content
stringlengths
22
815k
id
int64
0
4.91M
def getCommandLine() -> argparse.ArgumentParser: """Получить агрументы коммандной строки Returns: argparse.ArgumentParser: _description_ """ parser = argparse.ArgumentParser(description='Конвертация тестов с TFS в xml формат Testrail/TestIT') action = parser.add_subparsers(dest='action', required=True) subparser = action.add_parser('to-xml',help='Скачивание и конвертация тестов с TFS в xml',add_help=False) subparser.add_argument('-i','--id',type=int,required=True,help='ID тест плана') subparser.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS, help='Показывает команды для конверта в xml') subparser.add_argument('--project','-pj',required=True, type=str,help='Название проекта в коллекции') subparser.add_argument('--collection','-ct',required=True,type=str,help='Название коллекции') subparser.add_argument('--cert','-c',required=False,type=Path,help='Сертификат для доступа к TFS',default=None) return parser.parse_args()
18,300
def listall(context, uri=None): """ *musicpd.org, music database section:* ``listall [URI]`` Lists all songs and directories in ``URI``. """ result = [] root_path = translator.normalize_path(uri) # TODO: doesn't the dispatcher._call_handler have enough info to catch # the error this can produce, set the command and then 'raise'? try: uri = context.directory_path_to_uri(root_path) except MpdNoExistError as e: e.command = 'listall' e.message = 'Not found' raise browse_futures = [(root_path, context.core.library.browse(uri))] while browse_futures: base_path, future = browse_futures.pop() for ref in future.get(): if ref.type == Ref.DIRECTORY: path = '/'.join([base_path, ref.name.replace('/', '')]) result.append(('directory', path)) browse_futures.append( (path, context.core.library.browse(ref.uri))) elif ref.type == Ref.TRACK: result.append(('file', ref.uri)) if not result: raise MpdNoExistError('Not found') return [('directory', root_path)] + result
18,301
def send_task_to_executor(task_tuple: TaskInstanceInCelery) \ -> Tuple[TaskInstanceKey, CommandType, Union[AsyncResult, ExceptionWithTraceback]]: """Sends task to executor.""" key, _, command, queue, task_to_run = task_tuple try: with timeout(seconds=OPERATION_TIMEOUT): result = task_to_run.apply_async(args=[command], queue=queue) except Exception as e: # pylint: disable=broad-except exception_traceback = "Celery Task ID: {}\n{}".format(key, traceback.format_exc()) result = ExceptionWithTraceback(e, exception_traceback) return key, command, result
18,302
def createPyarchFilePath(filePath): """ This method translates from an ESRF "visitor" path to a "pyarch" path: /data/visitor/mx415/id14eh1/20100209 -> /data/pyarch/2010/id14eh1/mx415/20100209 """ pyarchFilePath = None if isinstance(filePath, str): filePath = pathlib.Path(filePath) listOfDirectories = filePath.parts if UtilsConfig.isEMBL(): if 'p13' in listOfDirectories[0:3] or 'P13' in listOfDirectories[0:3]: pyarchFilePath = os.path.join('/data/ispyb/p13', *listOfDirectories[4:]) else: pyarchFilePath = os.path.join('/data/ispyb/p14', *listOfDirectories[4:]) return pyarchFilePath listBeamlines = ['bm30a', 'id14eh1', 'id14eh2', 'id14eh3', 'id14eh4', 'id23eh1', 'id23eh2', 'id29', 'id30a1', 'id30a2', 'id30a3', 'id30b'] # Check that we have at least four levels of directories: if len(listOfDirectories) > 5: dataDirectory = listOfDirectories[1] secondDirectory = listOfDirectories[2] thirdDirectory = listOfDirectories[3] fourthDirectory = listOfDirectories[4] fifthDirectory = listOfDirectories[5] year = fifthDirectory[0:4] proposal = None beamline = None if dataDirectory == 'data' and secondDirectory == 'gz': if thirdDirectory == 'visitor': proposal = fourthDirectory beamline = fifthDirectory elif fourthDirectory == 'inhouse': proposal = fifthDirectory beamline = thirdDirectory else: raise RuntimeError( 'Illegal path for UtilsPath.createPyarchFilePath: ' + '{0}'.format(filePath)) listOfRemainingDirectories = listOfDirectories[6:] elif dataDirectory == 'data' and secondDirectory == 'visitor': proposal = listOfDirectories[3] beamline = listOfDirectories[4] listOfRemainingDirectories = listOfDirectories[5:] elif dataDirectory == 'data' and secondDirectory in listBeamlines: beamline = secondDirectory proposal = listOfDirectories[4] listOfRemainingDirectories = listOfDirectories[5:] if proposal is not None and beamline is not None: pyarchFilePath = pathlib.Path('/data/pyarch') / year / beamline pyarchFilePath = pyarchFilePath / proposal for directory in listOfRemainingDirectories: pyarchFilePath = pyarchFilePath / directory if pyarchFilePath is None: logger.warning( 'UtilsPath.createPyarchFilePath: path not converted for' + ' pyarch: %s ' % filePath) else: pyarchFilePath = pyarchFilePath.as_posix() return pyarchFilePath
18,303
def test_pre_create_undeploy_for_blue_green(m_stop, mock_filter_units, mock_undeploy): """ Should undeploy all versions for mode: red-green """ # Given: Deployment parameters deployment = _create_test_deployment_with_defaults_applied() deployment['deployment']['mode'] = DEPLOYMENT_MODE_BLUEGREEN # Mock implementation for filter_units mock_filter_units.return_value = [] # When: I undeploy in pre-create phase result = _pre_create_undeploy.s(deployment, mock_callback.si())\ .apply_async() result.get(timeout=1).result # Then: All versions of application are un-deployed. mock_undeploy.assert_called_with(ANY, deployment['deployment']['name'], deployment['deployment']['version'], exclude_version=None) m_stop.assert_called_with( ANY, deployment['deployment']['name'], version=deployment['deployment']['version'], exclude_version=None)
18,304
def get_embed(input_data, vocab_size, embed_dim): """ Create embedding for <input_data>. :param input_data: TF placeholder for text input. :param vocab_size: Number of words in vocabulary. :param embed_dim: Number of embedding dimensions :return: Embedded input. """ # TODO: Implement Function embedding = tf.Variable(tf.random_uniform((vocab_size, embed_dim), -1, 1)) embed = tf.nn.embedding_lookup(embedding, input_data) return embed
18,305
def geometries_from_bbox(north, south, east, west, tags): """ Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box. Parameters ---------- north : float northern latitude of bounding box south : float southern latitude of bounding box east : float eastern longitude of bounding box west : float western longitude of bounding box tags : dict Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., `building`, `landuse`, `highway`, etc) and the dict values should be either `True` to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, `tags = {'building': True}` would return all building footprints in the area. `tags = {'amenity':True, 'landuse':['retail','commercial'], 'highway':'bus_stop'}` would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. Returns ------- gdf : geopandas.GeoDataFrame Notes ----- You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config(). """ # convert bounding box to a polygon polygon = utils_geo.bbox_to_poly(north, south, east, west) # create GeoDataFrame of geometries within this polygon gdf = geometries_from_polygon(polygon, tags) return gdf
18,306
def test(): """测试用""" api = TestHlp() # 读取配置文件 print(api.loadConfig("Hsconfig.ini")) # 初始化 print(api.init()) # 连接服务器 print(api.connectServer())
18,307
def dBzdtAnalCircT(a, t, sigma): """ Hz component of analytic solution for half-space (Circular-loop source) Src and Rx are on the surface and receiver is located at the center of the loop. Src waveform here is step-off. .. math:: \\frac{\partial h_z}{\partial t} = -\\frac{I}{\mu_0\sigma a^3} \ \left( 3erf(\\theta a) - \\frac{2}{\sqrt{\pi}}\\theta a (3+2\\theta^2 a^2) e^{-\\theta^2a^2}\\right) .. math:: \\theta = \sqrt{\\frac{\sigma\mu}{4t}} """ theta = np.sqrt((sigma*mu_0)/(4*t)) const = -1/(mu_0*sigma*a**3) ta = theta*a eta = erf(ta) t1 = 3*eta t2 = -2/(np.pi**0.5)*ta*(3+2*ta**2)*np.exp(-ta**2) dhzdt = const*(t1+t2) return mu_0*dhzdt
18,308
def download_files(dir_path: str, urls: List[str]) -> None: """ Asynchronous download, decompress files. :param dir_path: :param urls: :return: """ os.makedirs(dir_path, exist_ok=True) sema = asyncio.BoundedSemaphore(5) async def fetch_file(url): fname = url.split("/")[-1] # The website has the 2007 year zip files without the '07' preffix. The dates for other years are still YYMMDD. if fname.startswith('07'): fname = fname[2:] downloaded_date = os.path.basename(fname).split('.')[0] async with sema, aiohttp.ClientSession() as session: logger.info("Download %s", url) async with session.get(url, ssl=False) as resp: assert resp.status == 200 data = await resp.read() async with aiofiles.open(str(Path(dir_path, fname)), "wb") as outfile: await outfile.write(data) zip_dir_path = str(Path(dir_path, downloaded_date)) if os.path.isdir(zip_dir_path): shutil.rmtree(zip_dir_path) os.makedirs(zip_dir_path) with BytesIO(data) as fin: with zipfile.ZipFile(fin) as zipfin: logger.info("Extracting file %s", fname) for zipinfo in zipfin.infolist(): if zipinfo.filename.endswith('.txt'): date_filename = os.path.basename(zipinfo.filename) async with aiofiles.open(str(Path(zip_dir_path, date_filename)), "wb") as outfile: logger.info("Extracting file %s", date_filename) with zipfin.open(zipinfo) as file_data: await outfile.write(file_data.read()) loop = asyncio.get_event_loop() tasks = [loop.create_task(fetch_file(url)) for url in urls] loop.run_until_complete(asyncio.wait(tasks)) rename_directories(dir_path)
18,309
def count_increasing(ratings, n): """ Only considering the increasing case """ arr = [1] * n cnt = 1 for i in range(1, n): cnt = cnt + 1 if ratings[i - 1] < ratings[i] else 1 arr[i] = cnt return arr
18,310
def xxxputInHTMLdir(filename = 'test.py'): """ create a directory for the python file then put the pythonfile into it """ verbose=False HTMLdir = filename.replace('.py','') #newDir = makeHTMLdir(HTMLdir) shutil.copyfile(filename, HTMLdir+'/'+ filename) if verbose: print('putInHTMLdir\t', filename, 'copied into', HTMLdir)
18,311
def load_train_data_frame(train_small, target, keras_options, model_options, verbose=0): """ ### CAUTION: TF2.4 Still cannot load a DataFrame with Nulls in string or categoricals! ############################################################################ #### TF 2.4 still cannot load tensor_slices into ds if an object or string column #### that has nulls in it! So we need to find other ways to load tensor_slices by #### first filling dataframe with pandas fillna() function! ############################################################################# """ train_small = copy.deepcopy(train_small) DS_LEN = model_options['DS_LEN'] #### do this for dataframes ################## try: batch_size = keras_options["batchsize"] if isinstance(keras_options["batchsize"], str): batch_size = find_batch_size(DS_LEN) except: #### If it is not given find it here #### batch_size = find_batch_size(DS_LEN) ######### Modify or Convert column names to fit tensorflow rules of no space in names! sel_preds = ["_".join(x.split(" ")) for x in list(train_small) ] #### This can also be a problem with other special characters ### sel_preds = ["_".join(x.split("(")) for x in sel_preds ] sel_preds = ["_".join(x.split(")")) for x in sel_preds ] sel_preds = ["_".join(x.split("/")) for x in sel_preds ] sel_preds = ["_".join(x.split("\\")) for x in sel_preds ] sel_preds = ["_".join(x.split("?")) for x in sel_preds ] sel_preds = [x.lower() for x in sel_preds ] if isinstance(target, str): target = "_".join(target.split(" ")) target = "_".join(target.split("(")) target = "_".join(target.split(")")) target = "_".join(target.split("/")) target = "_".join(target.split("\\")) target = "_".join(target.split("?")) target = target.lower() model_label = 'Single_Label' else: target = ["_".join(x.split(" ")) for x in target ] target = ["_".join(x.split("(")) for x in target ] target = ["_".join(x.split(")")) for x in target ] target = ["_".join(x.split("/")) for x in target ] target = ["_".join(x.split("\\")) for x in target ] target = ["_".join(x.split("?")) for x in target ] target = [x.lower() for x in target ] model_label = 'Multi_Label' train_small.columns = sel_preds print('Alert! Modified column names to satisfy rules for column names in Tensorflow...') #### if target is changed you must send that modified target back to other processes ###### ### usecols is basically target in a list format. Very handy to know when target is a list. try: modeltype = model_options["modeltype"] if model_options["modeltype"] == '': ### usecols is basically target in a list format. Very handy to know when target is a list. modeltype, model_label, usecols = find_problem_type(train_small, target, model_options, verbose) else: if isinstance(target, str): usecols = [target] else: usecols = copy.deepcopy(target) except: ### if modeltype is given, then do not find the model type using this function modeltype, model_label, usecols = find_problem_type(train_small, target, model_options, verbose) ### Cat_Vocab_Dict contains all info about vocabulary in each variable and their size print(' Classifying variables using data sample in pandas...') train_small, var_df, cat_vocab_dict = classify_features_using_pandas(train_small, target, model_options, verbose=verbose) ########## Just transfer all the values from var_df to cat_vocab_dict ################################## for each_key in var_df: cat_vocab_dict[each_key] = var_df[each_key] ############################################################################################################ model_options['modeltype'] = modeltype model_options['model_label'] = model_label cat_vocab_dict['target_variables'] = usecols cat_vocab_dict['modeltype'] = modeltype model_options['batch_size'] = batch_size ########## Find small details about the data to help create the right model ### target_transformed = False if modeltype != 'Regression': if isinstance(target, str): #### This is for Single Label Problems ###### if train_small[target].dtype == 'object' or str(train_small[target].dtype).lower() == 'category': target_transformed = True target_vocab = train_small[target].unique() num_classes = len(target_vocab) else: if 0 not in np.unique(train_small[target]): target_transformed = True ### label encoding must be done since no zero class! target_vocab = train_small[target].unique() num_classes = len(train_small[target].value_counts()) elif isinstance(target, list): #### This is for Multi-Label Problems ####### copy_target = copy.deepcopy(target) num_classes = [] for each_target in copy_target: if train_small[target[0]].dtype == 'object' or str(train_small[target[0]].dtype).lower() == 'category': target_transformed = True target_vocab = train_small[target].unique().tolist() num_classes_each = len(target_vocab) else: if 0 not in np.unique(train_small[target[0]]): target_transformed = True ### label encoding must be done since no zero class! target_vocab = train_small[target[0]].unique() num_classes_each = train_small[target].apply(np.unique).apply(len).max() num_classes.append(int(num_classes_each)) else: num_classes = 1 target_vocab = [] ########### find the number of labels in data #### if isinstance(target, str): num_labels = 1 elif isinstance(target, list): if len(target) == 1: num_labels = 1 else: num_labels = len(target) #### This is where we set the model_options for num_classes and num_labels ######### model_options['num_labels'] = num_labels model_options['num_classes'] = num_classes cat_vocab_dict['num_labels'] = num_labels cat_vocab_dict['num_classes'] = num_classes cat_vocab_dict["target_transformed"] = target_transformed #### fill missing values using this function ############## train_small = fill_missing_values_for_TF2(train_small, cat_vocab_dict) ##### Do the deletion of cols after filling with missing values since otherwise fill errors! drop_cols = var_df['cols_delete'] cat_vocab_dict['columns_deleted'] = drop_cols if len(drop_cols) > 0: ### drop cols that have been identified for deletion ### print(' Dropping %s columns marked for deletion...' %drop_cols) train_small.drop(drop_cols,axis=1,inplace=True) ######### Now load the train Dataframe into a tf.data.dataset ############# if target_transformed: ####################### T R A N S F O R M I N G T A R G E T ######################## train_small[target], cat_vocab_dict = transform_train_target(train_small, target, modeltype, model_label, cat_vocab_dict) if isinstance(target, str): #### For single label do this: labels can be without names since there is only one label if target != '': labels = train_small[target] features = train_small.drop(target, axis=1) ds = tf.data.Dataset.from_tensor_slices((dict(features), labels)) else: print('target variable is blank - please fix input and try again') return elif isinstance(target, list): #### For multi label do this: labels must be dict and hence with names since there are many targets labels = train_small[target] features = train_small.drop(target, axis=1) ds = tf.data.Dataset.from_tensor_slices((dict(features), dict(labels))) else: ds = tf.data.Dataset.from_tensor_slices(dict(train_small)) ###### Now save some defaults in cat_vocab_dict ########################## try: keras_options["batchsize"] = batch_size cat_vocab_dict['batch_size'] = batch_size except: batch_size = find_batch_size(DS_LEN) keras_options["batchsize"] = batch_size cat_vocab_dict['batch_size'] = batch_size ########################################################################## #### C H E C K F O R I N F I N I T E V A L U E S H E R E ########## ########################################################################## cols_with_infinity = find_columns_with_infinity(train_small) if cols_with_infinity: train_small = drop_rows_with_infinity(train_small, cols_with_infinity, fill_value=True) return train_small, ds, var_df, cat_vocab_dict, keras_options, model_options
18,312
def stat_float_times(space, newval=-1): """stat_float_times([newval]) -> oldval Determine whether os.[lf]stat represents time stamps as float objects. If newval is True, future calls to stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting. """ state = space.fromcache(StatState) if newval == -1: return space.newbool(state.stat_float_times) else: state.stat_float_times = (newval != 0)
18,313
def decorate(rvecs): """Output range vectors into some desired string format""" return ', '.join(['{%s}' % ','.join([str(x) for x in rvec]) for rvec in rvecs])
18,314
def test_atomic_g_year_max_exclusive_4_nistxml_sv_iv_atomic_g_year_max_exclusive_5_5(mode, save_output, output_format): """ Type atomic/gYear is restricted by facet maxExclusive with value 2030. """ assert_bindings( schema="nistData/atomic/gYear/Schema+Instance/NISTSchema-SV-IV-atomic-gYear-maxExclusive-5.xsd", instance="nistData/atomic/gYear/Schema+Instance/NISTXML-SV-IV-atomic-gYear-maxExclusive-5-5.xml", class_name="NistschemaSvIvAtomicGYearMaxExclusive5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
18,315
def update_topic_collection_items(request_ctx, collection_item_id, topic_id, **request_kwargs): """ Accepts the same parameters as create :param request_ctx: The request context :type request_ctx: :class:RequestContext :param collection_item_id: (required) ID :type collection_item_id: string :param topic_id: (required) ID :type topic_id: string :return: Update a topic :rtype: requests.Response (with void data) """ path = '/v1/collection_items/{collection_item_id}/discussion_topics/{topic_id}' url = request_ctx.base_api_url + path.format(collection_item_id=collection_item_id, topic_id=topic_id) response = client.put(request_ctx, url, **request_kwargs) return response
18,316
def test_graph_difference_more_non_isolated_relations_source(stub_graph_set, stub_relation_set): """ Tests graph_difference returns graph with expected nodes if source graph has non-isolated nodes which are not present in target catalog """ _, vals = stub_graph_set common_relation = Relation(name=rand_string(10), **stub_relation_set.rand_relation_helper()) source_catalog = [common_relation, vals.downstream_relation, vals.upstream_relation, vals.birelation_right] target_catalog = {common_relation, Relation(name=rand_string(10), **stub_relation_set.rand_relation_helper()), Relation(name=rand_string(10), **stub_relation_set.rand_relation_helper()), vals.birelation_left, vals.birelation_right} config_dict = copy.deepcopy(BASIC_CONFIGURATION) config_dict["source"]["specified_relations"] = [ { "database": vals.downstream_relation.database, "schema": vals.downstream_relation.schema, "relation": vals.downstream_relation.name, "relationships": { "directional": [ { "local_attribute": vals.directional_key, "database": ".*", "schema": ".*", "relation": ".*relation.*$", "remote_attribute": vals.directional_key } ] } } ] config = ConfigurationParser().from_file_or_path(StringIO(yaml.dump(config_dict))) shgraph = SnowShuGraph() with mock.MagicMock() as adapter_mock: adapter_mock.build_catalog.return_value = source_catalog config.source_profile.adapter = adapter_mock shgraph.build_graph(config) expected_nodes = source_catalog[1:] # all non-isolated actual = SnowShuGraph.catalog_difference(shgraph, target_catalog) assert list(actual.nodes) == expected_nodes
18,317
def initialize_client(conn): """ called when new client connect. if new connected client is not the first connected client, the send the initial weights to the new connected client :param conn: """ if detailed_output: print("connected clients: ", len(connectedclients)) if len(connectedclients) == 1: msg = 0 else: if client_weights_available: initial_weights = client_weights #initial_weights = client.state_dict() msg = initial_weights print("init_weights") else: msg = 0 send_request(conn, 0, msg)
18,318
def upsample(inputs, factor=(2, 2), interpolation='nearest'): """ Upsampling layer by factor Parameters ---------- inputs: Input tensor factor: The upsampling factors for (height, width). One integer or tuple of two integers interpolation: A string, one of [`nearest`, `bilinear`, 'bicubic', 'area']. """ # get new_size _, height, width, _ = inputs.get_shape().as_list() factor = _make_pair(factor) new_height = height * factor[0] new_width = width * factor[1] new_size = (new_height, new_width) # get interpolation type interp_types = { 'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR, 'bilinear': tf.image.ResizeMethod.BILINEAR, 'bicubic': tf.image.ResizeMethod.BICUBIC, 'area': tf.image.ResizeMethod.AREA, } if interpolation not in interp_types.keys(): raise ValueError("interpolation must be one of " "['nearest', 'bilinear', 'bicubic', 'area']") interp_type = interp_types.get(interpolation) return tf.image.resize_images(inputs, size=new_size, method=interp_type)
18,319
def write_cmake_var_file(base_path: Path, file_paths: list[str]): """Write CMake script of source files. Args: base_dir (Path): Base directory. file_paths (list[str]): Paths of source files. """ source_list_cmake_path = base_path / SOURCE_LIST_CMAKE_SUFFIX with open( str(source_list_cmake_path), mode="w", encoding="ascii", newline="\n" ) as file: file.write("set(SOURCE_FILES\n") for source_file in file_paths: file.write(f" {source_file}\n") file.write(")\n")
18,320
def root_mean_squared_error(*args, **kwargs): """ Returns the square-root of ``scikit-learn``'s ``mean_squared_error`` metric. All arguments are forwarded to that function. """ return np.sqrt(mean_squared_error(*args, **kwargs))
18,321
def launch_process(simulation, episode, epsilon, mode, return_dict): """ Method to launch the simulation depending on the simulation, episode, epsilon and mode. """ simulation.run(episode, epsilon) return_dict[mode] = simulation.stop()
18,322
def idwt2(Wimg, level=4): """ inverse 2d wavelet transform :param Wimg: 2d array wavelet coefficients :param level: int level of wavelet transform - image shape has to be multiples of 2**level :return: 2d array image """ coeffs = _from_img_to_coeffs(Wimg, levels=level) return pywt.waverec2(coeffs, wavelet='db4', mode='per')
18,323
def is_volume_encryption_enabled(audit_options): """Validate volume encryption is enabled in Cinder. Security Guide Check Name: Check-Block-09 :param audit_options: Dictionary of options for audit configuration :type audit_options: Dict :raises: AssertionError if the assertion fails. """ key_manager = audit_options['cinder-conf']['key_manager'] assert key_manager.get('backend') is not None, \ "key_manager.backend should be set"
18,324
def get_color(card): """Returns the card's color Args: card (webelement): a visible card Returns: str: card's color """ color = card.find_element_by_xpath(".//div/*[name()='svg']/*[name()='use'][2]").get_attribute("stroke") # both light and dark theme if (color == "#ff0101" or color == "#ffb047"): color = "red" elif (color == "#800080" or color == "#ff47ff"): color = "purple" else: color = "green" return color
18,325
def test_plugin_manager_duplicate_priorities(): """ Make sure that the plugin manager raises an exception when multiple different plugins define the same operator """ # Note, the plugin manager does not currently compare to make sure that the # two definitions are different before raising an error, so we can just # pass two instances of the same plugin in order to induce the error mgr = PluginManager( plugins=[PluginForTesting(), PluginForTesting()], load_package_plugins=False) with pytest.raises(Exception): print(mgr.operators({ 'type': 'java', 'name': 'my-operator', 'properties': {'main_class': 'org.testing.MyTestClass'}, }).operator_class)
18,326
def setup_box(): """ Will install python and all libs needed to set up this box to run the examjam code. Eventually this needs to be more RPM based """ #place_pub_key() install_box_libraries() install_python() install_easy_install() install_python_dependancies()
18,327
def is_valid_path(parameters: Dict[str, Any]) -> bool: """Single "." chars and empty strings "" are excluded from path by urllib3. A path containing to "/" or "%2F" will lead to ambiguous path resolution in many frameworks and libraries, such behaviour have been observed in both WSGI and ASGI applications. In this case one variable in the path template will be empty, which will lead to 404 in most of the cases. Because of it this case doesn't bring much value and might lead to false positives results of Schemathesis runs. """ path_parameter_blacklist = (".", SLASH, "") return not any( (value in path_parameter_blacklist or is_illegal_surrogate(value) or isinstance(value, str) and SLASH in value) for value in parameters.values() )
18,328
def to_tensor(x): """ Arguments: x: an instance of PIL image. Returns: a float tensor with shape [3, h, w], it represents a RGB image with pixel values in [0, 1] range. """ x = np.array(x) x = torch.FloatTensor(x) return x.permute(2, 0, 1).unsqueeze(0).div(255.0)
18,329
def load_messier_catalog_images(path, img_size=None, disable_tqdm=False): """ Data loader for Messier catalog images. The images are available in `messier-catalog-images` repository of MiraPy organisation. :param path: String. Directory path. :param img_size: Final dimensions of the image. :param disable_tqdm: Boolean. Set True to disable progress bar. :return: Array of images. """ images = [] for filename in tqdm(os.listdir(path), disable=disable_tqdm): filepath = os.path.join(path, filename) img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) img = img/img.max() img = img * 255. if img_size: img = cv2.resize(img, img_size) images.append(np.array(img)) return np.array(images)
18,330
def load_stl10(data_dir, flatten=False, one_hot=True, normalize_range=False, whiten_pixels=True, border_pad_size=0): """ Large part of this loader and the associated functions has been inspired from, https://github.com/mttk/STL10/blob/master/stl10_input.py """ # path to the binary train file with image data train_img_path = os.path.join(data_dir,'stl10_binary','train_X.bin') # path to the binary train file with labels train_label_path = os.path.join(data_dir,'stl10_binary','train_y.bin') # path to the binary test file with image data test_img_path = os.path.join(data_dir,'stl10_binary','test_X.bin') # path to the binary test file with labels test_label_path = os.path.join(data_dir,'stl10_binary','test_y.bin') download_and_extract(data_dir) # test to check if the whole dataset is read correctly images_train = read_all_images(train_img_path) print("Training images",images_train.shape) labels_train = read_labels(train_label_path) print("Training labels",labels_train.shape) images_test = read_all_images(test_img_path) print("Test images",images_test.shape) labels_test = read_labels(test_label_path) print("Test labels",labels_test.shape) Xtrain = images_train.astype(np.float32) / 255.0 ytrain = labels_train for i in range(len(ytrain)) : ytrain[i] -= 1 split = int(np.floor(0.9 * Xtrain.shape[0])) Xval = Xtrain[split:Xtrain.shape[0]] yval = ytrain[split:Xtrain.shape[0]] Xtrain = Xtrain[:split] ytrain = ytrain[:split] Xtest, ytest = images_test.astype(np.float32) / 255.0, labels_test for i in range(len(ytest)) : ytest[i] -= 1 if flatten : print("Flatten Not Supported") if normalize_range : print("Normalize Range Not Supported") if one_hot: print("Train Shapes before one hot encoding ",Xtrain.shape, ytrain.shape) ytest = idx_to_onehot(ytest, 10).astype(np.float32) ytrain = idx_to_onehot(ytrain, 10).astype(np.float32) yval = idx_to_onehot(yval, 10).astype(np.float32) print("Train Shapes after one hot encoding",Xtrain.shape, ytrain.shape) if whiten_pixels: mean = Xtrain.mean(axis=0)[None, :] std = Xtrain.std(axis=0)[None, :] print("Other mean/std", mean.shape, std.shape) Xtrain = (Xtrain - mean) / std Xval = (Xval - mean) / std Xtest = (Xtest - mean) / std # NOTE: the zero padding is done after the potential whitening if border_pad_size > 0: Xtrain = zero_pad_border(Xtrain, border_pad_size) Xval = zero_pad_border(Xval, border_pad_size) Xtest = zero_pad_border(Xtest, border_pad_size) return (Xtrain, ytrain, Xval, yval, Xtest, ytest)
18,331
def fetch_data(fold_path): """Fetch data saving in fold path. Convert data into suitable format, using csv files in fold path. :param fold_path: String. The fold in which data files are saved. :return: training_data: Dataframe. Combined dataframe to create training data. testing_data: Dataframe. Combined dataframe to create testing data. """ # Read all the data from target fold path. pokemon = pd.read_csv(fold_path+'/pokemon.csv') combats = pd.read_csv(fold_path+'/combats.csv') test_data = pd.read_csv(fold_path+'/tests.csv') # Convert data into suitable format for training and testing. training_data = convert_data(combats, pokemon, win_column='Winner') testing_data = convert_data(test_data, pokemon) return training_data, testing_data
18,332
def add_chr_prefix(band): """ Return the band string with chr prefixed """ return ''.join(['chr', band])
18,333
def group_by_distance(iterable, distance=1): """group integers into non-overlapping intervals that are at most *distance* apart. >>> list( group_by_distance( (1,1,2,4,5,7) ) ) [(1, 3), (4, 6), (7, 8)] >>> list( group_by_distance( [] ) ) [] >>> list( group_by_distance( [3] ) ) [(3, 4)] >>> list( group_by_distance( [3,2] ) ) Traceback (most recent call last): ... ValueError: iterable is not sorted: 2 < 3 .. note:: This snippet was downloaded from an unknown source. """ i = iter(iterable) end = None start = end = cur = i.next() for cur in i: if cur < end: raise ValueError("iterable is not sorted: %i < %i" % (cur, end)) if cur - end > distance: yield (start, end + 1) start = cur end = cur yield (start, end + 1)
18,334
def disable_text_recog_aug_test(cfg, set_types=None): """Remove aug_test from test pipeline of text recognition. Args: cfg (mmcv.Config): Input config. set_types (list[str]): Type of dataset source. Should be None or sublist of ['test', 'val'] Returns: cfg (mmcv.Config): Output config removing `MultiRotateAugOCR` in test pipeline. """ assert set_types is None or isinstance(set_types, list) if set_types is None: set_types = ['val', 'test'] for set_type in set_types: if cfg.data[set_type].pipeline[1].type == 'MultiRotateAugOCR': cfg.data[set_type].pipeline = [ cfg.data[set_type].pipeline[0], *cfg.data[set_type].pipeline[1].transforms ] return cfg
18,335
def layer_svg(svg_bottom, svg_top, offset: list = [0.0, 0.0]): """ Adds one SVG over another. Modifies the bottom SVG in place. :param svg_bottom: The bottom SVG, in in xml.etree.ElementTree form :param svg_top: The top SVG, in in xml.etree.ElementTree form :param offset: How far to offset the top SVG elements """ if svg_top is None: return # print(svg_top.tag) for child in list(svg_top): apply_offset(child, offset, offset_children=True) svg_bottom.append(child) return svg_bottom
18,336
def get_data_home(data_home=None): """Return a path to the cache directory for example datasets. This directory is then used by :func:`load_dataset`. If the ``data_home`` argument is not specified, it tries to read from the ``CF_DATA`` environment variable and defaults to ``~/cf-data``. """ if data_home is None: data_home = os.environ.get("CF_DATA", os.path.join("~", "cf-data")) data_home = os.path.expanduser(data_home) if not os.path.exists(data_home): os.makedirs(data_home) return data_home
18,337
def main(username,password): """ Opens FacebookClient and chats with random person """ # Setup fb = FacebookClient(username,password) chatbot = cleverbot3.Session() # choose random "friend" to chat with chat_list = fb.browser.find_element(By.CSS_SELECTOR,"ul.fbChatOrderedList.clearfix") items = chat_list.find_elements(By.TAG_NAME,"li") n = random.randint(0,len(items)-1) items[n].find_element(By.TAG_NAME,"a").click() # initiate coversation chat_tabs_pagelet = fb.browser.find_element(By.ID,"ChatTabsPagelet") textarea = chat_tabs_pagelet.find_element(By.TAG_NAME,"textarea") textarea.send_keys("Hi!") textarea.send_keys(Keys.RETURN) # track conversation for 5 minutes conversation_div = fb.browser.find_element(By.CSS_SELECTOR,"div.conversation") conversation = conversation_div.find_element(By.CSS_SELECTOR,"div").text current = conversation.split('\n') start = time.time() # trolling while (time.time() - start) < 300: conversation_div = fb.browser.find_element(By.CSS_SELECTOR,"div.conversation") conversation = conversation_div.find_element(By.CSS_SELECTOR,"div").text lines = conversation.split('\n') # check for changes in conversation if len(lines) != len(current): new_lines = lines[len(current):len(lines)-1] question = "" for new_line in new_lines: question += new_line + " " print(question) answer = chatbot.Ask(question) textarea.send_keys(answer) textarea.send_keys(Keys.RETURN) conversation_div = fb.browser.find_element(By.CSS_SELECTOR,"div.conversation") conversation = conversation_div.find_element(By.CSS_SELECTOR,"div").text current = conversation.split('\n') time.sleep(10) # end conversation textarea.send_keys("I g2g! Peace out g fowg!") textarea.send_keys(Keys.RETURN) # close browser fb.destroy()
18,338
def utxo_cmd(ctx, dry_run): """Get the node's current UTxO with the option of filtering by address(es)""" try: CardanoCli.execute(cmd=["cardano-cli", "query", "utxo"], dry_run=dry_run, include_network=True) except CardanoPyError as cpe: ctx.fail(cpe.message) return cpe.return_code
18,339
def intronator(exons): """ Builds introns from pairs of Exon objects in >exons<. sort_attr is used for ordering of introns. """ def _window(seq): """ Taken from https://docs.python.org/release/2.3.5/lib/itertools-example.html Returns a sliding window (of width n) over data from the iterable s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... """ n = 2 it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result exons = sorted_in_coding_direction(exons) # accumulate lengths of children to calculate intron phases # and relative positions at each index exon_lengths = [e.length for e in exons] child_cumsum = np.array(exon_lengths)[:-1].cumsum() frac_positions = ((child_cumsum / sum(exon_lengths)) * 100).round(3) for index, pair in enumerate(_window(exons)): # edge case where exons might overlap in same transcript/gene; # causes problems downstream but parsing later requires more # work and it's rare enough that warning user should suffice pair_coords = [(p.start, p.stop) for p in pair] if overlap_check(*pair_coords): overlap_log(pair) # don't create intron from overlapping features continue new_intron = Intron.from_exon_pair(*pair) # Record up- and downstream exon names in case needed # for annotation file modification later us_ex, ds_ex = [ex.name for ex in pair] new_intron.upstream_exon = us_ex new_intron.downstream_exon = ds_ex new_intron.fractional_position = frac_positions[index] yield new_intron
18,340
def parse_file(ifile, ofile, sra_data, out_dir, verbose=False): """ Parse the file and create a new metadata file. Writes everything to the directory SRA_Submission, including a set of fasta files, one per biosample. """ cols = {'bioproject_accession' : 0, 'biosample_accession' : 1, 'library_ID' : 2, 'title' : 3, 'library_strategy' : 4, 'library_source' : 5, 'library_selection' : 6, 'library_layout' : 7, 'platform' : 8, 'instrument_model' : 9, 'design_description' : 10, 'filetype' : 11, 'filename' : 12, 'filename2' : 13, 'filename3' : 14, 'filename4' : 15, 'assembly' : 16} if os.path.exists(out_dir): sys.stderr.write(f"{bcolors.FAIL}ERROR: {out_dir} exists. Not overwriting\n") sys.exit(-1) os.mkdir(out_dir) volume = {} linecount = 1 filecount = 0 if ".tsv" in ofile: ofile = ofile.replace(".tsv", "") out = open(f"{out_dir}/{ofile}.{filecount}.tsv", 'w') out.write("bioproject_accession\tbiosample_accession\tlibrary_ID\ttitle\tlibrary_strategy\tlibrary_source\tlibrary_selection\tlibrary_layout\tplatform\tinstrument_model\tdesign_description\tfiletype\tfilename\tfilename2\tfilename3\tfilename4\tassembly\n") os.mkdir(os.path.join(out_dir, str(filecount))) increment_filecount = False with open(ifile, 'r') as f: for l in f: if l.startswith("BioProject_Accession"): continue # this is to ensure that we write the fasta sequences to the correct subdir # for sequences that we are not processing further if increment_filecount: filecount+=1 increment_filecount = False out.close() out = open(f"{out_dir}/{ofile}.{filecount}.tsv", 'w') out.write("bioproject_accession\tbiosample_accession\tlibrary_ID\ttitle\tlibrary_strategy\tlibrary_source\tlibrary_selection\tlibrary_layout\tplatform\tinstrument_model\tdesign_description\tfiletype\tfilename\tfilename2\tfilename3\tfilename4\tassembly\n") os.mkdir(os.path.join(out_dir, str(filecount))) p = l.rstrip("\n").split("\t") # important columns: # bioproject_accession: 0 # biosample_accession: 1 # sequence_ID: 2 # sample name: 3 # title: 188 # src: 200 # sra_id: 199 # sequence: 234 # write the sequence out # note that we do this before we process the line because we need # all sequences, but we don't process all of them if we have already # seen the biosample ID before subdir = str(filecount) if p[1] in volume: subdir = str(volume[p[1]]) fao = open(os.path.join(out_dir, subdir, f"{p[1]}.fasta"), 'a') fao.write(f">{p[2]}\n{p[234]}\n") fao.close() if p[1] in volume: continue volume[p[1]] = filecount linecount+=1 if linecount > 999: linecount = 1 increment_filecount = True row = [p[0], p[1], p[3], p[188], "", "", "", "", "", "", "", "fastq", f"{p[1]}.fasta", "", "", "", ""] if 'SRA' == p[200]: if not p[199]: sys.stderr.write(f"{bcolors.FAIL}FATAL: for {p[2]} src is SRA but there is no SRA ID{bcolors.ENDC}\n") sys.exit(-1) if p[199] not in sra_data: sys.stderr.write(f"{bcolors.FAIL}FATAL: for {p[2]} SRA ID {p[199]} is not in the sra data{bcolors.ENDC}\n") sys.exit(-1) for k in ['library_strategy', 'library_source', 'library_selection', 'library_layout', 'platform', 'instrument_model']: if k not in sra_data[p[199]]: sys.stderr.write(f"{bcolors.FAIL}FATAL: {k} not in SRA data for {p[199]}\n") continue row[cols[k]] = sra_data[p[199]][k] row[cols['design_description']] = f"Extracted from SRA run {p[199]} using Gretel version 0.0.8 (https://github.com/SamStudio8/gretel)" else: for k in our_data: row[cols[k]] = our_data[k] row[cols['design_description']] = f"PCR amplified from a raw environmental sample and seqeunced using Sanger sequencing. " out.write("{}\n".format("\t".join(row)))
18,341
def delta_in_ms(delta): """ Convert a timedelta object to milliseconds. """ return delta.seconds*1000.0+delta.microseconds/1000.0
18,342
def test_dbus_getall_oom(dev, apdev): """D-Bus GetAll wpa_config_get_all() OOM""" (bus,wpas_obj,path,if_obj) = prepare_dbus(dev[0]) id = dev[0].add_network() dev[0].set_network(id, "disabled", "0") dev[0].set_network_quoted(id, "ssid", "test") res = if_obj.Get(WPAS_DBUS_IFACE, 'Networks', dbus_interface=dbus.PROPERTIES_IFACE) if len(res) != 1: raise Exception("Missing Networks entry: " + str(res)) net_obj = bus.get_object(WPAS_DBUS_SERVICE, res[0]) for i in range(1, 50): with alloc_fail(dev[0], i, "wpa_config_get_all"): try: props = net_obj.GetAll(WPAS_DBUS_NETWORK, dbus_interface=dbus.PROPERTIES_IFACE) except dbus.exceptions.DBusException as e: pass
18,343
def getNodes(pattern="*", scene=None, useLists=False): """Return a dictionary of nodes where the name or id matches the ``pattern``. By default, ``pattern`` is a wildcard and it returns all nodes associated with ``slicer.mrmlScene``. If multiple node share the same name, using ``useLists=False`` (default behavior) returns only the last node with that name. If ``useLists=True``, it returns a dictionary of lists of nodes. """ import slicer, collections, fnmatch nodes = collections.OrderedDict() if scene is None: scene = slicer.mrmlScene count = scene.GetNumberOfNodes() for idx in range(count): node = scene.GetNthNode(idx) name = node.GetName() id = node.GetID() if (fnmatch.fnmatchcase(name, pattern) or fnmatch.fnmatchcase(id, pattern)): if useLists: nodes.setdefault(node.GetName(), []).append(node) else: nodes[node.GetName()] = node return nodes
18,344
def get_cls( query: Union[None, str, Type[X]], base: Type[X], lookup_dict: Mapping[str, Type[X]], lookup_dict_synonyms: Optional[Mapping[str, Type[X]]] = None, default: Optional[Type[X]] = None, suffix: Optional[str] = None, ) -> Type[X]: """Get a class by string, default, or implementation.""" if query is None: if default is None: raise ValueError(f'No default {base.__name__} set') return default elif not isinstance(query, (str, type)): raise TypeError(f'Invalid {base.__name__} type: {type(query)} - {query}') elif isinstance(query, str): key = normalize_string(query, suffix=suffix) if key in lookup_dict: return lookup_dict[key] if lookup_dict_synonyms is not None and key in lookup_dict_synonyms: return lookup_dict_synonyms[key] raise ValueError(f'Invalid {base.__name__} name: {query}') elif issubclass(query, base): return query raise TypeError(f'Not subclass of {base.__name__}: {query}')
18,345
def selection_sort(data): """Sort a list of unique numbers in ascending order using selection sort. O(n^2). The process includes repeatedly iterating through a list, finding the smallest element, and sorting that element. Args: data: data to sort (list of int) Returns: sorted list """ sorted_data = data[:] for i, value in enumerate(sorted_data): # find smallest value in unsorted subset min_value = min(sorted_data[i:]) index_min = sorted_data.index(min_value) # place smallest value at start of unsorted subset sorted_data[i], sorted_data[index_min] = min_value, value return sorted_data
18,346
def _conv(args, filter_size, num_features, bias, reuse, w_init=None, b_init=0.0, scope='_conv'): """convolution: Args: args: a Tensor or a list of Tensors of dimension 3D, 4D or 5D batch x n, Tensors. filter_size: int tuple of filter height and width. reuse: None/True, whether to reuse variables w_init: weights initializer object b_init: a `int`, bias initializer value num_features: int, number of features. bias_start: starting value to initialize the bias; 0 by default. Returns: A 3D, 4D, or 5D Tensor with shape [batch ... num_features] Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ # Calculate the total size of arguments on dimension 1. total_arg_size_depth = 0 shapes = [a.get_shape().as_list() for a in args] shape_length = len(shapes[0]) for shape in shapes: if len(shape) not in [3, 4, 5]: raise ValueError("Conv Linear expects 3D, 4D or 5D arguments: %s" % str(shapes)) if len(shape) != len(shapes[0]): raise ValueError("Conv Linear expects all args to be of same Dimensiton: %s" % str(shapes)) else: total_arg_size_depth += shape[-1] dtype = [a.dtype for a in args][0] # determine correct conv operation if shape_length == 3: conv_op = tf.nn.conv1d strides = 1 elif shape_length == 4: conv_op = tf.nn.conv2d strides = shape_length * [1] elif shape_length == 5: conv_op = tf.nn.conv3d strides = shape_length * [1] # Now the computation. with tf.variable_scope(scope, reuse=reuse): kernel = tf.get_variable( "W", filter_size + [total_arg_size_depth, num_features], dtype=dtype, initializer=w_init) if len(args) == 1: res = conv_op(args[0], kernel, strides, padding='SAME') else: res = conv_op(tf.concat(axis=shape_length - 1, values=args), kernel, strides, padding='SAME') if not bias: return res bias_term = tf.get_variable( "biases", [num_features], dtype=dtype, initializer=tf.constant_initializer(b_init, dtype=dtype)) return res + bias_term
18,347
def make_bright_star_mask_in_hp(nside, pixnum, verbose=True, gaiaepoch=2015.5, maglim=12., matchrad=1., maskepoch=2023.0): """Make a bright star mask in a HEALPixel using Tycho, Gaia and URAT. Parameters ---------- nside : :class:`int` (NESTED) HEALPixel nside. pixnum : :class:`int` A single HEALPixel number. verbose : :class:`bool` If ``True`` then log informational messages. Returns ------- :class:`recarray` The bright star mask in the form of `maskdatamodel.dtype`. Notes ----- - Runs in a a minute or so for a typical nside=4 pixel. - See :func:`~desitarget.brightmask.make_bright_star_mask` for descriptions of the output mask and the other input parameters. """ # ADM start the clock. t0 = time() # ADM read in the Tycho files. tychofns = find_tycho_files_hp(nside, pixnum, neighbors=False) tychoobjs = [] for fn in tychofns: tychoobjs.append(fitsio.read(fn, ext='TYCHOHPX')) tychoobjs = np.concatenate(tychoobjs) # ADM create the Tycho reference magnitude, which is VT then HP # ADM then BT in order of preference. tychomag = tychoobjs["MAG_VT"].copy() tychomag[tychomag == 0] = tychoobjs["MAG_HP"][tychomag == 0] tychomag[tychomag == 0] = tychoobjs["MAG_BT"][tychomag == 0] # ADM discard any Tycho objects below the input magnitude limit # ADM and outside of the HEALPixels of interest. theta, phi = np.radians(90-tychoobjs["DEC"]), np.radians(tychoobjs["RA"]) tychohpx = hp.ang2pix(nside, theta, phi, nest=True) ii = (tychohpx == pixnum) & (tychomag < maglim) tychomag, tychoobjs = tychomag[ii], tychoobjs[ii] if verbose: log.info('Read {} (mag < {}) Tycho objects (pix={})...t={:.1f} mins'. format(np.sum(ii), maglim, pixnum, (time()-t0)/60)) # ADM read in the associated Gaia files. Also grab # ADM neighboring pixels to prevent edge effects. gaiafns = find_gaia_files(tychoobjs, neighbors=True) gaiaobjs = [] cols = 'SOURCE_ID', 'RA', 'DEC', 'PHOT_G_MEAN_MAG', 'PMRA', 'PMDEC' for fn in gaiafns: if os.path.exists(fn): gaiaobjs.append(fitsio.read(fn, ext='GAIAHPX', columns=cols)) gaiaobjs = np.concatenate(gaiaobjs) gaiaobjs = rfn.rename_fields(gaiaobjs, {"SOURCE_ID": "REF_ID"}) # ADM limit Gaia objects to 3 magnitudes fainter than the passed # ADM limit. This leaves some (!) leeway when matching to Tycho. gaiaobjs = gaiaobjs[gaiaobjs['PHOT_G_MEAN_MAG'] < maglim + 3] if verbose: log.info('Read {} (G < {}) Gaia sources (pix={})...t={:.1f} mins'.format( len(gaiaobjs), maglim+3, pixnum, (time()-t0)/60)) # ADM substitute URAT where Gaia proper motions don't exist. ii = ((np.isnan(gaiaobjs["PMRA"]) | (gaiaobjs["PMRA"] == 0)) & (np.isnan(gaiaobjs["PMDEC"]) | (gaiaobjs["PMDEC"] == 0))) if verbose: log.info('Add URAT for {} Gaia objs with no PMs (pix={})...t={:.1f} mins' .format(np.sum(ii), pixnum, (time()-t0)/60)) urat = add_urat_pms(gaiaobjs[ii], numproc=1) if verbose: log.info('Found an additional {} URAT objects (pix={})...t={:.1f} mins' .format(np.sum(urat["URAT_ID"] != -1), pixnum, (time()-t0)/60)) for col in "PMRA", "PMDEC": gaiaobjs[col][ii] = urat[col] # ADM need to track the URATID to track which objects have # ADM substituted proper motions. uratid = np.zeros_like(gaiaobjs["REF_ID"])-1 uratid[ii] = urat["URAT_ID"] # ADM match to remove Tycho objects already in Gaia. Prefer the more # ADM accurate Gaia proper motions. Note, however, that Tycho epochs # ADM can differ from the mean (1991.5) by as as much as 0.86 years, # ADM so a star with a proper motion as large as Barnard's Star # ADM (10.3 arcsec) can be off by a significant margin (~10"). margin = 10. ra, dec = rewind_coords(gaiaobjs["RA"], gaiaobjs["DEC"], gaiaobjs["PMRA"], gaiaobjs["PMDEC"], epochnow=gaiaepoch) # ADM match Gaia to Tycho with a suitable margin. if verbose: log.info('Match Gaia to Tycho with margin={}" (pix={})...t={:.1f} mins' .format(margin, pixnum, (time()-t0)/60)) igaia, itycho = radec_match_to([ra, dec], [tychoobjs["RA"], tychoobjs["DEC"]], sep=margin, radec=True) if verbose: log.info('{} matches. Refining at 1" (pix={})...t={:.1f} mins'.format( len(itycho), pixnum, (time()-t0)/60)) # ADM match Gaia to Tycho at the more exact reference epoch. epoch_ra = tychoobjs[itycho]["EPOCH_RA"] epoch_dec = tychoobjs[itycho]["EPOCH_DEC"] # ADM some of the Tycho epochs aren't populated. epoch_ra[epoch_ra == 0], epoch_dec[epoch_dec == 0] = 1991.5, 1991.5 ra, dec = rewind_coords(gaiaobjs["RA"][igaia], gaiaobjs["DEC"][igaia], gaiaobjs["PMRA"][igaia], gaiaobjs["PMDEC"][igaia], epochnow=gaiaepoch, epochpast=epoch_ra, epochpastdec=epoch_dec) # ADM catch the corner case where there are no initial matches. if ra.size > 0: _, refined = radec_match_to([ra, dec], [tychoobjs["RA"][itycho], tychoobjs["DEC"][itycho]], radec=True) else: refined = np.array([], dtype='int') # ADM retain Tycho objects that DON'T match Gaia. keep = np.ones(len(tychoobjs), dtype='bool') keep[itycho[refined]] = False tychokeep, tychomag = tychoobjs[keep], tychomag[keep] if verbose: log.info('Kept {} Tychos with no Gaia match (pix={})...t={:.1f} mins' .format(len(tychokeep), pixnum, (time()-t0)/60)) # ADM now we're done matching to Gaia, limit Gaia to the passed # ADM magnitude limit and to the HEALPixel boundary of interest. theta, phi = np.radians(90-gaiaobjs["DEC"]), np.radians(gaiaobjs["RA"]) gaiahpx = hp.ang2pix(nside, theta, phi, nest=True) ii = (gaiahpx == pixnum) & (gaiaobjs['PHOT_G_MEAN_MAG'] < maglim) gaiakeep, uratid = gaiaobjs[ii], uratid[ii] if verbose: log.info('Mask also comprises {} Gaia sources (pix={})...t={:.1f} mins' .format(len(gaiakeep), pixnum, (time()-t0)/60)) # ADM move the coordinates forwards to the input mask epoch. epoch_ra, epoch_dec = tychokeep["EPOCH_RA"], tychokeep["EPOCH_DEC"] # ADM some of the Tycho epochs aren't populated. epoch_ra[epoch_ra == 0], epoch_dec[epoch_dec == 0] = 1991.5, 1991.5 ra, dec = rewind_coords( tychokeep["RA"], tychokeep["DEC"], tychokeep["PM_RA"], tychokeep["PM_DEC"], epochnow=epoch_ra, epochnowdec=epoch_dec, epochpast=maskepoch) tychokeep["RA"], tychokeep["DEC"] = ra, dec ra, dec = rewind_coords( gaiakeep["RA"], gaiakeep["DEC"], gaiakeep["PMRA"], gaiakeep["PMDEC"], epochnow=gaiaepoch, epochpast=maskepoch) gaiakeep["RA"], gaiakeep["DEC"] = ra, dec # ADM finally, format according to the mask data model... gaiamask = np.zeros(len(gaiakeep), dtype=maskdatamodel.dtype) tychomask = np.zeros(len(tychokeep), dtype=maskdatamodel.dtype) for col in "RA", "DEC": gaiamask[col] = gaiakeep[col] gaiamask["PM"+col] = gaiakeep["PM"+col] tychomask[col] = tychokeep[col] tychomask["PM"+col] = tychokeep["PM_"+col] gaiamask["REF_ID"] = gaiakeep["REF_ID"] # ADM take care to rigorously convert to int64 for Tycho. tychomask["REF_ID"] = tychokeep["TYC1"].astype('int64')*int(1e6) + \ tychokeep["TYC2"].astype('int64')*10 + tychokeep["TYC3"] gaiamask["REF_CAT"], tychomask["REF_CAT"] = 'G2', 'T2' gaiamask["REF_MAG"] = gaiakeep['PHOT_G_MEAN_MAG'] tychomask["REF_MAG"] = tychomag gaiamask["URAT_ID"], tychomask["URAT_ID"] = uratid, -1 gaiamask["TYPE"], tychomask["TYPE"] = 'PSF', 'PSF' mask = np.concatenate([gaiamask, tychomask]) # ADM ...and add the mask radii. mask["IN_RADIUS"], mask["NEAR_RADIUS"] = radii(mask["REF_MAG"]) if verbose: log.info("Done making mask...(pix={})...t={:.1f} mins".format( pixnum, (time()-t0)/60.)) return mask
18,348
def _feature_normalization(features, method, feature_type): """Normalize the given feature vector `y`, with the stated normalization `method`. Args: features (np.ndarray): The signal array method (str): Normalization method. 'global': Uses global mean and standard deviation values from `train.txt`. The normalization is being applied element wise. ([sample] - [mean]^T) / [std]^T Where brackets denote matrices or vectors. 'local': Use local (in sample) mean and standard deviation values, and apply the normalization element wise, like in `global`. 'local_scalar': Uses only the mean and standard deviation of the current sample. The normalization is being applied by ([sample] - mean_scalar) / std_scalar 'none': No normalization is being applied. feature_type (str): Feature type, see `load_sample` for details. Returns: np.ndarray: The normalized feature vector. """ if method == 'none': return features elif method == 'global': # Option 'global' is applied element wise. if feature_type == 'mel': global_mean = __global_mean_mel global_std = __global_std_mel elif feature_type == 'mfcc': global_mean = __global_mean_mfcc global_std = __global_std_mfcc else: raise ValueError('Unsupported global feature type: {}'.format(feature_type)) return (features - global_mean) / global_std elif method == 'local': return (features - np.mean(features, axis=0)) / np.std(features, axis=0) elif method == 'local_scalar': # Option 'local' uses scalar values. return (features - np.mean(features)) / np.std(features) else: raise ValueError('Invalid normalization method: {}'.format(method))
18,349
def get_constraint(name): """ Lookup table of default weight constraint functions. Parameters ---------- name : Constraint, None, str Constraint to look up. Must be one of: - 'l1' : L1 weight-decay. - 'l2' : L2 weight-decay. - 'l1-l2' : Combined L1-L2 weight-decay. - Constraint : A custom implementation. - None : Return None. Custom Constraint must implement `constrain` function. Returns ------- constraint : Constraint or None The constraint function. """ if name == 'unit' : return UnitNorm elif name == 'maxnorm' : return MaxNorm elif name == 'minmax' : return MinMaxNorm elif isinstance(name, (None, Constraint)) : return name else : raise ValueError("Invalid regularizer")
18,350
def add_org_hooks(mock, values): """Add hooks for an organization The values passed is an array of dictionaries as generated by the factory """ url = os.path.join("orgs", ORG_NAME, "hooks") register_uri(mock, "GET", url=url, json=values)
18,351
def player_count(conn, team_id): """Returns the number of players associated with a particular team""" c = conn.cursor() c.execute("SELECT id FROM players WHERE team_id=?", (team_id,)) return len(c.fetchall())
18,352
def _RedisClient(address): """ Return a connection object connected to the socket given by `address` """ h1, h2 = get_handle_pair(conn_type=REDIS_LIST_CONN) c = _RedisConnection(h1) #redis_client = util.get_redis_client() redis_client = util.get_cache_client() ip, port = address chan = '{}:{}'.format(ip, port) redis_client.publish(chan, bytes(h2, 'utf-8')) ack = c.recv() assert ack == 'OK' return c
18,353
def format_timedelta(value, time_format="{days} days, {hours2}:{minutes2}:{seconds2}"): """Format a datetie.timedelta. See """ if hasattr(value, 'seconds'): seconds = value.seconds + value.days * 24 * 3600 else: seconds = int(value) seconds_total = seconds minutes = int(math.floor(seconds / 60)) minutes_total = minutes seconds -= minutes * 60 hours = int(math.floor(minutes / 60)) hours_total = hours minutes -= hours * 60 days = int(math.floor(hours / 24)) days_total = days hours -= days * 24 years = int(math.floor(days / 365)) years_total = years days -= years * 365 return time_format.format( **{ 'seconds': seconds, 'seconds2': str(seconds).zfill(2), 'minutes': minutes, 'minutes2': str(minutes).zfill(2), 'hours': hours, 'hours2': str(hours).zfill(2), 'days': days, 'years': years, 'seconds_total': seconds_total, 'minutes_total': minutes_total, 'hours_total': hours_total, 'days_total': days_total, 'years_total': years_total, })
18,354
def random_account_user(account): """Get a random user for an account.""" account_user = AccountUser.objects.filter(account=account).order_by("?").first() return account_user.user if account_user else None
18,355
def pytest_collection_modifyitems(session, config, items): """Called by pytest after collecting tests. The collected tests and the order in which they will be called are in ``items``, which can be manipulated in place. """ if not session.config.getoption("--skip"): return passed_set = set(session.config.cache.get(D1_SKIP_LIST, [])) new_item_list = [] for item in items: if item.nodeid not in passed_set: new_item_list.append(item) prev_skip_count = session.config.cache.get(D1_SKIP_COUNT, 0) cur_skip_count = len(items) - len(new_item_list) if prev_skip_count == cur_skip_count: logger.info("No tests were run (--skip). Restarting with complete test set") _clear_skip_list(session) else: session.config.cache.set(D1_SKIP_COUNT, cur_skip_count) logger.info( "Skipping {} previously passed tests (--skip)".format(cur_skip_count) ) items[:] = new_item_list
18,356
def overwrite(main_config_obj, args): """ Overwrites parameters with input flags Args: main_config_obj (ConfigClass): config instance args (dict): arguments used to overwrite Returns: ConfigClass: config instance """ # Sort on nested level to override shallow items first args = dict(sorted(args.items(), key=lambda item: item[0].count('.'))) for argument_key, val in args.items(): # Seperate nested keys into outer and inner outer_keys = argument_key.split('.') inner_key = outer_keys.pop(-1) base_err_msg = f"Can't set '{argument_key} = {val}'" # Check that the nested config has the attribute and is a config class config_obj = main_config_obj config_class = type(config_obj).__name__ for key_idx, key_part in enumerate(argument_key.split('.')): err_msg = f"{base_err_msg}. '{key_part}' isn't an attribute in '{config_class}'" assert hasattr(config_obj, key_part), err_msg # Check if the config allows the argument figutils.check_allowed_input_argument(config_obj, key_part, argument_key) # Check if the outer attributes are config classes if key_idx < len(outer_keys): config_obj = getattr(config_obj, key_part) config_class = type(config_obj).__name__ err_msg = f"{base_err_msg}. '{'.'.join(outer_keys)}' isn't a registered Anyfig config class" assert figutils.is_config_class(config_obj), err_msg value_class = type(getattr(config_obj, inner_key)) base_err_msg = f"Input argument '{argument_key}' with value {val} can't create an object of the expected type" # Create new anyfig class object if figutils.is_config_class(value_class): value_obj = create_config(val) # Create new object that follows the InterfaceField's rules elif issubclass(value_class, fields.InterfaceField): field = getattr(config_obj, inner_key) if isinstance(value_class, fields.InputField): value_class = field.type_pattern else: value_class = type(field.value) try: val = value_class(val) except Exception as e: err_msg = f"{base_err_msg} {field.type_pattern}. {e}" raise RuntimeError(err_msg) from None field = field.update_value(inner_key, val, config_class) value_obj = field.finish_wrapping_phase(inner_key, config_class) # Create new object of previous value type with new value else: try: if isinstance(val, dict): # Keyword specified cli-arguments value_obj = value_class(**val) else: value_obj = value_class(val) except Exception as e: err_msg = f"{base_err_msg} {value_class}. {e}" raise RuntimeError(err_msg) from None # Overwrite old value setattr(config_obj, inner_key, value_obj) return main_config_obj
18,357
def initInterpreter(model_path): """Initializes the tflite interpreter with the given tflite model""" global interpreter interpreter = tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() global input_details input_details = interpreter.get_input_details() global output_details output_details = interpreter.get_output_details()
18,358
def max_delta(model, new_model): """Return the largest difference between any two corresponding values in the models""" return max( [(abs(model[i] - new_model[i])).max() for i in range(len(model))] )
18,359
def wiener_khinchin_transform(power_spectrum, frequency, time): """ A function to transform the power spectrum to a correlation function by the Wiener Khinchin transformation ** Input:** * **power_spectrum** (`list or numpy.array`): The power spectrum of the signal. * **frequency** (`list or numpy.array`): The frequency discretizations of the power spectrum. * **time** (`list or numpy.array`): The time discretizations of the signal. **Output/Returns:** * **correlation_function** (`list or numpy.array`): The correlation function of the signal. """ frequency_interval = frequency[1] - frequency[0] fac = np.ones(len(frequency)) fac[1: len(frequency) - 1: 2] = 4 fac[2: len(frequency) - 2: 2] = 2 fac = fac * frequency_interval / 3 correlation_function = np.zeros(len(time)) for i in range(len(time)): correlation_function[i] = 2 * np.dot(fac, power_spectrum * np.cos(frequency * time[i])) return correlation_function
18,360
def child_is_flat(children, level=1): """ Check if all children in section is in same level. children - list of section children. level - integer, current level of depth. Returns True if all children in the same level, False otherwise. """ return all( len(child) <= level + 1 or child[(level + 1) :][0].isalpha() for child in children )
18,361
def load_dataset(name, other_paths=[]): """Load a dataset with given (file) name.""" if isinstance(name, Dataset): return name path = Path(name) # First, try if you have passed a fully formed dataset path if path.is_file(): return _from_npy(name, classes=classes) # Go through the dataset paths, return the first dataset found all_paths = dataset_path + other_paths for p in all_paths: try: file = p / path return _from_npy(file, classes=classes) except FileNotFoundError: pass raise FileNotFoundError( "Could not find dataset {} in paths {}".format(name, all_paths) )
18,362
def isqrtcovresnet101b(**kwargs): """ iSQRT-COV-ResNet-101 model with stride at the second convolution in bottleneck block from 'Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization,' https://arxiv.org/abs/1712.01034. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_isqrtcovresnet(blocks=101, conv1_stride=False, model_name="isqrtcovresnet101b", **kwargs)
18,363
def get_data(name: str, level: int, max_level: int) -> str: """從維基頁面爬取資料 參數: name: 程式或節點名稱 level: 欲查詢的等級 回傳: 爬到的資料 """ reply_msg = [] for dataframe in read_html(generate_url(name)): if (max_level < dataframe.shape[0] < max_level + 3 and dataframe.iloc[level, 0].isdigit() and level == int(dataframe.iloc[level, 0])): reply_msg.append(zip(*dataframe.iloc[[0, level], 1:].values)) return '\n'.join(':'.join(pair) for data in reply_msg for pair in data)
18,364
def is_processable(path: str, should_match_extension: str): """ Process scandir entries, copying the file if necessary """ if not os.path.isfile(path): return False filename = os.path.basename(path) _, extension = os.path.splitext(filename) if extension.lower() != should_match_extension.lower(): return False return True
18,365
def insert_data(context, data_dict): """ :raises InvalidDataError: if there is an invalid value in the given data """ data_dict['method'] = _INSERT result = upsert_data(context, data_dict) return result
18,366
def timestamp(): """Get the unix timestamp now and retuen it. Attention: It's a floating point number.""" import time timestamp = time.time() return timestamp
18,367
def _n64_to_datetime(n64): """Convert Numpy 64 bit timestamps to datetime objects. Units in seconds""" return datetime.utcfromtimestamp(n64.tolist() / 1e9)
18,368
def cycle(iterable): """Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted, return elements from the saved copy. Repeats indefinitely. This function uses single dispatch. .. seealso:: :func:`itertools.cycle` """ return itertools.cycle(iterable)
18,369
def get_availability_zone(name=None,state=None,zone_id=None,opts=None): """ `.getAvailabilityZone` provides details about a specific availability zone (AZ) in the current region. This can be used both to validate an availability zone given in a variable and to split the AZ name into its component parts of an AWS region and an AZ identifier letter. The latter may be useful e.g. for implementing a consistent subnet numbering scheme across several regions by mapping both the region and the subnet letter to network numbers. This is different from the `.getAvailabilityZones` (plural) data source, which provides a list of the available zones. :param str name: The full name of the availability zone to select. :param str state: A specific availability zone state to require. May be any of `"available"`, `"information"` or `"impaired"`. :param str zone_id: The zone ID of the availability zone to select. > This content is derived from https://github.com/terraform-providers/terraform-provider-aws/blob/master/website/docs/d/availability_zone.html.markdown. """ __args__ = dict() __args__['name'] = name __args__['state'] = state __args__['zoneId'] = zone_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:index/getAvailabilityZone:getAvailabilityZone', __args__, opts=opts).value return AwaitableGetAvailabilityZoneResult( name=__ret__.get('name'), name_suffix=__ret__.get('nameSuffix'), region=__ret__.get('region'), state=__ret__.get('state'), zone_id=__ret__.get('zoneId'), id=__ret__.get('id'))
18,370
def _recs_on_solr(recommendations, solr_index_backoff, solr_index_restore): """sees if we have auto soft commit increases and restores and makes recommendations accordingly""" if len(solr_index_backoff) > 0: for core in solr_index_backoff.keys(): data = solr_index_backoff[core] dates_str = ", ".join( list(map(lambda a: a.strftime("%Y-%m-%d %H:%M:%S"), data["dates"])) ) if core in solr_index_restore: recommendations.append( { "issue": "There were %i incidents of indexing not be able to keep up for core %s at the following times: %s" % (data["count"], core, dates_str), "rec": "Consider raising auto soft commit to 60000 for core '%s' to avoid dropped mutations and timeouts" % core, } ) else: recommendations.append( { "issue": "There were %i incidents of indexing not be able to keep up for core %s at the following times: %s. There is nothing in the log indicating restore to the configured auto soft commit." % (data["count"], dates_str, core), "rec": "Strongly consider raising auto soft commit for core '%s' to avoid dropped mutations and timeouts. This core never restores to the configured value, so there is no benefit to keeping it where it is at" % core, } )
18,371
def create_collection(CollectionId=None): """ Creates a collection in an AWS Region. You can add faces to the collection using the operation. For example, you might create collections, one for each of your application users. A user can then index faces using the IndexFaces operation and persist results in a specific collection. Then, a user can search the collection for faces in the user-specific container. For an example, see example1 . This operation requires permissions to perform the rekognition:CreateCollection action. See also: AWS API Documentation Examples This operation creates a Rekognition collection for storing image data. Expected Output: :example: response = client.create_collection( CollectionId='string' ) :type CollectionId: string :param CollectionId: [REQUIRED] ID for the collection that you are creating. :rtype: dict :return: { 'StatusCode': 123, 'CollectionArn': 'string' } """ pass
18,372
def main(): """ main function for both public leaderboard evaluation and private leaderboard prediction """ print("Get ground truth data for 376 listed companies") true_df = make_true_df( DATA_PATH, start_date=None, cut_off_date=CUT_OFF_DATE, new_eval_period=BOOL_NEW_EVAL_PERIOD, ) # get blank dataframe for predictions blank_submission = make_blank_submission( DATA_PATH, new_eval_period=BOOL_NEW_EVAL_PERIOD ) # sample number of companies for prediction if NUMBER_OF_PREDICTIONS: model = ElasticNet() # purpose of speeding up the process model_name = "ElasticNet" blank_submission = blank_submission.sample( NUMBER_OF_PREDICTIONS, axis=1, random_state=616 ) else: model = ElasticNetCV( max_iter=1000000 ) # estimated time for training: 3500+ seconds (1 hour) model_name = "ElasticNetCV" print("make predictions") pred_df = elasticnet_cv_predict( pred_df_input=blank_submission, model=model, bool_public=BOOL_PUBLIC, start_date=None, recent_known_date=CUT_OFF_DATE, scaler=StandardScaler(), ) if BOOL_PUBLIC: # evaluation only print( f"{model_name} is evaluated with {NUMBER_OF_PREDICTIONS} sampled companies" ) if not BOOL_NEW_EVAL_PERIOD: print( f"Public Evaluation period: {blank_submission.iloc[0].name} ~ {blank_submission.iloc[4].name}" ) elif BOOL_NEW_EVAL_PERIOD: print( f"Arbitrary Evaluation period: {blank_submission.iloc[0].name} ~ {blank_submission.iloc[4].name}" ) print(nmae(true_df, pred_df)) elif not BOOL_PUBLIC: # save file without evaluation file_name = os.path.join(PREDICT_PATH, f"{model_name}_private.csv") pred_df.to_csv(file_name, index=False) print("Private prediction results are saved at {file_name}")
18,373
def copy_wcs(wcs_source_file, wcs_target_file): """ Copy the WCS header keywords from the source file into the target file. """ hdr_src = fits.getheader(wcs_source_file) wcs_src = WCS(hdr_src) im = fits.open(wcs_target_file, 'update') im[0].header.update(wcs_src.to_header()) im.flush(output_verify='fix+warn') im.close() return
18,374
def _add_u_eq(blk, uex=0.8): """Add heat transfer coefficent adjustment for feed water flow rate. This is based on knowing the heat transfer coefficent at a particular flow and assuming the heat transfer coefficent is porportial to feed water flow rate raised to certain power (typically 0.8) Args: blk: Heat exchanger block to add correlation to uex: Correlation parameter value (defalut 0.8) Returns: None """ ti = blk.flowsheet().time blk.U0 = pyo.Var(ti) blk.f0 = pyo.Var(ti) blk.uex = pyo.Var(ti, initialize=uex) for t in ti: blk.U0[t].value = blk.overall_heat_transfer_coefficient[t].value blk.f0[t].value = blk.tube.properties_in[t].flow_mol.value blk.overall_heat_transfer_coefficient.unfix() blk.U0.fix() blk.uex.fix() blk.f0.fix() @blk.Constraint(ti) def U_eq(b, t): return ( b.overall_heat_transfer_coefficient[t] == b.U0[t]*(b.tube.properties_in[t].flow_mol/b.f0[t])**b.uex[t] )
18,375
def test_parse_cpe_name_wfn(cpe, cpe_ret): """ Parse correct CPE_NAME data WFN formatted :return: """ ret = core._parse_cpe_name(cpe) for key, value in cpe_ret.items(): assert key in ret assert ret[key] == value
18,376
def find_process_in_list( proclist, pid ): """ Searches for the given 'pid' in 'proclist' (which should be the output from get_process_list(). If not found, None is returned. Otherwise a list [ user, pid, ppid ] """ for L in proclist: if pid == L[1]: return L return None
18,377
def solution(s, start_pos, end_pos): """ Find the minimal nucleotide from a range of sequence DNA. :param s: String consisting of the letters A, C, G and T, which correspond to the types of successive nucleotides in the sequence :param start_pos: array with the start indexes for the intervals to check :param end_pos: array with the end indexes for the intervals to check :return: a list with the minimal nucleotide for each interval defined by start_pos and end_pos """ highest_class = 'T' highest_class_value = 4 # The array below must be in ascending order regarding the value assigned to the classes in the challenge description # (not necessarily in alphabetic order) other_classes = ['A', 'C', 'G'] other_classes_values = [1, 2, 3] # We create a prefix_sum list for each class, so we can identify when a range has that specific class prefix_sums = __class_based_prefix_sums(s, other_classes) result = [] for i in range(len(start_pos)): # We don't need to create a prefix_sum list for the class with highest value, # because we can always use it as a fallback current_result = highest_class_value for j in range(len(other_classes)): if __class_is_present(prefix_sums, j, start_pos[i], end_pos[i]): current_result = other_classes_values[j] break result.append(current_result) return result
18,378
def ExtremeSoundHandlerProcess(ExtremeQueue): """ Display text based on recieved Sound object """ y = Sound() # Dummy Sound object, see bottom of loop y.dB = "" while True: x = queue_get(ExtremeQueue) if x is not None and x.dB != y.dB: # If we got a sound and it's not the same # volume as the last sound print(prefix() + x.RMS + " RMS - " + x.dB + " dB - Extreme - " + x.visual_string) y = x
18,379
def validate_address(value: str, context: dict = {}) -> str: """ Default address validator function. Can be overriden by providing a dotted path to a function in ``SALESMAN_ADDRESS_VALIDATOR`` setting. Args: value (str): Address text to be validated context (dict, optional): Validator context data. Raises: ValidationError: In case address is not valid Returns: str: Validated value """ if not value: raise ValidationError(_("Address is required.")) return value
18,380
def select_images(img_dir, sample_size=150, random_seed=42): """Selects a random sample of image paths.""" img_paths = [] for file in os.listdir(img_dir): if file.lower().endswith('.jpeg'): img_paths.append(os.path.join(img_dir, file)) if sample_size is not None: if random_seed is not None: random.seed(a=random_seed) img_paths = random.sample(img_paths, sample_size) return img_paths
18,381
def load_period_data(period): """ Load period data JSON file If the file does not exist and empty dictionary is returned. """ filename = os.path.join(PROTOCOL_DIR, PERIOD_FILE_TEMPLATE % period) if not os.path.exists(filename): return {} with open(filename, 'r', encoding='utf-8') as f: return json.load(f)
18,382
def _get_hg_repo(path_dir): """Parse `hg paths` command to find remote path.""" if path_dir == "": return "" hgrc = Path(path_dir) / ".hg" / "hgrc" if hgrc.exists(): config = ConfigParser() config.read(str(hgrc)) if "paths" in config: return config["paths"].get("default", "hgrc: no default path?") else: return "hgrc: no [paths] section?" else: return "not a hg repo"
18,383
def clip_grad_norm(parameters, max_norm, norm_type=2): """Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Arguments: parameters (Iterable[Variable]): an iterable of Variables that will have gradients normalized max_norm (float or int): max norm of the gradients norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for infinity norm. """ parameters = list(parameters) max_norm = float(max_norm) norm_type = float(norm_type) if norm_type == float('inf'): total_norm = max(p.grad.data.abs().max() for p in parameters) else: total_norm = 0 for p in parameters: param_norm = p.grad.data.norm(norm_type) total_norm += param_norm ** norm_type total_norm = total_norm ** (1. / norm_type) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef >= 1: return for p in parameters: p.grad.data.mul_(clip_coef)
18,384
def array_to_string(array, col_delim=' ', row_delim='\n', digits=8, value_format='{}'): """ Convert a 1 or 2D array into a string with a specified number of digits and delimiter. The reason this exists is that the basic numpy array to string conversions are surprisingly bad. Parameters ------------ array : (n,) or (n, d) float or int Data to be converted If shape is (n,) only column delimiter will be used col_delim : str What string should separate values in a column row_delim : str What string should separate values in a row digits : int How many digits should floating point numbers include value_format : str Format string for each value or sequence of values If multiple values per value_format it must divide into array evenly. Returns ---------- formatted : str String representation of original array """ # convert inputs to correct types array = np.asanyarray(array) digits = int(digits) row_delim = str(row_delim) col_delim = str(col_delim) value_format = str(value_format) # abort for non-flat arrays if len(array.shape) > 2: raise ValueError('conversion only works on 1D/2D arrays not %s!', str(array.shape)) # allow a value to be repeated in a value format repeats = value_format.count('{}') if array.dtype.kind == 'i': # integer types don't need a specified precision format_str = value_format + col_delim elif array.dtype.kind == 'f': # add the digits formatting to floats format_str = value_format.replace( '{}', '{:.' + str(digits) + 'f}') + col_delim else: raise ValueError('dtype %s not convertible!', array.dtype.name) # length of extra delimiters at the end end_junk = len(col_delim) # if we have a 2D array add a row delimiter if len(array.shape) == 2: format_str *= array.shape[1] # cut off the last column delimiter and add a row delimiter format_str = format_str[:-len(col_delim)] + row_delim end_junk = len(row_delim) # expand format string to whole array format_str *= len(array) # if an array is repeated in the value format # do the shaping here so we don't need to specify indexes shaped = np.tile(array.reshape((-1, 1)), (1, repeats)).reshape(-1) # run the format operation and remove the extra delimiters formatted = format_str.format(*shaped)[:-end_junk] return formatted
18,385
def get_dp_logs(logs): """Get only the list of data point logs, filter out the rest.""" filtered = [] compute_bias_for_types = [ "mouseout", "add_to_list_via_card_click", "add_to_list_via_scatterplot_click", "select_from_list", "remove_from_list", ] for log in logs: if log["type"] in compute_bias_for_types: filtered.append(log) return filtered
18,386
def assign_reports_to_watchlist(cb: CbThreatHunterAPI, watchlist_id: str, reports: List[Dict]) -> Dict: """Set a watchlist report IDs attribute to the passed reports. Args: cb: Cb PSC object watchlist_id: The Watchlist ID to update. reports: The Intel Reports. Returns: The Watchlist in dict form. """ watchlist_data = get_watchlist(cb, watchlist_id) if not watchlist_data: return None watchlist_data["report_ids"] = [r["id"] for r in reports] watchlist_data = update_watchlist(cb, watchlist_data) if not watchlist_data: LOGGER.error(f"unexpected problem updating watchlist with report IDs.") return False return watchlist_data
18,387
def visualize_filter( image, model, layer, filter_index, optimization_parameters, transformation=None, regularization=None, threshold=None, ): """Create a feature visualization for a filter in a layer of the model. Args: image (array): the image to be modified by the feature vis process. model (object): the model to be used for the feature visualization. layer (string): the name of the layer to be used in the visualization. filter_index (number): the index of the filter to be visualized. optimization_parameters (OptimizationParameters): the optimizer class to be applied. transformations (function): a function defining the transformations to be perfromed. regularization (function): customized regularizers to be applied. Defaults to None. threshold (list): Intermediate steps for visualization. Defaults to None. Returns: tuple: activation and result image for the process. """ image = tf.Variable(image) feature_extractor = get_feature_extractor(model, layer) _threshold_figures = figure(figsize=(15, 10), dpi=200) print("Starting Feature Vis Process") for iteration in range(optimization_parameters.iterations): pctg = int(iteration / optimization_parameters.iterations * 100) if transformation: if not callable(transformation): raise ValueError("The transformations need to be a function.") image = transformation(image) else: image = trans.standard_transformation(image) activation, image = gradient_ascent_step( image, feature_extractor, filter_index, regularization, optimization_parameters ) print('>>', pctg, '%', end="\r", flush=True) # Routine for creating a threshold image for Jupyter Notebooks if isinstance(threshold, list) and (iteration in threshold): threshold_image = _threshold_figures.add_subplot( 1, len(threshold), threshold.index(iteration) + 1 ) threshold_image.title.set_text(f"Step {iteration}") threshold_view(image) print('>> 100 %') if image.shape[1] < 299 or image.shape[2] < 299: image = tf.image.resize(image, [299, 299]) # Decode the resulting input image image = imgs.deprocess_image(image[0].numpy()) return activation, image
18,388
def porcentaje (cadena1, cadena2): """ (str),(str)-> (float) Programa para hallar el porcentaje de correspondiente a las cadenas >>> porcentaje("CG","GA") 50 >>> porcentaje("AT","GT") 0 >>> porcentaje ("AAAT","GCGA") 25 :param cadena1: primera cadena ingresada :param cadena2: segunda cadena ingresada :return: porcentaje de similitud de las cadenas """
18,389
def subtraction(x, y): """ Subtraction x and y >>> subtraction(-20, 80) -100 """ assert isinstance(x, (int, float)), "The x value must be an int or float" assert isinstance(y, (int, float)), "The y value must be an int or float" return x - y
18,390
async def paste(text: str) -> str: """Return an online bin of given text.""" session = aiohttp.ClientSession() async with session.post("https://hasteb.in/documents", data=text) as post: if post.status == 200: response = await post.text() return f"https://hasteb.in/{response[8:-2]}" post = await session.post("https://bin.drlazor.be", data={"val": text}) if post.status == 200: return post.url
18,391
def lr_step(base_lr, curr_iter, decay_iters, warmup_iter=0): """Stepwise exponential-decay learning rate policy. Args: base_lr: A scalar indicates initial learning rate. curr_iter: A scalar indicates current iteration. decay_iter: A list of scalars indicates the numbers of iteration when the learning rate is decayed. warmup_iter: A scalar indicates the number of iteration before which the learning rate is not adjusted. Return: A scalar indicates the current adjusted learning rate. """ if curr_iter < warmup_iter: alpha = curr_iter / warmup_iter return base_lr * (1 / 10.0 * (1 - alpha) + alpha) else: return base_lr * (0.1 ** get_step_index(curr_iter, decay_iters))
18,392
def apo(coalg): """ Extending an anamorphism with the ability to halt. In this version, a boolean is paired with the value that indicates halting. """ def run(a): stop, fa = coalg(a) return fa if stop else fa.map(run) return run
18,393
def cat_sample(ps): """ sample from categorical distribution ps is a 2D array whose rows are vectors of probabilities """ r = nr.rand(len(ps)) out = np.zeros(len(ps),dtype='i4') cumsums = np.cumsum(ps, axis=1) for (irow,csrow) in enumerate(cumsums): for (icol, csel) in enumerate(csrow): if csel > r[irow]: out[irow] = icol break return out
18,394
def download_network(region, network_type): """Download network from OSM representing the region. Arguments: region {string} -- Location. E.g., "Manhattan Island, New York City, New York, USA" network_type {string} -- Options: drive, drive_service, walk, bike, all, all_private Returns: networkx -- downloaded networkx """ # Download graph G = ox.graph_from_place(region, network_type=network_type) return G
18,395
def extract_text(text): """ """ l = [] res = [] i = 0 while i < len(text) - 2: h, i, _ = next_token(text, i) obj = text[h:i] l.append(obj) for j, tok in enumerate(l): if tok == b'Tf': font = l[j-2] fsize = float(l[j-1]) elif tok == b'Td': x = float(l[j-2]) y = float(l[j-1]) elif tok == b'Tj': text = l[j-1] res.append((x, y, font, fsize, text[1:-1])) return res
18,396
async def test_step_import(opp): """Test that the import step works.""" conf = { CONF_USERNAME: "user@host.com", CONF_PASSWORD: "123abc", } with patch( "openpeerpower.components.tile.async_setup_entry", return_value=True ), patch("openpeerpower.components.tile.config_flow.async_login"): result = await opp.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=conf ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "user@host.com" assert result["data"] == { CONF_USERNAME: "user@host.com", CONF_PASSWORD: "123abc", }
18,397
def add_pruning_arguments_to_parser(parser): """Add pruning arguments to existing argparse parser""" parser.add_argument('--do_prune', action='store_true', help="Perform pruning when training a model") parser.add_argument('--pruning_config', type=str, default='', help="Path to a pruning config") parser.add_argument('--pruning_override', type=str, nargs='*', action=ConcatenateStringAction, default='', help="JSON string to override pruning configuration file") return parser
18,398
def invokeRule(priorAnswers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess=False, step=None, debug=False, buildProof=False): """ Continue invokation of rule using (given) prior answers and list of remaining body literals (& rule sip). If prior answers is a list, computation is split disjunctively [..] By combining the answers to all these subqueries, we generate answers for the original query involving the rule head Can also takes a PML step and updates it as it navigates the top-down proof tree (passing it on and updating it where necessary) """ assert not buildProof or step is not None proofLevel, memoizeMemory, sipCollection, \ factGraph, derivedPreds, processedRules = otherargs remainingBodyList = [i for i in bodyLiteralIterator] lazyGenerator = lazyGeneratorPeek(priorAnswers, 2) if lazyGenerator.successful: # There are multiple answers in this step, we need to call invokeRule # recursively for each answer, returning the first positive attempt success = False rt = None _step = None ansNo = 0 for priorAns in lazyGenerator: ansNo += 1 try: if buildProof: newStep = InferenceStep(step.parent, step.rule, source=step.source) newStep.antecedents = [ant for ant in step.antecedents] else: newStep = None for rt, _step in\ invokeRule([priorAns], iter([i for i in remainingBodyList]), sip, otherargs, priorBooleanGoalSuccess, newStep, debug=debug, buildProof=buildProof): if rt: yield rt, _step except RuleFailure: pass if not success: # None of prior answers were successful # indicate termination of rule processing raise RuleFailure( "Unable to solve either of %s against remainder of rule: %s" % ( ansNo, remainingBodyList)) # yield False, _InferenceStep(step.parent, step.rule, source=step.source) else: lazyGenerator = lazyGeneratorPeek(lazyGenerator) projectedBindings = lazyGenerator.successful and first(lazyGenerator) or {} # First we check if we can combine a large group of subsequent body literals # into a single query # if we have a template map then we use it to further # distinguish which builtins can be solved via # cumulative SPARQl query - else we solve # builtins one at a time def sparqlResolvable(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return isinstance(literal, N3Builtin) and \ literal.uri in factGraph.templateMap def sparqlResolvableNoTemplates(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return False conjGroundLiterals = list( itertools.takewhile( hasattr(factGraph, 'templateMap') and sparqlResolvable or \ sparqlResolvableNoTemplates, remainingBodyList)) bodyLiteralIterator = iter(remainingBodyList) if len(conjGroundLiterals) > 1: # If there are literals to combine *and* a mapping from rule # builtins to SPARQL FILTER templates .. basePredicateVars = set( reduce(lambda x, y: x + y, [list(GetVariables(arg, secondOrder=True)) for arg in conjGroundLiterals])) if projectedBindings: openVars = basePredicateVars.intersection(projectedBindings) else: # We don't have any given bindings, so we need to treat # the body as an open query openVars = basePredicateVars queryConj = EDBQuery([copy.deepcopy(lit) for lit in conjGroundLiterals], factGraph, openVars, projectedBindings) query, answers = queryConj.evaluate(debug) if isinstance(answers, bool): combinedAnswers = {} rtCheck = answers else: if projectedBindings: combinedAnswers = (mergeMappings1To2(ans, projectedBindings, makeImmutable=True) for ans in answers) else: combinedAnswers = (MakeImmutableDict(ans) for ans in answers) combinedAnsLazyGenerator = lazyGeneratorPeek(combinedAnswers) rtCheck = combinedAnsLazyGenerator.successful if not rtCheck: raise RuleFailure("No answers for combined SPARQL query: %s" % query) else: # We have solved the previous N body literals with a single # conjunctive query, now we need to make each of the literals # an antecedent to a 'query' step. if buildProof: queryStep = InferenceStep(None, source='some RDF graph') queryStep.groundQuery = subquery queryStep.bindings = {} # combinedAnswers[-1] queryHash = URIRef( "tag:info@fuxi.googlecode.com:Queries#" + \ makeMD5Digest(subquery)) queryStep.identifier = queryHash for subGoal in conjGroundLiterals: subNs = NodeSet(subGoal.toRDFTuple(), identifier=BNode()) subNs.steps.append(queryStep) step.antecedents.append(subNs) queryStep.parent = subNs for rt, _step in invokeRule( isinstance(answers, bool) and [projectedBindings] or combinedAnsLazyGenerator, iter(remainingBodyList[len(conjGroundLiterals):]), sip, otherargs, isinstance(answers, bool), step, debug=debug, buildProof=buildProof): yield rt, _step else: # Continue processing rule body condition # one literal at a time try: bodyLiteral = next(bodyLiteralIterator) if py3compat.PY3 else bodyLiteralIterator.next() # if a N3 builtin, execute it using given bindings for boolean answer # builtins are moved to end of rule when evaluating rules via sip if isinstance(bodyLiteral, N3Builtin): lhs = bodyLiteral.argument rhs = bodyLiteral.result lhs = isinstance(lhs, Variable) and projectedBindings[lhs] or lhs rhs = isinstance(rhs, Variable) and projectedBindings[rhs] or rhs assert lhs is not None and rhs is not None if bodyLiteral.func(lhs, rhs): if debug: print("Invoked %s(%s, %s) -> True" % ( bodyLiteral.uri, lhs, rhs)) # positive answer means we can continue processing the rule body if buildProof: ns = NodeSet(bodyLiteral.toRDFTuple(), identifier=BNode()) step.antecedents.append(ns) for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, step, priorBooleanGoalSuccess, debug=debug, buildProof=buildProof): yield rt, _step else: if debug: print("Successfully invoked %s(%s, %s) -> False" % ( bodyLiteral.uri, lhs, rhs)) raise RuleFailure("Failed builtin invokation %s(%s, %s)" % (bodyLiteral.uri, lhs, rhs)) else: # For every body literal, subqueries are generated according # to the sip sipArcPred = URIRef(GetOp(bodyLiteral) + \ '_' + '_'.join(GetArgs(bodyLiteral))) assert len(list(IncomingSIPArcs(sip, sipArcPred))) < 2 subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) for N, x in IncomingSIPArcs(sip, sipArcPred): #That is, each subquery contains values for the bound arguments #that are passed through the sip arcs entering the node #corresponding to that literal #Create query out of body literal and apply sip-provided bindings subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) if literalIsGround(subquery): #subquery is ground, so there will only be boolean answers #we return the conjunction of the answers for the current #subquery answer = False ns = None answers = first( itertools.dropwhile( lambda item: not item[0], SipStrategy( subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel))) if answers: answer, ns = answers if not answer and not bodyLiteral.naf or \ (answer and bodyLiteral.naf): #negative answer means the invokation of the rule fails #either because we have a positive literal and there #is no answer for the subgoal or the literal is #negative and there is an answer for the subgoal raise RuleFailure( "No solutions solving ground query %s" % subquery) else: if buildProof: if not answer and bodyLiteral.naf: ns.naf = True step.antecedents.append(ns) #positive answer means we can continue processing the rule body #either because we have a positive literal and answers #for subgoal or a negative literal and no answers for the #the goal for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, True, step, debug=debug): yield rt, _step else: _answers = \ SipStrategy(subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel) # solve (non-ground) subgoal def collectAnswers(_ans): for ans, ns in _ans: if isinstance(ans, dict): try: map = mergeMappings1To2( ans, projectedBindings, makeImmutable=True) yield map except: pass combinedAnswers = collectAnswers(_answers) answers = lazyGeneratorPeek(combinedAnswers) if not answers.successful \ and not bodyLiteral.naf \ or (bodyLiteral.naf and answers.successful): raise RuleFailure( "No solutions solving ground query %s" % subquery) else: # Either we have a positive subgoal and answers # or a negative subgoal and no answers if buildProof: if answers.successful: goals = set([g for a, g in answers]) assert len(goals) == 1 step.antecedents.append(goals.pop()) else: newNs = NodeSet( bodyLiteral.toRDFTuple(), network=step.parent.network, identifier=BNode(), naf=True) step.antecedents.append(newNs) for rt, _step in invokeRule( answers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess, step, debug=debug, buildProof=buildProof): yield rt, _step except StopIteration: #Finished processing rule if priorBooleanGoalSuccess: yield projectedBindings and projectedBindings or True, step elif projectedBindings: #Return the most recent (cumulative) answers and the given step yield projectedBindings, step else: raise RuleFailure("Finished processing rule unsuccessfully")
18,399