content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def compute_wolfe_gap(point_x, objective_function, feasible_region):
"""Compute the Wolfe gap given a point."""
grad = objective_function.evaluate_grad(point_x.cartesian_coordinates)
v = feasible_region.lp_oracle(grad)
wolfe_gap = grad.dot(point_x.cartesian_coordinates - v)
return wolfe_gap
| 5,339,700
|
def replace_chunk(filename, offset, length, chunk, in_place=True, max_mem=5):
"""Replace length bytes of data with chunk, starting at offset.
Any KeyboardInterrupts arriving while replace_chunk is runnning
are deferred until the operation is complete.
If in_place is true, the operation works directly on the original
file; this is fast and works on files that are already open, but
an error or interrupt may lead to corrupt file contents.
If in_place is false, the function prepares a copy first, then
renames it back over the original file. This method is slower,
but it prevents corruption on systems with atomic renames (UNIX),
and reduces the window of vulnerability elsewhere (Windows).
If there is no need to move data that is not being replaced, then we use
the direct method irrespective of in_place. (In this case an interrupt
may only corrupt the chunk being replaced.)
"""
with suppress_interrupt():
_replace_chunk(filename, offset, length, chunk, in_place, max_mem)
| 5,339,701
|
async def get(ip, community, oid, port=161, timeout=DEFAULT_TIMEOUT):
# type: (str, str, str, int, int) -> PyType
"""
Delegates to :py:func:`~puresnmp.aio.api.raw.get` but returns simple Python
types.
See the "raw" equivalent for detailed documentation & examples.
"""
raw_value = await raw.get(ip, community, oid, port, timeout=timeout)
return raw_value.pythonize()
| 5,339,702
|
def preprocess_image(image, params):
"""Preprocess image tensor.
Args:
image: tensor, input image with shape
[cur_batch_size, height, width, depth].
params: dict, user passed parameters.
Returns:
Preprocessed image tensor with shape
[cur_batch_size, height, width, depth].
"""
func_name = "preprocess_image"
# Convert from [0, 255] -> [-1.0, 1.0] floats.
image = tf.cast(x=image, dtype=tf.float32) * (2. / 255) - 1.0
print_obj(func_name, "image", image)
return image
| 5,339,703
|
def get_vlim(xarr: xr.DataArray, alpha: float) -> dict:
"""Get vmin, vmax using mean and std."""
mean = xarr.mean()
std = xarr.std()
return {"vmin": max(0., mean - alpha * std), "vmax": mean + alpha * std}
| 5,339,704
|
def count_consumed_symbols(e):
"""Count how many symbols are consumed from each sequence by a single sequence diff entry."""
op = e.op
if op == DiffOp.ADDRANGE:
return (0, len(e.valuelist))
elif op == DiffOp.REMOVERANGE:
return (e.length, 0)
elif op == DiffOp.PATCH:
return (1, 1)
else:
raise NBDiffFormatError("Invalid op '{}'".format(op))
| 5,339,705
|
def maha_dist_sq(cols, center, cov):
"""Calculate squared Mahalanobis distance of all observations (rows in the
vectors contained in the list cols) from the center vector with respect to
the covariance matrix cov"""
n = len(cols[0])
p = len(cols)
assert len(center) == p
# observation matrix
obs = flex.double(flex.grid(n, p))
for i, col in enumerate(cols):
obs.matrix_paste_column_in_place(col, i)
d2 = maha_dist_sq_cpp(obs, flex.double(center), cov)
return d2
| 5,339,706
|
def get_form_target():
"""
Returns the target URL for the comment form submission view.
"""
if get_comment_app_name() != DEFAULT_COMMENTS_APP and hasattr(get_comment_app(), "get_form_target"):
return get_comment_app().get_form_target()
else:
return urlresolvers.reverse("comments.views.comments.post_comment")
| 5,339,707
|
def secret_page(username=None, password=None):
"""
Returns the HTML for the page visited after the user has logged-in.
"""
if username is None or password is None:
raise ValueError("You need to pass both username and password!")
return _wrapper("""
<h1> Welcome, {username}! </h1>
<p> <small> Pst! I know your password is
<span class="spoilers"> {password}</span>.
</small>
</p>
""".format(username=escape(username.capitalize()),
password=escape(password)))
# ==== Edit username and pw ion secret.py ====
| 5,339,708
|
def user(username):
""" displays a single user """
all_badgers = loads(r_server.get('all_badgers'))
this_badger = all_badgers[username]
this_badger_sorted = collections.OrderedDict(sorted(this_badger.items(), reverse=True))
days = days_in_a_row(this_badger)
kwargs = {'badgers': { username: this_badger_sorted }, 'days': days }
return render_template('index.html', **kwargs)
| 5,339,709
|
def ifft(a, axis):
"""
Fourier transformation from grid to image space, along a given axis.
(inverse Fourier transform)
:param a: numpy array, 1D or 2D (`uv` grid to transform)
:param axis: int; axes over which to calculate
:return: numpy array (an image in `lm` coordinate space)
"""
return numpy.fft.fftshift(
numpy.fft.ifft(numpy.fft.ifftshift(a, axis), axis=axis), axis
)
| 5,339,710
|
def transitions_and_masks_to_proposals(t1,
t2,
m1,
m2,
max_samples=10,
max_ccs=6):
"""
assumes set-based s and a... so shape should be (n_components, *component_shape)
Takes two transitions with their masks, and combines them
using connected-component relabeling to form proposals
Returns a list of tuples of ((s1, a1, s2) proposal, disconnected_component_idxs).
"""
sa1, s21 = t1
sa2, s22 = t2
# get_dcs_from_mask should return a set of tuples of indices, inc. the empty tuple
# where the subgraph represented by each tuple is disconnected from the result of
# the graph. Note that mask should be square, so columns corresp. to action idxs are
# dummy columns.
#
# E.g., if mask is [[1,0,0,0],[0,1,0,0],[0,0,1,1],[0,0,1,1]],
# this function should return:
# set([ (,), (0,), (1,), (0,1), (2, 3), (0, 2, 3), (1, 2, 3), (0, 1, 2, 3) ])
dc1 = get_dcs_from_mask(m1, max_ccs)
dc2 = get_dcs_from_mask(m2, max_ccs)
# get shared connected components in random order
shared_dc = list(dc1.intersection(dc2))
random.shuffle(shared_dc)
# subsample shared_dc down to max_samples
if len(shared_dc) > max_samples:
shared_dc = shared_dc[:max_samples]
all_idxs = set(range(len(sa1)))
res = []
for dc in shared_dc:
not_dc = list(all_idxs - set(dc))
dc = list(dc) # (0, 2)
proposed_sa = np.zeros_like(sa1)
proposed_s2 = np.zeros_like(sa1)
proposed_sa[dc] = sa1[dc]
proposed_sa[not_dc] = sa2[not_dc]
proposed_s2[dc] = s21[dc]
proposed_s2[not_dc] = s22[not_dc]
proposed_t = (proposed_sa, proposed_s2)
res.append((proposed_t, tuple(dc)))
return res
| 5,339,711
|
def make_manifest(root: AnyPath) -> FileManifest:
"""
Returns the file manifest for the given directory.
"""
manifest = {}
for (dirpath, dirnames, filenames) in os.walk(root):
dirnames[:] = sorted(dirnames)
for filename in sorted(filenames):
path = Path(dirpath) / filename
logging.info(f"PATH {path}")
st_info = path.lstat()
rel_path = os.fspath(path.relative_to(root))
manifest[rel_path] = FileMetadata(
size=st_info.st_size, digest=make_digest(path, st_info.st_mode),
)
return manifest
| 5,339,712
|
def main():
"""Drives the main script behavior."""
script_dir = os.path.dirname(os.path.realpath(__file__))
for filename in os.listdir(script_dir):
basename, extension = os.path.splitext(filename)
if basename.startswith("Test") and extension == '.py':
source_path = os.path.join(script_dir, filename)
dest_path = source_path + ".park"
sys.stdout.write("renaming {} to {}\n".format(
source_path, dest_path))
os.rename(source_path, dest_path)
| 5,339,713
|
def exists(url):
"""Check based on protocol if url exists."""
parsed_url = urlparse(url)
if parsed_url.scheme == "":
raise RuntimeError("Invalid url: %s" % url)
if parsed_url.scheme in ('http', 'https'):
r = requests.head(url, verify=False)
if r.status_code == 200:
return True
elif r.status_code == 404:
return False
else:
r.raise_for_status()
elif parsed_url.scheme in ('s3', 's3s'):
s3_eps = boto.regioninfo.load_regions()['s3']
region = None
for r, e in list(s3_eps.items()):
if re.search(e, parsed_url.netloc):
region = r
break
if region is None:
raise RuntimeError("Failed to find region for endpoint %s." %
parsed_url.netloc)
conn = boto.s3.connect_to_region(region,
aws_access_key_id=parsed_url.username,
aws_secret_access_key=parsed_url.password)
match = re.search(r'/(.*?)/(.*)$', parsed_url.path)
if not match:
raise RuntimeError("Failed to parse bucket & key from %s." %
parsed_url.path)
bn, kn = match.groups()
try:
bucket = conn.get_bucket(bn)
except boto.exception.S3ResponseError as e:
if e.status == 404:
return False
else:
raise
key = bucket.get_key(kn)
if key is None:
return False
else:
return True
else:
raise NotImplementedError("Failed to check existence of %s url." %
parsed_url.scheme)
| 5,339,714
|
def inverse_chirality_symbol(symbol):
"""
Inverses a chirality symbol, e.g., the 'R' character to 'S', or 'NS' to 'NR'.
Note that chiral double bonds ('E' and 'Z') must not be inversed (they are not mirror images of each other).
Args:
symbol (str): The chirality symbol.
Returns:
str: The inverse chirality symbol.
Raises:
InputError: If ``symbol`` could not be recognized.
"""
inversion_dict = {'R': 'S', 'S': 'R', 'NR': 'NS', 'NS': 'NR', 'E': 'E', 'Z': 'Z'}
if symbol not in list(inversion_dict.keys()):
raise InputError(f"Recognized chirality symbols are 'R', 'S', 'NR', 'NS', 'E', and 'Z', got {symbol}.")
return inversion_dict[symbol]
| 5,339,715
|
def simplify_columns(df):
"""
Simplify column labels for use as snake_case database fields.
All columns will be re-labeled by:
* Replacing all non-alphanumeric characters with spaces.
* Forcing all letters to be lower case.
* Compacting internal whitespace to a single " ".
* Stripping leading and trailing whitespace.
* Replacing all remaining whitespace with underscores.
Args:
df (pandas.DataFrame): The DataFrame to clean.
Returns:
pandas.DataFrame: The cleaned DataFrame.
Todo:
Update docstring.
"""
df.columns = (
df.columns.
str.replace(r'[^0-9a-zA-Z]+', ' ', regex=True).
str.strip().
str.lower().
str.replace(r'\s+', ' ', regex=True).
str.replace(' ', '_')
)
return df
| 5,339,716
|
def delete(
request: HttpRequest,
wid: Optional[int] = None,
workflow: Optional[Workflow] = None,
) -> JsonResponse:
"""Delete a workflow."""
if request.method == 'POST':
# Log the event
Log.objects.register(
request.user,
Log.WORKFLOW_DELETE,
None,
{
'id': workflow.id,
'name': workflow.name})
# Nuke the logs pointing to the workflow
for litem in workflow.logs.all():
litem.workflow = None
litem.save()
# Perform the delete operation
workflow.delete()
# In this case, the form is valid anyway
return JsonResponse({'html_redirect': reverse('home')})
return JsonResponse({
'html_form': render_to_string(
'workflow/includes/partial_workflow_delete.html',
{'workflow': workflow},
request=request),
})
| 5,339,717
|
def at_threshold(FPR, TPR, parameter, threshold):
"""
False positive rate (FPR) and True positive rate (TPR) at the selected threshold.
:param FPR: False positive rates of given receiver operating characteristic (ROC) curve
:param TPR: True positive rate of given receiver operating characteristic (ROC) curve
:param parameter: possible thresholds
:param threshold: selected threshold
"""
index = np.argmin(np.abs(parameter - threshold))
FPR_at_threshold = FPR[index]
TPR_at_threshold = TPR[index]
return FPR_at_threshold, TPR_at_threshold
| 5,339,718
|
def cancel_and_close(driver, target_id):
"""
Clicks the cancel button in the current window, confirm the alert dialog,
waits until it is closed and then changes to the window with the given target id
is closed.
"""
time.sleep(10)
current_id = driver.current_window_handle
driver.find_element_by_name("_cancel").click()
alert = driver.switch_to_alert()
alert.accept()
# TODO remove this workaround when Selenium starts working again as intended
time.sleep(1)
wait_till_closed_and_switch(driver, current_id, target_id)
| 5,339,719
|
def _check_kl_estimator(estimator_fn, distribution_fn, num_samples=10000,
rtol=1e-1, atol=1e-3, grad_rtol=2e-1, grad_atol=1e-1):
"""Compares the estimator_fn output and gradient to exact KL."""
rng_key = jax.random.PRNGKey(0)
def expected_kl(params):
distribution_a = distribution_fn(**params[0])
distribution_b = distribution_fn(**params[1])
return distribution_a.kl_divergence(distribution_b)
def estimate_kl(params):
distribution_a = distribution_fn(**params[0])
distribution_b = distribution_fn(**params[1])
return estimator_fn(distribution_a, distribution_b, rng_key=rng_key,
num_samples=num_samples)
params = (
dict(loc=0.0, scale=1.0),
dict(loc=0.1, scale=1.0),
)
expected_value, expected_grad = jax.value_and_grad(expected_kl)(params)
value, grad = jax.value_and_grad(estimate_kl)(params)
np.testing.assert_allclose(expected_value, value, rtol=rtol, atol=atol)
chex.assert_tree_all_close(expected_grad, grad, rtol=grad_rtol,
atol=grad_atol)
| 5,339,720
|
def relative_bias(simu, reco, relative_scaling_method='s1'):
"""
Compute the relative bias of a reconstructed variable as
`median(reco-simu)/relative_scaling(simu, reco)`
Parameters
----------
simu: `numpy.ndarray`
reco: `numpy.ndarray`
relative_scaling_method: str
see `ctaplot.ana.relative_scaling`
Returns
-------
"""
assert len(reco) == len(simu)
if len(simu) == 0:
return 0
return np.median((reco - simu) / relative_scaling(simu, reco, method=relative_scaling_method))
| 5,339,721
|
def addon_config() -> Dict[str, Any]:
"""Sample addon config."""
return {
"package-name": "djangocms-blog",
"installed-apps": [
"filer",
"easy_thumbnails",
"aldryn_apphooks_config",
"parler",
"taggit",
"taggit_autosuggest",
"meta",
"djangocms_blog",
"sortedm2m",
],
"settings": {
"META_SITE_PROTOCOL": "https",
"META_USE_SITES": True,
"MIDDLEWARE": ["django.middleware.gzip.GZipMiddleware"],
},
"urls": [["", "djangocms_blog.taggit_urls"]],
"message": "Please check documentation to complete the setup",
}
| 5,339,722
|
def print_layout24(layout):
"""
Print layout.
"""
print(' {0} {1}'.format(' '.join(layout[0:4]),
' '.join(layout[12:16])))
print(' {0} {1}'.format(' '.join(layout[4:8]),
' '.join(layout[16:20])))
print(' {0} {1}'.format(' '.join(layout[8:12]),
' '.join(layout[20:24])))
| 5,339,723
|
def join_mutations_regions(
out_path: str, sample1_id: int, sample2_id: int, mutations_file: File, regions_file: File
) -> File:
"""
Join mutations and regions together to compute an allele frequence.
"""
def iter_mut_points(muts):
for pos, count in muts:
yield pos, "mut", count
def iter_region_points(regions):
for start, end, depth in regions:
yield start - 0.5, "region", depth
def iter_allele_freqs(points):
denom = 0
for pos, kind, count in points:
if kind == "region":
denom = count
elif kind == "mut":
yield pos, count, denom, count / denom
points1 = iter_mut_points(read_mutations(mutations_file))
points2 = iter_region_points(read_regions(regions_file))
points = iter_merge(points1, points2)
allele_freqs = iter_allele_freqs(points)
allele_freqs_path = f"{out_path}/allele_freqs/{sample1_id}_{sample2_id}.allele_freqs"
return write_allele_freqs(allele_freqs_path, allele_freqs)
| 5,339,724
|
def credibility_interval(post, alpha=1.):
"""Calculate bayesian credibility interval.
Parameters:
-----------
post : array_like
The posterior sample over which to calculate the bayesian credibility
interval.
alpha : float, optional
Confidence level.
Returns:
--------
med : float
Median of the posterior.
low : float
Lower part of the credibility interval.
up : float
Upper part of the credibility interval.
"""
z = erf(alpha/sp.sqrt(2))
lower_percentile = 100 * (1 - z) / 2
upper_percentile = 100 * (1 + z) / 2
low, med, up = sp.percentile(
post, [lower_percentile, 50, upper_percentile]
)
return med, low, up
| 5,339,725
|
def test_packed_object_reader():
"""Test the functionality of the PackedObjectReader."""
bytestream = b"0123456789abcdef"
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as tempfhandle:
tempfhandle.write(bytestream)
offset = 3
length = 5
expected_bytestream = bytestream[offset : offset + length]
# Read 1 byte at a time
with open(tempfhandle.name, "rb") as fhandle:
packed_reader = utils.PackedObjectReader(fhandle, offset=offset, length=length)
data = []
while True:
piece = packed_reader.read(1)
if not piece:
break
data.append(piece)
assert b"".join(data) == expected_bytestream
# Read 2 bytes at a time (note that the length is odd, so it's not a multiple)
with open(tempfhandle.name, "rb") as fhandle:
packed_reader = utils.PackedObjectReader(fhandle, offset=offset, length=length)
data = []
while True:
piece = packed_reader.read(2)
if not piece:
break
data.append(piece)
assert b"".join(data) == expected_bytestream
# Offset beyond the file limit
with open(tempfhandle.name, "rb") as fhandle:
packed_reader = utils.PackedObjectReader(
fhandle, offset=len(bytestream) + 10, length=length
)
assert packed_reader.read() == b""
# Offset before the file limit, but longer length
with open(tempfhandle.name, "rb") as fhandle:
packed_reader = utils.PackedObjectReader(fhandle, offset=offset, length=1000000)
assert packed_reader.read() == bytestream[offset:]
| 5,339,726
|
def test_create_instance_of_animal_shelter(empty_q):
""" can we create a Queue instance with no input values
"""
assert isinstance(empty_q, AnimalShelter)
| 5,339,727
|
def test_space_after(style_checker):
"""style_checker on python file with invalid No_Style_Check comment.
The file has a No_Style_Check comment, except that that
the comment is not starting at the end of the line.
So style_checker ignores it, and lets pep8 report the errors
in that file.
"""
p = style_checker.run_style_checker('/trunk/module', 'src/space_after.py')
style_checker.assertNotEqual(p.status, 0, p.image)
style_checker.assertRunOutputEqual(p, """\
src/space_after.py:1:17: W291 trailing whitespace
src/space_after.py:7:1: F821 undefined name 'space_before_paren'
src/space_after.py:7:19: E211 whitespace before '('
""")
| 5,339,728
|
def test_wild_g001_wild_g001_v(mode, save_output, output_format):
"""
TEST :Syntax Validation - any : ANY (w/ namespace=##any) and instance
document has elements from targetNamespace
"""
assert_bindings(
schema="msData/wildcards/wildG001.xsd",
instance="msData/wildcards/wildG001.xml",
class_name="Foo",
version="1.1",
mode=mode,
save_output=save_output,
output_format=output_format,
structure_style="filenames",
)
| 5,339,729
|
def svn_ra_invoke_replay_revstart_callback(*args):
"""
svn_ra_invoke_replay_revstart_callback(svn_ra_replay_revstart_callback_t _obj, svn_revnum_t revision,
void replay_baton, svn_delta_editor_t editor,
void edit_baton, apr_hash_t rev_props,
apr_pool_t pool) -> svn_error_t
"""
return apply(_ra.svn_ra_invoke_replay_revstart_callback, args)
| 5,339,730
|
def tree(ctx, rootpage):
"""Export metadata of a page tree."""
if not rootpage:
click.serror("No root page selected via --entity!")
return 1
outname = getattr(ctx.obj.outfile, 'name', None)
with api.context() as cf:
results = []
try:
#page = content.ConfluencePage(cf, rootpage, expand='metadata.labels,metadata.properties')
#results.append(page.json)
pagetree = cf.walk(rootpage, depth_1st=True,
expand='metadata.labels,metadata.properties,version')
for depth, data in pagetree:
data.update(dict(depth=depth))
results.append(data)
except api.ERRORS as cause:
# Just log and otherwise ignore any errors
api.diagnostics(cause)
else:
ctx.obj.log.info('Got {} results.'.format(len(results)))
if results:
print_result(ctx, results)
| 5,339,731
|
def to_half_life(days):
"""
Return the constant [1/s] from the half life length [day]
"""
s= days * 3600*24
return -math.log(1/2)/s
| 5,339,732
|
def Send (dst_ip, data, sequence=0, spoof_source=False, dst_port=MDNS_PORT, src_port=MDNS_PORT, dns_name=TEST_QUERY):
"""
Send one packet of MDNS with data.
:param dst_ip: IP as string.
:param data: Data as bytes/string.
:param sequence: Number to use for sequence. Int.
:param spoof_source: Default:False. Set as IP for spoofing.
:param dst_port: ....
:param src_port: ...
:param dns_name: DNS name to put in the MDNS request.
:return: semper vera!!!
"""
payload = ""
payload += "\x00" # TransID is 2 bytes. Using one for sequence.
payload += struct.pack('B', sequence)
payload += "\x00\x00" # Stndrt qry
payload += "\x00\x01" # 1 questions
payload += "\x00\x00" # 0 ans RRs
payload += "\x00\x00" # 0 authority RRs
payload += "\x00\x00" # 0 additional RRs
# Start of query:
payload += struct.pack('B', len(dns_name)) # Length? -> YES it is!
payload += dns_name # name
payload += "\x00" # Query Terminator
payload += "\x00\x0c" # PTR request
payload += "\x00\x01" # class IN
if spoof_source is False:
pkt = IP(
dst = dst_ip
# src = "1.1.1.1"
) / UDP(
sport = src_port,
dport = dst_port
) / Raw(
load = payload
)
else:
pkt = IP(
dst = dst_ip,
src = spoof_source
) / UDP(
sport = src_port,
dport = dst_port
) / Raw(
load = data
)
send(pkt)
return True
| 5,339,733
|
def accreds_logs_list(request):
"""Display the list of accreds"""
from units.models import Unit
main_unit = Unit.objects.get(pk=settings.ROOT_UNIT_PK)
main_unit.set_rights_can_select(lambda unit: Accreditation.static_rights_can('LIST', request.user, unit))
main_unit.set_rights_can_edit(lambda unit: Accreditation.static_rights_can('CREATE', request.user, unit))
main_unit.check_if_can_use_hidden(request.user)
if request.GET.get('upk'):
update_current_unit(request, request.GET.get('upk'))
return render(request, 'units/accreds/logs_list.html', {'main_unit': main_unit})
| 5,339,734
|
def write_pycode(CGpath,codes):
"""
param1: string : path of file to generate with either .py or .ipynb extension.
param2: string : Actual code strings to be written into the file.
The function writes provide code string into the the .py file.
"""
with open(CGpath,'w') as f:
f.write(codes)
| 5,339,735
|
def build_dict(file_name, max_vocab_size):
"""
reads a list of sentences from a file and returns
- a dictionary which maps the most frequent words to indices and
- a table which maps indices to the most frequent words
"""
word_freq = Counter()
with open(file_name) as file:
for line in file:
word_freq.update(line.split())
if max_vocab_size <= 0:
max_vocab_size = len(word_freq)
words, _ = zip(*word_freq.most_common(max_vocab_size))
# ID of pad_string must be 0
words = [pad_string, unk_string] + list(words)
word2ID = {w:i for i,w in enumerate(words)}
return word2ID, words
| 5,339,736
|
def from_net(func):
"""
为进行相似度数据收集的函数装饰,作用是忽略env中的数据获取模式,改变数据获取模式,
只使用网络数据模式进行数据收集,完成整个任务后,再恢复之前的数据获取模式
:param func: 进行相似度应用且有数据收集行为的函数
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# 临时保存env设置中的g_data_fetch_mode
fetch_mode = ABuEnv.g_data_fetch_mode
# 设置数据获取模式为强制网络模式
ABuEnv.g_data_fetch_mode = ABuEnv.EMarketDataFetchMode.E_DATA_FETCH_FORCE_NET
if fetch_mode != ABuEnv.EMarketDataFetchMode.E_DATA_FETCH_FORCE_NET:
# 如果原有设置不是强制网络模式,warning提示
logging.warning('data from net!!!')
result = func(*args, **kwargs)
# 恢复之前的g_data_fetch_mode
ABuEnv.g_data_fetch_mode = fetch_mode
return result
return wrapper
| 5,339,737
|
def create_index(connection, table_name, index):
"""Create index.
Args:
connection: pyodbc.connect() object, Connection to use when running Sql
table_name: string, Table name including db schema (ex: my_schema.my_table)
index: string, Column name of index (can put multiple columns comma delimited if desired)
Returns:
cursor object, Results of the call to pyodb.connection().cursor().execute(query)
"""
cursor = connection.cursor()
table_split = table_name.split('.')
table = table_split[-1]
if len(table_split) > 1:
use_db = "USE {0}; ".format(table_split[0])
run_sql(connection, use_db)
if index is not None:
idx_name = table + '_idx'
sql = "SELECT name FROM sys.indexes where name = '{0}' and object_id = OBJECT_ID('{1}')".format(idx_name, table)
log.debug("SQL to run: " + sql)
try:
exists = sql_get_query_data(connection, sql)
val = exists.fetchone()[0]
if val != idx_name:
ddl2 = 'CREATE INDEX {0} ON {1}({2});'.format(idx_name, table_name, index)
try:
cursor.execute(ddl2.encode('utf-8'))
connection.commit()
except UnicodeDecodeError:
cursor.execute(ddl2)
connection.commit()
except TypeError:
log.info("Index does not exist, will attempt to create it")
ddl2 = 'CREATE INDEX {0} ON {1}({2});'.format(idx_name, table_name, index)
try:
cursor.execute(ddl2.encode('utf-8'))
connection.commit()
except UnicodeDecodeError:
cursor.execute(ddl2)
connection.commit()
return cursor
| 5,339,738
|
def profile(c):
"""Create an interactive CPU flame graph."""
_, venv_bin, _ = get_venv(VENV)
pyinstrument = venv_bin / 'pyinstrument'
c.run(f'{pyinstrument.resolve()} --renderer html {(venv_bin /project_name ).resolve()} -v --format count --pages 5',
pty=True)
| 5,339,739
|
def embedding_lookup(ids, params):
"""
Returns the embeddings lookups.
The difference of this function to TensorFlow's function is that this
function expects the ids as the first argument and the parameters as the
second; while, in TensorFlow, is the other way around.
:param ids: the ids
:type ids: tf.Tensor
:param params: the parameters
:type params: tf.Tensor
:return: the lookup
:rtype: tf.Tensor
"""
return tf.nn.embedding_lookup(params, ids)
| 5,339,740
|
def mock_pcluster_config(mocker, scheduler=None, extra_patches=None, patch_funcs=None):
"""Mock various components used to instantiate an instance of PclusterConfig."""
mock_patches = get_mock_pcluster_config_patches(scheduler, extra_patches)
for function, return_value in mock_patches.items():
mocker.patch(function, return_value=return_value)
mocker.patch.object(PclusterConfig, "_PclusterConfig__test_configuration")
| 5,339,741
|
def in_auto_mode(conx: Connection) -> bool:
"""Determine whether the controller is in AUTO or one of the MANUAL
modes.
Wraps the Karel IN_AUTO_MODE routine.
NOTE: this method is moderately expensive, as it executes a Karel
program on the controller.
:returns: True if the controller is in AUTO mode
:rtype: bool
"""
ret = exec_karel_prg(conx, prg_name='dmh_autom')
if not ret[JSON_SUCCESS]:
raise DominhException("Select_TPE error: " + ret[JSON_REASON])
return ret['in_auto_mode']
| 5,339,742
|
def pref(pref_name, default=None):
"""Return a preference value.
Since this uses CFPreferencesCopyAppValue, Preferences can be defined
several places. Precedence is:
- MCX
- /var/root/Library/Preferences/com.github.salopensource.sal.plist
- /Library/Preferences/com.github.salopensource.sal.plist
- default_prefs defined here.
"""
default_prefs = {
'ServerURL': 'http://sal',
'osquery_launchd': 'com.facebook.osqueryd.plist',
'SkipFacts': [],
'SyncScripts': True,
'BasicAuth': True,
'GetGrains': False,
'GetOhai': False,
'LastRunWasOffline': False,
'SendOfflineReport': False,
}
pref_value = CFPreferencesCopyAppValue(pref_name, BUNDLE_ID)
if pref_value is None and default:
pref_value = default
elif pref_value is None and pref_name in default_prefs:
pref_value = default_prefs.get(pref_name)
# we're using a default value. We'll write it out to
# /Library/Preferences/<BUNDLE_ID>.plist for admin
# discoverability
set_pref(pref_name, pref_value)
if isinstance(pref_value, NSDate):
# convert NSDate/CFDates to strings
pref_value = str(pref_value)
return pref_value
| 5,339,743
|
def tRange(tStart, tStop, *, timedelta=300):
"""
Generate datetime list between tStart and tStop with fixed timedelta.
Parameters
----------
tStart: datetime
start time.
tStop: datetime
stop time.
Keywords
--------
timedelta: int
time delta in seconds (default: 300).
Returns
-------
tList: list
datetime between tStart and tStop with fixed timedelta.
Examples
--------
>>> import datetime as dt
>>> tList = tRange(dt.datetime(2011, 1, 1), dt.datetime(2011, 1, 2), ...
>>> timedelta=3600 * 12)
>>> tList
[datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 12, 0),
datetime.datetime(2011, 1, 2, 0, 0)]
History
-------
2020-02-25 First version.
"""
nTimedelta = int((tStop - tStart) / dt.timedelta(seconds=timedelta)) + 1
tList = [tStart + dt.timedelta(seconds=timedelta * i)
for i in range(0, nTimedelta)
if tStart + dt.timedelta(seconds=timedelta * i) <= tStop]
return tList
| 5,339,744
|
def insert_unit_record(cnx, time,user_id, unit_name, level, gear_level, gp, stars):
"""
Adds the specified unit to the database for a user
It will check previous entries and skip it if it's a duplicate record
'since only a handful of units change every day, this will save roughly a
bazillionmilliontrillion redundant database entries
"""
cursor = cnx.cursor()
query = """
insert into unit(time, user_id, unit_name, level, gear_level, gp, stars)
select %s, %s, %s, %s, %s, %s, %s
from unit
where (user_id = %s and unit_name = %s and gp = %s) having count(*) = 0;""";
cursor.execute(query, (time, user_id, unit_name, level, gear_level, gp, stars, user_id, unit_name, gp))
cnx.commit()
| 5,339,745
|
def TransformInversePoints(T,points):
"""Transforms a Nxk array of points by the inverse of an affine matrix"""
kminus = T.shape[1]-1
return numpy.dot(points-numpy.tile(T[0:kminus,kminus],(len(points),1)),T[0:kminus,0:kminus])
| 5,339,746
|
def act_func(act):
"""function that can choose activation function
Args:
act: (str) activation function name
Returns:
corresponding Pytorch activation function
"""
return nn.ModuleDict([
['relu', nn.ReLU(inplace=True)],
['leaky_relu', nn.LeakyReLU(negative_slope=0.01, inplace=True)],
['selu', nn.SELU(inplace=True)]
])[act]
| 5,339,747
|
def ajax_get_hashtags():
"""Flask Ajax Get Hashtag Route."""
f = request.args.get('f', 0, type=int)
t = request.args.get('t', 0, type=int)
hashtags_list = get_hashtags()
try:
if t == 0:
return jsonify(dict(hashtags_list[f:]))
elif t > len(hashtags_list):
return jsonify(dict(hashtags_list[f:]))
else:
return jsonify(dict(hashtags_list[f:t]))
except:
return False
| 5,339,748
|
def imprimeJogo(letrasErradas, letrasAcertadas, palavraSecreta):
"""
Feito a partir da variável global que contem as imagens
do jogo em ASCII art, e támbem as letras chutadas de
maneira correta e as letras erradas e a palavra secreta
"""
| 5,339,749
|
def extract_pdf_information(pdf_path):
""" Print and return pdf information
"""
# read binary
with open(pdf_path, 'rb') as f:
pdf = PdfFileReader(f)
information = pdf.getDocumentInfo()
number_of_pages = pdf.getNumPages()
txt = f"""
Information about {pdf_path}:
Author: {information.author}
Creator: {information.creator}
Producer: {information.producer}
Subject: {information.subject}
Title: {information.title}
Number of pages: {number_of_pages}
"""
print(txt)
return information
| 5,339,750
|
def normalize_string(subject: str) -> str:
"""Deprecated function alias"""
logger.warn("normalize_string is deprecated")
return string_to_title(subject)
| 5,339,751
|
def get_default_args(func):
"""
Return dict for parameter name and default value.
Parameters
----------
func : Callable
A function to get parameter name and default value.
Returns
-------
Dict
Parameter name and default value.
Examples
--------
>>> def test_func(a: int, b: str = "c") -> int:
... return a+1
>>> get_default_args(test_func)
{'b': 'c'}
>>> def test_func2(a: int = 1, b="c") -> int:
... return a+1
>>> get_default_args(test_func2)
{'a': 1, 'b': 'c'}
"""
signature = inspect.signature(func)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty
}
| 5,339,752
|
def main():
"""
Stub function for command line tool that launches the plasma calculator notebook.
"""
parser = argparse.ArgumentParser(description="Plasma calculator")
parser.add_argument(
"--port", type=int, default=8866, help="Port to run the notebook"
)
parser.add_argument(
"--dark", action="store_true", help="Turn on dark mode, reduces eye strain"
)
parser.add_argument(
"--no-browser", action="store_true", help="Do not open the browser"
)
# module_path = plasmapy.__path__[0]
module_path = os.path.dirname(os.path.abspath(__file__))
computed_calculator_path = os.path.join(module_path, "plasma_calculator.ipynb")
args = parser.parse_args()
theme = "dark" if args.dark else "light"
no_browser = "--no-browser" if args.no_browser else ""
command = f"voila {no_browser} --port={args.port} --theme={theme} {computed_calculator_path} \
--VoilaConfiguration.file_whitelist favicon.ico"
try:
subprocess.call(shlex.split(command))
except KeyboardInterrupt:
print("Stopping calculator! Bye")
| 5,339,753
|
def sec_to_time(seconds):
"""Transform seconds into a formatted time string.
Parameters
-----------
seconds : int
Seconds to be transformed.
Returns
-----------
time : string
A well formatted time string.
"""
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
return "%02d:%02d:%02d" % (h, m, s)
| 5,339,754
|
def chunks(list_of_features, n, agol_layer):
"""
Yield successive n-sized chunks from list_of_features.
list_of_features: list. List of features to be updated.
n: numeric. chunk size, 1000 is the max for AGOL feature layer
agol_layer: AGOL layer.
Ex:
flayer = gis.content.get(feature_layer_id)
agol_layer = flayer.layers[0]
"""
for i in range(0, len(list_of_features), n):
chunk_list=list_of_features[i:i + n]
agol_layer.edit_features(updates=chunk_list)
print("update successful")
| 5,339,755
|
def list_files(root_dir, extension, min_N=None, max_N=None, exclude=[], random_seed=24):
"""Yields all files with allowed extensions.
The absolute path is returned for each file.
Parameters
----------
root_dir : str, Path
Top level directory
extension : str, iterable
One or more extensions to filter files by.
min_N : int
Skip sub directory if it has less files than this.
max_N : int
Maximum amount of files to return for each sub directory.
If sub dir exceeds this limit, files are shuffled
and then sliced like so [:max_N]
exclude : iterable
Directories to ignore
Yields
------
A new file path (Path).
"""
if type(extension) is not list:
extension = [extension]
for dirpath, _, filenames in os.walk(root_dir):
dirpath = Path(dirpath)
if dirpath.name in exclude:
continue
if min_N and len(filenames) < min_N:
continue
if max_N and len(filenames) > max_N:
random.seed(random_seed)
random.shuffle(filenames)
filenames = filenames[:max_N]
for filename in filenames:
filepath = dirpath / filename
if filepath.suffix in extension:
yield filepath.resolve()
| 5,339,756
|
def power_oos(dmap_object, Y):
"""
Performs out-of-sample extension to calculate the values of the diffusion coordinates at each given point using the power-like method.
Parameters
----------
dmap_object : DiffusionMap object
Diffusion map upon which to perform the out-of-sample extension.
Y : array-like, shape (n_query, n_features)
Data for which to perform the out-of-sample extension.
Returns
-------
phi : numpy array, shape (n_query, n_eigenvectors)
Transformed value of the given values.
"""
m = int(Y.shape[0])
k_yx, y_bandwidths = dmap_object.local_kernel.compute(Y, return_bandwidths=True) # Evaluate on ref points
yy_right_norm_vec = dmap_object._make_right_norm_vec(k_yx, y_bandwidths)[1]
k_yy_diag = dmap_object.local_kernel.kernel_fxn(0, dmap_object.epsilon_fitted)
data_full = np.vstack([dmap_object.local_kernel.data, Y])
k_full = sps.hstack([k_yx, sps.eye(m) * k_yy_diag])
right_norm_full = np.hstack([dmap_object.right_norm_vec, yy_right_norm_vec])
weights = dmap_object._compute_weights(data_full)
P = dmap_object._left_normalize(dmap_object._right_normalize(k_full, right_norm_full, weights))
L = dmap_object._build_generator(P, dmap_object.epsilon_fitted, y_bandwidths)
L_yx = L[:, :-m]
L_yy = np.array(L[:, -m:].diagonal())
adj_evals = dmap_object.evals - L_yy.reshape(-1, 1)
dot_part = np.array(L_yx.dot(dmap_object.dmap))
return (1. / adj_evals) * dot_part
| 5,339,757
|
def main(token: str, nextcloud_username: str = None, nextcloud_password: str = None):
"""
Starts the Antistasi Discord Bot 'AntiPetros'.
Instantiates the bot, loads the extensions and starts the bot with the Token.
This is seperated from the Cli run function so the bot can be started via cli but also from within vscode.
Args:
token_file ([str]): discord token
nextcloud_username([str]): username for dev_drive on nextcloud
nexctcloud_password([str]): password for dev_drive on nextcloud
"""
log.info(glog.NEWRUN())
if nextcloud_username is not None:
os.environ['NEXTCLOUD_USERNAME'] = nextcloud_username
if nextcloud_password is not None:
os.environ['NEXTCLOUD_PASSWORD'] = nextcloud_password
os.environ['INFO_RUN'] = "0"
anti_petros_bot = AntiPetrosBot(token=token)
anti_petros_bot.run()
| 5,339,758
|
def test_ft_tf_queue_thre_con_unicast():
"""
Author : Prudvi Mangadu (prudvi.mangadu@broadcom.com)
"""
tf_data.index = 0
tf_data.threshold = 20
count = 1
while True:
result = 1
result2 = 1
cutils.banner_log("TEST Starts for iteration - {}".format(count))
st.log("Unicast queue threshold config")
tfapi.config_threshold(vars.D1, threshold_type='queue', port_alias=vars.D1T1P4, index=tf_data.index,
buffer_type='unicast', value=tf_data.threshold)
st.log("Unicast queue threshold config verify")
if not tfapi.verify_threshold(vars.D1, threshold_type='queue', buffer_type='unicast',
port_alias=vars.D1T1P4, uc0=tf_data.threshold):
st.error("Unable to configure unicast queue threshold value on unicast-queue buffer")
result = 0
st.log("Traffic start and stop")
tf_tg_traffic_start_stop(tf_data.unicast, tf_data.traffic_duration)
st.log("Checking unicast queue breach event")
if not tfapi.verify_threshold_breaches(vars.D1, buffer='queue', port=vars.D1T1P4, index=tf_data.index,
threshold_type='unicast'):
st.error("Unicast queue threshold breach Event is not found")
if tf_data.need_debug_prints:
tf_collecting_debug_logs_when_test_fails('unicast', tf_data.traffic_duration, tf_data.unicast)
result = 0
result2 = 0
st.log("Clear Unicast queue threshold breach")
tfapi.clear_threshold(vars.D1, breach='all')
st.log("Checking unicast queue breach event")
if tfapi.verify_threshold_breaches(vars.D1, buffer='queue', port=vars.D1T1P4, index=tf_data.index,
threshold_type='unicast'):
st.error("Post clear - Unicast queue threshold breach Event is found")
result = 0
st.log("Unicast queue threshold config clear")
tfapi.clear_threshold(vars.D1, threshold_type='queue', port_alias=vars.D1T1P4, index=tf_data.index,
buffer_type='unicast')
st.log("Unicast queue threshold config verify")
if tfapi.verify_threshold(vars.D1, threshold_type='queue', buffer_type='unicast',
port_alias=vars.D1T1P4, uc0=tf_data.threshold):
st.error("Unable to configure unicast queue threshold value")
result = 0
if not result2 and tf_data.need_debug_prints:
st.log("As Breach events are not observed collecting logs by disabling the Thresholds")
tf_collecting_debug_logs_when_test_fails('unicast', tf_data.traffic_duration, tf_data.unicast)
tfapi.clear_threshold(vars.D1, breach='all')
if result:
st.log("Test PASSED in Iteration {}.".format(count))
report_result(result)
break
if count == tf_data.test_max_retries_count:
st.log("Test Failed in all {} Iterations. Hence Declaring as FAIL".format(count))
report_result(result)
st.log("Test Failed in the Iteration-{}. Hence re-testing".format(count))
count += 1
| 5,339,759
|
def mock_get_schedules_response(
schedule_object,
) -> Generator[MagicMock, Any, None]:
"""Fixture for mocking the get_schedules response.
Args:
schedule_object: Fixture of mocked ``SwitcherV2Schedule`` object.
Yields:
Mocked ``SwitcherV2GetScheduleResponseMSG`` object.
"""
mock_response = MagicMock(messages.SwitcherV2GetScheduleResponseMSG)
mock_response.successful = True
mock_response.found_schedules = True
mock_response.get_schedules = [schedule_object]
mock_response.msg_type = messages.ResponseMessageType.GET_SCHEDULES
with patch(
"request_handlers.messages.SwitcherV2GetScheduleResponseMSG",
new=mock_response,
) as patcher:
yield patcher
| 5,339,760
|
def detect_face_landmarks(image, face_rect=None):
"""
detect face landmarks,
if face_rect is None, the face_rect is the same size as image
-> object
:param image:
:param face_rect: where the face is
"""
if(face_rect == None):
face_rect = dlib.rectangle(0, 0, image.shape[0], image.shape[1])
return _detect_face_landmarks(image, face_rect)
| 5,339,761
|
def main_handler(event, context):
"""
Pull the specified files from S3 and push to a Shared Folder in Google Drive.
The payload passed in contains a list of Excel file names in the array fileList.
"""
print('payload:', event)
bucket = os.environ.get('REPORTS_BUCKET')
credentials_parameter = os.environ.get('GOOGLE_CREDENTIALS_PARAMETER')
folder_id_parameter = os.environ.get('GOOGLE_SHARED_FOLDER_ID_PARAMETER')
credentials = get_service_account_credentials(credentials_parameter)
folder_id = get_folder_id(folder_id_parameter)
# note regarding cache_discovery=False
# https://github.com/googleapis/google-api-python-client/issues/299
service = discovery.build('drive', 'v3', credentials=credentials, cache_discovery=False)
s3_client = boto3.client('s3')
"""
for file_name in event['fileList']:
download_path = '/tmp/{}'.format(file_name)
s3_client.download_file(bucket, file_name, download_path)
upload_file(service, download_path, file_name, file_name, folder_id, 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
"""
#download from gdrive to S3
os.chdir('/tmp/')
request = service.files().get_media(fileId='1SrhmjVCW6dDV_vStCZHRzwI5dO_snvAo')
fh = io.FileIO('testfile.xlsx', 'wb')
downloader = MediaIoBaseDownload(fh, request)
done = False
while done is False:
status, done = downloader.next_chunk()
print(fh)
print ("Download %d%%." % int(status.progress() * 100))
a = os.listdir('/tmp/')
for x in a:
print('file in temp directorys is '+x)
s3_client.upload_file("/tmp/testfile.xlsx", "gdil-s3", "testfile.xlsx")
| 5,339,762
|
def ensure_iterable(obj):
"""Ensure ``obj`` is either a sequential iterable object that is not a
string type.
1. If ``obj`` is :const:`None` return an empty :class:`tuple`.
2. If ``obj`` is an instance of :class:`str`, :class:`bytes`, or :class:`Mapping`,
or not :class:`Iterable` return a list containing ``obj``
3. Return ``obj``
Parameters
----------
obj : object
The object to ensure iterability of
Returns
-------
:class:`Sequence`
Returns either ``obj`` or a wrapepr around ``obj``
"""
if obj is None:
return tuple()
if not isinstance(obj, Iterable) or isinstance(obj, basestring) or isinstance(obj, Mapping):
return [obj]
return obj
| 5,339,763
|
def test_dist(**kwargs):
"""
Test Distance
"""
a = np.random.random((2, 3))
d = ahrs.utils.metrics.euclidean(a[0], a[1])
result = np.allclose(d, np.linalg.norm(a[0] - a[1]))
return result
| 5,339,764
|
def get_pca(coords):
"""
Parameters
-----------
coords : 2D np.array of points
Returns
---------
new_coords : 2D np.array of points
keeps original number of dimension as input coords
variance_ratio : tuple
"""
pca = PCA(n_components=3)
# pca.fit(coords)
# new_coords = pca.transform(coords)
new_coords = pca.fit_transform(coords)
return new_coords, pca.explained_variance_ratio_
| 5,339,765
|
def get_form_info(email):
"""Gets all existing application form info from the database."""
user_id = get_user_id(email)
if not user_id:
return (False, "Invalid user ID. Please contact the organizers.")
query = """
SELECT * FROM applications WHERE user_id = %s AND application_year = %s
"""
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, [user_id, app_year.year + "0000"])
application = cursor.fetchone()
query = """
SELECT * FROM members WHERE user_id = %s
"""
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, [user_id])
member = cursor.fetchone()
query = """
SELECT * FROM diet WHERE user_id = %s
"""
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, [user_id])
diet = cursor.fetchall()
query = """
SELECT * FROM race WHERE user_id = %s
"""
with flask.g.pymysql_db.cursor() as cursor:
cursor.execute(query, [user_id])
race = cursor.fetchall()
validationForm = ValidationForm()
validationForm.fill(application, member)
return (FormInfo(application, member, diet, race), validationForm)
| 5,339,766
|
def getLog():
"""simple wrapper around basic logger"""
return logging
| 5,339,767
|
def _date(defval, t):
"""
支持的格式:
unix 时间戳
yyyy-mm-dd 格式的日期字符串
yyyy/mm/dd 格式的日期字符串
yyyymmdd 格式的日期字符串
如果年月日其中有一项是0,将被转换成 1
"""
if t is None:
return defval
if isinstance(t, (int, float)):
return datetime.fromtimestamp(t).strftime('%Y-%m-%d %H:%M:%S')
lt = len(t)
if lt < 8:
return defval
if lt == 8:
format_str = '%Y%m%d'
else:
t = t.replace('/', '-')
format_str = '%Y-%m-%d %H:%M:%S'
if lt > 19:
format_str += '.%f'
try:
return str(datetime.strptime(t, format_str))
except:
return defval
| 5,339,768
|
def compute_lat_long_distance(point1, point2):
"""
Compute the distance between two records that have fields 'lat' and 'lon'.
See details and reference implementation at http://andrew.hedges.name/experiments/haversine/
:param point1: a record with { 'lat', 'lon' }
:param point2: a record with { 'lat', 'lon' }
:return:
"""
lat1 = degree_to_rad(point1['lat'])
lat2 = degree_to_rad(point2['lat'])
lon1 = degree_to_rad(point1['lon'])
lon2 = degree_to_rad(point2['lon'])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = math.sin(dlat / 2) * math.sin(dlat / 2) + \
math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) * math.sin(dlon / 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
earth_radius = 3961 # Use 6373 for km
d = earth_radius * c # In miles
return round(d, 3)
| 5,339,769
|
def entropy_analysis(data_df):
"""
Masked Shannon entropy analysis for sequences
Parameters
----------
data_df: pandas.DataFrame
merged Pandas dataframe
Returns
-------
H_list: list
entropy values for all positions
null_freq_list: list
masked percentage for all positions
"""
seq_list = data_df['sequence'].values.tolist()
base_set = set([])
for seq in seq_list:
base_set.update(set(seq))
H_list = []
null_freq_list = []
STEP = ceil(len(seq_list[0]) / 10)
for base_idx in range(len(seq_list[0])):
if base_idx % STEP == 0:
logging.info('Entropy analysis in progress: {}% completed.'.format(10 * base_idx // STEP))
H, null_freq = base_entropy_masked(seq_list, base_set, base_idx)
H_list.append(H,)
null_freq_list.append(null_freq)
logging.info('Entropy analysis in progress: DONE.')
return H_list, null_freq_list
| 5,339,770
|
def set_global_cfg(cfg: CfgNode) -> None:
"""
Let the global config point to the given cfg.
Assume that the given "cfg" has the key "KEY", after calling
`set_global_cfg(cfg)`, the key can be accessed by:
::
from detectron2.config import global_cfg
print(global_cfg.KEY)
By using a hacky global config, you can access these configs anywhere,
without having to pass the config object or the values deep into the code.
This is a hacky feature introduced for quick prototyping / research exploration.
"""
global global_cfg
global_cfg.clear()
global_cfg.update(cfg)
| 5,339,771
|
def get_requirements(filename):
"""
Helper function to read the list of requirements from a file
"""
dependency_links = []
with open(filename) as requirements_file:
requirements = requirements_file.read().strip('\n').splitlines()
requirements = [req for req in requirements if not req.startswith('#')]
for i, req in enumerate(requirements):
if ':' in req:
match_obj = re.match(r"git\+(?:https|ssh|http):.*#egg=(.*)-(.*)", req)
assert match_obj, "Cannot make sense of url {}".format(req)
requirements[i] = "{req}=={ver}".format(req=match_obj.group(1), ver=match_obj.group(2))
dependency_links.append(req)
return requirements, dependency_links
| 5,339,772
|
def nigam_and_jennings_response(acc, dt, periods, xi):
"""
Implementation of the response spectrum calculation from Nigam and Jennings (1968).
Ref: Nigam, N. C., Jennings, P. C. (1968) Digital calculation of response spectra from strong-motion earthquake
records. National Science Foundation.
:param acc: acceleration in m/s2
:param periods: response periods of interest
:param dt: time step of the acceleration time series
:param xi: critical damping factor
:return: response displacement, response velocity, response acceleration
"""
acc = -np.array(acc, dtype=np.float)
periods = np.array(periods, dtype=np.float)
if periods[0] == 0:
s = 1
else:
s = 0
w = 6.2831853 / periods[s:]
dt = np.float(dt)
xi = np.float(xi)
# implement: delta_t should be less than period / 20
a, b = compute_a_and_b(xi, w, dt)
resp_u = np.zeros([len(periods), len(acc)], dtype=np.float)
resp_v = np.zeros([len(periods), len(acc)], dtype=np.float)
for i in range(len(acc) - 1): # possibly speed up using scipy.signal.lfilter
# x_i+1 = A cross (u, v) + B cross (acc_i, acc_i+1) # Eq 2.7a
resp_u[s:, i + 1] = (a[0][0] * resp_u[s:, i] + a[0][1] * resp_v[s:, i] + b[0][0] * acc[i] + b[0][1] * acc[i + 1])
resp_v[s:, i + 1] = (a[1][0] * resp_u[s:, i] + a[1][1] * resp_v[s:, i] + b[1][0] * acc[i] + b[1][1] * acc[i + 1])
w2 = w ** 2
if s:
sdof_acc = np.zeros_like(resp_u, dtype=np.float)
sdof_acc[s:] = -2 * xi * w[:, np.newaxis] * resp_v[s:] - w2[:, np.newaxis] * resp_u[s:]
sdof_acc[0] = acc
else:
sdof_acc = -2 * xi * w[:, np.newaxis] * resp_v[s:] - w2[:, np.newaxis] * resp_u[s:]
return resp_u, resp_v, sdof_acc
| 5,339,773
|
def rebin_BTSettl(make_unique=False):
"""
Rebin BTSettle models to atlas ck04 resolution; this makes
spectrophotometry MUCH faster
makes new directory: BTSettl_rebin
Code expects to be run in cdbs/grid directory
"""
# Get an atlas ck04 model, we will use this to set wavelength grid
sp_atlas = get_castelli_atmosphere()
# Create cdbs/grid directory for rebinned models
path = 'BTSettl_rebin/'
if not os.path.exists(path):
os.mkdir(path)
# Read in the existing catalog.fits file and rebin every spectrum.
cat = fits.getdata('BTSettl/catalog.fits')
files_all = [cat[ii][1].split('[')[0] for ii in range(len(cat))]
#==============================#
#tmp = []
#for ii in files_all:
# if ii.startswith('btp00'):
# tmp.append(ii)
#files_all = tmp
#=============================#
print( 'Rebinning BTSettl spectra')
if make_unique:
print('Making unique')
make_wavelength_unique(files_all, 'BTSettl')
print('Done')
for ff in range(len(files_all)):
vals = cat[ff][0].split(',')
temp = float(vals[0])
metal = float(vals[1])
logg = float(vals[2])
# Fetch the BTSettl spectrum, rebin flux
try:
sp = pysynphot.Icat('BTSettl', temp, metal, logg)
flux_rebin = rebin_spec(sp.wave, sp.flux, sp_atlas.wave)
# Make new output
c0 = fits.Column(name='Wavelength', format='D', array=sp_atlas.wave)
c1 = fits.Column(name='Flux', format='E', array=flux_rebin)
cols = fits.ColDefs([c0, c1])
tbhdu = fits.BinTableHDU.from_columns(cols)
prihdu = fits.PrimaryHDU()
tbhdu.header['TUNIT1'] = 'ANGSTROM'
tbhdu.header['TUNIT2'] = 'FLAM'
outfile = path + files_all[ff].split('[')[0]
finalhdu = fits.HDUList([prihdu, tbhdu])
finalhdu.writeto(outfile, overwrite=True)
except:
pdb.set_trace()
orig_file = '{0}/{1}'.format('BTSettl/', files_all[ff].split('[')[0])
outfile = path + files_all[ff].split('[')[0]
cmd = 'cp {0} {1}'.format(orig_file, outfile)
os.system(cmd)
print('Done {0} of {1}'.format(ff, len(files_all)))
return
| 5,339,774
|
def prompt_for_asking_mfa_code(perfect_profile: ProfileTuple):
"""該当プロフィールのMFAトークン入力を促すプロンプトを表示する"""
print(PROMPT_ASK_MFA_TOKEN_FOR_PROFILE_BEFORE + perfect_profile.name + PROMPT_ASK_MFA_TOKEN_FOR_PROFILE_AFTER)
| 5,339,775
|
def binary_hamiltonian(op, nqubits, qubits1, qubits2, weights, device=None):
"""Generates tt-tensor classical Ising model Hamiltonian (two-qubit interaction terms in a single basis).
Hamiltonian of the form:
H = sum_i omega_i sigma_ind1(i) sigma_ind2(i)
where omega_i are the Hamiltonian weights, sigma is the operator specified by op, and ind1, ind2 are
the qubit numbers specified of index i.
spins and weight values.
Parameters
----------
op : tt-tensor, single-qubit operator to encode MaxCut graph
nqubits : int, number of qubits (vertices) to encode in MaxCut problem
qubits1 : List/tensor of ints, qubit indices
qubits2 : List/tensor of ints, qubit indices
weights : List/tensor of real floats, graph weights
Returns
-------
Hamiltonian encoding specified classical Ising model graph.
"""
H, inds_min, inds_max = [], minimum(qubits1, qubits2), maximum(qubits1, qubits2)
for i in range(0, len(qubits1)):
#H = tt_matrix_sum(H, _two_qubit_interaction(op, op, inds_min[i], inds_max[i], weights[i], nqubits))
H = tt_matrix_sum(H, _two_qubit_interaction(op, op, inds_min[i], inds_max[i], weights[i], nqubits), device=device)
return [*H]
| 5,339,776
|
def map_entry(entry, fields):
"""
Retrieve the entry from the given fields and replace it if it should
have a different name within the database.
:param entry: is one of the followings:
- invalid field name
- command (i.g. $eq)
- valid field with no attribute name
- valid field with an attribute name to use instead
"""
field = fields.get(entry)
if isinstance(field, ListField) and isinstance(field.inner, EmbeddedField):
fields = field.inner.embedded_document_cls.schema.fields
elif isinstance(field, EmbeddedField):
fields = field.embedded_document_cls.schema.fields
return getattr(field, 'attribute', None) or entry, fields
| 5,339,777
|
def seqlogo_hairpin(N, target='none', ligand='theo', pam=None):
"""
Randomize the stem linking the aptamer to the sgRNA and the parts of the
sgRNA that were the most conserved after being randomized in previous
screens. Specifically, I identified these conserved positions by looking
at a sequence logo of the relatively few (≈20) clones I sequenced from my
previous screen. The theory behind this strategy is that positions with
a clear preference for some nucleotides over others are more likely to be
important for sensor activity.
In this case, the previous screen was ``mhf`` and the sequence logo showed
that all three positions in the ruler that were randomized had a preference
for a non-native nucleotide. (In fact, the preference was for C in all
three cases.) The ``mhf`` screen kept two positions in the ruler fixed,
but since these positions were flanked by important-seeming positions on
both sides, I decided to randomize the whole ruler this time.
I am also randomizing the stem (often called a communication module) that
connects the aptamer to the sgRNA. The ``N`` parameter dictates how long
this stem should be, in base pairs, not counting any base pairs that are
implicitly included with the aptamer. (Note: I realized that including one
base pair on the end of the aptamer domain makes simulating the whole
construct easier, so all the new aptamers include one base pair like that.
But the theophylline aptamer predates this realization, so it doesn't.)
Parameters
----------
N: int
The length of the communication module, in base pairs. Recommended
values are 3 and 4.
"""
# Make sure the length of the communication module makes sense.
if N < 0:
raise ValueError('qh: N must be >= 0')
# Base this library on the optimized sgRNA described by Dang et al.
sgrna = on(pam=pam, target=target)
# Randomize the entire ruler.
sgrna['ruler'].seq = 'GU' + 'N' * (len(sgrna['ruler']) - 2)
# Randomize the communication module.
sgrna['hairpin/5'].seq = N * 'N'
sgrna['hairpin/3'].seq = N * 'N'
# Insert the aptamer above the communication module.
sgrna['hairpin/o'].attachment_sites = 0,4
sgrna.attach(aptamer(ligand), 'hairpin/o', 0, 'hairpin/o', 4)
return sgrna
| 5,339,778
|
def azure_firewall_ip_group_list_command(client: AzureFirewallClient, args: Dict[str, Any]) -> CommandResults:
"""
List IP groups in resource group or subscription.
Args:
client (AzureFirewallClient): Azure Firewall API client.
args (dict): Command arguments from XSOAR.
Returns:
CommandResults: outputs, readable outputs and raw response for XSOAR.
"""
resource = args.get('resource')
limit = arg_to_number(args.get('limit') or '50')
page = arg_to_number(args.get('page') or '1')
validate_pagination_arguments(limit, page)
readable_message = get_pagination_readable_message(header='IP Group List:',
limit=limit, page=page)
start_offset = (page - 1) * limit
end_offset = start_offset + limit
complete_requests = False
total_response = {'value': []}
response = client.azure_firewall_ip_group_list_request(resource=resource)
while not complete_requests:
total_response['value'].extend(response.get('value'))
if len(total_response['value']) >= end_offset or not response.get('nextLink'):
complete_requests = True
else:
response = client.azure_firewall_ip_group_list_request(resource=resource,
next_link=response.get('nextLink'))
return generate_ip_group_command_output(total_response.get('value')[start_offset: end_offset],
readable_header=readable_message)
| 5,339,779
|
def plot_heatmap(df, title=""):
"""
Plotly heatmap wrapper
:param df: pd.DataFrame
:param title: str
"""
fig = go.Figure(
data=go.Heatmap(z=df.values, x=df.columns, y=df.index, colorscale="RdBu")
)
fig.update_layout(template=_TEMPLATE, title=title, legend_orientation="h")
return fig
| 5,339,780
|
def normalise_dir_pattern(repo_dir, d):
"""
if d is a relative path, prepend the repo_dir to it
"""
if not d.startswith(repo_dir):
return os.path.join(repo_dir, d)
else:
return d
| 5,339,781
|
def describe_dependency():
"""
Describe Dependency supported
"""
print('acl - clausal modifier of noun')
print('advcl - adverbial clause modifier')
print('advmod - adverbial modifier')
print('amod - adjectival modifier')
print('appos - appositional modifier')
print('aux - auxiliary')
print('case - case marking')
print('ccomp - clausal complement')
print('compound - compound')
print('compound:plur - plural compound')
print('conj - conjunct')
print('cop - cop')
print('csubj - clausal subject')
print('dep - dependent')
print('det - determiner')
print('fixed - multi-word expression')
print('flat - name')
print('iobj - indirect object')
print('mark - marker')
print('nmod - nominal modifier')
print('nsubj - nominal subject')
print('obj - direct object')
print('parataxis - parataxis')
print('root - root')
print('xcomp - open clausal complement')
print(
'you can read more from https://universaldependencies.org/treebanks/id_pud/index.html'
)
| 5,339,782
|
def patch(diff, orig_file, filename, request=None):
"""Apply a diff to a file.
This delegates out to ``patch`` because noone except Larry Wall knows how
to patch.
Args:
diff (bytes):
The contents of the diff to apply.
orig_file (bytes):
The contents of the original file.
filename (unicode):
The name of the file being patched.
request (django.http.HttpRequest, optional):
The HTTP request, for use in logging.
Returns:
bytes:
The contents of the patched file.
Raises:
reviewboard.diffutils.errors.PatchError:
An error occurred when trying to apply the patch.
"""
log_timer = log_timed('Patching file %s' % filename, request=request)
if not diff.strip():
# Someone uploaded an unchanged file. Return the one we're patching.
return orig_file
# Prepare the temporary directory if none is available
tempdir = tempfile.mkdtemp(prefix='reviewboard.')
try:
orig_file = convert_line_endings(orig_file)
diff = convert_line_endings(diff)
(fd, oldfile) = tempfile.mkstemp(dir=tempdir)
f = os.fdopen(fd, 'w+b')
f.write(orig_file)
f.close()
newfile = '%s-new' % oldfile
process = subprocess.Popen(['patch', '-o', newfile, oldfile],
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, cwd=tempdir)
with controlled_subprocess('patch', process) as p:
stdout, stderr = p.communicate(diff)
failure = p.returncode
try:
with open(newfile, 'rb') as f:
new_file = f.read()
except Exception:
new_file = None
if failure:
rejects_file = '%s.rej' % newfile
try:
with open(rejects_file, 'rb') as f:
rejects = f.read()
except Exception:
rejects = None
error_output = force_text(stderr.strip() or stdout.strip())
# Munge the output to show the filename instead of
# randomly-generated tempdir locations.
base_filename = os.path.basename(filename)
error_output = (
error_output
.replace(rejects_file, '%s.rej' % base_filename)
.replace(oldfile, base_filename)
)
raise PatchError(filename=filename,
error_output=error_output,
orig_file=orig_file,
new_file=new_file,
diff=diff,
rejects=rejects)
return new_file
finally:
shutil.rmtree(tempdir)
log_timer.done()
| 5,339,783
|
def make_docs():
"""Create the documentation and add it to ../src/docs"""
doc_build_dir = os.path.join(THIS_DIR, '..', 'docs')
doc_html_build = os.path.join(doc_build_dir, '_build', 'html')
doc_dest_dir = os.path.join(THIS_DIR, '..', 'src', 'docs')
ex("make clean && make html", cwd=doc_build_dir)
if os.path.isdir(doc_dest_dir):
remove_directory(doc_dest_dir, False)
else:
os.makedirs(doc_dest_dir)
items = set(os.listdir(doc_html_build)) ^ set(['.buildinfo', 'objects.inv'])
for item in items:
source = os.path.abspath(os.path.join(doc_html_build, item))
dest = os.path.abspath(os.path.join(doc_dest_dir, item))
if os.path.isdir(source):
shutil.copytree(source, dest)
else:
shutil.copyfile(source, dest)
| 5,339,784
|
def test_naptr_flood(cetp_mgr):
""" Tests the establishment of CETP-H2H, CETP-C2C layer and CETPTransport(s) towards r-ces upon getting a list of NAPTR records."""
sender_info = ("10.0.3.111", 43333)
l_hostid, l_hostip = "hosta1.cesa.lte.", sender_info[0]
dst_id, r_cesid, r_ip, r_port, r_proto = "", "", "", "", ""
naptr_records = {}
naptr_records['srv1.hostb1.cesb.lte.'] = [('srv1.hostb1.cesb.lte.', 'cesb.lte.', '10.0.3.103', '49001', 'tls'), ('srv1.hostb1.cesb.lte.', 'cesb.lte.', '10.0.3.103', '49002', 'tls')]
naptr_list = naptr_records['srv1.hostb1.cesb.lte.']
cb_args = ("SomeValue", sender_info)
st = time.time()
for it in range(0, 5000):
n = naptr_list[:]
dst_id, r_cesid, r_ip, r_port, r_proto = n[0]
yield from asyncio.sleep(random.uniform(0, 0.001))
#cetp_mgr.process_outbound_cetp(some_cb, cb_args, dst_id, r_cesid, n)
cetp_mgr.process_dns_message(some_cb, cb_args, dst_id, r_cesid=r_cesid, naptr_list=n)
#et = time.time() - st
#print("Total time", et)
test_output(cetp_mgr)
yield from asyncio.sleep(4)
test_output(cetp_mgr)
| 5,339,785
|
def shift_transactions_forward(index, tindex, file, pos, opos):
"""Copy transactions forward in the data file
This might be done as part of a recovery effort
"""
# Cache a bunch of methods
seek=file.seek
read=file.read
write=file.write
index_get=index.get
# Initialize,
pv=z64
p1=opos
p2=pos
offset=p2-p1
# Copy the data in two stages. In the packing stage,
# we skip records that are non-current or that are for
# unreferenced objects. We also skip undone transactions.
#
# After the packing stage, we copy everything but undone
# transactions, however, we have to update various back pointers.
# We have to have the storage lock in the second phase to keep
# data from being changed while we're copying.
pnv=None
while 1:
# Read the transaction record
seek(pos)
h=read(TRANS_HDR_LEN)
if len(h) < TRANS_HDR_LEN: break
tid, stl, status, ul, dl, el = unpack(TRANS_HDR,h)
status = as_text(status)
if status=='c': break # Oops. we found a checkpoint flag.
tl=u64(stl)
tpos=pos
tend=tpos+tl
otpos=opos # start pos of output trans
thl=ul+dl+el
h2=read(thl)
if len(h2) != thl:
raise PackError(opos)
# write out the transaction record
seek(opos)
write(h)
write(h2)
thl=TRANS_HDR_LEN+thl
pos=tpos+thl
opos=otpos+thl
while pos < tend:
# Read the data records for this transaction
seek(pos)
h=read(DATA_HDR_LEN)
oid,serial,sprev,stloc,vlen,splen = unpack(DATA_HDR, h)
assert not vlen
plen=u64(splen)
dlen=DATA_HDR_LEN+(plen or 8)
tindex[oid]=opos
if plen: p=read(plen)
else:
p=read(8)
p=u64(p)
if p >= p2: p=p-offset
elif p >= p1:
# Ick, we're in trouble. Let's bail
# to the index and hope for the best
p=index_get(oid, 0)
p=p64(p)
# WRITE
seek(opos)
sprev=p64(index_get(oid, 0))
write(pack(DATA_HDR,
oid, serial, sprev, p64(otpos), 0, splen))
write(p)
opos=opos+dlen
pos=pos+dlen
# skip the (intentionally redundant) transaction length
pos=pos+8
if status != 'u':
index.update(tindex) # Record the position
tindex.clear()
write(stl)
opos=opos+8
return opos
| 5,339,786
|
def draw_disturbances(seed, shocks_cov, num_periods, num_draws):
"""Creates desired number of draws of a multivariate standard normal distribution."""
# Set seed
np.random.seed(seed)
# Input parameters of the distribution
mean = [0, 0, 0]
shocks_cov_matrix = np.zeros((3, 3), float)
np.fill_diagonal(shocks_cov_matrix, shocks_cov)
# Create draws from the standard normal distribution
draws = np.random.multivariate_normal(
mean, shocks_cov_matrix, (num_periods, num_draws)
)
# Return function output
return draws
| 5,339,787
|
def main():
"""Entrypoint function."""
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--username',
help='Hydro Quebec username')
parser.add_argument('-p', '--password',
help='Password')
parser.add_argument('-j', '--json', action='store_true',
default=False, help='Json output')
parser.add_argument('-i', '--influxdb', action='store_true',
default=False, help='InfluxDb output')
parser.add_argument('-c', '--contract',
default=None, help='Contract number')
parser.add_argument('-l', '--list-contracts', action='store_true',
default=False, help='List all your contracts')
parser.add_argument('-H', '--hourly', action='store_true',
default=False, help='Show yesterday hourly consumption')
parser.add_argument('-t', '--timeout',
default=REQUESTS_TIMEOUT, help='Request timeout')
parser.add_argument('-V', '--version', action='store_true',
default=False, help='Show version')
raw_group = parser.add_argument_group('Detailled-energy raw download option')
raw_group.add_argument('--detailled-energy', action='store_true',
default=False, help='Get raw json output download')
raw_group.add_argument('--start-date',
default=(datetime.datetime.now(HQ_TIMEZONE) -
datetime.timedelta(days=1)).strftime("%Y-%m-%d"),
help='Start date for detailled-output')
raw_group.add_argument('--end-date',
default=datetime.datetime.now(HQ_TIMEZONE).strftime("%Y-%m-%d"),
help="End date for detailled-output")
args = parser.parse_args()
if args.version:
print(VERSION)
return 0
if not args.username or not args.password:
parser.print_usage()
print("pyhydroquebec: error: the following arguments are required: "
"-u/--username, -p/--password")
return 3
client = HydroQuebecClient(args.username, args.password, args.timeout)
loop = asyncio.get_event_loop()
if args.detailled_energy is False:
async_func = client.fetch_data()
else:
start_date = datetime.datetime.strptime(args.start_date, '%Y-%m-%d')
end_date = datetime.datetime.strptime(args.end_date, '%Y-%m-%d')
async_func = client.fetch_data_detailled_energy_use(start_date,
end_date)
try:
fut = asyncio.wait([async_func])
loop.run_until_complete(fut)
except BaseException as exp:
print(exp)
return 1
finally:
close_fut = asyncio.wait([client.close_session()])
loop.run_until_complete(close_fut)
if not client.get_data():
return 2
if args.list_contracts:
print("Contracts: {}".format(", ".join(client.get_contracts())))
elif args.influxdb:
output_influx(client.get_data(args.contract))
elif args.json or args.detailled_energy:
output_json(client.get_data(args.contract))
else:
output_text(args.username, client.get_data(args.contract), args.hourly)
return 0
| 5,339,788
|
def wheel(pos):
"""Generate rainbow colors across 0-255 positions."""
if pos>1280:
pos = 1280
if pos <= 255:
r = 255-pos
g = 0
b = 255
else:
pos = pos-256
if pos <= 255:
r = 0
g = pos
b = 255
else:
pos = pos-256
if pos <= 255:
r = 0
g = 255
b = 255-pos
else:
pos = pos-256
if pos <= 255:
r = pos
g = 255
b = 0
else:
pos = pos-256
if pos <= 255:
r = 255
g = 255-pos
b = 0
return (r, g, b)
| 5,339,789
|
def get_physical_connectivity(port):
"""Get local_link_information from specified port.
@param port a port object
@return lli a list of following dict
{"switch_id": "MAC_of_switch", "port_id": "1/1/0/1",
"switch_info": "switch_name"}
"""
# TODO(yushiro) replace following characters to constant value
binding_profile = port['binding:profile']
lli = binding_profile.get("local_link_information", {})
is_all_specified = True if lli else False
for i in lli:
if not (i.get('switch_id') and i.get('port_id') and
i.get('switch_info')):
is_all_specified = False
if is_all_specified:
return lli
LOG.error(_LE("Some physical network param is missing:%s"), lli)
raise ml2_exc.MechanismDriverError(method="get_physical_connectivity")
| 5,339,790
|
def optimize_profile(diff_matrix, x_points, dc_init, exp_norm_profiles,
display_result=True, labels=None):
"""
Fit the diffusion matrix
Parameters
----------
diff_matrix : tuple
tuple of (eigenvalues, eigenvectors) in reduced basis (dim n-1)
x_points : 1-D array_like
spatial coordinates
dc_init : array
concentration difference between endmembers
exp_norm_profiles : list of arrays
profiles to be fitted, of length the nb of experiments, with n
profiles for each experiment. Profiles are normalized, that is, an
estimation of the estimated mean concentration should be substracted.
"""
n_comp = len(dc_init[0]) - 1
n_exp = len(x_points)
def cost_function(coeffs, x_points, dc_init, exp_norm_profiles):
n_comp = len(dc_init[0]) - 1
diag = coeffs[:n_comp]
n_exp = len(x_points)
P = np.matrix(coeffs[n_comp: n_comp + n_comp**2].reshape((n_comp,
n_comp)))
adjust_cmeans = coeffs[n_comp + n_comp**2:
n_comp + n_comp**2 +
(n_comp) * n_exp].reshape((n_exp, n_comp))
adjust_dc = coeffs[n_comp + n_comp**2 + (n_comp) * n_exp:
n_comp + n_comp**2 +
2 * (n_comp) * n_exp].reshape((n_exp, n_comp))
errors = np.array([])
for i in range(n_exp):
dc_corr = np.copy(dc_init[i])
dc_corr[:-1] -= adjust_dc[i]
profile_corr = np.copy(exp_norm_profiles[i])
profile_corr[:-1, :] -= adjust_cmeans[i][:, None]
error = evolve_profile((diag, P), x_points[i], dc_corr, profile_corr, plot=False)
errors = np.concatenate((errors, error))
return errors
diag, P = diff_matrix
coeffs = np.concatenate((diag, np.array(P).ravel(),
np.zeros(2 * n_exp * n_comp)))
res = optimize.leastsq(cost_function, coeffs,
args=(x_points, dc_init, exp_norm_profiles),
full_output=True, factor=10)[0]
diags, eigvecs, shifts = res[:n_comp], \
res[n_comp: n_comp + n_comp**2].reshape((n_comp, n_comp)), \
res[n_comp + n_comp**2:].reshape((2, n_exp, n_comp))
if display_result:
for i in range(n_exp):
dc_corr = np.copy(dc_init[i])
dc_corr[:-1] -= shifts[1, i]
prof_corr = np.copy(exp_norm_profiles[i])
prof_corr[:-1] -= shifts[0, i][:, None]
_ = evolve_profile((diags, eigvecs), x_points[i], dc_corr,
exp_norm_profiles=prof_corr, labels=labels)
return diags, eigvecs, shifts
| 5,339,791
|
def getargsfromdoc(obj):
"""Get arguments from object doc"""
if obj.__doc__ is not None:
return getargsfromtext(obj.__doc__, obj.__name__)
| 5,339,792
|
def test_0007_e():
""" 불규칙 활용기능 테스트 1"""
# #### "러" 불규칙 활용
pos_list = pos_E.endswithE(u"검푸르러")
assert postag_left_check(pos_list, u"검푸르"), u"검푸르 in eojeol"
assert postag_end_check(pos_list, u"러/EC"), u"러/EC in eojeol"
pos_list = pos_E.endswithE(u"푸르러서")
assert postag_left_check(pos_list, u"푸르"), u"푸르 in eojeol"
assert postag_end_check(pos_list, u"어서/EC"), u"어서/EC in eojeol"
# #### "ㄷ" 불규칙 활용
pos_list = pos_E.endswithE(u"걸으니")
# 규칙형 검사
assert postag_left_check(pos_list, u"걸"), u"걸 in eojeol"
assert postag_end_check(pos_list, u"으니/EC"), u"으니/EC in eojeol"
# 불규칙형
assert postag_left_check(pos_list, u"걷"), u"걷 in eojeol"
assert postag_end_check(pos_list, u"으니/EC"), u"으니/EC in eojeol"
pos_list = pos_E.endswithE(u"실어")
# 규칙형 검사
assert postag_left_check(pos_list, u"실"), u"실 in eojeol"
assert postag_end_check(pos_list, u"어/EC"), u"어/EC in eojeol"
# 불규칙형
assert postag_left_check(pos_list, u"싣"), u"싣 in eojeol"
assert postag_end_check(pos_list, u"어/EC"), u"어/EC in eojeol"
# #### "ㄹ" 불규칙 활용
pos_list = pos_E.endswithE(u"주니") # 몸무게가 줄다. 몸무게가 주니
# 규칙형 검사
assert postag_left_check(pos_list, u"주"), u"주 in eojeol"
assert postag_end_check(pos_list, u"니/EC"), u"니/EC in eojeol"
# 불규칙형
assert postag_left_check(pos_list, u"줄"), u"줄 in eojeol"
assert postag_end_check(pos_list, u"니/EC"), u"니/EC in eojeol"
# 아주 예외적으로 시가 붙는 경우 불규칙이 발생한다.
pos_list = pos_E.endswithE(u"가셨다.") # 아버지는 칼을 가셨다.
# 규칙형 검사
assert postag_left_check(pos_list, u"가"), u"가 in eojeol"
assert postag_end_check(
pos_list, u"시/EP+었/EP+다/EF"), u"시/EP+었/EP+다/EF in eojeol"
# 불규칙형
assert postag_left_check(pos_list, u"갈"), u"갈 in eojeol"
assert postag_end_check(
pos_list, u"시/EP+었/EP+다/EF"), u"시/EP+었/EP+다/EF in eojeol"
# "우" 불규칙
pos_list = pos_E.endswithE(u"퍼")
assert postag_left_check(pos_list, u"푸"), u"푸 in eojeol"
assert postag_end_check(pos_list, u"어/EC"), u"어/EC in eojeol"
pos_list = pos_E.endswithE(u"퍼서")
assert postag_left_check(pos_list, u"푸"), u"푸 in eojeol"
assert postag_end_check(pos_list, u"어서/EC"), u"어서/EC in eojeol"
pos_list = pos_E.endswithE(u"펐다.")
assert postag_left_check(pos_list, u"푸"), u"푸 in eojeol"
assert postag_end_check(pos_list, u"었/EP+다/EF"), u"었/EP+다/EF in eojeol"
| 5,339,793
|
def nms(dets, thresh):
"""Dispatch to either CPU or GPU NMS implementations.\
Accept dets as tensor"""
return pth_nms(dets, thresh)
| 5,339,794
|
def get_disk_usage():
"""
Handle determining disk usage on this VM
"""
disk = {}
# Get the amount of general disk space used
cmd_out = subprocess.getstatusoutput('df -h | grep "/dev/xvda1"')[1]
cmd_parts = cmd_out.split()
disk["gen_disk_used"] = cmd_parts[2]
disk["gen_disk_total"] = cmd_parts[3]
disk["gen_disk_percent"] = cmd_parts[4]
# Get the amount of Docker disk space used
cmd_out = subprocess.getstatusoutput('df -h | grep "tmpfs"')[1]
cmd_parts = cmd_out.split()
disk["docker_disk_used"] = cmd_parts[2]
disk["docker_disk_total"] = cmd_parts[3]
disk["docker_disk_percent"] = cmd_parts[4]
return disk
| 5,339,795
|
def generate_arg_parser():
"""
this function receives input arguments for various functions.
:return:
"""
project_path = get_project_path()
# load data
default_db_path = "".join([project_path, "/data/DisasterResponseDataBase.db"])
default_model_path = "".join([str(project_path), "/models/dr_trained_model.lzma"])
parser = argparse.ArgumentParser(
description="Load data from database, load model, and run the webapp."
)
parser.add_argument(
"--db_file",
action="store",
dest="db_file",
type=str,
default=default_db_path,
help="Path to disaster response database",
)
parser.add_argument(
"--model_file",
action="store",
dest="model_file",
type=str,
default=default_model_path,
help="path to store trained machine leaning model.",
)
return parser.parse_args(), parser
| 5,339,796
|
def QFont_from_Font(font):
""" Convert the given Enaml Font into a QFont.
Parameters
----------
font : Font
The Enaml Font object.
Returns
-------
result : QFont
The QFont instance for the given Enaml font.
"""
qfont = QFont(font.family, font.pointsize, font.weight)
qfont.setStyle(FONT_STYLES[font.style])
qfont.setCapitalization(FONT_CAPS[font.caps])
qfont.setStretch(FONT_STRETCH[font.stretch])
return qfont
| 5,339,797
|
def download_file(source_url, dest_path, source_path=""):
"""
Downloads the given archive and extracts it
Currently works for:
- `zip` files
- `tar.gz` files
Inputs:
- `source_url` (str): URL to download the ZIP file
- `source_path` (str): path of the file in the ZIP file
- `dest_path` (str): path of the extracted file
"""
# Initiate the request
r = requests.get(source_url, stream=True)
# Measure the total size of the ZIP file
total_size = int(r.headers.get("content-length", 0))
block_size = 1024
t = tqdm(total=total_size, unit="iB", unit_scale=True)
file_extension = source_url.split(".")[-1]
if file_extension == "zip":
# Save the ZIP file in a temporary ZIP file
with open(os.path.join("data", "raw", "temp.zip"), "wb") as f:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
if total_size != 0 and t.n != total_size:
print(
colored(
"ERROR: Something went wrong while downloading the ZIP file", "red"
)
)
z = zipfile.ZipFile(os.path.join("data", "raw", "temp.zip"))
# Extract the file from the temporary file
if source_path != "":
z.extract(source_path, os.path.dirname(dest_path))
os.rename(os.path.join(os.path.dirname(dest_path), source_path), dest_path)
else:
z.extractall(os.path.dirname(dest_path))
# z.extractall(dest_path.split(os.path.sep)[:-1])
# Remove the temporary file
os.remove(os.path.join("data", "raw", "temp.zip"))
elif file_extension == "gz":
# Save the GZ file in a temporary GZ file
with open(os.path.join("data", "raw", "temp.gz"), "wb") as temp_file:
for data in r.iter_content(block_size):
t.update(len(data))
temp_file.write(data)
t.close()
if total_size != 0 and t.n != total_size:
print(
colored(
"ERROR: Something went wrong while downloading the GZ file", "red"
)
)
with gzip.open(os.path.join("data", "raw", "temp.gz"), "rb") as file_in:
with open(dest_path, "wb") as file_out:
shutil.copyfileobj(file_in, file_out)
# Remove the temporary file
os.remove(os.path.join("data", "raw", "temp.gz"))
| 5,339,798
|
def test_sns_topic_created(template):
"""
Test for SNS Topic and Subscription: S3 Upload Event Notification
"""
template.resource_count_is("AWS::SNS::Subscription", 1)
template.resource_count_is("AWS::SNS::Topic", 1)
template.resource_count_is("AWS::SNS::TopicPolicy", 1)
| 5,339,799
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.