content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def poll(module, function, args=(), kwargs={}, cron="", time="", delta_seconds=0, timeout=None, id_=None):
"""
create a poll job
will polling a url then use result as kwargs to call callback function
:param module: callback function's module name
:param function: callback function's function name
:param args: callback function's args
:param kwargs: **kwargs for requests.post,
callback will be {"result": r.json()}
(r = requests.post(**kwargs))
:param cron: cron descripton like "* * * * *"
:param time: the specified exec time
:param delta_seconds: delay seconds
:param timeout: timeout of polling request
:param id_: poll job's id, default will create by random
mush have "time" or "delta_seconds" or "cron"
"""
delta_seconds, task_info = get_task_info(**locals())
logger.info("polling delay %s: %s", delta_seconds, task_info)
POLLING_QUEUE.put(task_info, delay=delta_seconds)
| 5,337,700
|
def get_piesocket_api_key():
"""
Retrieves user's Piesocket API key.
Returns:
(str) Piesocket API key.
Raises:
(ImproperlyConfigured) if the Piesocket API key isn't specified in settings.
"""
return get_setting_or_raise(
setting="PIESOCKET_API_KEY", setting_str="PieSocket API Key"
)
| 5,337,701
|
def downsample(myarr,factor,estimator=np.mean):
"""
Downsample a 2D array by averaging over *factor* pixels in each axis.
Crops upper edge if the shape is not a multiple of factor.
This code is pure numpy and should be fast.
keywords:
estimator - default to mean. You can downsample by summing or
something else if you want a different estimator
(e.g., downsampling error: you want to sum & divide by sqrt(n))
"""
ys,xs = myarr.shape
crarr = myarr[:ys-(ys % int(factor)),:xs-(xs % int(factor))]
dsarr = estimator(np.concatenate([[crarr[i::factor,j::factor]
for i in range(factor)]
for j in range(factor)]), axis=0)
return dsarr
| 5,337,702
|
def getActiveWindow():
"""Returns a Window object of the currently active Window."""
# Source: https://stackoverflow.com/questions/5286274/front-most-window-using-cgwindowlistcopywindowinfo
windows = Quartz.CGWindowListCopyWindowInfo(Quartz.kCGWindowListExcludeDesktopElements | Quartz.kCGWindowListOptionOnScreenOnly, Quartz.kCGNullWindowID)
for win in windows:
if win['kCGWindowLayer'] == 0:
return '%s %s' % (win[Quartz.kCGWindowOwnerName], win.get(Quartz.kCGWindowName, '')) # Temporary. For now, we'll just return the title of the active window.
raise Exception('Could not find an active window.')
| 5,337,703
|
def _derivative_log(x):
"""Chain rule on natural log = (1/x)*(dx/dr)"""
return _protected_inverse(x[0])[:, :, np.newaxis, np.newaxis]*x[1]
| 5,337,704
|
def svn_wc_merge_props(*args):
"""
svn_wc_merge_props(svn_wc_notify_state_t state, char path, svn_wc_adm_access_t adm_access,
apr_hash_t baseprops, apr_array_header_t propchanges,
svn_boolean_t base_merge,
svn_boolean_t dry_run, apr_pool_t pool) -> svn_error_t
"""
return _wc.svn_wc_merge_props(*args)
| 5,337,705
|
def is_paused():
"""
Return True if is_paused is set in the global settings table of the database.
"""
try:
is_paused_val = Settings.objects.get().is_paused
except ObjectDoesNotExist:
is_paused_val = False
return is_paused_val
| 5,337,706
|
def info_request(request):
"""Information request form."""
if request.method == 'POST':
form = InfoRequestForm(request.POST)
if form.is_valid():
cd = form.cleaned_data
# create out recipient list
to = []
# cleaned_data converts the data to a list so we do not
# need to use getlist()
for program in cd.get('academic_programs'):
to = to + settings.CONTINUING_STUDIES_INFOREQUEST_RECIPIENTS[program]
if settings.DEBUG:
cd['to'] = to
to = [settings.MANAGERS[0][1]]
subject = 'OCS Information Request'
send_mail(
request,
to,
subject,
cd['email'],
'admissions/inforequest.txt',
cd,
)
return HttpResponseRedirect(reverse_lazy('info_request_success'))
else:
form = InfoRequestForm()
return render(request, 'admissions/inforequest.html', {'form': form})
| 5,337,707
|
def make_content_based_dataset(main_set):
"""
Make a dataset to work on for the content based filtering approach
"""
main_columns = [
"appid",
"english",
"name",
"developer",
"steamspy_tags",
"positive_ratings",
"negative_ratings"
]
desc_columns = [
"steam_appid",
"about_the_game"
]
main_df = pd.read_csv(f"sets/{main_set}.csv", usecols=main_columns)
desc_df = pd.read_csv("sets/steam_description_data.csv", usecols=desc_columns)
desc_df.rename(columns={"steam_appid": "appid",}, inplace=True) # make it the same name
joined_df = main_df.merge(desc_df, on="appid")
joined_df = joined_df[joined_df["english"] == 1].reset_index(drop=True) # remove games which don't have english translation
joined_df = joined_df.drop("english", axis=1) # we don't need this column anymore
joined_df["about_the_game"] = joined_df["about_the_game"].apply(preprocess_text_tfidf) # get the game description column ready for training
joined_df = joined_df[pd.notnull(joined_df["about_the_game"])] # there may be nulls so remove them
# Apply simple processing for developer and steam tags columns - this is done because that's how the dataset is made
joined_df["developer"] = joined_df["developer"].apply(remove_semicolons)
joined_df["steamspy_tags"] = joined_df["steamspy_tags"].apply(remove_semicolons)
# Unite tags, name, developer and use it later for recommending
joined_df["recommendation_info"] = joined_df["name"] + " " + joined_df["developer"] + " " + joined_df["steamspy_tags"]
joined_df["recommendation_info"] = joined_df["recommendation_info"].apply(preprocess_text_countvec)
# Save
joined_df.to_csv("sets/content_based_dataset.csv", index=False)
| 5,337,708
|
def test_protocol_configuration_schema_is_valid_wrt_draft_04():
"""Test that the JSON schema for the protocol configuration file is compliant with the specification Draft 04."""
protocol_config_schema = json.load(
open(
os.path.join(
ROOT_DIR,
"aea",
"configurations",
"schemas",
"protocol-config_schema.json",
)
)
)
Draft4Validator.check_schema(protocol_config_schema)
| 5,337,709
|
def validate_did_management_ext_ids_v100(ext_ids):
"""
Validates the ExtIDs of a DIDManagement entry.
Parameters
----------
ext_ids: list of bytes
The ExtIDs of the entry
Raises
------
MalformedDIDManagementEntry
If the ExtIDs are not valid.
"""
if not (
_validate_ext_ids_length(ext_ids, 2)
and _validate_entry_type(ext_ids, EntryType.Create)
and _validate_schema_version(ext_ids, ENTRY_SCHEMA_V100)
):
raise MalformedDIDManagementEntry(
"Invalid or missing {} entry ExtIDs".format(EntryType.Create.value)
)
| 5,337,710
|
async def delete_workflow_revision(
# pylint: disable=W0622
id: UUID,
) -> None:
"""Delete a transformation revision of type workflow from the data base.
Deleting a transformation revision is only possible if it is in state DRAFT.
This endpoint is deprecated and will be removed soon,
use DELETE /api/transformations/{id} instead.
"""
logger.info("delete workflow %s", id)
try:
delete_single_transformation_revision(id, type=Type.WORKFLOW)
logger.info("deleted workflow %s", id)
except DBTypeError as e:
raise HTTPException(status.HTTP_401_UNAUTHORIZED, detail=str(e)) from e
except DBBadRequestError as e:
raise HTTPException(status.HTTP_403_FORBIDDEN, detail=str(e)) from e
except DBNotFoundError as e:
raise HTTPException(status.HTTP_404_NOT_FOUND, detail=str(e)) from e
| 5,337,711
|
def test_invalid_isbn(talker):
"""Sometimes Marvel API sends number for isbn"""
murpg = talker.comics({"id": 1143}).comics[0]
assert murpg.isbn == "785110283"
assert murpg.prices.print == 9.99
| 5,337,712
|
def get_accurate(clustering_res_df, cluster_number, error=False):
"""
:param clustering_res_df: a pandas DataFrame about clustering result
:param cluster_number: the number of the cluster
(the first column is the index,
the second column is the right information,
the third column is the clustering information)
:param error: if error=True, then return the error rate, else, return the accuracy rate
:return: the clustering accuracy
"""
if clustering_res_df.shape[1] != 3:
raise Exception("Shape Error: the input DataFrame's column number is not 3")
real_dict = {}
clustering_dict = {}
for i in range(cluster_number):
real_df = clustering_res_df.loc[clustering_res_df['ClusterInfo'] == i]
clustering_df = clustering_res_df.loc[clustering_res_df['ClusterExp'] == i]
real_dict[i] = real_df['IndexNum'].tolist()
clustering_dict[i] = clustering_df['IndexNum'].tolist()
accuracy_matrix = np.zeros((cluster_number, cluster_number))
for i in range(cluster_number):
for j in range(cluster_number):
accuracy_matrix[i][j] = len(set(real_dict[i]).intersection(set(clustering_dict[j])))
# for test
# print("The accuracy matrix is: \n", accuracy_matrix)
case_iterator = itertools.permutations(range(cluster_number), cluster_number)
accurate = 0
for item in case_iterator:
acc = sum([accuracy_matrix[i][item[i]] for i in range(cluster_number)])
if acc > accurate:
accurate = acc
if not error:
return accurate / clustering_res_df.shape[0]
else:
return 1 - accurate / clustering_res_df.shape[0]
| 5,337,713
|
def remove_old_now_linear_bend(atoms, intcos):
"""For given bend [A,B,C], remove any regular bends as well as any torsions
which contain it
"""
logger = logging.getLogger(__name__)
b = bend.Bend(atoms[0], atoms[1], atoms[2])
logger.info("Removing Old Linear Bend")
logger.info(str(b) + "\n")
intcos[:] = [coord for coord in intcos if coord != b]
intcos[:] = [coord for coord in intcos if not (isinstance(coord, tors.Tors) and tors_contains_bend(b, coord))]
| 5,337,714
|
def odict_to_json(odict):
"""
Dump an OrderedDict into JSON series
"""
import json
json_series = json.dumps(odict)
return json_series
| 5,337,715
|
def parenthesize(node: ast.AST, _nl_able: bool = False) -> str:
"""Wrap the un-parsed node in parentheses."""
return f"({unparse(node, True)})"
| 5,337,716
|
def stack_nested_arrays(nested_arrays):
"""Stack/batch a list of nested numpy arrays.
Args:
nested_arrays: A list of nested numpy arrays of the same shape/structure.
Returns:
A nested array containing batched items, where each batched item is obtained
by stacking corresponding items from the list of nested_arrays.
"""
nested_arrays_flattened = [tf.nest.flatten(a) for a in nested_arrays]
batched_nested_array_flattened = [
np.stack(a) for a in zip(*nested_arrays_flattened)
]
return tf.nest.pack_sequence_as(nested_arrays[0],
batched_nested_array_flattened)
| 5,337,717
|
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the Serial sensor platform."""
name = config.get(CONF_NAME)
port = config.get(CONF_SERIAL_PORT)
baudrate = config.get(CONF_BAUDRATE)
bytesize = config.get(CONF_BYTESIZE)
parity = config.get(CONF_PARITY)
stopbits = config.get(CONF_STOPBITS)
xonxoff = config.get(CONF_XONXOFF)
rtscts = config.get(CONF_RTSCTS)
dsrdtr = config.get(CONF_DSRDTR)
if (value_template := config.get(CONF_VALUE_TEMPLATE)) is not None:
value_template.hass = hass
sensor = SerialSensor(
name,
port,
baudrate,
bytesize,
parity,
stopbits,
xonxoff,
rtscts,
dsrdtr,
value_template,
)
hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, sensor.stop_serial_read)
async_add_entities([sensor], True)
| 5,337,718
|
def test_HollowSphereSelector():
"""
Test that the HollowSphereSelector selects the right number of entities
"""
sphere = (
cq.Workplane().sphere(5).polarArray(7, 30, 120, 2, rotate=True).box(1, 2, 1)
)
vertices = sphere.vertices(HollowSphereSelector((0, 0, 0), 7, 5.5, debug=True))
edges = sphere.edges(HollowSphereSelector((0, 0, 0), 9, 7.5, debug=True))
faces = sphere.faces(HollowSphereSelector((0, 0, 0), 9, 7.5, debug=True))
solids = sphere.solids(HollowSphereSelector((0, 0, 0), 9, 6, debug=True))
assert vertices.size() == 8
assert edges.size() == 8
assert faces.size() == 2
assert solids.size() == 2
| 5,337,719
|
def temporal_statistics(da, stats):
"""
Obtain generic temporal statistics using the hdstats temporal library:
https://github.com/daleroberts/hdstats/blob/master/hdstats/ts.pyx
last modified June 2020
Parameters
----------
da : xarray.DataArray
DataArray should contain a 3D time series.
stats : list
list of temporal statistics to calculate.
Options include:
'discordance' =
'f_std' = std of discrete fourier transform coefficients, returns
three layers: f_std_n1, f_std_n2, f_std_n3
'f_mean' = mean of discrete fourier transform coefficients, returns
three layers: f_mean_n1, f_mean_n2, f_mean_n3
'f_median' = median of discrete fourier transform coefficients, returns
three layers: f_median_n1, f_median_n2, f_median_n3
'mean_change' = mean of discrete difference along time dimension
'median_change' = median of discrete difference along time dimension
'abs_change' = mean of absolute discrete difference along time dimension
'complexity' =
'central_diff' =
'num_peaks' : The number of peaks in the timeseries, defined with a local
window of size 10. NOTE: This statistic is very slow
Outputs
-------
xarray.Dataset containing variables for the selected
temporal statistics
"""
# if dask arrays then map the blocks
if dask.is_dask_collection(da):
if version.parse(xr.__version__) < version.parse("0.16.0"):
raise TypeError(
"Dask arrays are only supported by this function if using, "
+ "xarray v0.16, run da.compute() before passing dataArray."
)
# create a template that matches the final datasets dims & vars
arr = da.isel(time=0).drop("time")
# deal with the case where fourier is first in the list
if stats[0] in ("f_std", "f_median", "f_mean"):
template = xr.zeros_like(arr).to_dataset(name=stats[0] + "_n1")
template[stats[0] + "_n2"] = xr.zeros_like(arr)
template[stats[0] + "_n3"] = xr.zeros_like(arr)
for stat in stats[1:]:
if stat in ("f_std", "f_median", "f_mean"):
template[stat + "_n1"] = xr.zeros_like(arr)
template[stat + "_n2"] = xr.zeros_like(arr)
template[stat + "_n3"] = xr.zeros_like(arr)
else:
template[stat] = xr.zeros_like(arr)
else:
template = xr.zeros_like(arr).to_dataset(name=stats[0])
for stat in stats:
if stat in ("f_std", "f_median", "f_mean"):
template[stat + "_n1"] = xr.zeros_like(arr)
template[stat + "_n2"] = xr.zeros_like(arr)
template[stat + "_n3"] = xr.zeros_like(arr)
else:
template[stat] = xr.zeros_like(arr)
try:
template = template.drop('spatial_ref')
except:
pass
# ensure the time chunk is set to -1
da_all_time = da.chunk({"time": -1})
# apply function across chunks
lazy_ds = da_all_time.map_blocks(
temporal_statistics, kwargs={"stats": stats}, template=template
)
try:
crs = da.geobox.crs
lazy_ds = assign_crs(lazy_ds, str(crs))
except:
pass
return lazy_ds
# If stats supplied is not a list, convert to list.
stats = stats if isinstance(stats, list) else [stats]
# grab all the attributes of the xarray
x, y, time, attrs = da.x, da.y, da.time, da.attrs
# deal with any all-NaN pixels by filling with 0's
mask = da.isnull().all("time")
da = da.where(~mask, other=0)
# complete timeseries
print("Completing...")
da = fast_completion(da)
# ensure dim order is correct for functions
da = da.transpose("y", "x", "time").values
stats_dict = {
"discordance": lambda da: hdstats.discordance(da, n=10),
"f_std": lambda da: hdstats.fourier_std(da, n=3, step=5),
"f_mean": lambda da: hdstats.fourier_mean(da, n=3, step=5),
"f_median": lambda da: hdstats.fourier_median(da, n=3, step=5),
"mean_change": lambda da: hdstats.mean_change(da),
"median_change": lambda da: hdstats.median_change(da),
"abs_change": lambda da: hdstats.mean_abs_change(da),
"complexity": lambda da: hdstats.complexity(da),
"central_diff": lambda da: hdstats.mean_central_diff(da),
"num_peaks": lambda da: hdstats.number_peaks(da, 10),
}
print(" Statistics:")
# if one of the fourier functions is first (or only)
# stat in the list then we need to deal with this
if stats[0] in ("f_std", "f_median", "f_mean"):
print(" " + stats[0])
stat_func = stats_dict.get(str(stats[0]))
zz = stat_func(da)
n1 = zz[:, :, 0]
n2 = zz[:, :, 1]
n3 = zz[:, :, 2]
# intialise dataset with first statistic
ds = xr.DataArray(
n1, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"]
).to_dataset(name=stats[0] + "_n1")
# add other datasets
for i, j in zip([n2, n3], ["n2", "n3"]):
ds[stats[0] + "_" + j] = xr.DataArray(
i, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"]
)
else:
# simpler if first function isn't fourier transform
first_func = stats_dict.get(str(stats[0]))
print(" " + stats[0])
ds = first_func(da)
# convert back to xarray dataset
ds = xr.DataArray(
ds, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"]
).to_dataset(name=stats[0])
# loop through the other functions
for stat in stats[1:]:
print(" " + stat)
# handle the fourier transform examples
if stat in ("f_std", "f_median", "f_mean"):
stat_func = stats_dict.get(str(stat))
zz = stat_func(da)
n1 = zz[:, :, 0]
n2 = zz[:, :, 1]
n3 = zz[:, :, 2]
for i, j in zip([n1, n2, n3], ["n1", "n2", "n3"]):
ds[stat + "_" + j] = xr.DataArray(
i, attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"]
)
else:
# Select a stats function from the dictionary
# and add to the dataset
stat_func = stats_dict.get(str(stat))
ds[stat] = xr.DataArray(
stat_func(da), attrs=attrs, coords={"x": x, "y": y}, dims=["y", "x"]
)
# try to add back the geobox
try:
crs = da.geobox.crs
ds = assign_crs(ds, str(crs))
except:
pass
return ds
| 5,337,720
|
def encode_data(data):
"""
Helper that converts :class:`str` or :class:`bytes` to :class:`bytes`.
:class:`str` are encoded with UTF-8.
"""
# Expect str or bytes, return bytes.
if isinstance(data, str):
return data.encode('utf-8')
elif isinstance(data, bytes):
return data
else:
raise TypeError("data must be bytes or str")
| 5,337,721
|
def get_apps_final(the_apps_dummy):
"""
计算出:
1.每个用户安装app的数量;
2.每个用户安装小众app的数量;
3.每个用户安装大众app的数量;
4.根据每个用户安装app的向量进行Mean-shift聚类的结果
"""
core_data = the_apps_dummy.drop(['id'], axis=1)
the_apps_final = get_minor_major(core_data, 'apps', 5, 90)
# new_core_data = col_cluster(core_data, n_cluster, 'app')
# the_apps_final = pd.concat([apps_minor_major, new_core_data], axis=1)
the_apps_final['id'] = the_apps_dummy['id']
return the_apps_final
| 5,337,722
|
def get_linked_events(user, dt, limit=None, load_also=()):
"""Get the linked events and the user's roles in them
:param user: A `User`
:param dt: Only include events taking place on/after that date
:param limit: Max number of events
"""
from indico.modules.events.abstracts.util import (get_events_with_abstract_reviewer_convener,
get_events_with_abstract_persons)
from indico.modules.events.contributions.util import get_events_with_linked_contributions
from indico.modules.events.papers.util import get_events_with_paper_roles
from indico.modules.events.registration.util import get_events_registered
from indico.modules.events.sessions.util import get_events_with_linked_sessions
from indico.modules.events.surveys.util import get_events_with_submitted_surveys
from indico.modules.events.util import (get_events_managed_by, get_events_created_by,
get_events_with_linked_event_persons)
links = OrderedDict()
for event_id in get_events_registered(user, dt):
links.setdefault(event_id, set()).add('registration_registrant')
for event_id in get_events_with_submitted_surveys(user, dt):
links.setdefault(event_id, set()).add('survey_submitter')
for event_id in get_events_managed_by(user, dt):
links.setdefault(event_id, set()).add('conference_manager')
for event_id in get_events_created_by(user, dt):
links.setdefault(event_id, set()).add('conference_creator')
for event_id, principal_roles in get_events_with_linked_sessions(user, dt).iteritems():
links.setdefault(event_id, set()).update(principal_roles)
for event_id, principal_roles in get_events_with_linked_contributions(user, dt).iteritems():
links.setdefault(event_id, set()).update(principal_roles)
for event_id, role in get_events_with_linked_event_persons(user, dt).iteritems():
links.setdefault(event_id, set()).add(role)
for event_id, roles in get_events_with_abstract_reviewer_convener(user, dt).iteritems():
links.setdefault(event_id, set()).update(roles)
for event_id, roles in get_events_with_abstract_persons(user, dt).iteritems():
links.setdefault(event_id, set()).update(roles)
for event_id, roles in get_events_with_paper_roles(user, dt).iteritems():
links.setdefault(event_id, set()).update(roles)
if not links:
return OrderedDict()
query = (Event.query
.filter(~Event.is_deleted,
Event.id.in_(links))
.options(joinedload('series'),
joinedload('label'),
load_only('id', 'category_id', 'title', 'start_dt', 'end_dt',
'series_id', 'series_pos', 'series_count', 'label_id', 'label_message',
*load_also))
.order_by(Event.start_dt, Event.id))
if limit is not None:
query = query.limit(limit)
return OrderedDict((event, links[event.id]) for event in query)
| 5,337,723
|
def QA_SU_save_etf_min(client=DATABASE, ui_log=None, ui_progress=None):
"""save etf_min
Keyword Arguments:
client {[type]} -- [description] (default: {DATABASE})
"""
__index_list = QA_fetch_get_stock_list('etf')
coll = client.index_min
coll.create_index(
[
('code',
pymongo.ASCENDING),
('time_stamp',
pymongo.ASCENDING),
('date_stamp',
pymongo.ASCENDING)
]
)
err = []
def __saving_work(code, coll):
QA_util_log_info(
'##JOB07 Now Saving ETF_MIN ==== {}'.format(str(code)),
ui_log=ui_log
)
try:
for type in ['1min', '5min', '15min', '30min', '60min']:
ref_ = coll.find({'code': str(code)[0:6], 'type': type})
end_time = str(now_time())[0:19]
if ref_.count() > 0:
start_time = ref_[ref_.count() - 1]['datetime']
QA_util_log_info(
'##JOB07.{} Now Saving {} from {} to {} =={} '.format(
['1min',
'5min',
'15min',
'30min',
'60min'].index(type),
str(code),
start_time,
end_time,
type
),
ui_log=ui_log
)
if start_time != end_time:
__data = QA_fetch_get_index_min(
str(code),
start_time,
end_time,
type
)
if len(__data) > 1:
coll.insert_many(
QA_util_to_json_from_pandas(__data[1::])
)
else:
start_time = '2015-01-01'
QA_util_log_info(
'##JOB07.{} Now Saving {} from {} to {} =={} '.format(
['1min',
'5min',
'15min',
'30min',
'60min'].index(type),
str(code),
start_time,
end_time,
type
),
ui_log=ui_log
)
if start_time != end_time:
__data = QA_fetch_get_index_min(
str(code),
start_time,
end_time,
type
)
if len(__data) > 1:
coll.insert_many(
QA_util_to_json_from_pandas(__data)
)
except:
err.append(code)
executor = ThreadPoolExecutor(max_workers=4)
res = {
executor.submit(__saving_work,
__index_list.index[i_][0],
coll)
for i_ in range(len(__index_list))
} # multi index ./.
count = 1
for i_ in concurrent.futures.as_completed(res):
QA_util_log_info(
'The {} of Total {}'.format(count,
len(__index_list)),
ui_log=ui_log
)
strLogProgress = 'DOWNLOAD PROGRESS {} '.format(
str(float(count / len(__index_list) * 100))[0:4] + '%'
)
intLogProgress = int(float(count / len(__index_list) * 10000.0))
QA_util_log_info(
strLogProgress,
ui_log=ui_log,
ui_progress=ui_progress,
ui_progress_int_value=intLogProgress
)
count = count + 1
if len(err) < 1:
QA_util_log_info('SUCCESS', ui_log=ui_log)
else:
QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log)
QA_util_log_info(err, ui_log=ui_log)
| 5,337,724
|
def test_hapd_ctrl_level(dev, apdev):
"""hostapd and LEVEL ctrl_iface command"""
ssid = "hapd-ctrl"
params = { "ssid": ssid }
hapd = hostapd.add_ap(apdev[0], params)
if "FAIL" not in hapd.request("LEVEL 0"):
raise Exception("Unexpected LEVEL success on non-monitor interface")
| 5,337,725
|
def get_run_callback(run_text, output_dir):
"""
function to generate tf run callback for tensor board
"""
root_logdir = f'{output_dir.rstrip("/")}/tensorboard_logs/'
run_id = time.strftime(f'{run_text}_%Y_%m_%d-%H-%M-%S')
log_path = os.path.join(root_logdir, run_id)
tensorboad_callback = tf.keras.callbacks.TensorBoard(log_path)
return tensorboad_callback
| 5,337,726
|
def set_seed(seed: int):
"""
Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch``.
Args:
seed (:obj:`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
| 5,337,727
|
def bert_keyword_expansion(keywords: str,
num_similar: int,
bert_model,
tokenizer,
bert_embedding_dict):
"""
Keyword expansion outputs top N most similar words from vocabulary.
@param keywords: string of comma-separated words to find keywords for
@param num_similar: number of similar words to return
@param bert_model: BERT embedding model
@param tokenizer: BERT tokenizer object
@param bert_embedding_dict: KeyedVectors object storing BERT-generated embeddings
@return: list of top N most similar words in order of descending similarity
"""
assert isinstance(keywords, str)
keywords = utils.rm_punct(keywords)
keywords = utils.lower(keywords)
# Assuming input is a string of space separated words
keyword_list = set(keywords.split())
# Dictionary used to store similarity scores for top keywords
scores_dict = defaultdict(int)
for keyword in keyword_list:
# Check if keyword is in the BERT embedding dictionary
# If not, we create a vector representation of it first
if keyword not in bert_embedding_dict.vocab:
keyword = bert_embedding(keyword, tokenizer, bert_model, to_numpy=True)
# Returns a list of tuples in the form (word, similarity score)
result = utils.find_similar_keyword_in_vocab(keyword=keyword, num_similar=num_similar,
model=bert_embedding_dict, similarity_score=True)
for word, score in result:
# Skipping similar words that already in the list of keywords provided by user
if word in keyword_list:
continue
else:
# Keeping the maximum similarity score for each word
scores_dict[word] = max(scores_dict[word], score)
sorted_results = sorted(scores_dict.items(), key=lambda kv: kv[1], reverse=True)[:num_similar]
return [word for word, score in sorted_results]
| 5,337,728
|
def utc_to_tt_offset(jday=None):
"""Returns the offset in seconds from a julian date in Terrestrial Time (TT)
to a Julian day in Coordinated Universal Time (UTC)"""
if use_numpy:
return utc_to_tt_offset_numpy(jday)
else:
return utc_to_tt_offset_math(jday)
| 5,337,729
|
async def get_async_request(url: str) -> [int, Any]:
"""Get the data from the url provided.
Parameters
----------
url: str
url to get the data from
Returns
-------
[int, Any]
Tuple with the Response status code and the data returned from the request
"""
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
data = await response.json()
return [response.status, data]
| 5,337,730
|
def scattering_probability(H, psi0, n_emissions, c_ops, tlist,
system_zero_state=None,
construct_effective_hamiltonian=True):
"""
Compute the integrated probability of scattering n photons in an arbitrary
system. This function accepts a nonlinearly spaced array of times.
Parameters
----------
H : :class: qutip.Qobj or list
System-waveguide(s) Hamiltonian or effective Hamiltonian in Qobj or
list-callback format. If construct_effective_hamiltonian is not
specified, an effective Hamiltonian is constructed from H and
`c_ops`.
psi0 : :class: qutip.Qobj
Initial state density matrix :math:`\\rho(t_0)` or state vector
:math:`\\psi(t_0)`.
n_emissions : int
Number of photons emitted by the system (into any combination of
waveguides).
c_ops : list
List of collapse operators for each waveguide; these are assumed to
include spontaneous decay rates, e.g.
:math:`\\sigma = \\sqrt \\gamma \\cdot a`.
tlist : array_like
List of times for :math:`\\tau_i`. tlist should contain 0 and exceed
the pulse duration / temporal region of interest; tlist need not be
linearly spaced.
system_zero_state : :class: qutip.Qobj
State representing zero excitations in the system. Defaults to
`basis(systemDims, 0)`.
construct_effective_hamiltonian : bool
Whether an effective Hamiltonian should be constructed from H and c_ops:
:math:`H_{eff} = H - \\frac{i}{2} \\sum_n \\sigma_n^\\dagger \\sigma_n`
Default: True.
Returns
-------
scattering_prob : float
The probability of scattering n photons from the system over the time
range specified.
"""
phi_n = temporal_scattered_state(H, psi0, n_emissions, c_ops, tlist,
system_zero_state,
construct_effective_hamiltonian)
T = len(tlist)
W = len(c_ops)
# Compute <omega_tau> for all combinations of tau
all_emission_indices = combinations_with_replacement(range(T), n_emissions)
probs = np.zeros([T] * n_emissions)
# Project scattered state onto temporal basis
for emit_indices in all_emission_indices:
# Consider unique emission time partitionings
partition = tuple(set(set_partition(emit_indices, W)))
# wg_indices_list = list(set_partition(indices, W))
for wg_indices in partition:
projector = temporal_basis_vector(wg_indices, T)
amplitude = projector.dag() * phi_n
probs[emit_indices] += np.real(amplitude.conjugate() * amplitude)
# Iteratively integrate to obtain single value
while probs.shape != ():
probs = np.trapz(probs, x = tlist)
return np.abs(probs)
| 5,337,731
|
def analytical_value_cond_i_shannon(distr, par):
""" Analytical value of the conditional Shannon mutual information.
Parameters
----------
distr : str-s
Names of the distributions; 'normal'.
par : dictionary
Parameters of the distribution. If distr is 'normal':
par["cov"] and par["ds"] are the (joint) covariance matrix and
the vector of subspace dimensions.
Returns
-------
cond_i : float
Analytical value of the conditional Shannon mutual
information.
"""
# initialization:
ds = par['ds']
len_ds = len(ds)
# 0,d_1,d_1+d_2,...,d_1+...+d_M; starting indices of the subspaces:
cum_ds = cumsum(hstack((0, ds[:-1])))
idx_condition = range(cum_ds[len_ds - 1],
cum_ds[len_ds - 1] + ds[len_ds - 1])
if distr == 'normal':
c = par['cov']
# h_joint:
h_joint = analytical_value_h_shannon(distr, par)
# h_cross:
h_cross = 0
for m in range(len_ds-1): # non-conditioning subspaces
idx_m = range(cum_ds[m], cum_ds[m] + ds[m])
idx_m_and_condition = hstack((idx_m, idx_condition))
par = {"cov": c[ix_(idx_m_and_condition, idx_m_and_condition)]}
h_cross += analytical_value_h_shannon(distr, par)
# h_condition:
par = {"cov": c[ix_(idx_condition, idx_condition)]}
h_condition = analytical_value_h_shannon(distr, par)
cond_i = -h_joint + h_cross - (len_ds - 2) * h_condition
else:
raise Exception('Distribution=?')
return cond_i
| 5,337,732
|
def upload_file(localpath, s3path):
"""
Uploads a file to s3
:param localpath: The local path
:param s3path: The s3 path in format s3://mybucket/mydir/mysample.txt
"""
bucket, key = get_bucketname_key(s3path)
if key.endswith("/"):
key = "{}{}".format(key, os.path.basename(localpath))
s3 = boto3.client('s3')
s3.upload_file(localpath, bucket, key)
| 5,337,733
|
def convert_to_tub_v2(paths, output_path):
"""
Convert from old tubs to new one
:param paths: legacy tub paths
:param output_path: new tub output path
:return: None
"""
empty_record = {'__empty__': True}
if type(paths) is str:
paths = [paths]
legacy_tubs = [LegacyTub(path) for path in paths]
print(f'Total number of tubs: {len(legacy_tubs)}')
for legacy_tub in legacy_tubs:
# add input and type for empty records recording
inputs = legacy_tub.inputs + ['__empty__']
types = legacy_tub.types + ['boolean']
output_tub = Tub(output_path, inputs, types,
list(legacy_tub.meta.items()))
record_paths = legacy_tub.gather_records()
bar = IncrementalBar('Converting', max=len(record_paths))
previous_index = None
for record_path in record_paths:
try:
contents = Path(record_path).read_text()
record = json.loads(contents)
image_path = record['cam/image_array']
ms = record['milliseconds']
current_index = int(image_path.split('_')[0])
image_path = os.path.join(legacy_tub.path, image_path)
image_data = Image.open(image_path)
record['cam/image_array'] = image_data
# first record or they are continuous, just append
if not previous_index or current_index == previous_index + 1:
output_tub.write_record(record, ms)
previous_index = current_index
# otherwise fill the gap with empty records
else:
# Skipping over previous record here because it has
# already been written.
previous_index += 1
# Adding empty record nodes, and marking them deleted
# until the next valid record.
delete_list = []
while previous_index < current_index:
idx = output_tub.manifest.current_index
output_tub.write_record(empty_record, ms)
delete_list.append(idx)
previous_index += 1
output_tub.delete_records(delete_list)
bar.next()
except Exception as exception:
print(f'Ignoring record path {record_path}\n', exception)
traceback.print_exc()
# writing session id into manifest metadata
output_tub.close()
| 5,337,734
|
def approve(credentials, assignment_id):
"""Approve an assignment"""
# Connect to MTurk
mturk = connect(credentials['PRODUCTION'])
# Skip if already processed
assignment = mturk.get_assignment(AssignmentId=assignment_id)
if assignment['Assignment']['AssignmentStatus'] == 'Submitted':
# Approve assignment
mturk.approve_assignment(AssignmentId=assignment_id)
| 5,337,735
|
def print_cuda_memory(gpu: int = 0):
""" Prints current memory stats of gpu. """
t = torch.cuda.get_device_properties(gpu).total_memory
c = torch.cuda.memory_cached(gpu)
a = torch.cuda.memory_allocated(gpu)
print("GPU {}".format(gpu))
print("\tTotal memory: {}".format(t))
print("\tCached memory: {}".format(c))
print("\tAllocated memory: {}".format(a))
| 5,337,736
|
def zexp(input, i=None):
"""
Point-wise complex exponential.
:param input array:
:param i bool: imaginary
"""
usage_string = "zexp [-i] input output"
cmd_str = f'{BART_PATH} '
cmd_str += 'zexp '
flag_str = ''
opt_args = f''
multituples = []
if i is not None:
flag_str += f'-i '
cmd_str += flag_str + opt_args + ' '
cmd_str += f"{' '.join([' '.join([str(x) for x in arg]) for arg in zip(*multituples)]).strip()} {NAME}input {NAME}output "
cfl.writecfl(NAME + 'input', input)
if DEBUG:
print(cmd_str)
os.system(cmd_str)
outputs = cfl.readcfl(NAME + 'output')
return outputs
| 5,337,737
|
def ekin2wl(ekin):
"""Convert neutron kinetic energy in electronvolt to wavelength in Angstrom"""
if _np and hasattr(ekin,'__len__'):
#reciprocals without zero division:
ekinnonzero = ekin != 0.0
ekininv = 1.0 / _np.where( ekinnonzero, ekin, 1.0)#fallback 1.0 wont be used
return _c_ekin2wl * _np.sqrt(_np.where( ekinnonzero, ekininv, _np.inf))
else:
return _rawfct['ncrystal_ekin2wl'](ekin)
| 5,337,738
|
def add_jinja2_extension(config, ext, name='.jinja2'):
"""
This function is added as a method of a :term:`Configurator`, and
should not be called directly. Instead it should be called like so after
``pyramid_jinja2`` has been passed to ``config.include``:
.. code-block:: python
config.add_jinja2_extension(myext)
It will add the Jinja2 extension passed as ``ext`` to the current
:class:`jinja2.Environment` used by the renderer named ``name``.
"""
ext = config.maybe_dotted(ext)
def register():
env = get_jinja2_environment(config, name)
env.add_extension(ext)
config.action(None, register, order=EXTRAS_CONFIG_PHASE)
| 5,337,739
|
def show_subscription(conn, customer):
"""
Retrieves authenticated user's plan and prints it.
- Return type is a tuple, 1st element is a boolean and 2nd element is the response message from messages.py.
- If the operation is successful; print the authenticated customer's plan and return tuple (True, CMD_EXECUTION_SUCCESS).
- If any exception occurs; return tuple (False, CMD_EXECUTION_FAILED).
Output should be like:
#|Name|Resolution|Max Sessions|Monthly Fee
1|Basic|720P|2|30
"""
try:
cursor = conn.cursor()
cursor.execute("SELECT plan_id "
"FROM customer "
"WHERE customer_id = %s",
(customer.customer_id,))
queryCustomerPlanId = cursor.fetchall()
if queryCustomerPlanId is None:
# Fail if no such customer exists (somehow)
return False, CMD_EXECUTION_FAILED
else:
cursor.execute("SELECT plan_id, plan_name, resolution, max_parallel_sessions, monthly_fee "
"FROM plan "
"WHERE plan_id = %s",
(queryCustomerPlanId[0],))
queryPlan = cursor.fetchone()
if queryPlan is None:
# Fail if no such plan exists
return False, CMD_EXECUTION_FAILED
print("#|Name|Resolution|Max Sessions|Monthly Fee")
print("{0}|{1}|{2}|{3}|{4}".format(queryPlan[0], queryPlan[1], queryPlan[2], queryPlan[3], queryPlan[4]))
cursor.close()
return True, CMD_EXECUTION_SUCCESS
except Exception as e:
return False, CMD_EXECUTION_FAILED
| 5,337,740
|
def check_atoms_coordinates(mol):
"""
Function to check if a molecule contains zero coordinates in all atoms.
Then this molecule must be eliminated.
Returns True if molecules is OK and False if molecule contains zero coordinates.
Example:
# Load test set to a frame
sdf = 'miniset.sdf'
df = pt.LoadSDF(sdf, molColName='mol3DProt')
## Checking if molecule contains only ZERO coordinates,
## then remove that molecules from dataset
df['check_coordinates'] = [checkAtomsCoordinates(x) for x in df.mol3DProt]
df_eliminated_mols = dfl[df.check_coordinates == False]
df = df[df.check_coordinates == True]
df.drop(columns=['check_coordinates'], inplace=True)
print('final minitest set:', df.shape[0])
print('minitest eliminated:', df_eliminated_mols.shape[0])
"""
conf = mol.GetConformer()
position = []
for i in range(conf.GetNumAtoms()):
pos = conf.GetAtomPosition(i)
position.append([pos.x, pos.y, pos.z])
position = np.array(position)
if not np.any(position):
raise RuntimeError("molecule has no conformers")
| 5,337,741
|
def update_hosts_file(*flags):
"""
Wrapper around running updateHostsFile.py
Parameters
----------
flags : varargs
Commandline flags to pass into updateHostsFile.py. For more info, run
the following command in the terminal or command prompt:
```
python updateHostsFile.py -h
```
"""
if subprocess.call([sys.executable, "updateHostsFile.py"] + list(flags)):
print_failure("Failed to update hosts file")
| 5,337,742
|
def maybe_gen_fake_data_based_on_real_data(
image, label, reso, min_fake_lesion_ratio, gen_fake_probability):
"""Remove real lesion and synthesize lesion."""
# TODO(lehou): Replace magic numbers with flag variables.
gen_prob_indicator = tf.random_uniform(
shape=[], minval=0.0, maxval=1.0, dtype=tf.float32)
background_mask = tf.less(label, 0.5)
lesion_mask = tf.greater(label, 1.5)
liver_mask = tf.logical_not(tf.logical_or(background_mask, lesion_mask))
liver_intensity = tf.boolean_mask(image, liver_mask)
lesion_intensity = tf.boolean_mask(image, lesion_mask)
intensity_diff = tf.reduce_mean(liver_intensity) - (
tf.reduce_mean(lesion_intensity))
intensity_diff *= 1.15
intensity_diff = tf.cond(tf.is_nan(intensity_diff),
lambda: 0.0, lambda: intensity_diff)
lesion_liver_ratio = 0.0
lesion_liver_ratio += tf.random.normal(shape=[], mean=0.01, stddev=0.01)
lesion_liver_ratio += tf.random.normal(shape=[], mean=0.0, stddev=0.05)
lesion_liver_ratio = tf.clip_by_value(
lesion_liver_ratio, min_fake_lesion_ratio, min_fake_lesion_ratio + 0.20)
fake_lesion_mask = tf.logical_and(
_gen_rand_mask(ratio_mean=lesion_liver_ratio, ratio_stddev=0.0,
scale=reso // 32, shape=label.shape,
smoothness=reso // 32),
tf.logical_not(background_mask))
liver_mask = tf.logical_not(tf.logical_or(background_mask, fake_lesion_mask))
# Blur the masks
lesion_mask_blur = tf.squeeze(tf.nn.conv3d(
tf.expand_dims(tf.expand_dims(tf.cast(lesion_mask, tf.float32), -1), 0),
filter=tf.ones([reso // 32] * 3 + [1, 1], tf.float32) / (reso // 32) ** 3,
strides=[1, 1, 1, 1, 1],
padding='SAME'))
fake_lesion_mask_blur = tf.squeeze(tf.nn.conv3d(
tf.expand_dims(tf.expand_dims(
tf.cast(fake_lesion_mask, tf.float32), -1), 0),
filter=tf.ones([reso // 32] * 3 + [1, 1], tf.float32) / (reso // 32) ** 3,
strides=[1, 1, 1, 1, 1],
padding='SAME'))
# Remove real lesion and add fake lesion.
# If the intensitify is too small (maybe no liver or lesion region labeled),
# do not generate fake data.
gen_prob_indicator = tf.cond(
tf.greater(intensity_diff, 0.0001),
lambda: gen_prob_indicator, lambda: 0.0)
# pylint: disable=g-long-lambda
image = tf.cond(
tf.greater(gen_prob_indicator, 1 - gen_fake_probability),
lambda: image + intensity_diff * lesion_mask_blur \
- intensity_diff * fake_lesion_mask_blur,
lambda: image)
label = tf.cond(
tf.greater(gen_prob_indicator, 1 - gen_fake_probability),
lambda: tf.cast(background_mask, tf.float32) * 0 + \
tf.cast(liver_mask, tf.float32) * 1 + \
tf.cast(fake_lesion_mask, tf.float32) * 2,
lambda: label)
# pylint: enable=g-long-lambda
return image, label
| 5,337,743
|
def is_primitive_type (v) :
""" Check to see if v is primitive. Primitive in this context
means NOT a container type (str is the exception):
primitives type are: int, float, long, complex, bool, None, str
"""
return type(v) in {int:0, float:0, long:0, complex:0, bool:0, None:0, str:0}
| 5,337,744
|
def _get_bit(h, i):
"""Return specified bit from string for subsequent testing"""
h1 = int.from_bytes(h, 'little')
return (h1 >> i) & 0x01
| 5,337,745
|
def go_down_right_reward(nobs, high_pos, agent_num, act):
"""
Return a reward for going to the low or right side of the board
:param nobs: The current observation
:param high_pos: Tuple of lowest and most-right position
:param agent_num: The id of the agent to check (0-3)
:return: The reward for going down or right
"""
# only give rewards if a new highest point is reached
bomb_bonus = 0
if act[agent_num] == 5:
bomb_bonus = 0.00
if nobs[agent_num]['position'][0] > high_pos[0]:
return 1 + bomb_bonus, (nobs[agent_num]['position'][0], high_pos[1])
elif nobs[agent_num]['position'][1] > high_pos[1]:
return 1 + bomb_bonus, (high_pos[0], nobs[agent_num]['position'][1])
else:
return 0 + bomb_bonus, high_pos
| 5,337,746
|
def getChannelBoxMenu():
"""
Get ChannelBox Menu, convert the main channel box to QT and return the
Edit QMenu which is part of the channel box' children.
:return: Maya's main channel box menu
:rtype: QMenu
"""
channelBox = getChannelBox()
# find widget
menus = channelBox.findChildren(QMenu)
# find Edit menu
for menu in menus:
if menu.menuAction().text() == "Edit":
return menu
| 5,337,747
|
def make_sid_cookie(sid, uri):
"""Given a sid (from a set-cookie) figure out how to send it back"""
# sometime near 0.92, port got dropped...
# uritype, uribody = urllib.splittype(uri)
# host, path = urllib.splithost(uribody)
# host, port = urllib.splitnport(host)
# if port == -1:
# port = dict(http=80, https=443)[uritype] # we want to throw here
cookiename = "JIFTY_SID_HIVEMINDER"
return "%s=%s" % (cookiename, sid)
| 5,337,748
|
def identity_filter(element_tuple):
"""
element_tuple est consitute des (name, attrs) de chaque element XML recupere par la methode startElement
"""
return element_tuple
| 5,337,749
|
def EoZ(N2, w0, f, ):
"""
Wave ray energy when variations can only occur in the vertical (i.e. N2 and
flow only vary with depth not horizontally) - Olbers 1981
"""
Ez = np.squeeze((w0**2 * (N2 - f**2))
/ ((w0**2 - f**2)**(3 / 2) * (N2 - w0**2)**(1 / 2)))
return Ez
| 5,337,750
|
def safe_string(value: Any) -> str:
"""
Consistently converts a value to a string.
:param value: The value to stringify.
"""
if isinstance(value, bytes):
return value.decode()
return str(value)
| 5,337,751
|
def test_example_4p2():
"""Test example 4.2 in Pozar."""
# X-band waveguide dimensions
a = 2.285 * sc.centi
b = 1.016 * sc.centi
# Rexolite
er_mag = 2.54
# Frequency
f = 10 * sc.giga
# Propagation constants
beta_a = wg.phase_constant(f, a, b, er=1)
beta_d = wg.phase_constant(f, a, b, er=er_mag)
assert beta_a == approx(158.0, abs=0.5)
assert beta_d == approx(304.1, abs=0.5)
# Characteristic impedance
z0_a = wg.impedance(f, a, b, er=1, ur=1, m=1, n=0, mode='TE')
z0_d = wg.impedance(f, a, b, er=er_mag, ur=1, m=1, n=0, mode='TE')
with pytest.raises(ValueError):
wg.impedance(f, a, b, mode='TEM')
print(z0_a)
print(z0_d)
assert z0_a == approx(500.0, abs=1)
assert z0_d == approx(259.6, abs=1)
| 5,337,752
|
def handle_older_version(upstream_version: Box) -> bool:
"""
Checks if the current version (local) is older than the upstream one
and provides a message to the end-user.
:return:
:py:class:`True` if local is older. :py:class:`False` otherwise.
"""
version_utility = VersionUtility(PyFunceble.storage.PROJECT_VERSION)
if PyFunceble.facility.ConfigLoader.is_already_loaded():
if PyFunceble.storage.CONFIGURATION.cli_testing.display_mode.quiet:
message = "New version available."
elif PyFunceble.storage.CONFIGURATION.cli_testing.display_mode.colour:
message = (
f"{colorama.Style.BRIGHT}{colorama.Fore.GREEN}Please take the "
"time to "
f"update {PyFunceble.storage.PROJECT_NAME}!"
f"{colorama.Style.RESET_ALL}\n"
f"{colorama.Style.BRIGHT}Your version:{colorama.Style.RESET_ALL} "
f"{PyFunceble.storage.PROJECT_VERSION}\n"
f"{colorama.Style.BRIGHT}Upstream version:{colorama.Style.RESET_ALL} "
f"{upstream_version.current_version}\n"
)
else:
message = (
f"Please take the time to update "
f"{PyFunceble.storage.PROJECT_NAME}!\n"
f"Your version: {PyFunceble.storage.PROJECT_VERSION}\n"
f"Upstream version: {upstream_version.current_version}"
)
else:
message = (
"Please take the time to "
f"update {PyFunceble.storage.PROJECT_NAME}!\n"
f"Your version: {PyFunceble.storage.PROJECT_VERSION}\n"
f"Upstream version: {upstream_version.current_version}"
)
if version_utility.is_older_than(upstream_version.current_version):
print(message)
return True
return False
| 5,337,753
|
def silent_unlink(path):
"""like os.unlink but does not raise error if the file does not exist"""
try:
os.unlink(path)
except OSError, e:
if e.errno != errno.ENOENT:
raise
| 5,337,754
|
def tp(selector:Union[str, tuple]="@s", selector2:Union[str, tuple]=("~", "~", "~")):
"""
selector:Union[str, tuple] -> The position to be moved from
selector2:Union[str, tuple] -> The position to be moved to
"""
if not ((isinstance(selector, str) or isinstance(selector, tuple)) and (isinstance(selector2, str) or isinstance(selector2, tuple))):
return "## Tp command hasn't been configured properly ##"
if isinstance(selector, tuple):
if len(selector) < 3:
selector = ("~", "~", "~")
return f"tp {selector[0]} {selector[1]} {selector[2]}\n"
else:
if isinstance(selector2, tuple):
if len(selector2) < 3:
selector2 = ("~", "~", "~")
return f"tp {selector} {selector2[0]} {selector2[1]} {selector2[2]}\n"
else:
return f"tp {selector} {selector2}\n"
| 5,337,755
|
def new_product() -> Product:
"""Generates an instance of Product with default values."""
return Product(
product_id='',
desc='',
display_name='',
capacity=0,
image='')
| 5,337,756
|
def _rng_bit_generator_batching_rule(batched_args, batch_dims, *, shape, dtype, algorithm):
"""Calls RBG in a loop and stacks the results."""
key, = batched_args
bd, = batch_dims
if bd is batching.not_mapped:
return lax.rng_bit_generator_p.bind(key, shape=shape, dtype=dtype,
algorithm=algorithm), (None, None)
key = batching.moveaxis(key, bd, 0)
map_body = lambda k: lax.rng_bit_generator_p.bind(k, shape=shape, dtype=dtype, algorithm=algorithm)
stacked_keys, stacked_bits = map(map_body, key)
return (stacked_keys, stacked_bits), (0, 0)
| 5,337,757
|
def count_short_tail_keywords(keywords: List[str]) -> int:
"""
Returns the count of short tail keywords in a list of keywords.
Parameters:
keywords (List[str]): list with all keywords as strings.
Returns:
total (int): count of short tail keywords (1 o 2 words per keyword).
"""
total = 0
for keyword in keywords:
keyword_list = keyword.split()
if len(keyword_list) > 1 and len(keyword_list) < 3:
total += 1
return total
| 5,337,758
|
def test_assets_are_known(mock_bitfinex):
"""This tests only exchange (trades) assets (not margin, nor futures ones).
"""
unsupported_assets = set(UNSUPPORTED_BITFINEX_ASSETS)
common_items = unsupported_assets.intersection(set(WORLD_TO_BITFINEX.values()))
assert not common_items, f'Bitfinex assets {common_items} should not be unsupported'
currencies_response = mock_bitfinex._query_currencies()
if currencies_response.success is False:
response = currencies_response.response
test_warnings.warn(UserWarning(
f'Failed to request {mock_bitfinex.name} currencies list. '
f'Response status code: {response.status_code}. '
f'Response text: {response.text}. Xfailing this test',
))
pytest.xfail('Failed to request {mock_bitfinex.name} currencies list')
exchange_pairs_response = mock_bitfinex._query_exchange_pairs()
if exchange_pairs_response.success is False:
response = exchange_pairs_response.response
test_warnings.warn(UserWarning(
f'Failed to request {mock_bitfinex.name} exchange pairs list. '
f'Response status code: {response.status_code}. '
f'Response text: {response.text}. Xfailing this test',
))
pytest.xfail('Failed to request {mock_bitfinex.name} exchange pairs list')
currency_map_response = mock_bitfinex._query_currency_map()
if currency_map_response.success is False:
response = currency_map_response.response
test_warnings.warn(UserWarning(
f'Failed to request {mock_bitfinex.name} currency map. '
f'Response status code: {response.status_code}. '
f'Response text: {response.text}. Xfailing this test',
))
pytest.xfail('Failed to request {mock_bitfinex.name} currency map')
test_assets = set(BITFINEX_EXCHANGE_TEST_ASSETS)
unsupported_assets = set(UNSUPPORTED_BITFINEX_ASSETS)
currency_map = currency_map_response.currency_map
symbols = set()
for symbol in currencies_response.currencies:
if symbol in test_assets:
continue
for pair in exchange_pairs_response.pairs:
if pair.startswith(symbol) or pair.endswith(symbol):
symbols.add(symbol)
break
for symbol in symbols:
try:
asset_from_bitfinex(
bitfinex_name=symbol,
currency_map=currency_map,
)
except UnsupportedAsset:
assert symbol in unsupported_assets
except UnknownAsset as e:
test_warnings.warn(UserWarning(
f'Found unknown asset {e.asset_name} with symbol {symbol} in '
f'{mock_bitfinex.name}. Support for it has to be added',
))
| 5,337,759
|
def is_odd(number):
"""Determine if a number is odd."""
if number % 2 == 0:
return False
else:
return True
| 5,337,760
|
def test_service_account_token_create_out_of_scope_service_account(
permission_manage_service_accounts,
staff_api_client,
superuser_api_client,
staff_user,
permission_manage_orders,
):
"""Ensure user can't create token for service account with wider
scope of permissions.
Ensure superuser pass restrictions.
"""
app = App.objects.create(name="New_sa")
query = SERVICE_ACCOUNT_TOKEN_CREATE_MUTATION
app.permissions.add(permission_manage_orders)
id = graphene.Node.to_global_id("ServiceAccount", app.id)
variables = {"name": "Default token", "serviceAccount": id}
# for staff user
response = staff_api_client.post_graphql(
query,
variables={"input": variables},
permissions=(permission_manage_service_accounts,),
)
content = get_graphql_content(response)
data = content["data"]["serviceAccountTokenCreate"]
errors = data["accountErrors"]
assert not data["serviceAccountToken"]
assert len(errors) == 1
error = errors[0]
assert error["code"] == AccountErrorCode.OUT_OF_SCOPE_SERVICE_ACCOUNT.name
assert error["field"] == "serviceAccount"
# for superuser
response = superuser_api_client.post_graphql(query, variables={"input": variables})
content = get_graphql_content(response)
token_data = content["data"]["serviceAccountTokenCreate"]["serviceAccountToken"]
auth_token_data = content["data"]["serviceAccountTokenCreate"]["authToken"]
auth_token = app.tokens.get().auth_token
assert auth_token_data == auth_token
assert token_data["authToken"] == auth_token[-4:]
assert token_data["name"] == "Default token"
| 5,337,761
|
def fmt_quil_str(raw_str):
"""Format a raw Quil program string
Args:
raw_str (str): Quil program typed in by user.
Returns:
str: The Quil program with leading/trailing whitespace trimmed.
"""
raw_quil_str = str(raw_str)
raw_quil_str_arr = raw_quil_str.split('\n')
trimmed_quil_str_arr = [qs.strip() for qs in raw_quil_str_arr]
trimmed_quil_str = '\n'.join([x for x in trimmed_quil_str_arr])
return trimmed_quil_str
| 5,337,762
|
def get_source_plate_uuid(barcode: str) -> Optional[str]:
"""Attempt to get a UUID for a source plate barcode.
Arguments:
barcode {str} -- The source plate barcode.
Returns:
{str} -- The source plate UUID; otherwise None if it cannot be determined.
"""
try:
source_plates_collection: Collection = cast(Eve, app).data.driver.db.source_plates
source_plate: Optional[SourcePlateDoc] = source_plates_collection.find_one({FIELD_BARCODE: barcode})
if source_plate is None:
return None
return source_plate.get(FIELD_LH_SOURCE_PLATE_UUID)
except Exception as e:
logger.error(f"An error occurred attempting to determine the UUID of source plate '{barcode}'")
logger.exception(e)
return None
| 5,337,763
|
def find_largest_digit(n):
"""
:param n: integers
:return: the largest digit
"""
n = abs(n) # absolute the value
if n < 10:
return n
else:
return find_helper(n, 0)
| 5,337,764
|
def test_deny_this_without_attribute_access(code):
"""`this` object can't be used as a dependency directly."""
class Foo:
pass
with pytest.raises(DependencyError) as exc_info:
code(Foo)
message = str(exc_info.value)
assert message == "You can not use 'this' directly in the 'Injector'"
| 5,337,765
|
def print_to_file(fname: Union[str, Path], fn: Callable, args=None, kwargs=None):
""" All `print` function calls in `fn(*args, **kwargs)`
uses a text file `fname`.
:param fname:
:param fn:
:param args: args for fn
:param kwargs: kwargs for fn
:return:
"""
if fname:
fname = Path(fname).with_suffix('.txt')
if args is None:
args = tuple()
if kwargs is None:
kwargs = dict()
with (fname.open('w') if fname else open(os.devnull, 'w')) as file:
with contextlib.redirect_stdout(file):
fn(*args, **kwargs)
| 5,337,766
|
def extractChrononTranslations(item):
"""
"""
vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title'])
if not (chp or vol or frag) or 'preview' in item['title'].lower():
return None
item['title'] = item['title'].replace('’', '')
if 'Weapons cheat'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'Modern weapons cheat in another world', vol, chp, frag=frag, postfix=postfix)
if 'Heavenly Tribulation'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'Heavenly Tribulation', vol, chp, frag=frag, postfix=postfix)
if 'I can speak'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'I Can Speak with Animals and Demons', vol, chp, frag=frag, postfix=postfix)
if 'I Bought a Girl'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'I Bought a Girl', vol, chp, frag=frag, postfix=postfix)
if 'Girl Corps'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'Girl Corps', vol, chp, frag=frag, postfix=postfix)
if 'Modern Weapons'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'Modern weapons cheat in another world', vol, chp, frag=frag, postfix=postfix)
if 'Upper World'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, 'Reincarnation ~ From the lower world to the upper world', vol, chp, frag=frag, postfix=postfix)
if 'I work as a healer'.lower() in item['title'].lower():
return buildReleaseMessageWithType(item, "I Work As A Healer In Another World's Labyrinth City", vol, chp, frag=frag, postfix=postfix)
return False
| 5,337,767
|
def run_feature_selection(X, y, select_k_features):
"""Use a gradient boosting tree regressor as a proxy for finding
the k most important features in X, returning indices for those
features as output."""
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel, SelectKBest
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
clf.fit(X, y)
selector = SelectFromModel(
clf, threshold=-np.inf, max_features=select_k_features, prefit=True
)
return selector.get_support(indices=True)
| 5,337,768
|
def add_path_to_syspath() -> None:
"""
>>> add_path_to_syspath()
"""
path_to_append = pathlib.Path(__file__).resolve().parent
sys_paths_resolved = [pathlib.Path(path).resolve() for path in sys.path]
if path_to_append not in sys_paths_resolved:
sys.path.append(str(path_to_append))
| 5,337,769
|
def _not_json_encodable(message: str, failure_callback: Optional[Callable[[str], None]]) -> Literal[False]:
""" Utility message to fail (return `False`) by first calling an optional failure callback. """
if failure_callback:
failure_callback(message)
return False
| 5,337,770
|
def requires(*commands: str) -> RequiresT:
"""Decorator to require the given commands."""
def inner(func: ReturnT) -> ReturnT:
"""Decorates the function and checks for the commands."""
for command in commands:
if not check_availability(command):
raise errors.MissingShellCommand(
f"ipq requires the {command!r} command, please install it."
)
@functools.wraps(func)
def wrapper(*args: t.Any, **kwargs: t.Any) -> str:
"""Wraps and executes the decorated function."""
return func(*args, **kwargs)
return wrapper
return inner
| 5,337,771
|
def _build_model(input_dim, num_classes, num_hidden_layers=0,
hidden_dimension=128,
normalize_inputs=False, dropout=0):
"""
Macro to generate a Keras classification model
"""
inpt = tf.keras.layers.Input((input_dim))
net = inpt
# if we're normalizing inputs:
if normalize_inputs:
norm = tf.keras.layers.Lambda(lambda x:K.l2_normalize(x,axis=1))
net = norm(net)
# for each hidden layer
for _ in range(num_hidden_layers):
if dropout > 0:
net = tf.keras.layers.Dropout(dropout)(net)
net = tf.keras.layers.Dense(hidden_dimension, activation="relu")(net)
# final layer
if dropout > 0:
net = tf.keras.layers.Dropout(dropout)(net)
net = tf.keras.layers.Dense(num_classes, activation="relu")(net)
return tf.keras.Model(inpt, net)
| 5,337,772
|
def get_client(
project_id, cloud_region, registry_id, device_id, private_key_file,
algorithm, ca_certs, mqtt_bridge_hostname, mqtt_bridge_port):
"""Create our MQTT client. The client_id is a unique string that identifies
this device. For Google Cloud IoT Core, it must be in the format below."""
client = mqtt.Client(
client_id=('projects/{}/locations/{}/registries/{}/devices/{}'
.format(
project_id,
cloud_region,
registry_id,
device_id)))
# With Google Cloud IoT Core, the username field is ignored, and the
# password field is used to transmit a JWT to authorize the device.
client.username_pw_set(
username='unused',
password=create_jwt(
project_id, private_key_file, algorithm))
# Enable SSL/TLS support.
client.tls_set(ca_certs=ca_certs)
# Register message callbacks. https://eclipse.org/paho/clients/python/docs/
# describes additional callbacks that Paho supports. In this example, the
# callbacks just print to standard out.
client.on_connect = on_connect
client.on_publish = on_publish
client.on_disconnect = on_disconnect
client.on_message = on_message
client.on_subscribe = on_subscribe
# Connect to the Google MQTT bridge.
client.connect(mqtt_bridge_hostname, mqtt_bridge_port)
return client
| 5,337,773
|
def fake_image_sct_custom(data):
"""
:return: an Image (3D) in RAS+ (aka SCT LPI) space
"""
i = fake_image_custom(data)
img = msct_image.Image(i.get_data(), hdr=i.header,
orientation="LPI",
dim=i.header.get_data_shape(),
)
return img
| 5,337,774
|
def copy_sensor_image(input_sensor_file, output_sensor_file,
raft_slot, sensor_slot, **kwargs):
"""
Copies a FITS file, with hooks to update the various image headers
Parameters
----------
input_sensor_file : str
Name of the file to be copied
output_sensor_file : str
Destination
raft_slot : str
Name of the raft slot within the mulit-raft setup
sensor_slot : str
Name of the sensor slot within the raft
Keyword arguments
-----------------
overwrite : bool, optional
Flag indicating whether to overwrite an existing output file
dry_run : bool, optional
If true, just print output file names, but do not copy files
"""
overwrite = kwargs.get('overwrite', True)
dry_run = kwargs.get('dry_run', False)
if dry_run:
os.system("touch %s"% output_sensor_file)
return
hdulist = fits.open(input_sensor_file)
update_primary_header(raft_slot, sensor_slot, hdulist[0])
for ext_num in range(1, 16):
update_image_header(raft_slot, sensor_slot, hdulist[ext_num])
hdulist.writeto(output_sensor_file, clobber=overwrite)
hdulist.close()
| 5,337,775
|
def test_version():
"""Test version number of released package."""
assert __version__ == "0.2.0"
| 5,337,776
|
def _get_property_header(resource, resource_type):
"""
Create a dictionary representing resources properties
:param resource: The name of the resource for which to create a
property header
:param resource_type: The type of the resource (model, seed, etc.)
:return: A dictionary representing resource properties
"""
header_dict = {
'version': 2,
_SUPPORTED_RESOURCE_TYPES[resource_type]: [
{'name': resource, 'description': "", 'columns': []}
],
}
return header_dict
| 5,337,777
|
def create_metapaths_parameters(filename, folder):
""" creates a parameters file from the default """
default_filename = folder + PATHDELIM + 'resources'+ PATHDELIM + "template_param.txt"
try:
filep = open(default_filename, 'r')
except:
eprintf("ERROR: cannot open the default parameter file " + sQuote(default_filename) )
exit_process("ERROR: cannot open the default parameter file " + sQuote(default_filename), errorCode = 0 )
lines = filep.readlines()
with open(filename, 'w') as newfile:
for line in lines:
fprintf(newfile, "%s", line);
filep.close()
#result['filename'] = filename
return True
| 5,337,778
|
def test_series() -> None:
"""Tests for :meth:`NDRepr.repr_Series`."""
s1 = pd.Series(np.ones(10, dtype='float64'))
s2 = pd.Series(np.ones(10, dtype='int64'))
ref1 = '0 1.0\n1 1.0\n2 1.0\n3 1.0\n4 1.0\n5 1.0\n6 1.0\n7 1.0\n8 1.0\n9 1.0\ndtype: float64' # noqa: E501
ref2 = '0 1\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\ndtype: int64' # noqa: E501
str1 = aNDRepr.repr(s1)
str2 = aNDRepr.repr(s2)
assertion.eq(str1, ref1)
assertion.eq(str2, ref2)
| 5,337,779
|
def deploy(args: argparse.Namespace) -> None:
"""
Handler for `lambada deploy`, which creates an AWS Lambda from a Simiotics function
Args:
args
`argparse.Namespace` object containing parameters to the `deploy` command
Returns: None, prints AWS Lambda ARN
"""
simiotics = client_from_env()
registered_function = simiotics.get_registered_function(args.key)
if registered_function.tags.get(LambadaManagerKey) != LambadaManager:
raise ValueError('Simiotics function with key={} not managed by lambada'.format(args.key))
environment_variables: Dict[str, str] = json.loads(registered_function.tags.get('env', '{}'))
staging_dir = tempfile.mkdtemp()
try:
deployment_package_dir = os.path.join(staging_dir, 'deployment_package')
os.mkdir(deployment_package_dir)
requirements_txt = os.path.join(staging_dir, 'requirements.txt')
code_py = os.path.join(deployment_package_dir, 'code.py')
with open(requirements_txt, 'w') as ofp:
ofp.write(registered_function.tags['requirements'])
subprocess.run(
[
sys.executable,
"-m",
"pip",
"install",
"-r",
requirements_txt,
"--target",
deployment_package_dir
],
check=True,
)
if os.path.exists(code_py):
raise ValueError('File already exists at path: {}'.format(code_py))
with open(code_py, 'w') as ofp:
ofp.write(registered_function.code)
zipfilepath = os.path.join(staging_dir, 'function.zip')
shutil.make_archive(os.path.splitext(zipfilepath)[0], 'zip', deployment_package_dir)
with open(zipfilepath, 'rb') as ifp:
deployment_package = ifp.read()
lambda_client = boto3.client('lambda')
handler_path = 'code.{}'.format(registered_function.tags['handler'])
lambda_resource = lambda_client.create_function(
FunctionName=args.name,
Runtime=registered_function.tags['runtime'],
Role=registered_function.tags['iam_role_arn'],
Handler=handler_path,
Code={'ZipFile': deployment_package},
Environment={
'Variables': environment_variables,
},
Description='Simiotics lambada deployment of: {}'.format(args.key),
Timeout=int(registered_function.tags['timeout']),
Tags={
'Creator': 'simiotics',
},
)
lambda_arn = lambda_resource['FunctionArn']
registered_function.tags['lambda_arn'] = lambda_arn
simiotics.register_function(
key=registered_function.key,
code=registered_function.code,
tags=registered_function.tags,
overwrite=True,
)
print(lambda_arn)
finally:
if not args.keep_staging_dir:
shutil.rmtree(staging_dir)
else:
print(staging_dir, file=sys.stderr)
| 5,337,780
|
def dist_prune(DELTA, prune=True):
""" transform similarity matrix to distance matrix
- prune matrix by removing edges that have a distance larger
than condition cond (default mean distance)
"""
w = np.max(DELTA)
DELTA = np.abs(DELTA - w)
np.fill_diagonal(DELTA, 0.)
if prune:
cond = np.mean(DELTA) # + np.std(DELTA)# TODO: transform to parameter with choice between models
for i in range(DELTA.shape[0]):
for j in range(DELTA.shape[1]):
val = DELTA[i, j]
if val > cond:
DELTA[i, j] = 0.
else:
DELTA[i, j] = DELTA[i, j]
return DELTA
| 5,337,781
|
def bitwise_dot(x, y):
"""Compute the dot product of two integers bitwise."""
def bit_parity(i):
n = bin(i).count("1")
return int(n % 2)
return bit_parity(x & y)
| 5,337,782
|
def check_limit():
"""
Empty function for enabling global rate limiting.
"""
return
| 5,337,783
|
def fit (samples, degree, sample_weights=None):
"""
Fit a univariate polynomial function to the 2d points given in samples, where the rows of
samples are the points. The return value is the vector of coefficients of the polynomial
(see p below) which minimizes the squared error of the polynomial at the given samples.
Denote the components of samples as
samples = [
[x[0], y[0]],
[x[1], y[1]],
...
]
and let
p(coefficients)(t) = sum(coefficient*t**i for i,coefficient in enumerate(coefficients))
noting that coefficients[0] is the constant term, coefficients[1] is the linear coefficient, etc.
"""
assert len(samples.shape) == 2
assert samples.shape[1] == 2, 'Expected the rows of samples to be (x,y) pairs.'
A = np.zeros((degree+1,degree+1), dtype=float)
B = np.zeros((degree+1,), dtype=float)
weight_iterator = sample_weights if sample_weights is not None else itertools.cycle([1.0])
for (x,y),weight in itertools.izip(samples,weight_iterator):
g = geometric(x, degree)
A += weight*np.outer(g,g)
B += weight*y*g
coefficients,_,_,_ = np.linalg.lstsq(A,B)
return coefficients
| 5,337,784
|
def section_underline_overindented_and_contentless(): # noqa: D416
"""Toggle the gizmo.
Returns
-------
"""
| 5,337,785
|
def get_engines():
""" Returns a list of all engines for tests """
engines = []
base_dir = os.getcwd()
engines_dir = os.path.join(base_dir, 'search_engine_parser', 'core', 'engines')
for filename in os.listdir(engines_dir):
if os.path.isfile(os.path.join(engines_dir, filename)) and filename.endswith('.py') \
and filename != '__init__.py':
engine = filename.split('.py')[0]
module = import_module("search_engine_parser.core.engines.{}".format(engine.lower()))
engine_class = getattr(module, "Search")
engines.append([engine, engine_class(),])
return engines
| 5,337,786
|
def IsEncryptedCoredump(path):
""" Function to find if the coredump is encrypted or not. """
if not os.path.exists('/bin/vmkdump_extract'):
raise Exception('vmkdump_extract not present.')
result, rc = RunCmd("/bin/vmkdump_extract -E {0}".format(path))
if rc != 0:
raise Exception(
'RunCmd failed when trying to check for encrypted coredump')
return result.strip() == "YES"
| 5,337,787
|
def test_ap_ht40_5ghz_match(dev, apdev):
"""HT40 co-ex scan on 5 GHz with matching pri/sec channel"""
clear_scan_cache(apdev[0]['ifname'])
try:
hapd = None
hapd2 = None
params = { "ssid": "test-ht40",
"hw_mode": "a",
"channel": "36",
"country_code": "US",
"ht_capab": "[HT40+]"}
hapd2 = hostapd.add_ap(apdev[1]['ifname'], params)
params = { "ssid": "test-ht40",
"hw_mode": "a",
"channel": "36",
"ht_capab": "[HT40+]"}
hapd = hostapd.add_ap(apdev[0]['ifname'], params, wait_enabled=False)
state = hapd.get_status_field("state")
if state != "HT_SCAN":
time.sleep(0.1)
state = hapd.get_status_field("state")
if state != "HT_SCAN":
raise Exception("Unexpected interface state - expected HT_SCAN")
ev = hapd.wait_event(["AP-ENABLED"], timeout=10)
if not ev:
raise Exception("AP setup timed out")
state = hapd.get_status_field("state")
if state != "ENABLED":
raise Exception("Unexpected interface state - expected ENABLED")
freq = hapd.get_status_field("freq")
if freq != "5180":
raise Exception("Unexpected frequency")
pri = hapd.get_status_field("channel")
if pri != "36":
raise Exception("Unexpected primary channel")
sec = hapd.get_status_field("secondary_channel")
if sec != "1":
raise Exception("Unexpected secondary channel: " + sec)
dev[0].connect("test-ht40", key_mgmt="NONE", scan_freq=freq)
finally:
dev[0].request("DISCONNECT")
if hapd:
hapd.request("DISABLE")
if hapd2:
hapd2.request("DISABLE")
subprocess.call(['iw', 'reg', 'set', '00'])
dev[0].flush_scan_cache()
| 5,337,788
|
def get_ahead_mask(tokens, i_pad=0):
"""
ahead mask 계산하는 함수
:param tokens: tokens (bs, n_seq)
:param i_pad: id of pad
:return mask: ahead and pad mask (ahead or pad: 1, other: 0)
"""
n_seq = tf.shape(tokens)[1]
ahead_mask = 1 - tf.linalg.band_part(tf.ones((n_seq, n_seq)), -1, 0)
ahead_mask = tf.expand_dims(ahead_mask, axis=0)
pad_mask = get_pad_mask(tokens, i_pad)
mask = tf.maximum(ahead_mask, pad_mask)
return mask
| 5,337,789
|
def check_containment(row, query_index, reference_index, percent_identity=PERCENT_IDENTITY, covered_length=COVERED_LENGTH):
"""Checks if a row from a blast out format 6 file is a containment
Takes in a row from a blast out format 6 table, a DataFrames with query sequence and reference sequence data.
"""
if (row['qId'] != row['tId']) and (row['seqIdentity'] >= percent_identity):
query_covered = row['alnLen']/float(query_index.loc[row['qId'], 'LENGTH'])
reference_covered = row['alnLen']/float(reference_index.loc[row['tId'], 'LENGTH'])
if query_covered >= covered_length or reference_covered >= covered_length:
return True
else:
return False
else:
return False
| 5,337,790
|
def get_mgga_data(mol, grid, rdm1):
"""
Get atomic orbital and density data.
See eval_ao and eval_rho docs for details.
Briefly, returns 0-3 derivatives of the atomic orbitals
in ao_data;
and the density, first derivatives of density,
Laplacian of density, and kinetic energy density
in rho_data.
"""
ao_data = eval_ao(mol, grid.coords, deriv=3)
if len(rdm1.shape) == 2:
rho_data = eval_rho(mol, ao_data, rdm1, xctype='mGGA')
else:
part0 = eval_rho(mol, ao_data, rdm1[0], xctype='mGGA')
part1 = eval_rho(mol, ao_data, rdm1[1], xctype='mGGA')
rho_data = np.array([part0, part1])
return ao_data, rho_data
| 5,337,791
|
def bgp_prefix_tc1_remove(duthost, community):
""" Test to remove prefix config
"""
json_patch = [
{
"op": "remove",
"path": "/BGP_ALLOWED_PREFIXES"
}
]
tmpfile = generate_tmpfile(duthost)
logger.info("tmpfile {}".format(tmpfile))
try:
output = apply_patch(duthost, json_data=json_patch, dest_file=tmpfile)
expect_op_success(duthost, output)
bgp_config = show_bgp_running_config(duthost)
pytest_assert(
not re.search(PREFIXES_V4_RE.format(community, PREFIXES_V4_DUMMY), bgp_config),
"Failed to remove bgp prefix v4 config."
)
pytest_assert(
not re.search(PREFIXES_V6_RE.format(community, PREFIXES_V6_DUMMY), bgp_config),
"Failed to remove bgp prefix v6 config."
)
finally:
delete_tmpfile(duthost, tmpfile)
| 5,337,792
|
def _stringify_lmer_warnings(fg_lmer):
"""create grid w/ _ separated string of lme4::lmer warning list items, else "" """
warning_grids = fitgrid.utils.lmer.get_lmer_warnings(
fg_lmer
) # dict of indicator dataframes
warning_string_grid = pd.DataFrame(
np.full(fg_lmer._grid.shape, ""),
index=fg_lmer._grid.index.copy(),
columns=fg_lmer._grid.columns.copy(),
)
# collect multiple warnings into single sorted "_" separated strings
# on a tidy time x channel grid
for warning, warning_grid in warning_grids.items():
for idx, row_vals in warning_grid.iterrows():
for jdx, col_val in row_vals.iteritems():
if col_val:
if len(warning_string_grid.loc[idx, jdx]) == 0:
warning_string_grid.loc[idx, jdx] = warning
else:
# split, sort, reassemble
wrns = "_".join(
sorted(
warning_string_grid.loc[idx, jdx].split("_")
+ [warning]
)
)
warning_string_grid.loc[idx, jdx] = wrns
return warning_string_grid
| 5,337,793
|
def test_rm_token_cache(
httpx_mock: HTTPXMock,
check_token_callback: Callable,
check_credentials_callback: Callable,
settings: Settings,
auth_url: str,
account_id_url: str,
account_id_callback: Callable,
provider_callback: Callable,
provider_url: str,
access_token: str,
) -> None:
"""Creadentials, that are passed to rm are processed properly."""
url = "https://url"
httpx_mock.add_callback(check_credentials_callback, url=auth_url)
httpx_mock.add_callback(check_token_callback, url=url)
httpx_mock.add_callback(provider_callback, url=provider_url)
httpx_mock.add_callback(account_id_callback, url=account_id_url)
with Patcher():
local_settings = Settings(
user=settings.user,
password=settings.password.get_secret_value(),
server=settings.server,
default_region=settings.default_region,
use_token_cache=True,
)
rm = ResourceManager(local_settings)
rm.client.get(url)
ts = TokenSecureStorage(settings.user, settings.password.get_secret_value())
assert ts.get_cached_token() == access_token, "Invalid token value cached"
# Do the same, but with use_token_cache=False
with Patcher():
local_settings = Settings(
user=settings.user,
password=settings.password.get_secret_value(),
server=settings.server,
default_region=settings.default_region,
use_token_cache=False,
)
rm = ResourceManager(local_settings)
rm.client.get(url)
ts = TokenSecureStorage(settings.user, settings.password.get_secret_value())
assert (
ts.get_cached_token() is None
), "Token is cached even though caching is disabled"
| 5,337,794
|
def index():
"""Loads the index page for the 'Admin' controller
:returns: a dictionary to pass to the view with the list of ctr_enabled and the active module ('admin')
"""
ctr_data = get_ctr_data()
users = db().select(db.auth_user.ALL)
approvals = db(db.auth_user.registration_key=='pending').select(db.auth_user.ALL)
return dict(ctr_enabled=ctr_enabled, ctr_data=ctr_data, active_module='jadmin', users=users, approvals=approvals, doctypes=DOC_TYPES)
| 5,337,795
|
def get_language_codes():
"""Returns a list of available languages and their 2 char input codes
"""
languages = get_languages()
two_dig_codes = [k for k, v in languages.items()]
return two_dig_codes
| 5,337,796
|
def fun_evaluate_ndcg(user_test_recom_zero_one):
"""
计算ndcg。所得是单个用户test的,最后所有用户的求和取平均
:param test_lst: 单个用户的test集
:param zero_one: 0/1序列
:param test_mask: 单个用户的test列表对应的mask列表
:return:
"""
test_lst, zero_one, test_mask, _ = user_test_recom_zero_one
test_lst = test_lst[:np.sum(test_mask)]
zero_one = np.array(zero_one)
if 0 == sum(zero_one): # 没有命中的
return 0.0
s = 0.0
idxs = list(np.nonzero(zero_one))[0]
for idx in idxs:
s += 1.0 / np.log2(idx + 2)
m = 0.0
length = min(len(test_lst), len(zero_one)) # 序列短的,都命中为1,此时是最优情况
for idx in range(length):
m += 1.0 / np.log2(idx + 2)
return s / m
| 5,337,797
|
def prettyDataSize(size_in_bytes):
""" Takes a data size in bytes and formats a pretty string. """
unit = "B"
size_in_bytes = float(size_in_bytes)
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "kiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "MiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "GiB"
if size_in_bytes > 1024:
size_in_bytes /= 1024
unit = "TiB"
print size_in_bytes, "%.1f "%size_in_bytes + unit
return "%.1f "%size_in_bytes + unit
| 5,337,798
|
def test_projectlocale_latest_activity_success(translation_a):
"""
If the matching ProjectLocale has a latest_translation, return
it's latest_activity.
"""
project = translation_a.entity.resource.project
locale = translation_a.locale
assert ProjectLocale.get_latest_activity(project, locale)
assert (
ProjectLocale.get_latest_activity(project, locale)
== translation_a.latest_activity
)
| 5,337,799
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.