content
stringlengths
22
815k
id
int64
0
4.91M
def test_role_present_absent_dry_run(vmware_datacenter, service_instance, dry_run): """ Test scenarios for vmware_esxi.role_present state run with test=True """ role_name = "A{}".format(uuid.uuid4()) random_role = "Random{}".format(uuid.uuid4()) # create a new role ret = esxi.role_present(name=role_name, privilege_ids=["Folder.Create"]) assert ret["result"] is None assert not ret["changes"] assert "Role {} will be created.".format(role_name) == ret["comment"] # create the role using exec mod ret = esxi_mod.add_role( role_name=role_name, privilege_ids=["Folder.Create"], service_instance=service_instance ) # update the role ret = esxi.role_present(name=role_name, privilege_ids=["Folder.Delete"]) assert ret["result"] is None assert not ret["changes"] assert "Folder.Delete privileges will be added" in ret["comment"] assert "Folder.Create privileges will be removed" in ret["comment"] ret = esxi.role_absent(name=role_name) assert ret["result"] is None assert not ret["changes"] assert "Role {} will be deleted.".format(role_name) == ret["comment"] # Remove a non-existent user ret = esxi.role_absent(name=random_role) assert ret["result"] is None assert not ret["changes"] assert "Role {} is not present.".format(random_role) in ret["comment"]
5,338,000
def extract_filter(filter_path): """Given a path to the weka's filter file, return a list of selected features.""" with open(filepath) as f: lnum = 0 for line in f: lnum += 1 #pointer to the next line to read if line.strip().startswith('Selected attributes:'): print "next line to read: ",lnum break features = [] for line in f: #keep reading from where we stopped (from 'break' point) # if len(line.strip()) != 0: features.append(line.strip()) return features
5,338,001
def pull(local_dir, remote_host, remote_dir, delete=False, verbose=0): """ Get the remote files to the local directory. """ ignore_file_pth = join(local_dir, ignore_file_name) transmit_dir(source_host=remote_host, source_dir=remote_dir, target_host=None, target_dir=local_dir, delete=delete, ignore_file_pth=ignore_file_pth, verbose=verbose)
5,338,002
def convert_to_roman_numeral(number_to_convert): """ Converts Hindi/Arabic (decimal) integers to Roman Numerals. Args: param1: Hindi/Arabic (decimal) integer. Returns: Roman Numeral, or an empty string for zero. """ arabic_numbers = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) roman_numerals = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') result = "" for index, arabic_number in enumerate(arabic_numbers): count = int(number_to_convert / arabic_number) result += roman_numerals[index] * count number_to_convert -= arabic_numbers[index] * count return result
5,338,003
def plot_with_pandas(): """Generate plot, using pandas.""" df = pd.read_csv('inputs/run_times.csv') # CHANGE THIS LINE TO READ FILE WITH SPEEDS, NOTJUST RUN TIMES df.plot(x="trial", y="distance") # CHANGE THIS LINE TO PLOT TRIALS ON X-AXIS AND SPEEDS ON Y-AXIS plt.show(block=False) # ADD LABELS FOR X AND Y AXIS, ADD TITLE, ADD GRID
5,338,004
def rotate_xyz(vector: Vector, angle_x: float = 0., angle_y: float = 0., angle_z: float = 0.): """ Rotate a 3d-vector around the third (z) axis :param vector: Vector to rotate :param angle_x: Rotation angle around x-axis (in degrees) :param angle_y: Rotation angle around y-axis (in degrees) :param angle_z: Rotation angle around z-axis (in degrees) :return: Rotated 3d vector Dimension of vector is not checked for faster execution """ vec = rotate_x(vector, angle_x) vec = rotate_y(vec, angle_y) vec = rotate_z(vec, angle_z) return vec
5,338,005
def get_project_from_data(data): """ Get a project from json data posted to the API """ if 'project_id' in data: return get_project_by_id(data['project_id']) if 'project_slug' in data: return get_project_by_slug(data['project_slug']) if 'project_name' in data: return get_project_by_name(data['project_name']) return None
5,338,006
def transform_bundle(bundle_uuid: str, bundle_version: str, bundle_path: str, bundle_manifest_path: str, extractor: DSSExtractor): """ Per bundle callback passed to DSSExtractor.extract. Generates cell and expression table rows from a downloaded DSS bundle. :param bundle_uuid: Downloaded bundle UUID :param bundle_version: Downloaded bundle version :param bundle_manifest_path: Local path to downloaded bundle dir :param extractor: ETL extractor object """ logger.info(f"ETL: Downloaded bundle {bundle_uuid}.{bundle_version}. Transforming to PSV.") transformer = CellExpressionTransformer(extractor.sd) try: transformer.transform_bundle(bundle_path, bundle_manifest_path) except Exception as ex: _log_error(f"{bundle_uuid}.{bundle_version}", ex, traceback.format_exc(), extractor)
5,338,007
def _from_atoms_and_bonds(atm_dct, bnd_dct): """ Construct a molecular graph from atom and bond dictionaries. format: gra = (atm_dct, bnd_dct) :param atm_dct: atom dictionary :type atm_dct: dict :param bnd_dct: bond dictionary :type bnd_dct: dict :rtype: (dict, dict) """ atm_dct = dict(atm_dct) bnd_dct = dict(bnd_dct) atm_keys = set(atm_dct.keys()) bnd_keys = set(bnd_dct.keys()) assert all(bnd_key <= atm_keys for bnd_key in bnd_keys) return (atm_dct, bnd_dct)
5,338,008
def __getattr__(item): """Ping the func map, if an attrib is not registered, fallback to the dll""" try: res = func_map[item] except KeyError: return dll.__getattr__(item) else: if callable(res): return res # Return methods from interface. else: return dll_func(*res)
5,338,009
def moves(possibleMoves): """shows all the possible moves available""" Game() for i in range(8): for j in range(8): if possibleMoves[i][j] != "": pg.draw.circle(window, green, (j * 100 + 50, (i * 100 + 50)), 10) pg.display.update()
5,338,010
def seed_random_state(seed): """ Turn seed into np.random.RandomState instance """ if (seed is None) or (isinstance(seed, int)): return np.random.RandomState(seed) elif isinstance(seed, np.random.RandomState): return seed raise ValueError("%r cannot be used to generate numpy.random.RandomState" "instance" % seed)
5,338,011
def test_input_redundancy_RULE110(): """Test Input Redundancy - RULE110""" n = RULE110() k_r, true_k_r = n.input_redundancy(mode='node',bound='upper',norm=False) , 7/8 assert (k_r == true_k_r) , ('Input Redundancy (node,upper bound) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='node',bound='lower',norm=False) , 7/8 assert (k_r == true_k_r) , ('Input Redundancy (node,lower bound) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='node',bound='upper',norm=True) , (7/8)/3 assert (k_r == true_k_r) , ('Input Redundancy (node,upper bound,normed) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='node',bound='lower',norm=True) , (7/8)/3 assert (k_r == true_k_r) , ('Input Redundancy (node,lower bound,normed) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='input',bound='upper',norm=False) , [6/8,2/8,2/8] assert (k_r == true_k_r) , ('Input Redundancy (input,upper bound) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='input',bound='mean',norm=False) , [5/8,1/8,1/8] assert (k_r == true_k_r) , ('Input Redundancy (input,mean) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='input',bound='lower',norm=False) , [4/8.,0/8,0/8] assert (k_r == true_k_r) , ('Input Redundancy (input,lower bound) for RULE110 node does not match. %s != %s' % (k_r,true_k_r)) k_r, true_k_r = n.input_redundancy(mode='input',bound='tuple',norm=False) , [(0.5, 0.75), (0.0, 0.25), (0.0, 0.25)] assert (k_r == true_k_r) , ('Input Redundancy (input,tuples) for RULE110 node does not match. %s != %s' % (k_r,true_k_r))
5,338,012
def _normalize_dashboard_link(link, request): """ Given a dashboard link, make sure it conforms to what we expect. """ if not link.startswith("http"): # If a local url is given, assume it is using the same host # as the application, and prepend that. link = url_path_join(f"{request.protocol}://{request.host}", link) if link.endswith("/status"): # If the default "status" dashboard is given, strip it. link = link[: -len("/status")] return link
5,338,013
def _plot_func_posterior_pdf_node_nn( bottom_node, axis, value_range=None, samples=10, bin_size=0.2, plot_likelihood_raw=False, **kwargs ): """Calculate posterior predictives from raw likelihood values and plot it on top of a histogram of the real data. The function does not define a figure, but manipulates an axis object. Arguments: bottom_node : pymc.stochastic Bottom node to compute posterior over. axis : matplotlib.axis Axis to plot into. value_range : numpy.ndarray Range over which to evaluate the likelihood. Optional: model : str <default='ddm_vanilla'> str that defines the generative model underlying the kabuki model from which the bottom_node argument derives. samples : int <default=10> Number of posterior samples to use. bin_size: float <default=0.2> Size of bins for the data histogram. plot_likelihood_raw : bool <default=False> Whether or not to plot likelihoods sample wise. add_legend : bool <default=True> Whether or not to add a legend to the plot linewidth : float <default=0.5> Linewidth of histogram outlines. """ # Setup ----- color_dict = { -1: "black", 0: "black", 1: "green", 2: "blue", 3: "red", 4: "orange", 5: "purple", 6: "brown", } model_ = kwargs.pop("model_", "ddm_vanilla") add_legend = kwargs.pop("add_legend", True) alpha_line = kwargs.pop("alpha", 0.05) lw_ = kwargs.pop("linewidth", 0.5) choices = model_config[model_]["choices"] n_choices = model_config[model_]["n_choices"] bins = np.arange(value_range[0], value_range[-1], bin_size) if value_range is None: # Infer from data by finding the min and max from the nodes raise NotImplementedError("value_range keyword argument must be supplied.") if n_choices == 2: like = np.empty((samples, len(value_range)), dtype=np.float32) pdf_in = value_range else: like = np.empty((samples, len(value_range), n_choices), dtype=np.float32) pdf_in = np.zeros((len(value_range), 2)) pdf_in[:, 0] = value_range # ----- # Get posterior parameters and plot corresponding likelihoods (if desired) --- for sample in range(samples): # Get random posterior sample _parents_to_random_posterior_sample(bottom_node) # Generate likelihood for parents parameters if n_choices == 2: like[sample, :] = bottom_node.pdf(pdf_in) if plot_likelihood_raw: axis.plot( value_range, like[sample, :], color="black", lw=1.0, alpha=alpha_line, ) else: c_cnt = 0 for choice in choices: pdf_in[:, 1] = choice like[sample, :, c_cnt] = bottom_node.pdf(pdf_in) if plot_likelihood_raw: like[sample, :, c_cnt] = bottom_node.pdf(pdf_in) axis.plot( pdf_in[:, 0], like[sample, :, c_cnt], color=color_dict[choice], lw=1.0, alpha=alpha_line, ) c_cnt += 1 # ------- # If we don't plot raw likelihoods, we generate a mean likelihood from the samples above # and plot it as a line with uncertainty bars if not plot_likelihood_raw: y = like.mean(axis=0) try: y_std = like.std(axis=0) except FloatingPointError: print( "WARNING! %s threw FloatingPointError over std computation. Setting to 0 and continuing." % bottom_node.__name__ ) y_std = np.zeros_like(y) if n_choices == 2: axis.plot(value_range, y, label="post pred", color="black") axis.fill_between( value_range, y - y_std, y + y_std, color="black", alpha=0.5 ) else: c_cnt = 0 for choice in choices: axis.plot( value_range, y[:, c_cnt], label="post pred", color=color_dict[choice], ) axis.fill_between( value_range, y[:, c_cnt] - y_std[:, c_cnt], y[:, c_cnt] + y_std[:, c_cnt], color=color_dict[choice], alpha=0.5, ) c_cnt += 1 # Plot data if len(bottom_node.value) != 0: if n_choices == 2: rt_dat = bottom_node.value.copy() if np.sum(rt_dat.rt < 0) == 0: rt_dat.loc[rt_dat.response != 1, "rt"] = (-1) * rt_dat.rt[ rt_dat.response != 1 ].values axis.hist( rt_dat.rt.values, density=True, color="blue", label="data", bins=bins, linestyle="-", histtype="step", lw=lw_, ) else: for choice in choices: weights = np.tile( (1 / bin_size) / bottom_node.value.shape[0], reps=bottom_node.value[bottom_node.value.response == choice].shape[ 0 ], ) if np.sum(bottom_node.value.response == choice) > 0: axis.hist( bottom_node.value.rt[bottom_node.value.response == choice], bins=np.arange(value_range[0], value_range[-1], bin_size), weights=weights, color=color_dict[choice], label="data", linestyle="dashed", histtype="step", lw=lw_, ) axis.set_ylim(bottom=0) # Likelihood and histogram can only be positive # Add a custom legend if add_legend: # If two choices only --> show data in blue, posterior samples in black if n_choices == 2: custom_elems = [] custom_titles = [] custom_elems.append(Line2D([0], [0], color="blue", lw=1.0, linestyle="-")) custom_elems.append(Line2D([0], [0], color="black", lw=1.0, linestyle="-")) custom_titles.append("Data") custom_titles.append("Posterior") # If more than two choices --> more styling else: custom_elems = [ Line2D([0], [0], color=color_dict[choice], lw=1) for choice in choices ] custom_titles = ["response: " + str(choice) for choice in choices] custom_elems.append( Line2D([0], [0], color="black", lw=1.0, linestyle="dashed") ) custom_elems.append(Line2D([0], [0], color="black", lw=1.0, linestyle="-")) custom_titles.append("Data") custom_titles.append("Posterior") axis.legend(custom_elems, custom_titles, loc="upper right")
5,338,014
async def delete(category_id: int): """Delete category with set id.""" apm.capture_message(param_message={'message': 'Category with %s id deleted.', 'params': category_id}) return await db.delete(category_id)
5,338,015
def find_files(fields): """ Finds all FLT files from given fields and places them with metadata into OrderedDicts. Parameters ---------- fields : list of strings The CLEAR fields; retain ability to specify the individual pointings so that can easily re-run single ones if find an issue. Returns ------- visits : OrderedDict Keys of 'files' and 'products'; values of list of FLT files and product name. filters : OrderedDict Keys of filters; values of OrderedDicts with keys of orient and values of lists of FLT files. """ files = glob.glob(os.path.join(PATH_RAW, '*flt.fits')) info = grizli.utils.get_flt_info(files) # 'info' is an astropy table. # Creating a new table and inserting only the rows I want is quite annoying # Just convert 'info' into an ordered dictionary info_dict = bypass_table.decompose_table(info, return_type=dict, include_meta=True) new_info_list = [] # Convert table to ordered dictionary, put it in a list, convert to numpy array # to convert it back into a table. awesome for row in range(len(info_dict['TARGNAME'])): if info_dict['TARGNAME'][row] in fields: new_info_list.append([info_dict[key][row] for key in info_dict.keys() if key != 'meta']) # Now, if one of the fields is GOODS-N, need be sure all the Barro programs # are also retained. for field in [field for field in fields if 'N' in field or 'ERSPRIME' in field]: if info_dict['TARGNAME'][row] in overlapping_fields[field]: new_info_list.append([info_dict[key][row] for key in info_dict.keys() if key != 'meta']) # Break so the Barro programs are added only once. break # Convert 'info' back into a table # I couldn't simply do dtype=info.dtype, so just hard code it new_info_tab = Table(np.array(new_info_list), names=info.colnames, meta=info.meta, dtype=['S18', 'S5', 'S8', 'S10', 'S8', '<f8', '<f8', '<f8', '<f8', '<f8', '<f8', '<f8']) visits, filters = grizli.utils.parse_flt_files(info=new_info_tab, uniquename=True) return visits, filters
5,338,016
def test_orderstorage__Orderstorage__isLast__1(storage): """It raises a `KeyError` if the item is not in the list.""" with pytest.raises(KeyError): storage.isLast('foo', 'fuz')
5,338,017
def tag_boundaries(htmlifiers): """Return a sequence of (offset, is_start, Region/Ref/Line) tuples. Basically, split the atomic tags that come out of plugins into separate start and end points, which can then be thrown together in a bag and sorted as the first step in the tag-balancing process. Like in Python slice notation, the offset of a tag refers to the index of the source code char it comes before. """ for h in htmlifiers: for intervals, cls in [(h.regions(), Region), (h.refs(), Ref)]: for start, end, data in intervals: tag = cls(data) # Filter out zero-length spans which don't do any good and # which can cause starts to sort after ends, crashing the tag # balancer. Incidentally filter out spans where start tags come # after end tags, though that should never happen. # # Also filter out None starts and ends. I don't know where they # come from. That shouldn't happen and should be fixed in the # plugins. if (start is not None and start != -1 and end is not None and end != -1 and start < end): yield start, True, tag yield end, False, tag
5,338,018
def to_canonical_name(resource_name: str) -> str: """Parse a resource name and return the canonical version.""" return str(ResourceName.from_string(resource_name))
5,338,019
def apply_query_filters(query, model, **kwargs): """Parses through a list of kwargs to determine which exist on the model, which should be filtered as ==, and which should be filtered as LIKE """ for k, v in six.iteritems(kwargs): if v and hasattr(model, k): column = getattr(model, k) if column.is_attribute: if isinstance(v, list): # List() style parameters receive WHERE IN logic. query = query.filter(column.in_(v)) elif isinstance(column.type, sqltypes.String): # Filter strings with LIKE query = query.filter(column.like("%" + v + "%")) else: # Everything else is a strict equal query = query.filter(column == v) return query
5,338,020
def bytes_to_b64_str(bytestring: bytes) -> str: """Converts random bytes into a utf-8 encoded string""" return b64encode(bytestring).decode(config.security.ENCODING)
5,338,021
def read_event_analysis(s:Session, eventId:int) -> AnalysisData: """read the analysis data by its eventId""" res = s.query(AnalysisData).filter_by(eventId=eventId).first() return res
5,338,022
def eval_semeval2012_analogies( vectors, weight_direct, weight_transpose, subset, subclass ): """ For a set of test pairs: * Compute a Spearman correlation coefficient between the ranks produced by vectors and gold ranks. * Compute an accuracy score of answering MaxDiff questions. """ train_pairs = read_train_pairs_semeval2012(subset, subclass) test_questions = read_test_questions_semeval2012(subset, subclass) pairqnum2least, pairqnum2most = read_turk_answers_semeval2012( subset, subclass, test_questions ) turk_rank = read_turk_ranks_semeval2012(subset, subclass) pairs_to_rank = [pair for pair, score in turk_rank] # Assign a score to each pair, according to pairwise_analogy_func our_pair_scores = {} for pair in pairs_to_rank: rank_pair_scores = [] for train_pair in train_pairs: pair_to_rank = pair.strip().replace('"', '').split(':') score = pairwise_analogy_func( vectors, standardized_uri('en', train_pair[0]), standardized_uri('en', train_pair[1]), standardized_uri('en', pair_to_rank[0]), standardized_uri('en', pair_to_rank[1]), weight_direct, weight_transpose, ) rank_pair_scores.append(score) our_pair_scores[pair] = np.mean(rank_pair_scores) # Answer MaxDiff questions using the ranks from the previous step correct_most = 0 correct_least = 0 total = 0 for i, question in enumerate(test_questions): question_pairs_scores = [] for question_pair in question: score = our_pair_scores[question_pair] question_pairs_scores.append(score) our_answer_most = question[np.argmax(question_pairs_scores)] our_answer_least = question[np.argmin(question_pairs_scores)] votes_guess_least = pairqnum2least[(i, our_answer_least)] votes_guess_most = pairqnum2most[(i, our_answer_most)] max_votes_least = 0 max_votes_most = 0 for question_pair in question: num_votes_least = pairqnum2least[(i, question_pair)] num_votes_most = pairqnum2most[(i, question_pair)] if num_votes_least > max_votes_least: max_votes_least = num_votes_least if num_votes_most > max_votes_most: max_votes_most = num_votes_most # a guess is correct if it got the same number of votes as the most frequent turkers' answer if votes_guess_least == max_votes_least: correct_least += 1 if votes_guess_most == max_votes_most: correct_most += 1 total += 1 # Compute Spearman correlation of our ranks and MT ranks our_semeval_scores = [score for pair, score in sorted(our_pair_scores.items())] turk_semeval_scores = [score for pair, score in turk_rank] spearman = spearmanr(our_semeval_scores, turk_semeval_scores)[0] spearman_results = confidence_interval(spearman, total) # Compute an accuracy score on MaxDiff questions maxdiff = (correct_least + correct_most) / (2 * total) low_maxdiff, high_maxdiff = proportion_confint( (correct_least + correct_most), (2 * total) ) maxdiff_results = pd.Series( [maxdiff, low_maxdiff, high_maxdiff], index=['acc', 'low', 'high'] ) return [maxdiff_results, spearman_results]
5,338,023
def form_examples(request, step_variables): """ extract the examples from the request data, if possible @param request: http request object @type request rest_framework.request.Request @param step_variables: set of variable names from the bdd test @type step_variables: set(basestring) @return: none if no examples or failed, or formed examples and an error msg, if applicable @rtype: (basestring, basestring) """ if u'examples' not in request.DATA: return None, None examples = request.DATA[u'examples'] log.debug(u'request has examples:\n{}'.format(examples)) # examples should be an array of json objects, each object being an # example row if not isinstance(examples, list): return None, u'examples payload was not an array' if not examples: return None, u'examples array was empty' # form the actual gherkin example text (sans "Examples:", engine adds it) text = [u'|' + u'|'.join(step_variables) + u'|'] for ex in examples: # verify the example obj has all the expected headers/fields ex_field_diffs = step_variables.difference(ex.keys()) if ex_field_diffs: return None, u'an example object was missing some fields: {} given: {}'.format(ex_field_diffs, ex) vals = [unicode(ex[key]) for key in step_variables] text.append(u'|' + u'|'.join(vals) + u'|') text = u'\n'.join(text) log.debug(u'resulting example text\n{}'.format(text)) return text, None
5,338,024
def get_typefromSelection(objectType="Edge", info=0): """ """ m_num_obj, m_selEx, m_objs, m_objNames = get_InfoObjects(info=0, printError=False) m_found = False for m_i_o in range(m_num_obj): if m_found: break Sel_i_Object = m_selEx[m_i_o] Obj_i_Object = m_objs[m_i_o] Name_i_Object = m_objNames[m_i_o] if info != 0: print("Sel_i_Object = " + str(Sel_i_Object)) print("Obj_i_Object = " + str(Obj_i_Object)) print("Name_i_Object = " + str(Name_i_Object)) SubObjects_Inside = Sel_i_Object.SubObjects for n in range(len(SubObjects_Inside)): SubObject = SubObjects_Inside[n] if info != 0: print("SubObject = " + str(SubObject)) print("SubObject.ShapeType = " + str(SubObject.ShapeType)) if SubObject.ShapeType == objectType: m_found = True break if m_found: return Sel_i_Object, Obj_i_Object, Name_i_Object else: return None, None, None
5,338,025
def load_file(file_path, mode='rb', encoder='utf-8'): """ Loads the content of a given filename :param file_path: The file path to load :param mode: optional mode options :param encoder: the encoder :return: The content of the file """ with xbmcvfs.File(xbmcvfs.translatePath(file_path), mode) as file_handle: return file_handle.readBytes().decode(encoder)
5,338,026
def centcalc_by_weight(data): """ Determines the center (of grtavity) of a neutron beam on a 2D detector by weigthing each pixel with its count -------------------------------------------------- Argments: ---------- data : ndarray : l x m x n array with 'pixel' - data to weight over m and n Return: ---------- centers : ndarray : l x 2 array with all the centers (cx, cy) INFO: ---------- 1. Method implemented by C. Herb 2. CHECK the order of cx, cy if it fits to all other interpretations of 2d dimnensions """ centerdata = zeros((data.shape[0], 2)) for row in centerdata: x_int = sum(data,axis = 0) y_int = sum(data,axis = 1) row[0] = sum([i* xval for i,xval in enumerate(x_int) ])/sum(x_int) row[1] = sum([j* yval for j,yval in enumerate(y_int) ])/sum(y_int) return centerdata
5,338,027
def sum(a, axis=None, dtype=None, out=None, keepdims=False): """Returns the sum of an array along given axes. Args: a (cupy.ndarray): Array to take sum. axis (int or sequence of ints): Axes along which the sum is taken. dtype: Data type specifier. out (cupy.ndarray): Output array. keepdims (bool): If ``True``, the specified axes are remained as axes of length one. Returns: cupy.ndarray: The result array. .. seealso:: :func:`numpy.sum` """ if fusion._is_fusing(): if keepdims: raise NotImplementedError( 'cupy.sum does not support `keepdims` in fusion yet.') return fusion._call_reduction(_math.sum_auto_dtype, a, axis=axis, dtype=dtype, out=out) # TODO(okuta): check type return a.sum(axis, dtype, out, keepdims)
5,338,028
def to_bool(env, default="false"): """ Convert a string to a bool. """ return bool(util.strtobool(os.getenv(env, default)))
5,338,029
def public_key(): """ returns public key """ return textwrap.dedent(''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAwBLTc+75h13ZyLWlvup0OmbhZWxohLMMFCUBClSMxZxZdMvyzBnW +JpOQuvnasAeTLLtEDWSID0AB/EG68Sesr58Js88ORUw3VrjObiG15/iLtAm6hiN BboTqd8jgWr1yC3LfNSKJk82qQzHJPlCO9Gc5HcqvWrIrqrJL2kwjOU66U/iRxJu dyOrz0sBkVgfwDBqNS96L0zFQCqk70w9KyOJqe4JNJUtBas6lbwgChDU4/B3BDW5 PYJy2Pp8MSs2n1lhrUkXxRnj+Vl5wLQLdwog1XAGu2J8pIckPg/aB7mB/fSlFihU bnFlRlgHrlh8gyNYztbGWKMrQ4Bz2831PQIDAQAB -----END RSA PUBLIC KEY----- ''')
5,338,030
def register_blueprints(current_app) -> None: """Register app blueprints.""" current_app.register_blueprint(product_blueprint) current_app.register_blueprint(cart_blueprint) current_app.register_blueprint(customer_blueprint) current_app.register_blueprint(restaurant_blueprint) current_app.register_blueprint(auth_blueprint)
5,338,031
def fetch_WIPOgamma(subset, classification_level, data_home, extracted_path, text_fields = ['abstract', 'description'], limit_description=300): """ Fetchs the WIPO-gamma dataset :param subset: 'train' or 'test' split :param classification_level: the classification level, either 'subclass' or 'maingroup' :param data_home: directory containing the original 11 English zips :param extracted_path: directory used to extract and process the original files :param text_fields: indicates the fields to extract, in 'abstract', 'description', 'claims' :param limit_description: the maximum number of words to take from the description field (default 300); set to -1 for all :return: """ assert subset in {"train", "test"}, 'unknown target request (valid ones are "train" or "test")' assert len(text_fields)>0, 'at least some text field should be indicated' if not exists(data_home): raise ValueError(f'{data_home} does not exist, and the dataset cannot be automatically download, ' f'since you need to request for permission. Please refer to {WIPO_URL}') create_if_not_exist(extracted_path) config = f'{"-".join(text_fields)}' if 'description' in text_fields: config+='-{limit_description}' pickle_path=join(extracted_path, f'wipo-{subset}-{classification_level}-{config}.pickle') if exists(pickle_path): print(f'loading pickled file in {pickle_path}') return pickle.load(open(pickle_path,'rb')) print('pickle file not found, processing...(this will take some minutes)') extracted = sum([exists(f'{extracted_path}/EnglishWipoGamma{(i+1)}-{config}.txt') for i in range(11)])==11 if not extracted: print(f'extraction files not found, extracting files in {data_home}... (this will take some additional minutes)') Parallel(n_jobs=-1)( delayed(extract)( join(data_home, file), join(extracted_path, file.replace('.zip', f'-{config}.txt')), text_fields, limit_description ) for file in list_files(data_home) ) doc_labels, train_ids, test_ids = read_classification_file(data_home, classification_level=classification_level) # or maingroup print(f'{len(doc_labels)} documents classified split in {len(train_ids)} train and {len(test_ids)} test documents') train_request = [] test_request = [] pbar = tqdm([filename for filename in list_files(extracted_path) if filename.endswith(f'-{config}.txt')]) labelcut = LabelCut(classification_level) errors=0 for proc_file in pbar: pbar.set_description(f'processing {proc_file} [errors={errors}]') if not proc_file.endswith(f'-{config}.txt'): continue lines = open(f'{extracted_path}/{proc_file}', 'rt').readlines() for lineno,line in enumerate(lines): parts = line.split('\t') assert len(parts)==4, f'wrong format in {extracted_path}/{proc_file} line {lineno}' id,mainlabel,alllabels,text=parts mainlabel = labelcut.trim(mainlabel) alllabels = labelcut.trim(alllabels.split()) # assert id in train_ids or id in test_ids, f'id {id} out of scope' if id not in train_ids and id not in test_ids: errors+=1 else: # assert mainlabel == doc_labels[id][0], 'main label not consistent' request = train_request if id in train_ids else test_request request.append(WipoGammaDocument(id, text, mainlabel, alllabels)) print('pickling requests for faster subsequent runs') pickle.dump(train_request, open(join(extracted_path,f'wipo-train-{classification_level}-{config}.pickle'), 'wb', pickle.HIGHEST_PROTOCOL)) pickle.dump(test_request, open(join(extracted_path, f'wipo-test-{classification_level}-{config}.pickle'), 'wb', pickle.HIGHEST_PROTOCOL)) if subset== 'train': return train_request else: return test_request
5,338,032
def latest_maven_version(group_id: str, artifact_id: str) -> Optional[str]: """Helper function to find the latest released version of a Maven artifact. Fetches metadata from Maven Central and parses out the latest released version. Args: group_id (str): The groupId of the Maven artifact artifact_id (str): The artifactId of the Maven artifact Returns: The latest version of the artifact as a string or None """ group_path = "/".join(group_id.split(".")) url = ( f"https://repo1.maven.org/maven2/{group_path}/{artifact_id}/maven-metadata.xml" ) response = requests.get(url) if response.status_code >= 400: return "0.0.0" return version_from_maven_metadata(response.text)
5,338,033
def zeropoint(info_dict): """ Computes the zero point of a particular system configuration (filter, atmospheric conditions,optics,camera). The zeropoint is the magnitude which will lead to one count per second. By definition ZP = -2.5*log10( Flux_1e-_per_s / Flux_zeromag ), where Flux_1e-_per_s = 1 e-/s and Flux_zeromag = sum_over_passband ( zero_flux * system_response * A_tel ) in e-/s Hence: ZP = 2.5*log10( sum_over_passband ( zero_flux * system_response * A_tel )) Parameters ---------- info_dict: dictionary wavelength: array wavelength in angstrom Returns ------_ zeropoint: float zeropoint in magnitude """ # Integrate over the wavelengths # Flux_zero = np.trapz(zeromag_to_flux(info_dict,wavelength,unit='ph') # * precomp.system_response(info_dict,wavelength), # wavelength)*precomp.A_tel(info_dict) # Flux_zero = np.trapz(zeromag_to_flux(info_dict,unit='ph') # * info_dict['system_response'], # info_dict['wavelength_ang']) # * info_dict['A_tel'] Flux_zero = ( np.trapz( utils.flambda_to_fph( info_dict["wavelength_ang"], utils.fJy_to_flambda( info_dict["wavelength_ang"], info_dict["Flux_zero_Jy"] ), ) * info_dict["system_response"] * info_dict["Trans_atmosphere"], info_dict["wavelength_ang"], ) * info_dict["A_tel"] ) ZP = 2.5 * np.log10(Flux_zero) info_dict["zeropoint"] = ZP return info_dict
5,338,034
def logUncaughtExceptions(*exc_info): """ Set sys.excepthook to this if you want to make sure a script-ending exception gets logged. Otherwise that info tends to disappear. I got this script here: http://blog.tplus1.com/index.php/2012/08/05/python-log-uncaught-exceptions-with-sys-excepthook/ I also have some stuffed tagged in bookmarks for getting pdb started when an exception like this happens. """ logging.critical('Unhandled exception:', exc_info=exc_info)
5,338,035
def extract_binary_function_range(ida64_path, script_path, binary_paths): """this will generate a .json file for each binary file in same path indicating the range of function""" # binary_paths = use_ida_scripts_get_function_starts_and_ends.read_binary_list(binary_path_list) # print(binary_paths) for binary_path in binary_paths: if os.path.exists(binary_path + ".json"): continue print("processing path: {}".format(binary_path)) use_ida_scripts_get_function_starts_and_ends.execute_ida_scripts_get_functions_starts_and_ends(binary_path, ida64_path, script_path)
5,338,036
def model_comp(real_data, deltaT, binSize, maxTimeLag, abc_results1, final_step1, abc_results2, final_step2,\ model1, model2, distFunc, summStat_metric, ifNorm,\ numSamplesModelComp, eval_start = 3, disp1 = None, disp2 = None): """Perform Baysian model comparison with ABC fits from model1 and model2. Parameters ----------- real_data : nd array time-series of continous data, e.g., OU process, (numTrials * numTimePoints) or binned spike counts (numTrials * numBin). deltaT : float temporal resolution of data (or binSize of spike counts). binSize : float bin-size for computing the autocorrelation. maxTimeLag : float maximum time-lag for computing the autocorrelation. abc_results1: object output of fitting model1 with aABC algorithm. final_step1 : int final step of aABC fitting for model1. abc_results2: object output of fitting model2 with aABC algorithm. final_step2 : int final step of aABC fitting for model2. model1: string selected generative model for model1 (from generative models list). model2: string selected generative model for model2 (from generative models list). distFunc: string 'linear_distance' or 'logarithmic_distance'. summStat_metric : string metric for computing summay statistics ('comp_cc', 'comp_ac_fft', 'comp_psd'). ifNorm : string if normalize the autocorrelation or PSD. numSamplesModelComp: int number of samples from posterior distributions to compute the Bayes factor. eval_start : int, default 3 defines the number of smallest errors we ignore before starting CDF computation. disp1 : float, default None The value of dispersion parameter if computed with the grid search method for model1. disp2 : float, default None The value of dispersion parameter if computed with the grid search method for model2. Returns ------- d1 : 1d array distribution of errors (distances) for model1. d2 : 1d array distribution of errors (distances) for model2. cdf1 : 1d array CDF of errors for model1. cdf2 : 1d array CDF of errors for model2. err_threshs : 1d array error thresholds for which CDFs are computed bf : 1d array Bayes factors for each error threshold in "err_threshs" (CDF_M2/CDF_M1). """ # extract abc fits theta_accepted1 = abc_results1[final_step1 - 1]['theta accepted'] theta_accepted2 = abc_results2[final_step2 - 1]['theta accepted'] # extract real data statistics data_sumStat, data_mean, data_var, T, numTrials = extract_stats(real_data, deltaT, binSize,\ summStat_metric, ifNorm, maxTimeLag) # compute distances numSamplesPosterior1 = len(theta_accepted1[0]) numSamplesPosterior2 = len(theta_accepted2[0]) print('Computing distances for model1:') d1 = gen_model_dist(data_sumStat, theta_accepted1, numSamplesModelComp, numSamplesPosterior1, model1, distFunc,\ summStat_metric, ifNorm, deltaT, binSize, T, numTrials, data_mean, data_var, maxTimeLag, disp1) print('Computing distances for model2:') d2 = gen_model_dist(data_sumStat, theta_accepted2, numSamplesModelComp, numSamplesPosterior2, model2, distFunc,\ summStat_metric, ifNorm, deltaT, binSize, T, numTrials, data_mean, data_var, maxTimeLag, disp2) # compute CDFs and Bayes factors cdf1, cdf2, eval_points, bf = comp_cdf(d1, d2, numSamplesModelComp, eval_start) err_threshs = eval_points return d1, d2, cdf1, cdf2, err_threshs, bf
5,338,037
def unwrap(*args, **kwargs): """ This in a alias for unwrap_array, which you should use now. """ if deprecation_warnings: print('Use of "unwrap" function is deprecated, the new name '\ ' is "unwrap_array".') return unwrap_array(*args, **kwargs)
5,338,038
def solve(): """solve form""" if request.method == 'GET': sql="SELECT g.class, p.origin, p.no, p.title, p.address FROM GIVE g, PROBLEM p WHERE g.origin=p.origin AND g.no=p.no AND class = 1" cursor.execute(sql) week1=[] for result in cursor.fetchall(): week1.append({ "class":result['class'], "origin":result['origin'], "no":result['no'], "title":result['title'], "address":result['address'] }) sql="SELECT g.class, p.origin, p.no, p.title, p.address FROM GIVE g, PROBLEM p WHERE g.origin=p.origin AND g.no=p.no AND class = 2" cursor.execute(sql) week2=[] for result in cursor.fetchall(): week2.append({ "class":result['class'], "origin":result['origin'], "no":result['no'], "title":result['title'], "address":result['address'] }) return render_template('week.html',week1 = week1, week2 = week2)
5,338,039
def build_path(entities, path_patterns, strict=False): """ Constructs a path given a set of entities and a list of potential filename patterns to use. Args: entities (dict): A dictionary mapping entity names to entity values. path_patterns (str, list): One or more filename patterns to write the file to. Entities should be represented by the name surrounded by curly braces. Optional portions of the patterns should be denoted by square brackets. Entities that require a specific value for the pattern to match can pass them inside carets. Default values can be assigned by specifying a string after the pipe operator. E.g., (e.g., {type<image>|bold} would only match the pattern if the entity 'type' was passed and its value is "image", otherwise the default value "bold" will be used). Example 1: 'sub-{subject}/[var-{name}/]{id}.csv' Result 2: 'sub-01/var-SES/1045.csv' strict (bool): If True, all passed entities must be matched inside a pattern in order to be a valid match. If False, extra entities will be ignored so long as all mandatory entities are found. Returns: A constructed path for this file based on the provided patterns. """ if isinstance(path_patterns, string_types): path_patterns = [path_patterns] # Loop over available patherns, return first one that matches all for pattern in path_patterns: # If strict, all entities must be contained in the pattern if strict: defined = re.findall('\{(.*?)(?:<[^>]+>)?\}', pattern) if set(entities.keys()) - set(defined): continue # Iterate through the provided path patterns new_path = pattern optional_patterns = re.findall('\[(.*?)\]', pattern) # First build from optional patterns if possible for optional_pattern in optional_patterns: optional_chunk = replace_entities(entities, optional_pattern) or '' new_path = new_path.replace('[%s]' % optional_pattern, optional_chunk) # Replace remaining entities new_path = replace_entities(entities, new_path) if new_path: return new_path return None
5,338,040
def schedule_compensate(): """ swagger-doc: 'schedule' required: [] req: course_schedule_id: description: '课程id' type: 'string' start: description: '课程开始时间 format YYYY-mm-dd HH:MM:ss.SSS' type: 'string' end: description: '课程结束时间 in sql format YYYY-mm-dd HH:MM:ss.SSS' type: 'string' schedule_type: description: '课节类型' type: 'string' res: verify_code: description: 'id' type: '' """ course_schedule_id = request.json['course_schedule_id'] start = request.json['start'].replace('T', ' ').replace('Z', '') end = request.json['end'].replace('T', ' ').replace('Z', '') schedule_type = request.json['schedule_type'] with session_scope(db) as session: courseSchedule = session.query(CourseSchedule).filter_by(id=course_schedule_id).one_or_none() if courseSchedule is None: return jsonify({ "error": "not found course_schedule: {0}".format( course_schedule_id) }), 500 courseschedule = CourseSchedule( start = start, end = end, name = courseSchedule.name, state = 98, override_course_type=courseSchedule.override_course_type, course_id = courseSchedule.course_id, schedule_type = schedule_type, delete_flag = 'IN_FORCE', updated_by=getattr(g, current_app.config['CUR_USER'])['username'] ) session.add(courseschedule) session.flush() course = session.query(Course).filter_by(id=courseSchedule.course_id).one_or_none() class_type =ClassroomTypeEnum.ONE_VS_ONE.name if course.class_type != 1: class_type = ClassroomTypeEnum.ONE_VS_MANY.name live_service.create_room(getattr(g, current_app.config['CUR_USER'])['username'], courseschedule.id,courseSchedule.name, getTimeDiff(start,end),class_type,request.json['start'],0,'en') studyschedules = session.query(StudySchedule).filter_by(course_schedule_id=course_schedule_id).all() for studyschedule in studyschedules: sudyschedule = StudySchedule( actual_start = start, actual_end = end, name = courseSchedule.name, study_state = 1, order_id = studyschedule.order_id, course_schedule_id = courseschedule.id, student_id = studyschedule.student_id, schedule_type = schedule_type, delete_flag = 'IN_FORCE', updated_by=getattr(g, current_app.config['CUR_USER'])['username'] ) session.add(sudyschedule) session.flush() return jsonify({'id':courseschedule.id })
5,338,041
def parse(xml): """ Parse headerdoc XML into a dictionary format. Extract classes, functions, and global variables from the given XML output by headerdoc. Some formatting and text manipulation takes place while parsing. For example, the `@example` is no longer recognized by headerdoc. `parse()` will extract examples separately from the given description. [Admonitions](https://python-markdown.github.io/extensions/admonition/) are also not kept in the correct format by headerdoc. Admonitions text must be indented to the same level as the admonition title, but headerdoc strips leading whitespace. The dictionary returned from `parse` will have the correct indentation restored. Args: xml (ElementTree): An `ElementTree` read from a headerdoc XML file. The root must be the `<header>` element. Returns: Dict """ return _parse_script(xml)
5,338,042
def ReadKeywordValueInFile(filename,keyword): """ Get value in the expression of keyword=vlaue in file :param str filenname: file name :param str keywors: keyword string :return: value(str) - value string """ value=None; lenkey=len(keyword) if not os.path.exists(filename): return value fmomenu=False; found=False f=open(filename) dat=''; lenkey=len(keyword); leftpar=0; rightpar=0 for s in f.readlines(): cm=s.find('#') if cm > 0: s=s[:cm] s=s.strip() if len(s) == 0: continue items=s.split() for item in items: if item[:lenkey] == keyword: found=True; value=item.split('=')[1]; value=value.strip() break f.close() if not found: value=None return value
5,338,043
def deprecation_warning( old: str, new: Optional[str] = None, error: Optional[Union[bool, Exception]] = None) -> None: """Warns (via the `logger` object) or throws a deprecation warning/error. Args: old (str): A description of the "thing" that is to be deprecated. new (Optional[str]): A description of the new "thing" that replaces it. error (Optional[Union[bool, Exception]]): Whether or which exception to throw. If True, throw ValueError. If False, just warn. If Exception, throw that Exception. """ msg = "`{}` has been deprecated.{}".format( old, (" Use `{}` instead.".format(new) if new else "")) if error is True: raise ValueError(msg) elif error and issubclass(error, Exception): raise error(msg) else: logger.warning("DeprecationWarning: " + msg + " This will raise an error in the future!")
5,338,044
def getSolventList(): """ Return list of solvent molecules for initializing solvation search form. If any of the Mintz parameters are None, that solvent is not shown in the list since it will cause error. """ database.load('solvation', '') solvent_list = [] for index, entry in database.solvation.libraries['solvent'].entries.items(): mintz_parameter_list = [entry.data.s_h, entry.data.b_h, entry.data.e_h, entry.data.l_h, entry.data.a_h, entry.data.c_h] if not any(h is None for h in mintz_parameter_list): solvent_list.append((entry.label, index)) return solvent_list
5,338,045
def subset_samples(md_fp: str, factor: str, unstacked_md: pd.DataFrame, number_of_samples: int, logs:list) -> pd.DataFrame: """ Subset the metadata to a maximum set of 100 samples. ! ATTENTION ! In case there are many columns with np.nan, these should be selected to select samples that do have actual numerical values... Parameters ---------- md_fp : str Metadata file path. factor : str Stratification factor. unstacked_md : pd.DataFrame Metadata table subset for the current stratification and numerical variables. number_of_samples : int Number of samples to randomly select to compute the distributions. logs : list List of lists: each nested list is: [variable, metadata file path, warning message, a number] Returns ------- figure_tab : pd.DataFrame re-stacked metadata table """ # get the unique samples names samples = set(list(unstacked_md.sample_name.tolist())) # take either 100 or if less, all the samples as data for the figure if len(samples) < number_of_samples: logs.append([factor, md_fp, 'not enough samples', len(samples)]) figure_tab = unstacked_md.copy() else: random_samples = random.sample(samples, number_of_samples) figure_tab = unstacked_md.loc[unstacked_md.sample_name.isin(random_samples),:].copy() return figure_tab
5,338,046
def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. with tf.gfile.GFile(filename, "rb") as f: image_data = f.read() # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image, height, width
5,338,047
def broadcast(msg): """ Send msg to every client. """ for client in CLIENT_LIST: if type(msg) is list: for m in msg: client.send(m + '\n') else: client.send(msg + '\n')
5,338,048
def to_rna_sequences(model): """ Convert all the sequences present in the model to RNA. :args dict model: Description model. """ for seq, path in yield_sub_model(model, ["sequence"]): set_by_path(model, path, str(Seq(seq).transcribe().lower())) return model
5,338,049
async def test_fetch_convbot_with_exc(): """Test fetch_convbot_with_exc.""" my_route = respx.post("https://convbot-yucongo.koyeb.app/text/").mock( return_value=Response(204) ) await fetch_convbot("Hello") assert my_route.called
5,338,050
def rest_get_repositories(script, project=None, start=0, limit=50): """ Gets a list of repositories via REST :param script: A TestScript instance :type script: TestScript :param project: An optional project :type project: str :param start: The offset to start from :type start: int :param limit: The max number of items to return :type limit: int :return: repositories or None :rtype: list(Repository) """ if project: project_filter = "projects/%s/" % project else: project_filter = "" j = script.rest("GET", "/rest/api/latest/%srepos" % project_filter, { "start": str(start), "limit": str(limit) }) if is_http_ok(): return map(lambda repo: Repository(repo["project"]["key"], repo["slug"]), j["values"])
5,338,051
def clean_float(input_float): """ Return float in seconds (even if it was a timestamp originally) """ return (timestamp_to_seconds(input_float) if ":" in str(input_float) else std_float(input_float))
5,338,052
def resize( image, output_shape, order=1, mode="constant", cval=0, clip=True, preserve_range=False, anti_aliasing=False, anti_aliasing_sigma=None, ): """A wrapper for Scikit-Image resize(). Scikit-Image generates warnings on every call to resize() if it doesn't receive the right parameters. The right parameters depend on the version of skimage. This solves the problem by using different parameters per version. And it provides a central place to control resizing defaults. """ if LooseVersion(skimage.__version__) >= LooseVersion("0.14"): # New in 0.14: anti_aliasing. Default it to False for backward # compatibility with skimage 0.13. return skimage.transform.resize( image, output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range, anti_aliasing=anti_aliasing, anti_aliasing_sigma=anti_aliasing_sigma, ) else: return skimage.transform.resize( image, output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range, )
5,338,053
def get_subsystem_fidelity(statevector, trace_systems, subsystem_state): """ Compute the fidelity of the quantum subsystem. Args: statevector (list|array): The state vector of the complete system trace_systems (list|range): The indices of the qubits to be traced. to trace qubits 0 and 4 trace_systems = [0,4] subsystem_state (list|array): The ground-truth state vector of the subsystem Returns: The subsystem fidelity """ rho = np.outer(np.conj(statevector), statevector) rho_sub = partial_trace(rho, trace_systems) rho_sub_in = np.outer(np.conj(subsystem_state), subsystem_state) fidelity = np.trace( sqrtm( np.dot( np.dot(sqrtm(rho_sub), rho_sub_in), sqrtm(rho_sub) ) ) ) ** 2 return fidelity
5,338,054
def jyfm_data_coke(indicator="焦炭总库存", headers=""): """ 交易法门-数据-黑色系-焦炭 :param indicator: ["焦企产能利用率-100家独立焦企产能利用率", "焦企产能利用率-230家独立焦企产能利用率", "焦炭日均产量-100家独立焦企焦炭日均产量", "焦炭日均产量-230家独立焦企焦炭日均产量", "焦炭总库存", "焦炭焦企库存-100家独立焦企焦炭库存", "焦炭焦企库存-230家独立焦企焦炭库存", "焦炭钢厂库存", "焦炭港口库存", "焦企焦化利润"] :type indicator: str :param headers: headers with cookies :type headers: dict :return: result :rtype: pandas.DataFrame """ res = requests.get(jyfm_data_coke_url_dict[indicator], headers=headers,) # 由于返回的数据长度不一致,先补齐再转置 return pd.read_json(res.text, orient="index").T
5,338,055
def reset_s3_client(): """Clear the S3 client, to free memory.""" global S3_CLIENT S3_CLIENT = None
5,338,056
def test_wrong_data(): """ Feature: Fault injector Description: Test fault injector Expectation: Throw TypeError exception """ # load model ckpt_path = '../../dataset/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = Net() param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) model = Model(net) ds_data = ds.GeneratorDataset(dataset_generator, ['image', 'label']) ds_label = ds.GeneratorDataset(dataset_generator, ['image', 'label']) fi_type = ['bitflips_random', 'bitflips_designated', 'random', 'zeros', 'nan', 'inf', 'anti_activation', 'precision_loss'] fi_mode = ['single_layer', 'all_layer'] fi_size = [1] # Fault injection with pytest.raises(TypeError) as exc_info: fi = FaultInjector(model, fi_type, fi_mode, fi_size) _ = fi.kick_off(ds_data, ds_label, iter_times=100) _ = fi.metrics() assert exc_info.type is TypeError
5,338,057
def generate_index_distribution( numTrain: int, numTest: int, numValidation: int, params: UQDistDict ) -> Tuple[Any, ...]: """ Generates a vector of indices to partition the data for training. NO CHECKING IS DONE: it is assumed that the data could be partitioned in the specified blocks and that the block indices describe a coherent partition. :param int numTrain: Number of training data points :param int numTest: Number of testing data points :param int numValidation: Number of validation data points (may be zero) :param Dict params: Contains the keywords that control the behavior of the function \ (uq_train_fr, uq_valid_fr, uq_test_fr for fraction specification, \ uq_train_vec, uq_valid_vec, uq_test_vec for block list specification, and \ uq_train_bks, uq_valid_bks, uq_test_bks for block number specification) :return: Tuple of numpy arrays - indexTrain (int numpy array): Indices for data in training - indexValidation (int numpy array): Indices for data in validation (if any) - indexTest (int numpy array): Indices for data in testing (if merging) """ if all(k in params for k in ("uq_train_fr", "uq_valid_fr", "uq_test_fr")): # specification by fraction print("Computing UQ cross-validation - Distributing by FRACTION") return generate_index_distribution_from_fraction( numTrain, numTest, numValidation, params ) elif all(k in params for k in ("uq_train_vec", "uq_valid_vec", "uq_test_vec")): # specification by block list print("Computing UQ cross-validation - Distributing by BLOCK LIST") return generate_index_distribution_from_block_list( numTrain, numTest, numValidation, params ) elif all(k in params for k in ("uq_train_bks", "uq_valid_bks", "uq_test_bks")): # specification by block size print("Computing UQ cross-validation - Distributing by BLOCK NUMBER") return generate_index_distribution_from_blocks( numTrain, numTest, numValidation, params ) else: print("ERROR !! No consistent UQ parameter specification found !! ... exiting ") raise KeyError( "No valid triplet of ('uq_train_*', 'uq_valid_*', 'uq_test_*') found. (* is any of fr, vec or bks)" )
5,338,058
def generacionT (v, m): """ Signature of a message with hash, hashed. Here we have to use the private key. Parameters: m (int): Number of oil v (int): Number of vinager Returns: T (matrix): Matrix with dimension nxn """ #Matriz de distorsion T = [] n = v + m for i in range(n): row = [] if i < v: for k in range(n): if k < v: #Matriz indentidad dimension v if i == k: row += [1] else: row += [0] else: #Matriz aleatoria vxm if randint(0,2) == 1: row += [1] else: row += [0] else: for k in range(n): if k < v: #Matriz nula dimension v row += [0] else: #Matriz identidad dimension m if i == k: row += [1] else: row += [0] T += [row] return T
5,338,059
def isotherm_from_bel(path): """ Get the isotherm and sample data from a BEL Japan .dat file. Parameters ---------- path : str Path to the file to be read. Returns ------- dataDF """ with open(path) as file: line = file.readline().rstrip() meta = {} data = StringIO() while line != '': values = line.split(sep='\t') line = file.readline().rstrip() if len(values) < 2: # If "title" section # read adsorption section if values[0].strip().lower().startswith('adsorption data'): line = file.readline().rstrip() # header file_headers = line.replace('"', '').split('\t') new_headers = ['branch'] for h in file_headers: txt = next(( _FIELDS['isotherm_data'][a] for a in _FIELDS['isotherm_data'] if h.lower().startswith(a) ), h) new_headers.append(txt) if txt == 'loading': meta['loading_basis'] = 'molar' for (u, c) in ( ('/mmol', 'mmol'), ('/mol', 'mol'), ('/ml(STP)', 'cm3(STP)'), ('/cm3(STP)', 'cm3(STP)'), ): if u in h: meta['loading_unit'] = c meta['material_basis'] = 'mass' for (u, c) in ( ('g-1', 'g'), ('kg-1', 'kg'), ): if u in h: meta['material_unit'] = c if txt == 'pressure': meta['pressure_mode'] = 'absolute' for (u, c) in ( ('/mmHg', 'torr'), ('/torr', 'torr'), ('/kPa', 'kPa'), ('/bar', 'bar'), ): if u in h: meta['pressure_unit'] = c data.write('\t'.join(new_headers) + '\n') line = file.readline() # firstline while not line.startswith('0'): data.write('False\t' + line) line = file.readline() # read desorption section elif values[0].strip().lower().startswith('desorption data'): file.readline() # header - discard line = file.readline() # firstline while not line.startswith('0'): data.write('True\t' + line) line = file.readline() else: continue else: values = [v.strip('"') for v in values] key = values[0].lower() try: field = next( v for k, v in _FIELDS.items() if any([key.startswith(n) for n in v.get('text', [])]) ) except StopIteration: continue meta[field['name']] = values[1] # Read prepared table data.seek(0) # Reset string buffer to 0 data_df = pandas.read_csv(data, sep='\t') data_df.dropna(inplace=True, how='all', axis='columns') # Set extra metadata meta['date'] = datetime.strptime(meta['date'], r'%y/%m/%d').isoformat() meta['apparatus'] = 'BEL ' + meta["serialnumber"] meta['loading_key'] = 'loading' meta['pressure_key'] = 'pressure' meta['other_keys'] = sorted([ a for a in data_df.columns if a not in ['loading', 'pressure', 'measurement', 'branch'] ]) return PointIsotherm(isotherm_data=data_df, **meta)
5,338,060
def image(height, width, image_dir): """ Create a background with a image """ images = [xx for xx in os.listdir(image_dir) \ if xx.endswith(".jpeg") or xx.endswith(".jpg") or xx.endswith(".png")] if len(images) > 0: image_name = images[random.randint(0, len(images) - 1)] pic = Image.open(os.path.join(image_dir, image_name)) pic_original_width = pic.size[0] pic_original_height = pic.size[1] if pic.size[0] < width: pic = pic.resize([width, int(pic.size[1] * (width / pic.size[0]))], Image.ANTIALIAS) if pic.size[1] < height: pic = pic.resize([int(pic.size[0] * (height / pic.size[1])), height], Image.ANTIALIAS) pic_final_width = pic.size[0] pic_final_height = pic.size[1] if pic.size[0] == width: x = 0 else: x = random.randint(0, pic.size[0] - width) if pic.size[1] == height: y = 0 else: y = random.randint(0, pic.size[1] - height) return pic.crop((x, y, x + width, y + height)), (image_name, pic_original_width, pic_original_height, pic_final_width, pic_final_height, x, y, x + width, y + height) else: raise Exception("No images where found in the images folder!")
5,338,061
def model(x, a, b, c): """ Compute .. math:: y = A + Be^{Cx} Parameters ---------- x : array-like The value of the model will be the same shape as the input. a : float The additive bias. b : float The multiplicative bias. c : float The exponent. Return ------ y : array-like An array of the same shape as ``x``, containing the model computed for the given parameters. """ return a + b * exp(c * x)
5,338,062
def test_export_slow_mo_unadjusted(): """test VideoAsset.export for slow mo video""" test_dict = UUID_DICT["slow_mo"] uuid = test_dict["uuid"] lib = PhotoLibrary() photo = lib.fetch_uuid(uuid) with tempfile.TemporaryDirectory(prefix="photokit_test") as tempdir: export_path = photo.export(tempdir, version=PHOTOS_VERSION_UNADJUSTED) export_path = pathlib.Path(export_path[0]) assert export_path.is_file() filename = test_dict["filename"] assert export_path.stem == pathlib.Path(filename).stem
5,338,063
def add_abspath(dirs: List): """Recursively append the absolute path to the paths in a nested list If not a list, returns the string with absolute path. """ if isinstance(dirs, list): for i, elem in enumerate(dirs): if isinstance(elem, str): dirs[i] = os.path.abspath(elem) else: dirs[i] = add_abspath(elem) return dirs else: return os.path.abspath(dirs)
5,338,064
def download(new_file_name, file_id): """ A function that accesses and downloads files from Google Drive. Parameters ---------- new_file_name: string The file name you want a google doc to have after download. file_if: string The file id of your desired file on google drive. Returns ------- N/A: The function downloads a file onto the actual computer under new_file_name https://developers.google.com/drive/api/v3/quickstart/python?source=post_page """ SCOPES = 'https://www.googleapis.com/auth/drive.readonly' # noqa: F841 store = file.Storage('token.json') creds = store.get() DRIVE = discovery.build('drive', 'v3', http=creds.authorize(Http())) # if you get the shareable link, the link contains this id, # replace the file_id below request = DRIVE.files().get_media(fileId=file_id) # replace the filename and extension in the first field below fh = io.FileIO(new_file_name, mode='w') downloader = MediaIoBaseDownload(fh, request) done = False while done is False: status, done = downloader.next_chunk() print("Download %d%%." % int(status.progress() * 100)) return
5,338,065
def equal_matches( matches_a: kapture.Matches, matches_b: kapture.Matches) -> bool: """ Compare two instances of kapture.Matches. :param matches_a: first set of matches :param matches_b: second set of matches :return: True if they are identical, False otherwise. """ assert isinstance(matches_a, kapture.Matches) assert isinstance(matches_b, kapture.Matches) current_function_name = inspect.getframeinfo(inspect.currentframe()).function return equal_sets(matches_a, matches_b, current_function_name)
5,338,066
def convert_to_example(img_data, target_data, img_shape, target_shape, dltile): """ Converts image and target data into TFRecords example. Parameters ---------- img_data: ndarray Image data target_data: ndarray Target data img_shape: tuple Shape of the image data (h, w, c) target_shape: tuple Shape of the target data (h, w, c) dltile: str DLTile key Returns ------- Example: TFRecords example TFRecords example """ if len(target_shape) == 2: target_shape = (*target_shape, 1) features = { "image/image_data": _float64_feature(img_data), "image/height": _int64_feature(img_shape[0]), "image/width": _int64_feature(img_shape[1]), "image/channels": _int64_feature(img_shape[2]), "target/target_data": _float64_feature(target_data), "target/height": _int64_feature(target_shape[0]), "target/width": _int64_feature(target_shape[1]), "target/channels": _int64_feature(target_shape[2]), "dltile": _bytes_feature(tf.compat.as_bytes(dltile)), } return tf.train.Example(features=tf.train.Features(feature=features))
5,338,067
def linear(args, output_size, bias, bias_start=0.0, scope=None, var_on_cpu=True, wd=0.0): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: VariableScope for the created subgraph; defaults to "Linear". var_on_cpu: if True, put the variables on /cpu:0. Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ assert args if not isinstance(args, (list, tuple)): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError("Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError("Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] # Now the computation. with tf.variable_scope(scope or "Linear"): if var_on_cpu: with tf.device("/cpu:0"): matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) else: matrix = tf.get_variable("Matrix", [total_arg_size, output_size]) if wd: weight_decay = tf.mul(tf.nn.l2_loss(matrix), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) if len(args) == 1: res = tf.matmul(args[0], matrix) else: res = tf.matmul(tf.concat(1, args), matrix) if not bias: return res if var_on_cpu: with tf.device("/cpu:0"): bias_term = tf.get_variable( "Bias", [output_size], initializer=tf.constant_initializer(bias_start)) else: bias_term = tf.get_variable( "Bias", [output_size], initializer=tf.constant_initializer(bias_start)) return res + bias_term
5,338,068
def _start_job(rule, settings, urls=None): """Start a new job for an InfernoRule Note that the output of this function is a tuple of (InfernoJob, DiscoJob) If this InfernoJob fails to start by some reasons, e.g. not enough blobs, the DiscoJob would be None. """ job = InfernoJob(rule, settings, urls) return job, job.start()
5,338,069
def set_driver(driver): """ Sets the Selenium WebDriver used to execute Helium commands. See also :py:func:`get_driver`. """ _get_api_impl().set_driver_impl(driver)
5,338,070
def test_code_search_single_page(mocker, responses): """Tests ls.ls for a single page of responses""" response_content = { 'items': [{ 'repository': { 'full_name': 'repo/repo1', }, }, { 'repository': { 'full_name': 'repo/repo2', }, }], } responses.add(responses.GET, 'https://api.github.com/search/code', status=requests.codes.ok, json=response_content) query = 'user:user {} in:path "template_path" in:file'.format(constants.TEMPLE_CONFIG_FILE) repos = ls._code_search(query) assert repos == { 'git@github.com:repo/repo1.git': {'full_name': 'repo/repo1'}, 'git@github.com:repo/repo2.git': {'full_name': 'repo/repo2'}, } assert len(responses.calls) == 1 url = urllib.parse.urlparse(responses.calls[0].request.url) parsed_query = urllib.parse.parse_qs(url.query) assert parsed_query == { 'per_page': ['100'], 'q': [query], }
5,338,071
def mult(dic,data,r=1.0,i=1.0,c=1.0,inv=False,hdr=False,x1=1.0,xn='default'): """ Multiple by a Constant Parameter c is used even when r and i are defined. NMRPipe ignores c when r or i are defined. Parameters: * dic Dictionary of NMRPipe parameters. * data array of spectral data. * r Constant to multply real data by. * i Constant to multiply imaginary data by. * c Constant to multiply both real and imaginary data by. * inv Multiply by inverse of Constant (both real and imaginary) * hdr Use constant value from header. * x1 First point of region to multiply constant by. * xn Last point of region to multiply constant by. 'default' specifies the end of the vector. """ mn = x1 - 1 if xn == 'default': mx = data.shape[-1] else: mx = xn if hdr: # read in C from header fn = "FDF"+str(int(dic["FDDIMORDER"][0])) # F1, F2, etc c = dic[fn+"C1"] r = 1.0 i = 1.0 rf = (r*c) # real factor cf = (i*c) # complex factor if inv: rf = 1/rf cf = 1/cf data[...,mn:mx] = p.mult(data[...,mn:mx],r=rf,i=cf,c=1.0) dic = update_minmax(dic,data) return dic,data
5,338,072
def generate_gps_photon(stream, source, focus, angle_gantry, angle_couch, angle_coll, beamletsize, sad, sfd, energy_mev, desc='Diverging Square field', gps_template=None): """Generate the gps input file using a template Args: idx (int): index of beamlet in beam (row-major order) source (x, y, z, u): coordinates focus (x, y, z, u): coordinates angle_gantry (float): gantry angle beamletsize (x, z, u) sad (float): sad (units must match beamletsize units) sfd (float): src-focus-distance (units must match beamletsize units) """ extra_kwargs = {} # try to match requested template if gps_template is not None: fullpath = pjoin(TEMPLATES, gps_template) if not os.path.isfile(fullpath): raise FileNotFoundError('GPS template "{}" doesn\'t exist'.format(fullpath)) else: if energy_mev is not None and is_numeric(energy_mev): gps_template = 'gps_photon_mono.mac.tpl' extra_kwargs['energy'] = float(energy_mev) else: gps_template = 'gps_photon_6MV.mac.tpl' xp, yp = calculate_plane_rotation(angle_gantry, angle_couch, angle_coll) adj_fsize = [0.5*sfd/sad*beamletsize[ii] for ii in range(2)] with open(pjoin(TEMPLATES, gps_template), 'r') as fd: stream.write( fd.read().format( description=desc, cx=source[0], cy=source[1], cz=source[2], cu=source[3], rot1x=xp[0], rot1y=xp[1], rot1z=xp[2], rot2x=yp[0], rot2y=yp[1], rot2z=yp[2], fsx=adj_fsize[0], fsy=adj_fsize[1], fsu=beamletsize[2], fx=focus[0], fy=focus[1], fz=focus[2], fu=focus[3], **extra_kwargs, ) ) return stream
5,338,073
def navigation_target(m) -> re.Pattern: """A target to navigate to. Returns a regular expression.""" if hasattr(m, 'any_alphanumeric_key'): return re.compile(re.escape(m.any_alphanumeric_key), re.IGNORECASE) if hasattr(m, 'navigation_target_name'): return re.compile(m.navigation_target_name) return re.compile(re.escape(m.text), re.IGNORECASE)
5,338,074
def hammingDistance(strA, strB): """ Determines the bitwise Hamming Distance between two strings. Used to determine the fitness of a mutating string against the input. Example: bin(ord('a')) == '0b1100001' bin(ord('9')) == '0b0111001' bin(ord('a') ^ ord('9')) == '0b1011000' bin(ord('a') ^ ord('9')).count('1') == 3 hammingDistance('a', '9') == 3 hammingDistance('a', '9') * 4 == 12 hammingDistance('aaaa', '9999') == 12 Args: strA: A string strB: A string Returns: Returns an integer that represents the Hamming Distance from a to b. Raises: ValueError: If the two strings are unequal in length or if one input is not a string. """ if (not isinstance(strA, basestring) or not isinstance(strB, basestring)): raise ValueError('Input is not a string', strA, strB) if len(strA) != len(strB): raise ValueError('The two strings are unequal in length', strA, strB) # base case, hamming distance of nothing and nothing is 0 if (len(strA) == 0) and (len(strB) == 0): return 0 # XOR both first characters, count the 1s, remaining is recursive case return ( bin(ord(strA[0]) ^ ord(strB[0])).count('1') + hammingDistance(strA[1:], strB[1:]) )
5,338,075
def dump_tree(ifaces): """ Yields all the interfaces transitively implemented by the set in reverse-depth-first order """ for i in ifaces: yield from dump_tree(i.ifaces) yield i
5,338,076
def json_parser(path): """ Generator that parse a JSON file which contains an array of hashes. INPUT -> string, path to JSON file OUTPUT -> dict, yield a media """ with open(path) as json_file: json_data = json.load(json_file) for i in range(len(json_data)): yield json_data[i]
5,338,077
def _change_draft_metadata_file_names(bumped_data_structures: dict, new_version: str) -> None: """ Change metadata file names of data structures that were RELEASED from <dataset>__DRAFT.json to <dataset>__<new_version>.json. """ for data_structure in bumped_data_structures: if data_structure["releaseStatus"] == "RELEASED": datastore.change_draft_metadata_file_name( data_structure["name"], new_version )
5,338,078
def convert(s, syntax=None): """Convert a regex regular expression to re syntax. The first argument is the regular expression, as a string object, just like it would be passed to regex.compile(). (I.e., pass the actual string object -- string quotes must already have been removed and the standard escape processing has already been done, e.g. by eval().) The optional second argument is the regex syntax variant to be used. This is an integer mask as passed to regex.set_syntax(); the flag bits are defined in regex_syntax. When not specified, or when None is given, the current regex syntax mask (as retrieved by regex.get_syntax()) is used -- which is 0 by default. The return value is a regular expression, as a string object that could be passed to re.compile(). (I.e., no string quotes have been added -- use quote() below, or repr().) The conversion is not always guaranteed to be correct. More syntactical analysis should be performed to detect borderline cases and decide what to do with them. For example, 'x*?' is not translated correctly. """ table = mastertable.copy() if syntax is None: syntax = regex.get_syntax() if syntax & RE_NO_BK_PARENS: del table[r'\('], table[r'\)'] del table['('], table[')'] if syntax & RE_NO_BK_VBAR: del table[r'\|'] del table['|'] if syntax & RE_BK_PLUS_QM: table['+'] = r'\+' table['?'] = r'\?' table[r'\+'] = '+' table[r'\?'] = '?' if syntax & RE_NEWLINE_OR: table['\n'] = '|' res = "" i = 0 end = len(s) while i < end: c = s[i] i = i+1 if c == '\\': c = s[i] i = i+1 key = '\\' + c key = table.get(key, key) res = res + key else: c = table.get(c, c) res = res + c return res
5,338,079
def current_user(request): """Return the list of all the users with their ids. """ query = select([ User.id.label('PK_id'), User.Login.label('fullname') ]).where(User.id == request.authenticated_userid) print return dict(DBSession.execute(query).fetchone())
5,338,080
def test_auth_decorator_no_permissions(): """Test auth decorator when no permissions are supplied""" with pytest.raises(AuthError) as err: get_access("", "latte")() assert err.value.code == 401 assert err.value.description == "User don't have access to resource."
5,338,081
async def test_allowlist(hass, mock_client): """Test an allowlist only config.""" await _setup( hass, { "include_domains": ["light"], "include_entity_globs": ["sensor.included_*"], "include_entities": ["binary_sensor.included"], }, ) tests = [ FilterTest("climate.excluded", False), FilterTest("light.included", True), FilterTest("sensor.excluded_test", False), FilterTest("sensor.included_test", True), FilterTest("binary_sensor.included", True), FilterTest("binary_sensor.excluded", False), ] await _run_filter_tests(hass, tests, mock_client)
5,338,082
def get_test_examples_labels(dev_example_list, batch_size): """ :param dev_example_list: list of filenames containing dev examples :param batch_size: int :return: list of nlplingo dev examples, dev labels """ dev_chunk_generator = divide_chunks(dev_example_list, NUM_BIG_CHUNKS) test_examples = [] # dev_chunk_generator yields lists, each of len == NUM_BIG_CHUNKS for big_chunk in dev_chunk_generator: chunk_lst = load_big_chunk(big_chunk) # big_chunk is a filepath to .npz example_lst = [] for chunk in chunk_lst: example_lst.extend(chunk) example_generator = divide_chunks(example_lst, batch_size) for example_chunk in example_generator: test_examples.extend(example_chunk) labels = [example.label for example in test_examples] test_label = np.asarray(labels) return test_examples, test_label
5,338,083
def unpack_collections(*args, **kwargs): """Extract collections in preparation for compute/persist/etc... Intended use is to find all collections in a set of (possibly nested) python objects, do something to them (compute, etc...), then repackage them in equivalent python objects. Parameters ---------- *args Any number of objects. If it is a dask collection, it's extracted and added to the list of collections returned. By default, python builtin collections are also traversed to look for dask collections (for more information see the ``traverse`` keyword). traverse : bool, optional If True (default), builtin python collections are traversed looking for any dask collections they might contain. Returns ------- collections : list A list of all dask collections contained in ``args`` repack : callable A function to call on the transformed collections to repackage them as they were in the original ``args``. """ traverse = kwargs.pop("traverse", True) collections = [] repack_dsk = {} collections_token = uuid.uuid4().hex def _unpack(expr): if is_dask_collection(expr): tok = tokenize(expr) if tok not in repack_dsk: repack_dsk[tok] = (getitem, collections_token, len(collections)) collections.append(expr) return tok tok = uuid.uuid4().hex if not traverse: tsk = quote(expr) else: # Treat iterators like lists typ = list if isinstance(expr, Iterator) else type(expr) if typ in (list, tuple, set): tsk = (typ, [_unpack(i) for i in expr]) elif typ in (dict, OrderedDict): tsk = (typ, [[_unpack(k), _unpack(v)] for k, v in expr.items()]) elif is_dataclass(expr) and not isinstance(expr, type): tsk = ( apply, typ, (), ( dict, [ [f.name, _unpack(getattr(expr, f.name))] for f in fields(expr) ], ), ) else: return expr repack_dsk[tok] = tsk return tok out = uuid.uuid4().hex repack_dsk[out] = (tuple, [_unpack(i) for i in args]) def repack(results): dsk = repack_dsk.copy() dsk[collections_token] = quote(results) return simple_get(dsk, out) return collections, repack
5,338,084
def get_usernames(joomlasession): """Get list of usernames on the homepage.""" users = joomlasession.query(Jos_Users).all() return [user.username for user in users]
5,338,085
def minor_block_encoder(block, include_transactions=False, extra_info=None): """Encode a block as JSON object. :param block: a :class:`ethereum.block.Block` :param include_transactions: if true transaction details are included, otherwise only their hashes :param extra_info: MinorBlockExtraInfo :returns: a json encodable dictionary """ header = block.header meta = block.meta header_info = minor_block_header_encoder(header) d = { **header_info, "hashMerkleRoot": data_encoder(meta.hash_merkle_root), "hashEvmStateRoot": data_encoder(meta.hash_evm_state_root), "gasUsed": quantity_encoder(meta.evm_gas_used), "size": quantity_encoder(len(block.serialize())), } if include_transactions: d["transactions"] = [] for i, _ in enumerate(block.tx_list): d["transactions"].append(tx_encoder(block, i)) else: d["transactions"] = [ id_encoder(tx.get_hash(), block.header.branch.get_full_shard_id()) for tx in block.tx_list ] if extra_info: _add_posw_info_to_resp(d, header.difficulty, extra_info) return d
5,338,086
def test_interpretation(capsys, inputs, kgos, options): """Test metadata interpretation. Four tests are run: - A single compliant file - A single compliant file with verbose output - Multiple files, the first of which is non-compliant - Using the --failures-only option to only print output for non-compliant files. capsys is a pytest fixture that captures standard output/error for testing. """ kgo_dir = acc.kgo_root() / "interpret_metadata" input_path = [kgo_dir / input for input in inputs] args = [*input_path, *options] if "non_compliant_weather_codes.nc" in inputs: with pytest.raises(ValueError, match=".*not metadata compliant.*"): run_cli(args) else: run_cli(args) captured = capsys.readouterr() for kgo in kgos: assert kgo in captured.out excluded_kgos = list(set(ALL_KGOS) ^ set(kgos)) for kgo in excluded_kgos: assert kgo not in captured.out
5,338,087
def heaviside(x): """Implementation of the Heaviside step function (https://en.wikipedia.org/wiki/Heaviside_step_function) Args: x: Numpy-Array or single Scalar Returns: x with step values """ if x <= 0: return 0 else: return 1
5,338,088
def FallbackReader(fname): """Guess the encoding of a file by brute force by trying one encoding after the next until something succeeds. @param fname: file path to read from """ txt = None for enc in GetEncodings(): try: handle = open(fname, 'rb') reader = codecs.getreader(enc)(handle) txt = reader.read() reader.close() except Exception, msg: handle.close() continue else: return (enc, txt) return (None, None)
5,338,089
def graph_3D(data, col="category", list_=[None], game=None, extents=None): """ 3D t-sne graph data output :param data: a pandas df generated from app_wrangling.call_boardgame_data() :param col: string indicating which column (default 'category') :param list_: list of elements in column (default [None]) :param game: string of board game name (default None) :param extents: string (default None) :return fig_out: 3D plotly figure """ # layout for the 3D plot: axis_x = dict( title="", showgrid=True, zeroline=False, showticklabels=False, showspikes=False, range=[extents["min_x"], extents["max_x"]], ) axis_y = axis_x.copy() axis_y["range"] = [extents["min_y"], extents["max_y"]] axis_z = axis_x.copy() axis_z["range"] = [extents["min_z"], extents["max_z"]] layout_out = go.Layout( margin=dict(l=0, r=0, b=0, t=0), scene=dict(xaxis=axis_x, yaxis=axis_y, zaxis=axis_z), legend=dict(yanchor="top", y=0.93, xanchor="right", x=0.99), paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)", ) # plotting data: if (list_ == [None]) or (not list_): set_data = data.copy(deep=True) set_data["group"] = "none" else: set_data = app_wr.call_boardgame_radio(data, col, list_).explode("group") data_out = [] # corresponds with dark2 palette: # had trouble manually setting color palette for graph_object: color_list = [ "#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e", "#e6ab02", "#a6761d", "#666666", ] i = 0 for idx, val in set_data.groupby(set_data.group): if idx == "none": marker_style = dict( size=val["average_rating"] * 1.6, symbol="circle", opacity=0.1, color="grey", ) legend_show = False else: marker_style = dict( size=val["average_rating"] * 1.6, symbol="circle", opacity=0.4, color=color_list[i], ) legend_show = True i += 1 scatter = go.Scatter3d( name=idx, x=val["x"], y=val["y"], z=val["z"], mode="markers", marker=marker_style, text=val["name"], hoverinfo="text+name", showlegend=legend_show, ) data_out.append(scatter) if game: game_data = data[data["name"] == game] marker_style = dict( size=game_data["average_rating"] * 1.6, symbol="circle", opacity=1.0, color="purple", ) scatter = go.Scatter3d( name=game, x=game_data["x"], y=game_data["y"], z=game_data["z"], mode="markers", marker=marker_style, text=game_data["name"], hoverinfo="text", ) data_out.append(scatter) fig_out = {"data": data_out, "layout": layout_out} return fig_out
5,338,090
def creation_validation(ctx, **kwargs): """ check availability of path used in field private key path of node properties """ # combine properties obj = combine_properties(ctx, kwargs=kwargs, names=[PRIVATE_KEY, PUBLIC_KEY], properties=['auto_generate']) # get key key_path = obj.get(PRIVATE_KEY, {}).get(PATH) if key_path: key_path = os.path.expanduser(key_path) if not os.path.isfile(key_path): raise cfy_exc.NonRecoverableError( "Private key file {0} is absent".format(key_path))
5,338,091
def get_selector(info, mode="advanced"): """ The selector that decides the scope of the dashboard. It MUST have the keywords ?work and ?author. You can override everything here by adapting the query on WDQS: https://w.wiki/3Cmd Args: info: either a dict containing complex information for the selector or a list of QIDs mode: a string representing the mode. If "advanced", then a config is expected for the info parameters. If "basic", a list of QIDs is expected. Defaults to "advanced". """ if mode == "advanced": fields_of_work = info["restriction"]["author_area"] if fields_of_work is not None: field_of_work_selector = ( """ VALUES ?field_of_work """ + format_with_prefix(fields_of_work) + """ ?author wdt:P101 ?field_of_work. """ ) else: field_of_work_selector = "" topic_of_work = info["restriction"]["topic_of_work"] if topic_of_work is not None: topic_of_work_selector = ( """ VALUES ?topics """ + format_with_prefix(topic_of_work) + """ ?work wdt:P921/wdt:P279* ?topics. """ ) else: topic_of_work_selector = "" region = info["restriction"]["institution_region"] if region is not None: region_selector = ( """ VALUES ?regions """ + format_with_prefix(region) + """ ?country wdt:P361* ?regions. ?author ( wdt:P108 | wdt:P463 | wdt:P1416 ) / wdt:P361* ?organization . ?organization wdt:P17 ?country. """ ) else: region_selector = "" gender = info["restriction"]["gender"] if gender is not None: gender_selector = ( """ VALUES ?gender """ + format_with_prefix(gender) + """ ?author wdt:P21 ?gender. """ ) else: gender_selector = "" event = info["restriction"]["event"] if event is not None: # P823 - speaker # P664 - organizer # P1334 - has participant # ^P710 - inverse of (participated in) event_selector = ( """ VALUES ?event """ + format_with_prefix(event) + """ ?event wdt:P823 | wdt:P664 | wdt:P1344 | ^wdt:P710 ?author. """ ) else: event_selector = "" author_is_topic_of = info["restriction"]["author_is_topic_of"] if author_is_topic_of is not None: author_is_topic_of_selector = ( """ VALUES ?biographical_work """ + format_with_prefix(author_is_topic_of) + """ ?biographical_work wdt:P921 ?author. """ ) else: author_is_topic_of_selector = "" selector = ( field_of_work_selector + topic_of_work_selector + region_selector + gender_selector + event_selector + author_is_topic_of_selector + """ ?work wdt:P50 ?author. """ ) else: selector = f""" VALUES ?work {format_with_prefix(info)} . ?work wdt:P50 ?author . """ return selector
5,338,092
def set_row_csr(csr, rows, value=0): """Set all nonzero elements to the given value. Useful to set to 0 mostly.""" for row in rows: start = csr.indptr[row] end = csr.indptr[row + 1] csr.data[start:end] = value if value == 0: csr.eliminate_zeros()
5,338,093
def get_table_names(self, connection, schema=None, **kw): """ Get table names Args: connection (): schema (): **kw: Returns: """ return self._get_table_or_view_names( ["r", "e"], connection, schema, **kw )
5,338,094
def get_general(prefix, generator, pars, **kwargs): """ A general getter function that either gets the asked-for data from a file or generates it with the given generator function. """ pars = get_pars(pars, **kwargs) id_pars, pars = get_id_pars_and_set_default_pars(pars) try: result = read_tensor_file(prefix=prefix, pars=id_pars, filename=filename) except RuntimeError: result = generator(pars, id_pars) return result
5,338,095
def gen_case(test): """Generates an OK test case for a test Args: test (``Test``): OK test for this test case Returns: ``dict``: the OK test case """ code_lines = str_to_doctest(test.input.split('\n'), []) for i in range(len(code_lines) - 1): if code_lines[i+1].startswith('>>>') and len(code_lines[i].strip()) > 3 and not code_lines[i].strip().endswith("\\"): code_lines[i] += ';' code_lines.append(test.output) return { 'code': '\n'.join(code_lines), 'hidden': test.hidden, 'locked': False }
5,338,096
def run_count1(known_args, options): """Runs the first example pipeline.""" logging.info('Running first pipeline') p = beam.Pipeline(options=options) (p | beam.io.ReadFromText(known_args.input) | Count1() | beam.io.WriteToText(known_args.output)) p.run().wait_until_finish()
5,338,097
def get_user_list_view(request): """ render user admin view Arguments: request {object} -- wsgi http request object Returns: html -- render html template """ if request.user.has_perm('auth.view_user'): user_list = User.objects.all() temp_name = 'admin/list_users.html' context = { 'user_url_path': '用户', 'obj': user_list } else: temp_name = 'admin/error.html' context = {} return render( request, temp_name, context=context )
5,338,098
def to_odds(p): """ Converts a probability to odds """ with np.errstate(divide='ignore'): return p / (1 - p)
5,338,099