content
stringlengths
22
815k
id
int64
0
4.91M
def get_response_rows(response, template): """ Take in a list of responses and covert them to SSE.Rows based on the column type specified in template The template should be a list of the form: ["str", "num", "dual", ...] For string values use: "str" For numeric values use: "num" For dual values: "dual" """ response_rows = [] # For each row in the response list for row in response: i = 0 this_row = [] if len(template) > 1: # For each column in the row for col in row: # Convert values to type SSE.Dual according to the template list if template[i] == "str": if col is None: col = "\x00" elif type(col) is not str: col = "{0:.5f}".format(col) this_row.append(SSE.Dual(strData=col)) elif template[i] == "num": this_row.append(SSE.Dual(numData=col)) elif template[i] == "dual": this_row.append(SSE.Dual(strData=col, numData=col)) i = i + 1 else: # Convert values to type SSE.Dual according to the template list if template[0] == "str": if row is None: row = "\x00" elif type(row) is not str: row = "{0:.5f}".format(row) this_row.append(SSE.Dual(strData=row)) elif template[0] == "num": this_row.append(SSE.Dual(numData=row)) elif template[0] == "dual": this_row.append(SSE.Dual(strData=row, numData=row)) # Group columns into a iterable and add to the the response_rows response_rows.append(iter(this_row)) # Values are then structured as SSE.Rows response_rows = [SSE.Row(duals=duals) for duals in response_rows] return response_rows
18,000
def stations_within_radius(stations, centre, r): """function that returns a list of all stations (type MonitoringStation) within radius r of a geographic coordinate x.""" close_stations = [] for station in stations: if haversine(station.coord, centre) < float(r): close_stations.append(station) return close_stations
18,001
def get_pack_display_name(pack_id: str) -> str: """ Gets the display name of the pack from the pack ID. :param pack_id: ID of the pack. :return: Name found in the pack metadata, otherwise an empty string. """ metadata_path = os.path.join(PACKS_FULL_PATH, pack_id, PACK_METADATA_FILE) if pack_id and os.path.isfile(metadata_path): with open(metadata_path, 'r') as json_file: pack_metadata = json.load(json_file) return pack_metadata.get('name') return ''
18,002
async def test_delete_requires_admin(opp, opp_ws_client, opp_read_only_access_token): """Test delete requires admin.""" client = await opp_ws_client(opp, opp_read_only_access_token) await client.send_json( {"id": 5, "type": auth_ha.WS_TYPE_DELETE, "username": "test-user"} ) result = await client.receive_json() assert not result["success"], result assert result["error"]["code"] == "unauthorized"
18,003
def test_command_base(run_cli_process_launch_command, fixture_code, generate_calc_job_node): """Test invoking the calculation launch command with only required inputs.""" code = fixture_code('quantumespresso.pw2wannier90').store() calculation = generate_calc_job_node('quantumespresso.pw', test_name='default').store() nnkp_file = SinglefileData(io.BytesIO(b'content')).store() options = ['-X', code.full_label, '-P', calculation.outputs.remote_folder.pk, '-S', nnkp_file.pk] run_cli_process_launch_command(launch_calculation, options=options)
18,004
def tflite_conversion(model, tflite_path, conversion_type="fp32"): """Performs tflite conversion (fp32, int8).""" # Prepare model for inference model = prepare_model_for_inference(model) create_directories([os.path.dirname(tflite_path)]) converter = tf.lite.TFLiteConverter.from_keras_model(model) def representative_dataset_gen(input_dim): calib_data = [] for data in tqdm(training_data.take(1000), desc="model calibration"): input_data = data[0] for i in range(input_data.shape[1] // input_dim): input_chunks = [ input_data[:, i * input_dim: (i + 1) * input_dim, :, ] ] for chunk in input_chunks: calib_data.append([chunk]) return lambda: [ (yield data) for data in tqdm(calib_data, desc="model calibration") ] if conversion_type == "int8": log("Quantizing Model") (training_data, training_num_steps) = get_data("train", overlap=True) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.inference_input_type = tf.int8 converter.inference_output_type = tf.int8 converter.representative_dataset = representative_dataset_gen(model.input_shape[1]) tflite_model = converter.convert() open(tflite_path, "wb").write(tflite_model)
18,005
def jacobian(model, x, output_class): """ Compute the output_class'th row of a Jacobian matrix. In other words, compute the gradient wrt to the output_class. :param model: forward pass function. :param x: input tensor. :param output_class: the output_fz class we want to compute the gradients. :return: output_class'th row of the Jacobian matrix wrt x. """ xvar = replicate_input_withgrad(x) scores = model(xvar) # compute gradients for the class output_class wrt the input x # using backpropagation torch.sum(scores[:, output_class]).backward() return xvar.grad.detach().clone()
18,006
def get_ctf(bot, trigger): """See the CTF Login Information Params: uname email passwd teamid """ section = 'ctf' # Get section and option from first argument. arg1 = trigger.group(3).split('.') if len(arg1) == 1: section_name, option = "ctf", arg1[0] else: bot.reply("Usage: .get option") return section = getattr(bot.config, section_name) static_sec = isinstance(section, StaticSection) if static_sec and not hasattr(section, option): bot.say('[{}] section has no option {}.'.format(section_name, option)) return # Display current value if no value is given. value = trigger.group(4) if not value: if not static_sec and bot.config.parser.has_option(section, option): bot.reply("%s does not exist." % (option)) return value = getattr(section, option) bot.reply(value.strip("'")) return
18,007
def render_face_orthographic(mesh, background=None): """ mesh location should be normalized :param mesh: :param background: :return: """ mesh.visual.face_colors = np.array([0.05, 0.1, 0.2, 1]) mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False) # mesh = pyrender.Mesh.from_trimesh(mesh) scene.add(mesh, pose=np.eye(4)) camera_pose = np.eye(4) # camera_pose[0, 3] = 1 # camera_pose[1, 3] = 1 # camera_pose[2, 3] = -10 # camera_pose[0, 0] = 1 # camera_pose[1, 1] = -1 # camera_pose[2, 2] = -1 # # camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100) camera_pose[0, 3] = 1 camera_pose[1, 3] = 1 camera_pose[2, 3] = 10 camera_pose[0, 0] = 1 camera_pose[1, 1] = 1 camera_pose[2, 2] = 1 camera = pyrender.OrthographicCamera(xmag=1, ymag=1, zfar=100) scene.add(camera, pose=camera_pose) light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=5.0) scene.add(light, pose=camera_pose) color, depth = r.render(scene) scene.clear() # print(color.shape) color = np.array(color) color = color[::-1] if background is not None: new_color = np.array(background) new_color[color != 255] = color[color != 255] color = new_color return color
18,008
def do_servicegroup_show(cc, args): """Show a Service Group.""" try: servicegroup = cc.smc_servicegroup.get(args.servicegroup) except exc.HTTPNotFound: raise exc.CommandError('Service Group not found: %s' % args.servicegroup) except exc.Forbidden: raise exc.CommandError("Not authorized. The requested action " "requires 'admin' level") else: if servicegroup is None: print("Service group %s could not be found" % args.servicegroup) return if servicegroup.status: setattr(servicegroup, 'state', servicegroup.state + '-' + servicegroup.status) setattr(servicegroup, 'hostname', servicegroup.node_name) _print_servicegroup_show(servicegroup)
18,009
def check_and_join(phrase, symbols=None, filter=None): """ Joins characters of ``phrase`` and if ``symbols`` is given, raises an error if any character in ``phrase`` is not in ``symbols``. Parameters ========== phrase String or list of strings to be returned as a string. symbols Iterable of characters allowed in ``phrase``. If ``symbols`` is ``None``, no checking is performed. Examples ======== >>> from sympy.crypto.crypto import check_and_join >>> check_and_join('a phrase') 'a phrase' >>> check_and_join('a phrase'.upper().split()) 'APHRASE' >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True) 'ARAE' >>> check_and_join('a phrase!'.upper().split(), 'ARE') Traceback (most recent call last): ... ValueError: characters in phrase but not symbols: "!HPS" """ rv = ''.join(''.join(phrase)) if symbols is not None: symbols = check_and_join(symbols) missing = ''.join(list(sorted(set(rv) - set(symbols)))) if missing: if not filter: raise ValueError( 'characters in phrase but not symbols: "%s"' % missing) rv = translate(rv, None, missing) return rv
18,010
def rigs_from_file(filepath: str, sensor_ids: Optional[Set[str]] = None) -> kapture.Rigs: """ Reads rigs from CSV file. :param filepath: input file path :param sensor_ids: input set of valid sensor ids. If a rig id collides one of them, raise error. If a sensor in rig is not in sensor_ids, it is ignored. :return: rigs """ # rig_id, sensor_id, qw, qx, qy, qz, tx, ty, tz rigs = kapture.Rigs() with open(filepath) as file: table = table_from_file(file) for rig_id, sensor_id, qw, qx, qy, qz, tx, ty, tz in table: if sensor_ids is not None and rig_id in sensor_ids: raise ValueError(f'collision between a sensor ID and rig ID ({rig_id})') rotation = float_array_or_none([qw, qx, qy, qz]) translation = float_array_or_none([tx, ty, tz]) pose = kapture.PoseTransform(rotation, translation) rigs[str(rig_id), sensor_id] = pose if sensor_ids is not None: # expunge all undesired sensors rig_ids = set(rigs) for rig_id in rig_ids: for sensor_id in set(rigs[rig_id]): if sensor_id not in sensor_ids and sensor_id not in rig_ids: logger.debug(f'dropping sensor {sensor_id} from rig {rig_id} because it is unknown sensor.') del rigs[rig_id][sensor_id] return rigs
18,011
def drawLaneOnImage(img): """ Find and draw the lane lines on the image `img`. """ left_fit, right_fit, left_fit_m, right_fit_m, _, _, _, _, _ = findLines(img) output = drawLine(img, left_fit, right_fit) return cv2.cvtColor( output, cv2.COLOR_BGR2RGB )
18,012
def enthalpy_diff(SA, CT, p_shallow, p_deep): """ Calculates the difference of the specific enthalpy of seawater between two different pressures, p_deep (the deeper pressure) and p_shallow (the shallower pressure), at the same values of SA and CT. This function uses the computationally-efficient 48-term expression for density in terms of SA, CT and p (McDougall et al., 2011). The output (enthalpy_diff_CT) is the specific enthalpy evaluated at (SA, CT, p_deep) minus the specific enthalpy at (SA, CT, p_shallow). Parameters ---------- SA : array_like Absolute Salinity [g/kg] CT : array_like Conservative Temperature [:math:`^\circ` C (ITS-90)] p_shallow : array_like lower sea pressure [dbar] p_deep : array_like upper sea pressure [dbar] Returns ------- enthalpy_diff : array_like difference of specific enthalpy [J/kg] (deep minus shallow) Notes ----- The 48-term equation has been fitted in a restricted range of parameter space, and is most accurate inside the "oceanographic funnel" described in McDougall et al. (2011). The GSW library function "infunnel(SA, CT, p)" is available to be used if one wants to test if some of one's data lies outside this "funnel". Examples -------- TODO References ---------- .. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. See Eqns. (3.32.2) and (A.30.6). .. [2] McDougall T.J., P.M. Barker, R. Feistel and D.R. Jackett, 2011: A computationally efficient 48-term expression for the density of seawater in terms of Conservative Temperature, and related properties of seawater. """ SA = np.maximum(SA, 0) sqrtSA = np.sqrt(SA) a0 = (v21 + CT * (v22 + CT * (v23 + CT * (v24 + v25 * CT))) + SA * (v26 + CT * (v27 + CT * (v28 + CT * (v29 + v30 * CT))) + v36 * SA + sqrtSA * (v31 + CT * (v32 + CT * (v33 + CT * (v34 + v35 * CT)))))) a1 = v37 + CT * (v38 + CT * (v39 + v40 * CT)) + SA * (v41 + v42 * CT) a2 = v43 + CT * (v44 + v45 * CT + v46 * SA) a3 = v47 + v48 * CT b0 = (v01 + CT * (v02 + CT * (v03 + v04 * CT)) + SA * (v05 + CT * (v06 + v07 * CT) + sqrtSA * (v08 + CT * (v09 + CT * (v10 + v11 * CT))))) b1 = 0.5 * (v12 + CT * (v13 + v14 * CT) + SA * (v15 + v16 * CT)) b2 = v17 + CT * (v18 + v19 * CT) + v20 * SA b1sq = b1 * b1 sqrt_disc = np.sqrt(b1sq - b0 * b2) N = a0 + (2 * a3 * b0 * b1 / b2 - a2 * b0) / b2 M = a1 + (4 * a3 * b1sq / b2 - a3 * b0 - 2 * a2 * b1) / b2 A = b1 - sqrt_disc B = b1 + sqrt_disc delta_p = p_deep - p_shallow p_sum = p_deep + p_shallow part1 = b0 + p_shallow * (2 * b1 + b2 * p_shallow) part2 = (B + b2 * p_deep) * (A + b2 * p_shallow) part3 = (N * b2 - M * b1) / (b2 * (B - A)) # This function calculates enthalpy_diff using the computationally # efficient 48-term expression for density in terms of SA, CT and p. If one # wanted to compute the enthalpy difference using the full TEOS-10 Gibbs # function, the following lines of code will enable this. # pt = pt_from_CT(SA, CT) # t_shallow = pt_from_t(SA, pt, 0, p_shallow) # t_deep = pt_from_t(SA, pt, 0, p_deep) # enthalpy_diff = (enthalpy_t_exact(SA, t_deep, p_deep) - # enthalpy_t_exact(SA, t_shallow, p_shallow)) # or call the following, it is identical to the lines above. # enthalpy_diff = enthalpy_diff_CT_exact(SA, CT, p_shallow, p_deep) return db2Pascal * (delta_p * (a2 - 2 * a3 * b1 / b2 + 0.5 * a3 * p_sum) / b2 + (M / (2 * b2)) * np.log(1 + delta_p * (2 * b1 + b2 * p_sum) / part1) + part3 * np.log(1 + delta_p * b2 * (B - A) / part2))
18,013
def zipdir(path, zippath): """ walkfiles = os.walk(path) zippath = zipfile.ZipFile(zippath, 'w') for root, dirs, files in walkfiles: for filename in files: zippath.write(os.path.join(root, filename)) """ execStr = ['zip', '-r',zippath, path] print(' '.join(execStr)) proc = subprocess.Popen(execStr, stdout=PIPE, stderr=PIPE) (output, error) = proc.communicate() if error: print ('error: '+ error) print('output: '+ output)
18,014
def ss(a, axis=0): ### taken from SciPy """Squares each value in the passed array, adds these squares, and returns the result. Parameters ---------- a : array axis : int or None Returns ------- The sum along the given axis for (a*a). """ a, axis = _chk_asarray(a, axis) return numpy.sum(a*a, axis)
18,015
def main(): """main""" args = get_args() tsv_files = args.tsv_file dbname = args.dbname if not os.path.isfile(dbname): print('Bad --dbname "{}"'.format(dbname)) sys.exit(1) db = sqlite3.connect(dbname) for fnum, tsv_file in enumerate(tsv_files): if not os.path.isfile(tsv_file): print('Bad tsv_file "{}"'.format(tsv_file)) sys.exit(1) sample_name, ext = os.path.splitext(tsv_file) if ext != '.tsv': print('"{}" does not end with ".tsv"'.format(tsv_file)) sys.exit(1) if sample_name.endswith('.centrifuge'): sample_name = re.sub(r'\.centrifuge$', '', sample_name) sample_id = import_sample(sample_name, db) print('{:3}: Importing "{}" ({})'.format(fnum + 1, sample_name, sample_id)) import_tsv(db, tsv_file, sample_id) print('Done')
18,016
def Journaling_TypeInfo(): """Journaling_TypeInfo() -> RTTI""" return _DataModel.Journaling_TypeInfo()
18,017
def _maven_artifact( group, artifact, version, ownership_tag = None, packaging = None, classifier = None, exclusions = None, neverlink = None, testonly = None, tags = None, flatten_transitive_deps = None, aliases = None): """Defines maven artifact by coordinates. Args: group: The Maven artifact coordinate group name (ex: "com.google.guava"). artifact: The Maven artifact coordinate artifact name (ex: "guava"). version: The Maven artifact coordinate version name (ex: "1.20.1"). ownership_tag: 3rd party dependency owner responsible for its maintenance. packaging:The Maven artifact coordinate packaging name (ex: "jar"). classifier: The Maven artifact coordinate classifier name (ex: "jdk11"). exclusions: Artifact dependencies to be excluded from resolution closure. neverlink: neverlink value to set, testonly: testonly value to set. tags: Target tags. flatten_transitive_deps: Define all transitive deps as direct deps. aliases: aliases that will point to this dep. """ maven_artifact = {} maven_artifact["group"] = group maven_artifact["artifact"] = artifact maven_artifact["version"] = version maven_artifact["aliases"] = aliases maven_artifact["tags"] = tags maven_artifact["flatten_transitive_deps"] = flatten_transitive_deps if packaging != None: maven_artifact["packaging"] = packaging if classifier != None: maven_artifact["classifier"] = classifier if exclusions != None: maven_artifact["exclusions"] = exclusions if neverlink != None: maven_artifact["neverlink"] = neverlink if testonly != None: maven_artifact["testonly"] = testonly if ownership_tag != None: maven_artifact["ownership_tag"] = ownership_tag return maven_artifact
18,018
def docmdnf(cmd): """Execute a command.""" if flag_echo: sys.stderr.write("executing: " + cmd + "\n") if flag_dryrun: return 0 return u.docmdnf(cmd)
18,019
def get_anchors(n): """Get a list of NumPy arrays, each of them is an anchor node set""" m = int(np.log2(n)) anchor_set_id = [] for i in range(m): anchor_size = int(n / np.exp2(i + 1)) for _ in range(m): anchor_set_id.append(np.random.choice(n, size=anchor_size, replace=False)) return anchor_set_id
18,020
def diag_gaussian_log_likelihood(z, mu=0.0, logvar=0.0): """Log-likelihood under a Gaussian distribution with diagonal covariance. Returns the log-likelihood for each dimension. One should sum the results for the log-likelihood under the full multidimensional model. Args: z: The value to compute the log-likelihood. mu: The mean of the Gaussian logvar: The log variance of the Gaussian. Returns: The log-likelihood under the Gaussian model. """ return -0.5 * (logvar + np.log(2*np.pi) + \ tf.square((z-mu)/tf.exp(0.5*logvar)))
18,021
def _filter_option_to_config_setting(flt, setting): """ Encapsulates the logic for associating a filter database option with the filter setting from relay_config :param flt: the filter :param setting: the option deserialized from the database :return: the option as viewed from relay_config """ if setting is None: raise ValueError("Could not find filter state for filter {0}." " You need to register default filter state in projectoptions.defaults.".format(flt.spec.id)) is_enabled = setting != '0' ret_val = { 'is_enabled': is_enabled } # special case for legacy browser. # If the number of special cases increases we'll have to factor this functionality somewhere if flt.spec.id == FilterStatKeys.LEGACY_BROWSER: if is_enabled: if setting == '1': # old style filter ret_val['default_filter'] = True else: # new style filter, per legacy browser type handling # ret_val['options'] = setting.split(' ') ret_val['options'] = list(setting) return ret_val
18,022
def write_config(conf, output_file): """Write documentation to yaml file.""" with open(output_file, 'w') as ofh: yaml.dump(conf, ofh, default_flow_style=False)
18,023
def get_svg(accession, **kwargs): """ Returns a HMM sequence logo in SVG format. Parameters ---------- accession : str Pfam accession for desired HMM. **kwargs : Additional arguments are passed to :class:`LogoPlot`. """ logoplot = plot.LogoPlot(accession, **kwargs) svg = logoplot.get_svg() return svg
18,024
def wl_to_en( l ): """ Converts a wavelength, given in nm, to an energy in eV. :param l: The wavelength to convert, in nm. :returns: The corresponding energy in eV. """ a = phys.physical_constants[ 'electron volt-joule relationship' ][ 0 ] # J return phys.Planck* phys.c/( a* l* 1e-9 )
18,025
def get_local_address_reaching(dest_ip: IPv4Address) -> Optional[IPv4Address]: """Get address of a local interface within same subnet as provided address.""" for iface in netifaces.interfaces(): for addr in netifaces.ifaddresses(iface).get(netifaces.AF_INET, []): iface = IPv4Interface(addr["addr"] + "/" + addr["netmask"]) if dest_ip in iface.network: return iface.ip return None
18,026
def atSendCmdTest(cmd_name: 'str', params: 'list'): """ 发送测试命令,方便调试 ATCore """ func_name = 'atSendCmdTest' atserial.ATraderCmdTest_send(cmd_name, params) res = recv_serial(func_name) atReturnChecker(func_name, res.result) return res.listResult
18,027
def action_pool_nodes_del( batch_client, config, all_start_task_failed, all_starting, all_unusable, nodeid): # type: (batchsc.BatchServiceClient, dict, bool, bool, bool, list) -> None """Action: Pool Nodes Del :param azure.batch.batch_service_client.BatchServiceClient batch_client: batch client :param dict config: configuration dict :param bool all_start_task_failed: delete all start task failed nodes :param bool all_starting: delete all starting nodes :param bool all_unusable: delete all unusable nodes :param list nodeid: list of nodeids to delete """ _check_batch_client(batch_client) if ((all_start_task_failed or all_starting or all_unusable) and nodeid is not None): raise ValueError( 'cannot specify all start task failed nodes or unusable with ' 'a specific node id') batch.del_nodes( batch_client, config, all_start_task_failed, all_starting, all_unusable, nodeid)
18,028
def unlabeled_balls_in_unlabeled_boxes(balls, box_sizes): """ OVERVIEW This function returns a generator that produces all distinct distributions of indistinguishable balls among indistinguishable boxes, with specified box sizes (capacities). This is a generalization of the most common formulation of the problem, where each box is sufficiently large to accommodate all of the balls. It might be asked, 'In what sense are the boxes indistinguishable if they have different capacities?' The answer is that the box capacities must be considered when distributing the balls, but once the balls have been distributed, the identities of the boxes no longer matter. CONSTRUCTOR INPUTS n: the number of balls box_sizes: This argument is a list of length 1 or greater. The length of the list corresponds to the number of boxes. `box_sizes[i]` is a positive integer that specifies the maximum capacity of the ith box. If `box_sizes[i]` equals `n` (or greater), the ith box can accommodate all `n` balls and thus effectively has unlimited capacity. NOTE For `unlabeled_balls_in_unlabeled_boxes`, the order of the elements of the `box_sizes` list is unimportant because the code will sort it into non- increasing order before any other processing is done. """ if not isinstance(balls, int): raise TypeError("balls must be a non-negative integer.") if balls < 0: raise ValueError("balls must be a non-negative integer.") if not isinstance(box_sizes, (list, tuple)): raise ValueError("box_sizes must be a non-empty list or tuple.") capacity= 0 for size in box_sizes: if not isinstance(size, int): raise TypeError("box_sizes must contain only positive integers.") if size < 1: raise ValueError("box_sizes must contain only positive integers.") capacity+= size if capacity < balls: raise ValueError("The total capacity of the boxes is less than the " "number of balls to be distributed.") # Sort the box sizes so that the values decrease: box_sizes= sorted(box_sizes, reverse=True) return _unlabeled_balls_in_unlabeled_boxes(balls, box_sizes)
18,029
def find_notebooks(path): """Yield all the notebooks in a directory Yields the path relative to the given directory """ for parent, dirs, files in os.walk(path): if ".ipynb_checkpoints" in parent.split(os.path.sep): # skip accidentally committed checkpoints continue for fname in files: if fname.endswith(".ipynb"): yield os.path.relpath(os.path.join(parent, fname), path)
18,030
def get_version(): """Extract current version from __init__.py.""" with open("morphocell/__init__.py", encoding="utf-8") as fid: for line in fid: if line.startswith("__version__"): VERSION = line.strip().split()[-1][1:-1] break return VERSION
18,031
def sessions_speakers(transaction): """ GET /sessions/1/speakers :param transaction: :return: """ with stash['app'].app_context(): speaker = SpeakerFactory() db.session.add(speaker) db.session.commit()
18,032
def run(length, width, height, fps, level, observation_spec): """Spins up an environment and runs the random agent.""" env = deepmind_lab.Lab( level, [observation_spec], config={ 'fps': str(fps), 'width': str(width), 'height': str(height) }) env.reset() agent = DiscretizedRandomAgent() reward = 0 t0 = time.time() for _ in xrange(length): if not env.is_running(): print('Environment stopped early') env.reset() agent.reset() obs = env.observations() action = agent.step(reward, obs[observation_spec]) reward = env.step(action, num_steps=1) t1 = time.time() duration = t1 - t0 print('resolution: %i x %i, spec: %s, steps: %i, duration: %.1f, fps: %.1f' % (width, height, observation_spec, length, duration, length / duration))
18,033
def get_neighbor_v4_by_id(obj_id): """Return an NeighborV4 by id. Args: obj_id: Id of NeighborV4 """ try: obj = NeighborV4.get_by_pk(id=obj_id) except NeighborV4NotFoundError as e: raise NeighborV4DoesNotExistException(str(e)) return obj
18,034
def get_resources_json_obj(resource_name: str) -> Dict: """ Get a JSON object of a specified resource. :param resource_name: The name of the resource. :returns: The JSON object (in the form of a dictionary). :raises Exception: An exception is raised if the specified resources does not exist. """ resource_map = _get_resources(_get_resources_json()["resources"]) if resource_name not in resource_map: raise Exception( "Error: Resource with name '{}' does not exist".format( resource_name ) ) return resource_map[resource_name]
18,035
def skip_if(predicate, reason=None): """Skip a test if predicate is true.""" reason = reason or predicate.__name__ def decorate(fn): fn_name = fn.__name__ def maybe(*args, **kw): if predicate(): msg = "'%s' skipped: %s" % (fn_name, reason) raise SkipTest(msg) else: return fn(*args, **kw) return update_wrapper(maybe, fn) return decorate
18,036
def synthesized_uvw(ants, time, phase_dir, auto_correlations): """ Synthesizes new UVW coordinates based on time according to NRAO CASA convention (same as in fixvis) User should check these UVW coordinates carefully: if time centroid was used to compute original uvw coordinates the centroids of these new coordinates may be wrong, depending on whether data timesteps were heavily flagged. """ pytest.importorskip('pyrap') from pyrap.measures import measures from pyrap.quanta import quantity as q dm = measures() epoch = dm.epoch("UT1", q(time[0], "s")) ref_dir = dm.direction("j2000", q(phase_dir[0], "rad"), q(phase_dir[1], "rad")) ox, oy, oz = ants[0] obs = dm.position("ITRF", q(ox, "m"), q(oy, "m"), q(oz, "m")) # Setup local horizon coordinate frame with antenna 0 as reference position dm.do_frame(obs) dm.do_frame(ref_dir) dm.do_frame(epoch) ant1, ant2 = np.triu_indices(ants.shape[0], 0 if auto_correlations else 1) ant1 = ant1.astype(np.int32) ant2 = ant2.astype(np.int32) ntime = time.shape[0] nbl = ant1.shape[0] rows = ntime * nbl uvw = np.empty((rows, 3), dtype=np.float64) # For each timestep for ti, t in enumerate(time): epoch = dm.epoch("UT1", q(t, "s")) dm.do_frame(epoch) ant_uvw = np.zeros_like(ants) # Calculate antenna UVW positions for ai, (x, y, z) in enumerate(ants): bl = dm.baseline("ITRF", q([x, ox], "m"), q([y, oy], "m"), q([z, oz], "m")) ant_uvw[ai] = dm.to_uvw(bl)["xyz"].get_value()[0:3] # Now calculate baseline UVW positions # noting that ant1 - ant2 is the CASA convention base = ti*nbl uvw[base:base + nbl, :] = ant_uvw[ant1] - ant_uvw[ant2] return ant1, ant2, uvw
18,037
def execute_pso_strategy(df, options, topology, retrain_params, commission, data_name, s_test, e_test, iters=100, normalization='exponential'): """ Execute particle swarm optimization strategy on data history contained in df :param df: dataframe with historical data :param options: dict with the following parameters - c1 - cognitive parameter with which the particle follows its personal best - c2 - social parameter with which the particle follows the swarm's global best position - w - parameter that controls the inertia of the swarm's movement :param commision: commission to be paid on each operation :param data_name: quote data name :param start_date: start date of simulation :param end_date: end date of simulation :return: - PSO_Cerebro - execution engine - PSO_Strategy - pso strategy instance """ print_execution_name("Estrategia: particle swar optimization") strategy_name = 'particle_swarm_optimization' info = { 'Mercado': data_name, 'Estrategia': strategy_name, 'Fecha inicial': s_test, 'Fecha final': e_test } # ------------ Obtenemos los conjuntos de train y test ------------ # s_test_date = datetime.strptime(s_test, '%Y-%m-%d') s_train = s_test_date.replace(year = s_test_date.year - 2) #s_train = s_test_date - timedelta(days=180) e_train = s_test_date - timedelta(days=1) gen_representation = GeneticRepresentation(df, s_train, e_train, s_test, e_test) # ------------ Fijamos hiperparámetros ------------ # n_particles = topology['particles'] num_neighbours = topology['neighbours'] minkowski_p_norm = 2 options['k'] = num_neighbours options['p'] = minkowski_p_norm dimensions=len(gen_representation.moving_average_rules)+2 if normalization == 'exponential': max_bound = 2.0 * np.ones(dimensions-2) min_bound = -max_bound elif normalization == 'l1': max_bound = 2.0 * np.ones(dimensions-2) min_bound = np.zeros(dimensions-2) max_bound = np.append(max_bound, [0.9, 0.0]) min_bound = np.append(min_bound, [0.0, -0.9]) bounds = (min_bound, max_bound) # Call instance of PSO optimizer = ps.single.LocalBestPSO(n_particles=n_particles, dimensions=dimensions, options=options, bounds=bounds, static=True) # Perform optimization kwargs={'from_date': s_train, 'to_date': e_train, 'normalization': normalization} best_cost, best_pos = optimizer.optimize(gen_representation.cost_function, iters=iters, n_processes=2, **kwargs) # Create an instance from CombinedSignalStrategy class and assign parameters PSO_Strategy = CombinedSignalStrategy w, buy_threshold, sell_threshold = get_split_w_threshold(best_pos) """ print("Umbral de compra: ", buy_threshold) print("Umbral de venta: ", sell_threshold) crosses = ["(" + str(cross[0]) + ", " + str(cross[1]) + ")" for cross in gen_representation.moving_average_rules] y_pos = np.arange(len(crosses)) plt.bar(y_pos, w) plt.xticks(y_pos, crosses) plt.xticks(rotation='vertical') plt.subplots_adjust(top=0.98, bottom=0.2, left=0.08, right=0.98, hspace=0.0, wspace=0.0) plt.show() """ PSO_Strategy.w = w PSO_Strategy.buy_threshold = buy_threshold PSO_Strategy.sell_threshold = sell_threshold PSO_Strategy.moving_average_rules = gen_representation.moving_average_rules PSO_Strategy.moving_averages = gen_representation.moving_averages_test PSO_Strategy.optimizer = optimizer PSO_Strategy.gen_representation = gen_representation PSO_Strategy.normalization = normalization PSO_Strategy.retrain_params = retrain_params df_test = gen_representation.df_test df_train = gen_representation.df_train PSO_Cerebro = execute_strategy(PSO_Strategy, df_test, commission, info, retrain_params) return PSO_Cerebro, PSO_Strategy
18,038
def human_turn(c_choice, h_choice): """ The Human plays choosing a valid move. :param c_choice: computer's choice X or O :param h_choice: human's choice X or O :return: """ depth = len(empty_cells(board)) if depth == 0 or game_over(board): return # Dictionary of valid moves move = -1 moves = { 1: [0, 0], 2: [0, 1], 3: [0, 2], 4: [1, 0], 5: [1, 1], 6: [1, 2], 7: [2, 0], 8: [2, 1], 9: [2, 2], } clean() print(f'Human turn [{h_choice}]') render(board, c_choice, h_choice) while move < 1 or move > 9: try: move = int(input('Use numpad (1..9): ')) coord = moves[move] can_move = set_move(coord[0], coord[1], HUMAN) if not can_move: print('Bad move') move = -1 except (EOFError, KeyboardInterrupt): print('Bye') exit() except (KeyError, ValueError): print('Bad choice')
18,039
def env_get(d, key, default, decoders=decoders, required=None): """ Look up ``key`` in ``d`` and decode it, or return ``default``. """ if required is None: required = isinstance(default, type) try: value = d[key] except KeyError: if required: raise return default dt = (default if default is None or isinstance(default, type) else type(default)) for decoder in decoders: if (decoder.decodes_to_type(dt) and decoder.decodes_from_value(value) ): try: return decoder.decode(value) except Exception as e: logger.error("%s couldn't convert %s: %s: %s", decoder.__class__.__name__, key, e.__class__.__name__, e) raise raise ValueError("no suitable env decoder for {}".format(key))
18,040
def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \ tUnion[TMP_RES, tTuple[int, int]]: """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ from sympy.functions.elementary.complexes import re, im # The expression is likely less than 2^30 or so assumed_size = 30 result = evalf(expr, assumed_size, options) if result is S.ComplexInfinity: raise ValueError("Cannot get integer part of Complex Infinity") ire, iim, ire_acc, iim_acc = result # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) elif ire: gap = fastlog(ire) - ire_acc elif iim: gap = fastlog(iim) - iim_acc else: # ... or maybe the expression was exactly zero if return_ints: return 0, 0 else: return None, None, None, None margin = 10 if gap >= -margin: prec = margin + assumed_size + gap ire, iim, ire_acc, iim_acc = evalf( expr, prec, options) else: prec = assumed_size # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close). def calc_part(re_im: 'Expr', nexpr: MPF_TUP): from .add import Add _, _, exponent, _ = nexpr is_int = exponent == 0 nint = int(to_int(nexpr, rnd)) if is_int: # make sure that we had enough precision to distinguish # between nint and the re or im part (re_im) of expr that # was passed to calc_part ire, iim, ire_acc, iim_acc = evalf( re_im - nint, 10, options) # don't need much precision assert not iim size = -fastlog(ire) + 2 # -ve b/c ire is less than 1 if size > prec: ire, iim, ire_acc, iim_acc = evalf( re_im, size, options) assert not iim nexpr = ire nint = int(to_int(nexpr, rnd)) _, _, new_exp, _ = ire is_int = new_exp == 0 if not is_int: # if there are subs and they all contain integer re/im parts # then we can (hopefully) safely substitute them into the # expression s = options.get('subs', False) if s: doit = True # use strict=False with as_int because we take # 2.0 == 2 for v in s.values(): try: as_int(v, strict=False) except ValueError: try: [as_int(i, strict=False) for i in v.as_real_imag()] continue except (ValueError, AttributeError): doit = False break if doit: re_im = re_im.subs(s) re_im = Add(re_im, -nint, evaluate=False) x, _, x_acc, _ = evalf(re_im, 10, options) try: check_target(re_im, (x, None, x_acc, None), 3) except PrecisionExhausted: if not re_im.equals(0): raise PrecisionExhausted x = fzero nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, INF re_, im_, re_acc, im_acc = None, None, None, None if ire: re_, re_acc = calc_part(re(expr, evaluate=False), ire) if iim: im_, im_acc = calc_part(im(expr, evaluate=False), iim) if return_ints: return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) return re_, im_, re_acc, im_acc
18,041
def validate_tree(tree): """Checks the validty of the tree. Parameters ---------- tree : bp.BP The tree to validate """ # this is currently untested since we can't actually parse a tree of this # nature: https://github.com/wasade/improved-octo-waddle/issues/29 if len(tree) <= 1: raise ValueError("Tree must contain at least 2 nodes.") # While traversing the tree, record tip / internal node names # (Nodes without names are ignored, since we'll assign those later # using tools.fill_missing_node_names()) tip_names = [] internal_node_names = [] max_branch_length = 0 # do not include the root in these checks for i in range(1, len(tree)): node = tree.postorderselect(i) name = tree.name(node) length = tree.length(node) if name is not None: if isleaf(tree, node): tip_names.append(name) else: internal_node_names.append(name) if length < 0: raise ValueError( "Non-root branches of the tree must have nonnegative " "lengths." ) max_branch_length = max(length, max_branch_length) # We didn't consider the root node in the above traversal since we # don't care about its length. However, we do care about its name, # so we add the root's name to internal_node_names. internal_node_names.append(tree.name(tree.postorderselect(i + 1))) if max_branch_length == 0: raise ValueError( "At least one non-root branch of the tree must have a " "positive length." ) unique_tip_name_set = set(tip_names) if len(unique_tip_name_set) != len(tip_names): raise ValueError("Tip names in the tree must be unique.") unique_internal_node_name_set = set(internal_node_names) if len(unique_tip_name_set & unique_internal_node_name_set) > 0: raise ValueError( "Tip names in the tree cannot overlap with internal node " "names." ) if len(unique_internal_node_name_set) != len(internal_node_names): warnings.warn( "Internal node names in the tree are not unique.", TreeFormatWarning ) return
18,042
def doPrimaryClick(releaseDelay: Optional[float] = None): """ Performs a primary mouse click at the current mouse pointer location. The primary button is the one that usually activates or selects an item. This function honors the Windows user setting for which button (left or right) is classed as the primary button. @ param releaseDelay: optional float in seconds of how long NVDA should sleep between pressing down and then releasing up the primary button. """ buttonFlags = getLogicalButtonFlags() _doClick(buttonFlags.primaryDown, buttonFlags.primaryUp, releaseDelay)
18,043
def inv_last_roundf(ns): """ ns -> States of nibbles Predict the states of nibbles after passing through the inverse last round of SomeCipher. Refer to `last_roundf()` for more details. """ return inv_shift_row(ns)
18,044
def get_screen(name, layer=None): """ :doc: screens Returns the ScreenDisplayable with the given `name` on layer. `name` is first interpreted as a tag name, and then a screen name. If the screen is not showing, returns None. This can also take a list of names, in which case the first screen that is showing is returned. This function can be used to check if a screen is showing:: if renpy.get_screen("say"): text "The say screen is showing." else: text "The say screen is hidden." """ if layer is None: layer = get_screen_layer(name) if isinstance(name, basestring): name = (name,) sl = renpy.exports.scene_lists() for tag in name: sd = sl.get_displayable_by_tag(layer, tag) if sd is not None: return sd for tag in name: sd = sl.get_displayable_by_name(layer, (tag,)) if sd is not None: return sd return None
18,045
def generate_address_full(chance=None, variation=False, format=1): """ Function to generate the full address of the profile. Args: chance: Integer between 1-100 used for realistic variation. (not required) variation: Boolean value indicating whether variation is requested. (optional) format: String value used to indicate required format. (optional) Options include: -1 (Str value) -2 (List value) Returns: The return value. String/List value containing the full address. """ if not chance: chance = random.randint(1,100) csv_file = open(canadian_data_file_name, 'r') csv_reader = csv.reader(csv_file, delimiter=',') random_row = random.choice(list(csv_reader)) csv_file.close() if format == 1 or format == "1": return "%s %s, %s, %s, %s" % (generate_street_number(row=random_row),generate_street_name(chance=chance, variation=variation,row=random_row),generate_city(chance=chance, variation=variation,row=random_row),generate_province(chance=chance, variation=variation,row=random_row),generate_postal_code(chance=chance, variation=variation,row=random_row)) elif format == 2 or format == "2": address_list=[] address_list.append(generate_street_number(row=random_row)) address_list.append(generate_street_name(variation,row=random_row)) address_list.append(generate_city(variation,row=random_row)) address_list.append(generate_province(variation,row=random_row)) address_list.append(generate_postal_code(variation,row=random_row)) return address_list
18,046
def add_book(book, order, size, _age = 10): """ Add a new order and size to a book, and age the rest of the book. """ yield order, size, _age for o, s, age in book: if age > 0: yield o, s, age - 1
18,047
def binder_url(repo, branch="master", filepath=None): """ Build a binder url. If filepath is provided, the url will be for the specific file. Parameters ---------- repo: str The repository in the form "username/reponame" branch: str, optional The branch, default "master" filepath: str, optional The path to a file in the repo, e.g. dir1/dir2/notebook.ipynb Returns ------- str A binder url that will launch a notebook server """ if filepath is not None: fpath = urllib.parse.quote(filepath, safe="%") return resources.BINDER_URL_TEMPLATE_WITH_FILEPATH.format( repo, branch, fpath ) else: return resources.BINDER_URL_TEMPLATE_NO_FILEPATH.format(repo, branch)
18,048
async def on_message_execute(message): """ The on_message function specifically handles messages that are sent to the bot. It checks if the message is a command, and then executes it if it is. :param self: Used to access the class' attributes and methods. :param message: Used to store information about the message. :return: None. """ if message.author.bot: return if isinstance(message.channel, DMChannel): return if re.search(r"(?i)^(?:hi|what\'s up|yo|hey|hello) lhbot", message.content): await message.channel.send("hello") if re.search( r"(?i)(?:the|this) (?:current )?year is " + r"(?:almost |basically )?(?:over|done|finished)", message.content, ): await message.channel.send(get_year_string()) if re.search(r"(?i)^you wanna fight, lhbot\?", message.content): await message.channel.send("bring it on pal (╯°□°)╯︵ ┻━┻") if re.search(r"(?i)^lhbot meow", message.content): await message.channel.send("ฅ^•ﻌ•^ฅ") if re.search( r"(?i)^lh what(?:\'s| is) the answer to life,? the universe and everything", message.content, ): await message.channel.send("42")
18,049
def _create_group_hub_without_avatar(_khoros_object, _api_url, _payload): """This function creates a group hub with only a JSON payload and no avatar image. .. versionadded:: 2.6.0 :param _khoros_object: The core :py:class:`khoros.Khoros` object :type _khoros_object: class[khoros.Khoros] :param _api_url: The API URL to utilize in the API request :type _api_url: str :param _payload: The JSON payload to be used in the API request :type _payload: dict :returns: The API response from the POST request :raises: :py:exc:`khoros.errors.exceptions.APIConnectionError`, :py:exc:`khoros.errors.exceptions.POSTRequestError` """ _headers = {'content-type': 'application/json'} _response = api.post_request_with_retries(_api_url, _payload, khoros_object=_khoros_object, headers=_headers) return _response
18,050
def ReplaceDirName(rootDir,startNumber=0): """Modify the folder name under the rootDir path. This function just change your Dir name in one loop. rootDir : The dir in your computer. startNumber: The DirName you want start( we set file name into number sequnce.) .If none, default = 0 # Returns Not,but printing change detail. """ num = startNumber dirs = os.listdir(rootDir) for dir in dirs: print('Old name is:' + dir) # 输出老的名字 num = num +1 temp = "%03d" % int(num) #The purpose is to unify the number into 3 digits, and add 0 before the insufficient oldName = os.path.join(rootDir, dir) # 老文件夹的名字 newName = os.path.join(rootDir, temp) # 新文件夹的名字 os.rename(oldName, newName) #替换
18,051
def ulstrip(text): """ Strip Unicode extended whitespace from the left side of a string """ return text.lstrip(unicode_extended_whitespace)
18,052
def deploy(verbosity='noisy'): """ Full server deploy. Updates the repository (server-side), synchronizes the database, collects static files and then restarts the web service. """ if verbosity == 'noisy': hide_args = [] else: hide_args = ['running', 'stdout'] with hide(*hide_args): puts('Updating repository...') execute(update) puts('Collecting static files...') execute(collectstatic) puts('Synchronizing database...') execute(migrate) puts('Restarting web server...') execute(restart) puts('Installing crontab...') execute(crontab)
18,053
def clone_dcm_meta(dcm): """ Copy an existing pydicom Dataset as a basis for saving another image :param dcm: the pydicom dataset to be copied :return: """ newdcm = pydi.Dataset() for k, v in dcm.items(): newdcm[k] = v newdcm.file_meta = mk_file_meta() newdcm.is_little_endian = True newdcm.is_implicit_VR = False newdcm.SOPInstanceUID = newdcm.file_meta.MediaStorageSOPInstanceUID newdcm.SOPClassUID = newdcm.file_meta.MediaStorageSOPClassUID return newdcm
18,054
def test_ingredients_limited_to_user(authenticated_user): """Test that ingredients returned are for authenticated user""" user, client = authenticated_user user2 = get_user_model().objects.create_user("other@test.com", "testpass") Ingredient.objects.create(user=user2, name="banana") ingredient = Ingredient.objects.create(user=user, name="orange") res = client.get(INGREDIENTS_URL) assert res.status_code == status.HTTP_200_OK assert len(res.data) == 1 assert res.data[0]["name"] == ingredient.name
18,055
def run_yosys_with_abc(): """ Execute yosys with ABC and optional blackbox support """ ys_params = create_yosys_params() yosys_template = args.yosys_tmpl if args.yosys_tmpl else os.path.join( cad_tools["misc_dir"], "ys_tmpl_yosys_vpr_flow.ys") tmpl = Template(open(yosys_template, encoding='utf-8').read()) with open("yosys.ys", 'w') as archfile: archfile.write(tmpl.safe_substitute(ys_params)) run_command("Run yosys", "yosys_output.log", [cad_tools["yosys_path"], 'yosys.ys'])
18,056
def load_plate(toml_path): """\ Parse a TOML-formatted configuration file defining how each well in a particular plate should be interpreted. Below is a list of the keys that are understood in the configuration file: 'xlsx_path' [string] The path to the XLSX file containing the plate reader data, relative to the configuration file itself. If not specified, this script will look for a file with the same name as the configuration file, but the '.xlsx' extension, e.g. 'abc.xlsx' if the config file is 'abc.toml'. 'template' [string] The path to another TOML file that should be interpreted as containing default values for all possible settings. 'notes' [string] A string that will be printed every time the file is visualized. This is meant to reminder the user of any details relating to this particular experiment (e.g. mistakes) that might affect interpretation of the data. The following keys relate to particular wells. Each of these keys can be specified in any of four kinds of block: [well.A1], [row.A], [col.1], and [plate]. The [well] block allows values to be set for individual wells ('A1' in this example). The [row] and [col] blocks allow values to be set for whole rows and columns ('A' and '1' in these examples). The [plate] block allows values to be set for the whole plate. The same value can be set multiple times, in which case the value from the most specific block will take precedence. """ import toml import itertools from pathlib import Path def recursive_merge(layout, defaults, overwrite=False): for key, default in defaults.items(): if isinstance(default, dict): layout.setdefault(key, {}) recursive_merge(layout[key], default) else: if overwrite or key not in layout: layout[key] = default def do_load_paths(toml_path, expected_ext='.xlsx'): toml_path = Path(toml_path).resolve() layout = toml.load(str(toml_path)) # Resolve the path(s) to actual data. if 'path' in layout and 'paths' in layout: raise ValueError(f"{toml_path} specifies both 'path' and 'paths'") elif 'path' in layout: path = toml_path.parent / layout['path'] layout['paths'] = {'default': path} elif 'paths' in layout: layout['paths'] = { toml_path.parent / x for x in layout['paths'] } else: default_path = toml_path.with_suffix(expected_ext) if default_path.exists(): layout['paths'] = {'default': default_path} # Include a remote file if one is specified. if 'template' in layout: layout['template'] = toml_path.parent / layout['template'] template = do_load_paths(layout['template']) recursive_merge(layout, template) return layout layout = do_load_paths(toml_path) # Apply any row or column defaults. if 'well' not in layout: layout['well'] = {} rows = layout.get('row', {}) cols = layout.get('col', {}) # Create new wells implied by the 'row' and 'col' blocks. for row, col in itertools.product(rows, cols): layout['well'].setdefault(f'{row}{col}', {}) # Update any existing wells. for well in layout.get('well', {}): row, col = well[:1], well[1:] recursive_merge(layout['well'][well], rows.get(row, {})) recursive_merge(layout['well'][well], cols.get(col, {})) # Apply any plate-wide defaults. layout.setdefault('plate', {}), for well in layout.get('well', {}): recursive_merge(layout['well'][well], layout['plate']) # If the experiment has any notes, print them out. if 'notes' in layout: print(toml_path) print(layout['notes'].strip()) print() return layout
18,057
def reduce_entropy(X, axis=-1): """ calculate the entropy over axis and reduce that axis :param X: :param axis: :return: """ return -1 * np.sum(X * np.log(X+1E-12), axis=axis)
18,058
def compile_pbt(lr: float = 5e-3, value_weight: float = 0.5): """ my default: 5e-3 # SAI: 1e-4 # KataGo: per-sample learning rate of 6e-5, except 2e-5 for the first 5mm samples """ input_shape = (N, N, dual_net.get_features_planes()) model = dual_net.build_model(input_shape) opt = keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=opt, loss={ 'policy': 'categorical_crossentropy', 'value': custom_BCE_loss}, loss_weights={ 'policy': 0.50, 'value': value_weight}, metrics={ 'policy': keras.metrics.CategoricalAccuracy(name="move_acc"), }) return model
18,059
def _hostnames() -> List[str]: """Returns all host names from the ansible inventory.""" return sorted(_ANSIBLE_RUNNER.get_hosts())
18,060
def memory(kdump_memory): """Set memory allocated for kdump capture kernel""" config_db = ConfigDBConnector() if config_db is not None: config_db.connect() config_db.mod_entry("KDUMP", "config", {"memory": kdump_memory})
18,061
def seabass_to_pandas(path): """SeaBASS to Pandas DataFrame converter Parameters ---------- path : str path to an FCHECKed SeaBASS file Returns ------- pandas.DataFrame """ sb = readSB(path) dataframe = pd.DataFrame.from_dict(sb.data) return dataframe
18,062
def countVisits(item, value=None): """This function takes a pandas.Series of item tags, and an optional string for a specific tag and returns a numpy.ndarray of the same size as the input, which contains either 1) a running count of unique transitions of item, if no target tag is given, or 2) a running count of the numer of entries to a run of target tag :param item: a pandas Series of labels of events :param value: optional value of the item to keep track of :return: a running count of the unique values of items if value==None, or a running count of the specific value """ # make sure item is a 1-D np array or a Pandas Series # if not isinstance(item, (pd.core.series.Series, np.ndarray) ): assert (isinstance(item, pd.core.series.Series)) # create counter; this saves time, apparently count = np.zeros((item.size), dtype=np.int) if value is None: # not specified, then we track any time item changes value count[np.where(item != item.shift())] = 1 else: # only when item==value count[np.where(np.logical_and(item != item.shift(), item == value))] = 1 return count.cumsum()
18,063
def test_atomic_unsigned_short_min_exclusive_4_nistxml_sv_iv_atomic_unsigned_short_min_exclusive_5_1(mode, save_output, output_format): """ Type atomic/unsignedShort is restricted by facet minExclusive with value 65534. """ assert_bindings( schema="nistData/atomic/unsignedShort/Schema+Instance/NISTSchema-SV-IV-atomic-unsignedShort-minExclusive-5.xsd", instance="nistData/atomic/unsignedShort/Schema+Instance/NISTXML-SV-IV-atomic-unsignedShort-minExclusive-5-1.xml", class_name="NistschemaSvIvAtomicUnsignedShortMinExclusive5", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
18,064
def test_run_inference(ml_runner_with_container: MLRunner, tmp_path: Path) -> None: """ Test that run_inference gets called as expected. """ def _expected_files_exist() -> bool: output_dir = ml_runner_with_container.container.outputs_folder if not output_dir.is_dir(): return False expected_files = ["test_mse.txt", "test_mae.txt"] return all([(output_dir / p).exists() for p in expected_files]) # create the test data import numpy as np import torch N = 100 x = torch.rand((N, 1)) * 10 y = 0.2 * x + 0.1 * torch.randn(x.size()) xy = torch.cat((x, y), dim=1) data_path = tmp_path / "hellocontainer.csv" np.savetxt(data_path, xy.numpy(), delimiter=",") expected_ckpt_path = ml_runner_with_container.container.outputs_folder / "checkpoints" / "last.ckpt" assert not expected_ckpt_path.exists() # update the container to look for test data at this location ml_runner_with_container.container.local_dataset_dir = tmp_path assert not _expected_files_exist() actual_train_ckpt_path = ml_runner_with_container.checkpoint_handler.get_recovery_or_checkpoint_path_train() assert actual_train_ckpt_path is None ml_runner_with_container.run() actual_train_ckpt_path = ml_runner_with_container.checkpoint_handler.get_recovery_or_checkpoint_path_train() assert actual_train_ckpt_path == expected_ckpt_path actual_test_ckpt_path = ml_runner_with_container.checkpoint_handler.get_checkpoints_to_test() assert actual_test_ckpt_path == [expected_ckpt_path] assert actual_test_ckpt_path[0].exists() # After training, the outputs directory should now exist and contain the 2 error files assert _expected_files_exist() # if no checkpoint handler, no checkpoint paths will be saved and these are required for # inference so ValueError will be raised with pytest.raises(ValueError) as e: ml_runner_with_container.checkpoint_handler = None # type: ignore ml_runner_with_container.run() assert "expects exactly 1 checkpoint for inference, but got 0" in str(e)
18,065
def gen_accel_table(table_def): """generate an acceleration table""" table = [] for i in range(1001): table.append(0) for limit_def in table_def: range_start, range_end, limit = limit_def for i in range(range_start, range_end + 1): table[i] = limit return table
18,066
def dataset_constructor( config: ml_collections.ConfigDict, ) -> Tuple[ torch.utils.data.Dataset, torch.utils.data.Dataset, torch.utils.data.Dataset ]: """ Create datasets loaders for the chosen datasets :return: Tuple (training_set, validation_set, test_set) """ dataset = { "AddProblem": AdditionProblem, "CopyMemory": CopyMemory, "MNIST": MNIST, "CIFAR10": CIFAR10, "SpeechCommands": SpeechCommands, "CharTrajectories": CharTrajectories, }[config.dataset] training_set = dataset( partition="train", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train, dropped_rate=config.drop_rate, ) test_set = dataset( partition="test", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train if config.sr_test == 0 else config.sr_test, # Test set can be sample differently. dropped_rate=config.drop_rate, ) if config.dataset in ["SpeechCommands", "CharTrajectories"]: validation_set = dataset( partition="val", seq_length=config.seq_length, memory_size=config.memory_size, mfcc=config.mfcc, sr=config.sr_train, dropped_rate=config.drop_rate, ) else: validation_set = None return training_set, validation_set, test_set
18,067
def ensemble_log_params(m, params, hess=None, steps=scipy.inf, max_run_hours=scipy.inf, temperature=1.0, step_scale=1.0, sing_val_cutoff=0, seeds=None, recalc_hess_alg = False, recalc_func=None, save_hours=scipy.inf, save_to=None, skip_elems = 0, log_params=True, save_scalefactors=False): """ Generate a Bayesian ensemble of parameter sets consistent with the data in the model. The sampling is done in terms of the logarithm of the parameters. Inputs: m -- Model to generate the ensemble for params -- Initial parameter KeyedList to start from hess -- Hessian of the model steps -- Maximum number of Monte Carlo steps to attempt max_run_hours -- Maximum number of hours to run temperature -- Temperature of the ensemble step_scale -- Additional scale applied to each step taken. step_scale < 1 results in steps shorter than those dictated by the quadratic approximation and may be useful if acceptance is low. sing_val_cutoff -- Truncate the quadratic approximation at eigenvalues smaller than this fraction of the largest. seeds -- A tuple of two integers to seed the random number generator recalc_hess_alg --- If True, the Monte-Carlo is done by recalculating the hessian matrix every timestep. This signficantly increases the computation requirements for each step, but it may be worth it if it improves convergence. recalc_func --- Function used to calculate the hessian matrix. It should take only a log parameters argument and return the matrix. If this is None, default is to use m.GetJandJtJInLogParameteters save_hours --- If save_to is not None, the ensemble will be saved to that file every 'save_hours' hours. save_to --- Filename to save ensemble to. skip_elems --- If non-zero, skip_elems are skipped between each included step in the returned ensemble. For example, skip_elems=1 will return every other member. Using this option can reduce memory consumption. save_scalefactors --- If True, scale factors will be saved during integration. Outputs: ens, ens_fes, ratio, [scale_factors] ens -- List of KeyedList parameter sets in the ensemble ens_fes -- List of free energies for each parameter set ratio -- Fraction of attempted moves that were accepted scale_factors -- List of scale factors throughout ensemble, only returned if save_scalefactors is True. The sampling is done by Markov Chain Monte Carlo, with a Metropolis-Hasting update scheme. The canidate-generating density is a gaussian centered on the current point, with axes determined by the hessian. For a useful introduction see: Chib and Greenberg. "Understanding the Metropolis-Hastings Algorithm" _The_American_Statistician_ 49(4), 327-335 """ if scipy.isinf(steps) and scipy.isinf(max_run_hours): logger.warn('Both steps and max_run_hours are infinite! ' 'Code will not stop by itself!') if seeds is None: seeds = int(time.time()%1 * 1e6) logger.debug('Seeding random number generator based on system time.') logger.debug('Seed used: %s' % str(seeds)) scipy.random.seed(seeds) if isinstance(params, KeyedList): param_keys = params.keys() curr_params = copy.deepcopy(params) curr_F = m.free_energy(curr_params, temperature) ens, ens_Fs = [curr_params], [curr_F] curr_sf = m.internalVars['scaleFactors'].copy() ens_scale_factors = [curr_sf] # We work with arrays of params through the rest of the code curr_params = scipy.array(curr_params) if recalc_func is None and log_params: recalc_func = lambda p: m.GetJandJtJInLogParameters(scipy.log(p))[1] else: recalc_func = lambda p: m.GetJandJtJ(p)[1] accepted_moves, attempt_exceptions, ratio = 0, 0, scipy.nan start_time = last_save_time = time.time() # Calculate our first hessian if necessary if hess is None: hess = recalc_func(curr_params) # Generate the sampling matrix used to generate candidate moves samp_mat = _sampling_matrix(hess, sing_val_cutoff, temperature, step_scale) steps_attempted = 0 while steps_attempted < steps: # Have we run too long? if (time.time() - start_time) >= max_run_hours*3600: break # Generate the trial move from the quadratic approximation deltaParams = _trial_move(samp_mat) # Scale the trial move by the step_scale and the temperature #scaled_step = step_scale * scipy.sqrt(temperature) * deltaParams scaled_step = deltaParams if log_params: next_params = curr_params * scipy.exp(scaled_step) else: next_params = curr_params + scaled_step try: next_F = m.free_energy(next_params, temperature) except Utility.SloppyCellException, X: logger.warn('SloppyCellException in free energy evaluation at step ' '%i, free energy set to infinity.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf except Utility.ConstraintViolatedException, X: logger.warn('ConstraintViolatedException in free energy evaluation ' 'at step %i, free energy set to infinity.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf if recalc_hess_alg and not scipy.isinf(next_F): try: next_hess = recalc_func(next_params) next_samp_mat = _sampling_matrix(next_hess, sing_val_cutoff, temperature, step_scale) accepted = _accept_move_recalc_alg(curr_F, samp_mat, next_F, next_samp_mat, deltaParams, temperature) except Utility.SloppyCellException, X: logger.warn('SloppyCellException in JtJ evaluation at step ' '%i, move not accepted.' % len(ens)) logger.warn('Parameters tried: %s.' % str(next_params)) attempt_exceptions += 1 next_F = scipy.inf accepted = False else: accepted = _accept_move(next_F - curr_F, temperature) steps_attempted += 1 if accepted: accepted_moves += 1. curr_params = next_params curr_sf = m.internalVars['scaleFactors'].copy() curr_F = next_F if recalc_hess_alg: hess = next_hess samp_mat = next_samp_mat if steps_attempted % (skip_elems + 1) == 0: ens_Fs.append(curr_F) if save_scalefactors: ens_scale_factors.append(curr_sf) if isinstance(params, KeyedList): ens.append(KeyedList(zip(param_keys, curr_params))) else: ens.append(curr_params) ratio = accepted_moves/steps_attempted # Save to a file if save_to is not None\ and time.time() >= last_save_time + save_hours * 3600: _save_ens(ens, ens_Fs, ratio, save_to, attempt_exceptions, steps_attempted, ens_scale_factors, save_sf=save_scalefactors) last_save_time = time.time() if save_to is not None: _save_ens(ens, ens_Fs, ratio, save_to, attempt_exceptions, steps_attempted, ens_scale_factors, save_sf=save_scalefactors) if save_scalefactors: return ens, ens_Fs, ratio, ens_scale_factors else: return ens, ens_Fs, ratio
18,068
def process(actapi, country_list): """Fetch ISO-3166 list, process and print generic_uploader data to stdout""" facts_added = {} for c_map in country_list: for location_type, location in c_map.items(): if not location: continue # Skip locations with empty values # Skip facts that are already added if location_type in LOCATION_TYPE_M and location not in facts_added: fact_type = LOCATION_TYPE_M[location_type] facts_added[location] = fact_type fact = actapi.fact(fact_type).source("location", location) if actapi.act_baseurl: fact.add() # Add fact to platform, if baseurl is specified else: print(fact.json())
18,069
def read_from_url(url): """Read from a URL transparently decompressing if compressed.""" yield smart_open.open(url)
18,070
def issue_config_exists(repo_path): """ returns True if the issue template config.yml file exists in the repo_path """ path_to_config = repo_path + "/.github/ISSUE_TEMPLATE/config.yml" return os.path.exists(path_to_config)
18,071
def test_safe_fn(): """ Shows how the safe_fn guards against all exceptions. :return: """ assert celldb._safe_fn(pow, 2, "a") is None
18,072
def _read(fd): """Default read function.""" return os.read(fd, 1024)
18,073
def get_metrics(actual_classes, pred_classes): """ Function to calculate performance metrics for the classifier For each class, the following is calculated TP: True positives = samples that were correctly put into the class TN: True negatives = samples that were correctly not put into the class FP: False positive = samples that were incorectly put into the class FN: False negatives = samples that should be in the class but were put into another class Parameters ---------- pred_classes : neuron types predicted by the classifier actual_classes : known neuron types Returns ------- conf_mat: Confusion matrix = a visual representation of the algorithm's performance acc: Accuracy = the fraction of correctly classified samples MK: Markedness = a measure of how trustworthy a classification is, accounting for both positive and negative classifications. Value close to 1 means the classifier makes mostly correct predictions, value close to -1 means the classifier makes mostly wrong predictions. """ conf_mat = metrics.confusion_matrix(actual_classes, pred_classes) acc = metrics.balanced_accuracy_score(actual_classes, pred_classes) """ the next portion of code is copied from: https://towardsdatascience.com/multi-class-classification-extracting-performance-metrics-from-the-confusion-matrix-b379b427a872 """ FP = conf_mat.sum(axis=0) - np.diag(conf_mat) FN = conf_mat.sum(axis=1) - np.diag(conf_mat) TP = np.diag(conf_mat) TN = conf_mat.sum() - (FP + FN + TP) FP = np.sum(FP) FN = np.sum(FN) TP = np.sum(TP) TN = np.sum(TN) """ end of copied code """ MK = (TP/(TP+FP)) + (TN/(TN+FN)) - 1 return conf_mat, acc, MK
18,074
def load_modules(): """Imports all modules from the modules directory.""" for module in os.listdir('modules/'): if not module.startswith('_') and module.endswith('.py'): __import__('modules.{}'.format(module.split('.')[0]))
18,075
def extract_tika_meta(meta): """Extracts and normalizes metadata from Apache Tika. Returns a dict with the following keys set: - content-type - author - date-created - date-modified - original-tika-meta The dates are encoded in the ISO format.""" def _get_flat(dict, *keys): item = None for key in keys: item = dict.get(key) if item is not None: break if type(item) is list: return item[0] return item def _get_bool(dict, *keys): item = _get_flat(dict, *keys) if not item: return False if type(item) is bool: return item return item.lower() == "true" data = { 'content-type': _get_flat(meta, 'Content-Type', 'content-type'), 'author': _get_flat(meta, 'Author', 'meta:author', 'creator'), 'date-created': _get_flat(meta, 'Creation-Date', 'dcterms:created', 'meta:created', 'created'), 'date-modified': _get_flat(meta, 'Last-Modified', 'Last-Saved-Date', 'dcterms:modified', 'meta:modified', 'created'), 'original-tika-meta': meta } for key in ['date-modified', 'date-created']: if data.get(key): data[key] = dateutil.parser.parse(data[key]).isoformat() return data
18,076
def update_table(key_id,guess,correct): """ Updates the d- if wrong: adds guess if right: adds +1 for right guesses """ try: client = MongoClient('localhost') # get our client db = client.quickdraw # get our database if(correct==False): db.qd.update_one({'key_id':key_id},{'$push': {'human_guesses': guess}}) else: db.qd.update_one({'key_id':key_id},{'$inc':{'recognized_by_human': 1}}) except Exception as e: print("Unable to connect to database: {0}".format(e))
18,077
def __gen_pause_flow(testbed_config, src_port_id, flow_name, pause_prio_list, flow_dur_sec): """ Generate the configuration for a PFC pause storm Args: testbed_config (obj): L2/L3 config of a T0 testbed src_port_id (int): ID of the source port flow_name (str): flow' name pause_prio_list (list): priorities to pause for PFC frames flow_dur_sec (float): duration of the flow in second Returns: flow configuration (obj): including name, packet format, rate, ... """ pause_time = [] for x in range(8): if x in pause_prio_list: pause_time.append('ffff') else: pause_time.append('0000') vector = pfc_class_enable_vector(pause_prio_list) pause_pkt = Header(PfcPause( dst=FieldPattern(choice='01:80:C2:00:00:01'), src=FieldPattern(choice='00:00:fa:ce:fa:ce'), class_enable_vector=FieldPattern(choice=vector), pause_class_0=FieldPattern(choice=pause_time[0]), pause_class_1=FieldPattern(choice=pause_time[1]), pause_class_2=FieldPattern(choice=pause_time[2]), pause_class_3=FieldPattern(choice=pause_time[3]), pause_class_4=FieldPattern(choice=pause_time[4]), pause_class_5=FieldPattern(choice=pause_time[5]), pause_class_6=FieldPattern(choice=pause_time[6]), pause_class_7=FieldPattern(choice=pause_time[7]), )) dst_port_id = (src_port_id + 1) % len(testbed_config.devices) pause_src_point = PortTxRx(tx_port_name=testbed_config.ports[src_port_id].name, rx_port_name=testbed_config.ports[dst_port_id].name) """ The minimal fixed time duration in IXIA is 1 second. To support smaller durations, we need to use # of packets """ speed_str = testbed_config.layer1[0].speed speed_gbps = int(speed_str.split('_')[1]) pause_dur = 65535 * 64 * 8.0 / (speed_gbps * 1e9) pps = int(2 / pause_dur) pkt_cnt = pps * flow_dur_sec pause_flow = Flow( name=flow_name, tx_rx=TxRx(pause_src_point), packet=[pause_pkt], size=Size(64), rate=Rate('pps', value=pps), duration=Duration(FixedPackets(packets=pkt_cnt, delay=0)) ) return pause_flow
18,078
def plot_spectra(obs, model): """Plot two spectra.""" plt.plot(obs.xaxis, obs.flux, label="obs") plt.plot(model.xaxis, model.flux, label="model") plt.legend() plt.show()
18,079
def move_calculator(): """ A function that will calculate the best moves for the cuurent position.\n This works by: - Will check all the moves in the current position """
18,080
def parse_str_to_bio(str, dia_act): """ parse str to BIO format """ intent = parse_intent(dia_act) w_arr, bio_arr = parse_slots(str, dia_act) bio_arr[-1] = intent return ' '.join(w_arr), ' '.join(bio_arr), intent
18,081
def train_early_stop( update_fn, validation_fn, optimizer, state, max_epochs=1e4, **early_stop_args ): """Run update_fn until given validation metric validation_fn increases. """ logger = Logger() check_early_stop = mask_scheduler(**early_stop_args) for epoch in jnp.arange(max_epochs): (optimizer, state), metrics, output = update_fn(optimizer, state) if epoch % 1000 == 0: print(f"Loss step {epoch}: {metrics['loss']}") if epoch % 25 == 0: val_metric = validation_fn(optimizer, state) stop_training, optimizer = check_early_stop(val_metric, epoch, optimizer) metrics = {**metrics, "validation_metric": val_metric} logger.write(metrics, epoch) if stop_training: print("Converged.") break logger.close() return optimizer, state
18,082
def get_povm_object_names() -> List[str]: """Return the list of valid povm-related object names. Returns ------- List[str] the list of valid povm-related object names. """ names = ["pure_state_vectors", "matrices", "vectors", "povm"] return names
18,083
def choose(a,b): """ n Choose r function """ a = op.abs(round(a)) b = op.abs(round(b)) if(b > a): a, b = b, a return factorial(a) / (factorial(b) * factorial(a-b))
18,084
def pad_and_stack_list_of_tensors(lst_embeddings: List[torch.Tensor], max_sequence_length: Optional[int] = None, return_sequence_length: bool = False): """ it takes the list of embeddings as the input, then applies zero-padding and stacking to transform it as @param lst_embeddings: @param max_sequence_length: """ dim = -2 # second last axis. it must be the sequence dimension. lst_seq_len = [embeddings.shape[dim] for embeddings in lst_embeddings] if max_sequence_length is None: max_sequence_length = max(lst_seq_len) else: n_max = max(lst_seq_len) assert max_sequence_length >= n_max, \ f"`max_sequence_length` must be greater or equal to max. embeddings size: {n_max} > {max_sequence_length}" lst_padded_embeddings = [pad_trailing_tensors(e_t, max_sequence_length) for e_t in lst_embeddings] stacked_embeddings = torch.stack(lst_padded_embeddings) if return_sequence_length: return stacked_embeddings, lst_seq_len else: return stacked_embeddings
18,085
def bq_solid_for_queries(sql_queries): """ Executes BigQuery SQL queries. Expects a BQ client to be provisioned in resources as context.resources.bigquery. """ sql_queries = check.list_param(sql_queries, 'sql queries', of_type=str) @solid( input_defs=[InputDefinition(_START, Nothing)], output_defs=[OutputDefinition(List[DataFrame])], config_field=define_bigquery_query_config(), required_resource_keys={'bigquery'}, metadata={'kind': 'sql', 'sql': '\n'.join(sql_queries)}, ) def bq_solid(context): # pylint: disable=unused-argument query_job_config = _preprocess_config(context.solid_config.get('query_job_config', {})) # Retrieve results as pandas DataFrames results = [] for sql_query in sql_queries: # We need to construct a new QueryJobConfig for each query. # See: https://bit.ly/2VjD6sl cfg = QueryJobConfig(**query_job_config) if query_job_config else None context.log.info( 'executing query %s with config: %s' % (sql_query, cfg.to_api_repr() if cfg else '(no config provided)') ) results.append( context.resources.bigquery.query(sql_query, job_config=cfg).to_dataframe() ) return results return bq_solid
18,086
def RestartNetwork(): """Restarts networking daemon.""" logging.warning('Restart networking.') try: subprocess.check_output(['/etc/init.d/networking', 'restart']) if HasIp(): logging.info('Network is back') except subprocess.CalledProcessError as e: # This is expected in some network environment. logging.warning(e.output) if 'No lease, failing' in e.output: logging.warning('Can not get network, maybe try again later.') else: raise
18,087
def mock_accession_unreplicated( mocker: MockerFixture, mock_accession_gc_backend, mock_metadata, lab: str, award: str, ) -> Accession: """ Mocked accession instance with dummy __init__ that doesn't do anything and pre-baked assembly property. @properties must be patched before instantiation """ mocker.patch.object( Accession, "experiment", new_callable=PropertyMock( return_value=EncodeExperiment( { "@id": "foo", "assay_term_name": "microRNA", "replicates": [ {"biological_replicate_number": 1, "status": "released"} ], } ) ), ) mocked_accession = AccessionMicroRna( "imaginary_steps.json", Analysis(mock_metadata, backend=mock_accession_gc_backend), "mock_server.biz", EncodeCommonMetadata(lab, award), Recorder(use_in_memory_db=True), no_log_file=True, ) return mocked_accession
18,088
def get_prepared_statement(statement_name: Optional[str] = None, work_group: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPreparedStatementResult: """ Resource schema for AWS::Athena::PreparedStatement :param str statement_name: The name of the prepared statement. :param str work_group: The name of the workgroup to which the prepared statement belongs. """ __args__ = dict() __args__['statementName'] = statement_name __args__['workGroup'] = work_group if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:athena:getPreparedStatement', __args__, opts=opts, typ=GetPreparedStatementResult).value return AwaitableGetPreparedStatementResult( description=__ret__.description, query_statement=__ret__.query_statement)
18,089
def set_initial_current_workspace(db_workspace): """ :param workspace: :return: """ sql_create_current_workspace = ''' INSERT OR IGNORE INTO current_workspace(current_db) VALUES(?) ''' CUR.execute(sql_create_current_workspace,db_workspace) CONNECTION.commit()
18,090
def handle_col(element, box, _get_image_from_uri, _base_url): """Handle the ``span`` attribute.""" if isinstance(box, boxes.TableColumnBox): integer_attribute(element, box, 'span') if box.span > 1: # Generate multiple boxes # http://lists.w3.org/Archives/Public/www-style/2011Nov/0293.html return [box.copy() for _i in range(box.span)] return [box]
18,091
def get_dotted_field(input_dict: dict, accessor_string: str) -> dict: """Gets data from a dictionary using a dotted accessor-string. Parameters ---------- input_dict : dict A nested dictionary. accessor_string : str The value in the nested dict. Returns ------- dict Data from the dictionary. """ current_data = input_dict for chunk in accessor_string.split("."): current_data = current_data.get(chunk, {}) return current_data
18,092
def separa_frases(sentenca): """[A funcao recebe uma sentenca e devolve uma lista das frases dentro da sentenca] Arguments: sentenca {[str]} -- [recebe uma frase] Returns: [lista] -- [lista das frases contidas na sentença] """ return re.split(r'[,:;]+', sentenca)
18,093
def read_datasets(path=None, filename="datasets.json"): """Read the serialized (JSON) dataset list """ if path is None: path = _MODULE_DIR else: path = pathlib.Path(path) with open(path / filename, 'r') as fr: ds = json.load(fr) # make the functions callable for _, dset_opts in ds.items(): args = dset_opts.get('load_function_args', {}) kwargs = dset_opts.get('load_function_kwargs', {}) fail_func = partial(unknown_function, dset_opts['load_function_name']) func_mod_name = dset_opts.get('load_function_module', None) if func_mod_name: func_mod = importlib.import_module(func_mod_name) else: func_mod = _MODULE func_name = getattr(func_mod, dset_opts['load_function_name'], fail_func) func = partial(func_name, *args, **kwargs) dset_opts['load_function'] = func return ds
18,094
def get_solvents(reaction): """Return solvents involved in the specified reaction.""" for df in reaction.data_fields: if SOLVENT_RE.match(df): n = SOLVENT_RE.search(df).group('N') name_field = 'RXN:VARIATION:STEPNO:SOLVENT(' + n + '):MOL:SYMBOL' if name_field in reaction.data_fields: name = reaction.data_fields[name_field] else: name = '' yield reaction.data_fields[df], name, n
18,095
def test_negative_format_postcode2(formatting_negative_value_special_char): """Function to test format_postcode method for negative cases(Special chars) arguments: formatting_positive_value -- list of post codes with special char """ postcode = Postcode() print(postcode.format_postcode(formatting_negative_value_special_char)) assert postcode.valid == False and postcode.message == "ERROR: No special Characters allowed"
18,096
def as_actor(input, actor) : """Takes input and actor, and returns [as <$actor>]$input[endas].""" if " " in actor : repla = "<%s>"%actor else : repla = actor return "[as %s]%s[endas]" % (repla, input)
18,097
def error_403(request): """View rendered when encountering a 403 error.""" return error_view(request, 403, _("Forbidden"), _("You are not allowed to acces to the resource %(res)s.") % {"res": request.path})
18,098
def restarts(**bindings): """Provide restarts. Known as `RESTART-CASE` in Common Lisp. Roughly, restarts can be thought of as canned error recovery strategies. That's the most common use case, although not the only possible one. You can use restarts whenever you'd like to define a set of actions to handle a specific condition (both in the everyday and technical senses of the word), while allowing code higher up the call stack to decide which of those actions to take in any particular use case. This improves modularity. Note that restarts may be defined at any level of the call stack, so they don't all have to be at the same level. A restart can take any number of args and kwargs; its call signature depends only on how it's intended to be invoked. Example:: with restarts(use_value=(lambda x: x)) as result: ... result << 42 The `with restarts` form binds an `unpythonic.collections.box` to hold the return value of the block. Use `unbox(result)` to access the value. The default value the box holds, if nothing is set into it, is `None`. If the code inside the `with` block invokes one of the restarts defined in this `with restarts`, the contents of the box are automatically set to the value returned by the restart. Then execution continues from immediately after the block. The manual result assignment via `<<` at the end of the block is an `unpythonic` idiom; it sets the return value of the block for a normal return, i.e. when no restart was invoked. We (ab)use the `with ... as ...` form, because in Python `with` is a statement and thus cannot return a value directly. Also, it is idiomatic enough to convey the meaning that `with restarts` introduces a binding. If none of your restarts need to return a value, you can omit the as-binding. If you just need a jump label for skipping the rest of the block at the higher-level code's behest, you can use `lambda: None` as the restart function (`cerror` and `warn` do this internally). If you'd like to use a parametric decorator and a `def` instead of a `with`, see the alternate syntax `with_restarts`. """ # Implementation notes: # # - Normally, an `__exit__` method of a context manager **must not** # reraise if it gets an exception; this is the caller's responsibility. # Instead, if the `__exit__` method wishes to indicate to the context # manager framework (the `with` statement) that the exception should be # propagated outwards, the method must return `False`. # https://docs.python.org/3/library/stdtypes.html#typecontextmanager # https://docs.python.org/3/reference/datamodel.html#context-managers # # - However, when a context manager is implemented using the # `@contextmanager` decorator from `contextlib`, then the generator # **must** reraise the exception (in the part after the `yield`, # corresponding to `__exit__`) if it wishes to propagate it outwards. # This is what we do here. # # - How does the `InvokeRestart` exception reach our generator in the first # place, given that this generator is in the paused state at the time the # exception is raised? The magic is in `contextlib`. When an exception is # raised in the `with` body (whose context manager we are), the # `@contextmanager` decorator throws the exception into the generator, # into the position where it yielded. So if that `yield` is inside a # `try`, the corresponding `except` clauses will get control. # https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager # # Regarding exceptions in generators in general, there's a pitfall to be # aware of: if the `finally` clause of a `try`/`finally` contains a # `yield`, the generator must jump through a hoop to work as expected: # https://amir.rachum.com/blog/2017/03/03/generator-cleanup/ # # In the `try` part it's always safe to `yield`, so in this particular # instance this doesn't concern us. In the `finally` part it's *possible* # to `yield`, but then `GeneratorExit` requires special consideration. # # Instead of using `@contextmanager`, we could have implemented `restarts` # using `__enter__` and `__exit__` methods. We would examine the exception # arguments in `__exit__`. If it was an `InvokeRestart`, and ours, we would # process the restart and return `True` to indicate to the `with` machinery # that the exception was handled and should not be propagated further. If # it wasn't, we would just return `False` to let the `with` machinery # propagate the exception. But using `@contextmanager`, we don't need a # class. This way the code is shorter, and our exception processing can use # the standard `try`/`except` construct. b = box(None) with Restarts(bindings): try: yield b except InvokeRestart as exc: if exc.restart.context is bindings: # if it's ours b << exc() else: raise
18,099