content
stringlengths
22
815k
id
int64
0
4.91M
def get_env(env_name: str) -> str: """ Safely read an environment variable. Raises errors if it is not defined or it is empty. :param env_name: the name of the environment variable :return: the value of the environment variable """ if env_name not in os.environ: raise KeyError(f"{env_name} not defined") env_value: str = os.environ[env_name] if not env_value: raise ValueError(f"{env_name} has yet to be configured") return env_value
5,337,800
def image_resize_and_sharpen(image, size, preserve_aspect_ratio=False, factor=2.0): """ Create a thumbnail by resizing while keeping ratio. A sharpen filter is applied for a better looking result. :param image: PIL.Image.Image() :param size: 2-tuple(width, height) :param preserve_aspect_ratio: boolean (default: False) :param factor: Sharpen factor (default: 2.0) """ origin_mode = image.mode if image.mode != 'RGBA': image = image.convert('RGBA') image.thumbnail(size, Image.ANTIALIAS) if preserve_aspect_ratio: size = image.size sharpener = ImageEnhance.Sharpness(image) resized_image = sharpener.enhance(factor) # create a transparent image for background and paste the image on it image = Image.new('RGBA', size, (255, 255, 255, 0)) image.paste(resized_image, ((size[0] - resized_image.size[0]) / 2, (size[1] - resized_image.size[1]) / 2)) if image.mode != origin_mode: image = image.convert(origin_mode) return image
5,337,801
def callHgsql(database, command): """ Run hgsql command using subprocess, return stdout data if no error.""" cmd = ["hgsql", database, "-Ne", command] p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) cmdout, cmderr = p.communicate() if p.returncode != 0: # keep command arguments nicely quoted cmdstr = " ".join([pipes.quote(arg) for arg in cmd]) raise Exception("Error from: " + cmdstr + ": " + cmderr) return cmdout
5,337,802
def validate_mash(seq_list, metadata_reports, expected_species): """ Takes a species name as a string (i.e. 'Salmonella enterica') and creates a dictionary with keys for each Seq ID and boolean values if the value pulled from MASH_ReferenceGenome matches the string or not :param seq_list: List of OLC Seq IDs :param metadata_reports: Dictionary retrieved from get_combined_metadata() :param expected_species: String containing expected species :return: Dictionary with Seq IDs as keys and True/False as values """ seq_status = {} for seqid in seq_list: print('Validating MASH reference genome for {} '.format(seqid)) df = metadata_reports[seqid] observed_species = df.loc[df['SeqID'] == seqid]['MASH_ReferenceGenome'].values[0] if observed_species == expected_species: seq_status[seqid] = True else: seq_status[seqid] = False return seq_status
5,337,803
def style_strokes(svg_path: str, stroke_color: str='#ff0000', stroke_width: float=0.07559055) -> etree.ElementTree: """Modifies a svg file so that all black paths become laser cutting paths. Args: svg_path: a file path to the svg file to modify and overwrite. stroke_color: the color, as a hex code, to set paths to. stroke_width: the stroke width, in pixels (at 96 pixels per inch), to set paths to. Returns: The modified XML tree. """ xml = etree.parse(svg_path) svg = xml.getroot() paths = svg.findall('.//{http://www.w3.org/2000/svg}path' '[@style="stroke:#000000;fill:none"]') for path in paths: path.set('style', ( 'fill:none;stroke:{};stroke-opacity:1;stroke-width:{};' 'stroke-miterlimit:4;stroke-dasharray:none' ).format(stroke_color, stroke_width)) return xml
5,337,804
def preview_pipeline( pipeline: Pipeline, domain_retriever: DomainRetriever, limit: int = 50, offset: int = 0 ) -> str: """ Execute a pipeline but returns only a slice of the results, determined by `limit` and `offset` parameters, as JSON. Return format follows the 'table' JSON table schema used by pandas (see https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#orient-options), with a few addition related to pagination. Note: it's required to use pandas `to_json` methods, as it convert NaN and dates to an appropriate format. """ df, _ = execute_pipeline(pipeline, domain_retriever) return json.dumps( { 'schema': build_table_schema(df, index=False), 'offset': offset, 'limit': limit, 'total': df.shape[0], 'data': json.loads(df[offset : offset + limit].to_json(orient='records')), } )
5,337,805
def redirect_to_url(url): """ Return a bcm dictionary with a command to redirect to 'url' """ return {'mode': 'redirect', 'url': url}
5,337,806
def get_xml_tagged_data(buffer, include_refstr=True): """ figure out what format file it is and call the respective function to return data for training :param buffer: :param include_refstr: during training do not need refstr :return: """ if len(buffer) > 1 and 'http://www.elsevier.com/xml/document' in buffer[1]: return get_elsevier_tagged_data(REGEX_XML_TAG_FORMAT.sub('', ' '.join(buffer))) if len(buffer) > 1 and 'ADSBIBCODE' in buffer[0] and 'citation_list' in buffer[1]: buffer = '<?xml version="1.0"?>' + ' '.join(buffer[1:]) return get_crossref_tagged_data(buffer, include_refstr) if len(buffer) > 1 and 'ADSBIBCODE' in buffer[0] and 'Citation ID' in buffer[1]: selected_buffer = ['<?xml version="1.0"?>', '<CitationList>'] for line in buffer: line = line.strip() if line.startswith('<Citation ID='): selected_buffer.append(line) selected_buffer.append('</CitationList>') return get_springer_tagged_data('\n'.join(selected_buffer), include_refstr) return None
5,337,807
async def test_successful_config_flow(hass, mqtt_mock): """Test a successful config flow.""" # Initialize a config flow result = await _flow_init(hass) # Check that the config flow shows the user form as the first step assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" result = await _flow_configure(hass, result) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == USER_INPUT[CONF_NAME] assert result["data"] == USER_INPUT assert result["result"]
5,337,808
async def helppanel(ctx): """ Send out the student leadership panel. :param ctx: Context :return: None """ await helpdirectory.send_help_panel(ctx)
5,337,809
def de_dup( data: pd.DataFrame, drop_duplicates_kwargs: Dict[str, Any] = {}, ) -> pd.DataFrame: """Drop duplicate rows """ return data.drop_duplicates(**drop_duplicates_kwargs)
5,337,810
def get_task_defs(workspace: str, num_validators: int, num_fullnodes: int) -> dict: """ Builds a dictionary of: family -> current_task_def task_def can be used to get the following when updating a service: - containerDefinitions - volumes - placementConstraints NOTE: only possible to get the current running list of tasks, so tf apply needed after need a way to restore to steady state if an ecs update makes node boot loop """ ret = {} print("Fetching ECS tasks") def_fams = [] def_fams += [f"{workspace}-validator-{i}" for i in range(num_validators)] def_fams += [f"{workspace}-fullnode-{i}" for i in range(num_fullnodes)] for fam in def_fams: print(f"Fetching task definition for {fam}") task_def = execute_cmd_with_json_output( ["aws", "ecs", "describe-task-definition", "--task-definition", fam,], err=f"could not get task definition for {fam}", ) key = task_def.get("taskDefinition").get("family") ret[key] = task_def.get("taskDefinition") # put the tags separately tags = task_def.get("tags") ret[key]["tags"] = tags if tags else [] print() return ret
5,337,811
def gruml(source_code_path, **kwargs): """driver function of GRUML. """ gruml = GRUML() print('Generating RUML for source code at: {}'.format(source_code_path)) gruml.get_source_code_path_and_modules(source_code_path) gruml.get_driver_path_and_driver_name( kwargs.get('use_case', None), kwargs.get('driver_name', None), kwargs.get('driver_path', None), kwargs.get('driver_function', None), ) gruml.generate_dependency_data() if gruml.use_case: gruml.generate_sequential_function_calls()
5,337,812
def get_terms(cmd, urn=None, publisher=None, offer=None, plan=None): """ Get the details of Azure Marketplace image terms. :param cmd:cmd :param urn:URN, in the format of 'publisher:offer:sku:version'. If specified, other argument values can be omitted :param publisher:Image publisher :param offer:Image offer :param plan:Image billing plan :return: """ from azure.mgmt.marketplaceordering.models import OfferType publisher, offer, plan = _terms_prepare(cmd, urn, publisher, offer, plan) op = cf_vm_image_term(cmd.cli_ctx, '') terms = op.get(offer_type=OfferType.VIRTUALMACHINE, publisher_id=publisher, offer_id=offer, plan_id=plan) return terms
5,337,813
def encode_payload( result ): """JSON encodes a dictionary, named tuple, or object for sending to the server """ try: return tornado.escape.json_encode( result ) except TypeError: if type( result ) is list: return [ tornado.escape.json_encode( r ) for r in result ] d = { k: getattr( result, k ) for k in result.__dict__ } return tornado.escape.json_encode( d )
5,337,814
def relu(shape) -> np.ndarray: """ Creates a gaussian distribution numpy array with a mean of 0 and variance of sqrt(2/m). Arguments: shape : tuple : A tuple with 2 numbers, specifying size of the numpy array. Returns: output : np.ndarray : A uniform numpy array. """ return np.random.normal(0, np.sqrt(2/shape[1]), shape)
5,337,815
def reset_all(): """Batch reset of batch records.""" _url = request.args.get("url") or request.referrer task_id = request.form.get("task_id") task = Task.get(task_id) try: count = utils.reset_all_records(task) except Exception as ex: flash(f"Failed to reset the selected records: {ex}") else: flash(f"{count} {task.task_type.name} records were reset for batch processing.", "info") return redirect(_url)
5,337,816
def update_to_report(db, data, section_name, img_path,id): """ Update data of report """ query = '''UPDATE report SET data = "{}" , section_name = "{}", image_path = "{}" WHERE id = "{}" '''.format(data, section_name, img_path, id) result = get_db_with_actions(db, query) return(result)
5,337,817
def keyboard(table, day=None): """Handler for showing the keyboard statistics page.""" cols, group = "realkey AS key, COUNT(*) AS count", "realkey" where = (("day", day),) if day else () counts_display = counts = db.fetch(table, cols, where, group, "count DESC") if "combos" == table: counts_display = db.fetch(table, "key, COUNT(*) AS count", where, "key", "count DESC") events = db.fetch(table, where=where, order="stamp") for e in events: e["dt"] = datetime.datetime.fromtimestamp(e["stamp"]) stats, collatedevents = stats_keyboard(events, table) days, input = db.fetch("counts", order="day", type=table), "keyboard" return bottle.template("heatmap.tpl", locals(), conf=conf)
5,337,818
def fetch(uri, username='', password=''): """Can fetch with Basic Authentication""" headers = {} if username and password: headers['Authorization'] = 'Basic ' + base64.b64encode('%s:%s' % (username, password)) headers['User-Agent'] = 'Twimonial' f = urlfetch.fetch(uri, headers=headers) logging.debug('Fetching %s (%s): %d' % (uri, username, f.status_code)) return f
5,337,819
def update_identity_provider(UserPoolId=None, ProviderName=None, ProviderDetails=None, AttributeMapping=None, IdpIdentifiers=None): """ Updates identity provider information for a user pool. See also: AWS API Documentation :example: response = client.update_identity_provider( UserPoolId='string', ProviderName='string', ProviderDetails={ 'string': 'string' }, AttributeMapping={ 'string': 'string' }, IdpIdentifiers=[ 'string', ] ) :type UserPoolId: string :param UserPoolId: [REQUIRED] The user pool ID. :type ProviderName: string :param ProviderName: [REQUIRED] The identity provider name. :type ProviderDetails: dict :param ProviderDetails: The identity provider details to be updated, such as MetadataURL and MetadataFile . (string) -- (string) -- :type AttributeMapping: dict :param AttributeMapping: The identity provider attribute mapping to be changed. (string) -- (string) -- :type IdpIdentifiers: list :param IdpIdentifiers: A list of identity provider identifiers. (string) -- :rtype: dict :return: { 'IdentityProvider': { 'UserPoolId': 'string', 'ProviderName': 'string', 'ProviderType': 'SAML', 'ProviderDetails': { 'string': 'string' }, 'AttributeMapping': { 'string': 'string' }, 'IdpIdentifiers': [ 'string', ], 'LastModifiedDate': datetime(2015, 1, 1), 'CreationDate': datetime(2015, 1, 1) } } :returns: (string) -- (string) -- """ pass
5,337,820
def _handle_file(args): """ Handle the --file argument. """ filename = args.filename _parse_and_output(filename, args)
5,337,821
def tsCrossValidationScore(params, series,loss_function=mean_squared_error, nsplits=3, slen=1): """ #Parameters: params : vector of parameters for optimization (three parameters: alpha, beta, gamma for example series : dataset with timeseries sle: Returns: error on CrossValidation """ # errors array errors = [] values = series.values alpha, beta, gamma = params # set the number of folds for cross-validation tscv = TimeSeriesSplit(n_splits=nsplits) # iterating over folds, train model on each, forecast and calculate error for train, test in tscv.split(values): model = HoltWinters(series=values[train], slen=slen, alpha=alpha, beta=beta, gamma=gamma, n_preds=len(test)) model.triple_exponential_smoothing() predictions = model.result[-len(test):] actual = values[test] error = loss_function(predictions, actual) errors.append(error) return np.mean(np.array(errors))
5,337,822
def test_empty_file(): """ Test empty file """ empty_file = 'test/empty.json' ephemeral = TinyDB(empty_file, storage=EphemeralJSONStorage) assert ephemeral.get(where('name') == 'Value A') is None ephemeral.close()
5,337,823
def handle_exhibition(data: List[Dict[str, str]]): """ Iterates over all provided exhibition items and checks the http.StatusOK for every valid url item. :param data: list containing exhibition dictionary items. """ print("Processing exhibition item links ...") fails = "" for idx, item in enumerate(data): item_num = item['company_name'] info_rune = "•" # exhibition has a number of 'material_' keys where urls can be referenced materials = list(filter(lambda cur: cur.startswith("material_"), item.keys())) materials.append("website") for url_key in materials: # check link availability if check_url := handle_link_item(item, url_key): # check url and process resulting error messages if err := handle_url_check(check_url): info_rune = "x" fails += f"{err} | Exhibition {item_num} | {url_key}({check_url})\n" if idx and not idx % 100: print(f" {idx}") print(info_rune, end="", flush=True) print(f"\n{fails}")
5,337,824
def get_psf_fwhm(psf_template: np.ndarray) -> float: """ Fit a symmetric 2D Gaussian to the given ``psf_template`` to estimate the full width half maximum (FWHM) of the central "blob". Args: psf_template: A 2D numpy array containing the unsaturated PSF template. Returns: The FWHM of the PSF template (in pixels). """ # Crop PSF template: too large templates (which are mostly zeros) can # cause problems when fitting them with a 2D Gauss function psf_cropped = np.copy(psf_template) if psf_template.shape[0] >= 33 or psf_template.shape[1] >= 33: psf_cropped = crop_center(psf_cropped, (33, 33)) # Define the grid for the fit x, y = np.meshgrid( np.arange(psf_cropped.shape[0]), np.arange(psf_cropped.shape[1]) ) # Create a new Gaussian2D object center = get_center(psf_cropped.shape) gaussian = models.Gaussian2D(x_mean=center[0], y_mean=center[1]) # Define auxiliary function for tieing the standard deviations def tie_stddev(gaussian: Any) -> Any: return gaussian.y_stddev # Enforce symmetry: tie standard deviation parameters to same value to # ensure that the resulting 2D Gaussian is always circular gaussian.x_stddev.tied = tie_stddev # Fix the position (= mean) of the 2D Gaussian gaussian.x_mean.fixed = True gaussian.y_mean.fixed = True # Fit the model to the data fit_p = fitting.LevMarLSQFitter() gaussian_model = fit_p(gaussian, x, y, np.nan_to_num(psf_cropped)) # Make sure the returned FWHM is positive return abs(float(gaussian_model.x_fwhm))
5,337,825
def test_structure_linecache(): """Linecaching for structuring should work.""" @define class A: a: int c = GenConverter() try: c.structure({"a": "test"}, A) except ValueError: res = format_exc() assert "'a'" in res
5,337,826
def sqrt(number): """ Calculate the floored square root of a number Args: number(int): Number to find the floored squared root Returns: (int): Floored Square Root """ assert number >= 0, 'Only square root of positive numbers are valid' start = 0 end = number res = None while start <= end: middle = (start + end) // 2 square = middle ** 2 next_square = (middle + 1) ** 2 if square <= number and next_square > number: res = middle break if square > number: end = middle - 1 else: start = middle + 1 return res
5,337,827
def add_roi_shared_config(cfg): """ Add config for roi shared head """ _C = cfg _C.MODEL.ROI_BOX_HEAD.IN_FEATURES = [] _C.MODEL.ROI_SHARED_HEAD = CN() _C.MODEL.ROI_SHARED_HEAD.IN_FEATURES = ["p2"] _C.MODEL.ROI_SHARED_HEAD.POOLER_RESOLUTION = 32 _C.MODEL.ROI_SHARED_HEAD.POOLER_TYPE = "ROIAlignV2" _C.MODEL.ROI_SHARED_HEAD.POOLER_SAMPLING_RATIO = 0 _C.MODEL.ROI_SHARED_BLOCK = CN() _C.MODEL.ROI_SHARED_BLOCK.NAME = "ParsingSharedBlock" _C.MODEL.ROI_SHARED_BLOCK.ASPP_ON = True _C.MODEL.ROI_SHARED_BLOCK.ASPP_DIM = 256 _C.MODEL.ROI_SHARED_BLOCK.ASPP_DILATION = (6, 12, 18) _C.MODEL.ROI_SHARED_BLOCK.NONLOCAL_ON = True _C.MODEL.ROI_SHARED_BLOCK.NONLOCAL_REDUCTION_RATIO = 0.5 _C.MODEL.ROI_SHARED_BLOCK.NONLOCAL_USE_MAXPOOL = True _C.MODEL.ROI_SHARED_BLOCK.NONLOCAL_USE_BN = True _C.MODEL.ROI_SHARED_BLOCK.NUM_CONVS_BEFORE_ASPP_NL = 0 _C.MODEL.ROI_SHARED_BLOCK.NUM_CONVS_AFTER_ASPP_NL = 4 _C.MODEL.ROI_SHARED_BLOCK.CONV_HEAD_DIM = 512 _C.MODEL.ROI_SHARED_BLOCK.CONV_HEAD_KERNEL = 3 _C.MODEL.ROI_DENSEPOSE_PREDICTOR = CN() _C.MODEL.ROI_DENSEPOSE_PREDICTOR.NAME = "Default"
5,337,828
def test_cluster_representatives_criterion_flag(analysis, criterion, expected): """ Tests the user-defined method of selecting cluster representatives. Parameters ---------- analysis : Analysis object Created by a fixture. criterion : str cluster_representatives_criterion flag defined by the user. expected : str Expected value in the dataframe. TODO: Manually check expected values and then add them to the test to make sure we're getting the right stuff! """ output_folder = "cluster_rep_selection" csv = os.path.join(output_folder, "top_selections.csv") analysis.generate_clusters( path=output_folder, clustering_type="meanshift", bandwidth=2.5, max_top_clusters=1, representatives_criterion=criterion, ) df = pd.read_csv(csv) assert all( [x in df.columns for x in [ "Cluster label", "epoch", "trajectory", "Step", "currentEnergy", "Binding Energy", "sasaLig", ]] ) assert not df.isnull().values.any() check_remove_folder(output_folder)
5,337,829
def check_child_update_request_from_parent( command_msg, leader_data=CheckType.OPTIONAL, network_data=CheckType.OPTIONAL, challenge=CheckType.OPTIONAL, tlv_request=CheckType.OPTIONAL, active_timestamp=CheckType.OPTIONAL, ): """Verify a properly formatted Child Update Request(from parent) command message. """ check_secure_mle_key_id_mode(command_msg, 0x02) command_msg.assertMleMessageContainsTlv(mle.SourceAddress) check_mle_optional_tlv(command_msg, leader_data, mle.LeaderData) check_mle_optional_tlv(command_msg, network_data, mle.NetworkData) check_mle_optional_tlv(command_msg, challenge, mle.Challenge) check_mle_optional_tlv(command_msg, tlv_request, mle.TlvRequest) check_mle_optional_tlv(command_msg, active_timestamp, mle.ActiveTimestamp)
5,337,830
def repetition_sigmoid(M): """ Used to model repetition-driven effects of STDP. More repetitions results in stronger increase/decrease. """ return 1.0/(1+np.exp(-0.2*M+10))
5,337,831
def generate_features(ids0, ids1, forcefield, system, param): """ This function performs a minimization of the energy and computes the matrix features. :param ids0: ids of the atoms for the 1st protein :param ids1: ids of the atoms for the 2nd protein :param forcefield: forcefield for OpenMM simulation :param system: system for OpenMM simulation :param param: OpenMM parameters :return: features - to be used by ML models """ # sources # https://en.wikipedia.org/wiki/Electrostatics # https://en.wikipedia.org/wiki/Lennard-Jones_potential # https://en.wikipedia.org/wiki/Combining_rules # constants eps0 = 8.8541878128e-12 * su.farad * su.meter**-1 e = 1.60217662e-19 * su.coulomb N = 6.02214179e23 * su.mole**-1 # Avogadro # scaling factors k0 = (N * (e*e) / (4.0 * np.pi * eps0)) # get nonbonded interactions parameters for all atoms # (Lennard-Jones and electrostatics) epsilon = np.array([a.epsilon for a in param.atoms]) sigma = np.array([a.sigma for a in param.atoms]) charge = np.array([a.charge for a in param.atoms]) # pairwise epsilon with units E = np.sqrt(epsilon[ids0].reshape(-1, 1) * epsilon[ids1].reshape(1, -1)) * param.atoms[0].uepsilon.unit # pairwise sigma with units S = 0.5 * (sigma[ids0].reshape(-1, 1) + sigma[ids1].reshape(1, -1)) * param.atoms[0].usigma.unit # pairwise partial charges Q = charge[ids0].reshape(-1, 1) * charge[ids1].reshape(1, -1) # setup MD engine integrator = so.LangevinIntegrator(300*su.kelvin, 1/su.picosecond, 0.002*su.picoseconds) try: platform = so.Platform.getPlatformByName('CUDA') except Exception e: platform = so.Platform.getPlatformByName('CPU') simulation = so.app.Simulation(param.topology, system, integrator, platform) # set atom coordinates simulation.context.setPositions(param.get_coordinates()[0] * su.angstrom) # minimize energy simulation.minimizeEnergy() # get atom coordinates and compute distance matrix between subunits state = simulation.context.getState(getPositions=True) xyz = state.getPositions(asNumpy=True) D = np.linalg.norm(np.expand_dims( xyz[ids0], 1) - np.expand_dims(xyz[ids1], 0), axis=2) * su.angstrom # To choose the most relevant residues, we will first choose the pair of atoms with the lowest distance, and then # extract a submatrix around it. This way we preserve the chain order of the distance matrix. min_i = np.argmin(D) min_r, min_c = int(min_i/D.shape[1]), min_i % D.shape[1] # Number of interacting residues/particles considered relevant to be stored in the features n_interactions = 256 ids0_min, ids0_max = min_r - n_interactions/2, min_r + n_interactions/2 ids1_min, ids1_max = min_c - n_interactions/2, min_c + n_interactions/2 if ids0_min < 0: ids0_max -= ids0_min ids0_min = 0 elif ids0_max >= D.shape[0]: ids0_min -= ids0_max - D.shape[0] + 1 ids0_max = D.shape[0]-1 if ids1_min < 0: ids1_max -= ids1_min ids1_min = 0 elif ids1_max >= D.shape[1]: ids1_min -= ids1_max - D.shape[1] + 1 ids1_max = D.shape[1]-1 ids0_interacting = np.arange(ids0_min, ids0_max, dtype=np.int32) ids1_interacting = np.arange(ids1_min, ids1_max, dtype=np.int32) D = D[np.ix_(ids0_interacting, ids1_interacting)] S = S[np.ix_(ids0_interacting, ids1_interacting)] Q = Q[np.ix_(ids0_interacting, ids1_interacting)] E = E[np.ix_(ids0_interacting, ids1_interacting)] # compute nonbonded potential energies U_LJ = (4.0 * E * (np.power(S/D, 12) - np.power(S/D, 6))).value_in_unit(su.kilojoule / su.mole) U_el = (k0 * Q / D).value_in_unit(su.kilojoule / su.mole) features = {'U_LJ': U_LJ, 'U_el': U_el, 'D_mat': D} return features
5,337,832
def extract_bow_feature_vectors(reviews, dictionary): """ Inputs a list of string reviews Inputs the dictionary of words as given by bag_of_words Returns the bag-of-words feature matrix representation of the data. The returned matrix is of shape (n, m), where n is the number of reviews and m the total number of entries in the dictionary. Feel free to change this code as guided by Problem 9 """ num_reviews = len(reviews) feature_matrix = np.zeros([num_reviews, len(dictionary)]) stopwords = np.loadtxt('stopwords.txt', dtype = str) for i, text in enumerate(reviews): word_list = extract_words(text) for word in stopwords: word_list = list(filter((word).__ne__, word_list)) word_list_pairs = [(word1, word2) for (word1, word2) in zip(word_list[:-1], word_list[1:])] for (word1, word2) in word_list_pairs: if (word1, word2) in dictionary: # This code gets a non-binary indicator feature_matrix[i, dictionary[(word1, word2)]] += 1 return feature_matrix
5,337,833
def model_wcs_header(datamodel, get_sip=False, order=4, step=32): """ Make a header with approximate WCS for use in DS9. Parameters ---------- datamodel : `jwst.datamodels.ImageModel` Image model with full `~gwcs` in `with_wcs.meta.wcs`. get_sip : bool If True, fit a `astropy.modeling.models.SIP` distortion model to the image WCS. order : int Order of the SIP polynomial model. step : int For fitting the SIP model, generate a grid of detector pixels every `step` pixels in both axes for passing through `datamodel.meta.wcs.forward_transform`. Returns ------- header : '~astropy.io.fits.Header` Header with simple WCS definition: CD rotation but no distortion. """ from astropy.io.fits import Header from scipy.optimize import least_squares sh = datamodel.data.shape try: pipe = datamodel.meta.wcs.pipeline[0][1] if 'offset_2' in pipe.param_names: # NIRISS WCS c_x = pipe.offset_2.value c_y = pipe.offset_3.value else: # Simple WCS c_x = pipe.offset_0.value c_y = pipe.offset_1.value crpix = np.array([-c_x+1, -c_y+1]) except: crpix = np.array(sh)/2.+0.5 crval = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1]) cdx = datamodel.meta.wcs.forward_transform(crpix[0]+1, crpix[1]) cdy = datamodel.meta.wcs.forward_transform(crpix[0], crpix[1]+1) header = Header() header['RADESYS'] = 'ICRS' header['CTYPE1'] = 'RA---TAN' header['CTYPE2'] = 'DEC--TAN' header['CUNIT1'] = header['CUNIT2'] = 'deg' header['CRPIX1'] = crpix[0] header['CRPIX2'] = crpix[1] header['CRVAL1'] = crval[0] header['CRVAL2'] = crval[1] cosd = np.cos(crval[1]/180*np.pi) header['CD1_1'] = (cdx[0]-crval[0])*cosd header['CD1_2'] = (cdy[0]-crval[0])*cosd header['CD2_1'] = cdx[1]-crval[1] header['CD2_2'] = cdy[1]-crval[1] cd = np.array([[header['CD1_1'], header['CD1_2']], [header['CD2_1'], header['CD2_2']]]) if not get_sip: return header #### Fit a SIP header to the gwcs transformed coordinates v, u = np.meshgrid(np.arange(1,sh[0]+1,step), np.arange(1,sh[1]+1,step)) x, y = datamodel.meta.wcs.forward_transform(u, v) y -= crval[1] x = (x-crval[0])*np.cos(crval[1]/180*np.pi) a_names = [] b_names = [] #order = 4 for i in range(order+1): for j in range(order+1): ext = '{0}_{1}'.format(i,j) if (i+j) > order: continue if ext in ['0_0', '0_1','1_0']: continue a_names.append('A_'+ext) b_names.append('B_'+ext) p0 = np.zeros(4+len(a_names)+len(b_names)) p0[:4] += cd.flatten() args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 0) # Fit the SIP coeffs fit = least_squares(_objective_sip, p0, jac='2-point', bounds=(-np.inf, np.inf), method='lm', ftol=1e-08, xtol=1e-08, gtol=1e-08, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=1000, verbose=0, args=args, kwargs={}) # Get the results args = (u.flatten(), v.flatten(), x.flatten(), y.flatten(), crpix, a_names, b_names, cd, 1) cd_fit, a_coeff, b_coeff = _objective_sip(fit.x, *args) # Put in the header for i in range(2): for j in range(2): header['CD{0}_{1}'.format(i+1, j+1)] = cd_fit[i,j] header['CTYPE1'] = 'RA---TAN-SIP' header['CTYPE2'] = 'DEC--TAN-SIP' header['A_ORDER'] = order for k in a_coeff: header[k] = a_coeff[k] header['B_ORDER'] = order for k in b_coeff: header[k] = b_coeff[k] return header
5,337,834
def create_session(): """Return a session to be used for database connections Returns: Session: SQLAlchemy session object """ # Produces integrity errors! # return _Session() # db.session is managed by Flask-SQLAlchemy and bound to a request return db.session
5,337,835
def meta_to_indexes(meta, table_name=None, model_name=None): """Find all the indexes (primary keys) based on the meta data """ indexes, pk_field = {}, None indexes = [] for meta_model_name, model_meta in meta.iteritems(): if (table_name or model_name) and not (table_name == model_meta['Meta'].get('db_table', '') or model_name == meta_model_name): continue field_name, field_infodict, score = find_index(model_meta) indexes.append(('%s.%s' % (meta_model_name, field_name), field_infodict, score)) return indexes
5,337,836
def index(): """Render and return the index page. This is a informational landing page for non-logged-in users, and the corp homepage for those who are logged in. """ success, _ = try_func(auth.is_authenticated) if success: module = config.get("modules.home") if module: return config.modules[module].home() return render_template("default_home.mako") return render_template("landing.mako")
5,337,837
def test_user_tries_deleting_his_profile_but_it_fails_partially( rf, user_gql_client, youth_service, berth_service, mocker ): """Test an edge case where dry runs passes for all connected services, but the proper service connection delete fails for a single connected service. All other connected services should still get deleted. """ def mock_delete_gdpr_data(self, api_token, dry_run=False): if self.service.service_type == ServiceType.BERTH and not dry_run: raise requests.HTTPError("Such big fail! :(") mocker.patch.object( ServiceConnection, "delete_gdpr_data", autospec=True, side_effect=mock_delete_gdpr_data, ) mocker.patch.object( TunnistamoTokenExchange, "fetch_api_tokens", return_value=GDPR_API_TOKENS ) profile = ProfileFactory(user=user_gql_client.user) ServiceConnectionFactory(profile=profile, service=youth_service) ServiceConnectionFactory(profile=profile, service=berth_service) request = rf.post("/graphql") request.user = user_gql_client.user executed = user_gql_client.execute(DELETE_MY_PROFILE_MUTATION, context=request) expected_data = {"deleteMyProfile": None} assert ServiceConnection.objects.count() == 1 assert ServiceConnection.objects.first().service.service_type == ServiceType.BERTH assert dict(executed["data"]) == expected_data assert_match_error_code(executed, CONNECTED_SERVICE_DELETION_FAILED_ERROR)
5,337,838
def _(origin, category="", default=None): """ This function returns the localized string. """ return LOCALIZED_STRINGS_HANDLER.translate(origin, category, default)
5,337,839
def next_month(month: datetime) -> datetime: """Find the first day of the next month given a datetime. :param month: the date :type month: datetime :return: The first day of the next month. :rtype: datetime """ dt = this_month(month) return datetime((dt+_A_MONTH).year, (dt+_A_MONTH).month, 1)
5,337,840
def walk_json(d, func): """ Walk over a parsed JSON nested structure `d`, apply `func` to each leaf element and replace it with result """ if isinstance(d, Mapping): return OrderedDict((k, walk_json(v, func)) for k, v in d.items()) elif isinstance(d, list): return [walk_json(v, func) for v in d] else: return func(d)
5,337,841
def console_map_string_to_font(s, fontCharX, fontCharY): """Remap a string of codes to a contiguous set of tiles. Args: s (AnyStr): A string of character codes to map to new values. The null character `'\\x00'` will prematurely end this function. fontCharX (int): The starting X tile coordinate on the loaded tileset. 0 is the leftmost tile. fontCharY (int): The starting Y tile coordinate on the loaded tileset. 0 is the topmost tile. """ lib.TCOD_console_map_string_to_font_utf(_unicode(s), fontCharX, fontCharY)
5,337,842
def getUser(): """This method will be called if a GET request is made to the /user/ route It will get the details of a specified user Parameters ---------- username the name of the user to get info about Raises ------ DoesNotExist Raised if the username provided does not match a user in the database Returns ------- String: Either the json of the user, or an error message saying the user doesn't exists """ try: user = User.objects(username=request.args["username"]).get() return str(user.json()) except DoesNotExist: return "That user does not exist, please try again :)"
5,337,843
def _create_ppo_agent( time_step_spec: types.NestedTensorSpec, action_spec: types.NestedTensorSpec, preprocessing_layers: types.NestedLayer, policy_network: types.Network) -> tfa.agents.TFAgent: """Creates a ppo_agent.""" actor_network = policy_network( time_step_spec.observation, action_spec, preprocessing_layers=preprocessing_layers, name='ActorDistributionNetwork') critic_network = constant_value_network.ConstantValueNetwork( time_step_spec.observation, name='ConstantValueNetwork') return ppo_agent.PPOAgent( time_step_spec, action_spec, actor_net=actor_network, value_net=critic_network)
5,337,844
def stiffness_matrix_CST(element=tetra_4()): """Calculate stiffness matrix for linear elasticity""" element.volume() B = strain_matrix_CST(element) D = material() print('B') print(B) print('V',element.V) return element.V * np.dot(np.dot(np.transpose(B),D),B)
5,337,845
def count_down(print_text, count, sleep): """ Print text and animation count down. Args: print_text (str): Enter the text to be printed. count (int): Counter number. sleep (float): How fast the counts is supposed to be. Returns: print: Count down animation. Usage: .. code:: count_down('Your text ', 20, 0.1) """ animation = '\\|/-' while (count >= 0): print('\r', print_text, count, animation[count % len(animation)], end = ' ', flush = True) count -= 1 time.sleep(sleep)
5,337,846
def test_handling_core_messages(hass): """Test handling core messages.""" cloud = MagicMock() cloud.logout.return_value = mock_coro() yield from iot.async_handle_cloud(hass, cloud, { 'action': 'logout', 'reason': 'Logged in at two places.' }) assert len(cloud.logout.mock_calls) == 1
5,337,847
async def can_action_member(bot, ctx: SlashContext, member: discord.Member) -> bool: """ Stop mods from doing stupid things. """ # Stop mods from actioning on the bot. if member.id == bot.user.id: return False # Stop mods from actioning one another, people higher ranked than them or themselves. if member.top_role >= ctx.author.top_role: role_muted = discord.utils.get(member.guild.roles, id=settings.get_value("role_muted")) role_restricted = discord.utils.get(member.guild.roles, id=settings.get_value("role_restricted")) # Enable mods to use /unmute and /unrestrict on others since the role "Muted" and "Restricted" is placed higher than "Staff". if role_muted in member.roles or role_restricted in member.roles: return True return False # Checking if Bot is able to even perform the action if member.top_role >= member.guild.me.top_role: return False # Allow owner to override all limitations. if member.id == ctx.guild.owner_id: return True # Otherwise, the action is probably valid, return true. return True
5,337,848
def CountDatasetStatistics(): """ Count the subgraphs for the published datasets """ # the datasets input_filenames = { 'Hemi-Brain': 'graphs/hemi-brain-minimum.graph.bz2', 'C. elegans D1': 'graphs/C-elegans-timelapsed-01-minimum.graph.bz2', 'C. elegans D2': 'graphs/C-elegans-timelapsed-02-minimum.graph.bz2', 'C. elegans D3': 'graphs/C-elegans-timelapsed-03-minimum.graph.bz2', 'C. elegans D4': 'graphs/C-elegans-timelapsed-04-minimum.graph.bz2', 'C. elegans D5': 'graphs/C-elegans-timelapsed-05-minimum.graph.bz2', 'C. elegans D6': 'graphs/C-elegans-timelapsed-06-minimum.graph.bz2', 'C. elegans D7': 'graphs/C-elegans-timelapsed-07-minimum.graph.bz2', 'C. elegans D8': 'graphs/C-elegans-timelapsed-08-minimum.graph.bz2', 'C. elegans SH': 'graphs/C-elegans-sex-hermaphrodite-minimum.graph.bz2', 'C. elegans SM': 'graphs/C-elegans-sex-male-minimum.graph.bz2', } for dataset, input_filename in input_filenames.items(): # write the dataset sys.stdout.write('{} '.format(dataset)) # iterate over k for k in [3, 4, 5, 6, 7]: # go through all possibilities nsubgraphs, _ = ReadSummaryStatistics(input_filename, k, False, False, False) # skip if this doesn't exist if not nsubgraphs: sys.stdout.write('& N/A ') else: sys.stdout.write('& {} '.format(nsubgraphs)) sys.stdout.write('\\\\ \n')
5,337,849
def trim_waveform_signal( tr: obspy.Trace, cfg: types.ModuleType = config ) -> obspy.Trace: """Cut the time series to signal window Args: tr: time series cfg: configuration file Returns: tr: trimmed time series """ starttime, endtime = signal_window(tr, cfg) tr.trim(starttime=starttime, endtime=endtime) return tr
5,337,850
def animation_plot( x, y, z_data, element_table, ani_fname, existing_fig, ani_funcargs=None, ani_saveargs=None, kwargs=None, ): """ Tricontourf animation plot. Resulting file will be saved to MP4 """ global tf # Subtract 1 from element table to align with Python indexing t = tri.Triangulation(x, y, element_table - 1) # Preassign fig and ax if existing_fig is None: fig, ax, tf = filled_mesh_plot(x, y, z_data[:, 0], element_table, **kwargs) else: fig, ax, tf = existing_fig # animation function def animate(i): global tf z = z_data[:, i] for c in tf.collections: c.remove() # removes only the contours, leaves the rest intact tf = ax.tricontourf(t, z, **kwargs) anim = animation.FuncAnimation(fig, animate, frames=z_data.shape[1], repeat=True,) anim.save(ani_fname, writer=animation.FFMpegWriter(**ani_funcargs), **ani_saveargs) return fig, ax, tf
5,337,851
def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" # adj_appr = np.array(sp.csr_matrix.todense(adj)) # # adj_appr = dense_lanczos(adj_appr, 100) # adj_appr = dense_RandomSVD(adj_appr, 100) # if adj_appr.sum(1).min()<0: # adj_appr = adj_appr- (adj_appr.sum(1).min()-0.5)*sp.eye(adj_appr.shape[0]) # else: # adj_appr = adj_appr + sp.eye(adj_appr.shape[0]) # adj_normalized = normalize_adj(adj_appr) # adj_normalized = normalize_adj(adj+sp.eye(adj.shape[0])) # adj_appr = np.array(sp.coo_matrix.todense(adj_normalized)) # # adj_normalized = dense_RandomSVD(adj_appr,100) # adj_normalized = dense_lanczos(adj_appr, 100) adj_normalized = normalize_adj(sp.eye(adj.shape[0]) + adj) # adj_normalized = sp.eye(adj.shape[0]) + normalize_adj(adj) return sparse_to_tuple(adj_normalized)
5,337,852
def plot_figure_one_input_resource_2(style_label=""): """ Plot two bar graphs side by side, with letters as x-tick labels. latency_dev_num_non_reuse.log """ prng = np.random.RandomState(96917002) #plt.set_cmap('Greys') #plt.rcParams['image.cmap']='Greys' # Tweak the figure size to be better suited for a row of numerous plots: # double the width and halve the height. NB: use relative changes because # some styles may have a figure size different from the default one. (fig_width, fig_height) = plt.rcParams['figure.figsize'] fig_size = [fig_width * 1.8, fig_height / 2] fig, ax = plt.subplots(ncols=1, nrows=1, num=style_label, figsize=fig_size, squeeze=True) plt.set_cmap('Greys') ax.set_ylabel("Latency (s)", fontsize=larger_size) ax.set_xlabel("Number of devices", fontsize=larger_size) grid = "3x3" config = ["MR-BODPv2", "WST-FGP-R"] #np.array(load_data_vector(config[0]+"/" + grid + "/single_resource/commu_size_steal.log"))+ #np.array(load_data_vector(config[0] + "/" + grid + "/single_resource/commu_size_gateway.log")) y1 = load_data_vector(config[0] + "/single_resource/latency.log") y2 = load_data_vector(config[1] + "/" + grid + "/single_resource/latency.log") x = np.arange(len(y1)) print x width = 0.2 latency1 = ax.bar(x-0.5*width, y1, width, label='MR-BODP', color=[0.4, 0.4, 0.4], edgecolor =[0, 0, 0]) latency2 = ax.bar(x+0.5*width, y2, width, label='WST-FGP (Shuffle)', color=[0.8, 0.8, 0.8], edgecolor =[0, 0, 0], hatch='//') ax.set_xticks(x) ax.set_xticklabels(['1','2','3','4','5','6']) ax.set_xlim([-0.5,len(x)-0.3]) ax.set_ylim([0, 30]) plt.tick_params(labelsize=larger_size) y1 = np.array(load_data_vector(config[0]+ "/single_resource/commu_size.log")) y2 = np.array(load_data_vector(config[1]+"/" + grid + "/single_resource/commu_size_steal.log"))+np.array(load_data_vector(config[1] + "/" + grid + "/single_resource/commu_size_gateway.log")) ax2 = ax.twinx() comm1 = ax2.plot(x-width, y1, label='MR-BODP', linestyle='-.', linewidth=4, color=[0.4, 0.4, 0.4], marker="s", markersize=16) comm2 = ax2.plot(x+width, y2, label='WST-FGP (Shuffle)', linestyle='-.', linewidth=4, color=[0.8, 0.8, 0.8], marker="<", markersize=16) ax2.set_ylabel("Commu. size (MB)", fontsize=larger_size) ax2.set_xticklabels(['1','2','3','4','5','6']) ax2.set_ylim([-30, 25]) ax2.set_yticks([0, 10, 20]) plt.tick_params(labelsize=larger_size) #plt.legend(loc=9, ncol=4, bbox_to_anchor=(0.5, 1.16), framealpha=1, prop={'size': larger_size}) plt.figlegend((latency1[0], comm1[0], latency2[0], comm2[0]), ('MR-BODP',' ', 'WST-FGP ('+grid+' Shuffle)', ' '), loc=9, ncol=2, bbox_to_anchor=(0.5, 1), framealpha=1, prop={'size': larger_size}) #fig.tight_layout() return fig
5,337,853
def comp_rot_dir(self): """Compute the rotation direction of the winding Parameters ---------- self : LamSlotWind A LamSlotWind object Returns ------- rot_dir : int -1 or +1 """ MMF = self.comp_mmf_unit() p = self.get_pole_pair_number() # Compute rotation direction from unit mmf results = MMF.get_harmonics(1, "freqs", "wavenumber") H1 = results[MMF.symbol] return sign(H1[0])
5,337,854
def search_pk(uuid): """uuid can be pk.""" IterHarmonicApprox = WorkflowFactory("phonopy.iter_ha") qb = QueryBuilder() qb.append(IterHarmonicApprox, tag="iter_ha", filters={"uuid": {"==": uuid}}) PhonopyWorkChain = WorkflowFactory("phonopy.phonopy") qb.append(PhonopyWorkChain, with_incoming="iter_ha") qb.order_by({PhonopyWorkChain: {"ctime": "asc"}}) pks = [n[0].pk for n in qb.all() if n[0].is_finished_ok] return pks
5,337,855
def _region_bulk(mode='full', scale=.6): """ Estimate of the temperature dependence of bulk viscosity zeta/s. """ plt.figure(figsize=(scale*textwidth, scale*aspect*textwidth)) ax = plt.axes() def zetas(T, zetas_max=0, zetas_width=1): return zetas_max / (1 + ((T - Tc)/zetas_width)**2) chain = mcmc.Chain() keys, ranges = map(list, zip(*( i for i in zip(chain.keys, chain.range) if i[0].startswith('zetas') ))) T = Tc*np.linspace(.5, 1.5, 1000) maxdict = {k: r[1] for k, r in zip(keys, ranges)} ax.fill_between( T, zetas(T, **maxdict), label='Prior range', **region_style ) ax.set_xlim(T[0], T[-1]) ax.set_ylim(0, 1.05*maxdict['zetas_max']) auto_ticks(ax, minor=2) ax.set_xlabel('Temperature [GeV]') ax.set_ylabel(r'$\zeta/s$') if mode == 'empty': return if mode == 'examples': for args in [ (.025, .01), (.050, .03), (.075, .05), ]: ax.plot(T, zetas(T, *args), color=plt.cm.Blues(.7)) return # use a Gaussian mixture model to classify zeta/s parameters samples = chain.load(*keys, thin=10) gmm = GaussianMixture(n_components=3, covariance_type='full').fit(samples) labels = gmm.predict(samples) for n in range(gmm.n_components): params = dict(zip( keys, (mcmc.credible_interval(s)[1] for s in samples[labels == n].T) )) if params['zetas_max'] > .05: cmap = 'Blues' elif params['zetas_width'] > .03: cmap = 'Greens' else: cmap = 'Oranges' curve = zetas(T, **params) color = getattr(plt.cm, cmap)(.65) ax.plot(T, curve, color=color, zorder=-10) ax.fill_between(T, curve, color=color, alpha=.1, zorder=-20) ax.legend(loc='upper left')
5,337,856
def training(args): """Train the model and frequently print the loss and save checkpoints.""" dataset = tf.data.TextLineDataset([args.corpus]) dataset = dataset.map( lambda line: tf.decode_raw(line, tf.uint8)) dataset = dataset.flat_map( lambda line: chunk_sequence(line, args.chunk_length)) dataset = dataset.cache().shuffle(buffer_size=1000).batch(args.batch_size) dataset = dataset.repeat().prefetch(1) chunks, length = dataset.make_one_shot_iterator().get_next() model = RecurrentLanguageModel(args.num_layers, args.num_units) optimize = model.optimize(chunks, length, args.learning_rate) step = tf.train.get_or_create_global_step() increment_step = step.assign_add(1) with initialize_session(args.logdir) as (sess, saver): while True: if sess.run(step) >= args.total_steps: print('Training complete.') break loss_value, step_value = sess.run([optimize, increment_step]) if step_value % args.log_every == 0: print('Step {} loss {}.'.format(step_value, loss_value)) if step_value % args.checkpoint_every == 0: print('Saving checkpoint.') saver.save(sess, os.path.join(args.logdir, 'model.ckpt'), step_value)
5,337,857
def bias(struct,subover=True,trim=True, subbias=False, bstruct=None, median=False, function='polynomial',order=3,rej_lo=3,rej_hi=3,niter=10, plotover=False, log=None, verbose=True): """Bias subtracts the bias levels from a frame. It will fit and subtract the overscan region, trim the images, and subtract a master bias if required. struct--image structure subover--subtract the overscan region trim--trim the image subbias--subtract master bias bstruct--master bias image structure median--use the median instead of mean in image statistics function--form to fit to the overscan region order--order for the function rej_lo--sigma of low points to reject in the fit rej_hi--sigma of high points to reject in the fit niter--number of iterations log--saltio log for recording information verbose--whether to print to stdout """ infile=saltkey.getimagename(struct[0]) # how many extensions? nsciext = saltkey.get('NSCIEXT',struct[0]) nextend = saltkey.get('NEXTEND',struct[0]) nccd = saltkey.get('NCCDS',struct[0]) # how many amplifiers?--this is hard wired amplifiers = 2 * nccd #log the process if subover and log: message = '%28s %7s %5s %4s %6s' % \ ('HDU','Overscan','Order','RMS','Niter') log.message('\n --------------------------------------------------', with_header=False, with_stdout=verbose) log.message(message, with_header=False, with_stdout=verbose) log.message(' --------------------------------------------------', with_header=False, with_stdout=verbose) if (plotover): plt.figure(1) plt.axes([0.1,0.1,0.8,0.8]) plt.xlabel('CCD Column') plt.ylabel('Pixel Counts (e-)') plt.ion() #loop through the extensions and subtract the bias for i in range(1,nsciext+1): if struct[i].name=='SCI': #get the bias section biassec = saltkey.get('BIASSEC',struct[i]) y1,y2,x1,x2 = saltio.getSection(biassec, iraf_format=True) #get the data section datasec = saltkey.get('DATASEC',struct[i]) dy1,dy2, dx1, dx2 = saltio.getSection(datasec, iraf_format=True) #setup the overscan region if subover: yarr=np.arange(y1,y2, dtype=float) data=struct[i].data odata=struct[i].data[y1:y2,x1:x2] if median: odata=np.median((struct[i].data[y1:y2,x1:x2]),axis=1) olevel=np.median((struct[i].data[y1:y2,x1:x2])) saltkey.new('OVERSCAN','%f' % (olevel),'Overscan median value', struct[i]) else: odata=np.mean((struct[i].data[y1:y2,x1:x2]),axis=1) olevel=np.mean((struct[i].data[y1:y2,x1:x2])) saltkey.new('OVERSCAN','%f' % (olevel),'Overscan mean value', struct[i]) #fit the overscan region ifit=saltfit.interfit(yarr, odata, function=function, \ order=order, thresh=rej_hi, niter=niter) try: ifit.interfit() coeffs=ifit.coef ofit=ifit(yarr) omean, omed, osigma=saltstat.iterstat((odata-ofit), sig=3, niter=5) except ValueError: #catch the error if it is a zero array ofit=np.array(yarr)*0.0 osigma=0.0 except TypeError: #catch the error if it is a zero array ofit=np.array(yarr)*0.0 osigma=0.0 #subtract the overscan region for j in range(len(struct[i].data[0])): struct[i].data[y1:y2,j] -= ofit #report the information if log: message = '%25s[%1d] %8.2f %3d %7.2f %3d' % \ (infile, i, olevel, order, osigma, niter) log.message(message, with_stdout=verbose, with_header=False) #add the statistics to the image header saltkey.new('OVERRMS','%f' % (osigma),'Overscan RMS value', struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) try: vdata=struct[vhdu].data #The bias level should not be included in the noise from the signal for j in range(len(struct[i].data[0])): vdata[y1:y2,j] -= ofit #add a bit to make sure that the minimum error is the rednoise rdnoise= saltkey.get('RDNOISE',struct[i]) vdata[vdata<rdnoise**2]=rdnoise**2 struct[vhdu].data=vdata+osigma**2 except Exception as e: msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e) raise SaltError(msg) #plot the overscan region if plotover: plt.plot(yarr, odata) plt.plot(yarr, ofit) #trim the data and update the headers if trim: struct[i].data=struct[i].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) struct[vhdu].data=struct[vhdu].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[vhdu]) #update the BPM frame if saltkey.found('BPMEXT', struct[i]): bhdu=saltkey.get('BPMEXT', struct[i]) struct[bhdu].data=struct[bhdu].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[bhdu]) #subtract the master bias if necessary if subbias and bstruct: struct[i].data -= bstruct[i].data #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) try: vdata=struct[vhdu].data struct[vhdu].data=vdata+bstruct[vhdu].data except Exception as e: msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e) raise SaltError(msg) if plotover: plt.ioff() plt.show() return struct
5,337,858
def _add_centered_square(ax, xy, area, lablz, text_size, **kwargs): """ create hinton diagram element square with variable size according to weight matrix element value """ size = np.sqrt(area) textz = fto_texts(lablz) loc = np.asarray(xy) - size/2. rect = mpatches.Rectangle(loc, size, size, **kwargs) label = ax.annotate(textz, xy=loc + size/2., fontsize=text_size, ha='center', va='center') ax.add_patch(rect)
5,337,859
def main(args={}, version=False, arguments=False): """set up user2edd set up config file(s) set up logger :param checkOnto_: running checkOntology or not """ # init default _default_logger() # setup package path _setup_path() # read configuration file(s) config = _setup_cfg() # cli.py # # read command line arguments # args = _parse() if args: version = args.version arguments = args.arguments if version: _show_version() # overwrite configuration file parameter with parser arguments config.set_args(args, dots=True) # read logging configuration file _setup_logger(config) # check configuration file _chk_config(config) # print parameters use from config file and/or inline command _show_arguments(config, arguments)
5,337,860
def help_command(update: Update, context: CallbackContext) -> None: """Send a message when the command /help is issued.""" update.message.reply_text('Тебе уже не помочь')
5,337,861
def main(input_dir: Path, resample: bool): """Process the BAVED dataset at location INPUT_DIR.""" paths = list(input_dir.glob("?/*.wav")) resample_dir = Path("resampled") if resample: resample_audio(paths, resample_dir) write_filelist(resample_dir.glob("*.wav"), "files_all") levels = {} speakers = {} genders = {} ages = {} words = {} for path in paths: spk, gen, age, word, level, _ = path.stem.split("-") levels[path.stem] = emotion_level[int(level)] speakers[path.stem] = spk genders[path.stem] = gen.upper() ages[path.stem] = int(age) words[path.stem] = word_map[int(word)] write_annotations(levels, "level") write_annotations(speakers, "speaker") write_annotations(genders, "gender") write_annotations(ages, "age") write_annotations(words, "word") write_annotations({p.stem: "ar" for p in paths}, "language")
5,337,862
def _BAIL( functionName, message ): """ Universal failure mode message. """ print( "= = ERROR in function %s : %s" % ( functionName, message), file=sys.stderr ) sys.exit(1)
5,337,863
def getItemStatus(selected_item, store_id, num_to_average): """ Method pulls the stock status of the selected item in the given store :param selected_item: current item being processed (toilet paper or hand sanitizer) :param store_id: id of the current store :param num_to_average: number of recent status updates to include in the cumulative moving average status update :return: returns the status of the item (integer between 1-5) """ db = mysql.connect() cursor = db.cursor() query = "SELECT rating FROM status_list WHERE id = '" + str(store_id) + "' AND item = " + str(selected_item) +";" cursor.execute(query) status_values = [] status = cursor.fetchall() moving_average = 0 for i in range(len(status)): status_values.append(5-(status[i][0])+1) if len(status_values) != 0: for i in range(min(len(status_values),num_to_average)): moving_average += status_values[i] moving_average = moving_average/min(num_to_average, len(status_values)) cursor.close() db.close() return round(moving_average)
5,337,864
def iter_file(file_path, options={}): """Opens a file at the given file_path and iterates over its contents, yielding FecItem instances, which consist of data and data_type attributes. The data_type attribute can be one of "header", "summary", "itemization", "text", or "F99_text". The data attribute is a dictionary for all data types except for "F99_text", for which it is a string. This method avoids loading the entire filing into memory, as the from_file method does. """ with open(file_path, 'r') as file: for item in fecparser.iter_lines(file, options=options): yield item
5,337,865
def assert_equal(obj1, obj2, save_if_different=False, msg='', name1='value1', name2='value2', ignore_keys=None, **kwargs): """ This will assert obj1 and obj2 are the same and it will attempt to report the difference. NOTE*** If this is different and the objects are complicated then use the save_if_different and use beyond compare The files will be saved in the _scratch folder Use exclusive_list to add the keys that you don't want to compare :param msg: :param obj1: obj of comparison 1 :param obj2: obj of comparison 2 :param save_if_different: bool if to save to a file the differences :param name1: str name of the first object, :param name2: str name of the second object, :param ignore_keys: list of parameters to exclude from the comparison :param kwargs: dict of args for diff obj :return: None """ global _index_count diff = diff_obj(obj1, obj2, ignore_keys=ignore_keys, **kwargs) if diff: report = '\n\n'.join( ['obj%s\n %s = %s\n %s = %s' % (key, name1, repr(value1), name2, repr(value2)) for key, value1, value2 in diff]) if save_if_different: try: assert os.path.exists(FOLDER), 'Scratch Folder %s does not exist' % FOLDER with open('%s/%s-%s.json' % (FOLDER, _index_count, name1), 'w') as fn: pprint(obj1, stream=fn, indent=2, depth=10, width=80) with open('%s/%s-%s.json' % (FOLDER, _index_count, name2), 'w') as fn: pprint(obj2, stream=fn, indent=2, depth=10, width=80) _index_count += 1 except Exception as e: log.error('assert_equal exception in save different %s' % e) if msg: msg += '\n' raise Exception(msg + 'Data different\n' + report)
5,337,866
def filter_and_copy_table(tab, to_remove): """ Filter and copy a FITS table. Parameters ---------- tab : FITS Table object to_remove : [int ...} list of indices to remove from the table returns FITS Table object """ nsrcs = len(tab) mask = np.zeros((nsrcs), '?') mask[to_remove] = True inv_mask = np.invert(mask) out_tab = tab[inv_mask] return out_tab
5,337,867
def _archive_logs(conn, node_type, logger, node_ip): """Creates an archive of all logs found under /var/log/cloudify plus journalctl. """ archive_filename = 'cloudify-{node_type}-logs_{date}_{ip}.tar.gz'.format( node_type=node_type, date=get_host_date(conn), ip=node_ip ) archive_path = '/tmp/{}'.format(archive_filename) journalctl_destination_path = '/var/log/cloudify/journalctl.log' conn.sudo( 'bash -c "journalctl > /tmp/jctl && mv /tmp/jctl {0}"' .format(journalctl_destination_path), ) logger.info('Creating logs archive in {0}: {1}'.format(node_type, archive_path)) conn.sudo( 'tar -czf {0} -C /var/log cloudify ' '--warning=no-file-changed'.format(archive_path), warn=True ) conn.run('test -e {0}'.format(archive_path)) conn.sudo('rm {0}'.format(journalctl_destination_path)) return archive_path
5,337,868
def _check_n_dim(x, n_dims): """Raise error if the number of dimensions of the input data is not consistent with the expected value. Args: x (array-like tensor): input data, shape (n_samples, I_1, I_2, ..., I_N) n_dims (int): number of dimensions expected, i.e. N+1 """ if not x.ndim == n_dims: error_msg = "The expected number of dimensions is %s but it is %s for given data" % (n_dims, x.ndim) logging.error(error_msg) raise ValueError(error_msg)
5,337,869
def reset(): """Reset your Twitter auth information. """ app_dir = click.get_app_dir(APP_NAME) path = os.path.join(app_dir, 'config.ini') if os.path.exists(path): os.remove(path) click.echo('Configuration has been reset.')
5,337,870
def get_scripts(): """Returns the list of available scripts Returns: A dict holding the result message """ return Response.ok("Script files successfully fetched.", { "scripts": list_scripts() })
5,337,871
async def invoke( fn: callbacks.BaseFn, *args: Any, settings: Optional[configuration.OperatorSettings] = None, cause: Optional[causation.BaseCause] = None, **kwargs: Any, ) -> Any: """ Invoke a single function, but safely for the main asyncio process. Used mostly for handler functions, and potentially slow & blocking code. Other callbacks are called directly, and are expected to be synchronous (such as handler-selecting (lifecycles) and resource-filtering (``when=``)). A full set of the arguments is provided, expanding the cause to some easily usable aliases. The function is expected to accept ``**kwargs`` for the args that it does not use -- for forward compatibility with the new features. The synchronous methods are executed in the executor (threads or processes), thus making it non-blocking for the main event loop of the operator. See: https://pymotw.com/3/asyncio/executors.html """ if is_async_fn(fn): kwargs = build_kwargs(cause=cause, _sync=False, **kwargs) result = await fn(*args, **kwargs) # type: ignore else: kwargs = build_kwargs(cause=cause, _sync=True, **kwargs) # Not that we want to use functools, but for executors kwargs, it is officially recommended: # https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor real_fn = functools.partial(fn, *args, **kwargs) # Copy the asyncio context from current thread to the handlr's thread. # It can be copied 2+ times if there are sub-sub-handlers (rare case). context = contextvars.copy_context() real_fn = functools.partial(context.run, real_fn) # Prevent orphaned threads during daemon/handler cancellation. It is better to be stuck # in the task than to have orphan threads which deplete the executor's pool capacity. # Cancellation is postponed until the thread exits, but it happens anyway (for consistency). # Note: the docs say the result is a future, but typesheds say it is a coroutine => cast()! loop = asyncio.get_event_loop() executor = settings.execution.executor if settings is not None else None future = cast(aiotasks.Future, loop.run_in_executor(executor, real_fn)) cancellation: Optional[asyncio.CancelledError] = None while not future.done(): try: await asyncio.shield(future) # slightly expensive: creates tasks except asyncio.CancelledError as e: cancellation = e if cancellation is not None: raise cancellation result = future.result() return result
5,337,872
def test_null_count(): """ method to test null count, should return 0 nulls """ assert test_null.null_count(s1) == 0
5,337,873
def getLatestFare(_origin, _destination, _date): """ _origin and _destination take airport codes , e.g. BLR for Bangalore _date in format YYYY-MM-DD e.g.2016-10-30 Returns either: 10 latest results from the results page. 1 lastest result from the results page. """ try: _url = base_url.format(_origin, _destination, _date) soup = getSoup(_url) fare_list = soup.find('ul').find_all('li',{"class":["active","not-active"]}) fares = [] for fare in fare_list: fares.append({'price':getPrice(fare.find('a').find('div').findChildren()[2].string),'date':fare.find('a').find('div').findChildren()[0].string}) except Exception: sys.exit("No Route found.") return fares
5,337,874
def plot_noisy_linear_1d(axes, num_samples, weights, sigma, limits, rng): """ Generate and plot points from a noisy single-feature linear model, along with a line showing the true (noiseless) relationship. # Arguments axes: a Matplotlib Axes object into which to plot num_samples: number of samples to generate (ie, the number of rows in the returned X and the length of the returned y) weights: vector defining the model (including a bias term at index 0) sigma: standard deviation of the additive noise limits: a tuple (low, high) specifying the value range of all the input features x_i rng: an instance of numpy.random.Generator from which to draw random numbers # Returns None """ assert(len(weights)==2) X, y = generate_noisy_linear(num_samples, weights, sigma, limits, rng) # TODO: do the plotting utils.plot_unimplemented ( axes, 'Noisy 1D Linear Model' )
5,337,875
def home(): """Renders the home page.""" return render_template( 'index.html', title='Rococal', year=datetime.now().year, )
5,337,876
def Dx(x): """Nombre de survivants actualisés. Args: x: l'âge. Returns: Nombre de survivants actualisés. """ return lx(x)*v**x
5,337,877
def tracek(k,aee,aii,see,sii,tau=1,alpha=0): """ Trace of recurrently connected network of E,I units, analytically determined input: k: spatial frequency aee: ampltidue E to E connectivity aii: ampltidue I to I connectivity see: standard deviation/width of E to E connectivity sii: standard deviation/width of I to I connectivity tau: ratio of excitatory to inhibitory time constant, default is 1 alpha: float, 0<=alpha<=1, strength of self-inhibitory connections """ aii_s = aii*(1-alpha) aii_a = aii*alpha return -1 - (1 + aii_s*H(k,sii) + aii_a)/tau + aee*H(k,see)
5,337,878
def set_working_dir_repo_root(func): """ Decorator for checking whether the current working dir is set as root of repo. If not, changes the working dir to root of repo Returns ------- """ def inner(*args, **kwargs): git_repo = git.Repo(".", search_parent_directories=True) git_root = git_repo.working_tree_dir if os.getcwd() != git_root: logger.info( f"current working dir: {os.getcwd()}," f"is not correctly set as repo root, " f"so changing to {git_root}" ) os.chdir(git_root) else: logger.info( f"current working dir correctly set as" f" repo root {os.getcwd()}" ) result = func(*args, **kwargs) return result return inner
5,337,879
def get_verbose_name(model_or_queryset, field): """ returns the value of the ``verbose_name`` of a field typically used in the templates where you can have a dynamic queryset :param model_or_queryset: target object :type model_or_queryset: :class:`django.db.models.Model`, :class:`django.db.query.Queryset` :param field: field to get the verbose name :type field: :class:`django.db.models.Field`, basestring :return: translated field verbose name :rtype: unicode Valid uses: >>> from django.contrib.auth.models import User, Permission >>> user = User() >>> p = Permission() >>> print unicode(get_verbose_name(user, 'username')) username >>> print unicode(get_verbose_name(User, 'username')) username >>> print unicode(get_verbose_name(User.objects.all(), 'username')) username >>> print unicode(get_verbose_name(User.objects, 'username')) username >>> print unicode(get_verbose_name(User.objects, user._meta.get_field_by_name('username')[0])) username >>> print unicode(get_verbose_name(p, 'content_type.model')) python model class name >>> get_verbose_name(object, 'aaa') Traceback (most recent call last): ... ValueError: `get_verbose_name` expects Manager, Queryset or Model as first parameter (got <type 'type'>) """ if isinstance(model_or_queryset, models.Manager): model = model_or_queryset.model elif isinstance(model_or_queryset, QuerySet): model = model_or_queryset.model elif isinstance(model_or_queryset, models.Model): model = model_or_queryset elif type(model_or_queryset) is models.base.ModelBase: model = model_or_queryset else: raise ValueError('`get_verbose_name` expects Manager, Queryset or Model as first parameter (got %s)' % type( model_or_queryset)) if isinstance(field, basestring): field = get_field_by_path(model, field) elif isinstance(field, models.Field): field = field else: raise ValueError('`get_verbose_name` field_path must be string or Field class') return field.verbose_name
5,337,880
def if_then_else(cond, t, f, span=None): """Conditional selection expression. Parameters ---------- cond : PrimExpr The condition t : PrimExpr The result expression if cond is true. f : PrimExpr The result expression if cond is false. span : Optional[Span] The location of this operator in the source. Returns ------- result : Node The result of conditional expression. Note ---- Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions. """ return _ffi_api._OpIfThenElse(convert(cond), convert(t), convert(f), span)
5,337,881
def get_args() -> argparse.Namespace: """Get arguments.""" parser = argparse.ArgumentParser(description="Dump Instance") parser.add_argument( "network_state_path", type=str, help="File path to network state dump JSON." ) parser.add_argument("--host", type=str, help="Host to bind to", default="127.0.0.1") parser.add_argument( "--port", type=int, help="Port to run on (defaults to 3000)", default=3000 ) parser.add_argument( "--log-level", type=str.upper, help="Log level", default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR"], ) parser.add_argument( "--events-to-replay-path", type=str, help=( "File path to events to replay JSON. Events provided by " "--combined-replay-dump-path option will be first, followed by events " "from this file." ), default=None, ) parser.add_argument( "--command-results-path", type=str, help=( "File path to command result JSON. Command results provided by " "--combined-replay-dump-path option will be first, followed by results " "from this file." ), default=None, ) parser.add_argument( "--combined-replay-dump-path", type=str, help=( "File path to the combined event and command result dump JSON. Events and " "command results will be extracted in the order they were received." ), default=None, ) return parser.parse_args()
5,337,882
def get_resources(filetype): """Find all HTML template or JavaScript files in the package. Caches the results for quick access. Parameters ---------- filetype : {'templates', 'js'} The type of file resource needed. Returns ------- :class:`dict` A dictionary mapping filename to the contents of the file. Raises ------ ValueError If `filetype` is unknown. """ global _resource_cache if filetype not in _resource_cache: raise ValueError("Unknown filetype '{0}' for get_resources()!".format(filetype)) if _resource_cache[filetype] is None: _resource_cache[filetype] = dict() for f in resource_listdir('prospect', filetype): if not f.startswith("."): _resource_cache[filetype][f] = resource_string('prospect', filetype + '/' + f).decode('utf-8') return _resource_cache[filetype]
5,337,883
def sum_fn(xnum, ynum): """ A function which performs a sum """ return xnum + ynum
5,337,884
def _process_gamemap_intents(intent: InputIntentType): """ Process intents for the player turn game state. """ player = world.get_player() position = world.get_entitys_component(player, Position) possible_move_intents = [InputIntent.DOWN, InputIntent.UP, InputIntent.LEFT, InputIntent.RIGHT] possible_skill_intents = [InputIntent.SKILL0, InputIntent.SKILL1, InputIntent.SKILL2, InputIntent.SKILL3, InputIntent.SKILL4, InputIntent.SKILL5] ## Player movement if intent in possible_move_intents and position: direction = _get_pressed_direction(intent) target_tile = world.get_tile((position.x, position.y)) possible_moves = [Direction.UP, Direction.DOWN, Direction.LEFT, Direction.RIGHT] if direction in possible_moves: _process_skill_use(player, Move, target_tile, direction) ## Use a skill elif intent in possible_skill_intents and position: skill_name = _get_pressed_skills_name(intent) current_tile = world.get_tile((position.x, position.y)) if skill_name: # is skill ready to use if world.can_use_skill(player, skill_name): skill = world.get_known_skill(player, skill_name) if skill: # if auto targeting use the skill if skill.targeting_method == TargetingMethod.AUTO: # pass centre as it doesnt matter, the skill will pick the right direction _process_skill_use(player, skill, current_tile, Direction.CENTRE) else: # trigger targeting overlay state.set_new(GameState.TARGETING) state.set_active_skill(skill_name) ui.update_targeting_overlay(True, skill_name) ## Show actor info - we're in GAMEMAP so it cant be visible elif intent == InputIntent.ACTOR_INFO_TOGGLE: # show state.set_new(GameState.MENU) ui.set_element_visibility(UIElement.ACTOR_INFO, True) ## Exit game elif intent == InputIntent.EXIT: state.set_new(GameState.EXIT_GAME)
5,337,885
def categorical_iou(y_true, y_pred, target_classes=None, strict=True): """画像ごとクラスごとのIoUを算出して平均するmetric。 Args: target_classes: 対象のクラスindexの配列。Noneなら全クラス。 strict: ラベルに無いクラスを予測してしまった場合に減点されるようにするならTrue、ラベルにあるクラスのみ対象にするならFalse。 """ axes = list(range(1, K.ndim(y_true))) y_classes = K.argmax(y_true, axis=-1) p_classes = K.argmax(y_pred, axis=-1) active_list = [] iou_list = [] for c in target_classes or range(y_true.shape[-1]): with tf.name_scope(f"class_{c}"): y_c = K.equal(y_classes, c) p_c = K.equal(p_classes, c) inter = K.sum(K.cast(tf.math.logical_and(y_c, p_c), "float32"), axis=axes) union = K.sum(K.cast(tf.math.logical_or(y_c, p_c), "float32"), axis=axes) active = union > 0 if strict else K.any(y_c, axis=axes) iou = inter / (union + K.epsilon()) active_list.append(K.cast(active, "float32")) iou_list.append(iou) return K.sum(iou_list, axis=0) / (K.sum(active_list, axis=0) + K.epsilon())
5,337,886
def convert_string(string: str, type: str) -> str: """Convert the string by [e]ncrypting or [d]ecrypting. :param type: String 'e' for encrypt or 'd' for decrypt. :return: [en/de]crypted string. """ hash_string = hash_() map_ = mapping(hash_string) if type.lower() == 'e': output = encrypt(string, map_) elif type.lower() == 'd': map_ = {v: k for k, v in map_.items()} output = decrypt(string, map_) else: output = '' return output
5,337,887
def create_saml_security_context(token, private_key): """ Create a security context for SAML token based authentication scheme :type token: :class:`str` :param token: SAML Token :type private_key: :class:`str` :param private_key: Absolute file path of the private key of the user :rtype: :class:`vmware.vapi.core.SecurityContext` :return: Newly created security context """ private_key_data = None with open(private_key, 'r') as fp: private_key_data = fp.read() return SecurityContext({SCHEME_ID: SAML_SCHEME_ID, PRIVATE_KEY: private_key_data, SAML_TOKEN: token, SIGNATURE_ALGORITHM: DEFAULT_ALGORITHM_TYPE})
5,337,888
def test_augment_angles(): """ X_all1,y_all1,es_all1 = load_boxworld_data('lab2_big_60v_10t') X_all2,y_all2,es_all2 = load_boxworld_data('lab2_big_60v_30t') X,y,es = augment_angles(X_all1,y_all1,es_all1,36,60) assert np.array_equal(X,X_all1) assert np.array_equal(y,y_all1) assert es == es_all1 X,y,es = augment_angles(X_all1,y_all1,es_all1,12,60) assert np.array_equal(X,X_all2) assert np.array_equal(y,y_all2) assert es == es_all2 X,y,es = augment_angles(X_all2,y_all2,es_all2,12,60) assert np.array_equal(X,X_all2) assert np.array_equal(y,y_all2) assert es == es_all2 """ """ X,y,es = augment_angles(X_all3,y_all3,es_all3,36,60) assert np.array_equal(X,X_all1) assert np.array_equal(y,y_all1) assert es == es_all1 """ """ X,y,es = augment_angles(X_all3,y_all3,es_all3,12,60) assert np.array_equal(X,X_all2) assert np.array_equal(y,y_all2) assert es == es_all2 """ for ds in ['lab2_big_20v_10t','lab2_big_20v_10t_t']: X_all3,y_all3,es_all3 = load_boxworld_data(ds) X,y,es = augment_angles(X_all3,y_all3,es_all3,36,20) assert np.array_equal(X,X_all3) assert np.array_equal(y,y_all3) assert es == es_all3 Xs,ys,ess = augment_angles(X_all3,y_all3,es_all3,36,60) X,y,es = augment_angles(X_all3,y_all3,es_all3,36,20) X,y,es = augment_angles(X,y,es,36,60) assert np.array_equal(X,Xs) assert np.array_equal(y,ys) assert es == ess X2,y2,es2 = augment_angles(X_all3,y_all3,es_all3,36,20) for a in range(40,361,20): X1,y1,es1 = X2,y2,es2 X2,y2,es2 = augment_angles(X_all3,y_all3,es_all3,36,a) assert np.sum(X1)<np.sum(X2) assert np.all(np.sum(X1,axis=1)<=np.sum(X2,axis=1)) assert np.all(y1==y2) assert es1['view_angle']<es2['view_angle'] #this is only relevant for _t X,_,_ = augment_angles(X_all3,y_all3,es_all3,36,360) assert np.sum(X)==np.prod(X.shape)
5,337,889
def _save_txt(data, file_path): """ 将一个list的数组写入txt文件里 :param data: :param file_path: :return: """ if not isinstance(data, list): data = [data] with open(file_path, mode='w', encoding='utf8') as f: f.write('\n'.join(data))
5,337,890
def cli(): """Command Line Tool to clone and restore RDS DB instance or cluster for Blue-Green deployments. Please the sub commands below. You can also use the options below to get more help. NOTE: Please ensure the RDS instance ID is stored in your environment variable as DBINSTANCEID """ pass
5,337,891
def predictIsDeviceLeftRunning(): """ Returns if the device is presumed left running without a real need --- parameters: name: -device_id in: query description: the device id for which the prediction is made required: false style: form explode: true schema: type: integer format: int32 responses: "200": description: A boolean, True or False, if the device is left running or not content: application/json: schema: type: boolean "400": description: Bad argument """ device_id = int(request.args.get("id", -1)) if device_id == -1: return Response(jsonify("Bad argument"), status=400) device = DeviceObject(UserObject.getMockUser(), device_id) return jsonify(device.predictDeviceLeftRunning())
5,337,892
def load( source: AnyPath, wordnet: Wordnet, get_synset_id: Optional[Callable] = None, ) -> Freq: """Load an Information Content mapping from a file. Arguments: source: A path to an information content weights file. wordnet: A :class:`wn.Wordnet` instance with synset identifiers matching the offsets in the weights file. get_synset_id: A callable that takes a synset offset and part of speech and returns a synset ID valid in *wordnet*. Raises: :class:`wn.Error`: If *wordnet* does not have exactly one lexicon. Example: >>> import wn, wn.ic >>> pwn = wn.Wordnet('pwn:3.0') >>> path = '~/nltk_data/corpora/wordnet_ic/ic-brown.dat' >>> freq = wn.ic.load(path, pwn) """ source = Path(source).expanduser().resolve(strict=True) assert len(wordnet.lexicons()) == 1 lexid = wordnet.lexicons()[0].id if get_synset_id is None: get_synset_id = synset_id_formatter(prefix=lexid) freq = _initialize(wordnet, 0.0) with source.open() as icfile: for offset, pos, weight, is_root in _parse_ic_file(icfile): ssid = get_synset_id(offset=offset, pos=pos) # synset = wordnet.synset(ssid) freq[pos][ssid] = weight if is_root: freq[pos][None] += weight return freq
5,337,893
def save_depth_png(depth, png, png_scale): """save depth map Args: depth (array, [HxW]): depth map png (str): path for saving depth map PNG file png_scale (float): scaling factor for saving PNG file """ depth = np.clip(depth, 0, 65535 / png_scale) depth = (depth * png_scale).astype(np.uint16) cv2.imwrite(png, depth)
5,337,894
def iso_time_str() -> str: """Return the current time as ISO 8601 format e.g.: 2019-01-19T23:20:25.459Z """ now = datetime.datetime.utcnow() return now.isoformat()[:-3]+'Z'
5,337,895
def mass(snap: Snap) -> Quantity: """Particle mass.""" massoftype = snap._file_pointer['header/massoftype'][()] particle_type = np.array( np.abs(get_dataset('itype', 'particles')(snap)).magnitude, dtype=int ) return massoftype[particle_type - 1] * snap._array_code_units['mass']
5,337,896
def nothing(): """DO nothing.""" pass
5,337,897
def _build_pytest_test_results_path(cmake_build_path): """ Build the path to the Pytest test results directory. :param cmake_build_path: Path to the CMake build directory. :return: Path to the Pytest test results directory. """ pytest_results_path = os.path.join(cmake_build_path, TEST_RESULTS_DIR, 'Pytest') return pytest_results_path
5,337,898
async def create_object_detection_training( train_object_detection_model_request: TrainImageModel, token: str = Depends(oauth2_scheme), ): """[API router to train AutoML object detection model] Args: train_object_detection_model_request (TrainImageModel): [Train AutoML Object detection model request] token (str, optional): [Bearer token for authentication]. Defaults to Depends(oauth2_scheme). Raises: HTTPException: [Unauthorized exception when invalid token is passed] error: [Exception in underlying controller] Returns: [TrainModelResponse]: [AutoML train object detection model response] """ try: logging.info("Calling /gcp/automl/train_object_detection_model endpoint") logging.debug(f"Request: {train_object_detection_model_request}") if decodeJWT(token=token): response = TrainModelController().train_object_detection_model_controller( request=train_object_detection_model_request ) return TrainModelResponse(**response) else: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid access token", headers={"WWW-Authenticate": "Bearer"}, ) except Exception as error: logging.error( f"Error in /gcp/automl/train_object_detection_model endpoint: {error}" ) raise error
5,337,899