content
stringlengths
22
815k
id
int64
0
4.91M
def convolve_cbvs(sectors=np.arange(1,14,1)): """ Bins the co-trending basis vectors into FFI times; Calls download_cbvs to get filenames Input ----- type(sectors) == list """ # Gets the cutout for a target in the CVZ coord = SkyCoord('04:35:50.330 -64:01:37.33', unit=(u.hourangle, u.deg)) sector_table = Tesscut.get_sectors(coord) for sector in sectors: files = download_cbvs(int(sector)) manifest = Tesscut.download_cutouts(coord, 31, sector = sector) cutout = fits.open(manifest['Local Path'][0]) time = cutout[1].data['TIME'] - cutout[1].data['TIMECORR'] for c in trange(len(files)): cbv = fits.open(files[c]) camera = cbv[1].header['CAMERA'] ccd = cbv[1].header['CCD'] cbv_time = cbv[1].data['Time'] new_fn = './metadata/s{0:04d}/cbv_components_s{0:04d}_{1:04d}_{2:04d}.txt'.format(sector, camera, ccd) convolved = np.zeros((len(time), 16)) for i in range(len(time)): g = np.argmin( np.abs(time[i] - cbv_time) ) for j in range(16): index = 'VECTOR_{0}'.format(j+1) cads = np.arange(g-7, g+8, 1) convolved[i,j] = np.mean(cbv[1].data[index][cads]) np.savetxt(new_fn, convolved)
18,100
def _format_param(name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError("expected {} values for {}, got {}".format( len(optimizer.param_groups), name, len(param))) return param else: return [param] * len(optimizer.param_groups)
18,101
def run_test(d): """ Run the gaussian test with dimension d """ ######### Problem Specification # Data generation parameters prior_mu_z = np.zeros(d, dtype=np.float32) # Prior mean prior_sigma_z = np.eye(d, dtype=np.float32) # Prior covariance matrix # True model parameters num_range = np.arange(-(d-1)/2, (d+1)/2, dtype=np.float32) t_delta = num_range / 5 if d == 1: t_sigma = np.ones(1) else: # Allow sigma to range from 0.1 to 1 t_sigma = 36/(10*(d-1)**2) * num_range**2 + 0.1 ######### Variable Initialization # Initial model parameters - same across all methods init_delta = prior_mu_z.copy() init_log_sigma = 3 * np.ones(d) # Initial HVAE variational parameters init_T = 5. init_eps = 0.005 * np.ones(d) max_eps = params['max_eps'] * np.ones(d) init_logit_eps = np.log(init_eps/(max_eps - init_eps)) init_log_T_0 = np.log(init_T - 1) # Initial NF variational parameters init_u_pre_reparam = scipy.stats.truncnorm.rvs(-2, 2, scale=0.1, size=d) init_w = scipy.stats.truncnorm.rvs(-2, 2, scale=0.1, size=d) init_b = 0.1 # Initial VAE parameters init_mu_z = prior_mu_z.copy() init_log_sigma_z = np.ones(d) ######### Set up models HVAE_model_1 = HVAE( ['delta', 'log_sigma', 'logit_eps', 'log_T_0'], [init_delta, init_log_sigma, init_logit_eps, init_log_T_0], 'HVAE_1', d, params['HVAE_K_1']) HVAE_model_2 = HVAE( ['delta', 'log_sigma', 'logit_eps', 'log_T_0'], [init_delta, init_log_sigma, init_logit_eps, init_log_T_0], 'HVAE_2', d, params['HVAE_K_2']) HVAE_model_notemp_1 = HVAE( ['delta', 'log_sigma', 'logit_eps'], [init_delta, init_log_sigma, init_logit_eps], 'HVAE_notemp_1', d, params['HVAE_K_1']) HVAE_model_notemp_2 = HVAE( ['delta', 'log_sigma', 'logit_eps'], [init_delta, init_log_sigma, init_logit_eps], 'HVAE_notemp_2', d, params['HVAE_K_2']) NF_model_1 = NF( ['delta', 'log_sigma', 'u_pre_reparam', 'w', 'b'], [init_delta, init_log_sigma, init_u_pre_reparam, init_w, init_b], 'NF_1', d, params['NF_K_1']) NF_model_2 = NF( ['delta', 'log_sigma', 'u_pre_reparam', 'w', 'b'], [init_delta, init_log_sigma, init_u_pre_reparam, init_w, init_b], 'NF_2', d, params['NF_K_2']) VB_model = VB(['delta', 'log_sigma', 'mu_z', 'log_sigma_z'], [init_delta, init_log_sigma, init_mu_z, init_log_sigma_z], 'VB', d) model_list = [HVAE_model_1, HVAE_model_2, HVAE_model_notemp_1, HVAE_model_notemp_2, NF_model_1, NF_model_2, VB_model] ######### Generate Training Data & Save - One for each test train_data_list = [] for i in range(params['n_tests']): z = np.random.multivariate_normal(prior_mu_z, prior_sigma_z) x = np.random.multivariate_normal(z + t_delta, np.diag(t_sigma**2), size=params['n_data']) train_data_list.append(x) # Folder should have already been created in the initializations data_path = os.path.join('save', str(d), 'train_data.p') pickle.dump(train_data_list, open(data_path, 'wb')) ######### Train models sess = tf.Session() sess.run(tf.global_variables_initializer()) # Store the final parameter values for all test runs in this dictionary final_params = {} for m in model_list: final_values = [] for i in range(params['n_tests']): (delta, sigma) = m.train(sess, train_data_list[i], i) final_values.append((delta, sigma)) final_params[m.model_name] = final_values.copy() ######### Test models using difference between parameters param_diffs = {} for m in model_list: diffs = [] for i in range(params['n_tests']): delta = final_params[m.model_name][i][0] sigma = final_params[m.model_name][i][1] delta_diff = np.sum((delta - t_delta)**2) sigma_diff = np.sum((sigma - t_sigma)**2) diffs.append((delta_diff, sigma_diff)) param_diffs[m.model_name] = diffs.copy() # Save parameter differences in a pickle file diff_path = os.path.join('save', str(d), 'all_diffs.p') pickle.dump(param_diffs, open(diff_path, 'wb'))
18,102
def coh_overflow_test(): """ Test whether very very opaque layers will break the coherent program """ n_list = [ 1., 2+.1j, 1+3j, 4., 5.] d_list = [inf, 50, 1e5, 50, inf] lam = 200 alpha_d = imag(n_list[2]) * 4 * pi * d_list[2] / lam print('Very opaque layer: Calculation should involve e^(-', alpha_d, ')!') data = coh_tmm('s', n_list, d_list, 0, lam) n_list2 = n_list[0:3] d_list2 = d_list[0:3] d_list2[-1] = inf data2 = coh_tmm('s', n_list2, d_list2, 0, lam) print('First entries of the following two lists should agree:') print(data['vw_list']) print(data2['vw_list'])
18,103
def ShowZallocs(cmd_args=None): """ Prints all allocations in the zallocations table """ if unsigned(kern.globals.zallocations) == 0: print "zallocations array not initialized!" return print '{0: <5s} {1: <18s} {2: <5s} {3: <15s}'.format('INDEX','ADDRESS','TRACE','SIZE') current_index = 0 max_zallocation = unsigned(kern.globals.zleak_alloc_buckets) allocation_count = 0 while current_index < max_zallocation: current_zalloc = kern.globals.zallocations[current_index] if int(current_zalloc.za_element) != 0: print '{0: <5d} {1: <#018x} {2: <5d} {3: <15d}'.format(current_index, current_zalloc.za_element, current_zalloc.za_trace_index, unsigned(current_zalloc.za_size)) allocation_count += 1 current_index += 1 print 'Total Allocations: {0: <d}'.format(allocation_count)
18,104
def test_field_extension_post(app_client, load_test_data): """Test POST search with included and excluded fields (fields extension)""" body = { "fields": { "exclude": ["datetime"], "include": ["properties.pers:phi", "properties.gsd"], } } resp = app_client.post("/search", json=body) resp_json = resp.json() assert not set(resp_json["features"][0]["properties"]) - {"gsd", "pers:phi"}
18,105
def write(text, into=None, session_id=None): """ :param text: The text to be written. :type text: one of str, unicode :param into: The element to write into. :type into: one of str, unicode, :py:class:`HTMLElement`, \ :py:class:`selenium.webdriver.remote.webelement.WebElement`, :py:class:`Alert` Types the given text into the active window. If parameter 'into' is given, writes the text into the text field or element identified by that parameter. Common examples of 'write' are:: write("Hello World!") write("user12345", into="Username:") write("Michael", into=Alert("Please enter your name")) """ _get_api_impl(session_id).write_impl(text, into)
18,106
def as_binary_vector(labels, num_classes): """ Construct binary label vector given a list of label indices. Args: labels (list): The input label list. num_classes (int): Number of classes of the label vector. Returns: labels (numpy array): the resulting binary vector. """ label_arr = np.zeros((num_classes,)) for lbl in set(labels): label_arr[lbl] = 1.0 return label_arr
18,107
def evaluation_lda(model, data, dictionary, corpus): """ Compute coherence score and perplexity. params: model: lda model data: list of lists (tokenized) dictionary corpus returns: coherence score, perplexity score """ coherence_model_lda = CoherenceModel(model=model, texts=data, dictionary=dictionary, coherence='c_v') coherence = coherence_model_lda.get_coherence() perplexity = model.log_perplexity(corpus) return coherence, perplexity
18,108
def get_map_with_square(map_info, square): """ build string of the map with its top left bigger square without obstacle full """ map_string = "" x_indices = list(range(square["x"], square["x"] + square["size"])) y_indices = list(range(square["y"], square["y"] + square["size"])) M = map_info["matrix"] for y in range(map_info["line_num"]): if map_string: map_string += '\n' for x in range(map_info["line_len"]): if M[y][x]: map_string += map_info["obstacle_char"] elif x in x_indices and y in y_indices: map_string += map_info["full_char"] else: map_string += map_info["empty_char"] return map_string
18,109
def bgr_colormap(): """ In cdict, the first column is interpolated between 0.0 & 1.0 - this indicates the value to be plotted the second column specifies how interpolation should be done from below the third column specifies how interpolation should be done from above if the second column does not equal the third, then there will be a break in the colors """ darkness = 0.85 #0 is black, 1 is white cdict = {'red': ((0.0, 0.0, 0.0), (0.5, darkness, darkness), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.5, darkness, darkness), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (0.5, darkness, darkness), (1.0, 0.0, 0.0)) } return LinearSegmentedColormap("bgr", cdict)
18,110
def test_construct_h6_tag(attributes): """Test for validating whether the h6 tag is constructed correctly or not. """ h6_ = H6(**attributes) assert h6_.construct() == h6.render(attributes)
18,111
def autovalidation_from_docstring(): """ Test validation using JsonSchema The default payload is invalid, try it, then change the age to a valid integer and try again --- tags: - officer parameters: - name: body in: body required: true schema: id: Officer required: - name - age properties: name: type: string description: The officer's name. default: "James T. Kirk" age: type: integer description: The officer's age (should be integer) default: "138" tags: type: array description: optional list of tags default: ["starfleet", "captain", "enterprise", "dead"] items: type: string responses: 200: description: A single officer item schema: $ref: '#/definitions/Officer' """ data = request.json return jsonify(data)
18,112
def get_vlan_groups(url, headers): """ Get dictionary of existing vlan groups """ vlan_groups = [] api_url = f"{url}/api/ipam/vlan-groups/" response = requests.request("GET", api_url, headers=headers) all_vlan_groups = response.json()["results"] for vlan_group in all_vlan_groups: vlan_group_info = dict() vlan_group_info["name"] = vlan_group["name"] vlan_group_info["state"] = "present" if vlan_group["site"] is not None: vlan_group_info["site"] = vlan_group["site"]["name"] else: vlan_group_info["site"] = None vlan_groups.append(vlan_group_info) return vlan_groups
18,113
def highest_price(): """ Finding the ten most expensive items per unit price in the northwind DB """ ten_highest_query = """ SELECT ProductName FROM Product GROUP BY UnitPrice ORDER BY UnitPrice DESC LIMIT 10; """ ten_highest = cursor.execute(ten_highest_query).fetchall() print(f' The ten most expensive items per unit price are: {ten_highest}')
18,114
def load_viewpoints(viewpoint_file_list): """load multiple viewpoints file from given lists Args: viewpoint_file_list: a list contains obj path a wrapper for load_viewpoint function Returns: return a generator contains multiple generators which contains obj pathes """ if isinstance(viewpoint_file_list, str): vp_file_list = [viewpoint_file_list] try: vp_file_list = iter(viewpoint_file_list) except TypeError: print("viewpoint_file_list is not an iterable object") for vp_file in vp_file_list: yield load_viewpoint(vp_file)
18,115
def getLastReading(session: Session) -> Reading: """ Finds the last reading associated with the session NB: Always returns a Reading, because every Session has at least 1 Reading Args: session (Session): A Session object representing the session record in the database Returns: datetime: Time object of last reading """ return Reading.objects.filter(session_id=session.pk).order_by("t").reverse()[:1].get()
18,116
def process_outlier(data, population_set): """ Parameters ---------- data population_set Returns ------- """ content = list() for date in set(map(lambda x: x['date'], data)): tmp_item = { "date": date, "value": list() } for value in filter(lambda d: d["date"] == date, data): tmp_value = deepcopy(value) del tmp_value["date"] if population_set: tmp_value["rate"] = round( tmp_value["value"] / population_set[tmp_value["age"]] * RATE_PER_POPULATION_FACTOR, 1 ) tmp_item["value"].append(tmp_value) content.append(tmp_item) return deepcopy(content)
18,117
def valid_http(http_success=HTTPOk, # type: Union[Type[HTTPSuccessful], Type[HTTPRedirection]] http_kwargs=None, # type: Optional[ParamsType] detail="", # type: Optional[Str] content=None, # type: Optional[JSON] content_type=CONTENT_TYPE_JSON, # type: Optional[Str] ): # type: (...) -> Union[HTTPSuccessful, HTTPRedirection] """ Returns successful HTTP with standardized information formatted with content type. (see :func:`raise_http` for HTTP error calls) :param http_success: any derived class from *valid* HTTP codes (<400) (default: `HTTPOk`) :param http_kwargs: additional keyword arguments to pass to `http_success` when called :param detail: additional message information (default: empty) :param content: json formatted content to include :param content_type: format in which to return the exception (one of `magpie.common.SUPPORTED_ACCEPT_TYPES`) :returns: formatted successful response with additional details and HTTP code """ global RAISE_RECURSIVE_SAFEGUARD_COUNT # pylint: disable=W0603 content = dict() if content is None else content detail = repr(detail) if not isinstance(detail, six.string_types) else detail content_type = CONTENT_TYPE_JSON if content_type == CONTENT_TYPE_ANY else content_type http_code, detail, content = validate_params(http_success, [HTTPSuccessful, HTTPRedirection], detail, content, content_type) json_body = format_content_json_str(http_code, detail, content, content_type) resp = generate_response_http_format(http_success, http_kwargs, json_body, content_type=content_type) RAISE_RECURSIVE_SAFEGUARD_COUNT = 0 # reset counter for future calls (don't accumulate for different requests) return resp
18,118
async def unregister(lrrbot, conn, event, respond_to, channel): """ Command: !live unregister CHANNEL Unregister CHANNEL as a fanstreamer channel. """ try: await twitch.unfollow_channel(channel) conn.privmsg(respond_to, "Channel '%s' removed from the fanstreamer list." % channel) except urllib.error.HTTPError: conn.privmsg(respond_to, "'%s' isn't a Twitch channel." % channel)
18,119
def button(update, context): """ Reply button when displayed options. :param update: update object of chatbot :param context: context of conversation """ query = update.callback_query entity = query.data entity_type = context.chat_data["entity_type"] local_context = { "intent": context.chat_data["intent"], "entities": [{"value": entity, "type": entity_type}] } data = { "user": context.user_data["user"], "input": { "user_input": None, "context": local_context } } logger.info("[BUTTON] >>>>> SentData %s", data) resp = chat_with_system(data) logger.info("[BUTTON] <<<<< ReceivedData %s", data) if resp["answer"]["answer_type"] == "text": context.chat_data["intent"] = None context.chat_data["entities"] = [] query.edit_message_text(text=resp["answer"]["text"])
18,120
def operating_cf(cf_df): """Checks if the latest reported OCF (Cashflow) is positive. Explanation of OCF: https://www.investopedia.com/terms/o/operatingcashflow.asp cf_df = Cashflow Statement of the specified company """ cf = cf_df.iloc[cf_df.index.get_loc("Total Cash From Operating Activities"),0] if (cf > 0): return True else: return False
18,121
def generate_performance_scores(query_dataset, target_variable, candidate_datasets, params): """Generates all the performance scores. """ performance_scores = list() # params algorithm = params['regression_algorithm'] cluster_execution = params['cluster'] hdfs_address = params['hdfs_address'] hdfs_user = params['hdfs_user'] inner_join = params['inner_join'] # HDFS Client hdfs_client = None if cluster_execution: # time.sleep(np.random.randint(1, 120)) # avoid opening multiple sockets at the same time hdfs_client = InsecureClient(hdfs_address, user=hdfs_user) # reading query dataset query_data_str = read_file(query_dataset, hdfs_client, cluster_execution) query_data = pd.read_csv(StringIO(query_data_str)) query_data.set_index( 'key-for-ranking', drop=True, inplace=True ) # build model on query data only _, scores_before = get_performance_scores( query_data, target_variable, algorithm, False ) for candidate_dataset in candidate_datasets: # reading candidate dataset candidate_data_str = read_file(candidate_dataset, hdfs_client, cluster_execution) candidate_data = pd.read_csv(StringIO(candidate_data_str)) candidate_data.set_index( 'key-for-ranking', drop=True, inplace=True ) # join dataset join_ = query_data.join( candidate_data, how='left', rsuffix='_r' ) if inner_join: join_.dropna(inplace=True) # build model on joined data # print('[INFO] Generating performance scores for query dataset %s and candidate dataset %s ...' % (query_dataset, candidate_dataset)) imputation_strategy, scores_after = get_performance_scores( join_, target_variable, algorithm, not(inner_join) ) # print('[INFO] Performance scores for query dataset %s and candidate dataset %s done!' % (query_dataset, candidate_dataset)) performance_scores.append( generate_output_performance_data( query_dataset=query_dataset, target=target_variable, candidate_dataset=candidate_dataset, scores_before=scores_before, scores_after=scores_after, imputation_strategy=imputation_strategy ) ) return performance_scores
18,122
def correct_sparameters_twelve_term(sparameters_complex,twelve_term_correction,reciprocal=True): """Applies the twelve term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The twelve term correction should be a list of [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] where Edf, etc are complex numbers""" if len(sparameters_complex) != len(twelve_term_correction): raise TypeError("s parameter and twelve term correction must be the same length") sparameter_out=[] phase_last=0. for index,row in enumerate(sparameters_complex): frequency=row[0] Sm=np.matrix(row[1:]).reshape((2,2)) [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr]=twelve_term_correction[index] # frequency Edf Esf Erf Exf Elf Etf Edr Esr Err Exr Elr Etr. # print [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] # print Sm[0,0] D =(1+(Sm[0,0]-Edf)*(Esf/Erf))*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf*Elr)/(Etf*Etr) # print D S11 =(Sm[0,0]-Edf)/(D*Erf)*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf)/(D*Etf*Etr) S21 =((Sm[1,0]-Exr)/(D*Etf))*(1+(Sm[1,1]-Edr)*(Esr-Elf)/Err) S12 = ((Sm[0,1]-Exf)/(D*Etr))*(1+(Sm[0,0]-Edf)*(Esf-Elr)/Erf) S22 = (Sm[1,1]-Edr)/(D*Err)*(1+(Sm[0,0]-Edf)*(Esf/Erf))-(Sm[0,1]*Sm[1,0]*Elr)/(D*Etf*Etr) # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) if reciprocal: sparameter_out.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) else: sparameter_out.append([frequency,S11,S21,S12,S22]) phase_last=cmath.phase(mean_S12_S21) return sparameter_out
18,123
def api_activity_logs(request): """Test utility.""" auth = get_auth(request) obj = ActivityLogs(auth=auth) check_apiobj(authobj=auth, apiobj=obj) return obj
18,124
def RNAshapes_parser(lines=None,order=True): """ Returns a list containing tuples of (sequence,pairs object,energy) for every sequence [[Seq,Pairs,Ene],[Seq,Pairs,Ene],...] Structures will be ordered by the structure energy by default, of ordered isnt desired set order to False """ result = lineParser(lines) if order: result = order_structs(result) return result
18,125
def get_case_strategy( # pylint: disable=too-many-locals draw: Callable, operation: APIOperation, hooks: Optional[HookDispatcher] = None, data_generation_method: DataGenerationMethod = DataGenerationMethod.default(), path_parameters: Union[NotSet, Dict[str, Any]] = NOT_SET, headers: Union[NotSet, Dict[str, Any]] = NOT_SET, cookies: Union[NotSet, Dict[str, Any]] = NOT_SET, query: Union[NotSet, Dict[str, Any]] = NOT_SET, body: Any = NOT_SET, ) -> Any: """A strategy that creates `Case` instances. Explicit `path_parameters`, `headers`, `cookies`, `query`, `body` arguments will be used in the resulting `Case` object. If such explicit parameters are composite (not `body`) and don't provide the whole set of parameters for that location, then we generate what is missing and merge these two parts. Note that if parameters are optional, then they may remain absent. The primary purpose of this behavior is to prevent sending incomplete explicit examples by generating missing parts as it works with `body`. """ to_strategy = DATA_GENERATION_METHOD_TO_STRATEGY_FACTORY[data_generation_method] context = HookContext(operation) with detect_invalid_schema(operation): path_parameters_value = get_parameters_value( path_parameters, "path", draw, operation, context, hooks, to_strategy ) headers_value = get_parameters_value(headers, "header", draw, operation, context, hooks, to_strategy) cookies_value = get_parameters_value(cookies, "cookie", draw, operation, context, hooks, to_strategy) query_value = get_parameters_value(query, "query", draw, operation, context, hooks, to_strategy) media_type = None if body is NOT_SET: if operation.body: parameter = draw(st.sampled_from(operation.body.items)) strategy = _get_body_strategy(parameter, to_strategy, operation) strategy = apply_hooks(operation, context, hooks, strategy, "body") media_type = parameter.media_type body = draw(strategy) else: media_types = operation.get_request_payload_content_types() or ["application/json"] # Take the first available media type. # POSSIBLE IMPROVEMENT: # - Test examples for each available media type on Open API 2.0; # - On Open API 3.0, media types are explicit, and each example has it. # We can pass `OpenAPIBody.media_type` here from the examples handling code. media_type = media_types[0] if operation.schema.validate_schema and operation.method.upper() == "GET" and operation.body: raise InvalidSchema("Body parameters are defined for GET request.") return Case( operation=operation, media_type=media_type, path_parameters=path_parameters_value, headers=CaseInsensitiveDict(headers_value) if headers_value is not None else headers_value, cookies=cookies_value, query=query_value, body=body, data_generation_method=data_generation_method, )
18,126
def addi(imm_val, rs1): """ Adds the sign extended 12 bit immediate to register rs1. Arithmetic overflow is ignored and the result is the low 32 bits. --ADDI rs, rs1, 0 is used to implement MV rd, rs1 """ reg[rs1] = imm_val + int(reg[rs1])
18,127
def type_from_value(value, visitor=None, node=None): """Given a Value from resolving an annotation, return the type.""" ctx = _Context(visitor, node) return _type_from_value(value, ctx)
18,128
def _accesslen(data) -> int: """This was inspired by the `default_collate` function. https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/ """ if isinstance(data, (tuple, list)): item = data[0] if not isinstance(item, (float, int, str)): return len(item) return len(data)
18,129
def createSkill(request, volunteer_id): """ Method to create skills and interests :param request: :param volunteer_id: :return: """ if request.method == 'POST': volunteer = Volunteer_User_Add_Ons.objects.get(pk=volunteer_id) skills = request.POST.getlist('skills') interests = request.POST.getlist('interests') # call to create the skills createInputToken(request, skills, 'Skill', volunteer_id) # call to create the interests createInputToken(request, interests, 'Interest', volunteer_id) return HttpResponse('ok')
18,130
def analyticJacobian(robot : object, dq = 0.001, symbolic = False): """Using Homogeneous Transformation Matrices, this function computes Analytic Jacobian Matrix of a serial robot given joints positions in radians. Serial robot's kinematic parameters have to be set before using this function Args: robot (Serial): serial robot (this won't work with other type of robots) dq (float, optional): step size for numerical derivative. Defaults to 0.001. symbolic (bool, optional): used to calculate symbolic equations. Defaults to False. Returns: J (np.array): Inertial Analytic Jacobian Matrix (numerical) J (SymPy Matrix): Inertial Analytic Jacobian Matrix (symbolical) """ # Calculate forward kinematics: f(q) fkHTM = forwardHTM(robot, symbolic) # Convert result into an Axis - Angle vector: x(q) x = axisAngle(fkHTM[-1], symbolic) if symbolic: # Calculate Analytic Jacobian Matrix by differentiating Axis - Angle vector with SymPy functions return nsimplify(trigsimp(x.jacobian(robot.qSymbolic)).evalf(), tolerance = 1e-10) else: # Get number of joints (generalized coordinates) n = robot.jointsPositions.shape[0] # Initializes jacobian matrix with zeros J = np.zeros((6, n)) # Auxiliar variable to keep original joints positions q = robot.jointsPositions.copy() # Iterates through all colums (generalized coordinates) for j in range(n): # Set increment to current generalized coordinate: z[j] = q[j] + dq robot.jointsPositions[j] += dq # Calculate forward kinematics with step size: f(z) = f(q + dq) f = forwardHTM(robot) # Convert result into an Axis - Angle vector: X(q + dq) X = axisAngle(f[-1]) # Calculate analytic jacobian matrix: [X(q + dq) - x(q)] / dq J[: , j] = ((X - x) / dq).flatten() # Eliminates step size by copying original values from auxiliar variable robot.jointsPositions[:, :] = q return J
18,131
def test_sharedmethod_reuse_on_subclasses(): """ Regression test for an issue where sharedmethod would bind to one class for all time, causing the same method not to work properly on other subclasses of that class. It has the same problem when the same sharedmethod is called on different instances of some class as well. """ class AMeta(type): def foo(cls): return cls.x class A: x = 3 def __init__(self, x): self.x = x @sharedmethod def foo(self): return self.x a1 = A(1) a2 = A(2) assert a1.foo() == 1 assert a2.foo() == 2 # Similar test now, but for multiple subclasses using the same sharedmethod # as a classmethod assert A.foo() == 3 class B(A): x = 5 assert B.foo() == 5
18,132
def get_subtask_spec_factory_classes(): """Return dictionary with all factory classes defined in files in this directory. This file is excluded from the search.""" this_file = os.path.split(__file__)[-1] directory = os.path.dirname(__file__) exclude = [this_file, "subtask_spec_factory.py"] factory_files = [f for f in os.listdir(directory) if f.endswith(".py") and f not in exclude] factory_classes = {} for f in factory_files: path = os.path.join(directory, f) relative_import_string = "." + inspect.getmodulename(path) module = import_module(relative_import_string, package=__package__) for name in dir(module): obj = getattr(module, name) if inspect.isclass(obj): if issubclass(obj, SubtaskSpecFactory): factory_classes[name] = obj return factory_classes
18,133
def test_countMatches(): """Unit test for countMatches function. Checks output is as expected for a variety of extreme cases.""" # create test image ground_truth = np.zeros((20, 20)) ground_truth[4:10, 4:10] = 1 inferred = np.zeros((20, 20)) inferred[4:10, 4:6] = 1 inferred[4:10, 6:10] = 2 assert Segmentors.countMatches(inferred, ground_truth) ==\ ({0.0: {0.0: 364}, 1.0: {1.0: 12}, 2.0: {1.0: 24}}, 3, 2) inferred = np.zeros((20, 20)) inferred[4:10, 3:6] = 1 inferred[4:10, 6:10] = 2 assert Segmentors.countMatches(inferred, ground_truth) ==\ ({0.0: {0.0: 358}, 1.0: {0.0: 6, 1.0: 12}, 2.0: {1.0: 24}}, 3, 2) inferred = np.zeros((20, 20)) inferred[4:10, 3:6] = 1 inferred[4:10, 6:10] = 2 inferred[3:5, 3:6] = 3 assert Segmentors.countMatches(inferred, ground_truth) ==\ ({0.0: {0.0: 355}, 3.0: {0.0: 4, 1.0: 2}, 2.0: {1.0: 24}, 1.0: {0.0: 5, 1.0: 10}}, 4, 2) inferred = np.zeros((20, 20)) assert Segmentors.countMatches(inferred, ground_truth) == ({0.0: {0.0: 364, 1.0: 36}}, 1, 2) inferred = np.zeros((20, 20)) inferred[1:19, 1:19] = 1 assert Segmentors.countMatches(inferred, ground_truth) ==\ ({0.0: {0.0: 76}, 1.0: {0.0: 288, 1.0: 36}}, 2, 2)
18,134
def check_keyup_events(event, ship): """Respond to key release.""" if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False elif event.key == pygame.K_UP: ship.moving_up = False elif event.key == pygame.K_DOWN: ship.moving_down = False
18,135
def triu_indices_from(arr, k=0): """ Returns the indices for the upper-triangle of `arr`. Args: arr (Union[Tensor, list, tuple]): 2-dimensional array. k (int, optional): Diagonal offset, default is 0. Returns: triu_indices_from, tuple of 2 tensor, shape(N) Indices for the upper-triangle of `arr`. Raises: TypeError: If `arr` cannot be converted to tensor, or `k` is not a number. ValueError: If `arr` cannot be converted to a 2-dimensional tensor. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> tensor = np.ones((3,3)) >>> print(np.triu_indices_from(tensor)) (Tensor(shape=[6], dtype=Int32, value= [0, 0, 0, 1, 1, 2]), Tensor(shape=[6], dtype=Int32, value= [0, 1, 2, 1, 2, 2])) """ arr = asarray(arr) if arr.ndim != 2: _raise_value_error("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
18,136
def is_debug(): """Return true if xylem is set to debug console output.""" global _debug return _debug
18,137
def import_metrics(jsondoc): """Update metrics DB from `dict` data structure. The input data structure is expected to be the one produced by SNMP simulator's command responder `fulljson` reporting module. .. code-block:: python { 'format': 'jsondoc', 'version': 1, 'host': '{hostname}', 'watch_dir': {dir}, 'started': '{timestamp}', 'first_update': '{timestamp}', 'last_update': '{timestamp}', 'executables': [ { 'executable': '{path}', 'runtime': '{seconds}', 'memory': {MB}, 'cpu': {ms}, 'files': 0, 'exits': 0, 'changes': 0, 'endpoints': { 'udpv4': [ '127.0.0.1:161' ], 'udpv6': [ '::1:161' ] ], 'console': [ { 'timestamp': 0, 'text': '{text}' } ] } ] } """ old_times = int(time.time() - MAX_CONSOLE_PAGE_AGE) timestamp = datetime.datetime.utcfromtimestamp( jsondoc['started']) supervisor_model = models.Supervisor( hostname=jsondoc['host'], watch_dir=jsondoc['watch_dir'], started=timestamp ) supervisor_model = db.session.merge(supervisor_model) autoincrement(supervisor_model, models.Supervisor) for executable in jsondoc['executables']: process_model = models.Process( path=executable['executable'], supervisor_id=supervisor_model.id ) process_model = db.session.merge(process_model) autoincrement(process_model, models.Process) process_model.runtime = process_model.runtime or 0 process_model.runtime += executable['runtime'] process_model.memory = executable['memory'] process_model.cpu = process_model.cpu or 0 process_model.cpu += executable['cpu'] process_model.files = executable['files'] process_model.exits = process_model.exits or 0 process_model.exits += executable['exits'] process_model.changes = process_model.changes or 0 process_model.changes += executable['changes'] process_model.update_interval = ( jsondoc['last_update'] - jsondoc['first_update']) timestamp = datetime.datetime.utcfromtimestamp( jsondoc['last_update']) process_model.last_update = timestamp query = ( models.Endpoint .query .filter_by(process_id=process_model.id)) existing_endpoints = set( (x.protocol, x.address) for x in query.all()) reported_endpoints = set() for protocol, addresses in executable['endpoints'].items(): for address in addresses: reported_endpoints.add((protocol, address)) new_endpoints = reported_endpoints.difference(existing_endpoints) for protocol, address in new_endpoints: endpoint_model = models.Endpoint( protocol=protocol, address=address, process_id=process_model.id ) autoincrement(endpoint_model, models.Endpoint) db.session.add(endpoint_model) removed_endpoints = existing_endpoints.difference(reported_endpoints) for protocol, address in removed_endpoints: query = ( db.session .query(models.Endpoint) .filter_by(protocol=protocol) .filter_by(address=address) .filter_by(process_id=process_model.id)) query.delete() query = ( db.session .query(models.ConsolePage) .filter(models.ConsolePage.process_id == process_model.id) .filter(models.ConsolePage.timestamp < old_times) ) query.delete() for console_page in executable['console']: timestamp = datetime.datetime.utcfromtimestamp( console_page['timestamp']) console_page_model = models.ConsolePage( timestamp=timestamp, text=console_page['text'], process_id=process_model.id ) autoincrement(console_page_model, models.ConsolePage) db.session.add(console_page_model) db.session.commit()
18,138
def func(var): """Function""" return var + 1
18,139
def register_user(username, password): """ Hashes the given password and registers a new user in the database. """ hashed_password = bcrypt.hash(password) app_user = AppUser(username=username.lower(), password=hashed_password) db.session.add(app_user) db.session.commit()
18,140
def flanking_regions_fasta_deletion(genome, dataframe, flanking_region_size): """ Makes batch processing possible, pulls down small region of genome for which to design primers around. This is based on the chromosome and position of input file. Each Fasta record will contain: >Sample_Gene_chr:posStart-posStop Seq of flanking region upstream of SV + seq of flanking region downstream of SV Args: genome (list): genome list of tuples (header, seq). dataframe (pandas object): dataframe with sample info. flanking_region_size (int): length of sequence upstream and downstream of input coordinate position to pull as sequence to design primers around. """ output = [] for headers, seqs in genome: chrm = str(headers) seq = str(seqs) for gene, sample, chrom, start, stop in zip(dataframe.Gene, dataframe.Sample, dataframe.Chr, dataframe.PosStart, dataframe.PosStop): if str(chrom) == chrm: header = str(str(sample)+"_"+str(gene)+"_"+\ str(chrom)+":"+str(start)+"-"+str(stop)+"__") flank_seq = seq[int(start)-int(flanking_region_size):int(start)+1]\ +seq[int(stop):(int(stop)+int(flanking_region_size))] output.append((header, flank_seq.upper())) return output
18,141
def numpy_episodes( train_dir, test_dir, shape, loader, preprocess_fn=None, scan_every=10, num_chunks=None, **kwargs): """Read sequences stored as compressed Numpy files as a TensorFlow dataset. Args: train_dir: Directory containing NPZ files of the training dataset. test_dir: Directory containing NPZ files of the testing dataset. shape: Tuple of batch size and chunk length for the datasets. use_cache: Boolean. Set to True to cache episodes in memory. Default is to read episodes from disk every time. **kwargs: Keyword arguments to forward to the read episodes implementation. Returns: Structured data from numpy episodes as Tensors. """ try: dtypes, shapes = _read_spec(train_dir, **kwargs) except ZeroDivisionError: dtypes, shapes = _read_spec(test_dir, **kwargs) loader = { 'scan': functools.partial(_read_episodes_scan, every=scan_every), 'reload': _read_episodes_reload, 'dummy': _read_episodes_dummy, }[loader] train = tf.data.Dataset.from_generator( functools.partial(loader, train_dir, shape[0], **kwargs), dtypes, shapes) test = tf.data.Dataset.from_generator( functools.partial(loader, test_dir, shape[0], **kwargs), dtypes, shapes) chunking = lambda x: tf.data.Dataset.from_tensor_slices( # Returns dict of image, action, reward, length tensors with num_chunks in 0 dim. chunk_sequence(x, shape[1], True, num_chunks)) def sequence_preprocess_fn(sequence): if preprocess_fn: with tf.device('/cpu:0'): sequence['image'] = preprocess_fn(sequence['image']) return sequence # This transformation (flat_map): # 1. Chunk each sequence, # 2. From each sequence one can get variable number of chunks # (first dim. of a tensor is chunks number, like with batches). # Flatten to get the dataset of chunks. train = train.flat_map(chunking) train = train.shuffle(100 * shape[0]) train = train.batch(shape[0], drop_remainder=True) train = train.map(sequence_preprocess_fn, 10).prefetch(20) test = test.flat_map(chunking) test = test.shuffle(100 * shape[0]) test = test.batch(shape[0], drop_remainder=True) test = test.map(sequence_preprocess_fn, 10).prefetch(20) return attr_dict.AttrDict(train=train, test=test)
18,142
def fft_convolve(ts, query): """ Computes the sliding dot product for query over the time series using the quicker FFT convolution approach. Parameters ---------- ts : array_like The time series. query : array_like The query. Returns ------- array_like - The sliding dot product. """ n = len(ts) m = len(query) x = np.fft.fft(ts) y = np.append(np.flipud(query), np.zeros([1, n - m])) y = np.fft.fft(y) z = np.fft.ifft(x * y) return np.real(z[m - 1:n])
18,143
def _add_merge_gvcfs_job( b: hb.Batch, gvcfs: List[hb.ResourceGroup], output_gvcf_path: Optional[str], sample_name: str, ) -> Job: """ Combine by-interval GVCFs into a single sample GVCF file """ job_name = f'Merge {len(gvcfs)} GVCFs, {sample_name}' j = b.new_job(job_name) j.image(PICARD_IMAGE) j.cpu(2) java_mem = 7 j.memory('standard') # ~ 4G/core ~ 7.5G j.storage(f'{len(gvcfs) * 1.5 + 2}G') j.declare_resource_group( output_gvcf={ 'g.vcf.gz': '{root}-' + sample_name + '.g.vcf.gz', 'g.vcf.gz.tbi': '{root}-' + sample_name + '.g.vcf.gz.tbi', } ) input_cmd = ' '.join(f'INPUT={g["g.vcf.gz"]}' for g in gvcfs) j.command( f"""set -e (while true; do df -h; pwd; du -sh $(dirname {j.output_gvcf['g.vcf.gz']}); free -m; sleep 300; done) & java -Xms{java_mem}g -jar /usr/picard/picard.jar \ MergeVcfs {input_cmd} OUTPUT={j.output_gvcf['g.vcf.gz']} df -h; pwd; du -sh $(dirname {j.output_gvcf['g.vcf.gz']}); free -m """ ) if output_gvcf_path: b.write_output(j.output_gvcf, output_gvcf_path.replace('.g.vcf.gz', '')) return j
18,144
def register_permission(name, codename, ctypes=None): """Registers a permission to the framework. Returns the permission if the registration was successfully, otherwise False. **Parameters:** name The unique name of the permission. This is displayed to the customer. codename The unique codename of the permission. This is used internally to identify the permission. content_types The content type for which the permission is active. This can be used to display only reasonable permissions for an object. This must be a Django ContentType """ if ctypes is None: ctypes = [] # Permission with same codename and/or name must not exist. if Permission.objects.filter(Q(name=name) | Q(codename=codename)): return False p = Permission.objects.create(name=name, codename=codename) ctypes = [ContentType.objects.get_for_model(ctype) for ctype in ctypes] if ctypes: p.content_types = ctypes p.save() return p
18,145
def calculate_outliers(tile_urls, num_outliers, cache, nprocs): """ Fetch tiles and calculate the outlier tiles per layer. The number of outliers is per layer - the largest N. Cache, if true, uses a local disk cache for the tiles. This can be very useful if re-running percentile calculations. Nprocs is the number of processes to use for both fetching and aggregation. Even on a system with a single CPU, it can be worth setting this to a larger number to make concurrent nework requests for tiles. """ def factory_fn(): return LargestN(num_outliers, cache) if nprocs > 1: results = parallel( tile_urls, FactoryFunctionHolder(factory_fn), nprocs) else: results = sequential(tile_urls, factory_fn) return results
18,146
def load_trigger_dataset( fname, templatizer, limit=None, train=False, preprocessor_key=None, priming_dataset=None, max_priming_examples=64, ): """ Loads a MLM classification dataset. Parameters ========== fname : str The filename. templatizer : Templatizer Maps instances to cloze-style model inputs. limit : int (optional) Limit the amount of data loaded. train : bool Whether the data is used for training. Default: False. preprocessor_key : str Key used to lookup preprocessor for data. """ if preprocessor_key is None: preprocessor = PREPROCESSORS[fname.split('.')[-1]] else: preprocessor = PREPROCESSORS[preprocessor_key] instances = [] for x in preprocessor(fname, train=train): try: model_inputs, label_id = templatizer(x, train=train) if priming_dataset is not None: model_inputs, label_id = prime( model_inputs, label_id, priming_dataset, model_max_length=templatizer._tokenizer.model_max_length, max_priming_examples=max_priming_examples, ) except ValueError as e: logger.warning('Encountered error "%s" when processing "%s". Skipping.', e, x) continue else: instances.append((model_inputs, label_id)) if limit: limit = min(len(instances), limit) return random.sample(instances, limit) return instances
18,147
def pmu2bids(physio_files, verbose=False): """ Function to read a list of Siemens PMU physio files and save them as a BIDS physiological recording. Parameters ---------- physio_files : list of str list of paths to files with a Siemens PMU recording verbose : bool verbose flag Returns ------- physio : PhysioData PhysioData with the contents of the file """ # In case we are handled just a single file, make it a one-element list: if isinstance(physio_files, str): physio_files = [physio_files] # Init PhysioData object to hold physio signals: physio = PhysioData() # Read the files from the list, extract the relevant information and # add a new PhysioSignal to the list: for f in physio_files: physio_type, MDHTime, sampling_rate, physio_signal = readpmu(f, verbose=verbose) testSamplingRate( sampling_rate = sampling_rate, Nsamples = len(physio_signal), logTimes=MDHTime ) # specify label: if 'PULS' in physio_type: physio_label = 'cardiac' elif 'RESP' in physio_type: physio_label = 'respiratory' elif "TRIGGER" in physio_type: physio_label = 'trigger' else: physio_label = physio_type physio.append_signal( PhysioSignal( label=physio_label, units='', samples_per_second=sampling_rate, physiostarttime=MDHTime[0], signal=physio_signal ) ) return physio
18,148
def add_chain(length): """Adds a chain to the network so that""" chained_works = [] chain = utils.generate_chain(length) for i in range(len(chain)-1): agent_id = get_random_agent().properties(ns.KEY_AGENT_ID).value().next() work_id = g.create_work().properties(ns.KEY_WORK_ID).value().next() g.agent(agent_id).owns_work(g.work(work_id)).next() item1 = g.create_item(chain[i]) g.agent(agent_id).works(work_id).demands(item1).next() item2 = g.create_item(chain[i+1]) g.agent(agent_id).works(work_id).offers(item2).next() chained_works.append(work_id) return chained_works
18,149
async def ping(ctx): """ Pong """ await ctx.send("pong")
18,150
def re_fit(file_name, top_c, bot_c): """ re-fits a prepared oocyte file (-t and -b flags for top and bot constraints)""" from vartools.result import re_fit_data if top_c == "True": top_c = True elif top_c == "False": top_c = False else: sys.exit("Invalid option: " + top_c) if bot_c == "True": bot_c = True elif bot_c == "False": bot_c = False else: sys.exit("Invalid option: " + bot_c) re_fit_data(file_name, top_c, bot_c) return None
18,151
def convert_graph_to_db_format(input_graph: nx.Graph, with_weights=False, cast_to_directed=False): """Converts a given graph into a DB format, which consists of two or three lists 1. **Index list:** a list where the i-th position contains the index of the beginning of the list of adjacent nodes (in the second list). 2. **Node list:** for each node, we list (in order) all the nodes which are adjacent to it. 3. **Weight list:** if the weight parameter is True, includes the weights of the edges, corresponds to the nodes list **Assumptions:** The code has several preexisting assumptions: a) The nodes are labeled with numbers b) Those numbers are the sequence [0,...,num_of_nodes-1] c) If there are weights, they are floats d) If there are weights, they are initialized for all edges e) If there are weights, the weight key is 'weight' .. Note:: The code behaves differently for directed and undirected graphs. For undirected graph, every edge is actually counted twice (p->q and q->p). Example:: For the simple directed graph (0->1, 0->2,0->3,2->0,3->1,3->2): `Indices: [0, 3, 3, 4, 6]` `Neighbors: [1, 2, 3, 0, 1, 2]` Note that index[1] is the same as index[2]. That is because 1 has no neighbors, and so his neighbor list is of size 0, but we still need to have an index for the node on. For the same graph when it is undirected: `Indices: [0, 3, 5, 7, 10]` `Neighbors: [1, 2, 3, 0, 3, 0, 3, 0, 1, 2]` Note that the number of edges isn't doubled because in the directed version there is a bidirectional edge. :param graph: the nx.Graph object to convert :param with_weights: whether to create a weight list. Defaults to False. :param cast_to_directed: whether to cast the graph into a directed format :return: two or three lists: index,nodes, [weights] """ if cast_to_directed: graph = input_graph.to_directed() else: graph = input_graph.copy() if graph.is_directed(): # Color printing taken from https://www.geeksforgeeks.org/print-colors-python-terminal/ print("\033[93m {}\033[00m".format('Note that the graph is processed as a directed graph')) indices = [0] # The first neighbor list always starts at index 0 neighbor_nodes = [] nodes = [node for node in graph.nodes()] # print(nodes) nodes.sort() neighbors = [sorted([x for x in graph.neighbors(node)]) for node in nodes] # Create the indices and neighbor nodes lists for neighbor_list in neighbors: neighbor_list.sort() # print(neighbor_list) neighbor_nodes.extend(neighbor_list) indices.append(indices[-1] + len(neighbor_list)) if with_weights: try: weights = [0] * len(neighbor_nodes) current_index = 0 for node in nodes: for x in neighbors[node]: w = graph[node][x]['weight'] weights[current_index] = w current_index += 1 return indices, neighbor_nodes, weights except KeyError: # Print in red print("\033[91m {}\033[00m".format('No weights defined, returning an empty list of weights')) print() return indices, neighbor_nodes, [] return indices, neighbor_nodes
18,152
def read_pnts(pnt_bytes, object_layers): """Read the layer's points.""" print("\tReading Layer ("+object_layers[-1].name+") Points") offset= 0 chunk_len= len(pnt_bytes) while offset < chunk_len: pnts= struct.unpack(">fff", pnt_bytes[offset:offset+12]) offset+= 12 # Re-order the points so that the mesh has the right pitch, # the pivot already has the correct order. pnts= [pnts[0] - object_layers[-1].pivot[0],\ pnts[2] - object_layers[-1].pivot[1],\ pnts[1] - object_layers[-1].pivot[2]] object_layers[-1].pnts.append(pnts)
18,153
def auxiliary_subfields(): """Factory associated with AuxSubfieldsPoroelasticity. """ return AuxSubfieldsPoroelasticity()
18,154
def cassandra_get_unit_data(): """ Basing function to obtain units from db and return as dict :return: dictionary of units """ kpi_dict = {} cassandra_cluster = Cluster() session = cassandra_cluster.connect('pb2') query = session.prepare('SELECT * FROM kpi_units') query_data = session.execute(query) for row in query_data: kpi_dict[row[1]] = [row[0], row[2], row[3], row[4]] return kpi_dict
18,155
def read_cfg_float(cfgp, section, key, default): """ Read float from a config file Args: cfgp: Config parser section: [section] of the config file key: Key to be read default: Value if couldn't be read Returns: Resulting float """ if cfgp.has_option(section, key): return cfgp.getfloat(section, key) else: return default
18,156
def get_repository_output(repository_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetRepositoryResult]: """ The AWS::ECR::Repository resource specifies an Amazon Elastic Container Registry (Amazon ECR) repository, where users can push and pull Docker images. For more information, see https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html :param str repository_name: The name to use for the repository. The repository name may be specified on its own (such as nginx-web-app) or it can be prepended with a namespace to group the repository into a category (such as project-a/nginx-web-app). If you don't specify a name, AWS CloudFormation generates a unique physical ID and uses that ID for the repository name. For more information, see https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-name.html. """ ...
18,157
def random(website): """ 随机获取cookies :param website:查询网站给 如:weibo :return:随机获取的cookies """ g = get_conn() cookies = getattr(g, website + '_cookies').random() return cookies
18,158
def get_pid(referral_data): """ Example getting PID using the same token used to query AD NOTE! to get PID the referral information must exist in the BETA(UAT) instance of TOMS """ referral_uid = referral_data['referral_uid'] url = "https://api.beta.genomics.nhs.uk/reidentification/referral-pid/{referral_uid}".format(referral_uid=referral_uid) auth_header = {'Authorization': 'Bearer {}'.format(jwt_token)} pid = requests.get(url, headers=auth_header).json() return pid
18,159
def test_create_search_space(): """Generate a random neural network from the search_space definition. """ import random random.seed(10) from random import random from tensorflow.keras.utils import plot_model import tensorflow as tf tf.random.set_seed(10) search_space = create_search_space(num_layers=5) ops = [random() for _ in range(search_space.num_nodes)] search_space.set_ops(ops) model = search_space.create_model() model.summary() print(f'This search_space needs {len(ops)} choices to generate a neural network.')
18,160
def open_events( fname: Union[Path, str], leap_sec: float, get_frame_rate: bool = False ) -> Tuple[ List[float], List[float], List[float], List[datetime], Union[List[float], None] ]: """ Parameters ---------- fname : Path or str filename of *_events.pos file leap_sec : float The current leap second used to convert GPS time to UTC time get_frame_rate : bool [default=False] Whether to return the frame rate of sequential trigger events Returns ------- lat : List[float] Latitudes (decimal degrees) of trigger events recorded by Reach M2 lon : List[float] Longitudes (decimal degrees) of trigger events recorded by Reach M2 height : List[float] Ellipsoid heights of trigger events recorded by Reach M2 dt_ls : List[datetime] datetime (UTC) of trigger events recorded by Reach M2 reach_frate : List[float] or None if get_frame_rate is True: reach_frate -> frame rate (seconds) of trigger events recorded by Reach M2 if get_frame_rate is False: reach_frate = None """ with open(fname, encoding="utf-8") as fid: contents = fid.readlines() lat, lon, height, dt_ls = [], [], [], [] reach_frate = [] if get_frame_rate else None cnt = 0 for i in range(len(contents)): if contents[i].startswith("%"): continue row = contents[i].strip().split() dt = datetime_from_event_text(row[0], row[1], leap_sec) if cnt > 0: reach_frate.append((dt - prev_dt).total_seconds()) # noqa lat.append(float(row[2])) lon.append(float(row[3])) height.append(float(row[4])) dt_ls.append(dt) prev_dt = dt # noqa cnt += 1 return lat, lon, height, dt_ls, reach_frate
18,161
def intdags_permutations(draw, min_size:int=1, max_size:int=10): """ Produce instances of a same DAG. Instances are not nesessarily topologically sorted """ return draw(lists(permutations(draw(intdags())), min_size=min_size, max_size=max_size))
18,162
def rich_echo_via_pager( text_or_generator: t.Union[t.Iterable[str], t.Callable[[], t.Iterable[str]], str], theme: t.Optional[Theme] = None, highlight=False, markdown: bool = False, **kwargs, ) -> None: """This function takes a text and shows it via an environment specific pager on stdout. Args: text_or_generator: the text to page, or alternatively, a generator emitting the text to page. theme: optional rich.theme.Theme object to use for formatting markdown: if True, interpret message as Markdown highlight: if True, use automatic rich.print highlighting **kwargs: if "color" in kwargs, works the same as click.echo_via_pager(color=color) otherwise any kwargs are passed to rich.Console.print() """ if inspect.isgeneratorfunction(text_or_generator): text_or_generator = t.cast(t.Callable[[], t.Iterable[str]], text_or_generator)() elif isinstance(text_or_generator, str): text_or_generator = [text_or_generator] else: try: text_or_generator = iter(text_or_generator) except TypeError: text_or_generator = [text_or_generator] console = _console.console or Console(theme=theme) color = kwargs.pop("color", True) with console.pager(styles=color): for x in text_or_generator: if isinstance(x, str) and markdown: x = Markdown(x) console.print(x, highlight=highlight, **kwargs)
18,163
def getConfiguredGraphClass(doer): """ In this class method, we must return a configured graph class """ # if options.bReified: # DU_GRAPH = Graph_MultiSinglePageXml_Segmenter_Separator_DOM if options.bSeparator: DU_GRAPH = ConjugateSegmenterGraph_MultiSinglePageXml_Separator else: DU_GRAPH = ConjugateSegmenterGraph_MultiSinglePageXml ntClass = My_ConjugateNodeType if options.bBB2: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun = None , bPreserveWidth=True ) elif options.bBB31: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun = (None, lambda v: v * 0.066*3) # shrink to 60% of its size , bPreserveWidth=True ) else: nt = ntClass("mi_clstr" #some short prefix because labels below are prefixed with it , [] # in conjugate, we accept all labels, andNone becomes "none" , [] , False # unused , BBoxDeltaFun =lambda v: max(v * 0.066, min(5, v/3)) #we reduce overlap in this way ) nt.setLabelAttribute("id") ## HD added 23/01/2020: needed for output generation DU_GRAPH.clusterType='paragraph' nt.setXpathExpr(( ".//pc:TextLine" , "./pc:TextEquiv") #how to get their text ) DU_GRAPH.addNodeType(nt) return DU_GRAPH
18,164
def find_amped_polys_for_syntheticidle(qubit_filter, idleStr, model, singleQfiducials=None, prepLbl=None, effectLbls=None, initJ=None, initJrank=None, wrtParams=None, algorithm="greedy", require_all_amped=True, idtPauliDicts=None, comm=None, verbosity=0): """ Find fiducial pairs which amplify the parameters of a synthetic idle gate. This routine is primarily used internally within higher-level n-qubit sequence selection routines. Parameters ---------- qubit_filter : list A list specifying which qubits fiducial pairs should be placed upon. Typically this is a subset of all the qubits, as the synthetic idle is composed of nontrivial gates acting on a localized set of qubits and noise/errors are localized around these. idleStr : Circuit The operation sequence specifying the idle operation to consider. This may just be a single idle gate, or it could be multiple non-idle gates which together act as an idle. model : Model The model used to compute the polynomial expressions of probabilities to first-order. Thus, this model should always have (simulation) type "termorder". singleQfiducials : list, optional A list of gate-name tuples (e.g. `('Gx',)`) which specify a set of single- qubit fiducials to use when trying to amplify gate parameters. Note that no qubit "state-space" label is required here (i.e. *not* `(('Gx',1),)`); the tuples just contain single-qubit gate *names*. If None, then `[(), ('Gx',), ('Gy',)]` is used by default. prepLbl : Label, optional The state preparation label to use. If None, then the first (and usually the only) state prep label of `model` is used, so it's usually fine to leave this as None. effectLbls : list, optional The list of POVM effect labels to use, as a list of `Label` objects. These are *simplified* POVM effect labels, so something like "Mdefault_0", and if None the default is all the effect labels of the first POVM of `model`, which is usually what you want. initJ : numpy.ndarray, optional An initial Jacobian giving the derivatives of some other polynomials with respect to the same `wrtParams` that this function is called with. This acts as a starting point, and essentially informs the fiducial-pair selection algorithm that some parameters (or linear combos of them) are *already* amplified (e.g. by some other germ that's already been selected) and for which fiducial pairs are not needed. initJrank : int, optional The rank of `initJ`. The function could compute this from `initJ` but in practice one usually has the rank of `initJ` lying around and so this saves a call to `np.linalg.matrix_rank`. wrtParams : slice, optional The parameters to consider for amplification. (This function seeks fiducial pairs that amplify these parameters.) If None, then pairs which amplify all of `model`'s parameters are searched for. algorithm : {"greedy","sequential"} Which algorithm is used internally to find fiducial pairs. "greedy" will give smaller sets of fiducial pairs (better) but takes longer. Usually it's worth the wait and you should use the default ("greedy"). require_all_amped : bool, optional If True and AssertionError is raised when fewer than all of the requested parameters (in `wrtParams`) are amplifed by the final set of fiducial pairs. verbosity : int, optional The level of detail printed to stdout. 0 means silent. Returns ------- J : numpy.ndarray The final jacobian with rows equal to the number of chosen amplified polynomials (note there is one row per fiducial pair *including* the outcome - so there will be two different rows for two different outcomes) and one column for each parameter specified by `wrtParams`. Jrank : int The rank of the jacobian `J`, equal to the number of amplified parameters (at most the number requested). fidpair_lists : list The selected fiducial pairs, each in "gatename-fidpair-list" format. Elements of `fidpair_lists` are themselves lists, all of length=#qubits. Each element of these lists is a (prep1Qnames, meas1Qnames) 2-tuple specifying the 1-qubit gates (by *name* only) on the corresponding qubit. For example, the single fiducial pair prep=Gx:1Gy:2, meas=Gx:0Gy:0 in a 3-qubit system would have `fidpair_lists` equal to: `[ [ [(),('Gx','Gy')], [('Gx',), () ], [('Gy',), () ] ] ]` ` < Q0 prep,meas >, < Q1 prep,meas >, < Q2 prep,meas >` """ #Note: "useful" fiducial pairs are identified by looking at the rank of a # Jacobian matrix. Each row of this Jacobian is the derivative of the # "amplified polynomial" - the L=1 polynomial for a fiducial pair (i.e. # pr_poly(F1*(germ)*F2) ) minus the L=0 polynomial (i.e. pr_poly(F1*F2) ). # When the model only gives probability polynomials to first order in # the error rates this gives the L-dependent and hence amplified part # of the polynomial expression for the probability of F1*(germ^L)*F2. # This derivative of an amplified polynomial, taken with respect to # all the parameters we care about (i.e. wrtParams) would ideally be # kept as a polynomial and the "rank" of J would be the number of # linearly independent polynomials within the rows of J (each poly # would be a vector in the space of polynomials). We currently take # a cheap/HACK way out and evaluate the derivative-polynomial at a # random dummy value which should yield linearly dependent vectors # in R^n whenever the polynomials are linearly indepdendent - then # we can use the usual scipy/numpy routines for computing a matrix # rank, etc. # Assert that model uses termorder, as doing L1-L0 to extract the "amplified" part # relies on only expanding to *first* order. assert(model._sim_type == "termorder" and model._sim_args['max_order'] == 1), \ '`model` must use "termorder:1" simulation type!' printer = _VerbosityPrinter.build_printer(verbosity, comm) if prepLbl is None: prepLbl = model._shlp.get_default_prep_lbl() if effectLbls is None: povmLbl = model._shlp.get_default_povm_lbl(sslbls=None) effectLbls = [_Lbl("%s_%s" % (povmLbl, l)) for l in model._shlp.get_effect_labels_for_povm(povmLbl)] if singleQfiducials is None: # TODO: assert model has Gx and Gy gates? singleQfiducials = [(), ('Gx',), ('Gy',)] # ('Gx','Gx') #dummy = 0.05*_np.ones(model.num_params(),'d') # for evaluating derivs... #dummy = 0.05*_np.arange(1,model.num_params()+1) # for evaluating derivs... #dummy = 0.05*_np.random.random(model.num_params()) dummy = 5.0 * _np.random.random(model.num_params()) + 0.5 * _np.ones(model.num_params(), 'd') # expect terms to be either coeff*x or coeff*x^2 - (b/c of latter case don't eval at zero) #amped_polys = [] selected_gatename_fidpair_lists = [] if wrtParams is None: wrtParams = slice(0, model.num_params()) Np = _slct.length(wrtParams) if initJ is None: J = _np.empty((0, Np), 'complex'); Jrank = 0 else: J = initJ; Jrank = initJrank if algorithm == "greedy": Jrows = _np.empty((len(effectLbls), Np), 'complex') #Outer iteration while Jrank < Np: if algorithm == "sequential": printer.log("Sequential find_amped_polys_for_syntheticidle started. Target rank=%d" % Np) assert(comm is None), "No MPI support for algorithm='sequential' case!" elif algorithm == "greedy": maxRankInc = 0 bestJrows = None printer.log("Greedy find_amped_polys_for_syntheticidle started. Target rank=%d" % Np) else: raise ValueError("Invalid `algorithm` argument: %s" % algorithm) # loop over all possible (remaining) fiducial pairs nQubits = len(qubit_filter) loc_Indices, _, _ = _mpit.distribute_indices( list(range(len(singleQfiducials)**nQubits)), comm, False) loc_itr = 0; nLocIters = len(loc_Indices) #print("DB: Rank %d indices = " % comm.Get_rank(), loc_Indices) with printer.progress_logging(2): for itr, prep in enumerate(_itertools.product(*([singleQfiducials] * nQubits))): # There's probably a cleaner way to do this, if loc_itr < len(loc_Indices) and itr == loc_Indices[loc_itr]: loc_itr += 1 # but this limits us to this processor's local indices else: continue #print("DB: Rank %d: running itr=%d" % (comm.Get_rank(), itr)) printer.show_progress(loc_itr, nLocIters, prefix='--- Finding amped-polys for idle: ') prepFid = _objs.Circuit(()) for i, el in enumerate(prep): prepFid = prepFid + _onqubit(el, qubit_filter[i]) for meas in _itertools.product(*([singleQfiducials] * nQubits)): if idtPauliDicts is not None: # For idle tomography compatibility, only consider fiducial pairs with either # all-the-same or all-different prep & measure basis (basis is determined # by the *last* letter in the value, e.g. ignore '-' sign in '-X'). prepDict, measDict = idtPauliDicts rev_prepDict = {v[-1]: k for k, v in prepDict.items()} # could do this once above, rev_measDict = {v[-1]: k for k, v in measDict.items()} # but this isn't the bottleneck. cmp = [(rev_prepDict[prep[kk]] == rev_measDict[meas[kk]]) for kk in range(nQubits)] # if all are not the same or all are not different, skip if not (all(cmp) or not any(cmp)): continue measFid = _objs.Circuit(()) for i, el in enumerate(meas): measFid = measFid + _onqubit(el, qubit_filter[i]) gatename_fidpair_list = [(prep[i], meas[i]) for i in range(nQubits)] if gatename_fidpair_list in selected_gatename_fidpair_lists: continue # we've already chosen this pair in a previous iteration gstr_L0 = prepFid + measFid # should be a Circuit gstr_L1 = prepFid + idleStr + measFid # should be a Circuit ps = model._fwdsim().prs_as_polys(prepLbl, effectLbls, gstr_L1) qs = model._fwdsim().prs_as_polys(prepLbl, effectLbls, gstr_L0) if algorithm == "sequential": added = False for elbl, p, q in zip(effectLbls, ps, qs): amped = p + -1 * q # the amplified poly Jrow = _np.array([[amped.deriv(iParam).evaluate(dummy) for iParam in _slct.as_array(wrtParams)]]) if _np.linalg.norm(Jrow) < 1e-8: continue # row of zeros can fool matrix_rank Jtest = _np.concatenate((J, Jrow), axis=0) testRank = _np.linalg.matrix_rank(Jtest, tol=RANK_TOL) if testRank > Jrank: printer.log("fidpair: %s,%s (%s) increases rank => %d" % (str(prep), str(meas), str(elbl), testRank), 4) J = Jtest Jrank = testRank if not added: selected_gatename_fidpair_lists.append(gatename_fidpair_list) added = True # only add fidpair once per elabel loop! if Jrank == Np: break # this is the largest rank J can take! elif algorithm == "greedy": #test adding all effect labels - get the overall increase in rank due to this fidpair for k, (elbl, p, q) in enumerate(zip(effectLbls, ps, qs)): amped = p + -1 * q # the amplified poly Jrows[k, :] = _np.array([[amped.deriv(iParam).evaluate(dummy) for iParam in _slct.as_array(wrtParams)]]) Jtest = _np.concatenate((J, Jrows), axis=0) testRank = _np.linalg.matrix_rank(Jtest, tol=RANK_TOL) rankInc = testRank - Jrank if rankInc > maxRankInc: maxRankInc = rankInc bestJrows = Jrows.copy() bestFidpair = gatename_fidpair_list if testRank == Np: break # this is the largest rank we can get! if algorithm == "greedy": # get the best of the bestJrows, bestFidpair, and maxRankInc if comm is not None: maxRankIncs_per_rank = comm.allgather(maxRankInc) iWinningRank = maxRankIncs_per_rank.index(max(maxRankIncs_per_rank)) maxRankInc = maxRankIncs_per_rank[iWinningRank] if comm.Get_rank() == iWinningRank: comm.bcast(bestJrows, root=iWinningRank) comm.bcast(bestFidpair, root=iWinningRank) else: bestJrows = comm.bcast(None, root=iWinningRank) bestFidpair = comm.bcast(None, root=iWinningRank) if require_all_amped: assert(maxRankInc > 0), "No fiducial pair increased the Jacobian rank!" Jrank += maxRankInc J = _np.concatenate((J, bestJrows), axis=0) selected_gatename_fidpair_lists.append(bestFidpair) printer.log("%d fidpairs => rank %d (Np=%d)" % (len(selected_gatename_fidpair_lists), Jrank, Np)) #DEBUG #print("DB: J = ") #_gt.print_mx(J) #print("DB: svals of J for synthetic idle: ", _np.linalg.svd(J, compute_uv=False)) return J, Jrank, selected_gatename_fidpair_lists
18,165
def _seed(x, deg=5, seeds=None): """Seed the greedy algorithm with (deg+1) evenly spaced indices""" if seeds is None: f = lambda m, n: [ii*n//m + n//(2*m) for ii in range(m)] indices = np.sort(np.hstack([[0, len(x)-1], f(deg-1, len(x))])) else: indices = seeds errors = [] return indices, errors
18,166
def check_radius_against_distance(cube, radius): """Check required distance isn't greater than the size of the domain. Args: cube (iris.cube.Cube): The cube to check. radius (float): The radius, which cannot be more than half of the size of the domain. """ axes = [] for axis in ["x", "y"]: coord = cube.coord(axis=axis).copy() coord.convert_units("metres") axes.append((max(coord.points) - min(coord.points))) max_allowed = np.sqrt(axes[0] ** 2 + axes[1] ** 2) * 0.5 if radius > max_allowed: raise ValueError( f"Distance of {radius}m exceeds max domain " f"distance of {max_allowed}m" )
18,167
def get_ref(cube): """Gets the 8 reflection symmetries of a nd numpy array""" L = [] L.append(cube[:,:,:]) L.append(cube[:,:,::-1]) L.append(cube[:,::-1,:]) L.append(cube[::-1,:,:]) L.append(cube[:,::-1,::-1]) L.append(cube[::-1,:,::-1]) L.append(cube[::-1,::-1,:]) L.append(cube[::-1,::-1,::-1]) return L
18,168
def get_relation_functionality( mapped_triples: Collection[Tuple[int, int, int]], add_labels: bool = True, label_to_id: Optional[Mapping[str, int]] = None, ) -> pd.DataFrame: """Calculate relation functionalities. :param mapped_triples: The ID-based triples. :return: A dataframe with columns ( functionality | inverse_functionality ) """ df = pd.DataFrame(data=mapped_triples, columns=["h", "r", "t"]) df = df.groupby(by="r").agg(dict( h=["nunique", COUNT_COLUMN_NAME], t="nunique", )) df[FUNCTIONALITY_COLUMN_NAME] = df[("h", "nunique")] / df[("h", COUNT_COLUMN_NAME)] df[INVERSE_FUNCTIONALITY_COLUMN_NAME] = df[("t", "nunique")] / df[("h", COUNT_COLUMN_NAME)] df = df[[FUNCTIONALITY_COLUMN_NAME, INVERSE_FUNCTIONALITY_COLUMN_NAME]] df.columns = df.columns.droplevel(1) df.index.name = RELATION_ID_COLUMN_NAME df = df.reset_index() return add_relation_labels(df, add_labels=add_labels, label_to_id=label_to_id)
18,169
def df_to_vega_lite(df, path=None): """ Export a pandas.DataFrame to a vega-lite data JSON. Params ------ df : pandas.DataFrame dataframe to convert to JSON path : None or str if None, return the JSON str. Else write JSON to the file specified by path. """ chart = altair.Chart(data=df) data = chart.to_dict()['data']['values'] if path is None: return json.dumps(data, **json_dump_kwargs) with open(path, 'w') as write_file: json.dump(data, write_file, **json_dump_kwargs)
18,170
def _is_json_mimetype(mimetype): """Returns 'True' if a given mimetype implies JSON data.""" return any( [ mimetype == "application/json", mimetype.startswith("application/") and mimetype.endswith("+json"), ] )
18,171
def show_fields(*fields): """Output the {field label -> field value} dictionary. Does the alignment and formats certain specific types of values.""" fields = filter( lambda x: x, fields ) target_len = max( len(name) for name, value in fields ) + 2 for name, value in fields: line = name + ':' + " " * (target_len - len(name)) if type(value) == bool: line += color_text("Yes", 'green') if value else color_text("No", 'red') else: line += str(value) print line
18,172
def make_request(action, data, token): """Make request based on passed arguments and timestamp.""" return { 'action': action, 'time': datetime.now().timestamp(), 'data': data, 'token': token }
18,173
def get_stats_historical_prices(timestamp, horizon): """ We assume here that the price is a random variable following a normal distribution. We compute the mean and covariance of the price distribution. """ hist_prices_df = pd.read_csv(HISTORICAL_PRICES_CSV) hist_prices_df["timestamp"] = pd.to_datetime(hist_prices_df["timestamp"]) hist_prices_df = hist_prices_df.set_index("timestamp") start = pd.Timestamp(year=2018, month=6, day=2, hour=timestamp.hour, minute=timestamp.minute) end = pd.Timestamp(year=2018, month=10, day=25, hour=timestamp.hour, minute=timestamp.minute) hist_prices_df = hist_prices_df[ (hist_prices_df.index >= start) & (hist_prices_df.index < end) ] hist_prices_df['hour'] = hist_prices_df.index.hour hist_prices_df['minute'] = hist_prices_df.index.minute num_features = horizon num_samples = min(hist_prices_df.groupby( [hist_prices_df.index.hour, hist_prices_df.index.minute] ).count()['clearing_price'].values) new = hist_prices_df.groupby( [hist_prices_df.index.hour, hist_prices_df.index.minute] ).mean() new = new.set_index(pd.Index(range(48))) i = new[ (new.hour == timestamp.hour) & (new.minute == timestamp.minute) ]['clearing_price'].index.values[0] a = new[new.index >= i]['clearing_price'] b = new[new.index < i]['clearing_price'] mean_X = np.concatenate((a, b)) X = np.copy(hist_prices_df['clearing_price'].values) X = np.reshape(X, (num_samples, num_features)) cov = GaussianMixture(covariance_type='tied').fit( normalize(X)).covariances_ return mean_X, cov
18,174
def _unflattify(values, shape): """ Unflattifies parameter values. :param values: The flattened array of values that are to be unflattified :type values: torch.Tensor :param shape: The shape of the parameter prior :type shape: torch.Size :rtype: torch.Tensor """ if len(shape) < 1 or values.shape[1:] == shape: return values return values.reshape(values.shape[0], *shape)
18,175
def sc_iter_fasta_brute(file_name, inmem=False): """ Iter over fasta file.""" header = None seq = [] with open(file_name) as fh: if inmem: data = fh.readlines() else: data = fh for line in data: if line.startswith(">"): if seq: sequence = "".join(seq) yield (header, sequence) header = line seq = [] continue seq.append(line) if seq or header: sequence = "".join(seq) yield (header, sequence)
18,176
def theme_cmd(data, buffer, args): """Callback for /theme command.""" if args == '': weechat.command('', '/help ' + SCRIPT_COMMAND) return weechat.WEECHAT_RC_OK argv = args.strip().split(' ', 1) if len(argv) == 0: return weechat.WEECHAT_RC_OK if argv[0] in ('install',): weechat.prnt('', '{0}: action "{1}" not developed' ''.format(SCRIPT_NAME, argv[0])) return weechat.WEECHAT_RC_OK # check arguments if len(argv) < 2: if argv[0] in ('install', 'installfile', 'save', 'export'): weechat.prnt('', '{0}: too few arguments for action "{1}"' ''.format(SCRIPT_NAME, argv[0])) return weechat.WEECHAT_RC_OK # execute asked action if argv[0] == 'list': theme_list(argv[1] if len(argv) >= 2 else '') elif argv[0] == 'info': filename = None if len(argv) >= 2: filename = argv[1] theme = Theme(filename) if filename: theme.info('Info about theme "{0}":'.format(filename)) else: theme.info('Info about current theme:') elif argv[0] == 'show': filename = None if len(argv) >= 2: filename = argv[1] theme = Theme(filename) if filename: theme.show('Content of theme "{0}":'.format(filename)) else: theme.show('Content of current theme:') elif argv[0] == 'installfile': theme = Theme() theme.save(theme_config_get_undo()) theme = Theme(argv[1]) if theme.isok(): theme.install() elif argv[0] == 'update': theme_update() elif argv[0] == 'undo': theme = Theme(theme_config_get_undo()) if theme.isok(): theme.install() elif argv[0] == 'save': theme = Theme() theme.save(argv[1]) elif argv[0] == 'backup': theme = Theme() theme.save(theme_config_get_backup()) elif argv[0] == 'restore': theme = Theme(theme_config_get_backup()) if theme.isok(): theme.install() elif argv[0] == 'export': htheme = HtmlTheme() whitebg = False htmlfile = argv[1] argv2 = args.strip().split(' ', 2) if len(argv2) >= 3 and argv2[1] == 'white': whitebg = True htmlfile = argv2[2] htheme.save_html(htmlfile, whitebg) return weechat.WEECHAT_RC_OK
18,177
def get_unique_chemical_names(reagents): """Get the unique chemical species names in a list of reagents. The concentrations of these species define the vector space in which we sample possible experiments :param reagents: a list of perovskitereagent objects :return: a list of the unique chemical names in all of the reagent """ chemical_species = set() if isinstance(reagents, dict): reagents = [v for v in reagents.values()] for reagent in reagents: chemical_species.update(reagent.chemicals) return sorted(list(chemical_species))
18,178
def get_sorted_keys(dict_to_sort): """Gets the keys from a dict and sorts them in ascending order. Assumes keys are of the form Ni, where N is a letter and i is an integer. Args: dict_to_sort (dict): dict whose keys need sorting Returns: list: list of sorted keys from dict_to_sort """ sorted_keys = list(dict_to_sort.keys()) sorted_keys.sort(key=lambda x: int(x[1:])) return sorted_keys
18,179
def model_3d(psrs, psd='powerlaw', noisedict=None, components=30, gamma_common=None, upper_limit=False, bayesephem=False, wideband=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3D from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Monopole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 3. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # red noise s = red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='hd', name='gw') # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='monopole', name='monopole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # timing model s += gp_signals.TimingModel() # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not wideband: s2 = s + white_noise_block(vary=False, inc_ecorr=True) models.append(s2(p)) else: s3 = s + white_noise_block(vary=False, inc_ecorr=False) models.append(s3(p)) # set up PTA pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta
18,180
def max_votes(x): """ Return the maximum occurrence of predicted class. Notes ----- If number of class 0 prediction is equal to number of class 1 predictions, NO_VOTE will be returned. E.g. Num_preds_0 = 25, Num_preds_1 = 25, Num_preds_NO_VOTE = 0, returned vote : "NO_VOTE". """ if x['Num_preds_0'] > x['Num_preds_1'] and x['Num_preds_0'] > x['Num_preds_NO_VOTE']: return 0 elif x['Num_preds_1'] > x['Num_preds_0'] and x['Num_preds_1'] > x['Num_preds_NO_VOTE']: return 1 else: return 'NO_VOTE'
18,181
def misclassification_error(y_true: np.ndarray, y_pred: np.ndarray, normalize: bool = True) -> float: """ Calculate misclassification loss Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values normalize: bool, default = True Normalize by number of samples or not Returns ------- Misclassification of given predictions """ n = y_true.shape[-1] counter = np.ones_like(y_true) error = counter[y_true!=y_pred].sum(axis=-1) return error / n if normalize else error
18,182
def dunif(x, minimum=0,maximum=1): """ Calculates the point estimate of the uniform distribution """ from scipy.stats import uniform result=uniform.pdf(x=x,loc=minimum,scale=maximum-minimum) return result
18,183
def fatal(msg): """ Print an error message and die """ global globalErrorHandler globalErrorHandler._fatal(msg)
18,184
def _generate_upsert_sql(mon_loc): """ Generate SQL to insert/update. """ mon_loc_db = [(k, _manipulate_values(v, k in TIME_COLUMNS)) for k, v in mon_loc.items()] all_columns = ','.join(col for (col, _) in mon_loc_db) all_values = ','.join(value for (_, value) in mon_loc_db) update_query = ','.join(f"{k}={v}" for (k, v) in mon_loc_db if k not in ['AGENCY_CD', 'SITE_NO']) statement = ( f"MERGE INTO GW_DATA_PORTAL.WELL_REGISTRY_STG a " f"USING (SELECT '{mon_loc['AGENCY_CD']}' AGENCY_CD, '{mon_loc['SITE_NO']}' " f"SITE_NO FROM DUAL) b ON (a.AGENCY_CD = b.AGENCY_CD AND a.SITE_NO = b.SITE_NO) " f"WHEN MATCHED THEN UPDATE SET {update_query} WHEN NOT MATCHED THEN INSERT ({all_columns}) VALUES ({all_values})" ) return statement
18,185
def filtered_qs(func): """ #TODO: zrobić, obsługę funkcji z argumentami :param func: :return: """ @functools.wraps(func) def wrapped(self, *args, **kwargs): ret_qs = func(self) return ret_qs.filter(*args, **kwargs) return wrapped
18,186
def dict2obj(d): """Given a dictionary, return an object with the keys mapped to attributes and the values mapped to attribute values. This is recursive, so nested dictionaries are nested objects.""" top = type('dict2obj', (object,), d) seqs = tuple, list, set, frozenset for k, v in d.items(): if isinstance(v, dict): setattr( top, k, dict2obj(v) ) elif isinstance(v, seqs): setattr( top, k, type(v)(dict2obj(sj) if isinstance(sj, dict) else sj for sj in v) ) else: setattr(top, k, v) return top
18,187
async def paste(pstl): """ For .paste command, allows using dogbin functionality with the command. """ dogbin_final_url = "" match = pstl.pattern_match.group(1).strip() reply_id = pstl.reply_to_msg_id if not match and not reply_id: await pstl.edit("There's nothing to paste.") return if match: message = match elif reply_id: message = (await pstl.get_reply_message()).message # Dogbin await pstl.edit("`Pasting text . . .`") resp = post(DOGBIN_URL + "documents", data=message.encode('utf-8')) if resp.status_code == 200: response = resp.json() key = response['key'] dogbin_final_url = DOGBIN_URL + key if response['isUrl']: reply_text = ("`Pasted successfully!`\n\n" f"`Shortened URL:` {dogbin_final_url}\n\n" "Original(non-shortened) URLs`\n" f"`Dogbin URL`: {DOGBIN_URL}v/{key}\n") else: reply_text = ("`Pasted successfully!`\n\n" f"`Dogbin URL`: {dogbin_final_url}") else: reply_text = ("`Failed to reach Dogbin`") await pstl.edit(reply_text) if BOTLOG: await pstl.client.send_message( BOTLOG_CHATID, "Paste query `" + message + "` was executed successfully", )
18,188
def customized_algorithm_plot(experiment_name='finite_simple_sanity', data_path=_DEFAULT_DATA_PATH): """Simple plot of average instantaneous regret by agent, per timestep. Args: experiment_name: string = name of experiment config. data_path: string = where to look for the files. Returns: p: ggplot plot """ df = load_data(experiment_name, data_path) plt_df = (df.groupby(['t', 'agent']) .agg({'instant_regret': np.mean}) .reset_index()) plt_df['agent_new_name'] = plt_df.agent.apply(rename_agent) custom_labels = ['Laplace TS','Langevin TS','TS','bootstrap TS'] custom_colors = ["#E41A1C","#377EB8","#4DAF4A","#984EA3"] p = (gg.ggplot(plt_df) + gg.aes('t', 'instant_regret', colour='agent_new_name') + gg.geom_line(size=1.25, alpha=0.75) + gg.xlab('time period (t)') + gg.ylab('per-period regret') + gg.scale_color_manual(name='agent', labels = custom_labels,values=custom_colors)) return p
18,189
def main(target_dir=None): """ Read gyp files and create Android.mk for the Android framework's external/skia. @param target_dir Directory in which to place 'Android.mk'. If None, the file will be placed in skia's root directory. """ # Create a temporary folder to hold gyp and gypd files. Create it in SKIA_DIR # so that it is a sibling of gyp/, so the relationships between gyp files and # other files (e.g. platform_tools/android/gyp/dependencies.gypi, referenced # by android_deps.gyp as a relative path) is unchanged. # Use mkdtemp to find an unused folder name, but then delete it so copytree # can be called with a non-existent directory. tmp_folder = tempfile.mkdtemp(dir=SKIA_DIR) os.rmdir(tmp_folder) shutil.copytree(os.path.join(SKIA_DIR, GYP_FOLDER), tmp_folder) try: main_gyp_file = 'android_framework_lib.gyp' print 'Creating Android.mk', # Generate a separate VarsDict for each architecture type. For each # archtype: # 1. call android_framework_gyp.main() to generate gypd files # 2. call parse_gypd to read those gypd files into the VarsDict # 3. delete the gypd files # # Once we have the VarsDict for each architecture type, we combine them all # into a single Android.mk file, which can build targets of any # architecture type. # The default uses a non-existant archtype, to find all the general # variable definitions. default_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'other', False) arm_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'arm', False) arm_neon_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'arm', True) x86_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'x86', False) mips_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'mips', False) arm64_var_dict = generate_var_dict(tmp_folder, main_gyp_file, 'arm64', False) # Compute the intersection of all targets. All the files in the intersection # should be part of the makefile always. Each dict will now contain trimmed # lists containing only variable definitions specific to that configuration. var_dict_list = [default_var_dict, arm_var_dict, arm_neon_var_dict, x86_var_dict, mips_var_dict, arm64_var_dict] common = vars_dict_lib.intersect(var_dict_list) # Create SkUserConfig user_config = os.path.join(SKIA_DIR, 'include', 'config', 'SkUserConfig.h') if target_dir: dst_dir = target_dir else: dst_dir = os.path.join(SKIA_DIR, 'include', 'core') generate_user_config.generate_user_config( original_sk_user_config=user_config, target_dir=dst_dir, ordered_set=common.DEFINES) # Now that the defines have been written to SkUserConfig, they are not # needed in Android.mk. common.DEFINES.reset() # Further trim arm_neon_var_dict with arm_var_dict. After this call, # arm_var_dict (which will now be the intersection) includes all definitions # used by both arm and arm + neon, and arm_neon_var_dict will only contain # those specific to arm + neon. arm_var_dict = vars_dict_lib.intersect([arm_var_dict, arm_neon_var_dict]) # Now create a list of VarsDictData holding everything but common. deviations_from_common = [] deviations_from_common.append(makefile_writer.VarsDictData( arm_var_dict, 'arm')) deviations_from_common.append(makefile_writer.VarsDictData( arm_neon_var_dict, 'arm', 'ARCH_ARM_HAVE_NEON')) deviations_from_common.append(makefile_writer.VarsDictData(x86_var_dict, 'x86')) # Currently, x86_64 is identical to x86 deviations_from_common.append(makefile_writer.VarsDictData(x86_var_dict, 'x86_64')) deviations_from_common.append(makefile_writer.VarsDictData(mips_var_dict, 'mips')) deviations_from_common.append(makefile_writer.VarsDictData(arm64_var_dict, 'arm64')) makefile_writer.write_android_mk(target_dir=target_dir, common=common, deviations_from_common=deviations_from_common) finally: shutil.rmtree(tmp_folder)
18,190
def write_var(db, blob_id, body): """ """ size = len(body) with open(make_path(blob_id), "wb") as f: f.write(body) cur = db.cursor() cur.execute("UPDATE objs SET size=?, status=? WHERE id=?", (size, STATUS_COMPLETE, blob_id)) db.commit()
18,191
def _get_log_time_scale(units): """Retrieves the ``log10()`` of the scale factor for a given time unit. Args: units (str): String specifying the units (one of ``'fs'``, ``'ps'``, ``'ns'``, ``'us'``, ``'ms'``, ``'sec'``). Returns: The ``log10()`` of the scale factor for the time unit. """ scale = {"fs": -15, "ps": -12, "ns": -9, "us": -6, "ms": -3, "sec": 0} units_lwr = units.lower() if units_lwr not in scale: raise ValueError(f"Invalid unit ({units}) provided") else: return scale[units_lwr]
18,192
def match_info_multithreading(): """ 多线程匹配信息 :return: """ start = 0 num = 100 total = vj['user'].count() thread_pool = [] while start < total: th = threading.Thread(target=match_info, args=(start, num)) thread_pool.append(th) start += num for th in thread_pool: th.start() for th in thread_pool: th.join()
18,193
def print_status(status): """ Helper function printing your status """ print("This is your status:") print("\n---\n") print("\n".join(l.strip() for l in status))
18,194
def resolvermatch(request): """Add the name of the currently resolved pattern to the RequestContext""" match = resolve(request.path) if match: return {'resolved': match} else: return {}
18,195
def create_vlan(host, port, user, password, interface, int_id, vlan, ip, mask, template, config): """Function to create a subinterface on CSR1000V.""" intfc = re.compile(r'^(\D+)(\d+)$') m = intfc.match(interface + int_id) if m is None: print("Invalid interface name. Valid example: ", BASE) sys.exit() # create the XML configuration issued via NETCONF create_xml_config(template, config, interface, int_id, vlan, ip, mask) # open the NETCONF session with manager.connect(host=host, port=port, username=user, password=password, hostkey_verify=False, device_params={'name': 'default'}, allow_agent=False, look_for_keys=False) as m: with open(config) as f: try: # issue the edit-config operation with the XML config rpc_reply = m.edit_config(target='running', config=f.read()) except Exception as e: print("Encountered the following RPC error!") print(e) sys.exit() # validate the RPC Reply returns "ok" if rpc_reply.ok is not True: print("Encountered a problem when configuring the device!") sys.exit()
18,196
def selection_sort(arr: list) -> list: """ Main sorting function. Using "find_smallest" function as part of the algorythm. :param arr: list to sort :return: sorted list """ new_arr = [] for index in range(len(arr)): smallest = find_smallest(arr) new_arr.append(arr.pop(smallest)) return new_arr
18,197
def get_primary_monitor(): """ Returns the primary monitor. Wrapper for: GLFWmonitor* glfwGetPrimaryMonitor(void); """ return _glfw.glfwGetPrimaryMonitor()
18,198
def query_people_and_institutions(rc, names): """Get the people and institutions names.""" people, institutions = [], [] for person_name in names: person_found = fuzzy_retrieval(all_docs_from_collection( rc.client, "people"), ["name", "aka", "_id"], person_name, case_sensitive=False) if not person_found: person_found = fuzzy_retrieval(all_docs_from_collection( rc.client, "contacts"), ["name", "aka", "_id"], person_name, case_sensitive=False) if not person_found: print( "WARNING: {} not found in contacts or people. Check aka".format( person_name)) else: people.append(person_found['name']) inst = fuzzy_retrieval(all_docs_from_collection( rc.client, "institutions"), ["name", "aka", "_id"], person_found["institution"], case_sensitive=False) if inst: institutions.append(inst["name"]) else: institutions.append(person_found.get("institution", "missing")) print("WARNING: {} missing from institutions".format( person_found["institution"])) else: people.append(person_found['name']) pinst = get_recent_org(person_found) inst = fuzzy_retrieval(all_docs_from_collection( rc.client, "institutions"), ["name", "aka", "_id"], pinst, case_sensitive=False) if inst: institutions.append(inst["name"]) else: institutions.append(pinst) print( "WARNING: {} missing from institutions".format( pinst)) return people, institutions
18,199