.__name__] if module.__class__.__name__ in params else {}) + "\n" output += transformation print(module.__class__.__name__ + ":\n") print(transformation) print("==================================\n") if args.output: f = open(OUTPUT_DIR + '/' + args.output,'w') f.write(output) f.close()
5,339,940
def create_songs_played_by_user(**kwargs): """ This function is used to create data for SongsPlayedByUser Table Args: **kwargs: provided kwargs Examples: >>> create_songs_played_by_user(song_name='this song', user_name='this user', genre='rock', date_played='2010-01-09') """ SongsPlayedByUser.objects.create(**kwargs)
5,339,941
def keras_model(optimizer="Adamax", activation="softplus", units=32): """Function to create model, required for KerasClassifier""" model = Sequential() model.add(Dense(units, activation="relu", input_dim=2500)) model.add(Dense(2, activation=activation)) model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) return model
5,339,942
def start_end_key(custom_cmp): """ Compare models with start and end dates. """ class K(object): """ Define comparison operators. http://code.activestate.com/recipes/576653-convert-a-cmp-function-to-a-key-function/ """ def __init__(self, obj, *args): self.obj = obj def __lt__(self, other): return custom_cmp(self.obj, other.obj) < 0 def __gt__(self, other): return custom_cmp(self.obj, other.obj) > 0 def __eq__(self, other): return custom_cmp(self.obj, other.obj) == 0 def __le__(self, other): return custom_cmp(self.obj, other.obj) <= 0 def __ge__(self, other): return custom_cmp(self.obj, other.obj) >= 0 def __ne__(self, other): return custom_cmp(self.obj, other.obj) != 0 return K
5,339,943
def get_previous_release_date(): """ Fetch the previous release date (i.e. the release date of the current live database) """ releases = Release.objects.all().order_by('-date') return str(releases[1].date)
5,339,944
def init_weather(): """ This is called only once, when you want to enable the weather system. """ weather = create.create_script(WeatherScript) weather.start()
5,339,945
def readLensModeParameters(calibfiledir, lensmode='WideAngleMode'): """ Retrieve the calibrated lens correction parameters """ # For wide angle mode if lensmode == 'WideAngleMode': LensModeDefaults, LensParamLines = [], [] with open(calibfiledir, 'r') as fc: # Read the full file as a line-split string block calib = fc.read().splitlines() # Move read cursor back to the beginning fc.seek(0) # Scan through calibration file, find and append line indices # (lind) to specific lens settings for lind, line in enumerate(fc): if '[WideAngleMode defaults' in line: LensModeDefaults.append(lind) elif '[WideAngleMode@' in line: LensParamLines.append(lind) # Specify regular expression pattern for retrieving numbers numpattern = r'[-+]?\d*\.\d+|[-+]?\d+' # Read detector settings at specific lens mode aRange, eShift = [], [] for linum in LensModeDefaults: # Collect the angular range aRange = parsenum( numpattern, calib, aRange, linenumber=linum, offset=2, Range='all') # Collect the eShift eShift = parsenum( numpattern, calib, eShift, linenumber=linum, offset=3, Range='all') # Read list calibrated Da coefficients at all retardation ratios rr, aInner, Da1, Da3, Da5, Da7 = [], [], [], [], [], [] for linum in LensParamLines: # Collect the retardation ratio (rr) rr = parsenum( numpattern, calib, rr, linenumber=linum, offset=0, Range='all') # Collect the aInner coefficient aInner = parsenum( numpattern, calib, aInner, linenumber=linum, offset=1, Range='all') # Collect Da1 coefficients Da1 = parsenum( numpattern, calib, Da1, linenumber=linum, offset=2, Range='1:4') # Collect Da3 coefficients Da3 = parsenum( numpattern, calib, Da3, linenumber=linum, offset=3, Range='1:4') # Collect Da5 coefficients Da5 = parsenum( numpattern, calib, Da5, linenumber=linum, offset=4, Range='1:4') # Collect Da7 coefficients Da7 = parsenum( numpattern, calib, Da7, linenumber=linum, offset=5, Range='1:4') aRange, eShift, rr, aInner = list(map(lambda x: np.asarray( x, dtype='float').ravel(), [aRange, eShift, rr, aInner])) Da1, Da3, Da5, Da7 = list( map(lambda x: np.asarray(x, dtype='float'), [Da1, Da3, Da5, Da7])) return aRange, eShift, rr, aInner, Da1, Da3, Da5, Da7 else: print('This mode is currently not supported!')
5,339,946
def scale(boxlist, y_scale, x_scale, scope=None): """scale box coordinates in x and y dimensions. Args: boxlist: BoxList holding N boxes y_scale: (float) scalar tensor x_scale: (float) scalar tensor scope: name scope. Returns: boxlist: BoxList holding N boxes """ with tf.name_scope(scope, 'Scale'): y_scale = tf.cast(y_scale, tf.float32) x_scale = tf.cast(x_scale, tf.float32) y_min, x_min, y_max, x_max = tf.split( value=boxlist.boxes, num_or_size_splits=4, axis=1) y_min = y_scale * y_min y_max = y_scale * y_max x_min = x_scale * x_min x_max = x_scale * x_max scaled_boxlist = BoxList( tf.concat([y_min, x_min, y_max, x_max], 1)) return _copy_extra_datas(scaled_boxlist, boxlist)
5,339,947
def fetch(uri: str, method: str = 'get', token: str = None): """:rtype: (str|None, int)""" uri = 'https://api.github.com/{0}'.format(uri) auth = app.config['GITHUB_AUTH'] headers = {'Accept': 'application/vnd.github.mercy-preview+json'} json = None if token: headers['Authorization'] = 'token {}'.format(token) auth = None try: result = getattr(requests, method.lower())(uri, auth=auth, headers=headers) result.raise_for_status() json = result.json() if result.status_code != 204 else None except requests.HTTPError as e: app.logger.info( "Request to {} is failed ({}, {}): {}\n{}\n" .format(result.url, method, e.strerror, result.status_code, result.text) ) return json, result.status_code
5,339,948
def test_branch_with_no_atoms(): """Test SELFIES that have a branch, but the branch has no atoms in it. Such branches should not be made in the outputted SMILES. """ assert is_eq(sf.decoder("[C][Branch1_1][Ring2][Branch1_1]" "[Branch1_1][Branch1_1][F]"), "CF") assert is_eq(sf.decoder("[C][Branch1_1][Ring2][Ring1]" "[Ring1][Branch1_1][F]"), "CF") assert is_eq(sf.decoder("[C][Branch1_2][Ring2][Branch1_1]" "[C][Cl][F]"), "C(Cl)F") # special case: Branch3_3 takes Q_1, Q_2 = [O] and Q_3 = ''. However, # there are no more symbols in the branch. assert is_eq(sf.decoder("[C][C][C][C][Branch3_3][O][O]"), "CCCC")
5,339,949
def nested_tuple(container): """Recursively transform a container structure to a nested tuple. The function understands container types inheriting from the selected abstract base classes in `collections.abc`, and performs the following replacements: `Mapping` `tuple` of key-value pair `tuple`s. The order is preserved in the case of an `OrderedDict`, otherwise the key-value pairs are sorted if orderable and otherwise kept in the order of iteration. `Sequence` `tuple` containing the same elements in unchanged order. `Container and Iterable and Sized` (equivalent to `Collection` in python >= 3.6) `tuple` containing the same elements in sorted order if orderable and otherwise kept in the order of iteration. The function recurses into these container types to perform the same replacement, and leaves objects of other types untouched. The returned container is hashable if and only if all the values contained in the original data structure are hashable. Parameters ---------- container Data structure to transform into a nested tuple. Returns ------- tuple Nested tuple containing the same data as `container`. """ if isinstance(container, OrderedDict): return tuple(map(nested_tuple, container.items())) if isinstance(container, Mapping): return tuple(sorted_if_possible(map(nested_tuple, container.items()))) if not isinstance(container, (str, bytes)): if isinstance(container, Sequence): return tuple(map(nested_tuple, container)) if ( isinstance(container, Container) and isinstance(container, Iterable) and isinstance(container, Sized) ): return tuple(sorted_if_possible(map(nested_tuple, container))) return container
5,339,950
def _validate_args(func, args, kwargs): """Validate customer function args and convert them to kwargs.""" # Positional arguments validate all_parameters = [param for _, param in signature(func).parameters.items()] # Implicit parameter are *args and **kwargs if any(param.kind in {param.VAR_KEYWORD, param.VAR_POSITIONAL} for param in all_parameters): raise UnsupportedParameterKindError(func.__name__) all_parameter_keys = [param.name for param in all_parameters] empty_parameters = {param.name: param for param in all_parameters if param.default is Parameter.empty} min_num = len(empty_parameters) max_num = len(all_parameters) if len(args) > max_num: raise TooManyPositionalArgsError(func.__name__, min_num, max_num, len(args)) provided_args = OrderedDict({param.name: args[idx] for idx, param in enumerate(all_parameters) if idx < len(args)}) for _k in kwargs.keys(): if _k not in all_parameter_keys: raise UnexpectedKeywordError(func.__name__, _k, all_parameter_keys) if _k in provided_args.keys(): raise MultipleValueError(func.__name__, _k) provided_args[_k] = kwargs[_k] if len(provided_args) < len(empty_parameters): missing_keys = empty_parameters.keys() - provided_args.keys() raise MissingPositionalArgsError(func.__name__, missing_keys) for pipeline_input_name in provided_args: data = provided_args[pipeline_input_name] if data is not None and not isinstance(data, SUPPORTED_INPUT_TYPES): msg = ( "Pipeline input expected an azure.ai.ml.Input or primitive types (str, bool, int or float), " "but got type {}." ) raise UserErrorException( message=msg.format(type(data)), no_personal_data_message=msg.format("[type(pipeline_input_name)]"), ) return provided_args
5,339,951
def remove_file(file): """ Deletes file from OS if it exists Args: file (str, Path): a filename or opened readable file """ if isinstance(file, (str, Path)) and os.path.exists(file): os.remove(file) elif hasattr(file, 'name') and os.path.exists(file.name): file.truncate(0)
5,339,952
def _qual_arg(user_value, python_arg_name, gblock_arg_name, allowable): """ Construct and sanity check a qualitative argument to send to gblocks. user_value: value to try to send to gblocks python_arg_name: name of python argument (for error string) gblock_arg_name: name of argument in gblocks allowable: dictionary of allowable values mapping python to whatever should be jammed into gblocks """ if user_value in allowable.keys(): return "-{}={}".format(gblock_arg_name,allowable[user_value]) else: err = "\n\n{} '{}' not recognized\n".format(python_arg_name, user_value) err += "must be one of:\n" allowed = list(allowable) allowed.sort() for a in allowed: err += " {}\n".format(a) raise ValueError(err)
5,339,953
def is_valid_ip(ip_addr): """ :param ip_addr: :return: """ octet_ip = ip_addr.split(".") int_octet_ip = [int(i) for i in octet_ip] if (len(int_octet_ip) == 4) and \ (0 <= int_octet_ip[0] <= 255) and \ (0 <= int_octet_ip[1] <= 255) and \ (0 <= int_octet_ip[2] <= 255) and \ (0 <= int_octet_ip[3] <= 255): return True else: print("Invalid IP, closing program... \n") exit(0)
5,339,954
def make_replay_buffer(env: gym.Env, size: int) -> ReplayBuffer: """Make a replay buffer. If not ShinEnv: Returns a ReplayBuffer with ("rew", "done", "obs", "act", "log_prob", "timeout"). If ShinEnv: Returns a ReplayBuffer with ("rew", "done", "obs", "act", "log_prob", "timeout", "state"). """ is_shin_env = hasattr(env, "mdp") if isinstance(env.action_space, gym.spaces.Discrete): act_type, act_shape = int, 1 elif isinstance(env.action_space, gym.spaces.Box): act_type, act_shape = float, env.action_space.shape env_dict = { "rew": {"dtype": float, "shape": 1}, "done": {"dtype": bool, "shape": 1}, "obs": {"dtype": float, "shape": env.observation_space.shape}, "act": {"dtype": act_type, "shape": act_shape}, "log_prob": {"dtype": float, "shape": act_shape}, "timeout": {"dtype": bool, "shape": 1}, } if is_shin_env: env_dict.update({"state": {"dtype": int, "shape": 1}}) return ReplayBuffer(size, env_dict, next_of=("obs", "state")) return ReplayBuffer(size, env_dict, next_of=("obs",))
5,339,955
def scale_places(places: int) -> Callable[[decimal.Decimal], decimal.Decimal]: """ Returns a function that shifts the decimal point of decimal values to the right by ``places`` places. """ if not isinstance(places, int): raise ValueError( 'Argument `places` must be int. Got value {} of type {}.'. format(places, type(places)), ) with decimal.localcontext(abi_decimal_context): scaling_factor = TEN ** -places def f(x: decimal.Decimal) -> decimal.Decimal: with decimal.localcontext(abi_decimal_context): return x * scaling_factor places_repr = 'Eneg{}'.format(places) if places > 0 else 'Epos{}'.format(-places) func_name = 'scale_by_{}'.format(places_repr) f.__name__ = func_name f.__qualname__ = func_name return f
5,339,956
def format_dot_y_axis(axes: Axes, bottom: float, top: float) -> None: """Draw the ticks, format the labels, and adjust sizing for the day-axis. Parameters ---------- axes: `Axes` The Axes object describing the graph bottom: `float` Midnight of the earliest day top: `float` Dawn of the earliest day """ axes.yaxis_date() axes.set_ylim(bottom=bottom, top=top) axes.set_ylabel("Time of day", fontdict={"fontsize": 15}) axes.grid(which="major", axis="y", lw=1) axes.grid(which="minor", axis="y", lw=0.5) y_loc = HourLocator(interval=2) y_formatter = DateFormatter("%-I:%M %p") y_min_loc = HourLocator(interval=1) y_axis = axes.get_yaxis() y_axis.set_major_locator(y_loc) y_axis.set_major_formatter(y_formatter) y_axis.set_minor_locator(y_min_loc) # Display morning on top and midnight on bottom. This is different than what # we did at assigning `y_vals` axes.invert_yaxis()
5,339,957
def create_model(params : model_params): """ Create ReasoNet model Args: params (class:`model_params`): The parameters used to create the model """ logger.log("Create model: dropout_rate: {0}, init:{1}, embedding_init: {2}".format(params.dropout_rate, params.init, params.embedding_init)) # Query and Doc/Context/Paragraph inputs to the model query_seq_axis = Axis('sourceAxis') context_seq_axis = Axis('contextAxis') query_sequence = sequence.input(shape=(params.vocab_dim), is_sparse=True, sequence_axis=query_seq_axis, name='query') context_sequence = sequence.input(shape=(params.vocab_dim), is_sparse=True, sequence_axis=context_seq_axis, name='context') entity_ids_mask = sequence.input(shape=(1,), is_sparse=False, sequence_axis=context_seq_axis, name='entity_ids_mask') # embedding if params.embedding_init is None: embedding_init = create_random_matrix(params.vocab_dim, params.embedding_dim) else: embedding_init = params.embedding_init embedding = parameter(shape=(params.vocab_dim, params.embedding_dim), init=None) embedding.value = embedding_init embedding_matrix = constant(embedding_init, shape=(params.vocab_dim, params.embedding_dim)) if params.dropout_rate is not None: query_embedding = ops.dropout(times(query_sequence , embedding), params.dropout_rate, name='query_embedding') context_embedding = ops.dropout(times(context_sequence, embedding), params.dropout_rate, name='context_embedding') else: query_embedding = times(query_sequence , embedding, name='query_embedding') context_embedding = times(context_sequence, embedding, name='context_embedding') contextGruW = Parameter(_INFERRED + _as_tuple(params.hidden_dim), init=glorot_uniform(), name='gru_params') queryGruW = Parameter(_INFERRED + _as_tuple(params.hidden_dim), init=glorot_uniform(), name='gru_params') entity_embedding = ops.times(context_sequence, embedding_matrix, name='constant_entity_embedding') # Unlike other words in the context, we keep the entity vectors fixed as a random vector so that each vector just means an identifier of different entities in the context and it has no semantic meaning full_context_embedding = ops.element_select(entity_ids_mask, entity_embedding, context_embedding) context_memory = ops.optimized_rnnstack(full_context_embedding, contextGruW, params.hidden_dim, 1, True, recurrent_op='gru', name='context_mem') query_memory = ops.optimized_rnnstack(query_embedding, queryGruW, params.hidden_dim, 1, True, recurrent_op='gru', name='query_mem') qfwd = ops.slice(sequence.last(query_memory), -1, 0, params.hidden_dim, name='fwd') qbwd = ops.slice(sequence.first(query_memory), -1, params.hidden_dim, params.hidden_dim*2, name='bwd') init_status = ops.splice(qfwd, qbwd, name='Init_Status') # get last fwd status and first bwd status return attention_model(context_memory, query_memory, init_status, params.hidden_dim, params.attention_dim, max_steps = params.max_rl_steps)
5,339,958
def test_missing_management_form(live_server, selenium): """ Asserts the ConvenientFormset instantiation raises an error message when the management form is missing. """ # Load webpage for test params = {'template_name': 'initialization/missing_management_form.html'} test_url = f'{live_server.url}?{urlencode(params)}' selenium.get(test_url) # Assert errors error_log = selenium.find_element(By.CSS_SELECTOR, '#error-log') error_messages = [ msg.strip() for msg in error_log.text.split('\n') if msg.strip() ] assert error_messages == [ '[ConvenientFormset] Management form for formset ' 'with prefix `formset` missing or has been tampered with.' ]
5,339,959
def _process_voucher_data_for_order(cart): """Fetch, process and return voucher/discount data from cart.""" vouchers = Voucher.objects.active(date=date.today()).select_for_update() voucher = get_voucher_for_cart(cart, vouchers) if cart.voucher_code and not voucher: msg = pgettext( 'Voucher not applicable', 'Voucher expired in meantime. Order placement aborted.') raise NotApplicable(msg) if not voucher: return {} increase_voucher_usage(voucher) return { 'voucher': voucher, 'discount_amount': cart.discount_amount, 'discount_name': cart.discount_name, 'translated_discount_name': cart.translated_discount_name}
5,339,960
def transform_batch(images, max_rot_deg, max_shear_deg, max_zoom_diff_pct, max_shift_pct, experimental_tpu_efficiency=True): """Transform a batch of square images with the same randomized affine transformation. """ def clipped_random(): rand = tf.random.normal([1], dtype=tf.float32) rand = tf.clip_by_value(rand, -2., 2.) / 2. return rand batch_size = images.shape[0] tf.debugging.assert_equal( images.shape[1], images.shape[2], "Images should be square") DIM = images.shape[1] channels = images.shape[3] XDIM = DIM % 2 rot = max_rot_deg * clipped_random() shr = max_shear_deg * clipped_random() h_zoom = 1.0 + clipped_random()*max_zoom_diff_pct w_zoom = 1.0 + clipped_random()*max_zoom_diff_pct h_shift = clipped_random()*(DIM*max_shift_pct) w_shift = clipped_random()*(DIM*max_shift_pct) # GET TRANSFORMATION MATRIX m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift) # LIST DESTINATION PIXEL INDICES x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) # 10000, y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],tf.int32) idx = tf.stack( [x,y,z] ) # [3, 10000] # ROTATE DESTINATION PIXELS ONTO ORIGIN PIXELS idx2 = tf.matmul(m,tf.cast(idx,tf.float32)) idx2 = tf.cast(idx2,tf.int32) idx2 = tf.clip_by_value(idx2,-DIM//2+XDIM+1,DIM//2) # FIND ORIGIN PIXEL VALUES idx3 = tf.stack( [DIM//2-idx2[0,], DIM//2-1+idx2[1,]] ) idx3 = tf.transpose(idx3) batched_idx3 = tf.tile(idx3[tf.newaxis], [batch_size, 1, 1]) if experimental_tpu_efficiency: # This reduces excessive padding in the original tf.gather_nd op idx4 = idx3[:, 0] * DIM + idx3[:, 1] images = tf.reshape(images, [batch_size, DIM * DIM, channels]) d = tf.gather(images, idx4, axis=1) return tf.reshape(d, [batch_size,DIM,DIM,channels]) else: d = tf.gather_nd(images, batched_idx3, batch_dims=1) return tf.reshape(d,[batch_size,DIM,DIM,channels])
5,339,961
def prep_seven_zip_path(path, talkative=False): """ Print p7zip path on POSIX, or notify if not there. :param path: Path to use. :type path: str :param talkative: Whether to output to screen. False by default. :type talkative: bool """ if path is None: talkaprint("NO 7ZIP\nPLEASE INSTALL p7zip", talkative) sentinel = False else: talkaprint("7ZIP FOUND AT {0}".format(path), talkative) sentinel = True return sentinel
5,339,962
async def root() -> Dict[str, str]: """ Endpoint for basic connectivity test. """ logger.debug('root requested') return {'message': 'OK'}
5,339,963
def detach_policy(user_name, policy_arn): """ Detaches a policy from a user. :param user_name: The name of the user. :param policy_arn: The Amazon Resource Name (ARN) of the policy. """ try: iam.User(user_name).detach_policy(PolicyArn=policy_arn) logger.info("Detached policy %s from user %s.", policy_arn, user_name) except ClientError: logger.exception( "Couldn't detach policy %s from user %s.", policy_arn, user_name) raise
5,339,964
def user_create_profile(sender, instance, created, **kwargs): """ Depending of user_type on the User model, we want to create a specific "type of profile" """ logger.info('[entities receiver]') if created: # Here we will put the logic of which type of user we will create. # Will be dicted by the type of user, given by the user_type field. logger.info('[entities receiver created]') if instance.user_type == 1: Person.objects.create(user=instance) elif instance.user_type == 2: Company.objects.create(user=instance) else: pass
5,339,965
def overlapping_community(G, community): """Return True if community partitions G into overlapping sets. """ community_size = sum(len(c) for c in community) # community size must be larger to be overlapping if not len(G) < community_size: return False # check that the set of nodes in the communities is the same as G if not set(G) == set.union(*community): return False return True
5,339,966
def validate_credential(zone, credential): """ Token is already calculated """ source = DataSource(DataSource.TYPE_DATABASE, CONNECTION_FILE_PATH) canAccess = source.get_or_create_client_access_rights(credential, zone) if canAccess: return json.dumps({'success':True}), 200, {'ContentType':'application/json'} else: return json.dumps({'success':False}), 403, {'ContentType':'application/json'}
5,339,967
def test_fast_gradient_method(): """ Fast gradient method unit test. """ input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) attack = FastGradientMethod(Net()) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ ' must not be equal to original value.'
5,339,968
def test_swap_child(): """ """ for test in run_hotswap_test(DEFAULT_TIME+2, original=""" from enaml.widgets.api import * enamldef Main(Window): view: Container: Label: text = "child 1" """, modified=""" from enaml.widgets.api import * enamldef Main(Window): view: Container: PushButton: text = "child 1" """, initial_state={}): container = test.view.children[0] if not test.reloaded: assert container.children[0].__class__.__name__ == 'Label' else: assert len(container.children) == 1 assert container.children[0].__class__.__name__ == 'PushButton'
5,339,969
def gm(data,g1=0.0,g2=0.0,g3=0.0,inv=False): """ Lorentz-to-Gauss Apodization Functional form: gm(x_i) = exp(e - g*g) Where: e = pi*i*g1 g = 0.6*pi*g2*(g3*(size-1)-i) Parameters: * data Array of spectral data. * g1 Inverse exponential width. * g2 Gaussian broaden width. * g3 Location of gauss maximum. * inv Set True for inverse apodization. """ size = data.shape[-1] e = pi*np.arange(size)*g1 g = 0.6*pi*g2*(g3*(size-1) - np.arange(size)) apod = np.exp(e-g*g, sig = data.dtype) if inv: apod = 1/apod return apod*data
5,339,970
def exp_t(u, t): """Compute exp_t for `u`.""" if t == 1.0: return torch.exp(u) else: return torch.relu(1.0 + (1.0 - t) * u) ** (1.0 / (1.0 - t))
5,339,971
def decode_json_dict(data): # type: (Dict) -> Dict """Converts str to python 2 unicodes in JSON data.""" return _strify(data)
5,339,972
def linear_search(lst: list, x: Any) -> int: """Return the index of the first element of `lst` equal to `x`, or -1 if no elements of `lst` are equal to `x`. Design idea: Scan the list from start to finish. Complexity: O(n) time, O(1) space. For an improvement on linear search for sorted lists, see the binary search function in the decrease_and_conquer module. """ for i, y in enumerate(lst): if x == y: return i return -1
5,339,973
def get_color_cmap(name, n_colors=6): """ Return discrete colors from a matplotlib palette. :param name: Name of the palette. This should be a named matplotlib colormap. :type: str :param n_colors: Number of discrete colors in the palette. :type: int :return: List-like object of colors as hexadecimal tuples :type: list """ brewer_qual_pals = {"Accent": 8, "Dark2": 8, "Paired": 12, "Pastel1": 9, "Pastel2": 8, "Set1": 9, "Set2": 8, "Set3": 12, 'tab20':20, 'tab20b':20} if name == 'tab20' and n_colors > 19: second = 'tab20b' ncolor2 = n_colors - 19 n_colors = 19 else : second = False cmap = getattr(cm, name) if name in brewer_qual_pals: bins = np.linspace(0, 1, brewer_qual_pals[name]) if 'tab20' == name : len_bins = len(bins) bins = [bins[i] for i in range(len_bins) if i != 14][:n_colors] else : bins = bins[:n_colors] else: bins = np.linspace(0, 1, n_colors + 2)[1:-1] palette = list(map(tuple, cmap(bins)[:, :3])) if second : cmap = getattr(cm, second) bins = np.linspace(0, 1, brewer_qual_pals[second])[:ncolor2] palette += list(map(tuple, cmap(bins)[:, :3])) pal_cycle = cycle(palette) palette = [next(pal_cycle) for _ in range(n_colors+ncolor2)] else : pal_cycle = cycle(palette) palette = [next(pal_cycle) for _ in range(n_colors)] return [colors.rgb2hex(rgb) for rgb in palette]
5,339,974
def logkde2entropy(vects, logkde): """ computes the entropy of the kde incorporates vects so that kde is properly normalized (transforms into a truly discrete distribution) """ vol = vects2vol(vects) truth = logkde > -np.infty return -vects2vol(vects)*np.sum(np.exp(logkde[truth])*logkde[truth])
5,339,975
def issue_2021_02_16(): """ """ import psana.pscalib.calib.MDBWebUtils as wu det_uniqueid = 'epix10ka_3926196238-0175152897-1157627926-0000000000-0000000000-0000000000-0000000000_3926196238-0174824449-0268435478-0000000000-0000000000-0000000000-0000000000_3926196238-0175552257-3456106518-0000000000-0000000000-0000000000-0000000000_3926196238-0176373505-4043309078-0000000000-0000000000-0000000000-0000000000' calib_const = wu.calib_constants_all_types(det_uniqueid, exp='ueddaq02', run=86)
5,339,976
def get_deployment_json( runner: Runner, deployment_name: str, context: str, namespace: str, deployment_type: str, run_id: Optional[str] = None, ) -> Dict: """Get the decoded JSON for a deployment. If this is a Deployment we created, the run_id is also passed in - this is the uuid we set for the telepresence label. Otherwise run_id is None and the Deployment name must be used to locate the Deployment. """ assert context is not None assert namespace is not None span = runner.span() try: get_deployment = [ "get", deployment_type, "-o", "json", "--export", ] if run_id is None: return json.loads( runner.get_kubectl( context, namespace, get_deployment + [deployment_name], stderr=STDOUT ) ) else: # When using a selector we get a list of objects, not just one: return json.loads( runner.get_kubectl( context, namespace, get_deployment + ["--selector=telepresence=" + run_id], stderr=STDOUT ) )["items"][0] except CalledProcessError as e: raise SystemExit( "Failed to find Deployment '{}': {}".format( deployment_name, str(e.stdout, "utf-8") ) ) finally: span.end()
5,339,977
def test_append_test_for_small(small_linklist): """ tests to see if node appended to small group""" assert len(small_linklist) == 4 small_linklist.append(1) assert len(small_linklist) == 5
5,339,978
def generate_logo(filename): """ Load component images, apply a sinogram, and assemble to form the svmbir logo. Args: filename: Name of image file used to generate the sinogram for inclusion in the logo. Returns: None """ # Load the svmbir image, convert to negative, display, and save image = read_grey(filename) image = 1-image plt.imshow(image, cmap=plt.cm.Greys_r) plt.title("Original") plt.show() svmbir_letters = np.copy(image) # Apply the radon transform and do gamma correction to improve contrast theta = np.linspace(0., 360., max(image.shape), endpoint=False) sinogram = radon(image, theta=theta, circle=True) sinogram_scaled = sinogram / np.amax(sinogram) gamma_corrected = exposure.adjust_gamma(sinogram_scaled, 0.4) # Display the sinogram and gamma corrected version fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4.5)) ax1.set_title("Radon transform\n(Sinogram)") ax1.set_xlabel("Projection angle (deg)") ax1.set_ylabel("Projection position (pixels)") ax1.imshow(sinogram, cmap=plt.cm.Greys_r, extent=(0, 360, 0, sinogram.shape[0]), aspect='auto') ax2.set_title("Gamma corrected") ax2.imshow(gamma_corrected, cmap=plt.cm.Greys_r, extent=(0, 360, 0, sinogram.shape[0]), aspect='auto') fig.tight_layout() plt.show() # Save the gamma-corrected, rotated sinogram sinogram_int = np.round(gamma_corrected*255) sinogram_copy = np.copy(sinogram_int) sinogram_rot = rotate(sinogram_copy, 90) imsave('sinogram_rot.png', sinogram_rot.astype(np.uint8)) # Do the reconstruction and display # sinogram_int = imread('sinogram_rot.png') # sinogram_int = rotate(sinogram_int, -90) sinogram = exposure.adjust_gamma(sinogram_copy / 255, 2) image_recov = iradon(sinogram, theta=theta) image_recov_orig = iradon(np.round(sinogram_scaled * 255) / 255, theta) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4.5)) ax1.set_title("Recon from original") ax1.imshow(image_recov_orig, cmap=plt.cm.Greys_r, aspect='equal') ax2.set_title("Recon from gamma corrected") ax2.imshow(image_recov, cmap=plt.cm.Greys_r,aspect='equal') fig.tight_layout() plt.show() # Load the images for the logo sino = sinogram_rot.astype(float)/255 # read_grey('sinogram_rot.png') mbir_letters = read_grey('images/mbir.png') arrow_left = read_grey('images/arrow_left.png', channel=3) arrow_right = read_grey('images/arrow_right.png', channel=3) svmbir_text = read_grey('images/text.png', channel=3) # Set dimensions for logo elements - rescale images as needed spacer = 5 pad = 10 new_width = sino.shape[1] + svmbir_letters.shape[0] mbir_letters = rescale(mbir_letters, new_width / mbir_letters.shape[1]) mbir_letters = exposure.adjust_gamma(mbir_letters, 0.2) mbir_letters[mbir_letters > 0.95] = 1 mbir_letters[mbir_letters < 0.05] = 0 new_height = sino.shape[0] + mbir_letters.shape[0] + spacer svmbir_text = 1 - rescale(svmbir_text, new_height / svmbir_text.shape[0]) svmbir_text = exposure.adjust_gamma(svmbir_text, 1.5) svmbir_text[svmbir_text > 0.95] = 1 svmbir_text[svmbir_text < 0.05] = 0 height = sino.shape[0] + mbir_letters.shape[0] + 3 * spacer width = mbir_letters.shape[1] + svmbir_text.shape[1] + 2 * spacer # Get the empty image and add the sinogram logo = np.zeros((height, width)) i = spacer j = spacer logo = copy_in(logo, sino, i, j) # Add the vertical bar and the svmbir letters with arrows i = spacer j = sino.shape[1] white_bar_ver = np.ones((sino.shape[1], spacer)) logo = copy_in(logo, white_bar_ver, i, j) j = sino.shape[1] + spacer arrow_left = rescale(arrow_left, (svmbir_letters.shape[1]/2) / arrow_left.shape[1]) logo = copy_in(logo, arrow_left, i, j) j = j + arrow_left.shape[1] arrow_right = rescale(arrow_right, (svmbir_letters.shape[1]/2) / arrow_right.shape[1]) logo = copy_in(logo, arrow_right, i, j) j = sino.shape[1] + spacer logo = copy_in(logo, svmbir_letters, i, j, method="max") # Add the svmbir text i = spacer j = sino.shape[1] + svmbir_letters.shape[1] + spacer logo = copy_in(logo, svmbir_text, i, j) # Add the horizontal bar and the MBIR text i = spacer + sino.shape[0] j = spacer white_bar_hor = np.ones((spacer, sino.shape[1] + spacer + svmbir_letters.shape[1])) logo = copy_in(logo, white_bar_hor, i, j) i = i + spacer logo = copy_in(logo, mbir_letters, i, j) # Display the logo plt.imshow(logo, cmap=plt.cm.Greys_r) plt.show() imsave('logo.png', logo)
5,339,979
def is_admin() -> bool: """Check does the script has admin privileges.""" import ctypes try: return ctypes.windll.shell32.IsUserAnAdmin() except AttributeError: # Windows only return None
5,339,980
def get_firewall_status(gwMgmtIp, api_key): """ Reruns the status of the firewall. Calls the op command show chassis status Requires an apikey and the IP address of the interface we send the api request :param gwMgmtIp: :param api_key: :return: """ global gcontext # cmd = urllib.request.Request('https://google.com') cmd = urllib.request.Request( "https://" + gwMgmtIp + "/api/?type=op&cmd=<show><chassis-ready></chassis-ready></show>&key=" + api_key) # Send command to fw and see if it times out or we get a response logger.info('[INFO]: Sending command: {}'.format(cmd)) try: response = urllib.request.urlopen(cmd, data=None, context=gcontext, timeout=5).read() logger.info( "[INFO]:Got http 200 response from FW with address {}. So need to check the response".format(gwMgmtIp)) # Now we do stuff to the gw except urllib.error.URLError: logger.info("[INFO]: No response from FW with address {}. So maybe not up!".format(gwMgmtIp)) return 'down' # sleep and check again? else: logger.info("[INFO]: FW is responding!!") logger.info("[RESPONSE]: {}".format(response)) resp_header = et.fromstring(response) if resp_header.tag != 'response': logger.info("[ERROR]: didn't get a valid response from firewall...maybe a timeout") return 'down' if resp_header.attrib['status'] == 'error': logger.info("[ERROR]: Got response header error for the command") return 'down' if resp_header.attrib['status'] == 'success': # The fw responded with a successful command execution for element in resp_header: if element.text.rstrip() == 'yes': # Call config gw command? logger.info("[INFO]: FW with ip {} is ready ".format(gwMgmtIp)) return 'running' else: return 'down'
5,339,981
def inferDistanceRelations(matcher, reqNode, ego, line): """Infer bounds on distances from a requirement.""" distMatcher = lambda node: matcher.matchUnaryFunction('DistanceFrom', node) allBounds = matcher.matchBounds(reqNode, distMatcher) for target, bounds in allBounds.items(): if not isinstance(target, Object): continue assert target is not ego if ego is None: raise InvalidScenarioError('distance w.r.t. unassigned ego on line {line}') lower, upper = bounds if lower < 0: lower = 0 if upper == float('inf'): continue # skip trivial bounds rel = DistanceRelation(target, lower, upper) ego._relations.append(rel) conv = DistanceRelation(ego, lower, upper) target._relations.append(conv)
5,339,982
def test_vgp_unchanged_at_optimum(with_tf_random_seed, vgp_gpr_optim_setup): """Test that the update does not change sites at the optimum""" vgp, _ = vgp_gpr_optim_setup # ELBO at optimum optim_elbo = vgp.elbo() # site update step vgp.update_sites() # ELBO after step new_elbo = vgp.elbo() with tf.GradientTape() as g: g.watch(vgp.trainable_variables) elbo = vgp.classic_elbo() grad_elbo = g.gradient(elbo, vgp.trainable_variables) for g in grad_elbo: if g is not None: np.testing.assert_allclose(g, tf.zeros_like(g), atol=1e-9) np.testing.assert_allclose(optim_elbo, new_elbo, atol=1e-9)
5,339,983
def test_get_map_data(): """Tests that a SimilarChecker respects the MapReduceMixin interface""" linter = PyLinter(reporter=Reporter()) # Add a parallel checker to ensure it can map and reduce linter.register_checker(similar.SimilarChecker(linter)) source_streams = ( str(INPUT / "similar_lines_a.py"), str(INPUT / "similar_lines_b.py"), ) expected_linelists = ( ( "", "", "", "", "", "", "def adipiscing(elit):", 'etiam = "id"', 'dictum = "purus,"', 'vitae = "pretium"', 'neque = "Vivamus"', 'nec = "ornare"', 'tortor = "sit"', "return etiam, dictum, vitae, neque, nec, tortor", "", "", "class Amet:", "def similar_function_3_lines(self, tellus):", "agittis = 10", "tellus *= 300", "return agittis, tellus", "", "def lorem(self, ipsum):", 'dolor = "sit"', 'amet = "consectetur"', "return (lorem, dolor, amet)", "", "def similar_function_5_lines(self, similar):", "some_var = 10", "someother_var *= 300", 'fusce = "sit"', 'amet = "tortor"', "return some_var, someother_var, fusce, amet", "", 'def __init__(self, moleskie, lectus="Mauris", ac="pellentesque"):', 'metus = "ut"', 'lobortis = "urna."', 'Integer = "nisl"', '(mauris,) = "interdum"', 'non = "odio"', 'semper = "aliquam"', 'malesuada = "nunc."', 'iaculis = "dolor"', 'facilisis = "ultrices"', 'vitae = "ut."', "", "return (", "metus,", "lobortis,", "Integer,", "mauris,", "non,", "semper,", "malesuada,", "iaculis,", "facilisis,", "vitae,", ")", "", "def similar_function_3_lines(self, tellus):", "agittis = 10", "tellus *= 300", "return agittis, tellus", ), ( "", "", "", "", "", "", "", "class Nulla:", 'tortor = "ultrices quis porta in"', 'sagittis = "ut tellus"', "", "def pulvinar(self, blandit, metus):", "egestas = [mauris for mauris in zip(blandit, metus)]", "neque = (egestas, blandit)", "", "def similar_function_5_lines(self, similar):", "some_var = 10", "someother_var *= 300", 'fusce = "sit"', 'amet = "tortor"', 'iaculis = "dolor"', "return some_var, someother_var, fusce, amet, iaculis, iaculis", "", "", "def tortor(self):", "ultrices = 2", 'quis = ultricies * "porta"', "return ultricies, quis", "", "", "class Commodo:", "def similar_function_3_lines(self, tellus):", "agittis = 10", "tellus *= 300", 'laoreet = "commodo "', "return agittis, tellus, laoreet", ), ) data = [] # Manually perform a 'map' type function for source_fname in source_streams: sim = similar.SimilarChecker(linter) with open(source_fname) as stream: sim.append_stream(source_fname, stream) # The map bit, can you tell? ;) data.extend(sim.get_map_data()) assert len(expected_linelists) == len(data) for source_fname, expected_lines, lineset_obj in zip( source_streams, expected_linelists, data ): assert source_fname == lineset_obj.name # There doesn't seem to be a faster way of doing this, yet. lines = (line for idx, line in lineset_obj.enumerate_stripped()) assert tuple(expected_lines) == tuple(lines)
5,339,984
def create_logger(name, logfile, level): """ Sets up file logger. :param name: Logger name :param logfile: Location of log file :param level: logging level :return: Initiated logger """ logger = logging.getLogger(name) handler = logging.FileHandler(logfile) formatter = logging.Formatter( '%(asctime)s %(name)-12s %(levelname)-8s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(level) return logger
5,339,985
def restore_builtins(): """Restore the original builtin functions.""" for k, v in builtins.items(): mod, func = k.rsplit('.', 1) # 'os.path.isdir' -> ('os.path', 'isdir') name_elts = mod.split('.') top = name_elts.pop(0) module = globals()[top] for elt in name_elts: module = getattr(module, elt) setattr(module, func, v) storage.restore_builtins()
5,339,986
def canonicalize_path(cwd, path, debug): """Given a path composed by concatenating two or more parts, clean up and canonicalize the path.""" # // => / # foo/bar/../whatever => foo/whatever [done] # foo/bar/./whatever => foo/whatever [done] # /foo/bar => /foo/bar [done] # foo/bar => cwd/foo/bar [done] # <empty_path> => cwd [done] # Since we construct cwd from a node_id now, it always ends in /, # so trim off the last empty string in cwd_parts cwd_parts = cwd.split('/')[:-1] path_parts = path.split('/') new = path_parts if path and path[0] == '/' else cwd_parts + path_parts if debug: print("# canonicalize_path(cwd: '" + cwd \ + "', path: '" + path + "')") print("# cwd_parts: " + str(cwd_parts)) print("# path_parts: " + str(path_parts)) print("# new: '" + str(new) + "'") # Now we will do some canonicalization ... while '..' in new: where = new.index('..') new = new[:where-1] + new[where+1:] if where >= 2 else new[where+1:] while '.' in new: where = new.index('.') new = new[:where] + new[where+1:] if where >= 1 else new[where+1:] # Get rid of trailing slashes while new and new[-1] == "": new = new[:-1] # Get rid of double slashes (an empty string in the middle of new) while '' in new[1:-1]: where = new[1:-1].index('') new = new[:where+1] + new[where+2:] # Make sure it's not empty if new and new[0] != '': new.insert(0, "") new_path = '/'.join(new) if not new_path: new_path = '/' if debug: print("# new: '" + str(new) + "'") print("new_path: '" + new_path + "'") return new_path
5,339,987
def context_command(func): """ Base options for jobs that can override context variables on the command line. The command receives a *context_overrides* argument, a dict ready to be deep merged in templates contexts. """ @click.option('--context', '-c', 'context_vars', multiple=True, metavar='VAR=VALUE', help='Override context VAR with ' 'VALUE; use --context multiple times to override multiple ' 'variables. Use dots to target a nested variable: ' 'foo.bar=baz') @functools.wraps(func) def wrapper(context_vars, **kwargs): try: context_overrides = parse_context_vars(context_vars) except exceptions.MalformedContextVar as exc: click.secho('Malformed context var in command-line: %s' % exc, fg='red', bold=True) click.secho('') click.secho('Use PATH.TO.VAR=VALUE format.', fg='green') sys.exit(1) return func(context_overrides=context_overrides, **kwargs) return wrapper
5,339,988
def checksum(number): """Calculate the checksum. A valid number should have a checksum of 1.""" check = 0 for n in number: check = (2 * check + int(10 if n == 'X' else n)) % 11 return check
5,339,989
def instanceof(value, type_): """Check if `value` is an instance of `type_`. :param value: an object :param type_: a type """ return isinstance(value, type_)
5,339,990
def step(y, t, dt): """ RK2 method integration""" n = y.shape[0] buf_f0 = np.zeros((n, ndim+1)) buf_f1 = np.zeros((n, ndim+1)) buf_y1 = np.zeros((n, ndim+1)) buf_f0 = tendencies(y) buf_y1 = y + dt * buf_f0 buf_f1 = tendencies(buf_y1) Y = y + 0.5 * (buf_f0 + buf_f1) * dt return Y
5,339,991
def sample_deletes(graph_, rgb_img_features, xyz, delete_scores, num_deletes, threshold, gc_neighbor_dist, padding_config, **kwargs): """Sample Deletes. Args: graph_: a torch_geometric.data.Batch instance with attributes: - rgb: a [N x C_app] torch.FloatTensor of rgb features - depth: a [N x 3 x H' x W'] torch.FloatTensor - mask: a [N x 1 x H' x W'] torch.FloatTensor - orig_masks: a [N x H x W] torch.FloatTensor of original masks - crop_indices: a [N, 4] torch.LongTensor. xmin, ymin, xmax, ymax. rgb_img_features: an OrderedDict of image features. Output of gc.extract_rgb_img_features() xyz_img: a [3, H, W] torch.FloatTensor. 3D point cloud from camera frame of reference delete_scores: a [N] torch.FloatTensor with values in [0, 1]. Output of DeleteNetWrapper.delete_scores(). num_deletes: Maximum number of deletes allowed. threshold: Minimum delete score required to consider the delete. gc_neighbor_dist: Distance threshold for connecting nodes in new graph padding_config: a Python dictionary with padding parameters. Returns: boolean of whether merge operation was successful. a torch_geometric.data.Data instance. """ # Sort scores, consider only the ones above a certain threshold sorted_scores, score_indices = torch.sort(delete_scores, descending=True) num_potential_deletes = torch.sum(sorted_scores > threshold) if num_potential_deletes == 0 and torch.all(~graph_.added): # Nothing to delete return False, None score_indices = score_indices[:num_potential_deletes] delete_inds = torch.zeros(graph_.orig_masks.shape[0]).bool() # Sample some masks to delete leftover_delete_scores = delete_scores[score_indices] leftover_delete_indices = score_indices while torch.sum(delete_inds) < num_deletes and leftover_delete_indices.shape[0] > 0: # Sample delete index sample_idx = torch.multinomial(leftover_delete_scores, 1) delete_idx = leftover_delete_indices[sample_idx][0] delete_inds[delete_idx] = True # Get leftover potential deletes temp = torch.ones(leftover_delete_scores.shape[0]).bool() temp[sample_idx] = False leftover_delete_indices = leftover_delete_indices[temp] leftover_delete_scores = leftover_delete_scores[temp] # If the deleting only undoes the potential adds, consider the sampling to be a failure if torch.all(delete_inds == graph_.added): return False, None # Keep the un-deleted masks new_masks = graph_.orig_masks[~delete_inds] # Create new graph new_masks = new_masks[1:] # Get rid of BG mask new_masks = util_.convert_mask_NHW_to_HW(new_masks.float(), start_label=constants.OBJECTS_LABEL) new_graph = gc.construct_segmentation_graph(rgb_img_features, xyz, new_masks, neighbor_dist=gc_neighbor_dist, padding_config=padding_config) return True, new_graph
5,339,992
def make_char(hex_val): """ Create a unicode character from a hex value :param hex_val: Hex value of the character. :return: Unicode character corresponding to the value. """ try: return unichr(hex_val) except NameError: return chr(hex_val)
5,339,993
def add_chemicals_from_file(filename : str): """Parses specified file, adding a chemical to the library for each line in the file. Each line in the file should first contain the chemicals's molar mass, followed by a list of its names. All words should be separated by spaces. Example file: 58.44 NaCl table_salt sodium_chloride 74.55 KCl potassium_chloride """ if os.path.isfile(filename) == False: error_messages.file_not_found(filename) try: with open(filename, "r") as file: lines = file.readlines() except: error_messages.file_read_error(filename) existing_chemical_library = load_chemicals() new_chemical_names = [] new_chemical_objects = [] for line_number, line in enumerate(lines): try: words = line.split() if len(words) == 0: continue elif len(words) < 2: error_messages.line_too_short_in_chemical_file(line_number) molar_mass = words[0] names = words[1:] new_chemical = make_safe_chemical(molar_mass, names, chemical_library=existing_chemical_library) for name in names: if name in new_chemical_names: error_messages.duplicate_file_entry(name) new_chemical_names.append(name) new_chemical_objects.append(new_chemical) except: error_messages.add_from_file_termination(line_number, erroneous_line=line.strip("\n"), upper_case_data_type="Chemicals") with open(chemical_library_file, "a") as file: for new_chemical in new_chemical_objects: file.write(str(new_chemical) + "\n") print("Added the following chemicals to your library:", *new_chemical_names)
5,339,994
def normalize(features): """ Normalizes data using means and stddevs """ means, stddevs = compute_moments(features) normalized = (np.divide(features, 255) - means) / stddevs return normalized
5,339,995
def get_args_from_str(input: str) -> list: """ Get arguments from an input string. Args: input (`str`): The string to process. Returns: A list of arguments. """ return ARG_PARSE_REGEX.findall(input)
5,339,996
def get_all_files(repo_root): """Get all files from in this repo.""" output = [] for root, _, files in os.walk(repo_root): for f in files: if f.lower().endswith(tuple(CPP_SUFFIXES + ['.py'])): full_name = os.path.join(root, f)[len(repo_root) + 1:] if not any(n in full_name for n in ALL_FILES_BLACKLISTED_NAMES): output.append(full_name) return output
5,339,997
def simulate(school: List[int], days: int) -> int: """Simulates a school of fish for ``days`` and returns the number of fish.""" school = flatten_school(school) for day in range(1, days + 1): school = simulate_day(school) return sum(school)
5,339,998
def SPTU(input_a, input_b, n_channels: int): """Softplus Tanh Unit (SPTU)""" in_act = input_a+input_b t_act = torch.tanh(in_act[:, :n_channels, :]) s_act = torch.nn.functional.softplus(in_act[:, n_channels:, :]) acts = t_act * s_act return acts
5,339,999