content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def read_ult_meta(filebase):
"""Convenience fcn for output of targeted metadata."""
meta = _parse_ult_meta(filebase)
return (meta["NumVectors"],
meta["PixPerVector"],
meta["ZeroOffset"],
meta["Angle"],
meta["PixelsPerMm"],
meta["FramesPerSec"],
meta["TimeInSecsOfFirstFrame"])
| 18,400
|
def safe_identifiers_iterable(val_list: Iterable[str]) -> List[str]:
"""
Returns new list, all with safe identifiers.
"""
return [safe_identifier(val) for val in val_list]
| 18,401
|
def encode_varint(value, write):
""" Encode an integer to a varint presentation. See
https://developers.google.com/protocol-buffers/docs/encoding?csw=1#varints
on how those can be produced.
Arguments:
value (int): Value to encode
write (function): Called per byte that needs to be writen
Returns:
int: Number of bytes written
"""
value = (value << 1) ^ (value >> 63)
if value <= 0x7f: # 1 byte
write(value)
return 1
if value <= 0x3fff: # 2 bytes
write(0x80 | (value & 0x7f))
write(value >> 7)
return 2
if value <= 0x1fffff: # 3 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(value >> 14)
return 3
if value <= 0xfffffff: # 4 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(0x80 | ((value >> 14) & 0x7f))
write(value >> 21)
return 4
if value <= 0x7ffffffff: # 5 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(0x80 | ((value >> 14) & 0x7f))
write(0x80 | ((value >> 21) & 0x7f))
write(value >> 28)
return 5
else:
# Return to general algorithm
bits = value & 0x7f
value >>= 7
i = 0
while value:
write(0x80 | bits)
bits = value & 0x7f
value >>= 7
i += 1
write(bits)
return i
| 18,402
|
def heap_sort(li):
""" [list of int] => [list of int]
Heap sort: divides its input into a sorted and an unsorted region,
and it iteratively shrinks the unsorted region by extracting the
largest element from it and inserting it into the sorted region.
It does not waste time with a linear-time scan of the unsorted region;
rather, heap sort maintains the unsorted region in a heap data structure
to more quickly find the largest element in each step.
To implement a heap using arrays, we will use the rule
li[k] >= li[2*k+1] and li[k] >= li[2*k+2] (left child and right child
respectively).
More generally, the array must satisfy the heap quality:
For any given node C, if P is a parent node of C, then
the value of P is greater than or equal to the key of C
(for max heaps)
Graphically, this would look like:
0
1 2
3 4 5 6
7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
"""
def heapify(lst, heap_size, root):
""" ([list of int], int, int) => [list of int]
Rearranges the list to satisfy the heap quality.
Root is index of the largest element in the lst.
"""
# the largest node
largest = root
left_child = 2 * largest + 1
right_child = 2 * largest + 2
# check if left_child and root need to be swapped
if left_child < heap_size and lst[largest] < lst[left_child]:
largest = left_child
# check if right_child and root need to be swapped
if right_child < heap_size and lst[largest] < lst[right_child]:
largest = right_child
# change root, if needed
if largest != root:
lst[root], lst[largest] = lst[largest], lst[root]
# continue to heapify the root
heapify(lst, heap_size, largest)
# Build a maxheap by iterating through the list backwards
for i in range(len(li), -1, -1):
heapify(li, len(li), i)
print(li)
# extract elements one by one
for i in range(len(li) - 1, 0, -1):
"""remember, heap sort differs from insertion sort in that
# it searches for the maximum, rather than minimum, element.
li[0:end] is a heap (like a tree, but elements are not guaranteed
to be sorted) and li[end:len(li)] is in sorted order."""
li[i], li[0] = li[0], li[i]
# return to heap, since the heap was messed up by swapping
heapify(li, i, 0)
return li
| 18,403
|
def vector_field(v, t, inf_mat, state_meta):
"""vector_field returns the temporal derivative of a flatten state vector
:param v: array of shape (1,mmax+1+(nmax+1)**2) for the flatten state vector
:param t: float for time (unused)
:param inf_mat: array of shape (nmax+1,nmax+1) representing the infection rate
:param state_meta: tuple of arrays encoding information of the structure.
:returns vec_field: array of shape (1,(nmax+1)**2) for the flatten
vector field.
"""
mmax = state_meta[0]
nmax = state_meta[1]
m = state_meta[2]
gm = state_meta[3]
pn = state_meta[4]
imat = state_meta[5]
nmat = state_meta[6]
pnmat = state_meta[7]
sm = v[:mmax+1]
fni = v[mmax+1:].reshape(nmax+1,nmax+1)
fni_field = np.zeros(fni.shape) #matrix field
sm_field = np.zeros(sm.shape)
#calculate mean-field quantities
r = np.sum(inf_mat[2:,:]*(nmat[2:,:]-imat[2:,:])*fni[2:,:]*pnmat[2:,:])
r /= np.sum((nmat[2:,:]-imat[2:,:])*fni[2:,:]*pnmat[2:,:])
rho = r*excess_susceptible_membership(m,gm,sm)
#contribution for nodes
#------------------------
sm_field = 1 - sm - sm*m*r
#contribution for groups
#------------------------
#contribution from above
fni_field[2:,:nmax] += imat[2:,1:]*fni[2:,1:]
#contribution from equal
fni_field[2:,:] += (-imat[2:,:]
-(nmat[2:,:] - imat[2:,:])
*(inf_mat[2:,:] + rho))*fni[2:,:]
#contribution from below
fni_field[2:,1:nmax+1] += ((nmat[2:,:nmax] - imat[2:,:nmax])
*(inf_mat[2:,:nmax] + rho))*fni[2:,:nmax]
return np.concatenate((sm_field,fni_field.reshape((nmax+1)**2)))
| 18,404
|
def newton(start, loss_fn, *args, lower=0, upper=None, epsilon=1e-9):
"""
Newton's Method!
"""
theta, origin, destination = args[0], args[1], args[2]
if upper is None:
upper = 1
start = lower
while True:
if loss_fn(start, theta, origin, destination) > 0:
start = (upper+start)/2
else:
start = (lower+start)/2
# print("START", start)
x_cur = start
x_prev = -1
try:
while np.abs(x_cur-x_prev) >= epsilon:
# print(x)
x_prev = x_cur
x_cur = newton_single(x_cur, loss_fn, theta, origin, destination)
# print(x, x-x_prev, np.abs(x-x_prev)>=epsilon)
if np.isnan(x_cur):
continue
return x_cur
except ZeroDivisionError:
print(start, x_cur)
| 18,405
|
def eval_det_cls(pred, gt, iou_thr=None):
"""Generic functions to compute precision/recall for object detection for a
single class.
Args:
pred (dict): Predictions mapping from image id to bounding boxes \
and scores.
gt (dict): Ground truths mapping from image id to bounding boxes.
iou_thr (list[float]): A list of iou thresholds.
Return:
tuple (np.ndarray, np.ndarray, float): Recalls, precisions and \
average precision.
"""
# {img_id: {'bbox': box structure, 'det': matched list}}
class_recs = {}
npos = 0
img_id_npos = {}
for img_id in gt.keys():
cur_gt_num = len(gt[img_id])
if cur_gt_num != 0:
gt_cur = torch.zeros([cur_gt_num, 7], dtype=torch.float32)
for i in range(cur_gt_num):
gt_cur[i] = gt[img_id][i].tensor
bbox = gt[img_id][0].new_box(gt_cur)
else:
bbox = gt[img_id]
det = [[False] * len(bbox) for i in iou_thr]
npos += len(bbox)
img_id_npos[img_id] = img_id_npos.get(img_id, 0) + len(bbox)
class_recs[img_id] = {'bbox': bbox, 'det': det}
# construct dets
image_ids = []
confidence = []
ious = []
for img_id in pred.keys():
cur_num = len(pred[img_id])
if cur_num == 0:
continue
pred_cur = torch.zeros((cur_num, 7), dtype=torch.float32)
box_idx = 0
for box, score in pred[img_id]:
image_ids.append(img_id)
confidence.append(score)
pred_cur[box_idx] = box.tensor
box_idx += 1
pred_cur = box.new_box(pred_cur)
gt_cur = class_recs[img_id]['bbox']
if len(gt_cur) > 0:
# calculate iou in each image
iou_cur = pred_cur.overlaps(pred_cur, gt_cur)
for i in range(cur_num):
ious.append(iou_cur[i])
else:
for i in range(cur_num):
ious.append(np.zeros(1))
confidence = np.array(confidence)
# sort by confidence
sorted_ind = np.argsort(-confidence)
image_ids = [image_ids[x] for x in sorted_ind]
ious = [ious[x] for x in sorted_ind]
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp_thr = [np.zeros(nd) for i in iou_thr]
fp_thr = [np.zeros(nd) for i in iou_thr]
for d in range(nd):
R = class_recs[image_ids[d]]
iou_max = -np.inf
BBGT = R['bbox']
cur_iou = ious[d]
if len(BBGT) > 0:
# compute overlaps
for j in range(len(BBGT)):
# iou = get_iou_main(get_iou_func, (bb, BBGT[j,...]))
iou = cur_iou[j]
if iou > iou_max:
iou_max = iou
jmax = j
for iou_idx, thresh in enumerate(iou_thr):
if iou_max > thresh:
if not R['det'][iou_idx][jmax]:
tp_thr[iou_idx][d] = 1.
R['det'][iou_idx][jmax] = 1
else:
fp_thr[iou_idx][d] = 1.
else:
fp_thr[iou_idx][d] = 1.
ret = []
# Return additional information for custom metrics.
new_ret = {}
new_ret["image_ids"] = image_ids
new_ret["iou_thr"] = iou_thr
new_ret["ious"] = [max(x.tolist()) for x in ious]
new_ret["fp_thr"] = [x.tolist() for x in fp_thr]
new_ret["tp_thr"] = [x.tolist() for x in tp_thr]
new_ret["img_id_npos"] = img_id_npos
for iou_idx, thresh in enumerate(iou_thr):
# compute precision recall
fp = np.cumsum(fp_thr[iou_idx])
tp = np.cumsum(tp_thr[iou_idx])
recall = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = average_precision(recall, precision)
ret.append((recall, precision, ap))
return ret, new_ret
| 18,406
|
def replace_images(fpath):
""" Takes a path to a note and edits the note to insert image data.
params:
fpath: path to note
Output: None, writes new note with image data
"""
with open(fpath, 'r') as f:
line1 = f.readline() # get rid of the first xml tag line
note = f.read()
note_name = fpath.split('/')[-1].split('.html')[0]
resource_path = fpath+'.resources'
# Find each image tag and replace with corresponding uri data
soup = bs(note, features="html.parser")
images = soup.findAll('img', src=True)
links = soup.findAll('a', href=True)
all_media = [l for l in links if ('www' not in l['href'])]
if images is not []:
for image in images:
img_data = img_to_data(resource_path+'/'+image['src'].split('/')[-1].replace('%20', ' '))
image['src'] = img_data
image['width'] = "500"
image['height'] = "500"
# Go through linked media files and insert uri data if local pdf
if all_media is not []:
for media in all_media:
mpath = resource_path+'/'+media['href'].split('/')[-1].replace('%20', ' ')
if (media['href'].split('.')[-1] == 'pdf') and ('resources' in media['href']):
try:
images = convert_from_path(mpath, dpi=300)
buffered = BytesIO()
datas = []
for im in images: # in case of multipage pdf
im.save(buffered, format="png")
data = base64.encodestring(buffered.getvalue()).decode("utf-8").replace('\n', '')
media_data = u'data:%s;base64,%s' % ("image/png", data)
datas.append(media_data)
for i,d in enumerate(datas):
if d != '':
tag = soup.new_tag('img')
tag['src'] = media_data
tag['width'] = "500"
tag['height'] = "500"
if i == 1:
media.replace_with(tag)
else:
media.insert_before(tag)
except:
print('Failed to convert pdf media in: %s' % fpath)
with open(fpath, 'w') as f:
f.write(str(soup))
| 18,407
|
def parse_g2o(path: pathlib.Path, pose_count_limit: int = 100000) -> G2OData:
"""Parse a G2O file. Creates a list of factors and dictionary of initial poses."""
with open(path) as file:
lines = [line.strip() for line in file.readlines()]
pose_variables: List[jaxfg.geometry.LieVariableBase] = []
initial_poses: Dict[jaxfg.geometry.LieVariableBase, jaxlie.MatrixLieGroup] = {}
factors: List[jaxfg.core.FactorBase] = []
for line in tqdm(lines):
parts = [part for part in line.split(" ") if part != ""]
variable: jaxfg.geometry.LieVariableBase
between: jaxlie.MatrixLieGroup
if parts[0] == "VERTEX_SE2":
if len(pose_variables) > pose_count_limit:
continue
# Create SE(2) variable
_, index, x, y, theta = parts
index = int(index)
x, y, theta = map(float, [x, y, theta])
assert len(initial_poses) == index
variable = jaxfg.geometry.SE2Variable()
initial_poses[variable] = jaxlie.SE2.from_xy_theta(x, y, theta)
pose_variables.append(variable)
elif parts[0] == "EDGE_SE2":
# Create relative offset between pair of SE(2) variables
before_index = int(parts[1])
after_index = int(parts[2])
if before_index > pose_count_limit or after_index > pose_count_limit:
continue
between = jaxlie.SE2.from_xy_theta(*(float(p) for p in parts[3:6]))
precision_matrix_components = onp.array(list(map(float, parts[6:])))
precision_matrix = onp.zeros((3, 3))
precision_matrix[onp.triu_indices(3)] = precision_matrix_components
precision_matrix = precision_matrix.T
precision_matrix[onp.triu_indices(3)] = precision_matrix_components
sqrt_precision_matrix = onp.linalg.cholesky(precision_matrix).T
factors.append(
jaxfg.geometry.BetweenFactor.make(
variable_T_world_a=pose_variables[before_index],
variable_T_world_b=pose_variables[after_index],
T_a_b=between,
noise_model=jaxfg.noises.Gaussian(
sqrt_precision_matrix=sqrt_precision_matrix
),
)
)
elif parts[0] == "VERTEX_SE3:QUAT":
# Create SE(3) variable
_, index, x, y, z, qx, qy, qz, qw = parts
index = int(index)
assert len(initial_poses) == index
variable = jaxfg.geometry.SE3Variable()
initial_poses[variable] = jaxlie.SE3(
wxyz_xyz=onp.array(list(map(float, [qw, qx, qy, qz, x, y, z])))
)
pose_variables.append(variable)
elif parts[0] == "EDGE_SE3:QUAT":
# Create relative offset between pair of SE(3) variables
before_index = int(parts[1])
after_index = int(parts[2])
numerical_parts = list(map(float, parts[3:]))
assert len(numerical_parts) == 7 + 21
# between = jaxlie.SE3.from_xy_theta(*(float(p) for p in parts[3:6]))
xyz = numerical_parts[0:3]
quaternion = numerical_parts[3:7]
between = jaxlie.SE3.from_rotation_and_translation(
rotation=jaxlie.SO3.from_quaternion_xyzw(onp.array(quaternion)),
translation=onp.array(xyz),
)
precision_matrix = onp.zeros((6, 6))
precision_matrix[onp.triu_indices(6)] = numerical_parts[7:]
precision_matrix = precision_matrix.T
precision_matrix[onp.triu_indices(6)] = numerical_parts[7:]
sqrt_precision_matrix = onp.linalg.cholesky(precision_matrix).T
factors.append(
jaxfg.geometry.BetweenFactor.make(
variable_T_world_a=pose_variables[before_index],
variable_T_world_b=pose_variables[after_index],
T_a_b=between,
noise_model=jaxfg.noises.Gaussian(
sqrt_precision_matrix=sqrt_precision_matrix
),
)
)
else:
assert False, f"Unexpected line type: {parts[0]}"
# Anchor start pose
factors.append(
jaxfg.geometry.PriorFactor.make(
variable=pose_variables[0],
mu=initial_poses[pose_variables[0]],
noise_model=jaxfg.noises.DiagonalGaussian(
jnp.ones(pose_variables[0].get_local_parameter_dim()) * 100.0
),
)
)
return G2OData(factors=factors, initial_poses=initial_poses)
| 18,408
|
def register_content_widgets(content_widgets):
""" Run custom add-on package installation code to add custom
site specific content widgets
@param content_widgets: Dictionary of custom content widgets
"""
widget_settings = api.portal.get_registry_record(
name='ade25.widgets.widget_settings'
)
stored_widgets = json.loads(widget_settings)
records = stored_widgets['items']
for content_widget, widget_data in content_widgets.items():
if content_widget not in records.keys():
records[content_widget] = widget_data
stored_widgets["items"] = records
stored_widgets["timestamp"] = six.text_type(int(time.time())),
stored_widgets["updated"] = datetime.datetime.now().isoformat(),
api.portal.set_registry_record(
name='ade25.widgets.widget_settings',
value=json.dumps(stored_widgets)
)
| 18,409
|
def find_stops(input_handle, output_handle, offset, compact):
"""Almost stop codon finder.
:arg stream input_handle: Open readable handle to a FASTA file.
:arg stream output_handle: Open writable handle to a file.
:arg int offset: Position of the CDS start in the reference sequence.
:arg bool compact: Output one line per position.
"""
bt = BackTranslate()
sequence = str(next(SeqIO.parse(input_handle, 'fasta')).seq)
for index, codon in enumerate(findall('...', sequence[offset - 1:])):
stop_positions = bt.with_dna(codon, '*')
for position in sorted(stop_positions):
if not compact:
for subst in sorted(stop_positions[position]):
output_handle.write('{}\t{}\t{}\n'.format(
offset + (index * 3) + position, *subst))
else:
output_handle.write('{}\t{}\t{}\n'.format(
offset + (index * 3) + position,
list(stop_positions[position])[0][0],
','.join(map(
lambda x: x[1],
sorted(stop_positions[position])))))
| 18,410
|
def _som_actor(env):
"""
Construct the actor part of the model and return it.
"""
nactions = np.product(env.action_shape)
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=(1,) + env.observation_space.shape))
model.add(keras.layers.Dense(400))
model.add(keras.layers.Activation('relu'))
model.add(keras.layers.Dense(200))
model.add(keras.layers.Activation('relu'))
model.add(keras.layers.Dense(nactions))
model.add(keras.layers.Activation('sigmoid'))
return model
| 18,411
|
def fido(ctx):
"""
Manage FIDO applications.
"""
try:
ctx.obj['controller'] = Fido2Controller(ctx.obj['dev'].driver)
except Exception as e:
logger.debug('Failed to load Fido2Controller', exc_info=e)
ctx.fail('Failed to load FIDO 2 Application.')
| 18,412
|
def main():
"""
This is a simple wrapper for fugashi so you can test it from the command line.
Like the mecab binary, it treats each line of stdin as one sentence. You can
pass tagger arguments here too.
"""
args = ' '.join(sys.argv[1:])
# This should work if you specify a different dictionary,
# but it should also work with the pip unidic.
# Try the GenericTagger and then try the Unidic tagger.
try:
tagger = GenericTagger(args, quiet=True)
except RuntimeError:
tagger = Tagger(args)
for line in fileinput.input([]):
print(tagger.parse(line.strip()))
| 18,413
|
def sendEmail():
"""email sender"""
send_email('Registration ATS',
['manavshrivastava@hotmail.com'],
'Thanks for registering ATS!',
'<h3>Thanks for registering with ATS!</h3>')
return "email sent to manavshrivastava@hotmail.com"
| 18,414
|
def Pvalue(chi2, df):
"""Returns the p-value of getting chi2 from a chi-squared distribution.
chi2: observed chi-squared statistic
df: degrees of freedom
"""
return 1 - scipy.stats.chi2.cdf(chi2, df)
| 18,415
|
def _ya_testmatch_():
"""
test function the forest matching algorithm
basically this creates two graphs and associated
"""
c1 = np.array([[0],[-1],[1],[0.5],[1.5]])
parents = np.array([0, 0, 0, 2, 2])
g1 = fo.Forest(5,parents)
c2 = np.array([[-1],[1],[0.5],[1.5]]) #c1 + 0.0
parents = np.array([0, 1, 1, 1])
g2 = fo.Forest(4,parents)
dmax = 1
i,j,k = BPmatch_slow_asym_dev(c1, c2, g1,g2, dmax)
GM = np.zeros((5,5))
GM[i,j]=k
print GM*(GM>0)
i,j,k = BPmatch_slow_asym_dev(c2, c1, g2,g1, dmax)
GM = np.zeros((5,5))
GM[i,j]=k
print GM*(GM>0.001)
i,j,k = BPmatch_slow_asym(c1, c2, g1,g2, dmax)
GM = np.zeros((5,5))
GM[i,j]=k
print GM
i,j,k = match_trivial(c1, c2, dmax, eps = 1.e-12 )
GM = np.zeros((5,5))
GM[i,j]=k
print GM
| 18,416
|
def template(template_lookup_key: str) -> str:
"""Return template as string."""
with open(template_path(template_lookup_key), "r") as filepath:
template = filepath.read()
return template
| 18,417
|
def filter_rows(df, condition, reason):
"""
:param reason:
:param df:
:param condition: boolean, true for row to keep
:return: filter country_city_codes df
"""
n_dropped = (condition == False).sum()
print(
f"\nexcluding {n_dropped} locations ({n_dropped / df.shape[0]:.1%}) due to {reason}"
)
return df[condition]
| 18,418
|
def parse_projected_dos(f):
"""Parse `projected_dos.dat` output file."""
data = np.loadtxt(f)
projected_dos = {"frequency_points": data[:, 0], "projected_dos": data[:, 1:].T}
pdos = orm.XyData()
pdos_list = [pd for pd in projected_dos["projected_dos"]]
pdos.set_x(projected_dos["frequency_points"], "Frequency", "THz")
pdos.set_y(
pdos_list,
[
"Projected DOS",
]
* len(pdos_list),
[
"1/THz",
]
* len(pdos_list),
)
pdos.label = "Projected DOS"
return pdos
| 18,419
|
def get_from_parameters(a, b, c, alpha, beta, gamma):
"""
Create a Lattice using unit cell lengths and angles (in degrees).
This code is modified from the pymatgen source code [1]_.
Parameters
----------
a : :class:`float`:
*a* lattice parameter.
b : :class:`float`:
*b* lattice parameter.
c : :class:`float`:
*c* lattice parameter.
alpha : :class:`float`:
*alpha* angle in degrees.
beta : :class:`float`:
*beta* angle in degrees.
gamma : :class:`float`:
*gamma* angle in degrees.
Returns
-------
:class:`tuple` of three :class:`numpy.ndarray`
Tuple of cell lattice vectors of shape (3, ) in Angstrom.
"""
angles_r = np.radians([alpha, beta, gamma])
cos_alpha, cos_beta, cos_gamma = np.cos(angles_r)
sin_alpha, sin_beta, sin_gamma = np.sin(angles_r)
val = (cos_alpha * cos_beta - cos_gamma) / (sin_alpha * sin_beta)
# Sometimes rounding errors result in values slightly > 1.
val = cap_absolute_value(val)
gamma_star = np.arccos(val)
vector_a = np.array([a * sin_beta, 0.0, a * cos_beta])
vector_b = np.array([
-b * sin_alpha * np.cos(gamma_star),
b * sin_alpha * np.sin(gamma_star),
b * cos_alpha,
])
vector_c = np.array([0.0, 0.0, float(c)])
return tuple([vector_a, vector_b, vector_c])
| 18,420
|
def random_chinese_name():
"""生成随机中文名字
包括的名字格式:2个字名字**,3个字名字***,4个字名字****
:return:
"""
name_len = random.choice([i for i in range(4)])
if name_len == 0:
name = random_two_name()
elif name_len == 1:
name = random_three_name()
elif name_len == 2:
name = random_three_names()
else:
name = random_four_name()
return name
| 18,421
|
def copy_dir_with_s3(s3_old_path, s3_new_path, raise_when_no_exist=True):
"""Copies files from one S3 Path to another
Args:
s3_old_path(S3Path): Output path of the file to be uploaded
s3_new_path(S3Path): Output path of the file to be uploaded
raise_when_no_exist(bool, optional): Raise error if file not found
Raises:
ETLInputError: If s3_old_path does not exist
"""
if not isinstance(s3_old_path, S3Path):
raise ETLInputError('S3 old path should be of type S3Path')
if not s3_old_path.is_directory:
raise ETLInputError('S3 old path must be directory')
if not isinstance(s3_new_path, S3Path):
raise ETLInputError('S3 new path should be of type S3Path')
if not s3_new_path.is_directory:
raise ETLInputError('S3 new path must be directory')
bucket = get_s3_bucket(s3_old_path.bucket)
prefix = s3_old_path.key
# Enforce this to be a folder's prefix
prefix += '/' if not prefix.endswith('/') else ''
keys = bucket.get_all_keys(prefix=s3_old_path.key)
for key in keys:
if key:
key.copy(s3_new_path.bucket,
os.path.join(s3_new_path.key, os.path.basename(key.key)))
elif raise_when_no_exist:
raise ETLInputError('The key does not exist: %s' % s3_old_path.uri)
| 18,422
|
def power_list(lists: [list]) -> list:
""" power set across the options of all lists """
if len(lists) == 1:
return [[v] for v in lists[0]]
grids = power_list(lists[:-1])
new_grids = []
for v in lists[-1]:
for g in grids:
new_grids.append(g + [v])
return new_grids
| 18,423
|
def send_email(from_email, to, subject, message, html=True):
"""
Send emails to the given recipients
:param from_email:
:param to:
:param subject:
:param message:
:param html:
:return: Boolean value
"""
try:
email = EmailMessage(subject, message, from_email, to)
print("Sending email..")
if html:
email.content_subtype = 'html'
email.send()
return True
except Exception as e:
print("Error in sending email: {0}".format(str(e)))
if 'rate exceeded' in str(e):
time.sleep(2)
send_email(from_email, to, subject, message)
return False
| 18,424
|
def set_default_locale(code):
"""Sets the default locale, used in get_closest_locale().
The default locale is assumed to be the language used for all strings
in the system. The translations loaded from disk are mappings from
the default locale to the destination locale. Consequently, you don't
need to create a translation file for the default locale.
"""
global _default_locale
global _supported_locales
_default_locale = code
_supported_locales = frozenset(_translations.keys() + [_default_locale])
| 18,425
|
def attack(health, power, percent_to_hit):
"""Calculates health from percent to hit and power of hit
Parameters:
health - integer defining health of attackee
power - integer defining damage of attacker
percent to hit - float defining percent chance to hit of attacker
Returns: new health
"""
random_number = random.random() # number between 0.0 and 1.0
# if our random number falls between 0 and percent to hit
if random_number <= percent_to_hit:
# then a hit occurred so we reduce health by power
health = health - power
# return the new health value
return health
| 18,426
|
def signal_requests_mock_factory(requests_mock: Mocker) -> Mocker:
"""Create signal service mock from factory."""
def _signal_requests_mock_factory(
success_send_result: bool = True, content_length_header: str = None
) -> Mocker:
requests_mock.register_uri(
"GET",
"http://127.0.0.1:8080/v1/about",
status_code=HTTPStatus.OK,
json={"versions": ["v1", "v2"]},
)
if success_send_result:
requests_mock.register_uri(
"POST",
"http://127.0.0.1:8080" + SIGNAL_SEND_PATH_SUFIX,
status_code=HTTPStatus.CREATED,
)
else:
requests_mock.register_uri(
"POST",
"http://127.0.0.1:8080" + SIGNAL_SEND_PATH_SUFIX,
status_code=HTTPStatus.BAD_REQUEST,
)
if content_length_header is not None:
requests_mock.register_uri(
"GET",
URL_ATTACHMENT,
status_code=HTTPStatus.OK,
content=CONTENT,
headers={"Content-Length": content_length_header},
)
else:
requests_mock.register_uri(
"GET",
URL_ATTACHMENT,
status_code=HTTPStatus.OK,
content=CONTENT,
)
return requests_mock
return _signal_requests_mock_factory
| 18,427
|
def test_dwt_denoise_trace():
""" Check that sample data fed into dwt_denoise_trace() can be processed
and that the returned signal is reasonable (for just one trace)"""
# Loma Prieta test station (nc216859)
data_files, origin = read_data_dir('geonet', 'us1000778i', '*.V1A')
trace = []
trace = read_data(data_files[0])
dataOut = dwt.denoise_trace(tr=trace)
# Look at frequency content? Samples?
return dataOut
| 18,428
|
def get_networks(project_id=None,
auth_token=None):
"""
Get a list of all routed networks
"""
url = CATALOG_HOST + "/routednetwork"
try:
response_body = _api_request(url=url,
http_method="GET",
project_id=project_id,
auth_token=auth_token)
except CommandExecutionError as e:
log.exception(e)
return None
networks = [
network
for network
in response_body
if network['internalDeploymentStatus']['phase'] in list(map(str, POSITIVE_PHASES))
]
return networks
| 18,429
|
def main(url, out_path):
"""[summary]
Parameters
----------
url : string
URL to download zip file from (must be a zip file with no password)
out_path : string
Path to extract the zip file contents to
Example
----------
main(f"https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-additional.zip", "../data/raw/"
"""
try:
request = requests.get(url)
zipdoc = zipfile.ZipFile(BytesIO(request.content))
for name in zipdoc.namelist():
print("Extracting... {0}{1}".format(out_path, name))
zipdoc.extract(name, out_path)
zipdoc.close()
print("Done extracting files from the ZipFile")
except BadZipFile as b:
print("Error: ", b)
except Exception as e:
print("Error: ", e)
| 18,430
|
def setup_module(mod):
"""Sets up the pytest environment."""
testsuite_run_time = time.asctime(time.localtime(time.time()))
logger.info("Testsuite start time: {}".format(testsuite_run_time))
logger.info("=" * 40)
logger.info("Running setup_module to create topology")
# This function initiates the topology build with Topogen...
json_file = "{}/test_ospf_dual_stack.json".format(CWD)
tgen = Topogen(json_file, mod.__name__)
global topo
topo = tgen.json_topo
# ... and here it calls Mininet initialization functions.
# get list of daemons needs to be started for this suite.
daemons = topo_daemons(tgen, topo)
# Starting topology, create tmp files which are loaded to routers
# to start daemons and then start routers
start_topology(tgen, daemons)
# Creating configuration from JSON
build_config_from_json(tgen, topo)
# Don't run this test if we have any failure.
if tgen.routers_have_failure():
pytest.skip(tgen.errors)
# Api call verify whether OSPF converged
ospf_covergence_ipv4 = verify_ospf_neighbor(tgen, topo)
assert ospf_covergence_ipv4 is True, "setup_module :Failed \n Error:" " {}".format(
ospf_covergence_ipv4
)
# Api call verify whether OSPF6 converged
ospf_covergence_ipv6 = verify_ospf6_neighbor(tgen, topo)
assert ospf_covergence_ipv6 is True, "setup_module :Failed \n Error:" " {}".format(
ospf_covergence_ipv6
)
logger.info("Running setup_module() done")
| 18,431
|
def click_event(event, x, y, flags, params):
"""
Crop an image based on the clicked detected face
"""
# event is triggered with a mouse click
if event == cv2.EVENT_LBUTTONUP:
for location in face_locations:
# unpack the coordinates from the location tuple
top, right, bottom, left = location
if (top < y < bottom) and (left < x < right):
frame_copy = np.copy(frame)
roi = frame_copy[top:bottom, left:right]
# give a unique name for the cropped image
currentDT = datetime.datetime.now()
cropped_name = os.path.join(CROPPED_IMAGES_PATH, loc_name_dict[location] + '_' + str(currentDT) + '.png')
# save the cropped image
cv2.imwrite(cropped_name, roi)
# show the cropped image
crop = cv2.imread(cropped_name)
cv2.imshow('cropped image', crop)
# re-run the run_face_recognition function
run_face_recognition(database)
| 18,432
|
def _download_(args):
""" To be used within _ZTFDownloader_.download_data()
url, fileout,overwrite,verbose = args
"""
url, fileout, overwrite, verbose, wait = args
download_single_url(url, fileout=fileout, overwrite=overwrite, verbose=verbose, wait=wait)
| 18,433
|
def feature_registration(source,target, MIN_MATCH_COUNT = 12):
"""
Obtain the rigid transformation from source to target
first find correspondence of color images by performing fast registration
using SIFT features on color images.
The corresponding depth values of the matching keypoints is then used to
obtain rigid transformation through a ransac process.
Parameters
----------
source : ((n,m) uint8, (n,m) float)
The source color image and the corresponding 3d pointcloud combined in a list
target : ((n,m) uint8, (n,m) float)
The target color image and the corresponding 3d pointcloud combined in a list
MIN_MATCH_COUNT : int
The minimum number of good corresponding feature points for the algorithm to
trust the pairwise registration result with feature matching only
Returns
----------
transform: (4,4) float or None
The homogeneous rigid transformation that transforms source to the target's
frame
if None, registration result using feature matching only cannot be trusted
either due to no enough good matching feature points are found, or the ransac
process does not return a solution
"""
cad_src, depth_src = source
cad_des, depth_des = target
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descripto rs with SIFT
kp1, des1 = sift.detectAndCompute(cad_src,None)
kp2, des2 = sift.detectAndCompute(cad_des,None)
# find good mathces
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
# if number of good matching feature point is greater than the MIN_MATCH_COUNT
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
bad_match_index = np.where(np.array(matchesMask) == 0)
src_index=np.vstack(src_pts).squeeze()
src_index = np.delete(src_index, tuple(bad_match_index[0]), axis=0)
src_index[:,[0, 1]] = src_index[:,[1, 0]]
src_index = tuple(src_index.T.astype(np.int32))
src_depths = depth_src[src_index]
dst_index=np.vstack(dst_pts).squeeze()
dst_index = np.delete(dst_index, tuple(bad_match_index[0]), axis=0)
dst_index[:,[0, 1]] = dst_index[:,[1, 0]]
dst_index = tuple(dst_index.T.astype(np.int32))
dst_depths = depth_des[dst_index]
dst_good=[]
src_good=[]
dst_depths=dst_depths[matchesMask>0][0]
src_depths=src_depths[matchesMask>0][0]
for i in xrange(len(dst_depths)):
if np.sum(dst_depths[i])!=0 and np.sum(src_depths[i])!=0:
dst_good.append(dst_depths[i].tolist())
src_good.append(src_depths[i].tolist())
# get rigid transforms between 2 set of feature points through ransac
transform = match_ransac(np.asarray(src_good),np.asarray(dst_good))
return transform
else:
return None
| 18,434
|
def set_metadata(testbench_config, testbench):
"""
Perform the direct substitutions from the sonar testbench metadata into the
the testbench
Args:
testbench_config (Testbench): Sonar testbench description
testbench (str): The testbench template
"""
for key, value in testbench_config.metadata.items():
if value is None:
replace_str = ""
else:
replace_str = str(value)
search_str = "SONAR_" + key.upper()
testbench = replace_in_testbenches(testbench, search_str, replace_str)
return testbench
| 18,435
|
def index(a, x):
"""Locate the leftmost value exactly equal to x"""
i = bisect_left(a, x)
if i != len(a) and a[i] == x:
return i
raise ValueError
| 18,436
|
def convert_secondary_type_list(obj):
"""
:type obj: :class:`[mbdata.models.ReleaseGroupSecondaryType]`
"""
type_list = models.secondary_type_list()
[type_list.add_secondary_type(convert_secondary_type(t)) for t in obj]
return type_list
| 18,437
|
def get_fdr_output(D, foutname):
"""Runs fdr and returns all relevant output."""
slm = SLM(FixedEffect(1), FixedEffect(1))
for key in D.keys():
setattr(slm, key, D[key])
# run fdr
Q = fdr(slm)
Q_out = {}
Q_out["Q"] = Q
with open(foutname, "wb") as handle:
pickle.dump(Q_out, handle, protocol=4) #
return
| 18,438
|
def run(inputs, parameters = None):
"""Function to be callled by DOE and optimization. Design Variables are
the only inputs.
:param inputs: {'sma', 'linear', 'sigma_o'}"""
def thickness(x, t, chord):
y = af.Naca00XX(chord, t, [x], return_dict = 'y')
thickness_at_x = y['u'] - y['l']
return thickness_at_x
if parameters != None:
eng = parameters[0]
import_matlab = False
else:
eng = None
import_matlab = True
sma = inputs['sma']
linear = inputs['linear']
R = inputs['R']
sigma_o = 100e6
airfoil = "naca0012"
chord = 1.#0.6175
J = {'x':0.75, 'y':0.}
#Adding the area key to the dictionaries
sma['area'] = math.pi*(0.000381/2.)**2
linear['area'] = 0.001
# Design constants
#arm length to center of gravity
r_w = 0.10
#Aicraft weight (mass times gravity)
W = 0.0523*9.8 #0.06*9.8
alpha = 0.
V = 10 #m/s
altitude = 10000. #feet
# Temperature
T_0 = 273.15 + 30.
T_final = 273.15 + 140.
#Initial martensitic volume fraction
MVF_init = 1.
# Number of steps and cycles
n = 200
n_cycles = 0
#~~~~~~~~~~~~~~~~~~~~~bb~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#Parameters to select how to output stuff
all_outputs = True
save_data = True
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if all_outputs:
eps_s, eps_l, theta, sigma, MVF, T, eps_t, theta, F_l, k, L_s = flap(airfoil,
chord, J, sma, linear, sigma_o,
W, r_w, V, altitude, alpha, T_0,
T_final, MVF_init, n, R, all_outputs = True,
import_matlab = import_matlab, eng=eng,
n_cycles = n_cycles)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(np.rad2deg(theta), eps_s, lw=2., label = "$\epsilon_s$")
plt.plot(np.rad2deg(theta), eps_l, 'b--',lw=2, label = "$\epsilon_l$")
# plt.scatter(theta, eps_s, c = 'b')
# plt.scatter(theta, eps_l, c = 'b')
plt.ylabel('$\epsilon$', fontsize=24)
plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
print len(T), len(eps_s), len(eps_l), len(theta), len(eps_t)
plt.figure()
plt.plot(np.rad2deg(theta), eps_t, lw=2.)
# plt.scatter(theta, eps_t, c = 'b')
plt.ylabel('$\epsilon_t$', fontsize=24)
plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
plt.figure()
plt.plot(np.rad2deg(theta), MVF, lw=2.)
# plt.scatter(theta, MVF, c = 'b')
plt.ylabel('$MVF$', fontsize=24)
plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
plt.figure()
plt.plot(T, MVF, lw=2.)
# plt.scatter(T, MVF, c = 'b')
plt.ylabel('$MVF$', fontsize=24)
plt.xlabel('$T (K)$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
plt.figure()
plt.plot(T, sigma, lw=2.)
# plt.scatter(T, sigma, c = 'b')
plt.ylabel('$\sigma$', fontsize=24)
plt.xlabel('$T (K)$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
plt.figure()
plt.plot(T, eps_s, 'b', lw=2., label = "$\epsilon_s$")
plt.plot(T, eps_l, 'b--',lw=2, label = "$\epsilon_l$")
# plt.scatter(T, eps_s, c = 'b')
# plt.scatter(T, eps_l, c = 'b')
plt.xlabel('$T (K)$', fontsize=20)
plt.ylabel('$\epsilon$', fontsize=24)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
plt.figure()
plt.plot(T, np.rad2deg(theta), lw=2.)
# plt.scatter(T, theta, c = 'b')
plt.xlabel('$T (K)$', fontsize=20)
plt.ylabel(r'$\theta ({}^{\circ})$', fontsize=20)
plt.grid()
F_s = []
for i in range(len(sigma)):
F_s.append(sigma[i]*sma['area'])
# sigma_MPa = []
# for sigma_i in sigma:
# sigma_MPa.append(sigma_i/1e6)
plt.figure()
plt.plot(theta, F_s, 'b', lw=2., label = "$F_s$")
plt.plot(theta, F_l, 'b--', lw=2., label = "$F_l$")
# plt.scatter(theta, F_s, c = 'b')
# plt.scatter(theta, F_l, c = 'b')
plt.ylabel('$F (N)$', fontsize=20)
plt.xlabel(r'$\theta ({}^{\circ})$', fontsize=20)
plt.legend(loc = 'best', fontsize = 'x-large')
plt.grid()
else:
theta, k= flap(airfoil, chord, J, sma, linear, sigma_o,
W, r_w, V, altitude, alpha, T_0,
T_final, MVF_init, n, R, all_outputs = False,
import_matlab = import_matlab, eng=eng,
n_cycles = n_cycles)
if save_data == True:
Data = {'theta': theta, 'eps_s': eps_s, 'eps_l': eps_l,
'sigma': sigma, 'xi': MVF, 'T': T, 'eps_t': eps_t,
'F_l': F_l, 'k': k, 'L_s':L_s}
pickle.dump(Data, open( "data.p", "wb" ) )
return {'theta': theta, 'k': k}
| 18,439
|
def test_sa_question_creation() -> None:
"""Assert the creation and return values of a Question."""
for test_case in cases:
question = parser.Question(str(test_case["filename"]))
assert test_case["filename"] == question.filename
assert test_case["question_type"] == question.type
# Add case for checking number of feedback == number of answer
sections = test_case["sections"]
for key, value in sections.items(): # type: ignore
assert question.sections[key] == value
| 18,440
|
def load_data(path):
"""Load JSON data."""
with open(path) as inf:
return json.load(inf)
| 18,441
|
def test_new_dividends(mocker, capsys):
"""Различные варианты включения и не включения в статус."""
mocker.patch.object(div_status, "_new_div_all", return_value=SMART_LAB_DF)
mocker.patch.object(div, "dividends", side_effect=[PLZL_DF, T_DF, KZOS_DF, TTLK_DF])
assert div_status.new_dividends(("TTLK", "T-RM", "KZOS", "PLZL")) == {"PLZL", "KZOS"}
captured = capsys.readouterr()
assert "ДАННЫЕ ПО ДИВИДЕНДАМ ТРЕБУЮТ ОБНОВЛЕНИЯ" in captured.out
| 18,442
|
def unwatch(message):
"""
Unsubscribe from real-time updates for the specified
ticker
"""
log.info(f"Cancelling subscription to {message.ticker} data")
req_id = ib.next_request_id()
subId = subscriptions[message.ticker]
if subId:
# ib.cancelTickByTickData(subId)
ib.cancelMktData(subId)
del subscriptions[message.ticker]
del requests[subId]
| 18,443
|
def get_extension(file_path):
"""
get_extension(file)
Gets the extension of the given file.
Parameters
----------
file_path
A path to a file
Returns
-------
str
Returns the extension of the file if it exists or None otherwise.
The Returning extension contains a dot. Ex: .csv
"""
if exists(file_path):
return Path(file_path).suffix
else:
return None
| 18,444
|
def game_state_post_save(sender, instance, created, **kwargs):
"""
When a new Game State is created, initialize the initial values
"""
if created:
# starting resources
for resource, quantity in STARTING['Resources'].iteritems():
resource = Resource.objects.get(name=resource)
ResourceState.objects.create(
resource=resource,
quantity=quantity,
state=instance
)
# starting positions
arena = instance.match.arena
for player, positions in STARTING["Positions"].iteritems():
for position in positions:
x, y = arena.normalize(position)
territory = Territory.objects.get(arena=arena, position_x=x, position_y=y)
TerritoryState.objects.create(
state=instance,
territory=territory,
player=player,
status="owned",
is_base=True
)
| 18,445
|
def rank_in_group(df, group_col, rank_col, rank_method="first"):
"""Ranks a column in each group which is grouped by another column
Args:
df (pandas.DataFrame): dataframe to rank-in-group its column
group_col (str): column to be grouped by
rank_col (str): column to be ranked for
rank_method (str): rank method to be the "method" argument of pandas.rank() function
Returns:
pandas.DataFrame: dataframe after the rank-in-group operation
"""
df = df.copy()
df_slice = df[[group_col, rank_col]].drop_duplicates()
df_slice["ranked_{}".format(rank_col)] = df_slice[rank_column].rank(
method=rank_method
)
df = pd.merge(
df,
df_slice[[group_col, "ranked_{}".format(rank_col)]],
how="left",
on=group_col,
)
return df
| 18,446
|
def get_layer_options(layer_options, local_options):
"""
Get parameters belonging to a certain type of layer.
Parameters
----------
layer_options : list of String
Specifies parameters of the layer.
local_options : list of dictionary
Specifies local parameters in a model function.
"""
layer_options_dict = {}
for key, value in six.iteritems(local_options):
if key in layer_options:
layer_options_dict[key] = value
return layer_options_dict
| 18,447
|
def expr(term:Vn,add:Vt,expr:Vn)->Vn:
"""
expr -> term + expr
"""
return {"add":[term,expr]}
| 18,448
|
def gene_box(cohort, order='median', percentage=False):
"""Box plot with counts of filtered mutations by gene.
percentage computes fitness as the increase with respect to
the self-renewing replication rate lambda=1.3.
Color allows you to use a dictionary of colors by gene.
Returns a figure."""
# Load gene color dictionary
with open('../Resources/gene_color_dict.json') as json_file:
color_dict = json.load(json_file)
# Create a dictionary with all filtered genes
gene_list = []
for traj in cohort:
gene_list.append(traj.gene)
gene_dict = {element: [] for element in set(gene_list)}
# update the counts for each gene
if percentage is False:
y_label = 'Fitness'
for traj in cohort:
fitness = traj.fitness
gene_dict[traj.gene].append(fitness)
if percentage is True:
y_label = 'fitness_percentage'
for traj in cohort:
fitness = traj.fitness_percentage
gene_dict[traj.gene].append(fitness)
# sort dictionary in descending order
if order == 'mean':
gene_dict = dict(sorted(gene_dict.items(),
key=lambda item: np.mean(item[1]),
reverse=True))
if order == 'median':
gene_dict = dict(sorted(gene_dict.items(),
key=lambda item: np.median(item[1]),
reverse=True))
if order == 'max':
gene_dict = dict(sorted(gene_dict.items(),
key=lambda item: np.max(item[1]),
reverse=True))
# Bar plot
fig = go.Figure()
# color_dict = dict()
# if isinstance(color, dict):
# color_dict = color
for i, key in enumerate(gene_dict):
fig.add_trace(
go.Box(y=gene_dict[key],
marker_color=color_dict[key],
name=key, boxpoints='all', showlegend=False))
fig.update_layout(title='Gene distribution of filtered mutations',
yaxis_title=y_label,
template="simple_white")
fig.update_xaxes(linewidth=2)
fig.update_yaxes(linewidth=2)
if percentage is False:
fig.update_yaxes(type='log', tickvals=[0.05, 0.1, 0.2, 0.4])
fig.update_layout(xaxis_tickangle=-45)
return fig, gene_dict
| 18,449
|
def _clip_and_count(
adata: AnnData,
target_col: str,
*,
groupby: Union[str, None, List[str]] = None,
clip_at: int = 3,
inplace: bool = True,
key_added: Union[str, None] = None,
fraction: bool = True,
) -> Union[None, np.ndarray]:
"""Counts the number of identical entries in `target_col`
for each group in `group_by`.
"""
if target_col not in adata.obs.columns:
raise ValueError("`target_col` not found in obs.")
groupby = [groupby] if isinstance(groupby, str) else groupby
groupby_cols = [target_col] if groupby is None else groupby + [target_col]
clonotype_counts = (
adata.obs.groupby(groupby_cols, observed=True)
.size()
.reset_index(name="tmp_count")
.assign(
tmp_count=lambda X: [
">= {}".format(min(n, clip_at)) if n >= clip_at else str(n)
for n in X["tmp_count"].values
]
)
)
clipped_count = adata.obs.merge(clonotype_counts, how="left", on=groupby_cols)[
"tmp_count"
].values
if inplace:
key_added = (
"{}_clipped_count".format(target_col) if key_added is None else key_added
)
adata.obs[key_added] = clipped_count
else:
return clipped_count
| 18,450
|
def create_training_patches(images, patch_size, patches_per_image=1, patch_stride=None):
"""
Returns a batch of image patches, given a batch of images.
Args:
images (list, numpy.array): Batch of images.
patch_size (tuple, list): The (width, height) of the patch to
return.
patches_per_image (int): Number of random patches to
generate from each image in the input batch. Default is 1.
patch_stride (int): Stride to use in strided patching. Default
is None, which does not use strided patching. If integer is passed
then strided patching will be used regardless of what is passed
to 'patches_per_image'.
Returns:
(numpy.array): Batch of image patches.
"""
image_patches = []
for im in images:
if patch_stride is None:
for i in range(patches_per_image):
image_patches.append(get_random_patch(im, patch_size))
else:
image_patches += list(get_stride_patches(im, patch_size, patch_stride, 2))
return np.array(image_patches)
| 18,451
|
def get_prover_options(prover_round_tag='manual',
prover_round=-1) -> deephol_pb2.ProverOptions:
"""Returns a ProverOptions proto based on FLAGS."""
if not FLAGS.prover_options:
tf.logging.fatal('Mandatory flag --prover_options is not specified.')
if not tf.gfile.Exists(FLAGS.prover_options):
tf.logging.fatal('Required prover options file "%s" does not exist.',
FLAGS.prover_options)
prover_options = deephol_pb2.ProverOptions()
if FLAGS.max_theorem_parameters is not None:
tf.logging.warning(
'Overring max_theorem_parameters in prover options to %d.',
FLAGS.max_theorem_parameters)
prover_options.action_generator_options.max_theorem_parameters = (
FLAGS.max_theorem_parameters)
with tf.gfile.Open(FLAGS.prover_options) as f:
text_format.MergeLines(f, prover_options)
if prover_options.builtin_library:
tf.logging.warning('builtin_library is deprecated. Do not provide.')
if str(prover_options.builtin_library) not in ['core']:
tf.logging.fatal('Unsupported built in library: %s',
prover_options.builtin_library)
if FLAGS.timeout_seconds is not None:
prover_options.timeout_seconds = FLAGS.timeout_seconds
if not FLAGS.output:
tf.logging.fatal('Missing flag --output [recordio_pattern]')
prover_options.prover_round = deephol_pb2.ProverRound(
start_seconds=int(round(time.time())),
tag=prover_round_tag,
round=prover_round)
_verify_prover_options(prover_options)
# Log prover options.
tf.logging.info('Using prover_options:\n %s', str(prover_options))
return prover_options
| 18,452
|
def bracketpy(pystring):
"""Find CEDICT-style pinyin in square brackets and correct pinyin.
Looks for square brackets in the string and tries to convert its
contents to correct pinyin. It is assumed anything in square
brackets is CC-CEDICT-format pinyin.
e.g.: "拼音[pin1 yin1]" will be converted into "拼音 pīnyīn".
"""
if len(findall("(\[.+?\])", pystring)) >= 1:
cedpylist = findall("(\[.+?\])", pystring)
for item in cedpylist:
pystring = pystring.replace(item, " " + pyjoin(item[1:-1]))
return pystring
if len(findall("(\[.+?\])", pystring)) < 1:
return pystring
else:
return None
| 18,453
|
def run_validate_dictionary(args: Namespace, unknown: Optional[List[str]] = None) -> None:
"""
Wrapper function for running dictionary validation
Parameters
----------
args: :class:`~argparse.Namespace`
Parsed command line arguments
unknown: list[str]
Parsed command line arguments to be passed to the configuration objects
"""
validate_dictionary_args(args)
validate_dictionary(args, unknown)
| 18,454
|
def get_ram_usage_bytes(size_format: str = 'M'):
"""
Size formats include K = Kilobyte, M = Megabyte, G = Gigabyte
"""
total = psutil.virtual_memory().total
available = psutil.virtual_memory().available
used = total - available
# Apply size
if size_format == 'K':
used = used / 1024
if size_format == 'M':
used = used / 1024 / 1024
if size_format == 'G':
used = used / 1024 / 1024 / 1024
return int(used)
| 18,455
|
def test_rebase_and_update_remote(mock_repo, monkeypatch):
"""
GIVEN Rebaser initialized correctly
WHEN rebase_and_update_remote is called
THEN a tag is created
AND remote.fetch is called twice to catch remote updates during the rebase
AND git.push is called
"""
monkeypatch.setattr(time, 'sleep', lambda s: None)
rebaser = Rebaser(mock_repo, "my_branch", "my_commit", "my_remote",
"000", dev_mode=True, release='15.0')
mock_repo.commit.same.return_value = True
rebaser.rebase_and_update_remote()
assert mock_repo.tag.create.call_count == 1
assert mock_repo.remote.fetch.call_count == 2
expected = [(("-n", "my_remote", "private-rebaser-15.0-000-previous"),),
(("-nf", "--follow-tags", "my_remote", "my_branch"),)]
assert mock_repo.git.push.call_args_list == expected
| 18,456
|
def weighted_crossentropy(weights, name='anonymous'):
"""A weighted version of tensorflow.keras.objectives.categorical_crossentropy
Arguments:
weights = np.array([0.5,2,10]) # Class one at 0.5, class 2 twice the normal weights, class 3 10x.
name: string identifying the loss to differentiate when models have multiple losses
Returns:
keras loss function named name+'_weighted_loss'
"""
string_globe = 'global ' + name + '_weights\n'
string_globe += 'global ' + name + '_kweights\n'
string_globe += name + '_weights = np.array(weights)\n'
string_globe += name + '_kweights = K.variable('+name+'_weights)\n'
exec(string_globe, globals(), locals())
fxn_postfix = '_weighted_loss'
string_fxn = 'def ' + name + fxn_postfix + '(y_true, y_pred):\n'
string_fxn += '\ty_pred /= K.sum(y_pred, axis=-1, keepdims=True)\n'
string_fxn += '\ty_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())\n'
string_fxn += '\tloss = y_true * K.log(y_pred) * ' + name + '_kweights\n'
string_fxn += '\tloss = -K.sum(loss, -1)\n'
string_fxn += '\treturn loss\n'
exec(string_fxn, globals(), locals())
loss_fxn = eval(name + fxn_postfix, globals(), locals())
return loss_fxn
| 18,457
|
def FullBackTraceAll(cmd_args=[]):
""" Show full backtrace across the interrupt boundary for threads running on all processors.
Syntax: fullbtall
Example: fullbtall
"""
for processor in IterateLinkedList(kern.globals.processor_list, 'processor_list') :
print "\n" + GetProcessorSummary(processor)
active_thread = processor.active_thread
if unsigned(active_thread) != 0 :
task_val = active_thread.task
proc_val = Cast(task_val.bsd_info, 'proc *')
print GetTaskSummary.header + " " + GetProcSummary.header
print GetTaskSummary(task_val) + " " + GetProcSummary(proc_val)
print "\t" + GetThreadSummary.header
print "\t" + GetThreadSummary(active_thread)
print "\tBacktrace:"
ThreadVal = GetLLDBThreadForKernelThread(active_thread)
FramePtr = ThreadVal.frames[0].GetFP()
print GetFullBackTrace(unsigned(FramePtr), prefix="\t")
| 18,458
|
def _get_package_type(id):
"""
Given the id of a package this method will return the type of the
package, or 'dataset' if no type is currently set
"""
pkg = model.Package.get(id)
if pkg:
return pkg.type or u'dataset'
return None
| 18,459
|
def _find_protruding_dimensions(f, care, fol):
"""Return variables along which `f` violates `care`."""
vrs = joint_support([f, care], fol)
dims = set()
for var in vrs:
other_vars = vrs - {var}
f_proj = fol.exist(other_vars, f)
care_proj = fol.exist(other_vars, care)
if (care_proj | ~ f_proj) != fol.true:
dims.add(var)
return dims
| 18,460
|
def prepare_data(train_mode, dataset="Train"):
"""
Args:
dataset: choose train dataset or test dataset
For train dataset, output data would be ['.../t1.bmp',
'.../t2.bmp',..., 't99.bmp']
"""
# Defines list of data path lists for different folders of training data
dataPaths = []
# If mode is train, dataPaths from each folder in Train directory are
# stored into a list which is then appended to dataPaths
# Join the Train dir to current directory
if dataset == "Train":
data_dir = os.path.join(os.getcwd(), dataset)
for root, dirs, files in os.walk(data_dir):
if dirs != []:
for folder in dirs:
dataFolderDir = os.path.join(data_dir, folder)
# make set of all dataset file path
data = glob.glob(os.path.join(dataFolderDir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
else:
if train_mode == 0:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode0")
# make set of all dataset file path
data = glob.glob(os.path.join(data_dir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 1:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode1")
# make set of all dataset file path
data = glob.glob(os.path.join(data_dir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 3:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode3")
# make set of all dataset file path
data = glob.glob(os.path.join(data_dir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 2:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode2")
# make set of all dataset file path
data = glob.glob(os.path.join(data_dir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 4:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode4")
# make set of all dataset file path
data = glob.glob(os.path.join(data_dir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 5:
# Prepares testing data paths for mode 5
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode5")
for root, dirs, files in os.walk(data_dir):
if dirs != []:
for folder in dirs:
dataFolderDir = os.path.join(data_dir, folder)
# make set of all dataset file path
data = glob.glob(os.path.join(dataFolderDir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
elif train_mode == 6:
data_dir = os.path.join(os.path.join(os.getcwd(), dataset),
"Mode6")
for root, dirs, files in os.walk(data_dir):
if dirs != []:
for folder in dirs:
dataFolderDir = os.path.join(data_dir, folder)
# make set of all dataset file path
data = glob.glob(os.path.join(dataFolderDir, "*.png"))
# Sorts by number in file name
data.sort(key=lambda f: int(''.join(filter(str.isdigit,
os.path.basename(f)))))
dataPaths.append(data)
print(dataPaths)
return dataPaths
| 18,461
|
def simulate_relatedness(genotypes, relatedness=.5, n_iter=1000, copy=True):
"""
Simulate relatedness by randomly copying genotypes between individuals.
Parameters
----------
genotypes : array_like
An array of shape (n_variants, n_samples, ploidy) where each
element of the array is an integer corresponding to an allele index
(-1 = missing, 0 = reference allele, 1 = first alternate allele,
2 = second alternate allele, etc.).
relatedness : float, optional
Fraction of variants to copy genotypes for.
n_iter : int, optional
Number of times to randomly copy genotypes between individuals.
copy : bool, optional
If False, modify `genotypes` in place.
Returns
-------
genotypes : ndarray, shape (n_variants, n_samples, ploidy)
The input genotype array but with relatedness simulated.
"""
# check genotypes array
genotypes = np.asarray(genotypes)
assert genotypes.ndim >= 2
n_variants = genotypes.shape[0]
n_samples = genotypes.shape[1]
# copy input array
if copy:
genotypes = genotypes.copy()
else:
# modify in place
pass
# determine the number of variants to copy genotypes for
n_copy = int(relatedness * n_variants)
# iteratively introduce relatedness
for i in range(n_iter):
# randomly choose donor and recipient
donor_index = random.randint(0, n_samples-1)
donor = genotypes[:, donor_index]
recip_index = random.randint(0, n_samples-1)
recip = genotypes[:, recip_index]
# randomly pick a set of variants to copy
variant_indices = random.sample(range(n_variants), n_copy)
# copy across genotypes
recip[variant_indices] = donor[variant_indices]
return genotypes
| 18,462
|
def pages_substitute(content):
"""
Substitute tags in pages source.
"""
if TAG_USERGROUPS in content:
usergroups = UserGroup.objects.filter(is_active=True).order_by('name')
replacement = ", ".join(f"[{u.name}]({u.webpage_url})" for u in usergroups)
content = content.replace(TAG_USERGROUPS, replacement)
return content
| 18,463
|
def vcfanno(vcf, out_file, conf_fns, data, basepath=None, lua_fns=None):
"""
annotate a VCF file using vcfanno (https://github.com/brentp/vcfanno)
"""
if utils.file_exists(out_file):
return out_file
if lua_fns is None:
lua_fns = []
vcfanno = config_utils.get_program("vcfanno", data)
with file_transaction(out_file) as tx_out_file:
conffn = _combine_files(conf_fns, tx_out_file)
luafn = _combine_files(lua_fns, tx_out_file)
luaflag = "-lua {0}".format(luafn) if luafn and utils.file_exists(luafn) else ""
basepathflag = "-base-path {0}".format(basepath) if basepath else ""
cores = dd.get_num_cores(data)
cmd = "{vcfanno} -p {cores} {luaflag} {basepathflag} {conffn} {vcf} | sed -e 's/Number=A/Number=1/g' | bgzip -c > {tx_out_file}"
message = "Annotating {vcf} with vcfanno, using {conffn}".format(**locals())
do.run(cmd.format(**locals()), message)
return out_file
| 18,464
|
def clean(params: dict) -> str:
"""
Build clean rules for Makefile
"""
clean = "\t@$(RM) -rf $(BUILDDIR)\n"
if params["library_libft"]:
clean += "\t@make $@ -C " + params["folder_libft"] + "\n"
if params["library_mlx"] and params["compile_mlx"]:
clean += "\t@make $@ -C " + params["folder_mlx"] + "\n"
return clean
| 18,465
|
def mathematica(quero: str, meta: str = '') -> bool:
"""mathematica
Rudimentar mathematical operations (boolean result)
Args:
quero (_type_, optional): _description_. Defaults to str.
Returns:
bool: True if evaluate to True.
"""
# neo_quero = quero.replace(' ', '').replace('(', '').replace(')', '')
neo_quero = quero.replace(' ', '')
if quero == 'True':
return True
if quero == 'False':
return False
if neo_quero.find('&&') > -1:
parts = neo_quero.split('&&')
# print(parts)
# return bool(parts[0]) and bool(parts[1])
return logicum(parts[0]) and logicum(parts[1])
if neo_quero.find('||') > -1:
parts = neo_quero.split('||')
# return bool(parts[0]) or bool(parts[1])
return logicum(parts[0]) or logicum(parts[1])
# regula = r"(\d*)(.{1,2})(\d*)"
regula = r"(?P<n1>(\d*))(?P<op>(\D{1,2}))(?P<n2>(\d*))"
r1 = re.match(regula, neo_quero)
if r1.group('op') == '==':
return int(r1.group('n1')) == int(r1.group('n2'))
if r1.group('op') == '!=':
return int(r1.group('n1')) != int(r1.group('n2'))
if r1.group('op') == '<=':
return int(r1.group('n1')) <= int(r1.group('n2'))
if r1.group('op') == '>=':
return int(r1.group('n1')) >= int(r1.group('n2'))
if r1.group('op') == '<':
return int(r1.group('n1')) < int(r1.group('n2'))
if r1.group('op') == '>':
return int(r1.group('n1')) > int(r1.group('n2'))
raise ValueError(
'mathematica: <quaero> [{1}] <op>? [{0}]'.format(str(quero), meta))
| 18,466
|
def fasta2vcf(f):
"""convert fasta to vcf dataframe
Input
-----
Fasta file, _ref is recognized as ref and _alt is used as alt, these are two keywords
Output
------
vcf dataframe: chr, pos, name, ref, alt, reference sequence
"""
my_dict = {}
for r in SeqIO.parse(f, "fasta"):
my_dict[r.id] = str(r.seq).upper()
print (my_dict)
vcf = pd.DataFrame()
index_list = []
chr_list = []
pos_list = []
ref_list = []
alt_list = []
seq_list = []
for k in my_dict:
if not "_ref" in k:
continue
name = k.replace("_ref","")
if not name+"_alt" in my_dict:
print (k,"alt sequence not found. Please use _ref and _alt keywords. Skip...")
continue
ref_seq,alt_seq = my_dict[k],my_dict[name+"_alt"]
if len(ref_seq) < 30:
print (k,"Please input sequence length at least 30bp. Skip...")
continue
if ref_seq == alt_seq:
print (k,"Ref and Alt sequence is the same. Please check. Skip...")
continue
pos,ref,alt = find_pos_ref_alt(ref_seq,alt_seq)
index_list.append(name)
chr_list.append(k)
seq_list.append(ref_seq)
pos_list.append(pos)
ref_list.append(ref)
alt_list.append(alt)
vcf[0] = chr_list
vcf[1] = pos_list
vcf[2] = index_list
vcf[3] = ref_list
vcf[4] = alt_list
vcf[5] = seq_list
vcf = vcf[vcf[1]!=-1]
if vcf.shape[0] == 0:
print ("no valid sequences in:",f)
print ("Exit...")
sys.exit(1)
return vcf
| 18,467
|
def test_calc_job_node_get_builder_restart(aiida_localhost):
"""Test the `CalcJobNode.get_builder_restart` method."""
original = orm.CalcJobNode(
computer=aiida_localhost, process_type='aiida.calculations:core.arithmetic.add', label='original'
)
original.set_option('resources', {'num_machines': 1, 'num_mpiprocs_per_machine': 1})
original.set_option('max_wallclock_seconds', 1800)
original.base.links.add_incoming(orm.Int(1).store(), link_type=LinkType.INPUT_CALC, link_label='x')
original.base.links.add_incoming(orm.Int(2).store(), link_type=LinkType.INPUT_CALC, link_label='y')
original.store()
builder = original.get_builder_restart()
assert 'x' in builder
assert 'y' in builder
assert 'metadata' in builder
assert 'options' in builder.metadata
assert builder.x == orm.Int(1)
assert builder.y == orm.Int(2)
assert builder._inputs(prune=True)['metadata']['options'] == original.get_options()
| 18,468
|
def checkout(path, commit, create = False):
""" Checks out a new branch in SL
:cwd: path to the git repo
:commit: String, name for the new branch
:create: create new or expect it to exist
"""
command = ["git", "checkout"]
if create:
command.append("-b")
command.append(commit)
if call(command, cwd=path) != 0:
fail("Could not checkout" + commit + " from " + path)
| 18,469
|
def time_pet(power,energy):
"""Usage: time_pet(power,energy)"""
return energy/power
| 18,470
|
def compute_sigma0(
T,
S,
**kwargs,
):
"""
compute the density anomaly referenced to the surface
"""
return compute_rho(T, S, 0, **kwargs) - 1000
| 18,471
|
def find_rise_offsets(
connection,
reference_zeta_mm=None):
"""Determine rising curves
"""
cursor = connection.cursor()
compute_rise_offsets(cursor, reference_zeta_mm)
cursor.close()
connection.commit()
| 18,472
|
def get_neighbors_radius(nelx, nely, coord, connect, radius):
""" Check neighboring elements that have the centroid within the predetermined radius.
Args:
nelx (:obj:`int`): Number of elements on the x axis.
nely (:obj:`int`): Number of elements on the x axis
coord (:obj:`numpy.array`): Coordinates of the element.
connect (:obj:`numpy.array`): Element connectivity.
radius (:obj:`float`): Radius to get elements in the vicinity of each element.
Returns:
neighbors, H, centroids
"""
el_number = nelx * nely
centroids = np.empty((el_number, 2))
idx = connect[:, 1:] - 1
centroids[:, 0] = np.sum(coord[idx, 1], axis = 1)/4
centroids[:, 1] = np.sum(coord[idx, 2], axis = 1)/4
ind_rows = []
ind_cols = []
data = []
cols = 0
neighbors = []
for el in range(el_number):
distance = np.sqrt(np.sum((centroids[el] - centroids)**2, axis=1))
mask = distance <= radius
neighbor = mask.nonzero()[0] + 1
neighbors.extend(neighbor - 1)
hi = radius - distance
hi_max = np.maximum(0, hi)
data.extend(hi_max[mask])
aux = len(hi_max[mask])
rows = np.repeat(el, aux) #.tolist()
columns = np.arange(0, aux)
ind_rows.extend(rows)
ind_cols.extend(columns)
if aux > cols:
cols = aux
H = csc_matrix((data, (ind_rows, ind_cols)), shape=(nelx*nely, cols)).toarray()
neighbors = csc_matrix((neighbors, (ind_rows, ind_cols)), shape=(nelx*nely, cols), dtype='int').toarray()
return neighbors, H, centroids
| 18,473
|
def merge_with(obj, *sources, **kwargs):
"""
This method is like :func:`merge` except that it accepts customizer which is invoked to produce
the merged values of the destination and source properties. If customizer returns ``None``,
merging is handled by this method instead. The customizer is invoked with five arguments:
``(obj_value, src_value, key, obj, source)``.
Args:
obj (dict): Destination object to merge source(s) into.
sources (dict): Source objects to merge from. subsequent sources
overwrite previous ones.
Keyword Args:
iteratee (callable, optional): Iteratee function to handle merging
(must be passed in as keyword argument).
Returns:
dict: Merged object.
Warning:
`obj` is modified in place.
Example:
>>> cbk = lambda obj_val, src_val: obj_val + src_val
>>> obj1 = {'a': [1], 'b': [2]}
>>> obj2 = {'a': [3], 'b': [4]}
>>> res = merge_with(obj1, obj2, cbk)
>>> obj1 == {'a': [1, 3], 'b': [2, 4]}
True
.. versionadded:: 4.0.0
.. versionchanged:: 4.9.3
Fixed regression in v4.8.0 that caused exception when `obj` was ``None``.
"""
if obj is None:
return None
sources = list(sources)
iteratee = kwargs.pop("iteratee", None)
if iteratee is None and sources and callable(sources[-1]):
iteratee = sources.pop()
sources = [copy.deepcopy(source) for source in sources]
if callable(iteratee):
iteratee = partial(callit, iteratee, argcount=getargcount(iteratee, maxargs=5))
else:
iteratee = None
return _merge_with(obj, *sources, iteratee=iteratee, **kwargs)
| 18,474
|
def count_class_nbr_patent_cnt(base_data_list, calculate_type):
"""
统计在所有数据中不同分类号对应的专利数量
:param base_data_list:
:return:
"""
class_number_patent_cnt_dict = dict()
for base_data in base_data_list:
class_number_value = base_data[const.CLASS_NBR]
calculate_class_number_patent_count_dict(class_number_value, class_number_patent_cnt_dict, calculate_type)
return class_number_patent_cnt_dict
| 18,475
|
def SetVariable(output, variable_name, value):
"""Sets a CMake variable."""
output.write('set(')
output.write(variable_name)
output.write(' "')
output.write(CMakeStringEscape(value))
output.write('")\n')
| 18,476
|
def plot_pta_L(df):
"""
INPUTS
-df: pandas dataframe containing the data to plot
OUTPUTS
-saves pta graphs in .html
"""
title = generate_title_run_PTA(df, "Left Ear", df.index[0])
labels = {"title": title,
"x": "Frequency (Hz)",
"y": "Hearing Threshold (dB HL)"}
fig = go.Figure()
fig.update_layout(title=labels["title"],
xaxis_title=labels["x"],
yaxis_title=labels["y"],
xaxis_type="log",
xaxis_range=[np.log10(100), np.log10(20000)],
yaxis_range=[80, -20],
yaxis_dtick=10,
xaxis_showline=True,
xaxis_linecolor="black",
yaxis_showline=True,
yaxis_linecolor="black",
yaxis_zeroline=True,
yaxis_zerolinewidth=1,
yaxis_zerolinecolor="black")
x, y = data_to_plot_PTA(df, "LE_")
fig.add_trace(go.Scatter(x=x,
y=y,
line_color="blue",
mode='lines+markers',
name=labels["title"],
hovertemplate="%{x:1.0f} Hz<br>" +
"%{y:1.0f} dB HL"))
completed = save_graph_PTA(fig, df, "Left Ear")
if completed is True:
return True
else:
return False
| 18,477
|
def error(text):
"""Safely echo an error to STDERR."""
output = text
if sys.stderr.isatty():
output = format_for_tty(text, [TEXT_ERROR, TEXT_BOLD])
stderr_log.error(output)
| 18,478
|
def create_graph(edge_num: int, edge_list: list) -> dict:
"""
Create a graph expressed with adjacency list
:dict_key : int (a vertex)
:dict_value : set (consisted of vertices adjacent to key vertex)
"""
a_graph = {i: set() for i in range(edge_num)}
for a, b in edge_list:
a_graph[a - 1].add(b - 1) # All graphs always need this line
a_graph[b - 1].add(a - 1) # Only undirected graph needs this line
return a_graph
| 18,479
|
def msg_warn(message):
"""
Log a warning message
:param message: the message to be logged
"""
to_stdout(" (!) {message}".format(message=message),
colorf=yellow, bold=True)
if _logger:
_logger.warn(message)
| 18,480
|
def multikey_fkg_allowing_type_hints(
namespace: Optional[str],
fn: Callable,
to_str: Callable[[Any], str] = repr) -> Callable[[Any], List[str]]:
"""
Equivalent of :func:`dogpile.cache.util.function_multi_key_generator`, but
using :func:`inspect.signature` instead.
Also modified to make the cached function unique per INSTANCE for normal
methods of a class.
"""
namespace = get_namespace(fn, namespace)
sig = inspect.signature(fn)
argnames = [p.name for p in sig.parameters.values()
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD]
has_self = bool(argnames and argnames[0] in ('self', 'cls'))
def generate_keys(*args: Any, **kw: Any) -> List[str]:
if kw:
raise ValueError("This dogpile.cache key function generator, "
"multikey_fkg_allowing_type_hints, "
"does not accept keyword arguments.")
if has_self:
# Unlike dogpile's default, make it instance- (or class-) specific
# by including a representation of the "self" or "cls" argument:
args = [hex(id(args[0]))] + list(args[1:])
keys = [namespace + "|" + key for key in map(to_str, args)]
if DEBUG_INTERNALS:
log.debug(
"multikey_fkg_allowing_type_hints.generate_keys() -> {!r}",
keys)
return keys
return generate_keys
| 18,481
|
def get_current_version() -> str:
"""Read the version of the package.
See https://packaging.python.org/guides/single-sourcing-package-version
"""
version_exports = {}
with open(VERSION_FILE) as file:
exec(file.read(), version_exports) # pylint: disable=exec-used
return version_exports["VERSION"]
| 18,482
|
def seed_story(text_dict):
"""Generate random seed for story."""
story_seed = random.choice(list(text_dict.keys()))
return story_seed
| 18,483
|
def __default_proto_version_inject():
"""
modified the value to default_proto_version if there are multiple allow version
"""
import minecraft.networking.connection as connection
from minecraft.networking.connection import Connection
red, connection_class = redbaron_util.read_class(Connection)
connect_method = redbaron_util.get_def(connection_class, 'connect')
main_with = redbaron_util.get_node(connect_method, node_type=WithNode)
idx = redbaron_util.get_node_index(main_with, node_type=AssignmentNode, predicate=lambda n: str(n.target) == 'self.spawned')
redbaron_util.insert_nodes(main_with, idx, [
RedBaron('''self.recorder.logger.info('Allow versions of the server: {}'.format(self.allowed_proto_versions))'''),
RedBaron('''if len(self.allowed_proto_versions) > 1: self.context.protocol_version = self.default_proto_version''')
])
patched_class_source = connect_method.dumps()
globals_ = dict(connection.__dict__)
exec(patched_class_source, globals_)
PatchedConnection = globals_['Connection']
Connection.connect = PatchedConnection.connect
| 18,484
|
def rename_file(directory, oldfilename, newfilename):
"""renames a file in a directory
:param directory: the name of the directory containing the file
to be renamed
:type directory: path
:param oldfilename: original name of the file
:type oldfilename: string
:param newfilename: new name of the file
:type newfilename: string
"""
if os.path.exists(directory):
oldfile = directory / oldfilename
newfile = directory / newfilename
os.rename(oldfile, newfile)
print('renamed: ', oldfile, ' with: ', newfile)
else:
logging.error(
"rename-error: directrory "
+ directory + " not found")
| 18,485
|
def detect_conda_env():
"""Inspect whether `sys.executable` is within a conda environment and if it is,
return the environment name and Path of its prefix. Otherwise return None, None"""
prefix = Path(sys.prefix)
if not (prefix / 'conda-meta').is_dir():
# Not a conda env
return None, None
if (prefix / 'envs').is_dir():
# It's the base conda env:
return 'base', prefix
# Not the base env: its name is the directory basename:
return prefix.name, prefix
| 18,486
|
def _get_rel_att_inputs(d_model, n_heads): # pylint: disable=invalid-name
"""Global relative attentions bias initialization shared across the layers."""
assert d_model % n_heads == 0 and d_model % 2 == 0
d_head = d_model // n_heads
bias_initializer = init.RandomNormalInitializer(1e-6)
context_bias_layer = core.Weights(bias_initializer,
shape=(1, n_heads, 1, d_head))
location_bias_layer = core.Weights(bias_initializer,
shape=(1, n_heads, 1, d_head))
return context_bias_layer, location_bias_layer
| 18,487
|
def two_time_pad():
"""A one-time pad simply involves the xor of a message with a key to produce a ciphertext: c = m ^ k.
It is essential that the key be as long as the message, or in other words that the key not be repeated for two distinct message blocks.
Your task:
In this problem you will break a cipher when the one-time pad is re-used.
c_1 = 3801025f45561a49131a1e180702
c_2 = 07010051455001060e551c571106
These are two hex-encoded ciphertexts that were formed by applying a “one-time pad” to two different messages with
the same key. Find the two corresponding messages m_1 and m_2.
Okay, to make your search simpler, let me lay out a few ground rules. First, every character in the text is either
a lowercase letter or a space, aside from perhaps the first character in the first message which might be capitalized.
As a consequence, no punctuation appears in the messages. Second, the messages consist of English words in ASCII.
Finally, all of the words within each message is guaranteed to come from the set of the 100 most
common English words: https://en.wikipedia.org/wiki/Most_common_words_in_English.
Returns:
Output the concatenation of strings m_1 and m_2. (Don't worry if words get smashed together as a result.)
"""
c_1 = '3801025f45561a49131a1e180702'
c_2 = '07010051455001060e551c571106'
# converting the hexadecimal representaiton to integers for every 2 bytes since it xor operations become on integers
c_1_int = [int(c_1[i] + c_1[i+1], 16) for i in range(0, len(c_1), 2)]
c_2_int = [int(c_2[i] + c_2[i+1], 16) for i in range(0, len(c_1), 2)]
xord = [c_1_int[i] ^ c_2_int[i] for i in range(len(c_1_int))] #xor of the two lists which are integer representations
result = construct('',xord)
if result == None:
return None
else:
print(result)
new_string = ''.join([chr(ord(result[i]) ^ xord[i]) for i in range(len(result))])
return new_string + result
| 18,488
|
def same_datatypes(lst):
"""
Überprüft für eine Liste, ob sie nur Daten vom selben Typ enthält. Dabei spielen Keys, Länge der Objekte etc. eine Rolle
:param lst: Liste, die überprüft werden soll
:type lst: list
:return: Boolean, je nach Ausgang der Überprüfung
"""
datatype = type(lst[0]).__name__
for item in lst:
if type(item).__name__ != datatype: # return False, wenn die Liste verschiedene Datentypen enthält
return False
# Datentypen sind gleich, aber sind deren Strukturen auch gleich? (für komplexe Datentypen)
if datatype == "dict":
keys = lst[0].keys()
for item in lst:
if item.keys() != keys: # return False, wenn die Keys der Dictionaries verschieden sind
return False
elif datatype == "list":
if sum([len(x) for x in lst]) / len(lst) != len(lst[0]): # return False, falls die Listen in der Liste verschiedene Längen haben
return False
datatypes = list(map(lambda x: type(x).__name__, lst[0]))
for item in lst:
if list(map(lambda x: type(x).__name__, item)) != datatypes: # return False, falls die Elemente der inneren Listen verschiedene Datenytpen haben
return False
return True
| 18,489
|
def _show_stat_wrapper_Progress(count, last_count, start_time, max_count, speed_calc_cycles,
width, q, last_speed, prepend, show_stat_function, add_args,
i, lock):
"""
calculate
"""
count_value, max_count_value, speed, tet, ttg, = Progress._calc(count,
last_count,
start_time,
max_count,
speed_calc_cycles,
q,
last_speed,
lock)
return show_stat_function(count_value, max_count_value, prepend, speed, tet, ttg, width, i, **add_args)
| 18,490
|
def _to_base58_string(prefixed_key: bytes):
"""
Convert prefixed_key bytes into Es/EC strings with a checksum
:param prefixed_key: the EC private key or EC address prefixed with the appropriate bytes
:return: a EC private key string or EC address
"""
prefix = prefixed_key[:PREFIX_LENGTH]
assert prefix == ECAddress.PREFIX or prefix == ECPrivateKey.PREFIX, 'Invalid key prefix.'
temp_hash = sha256(prefixed_key[:BODY_LENGTH]).digest()
checksum = sha256(temp_hash).digest()[:CHECKSUM_LENGTH]
return base58.encode(prefixed_key + checksum)
| 18,491
|
def import_report_from_stdin():
"""Parse a report from stdin."""
content = six.StringIO()
for line in fileinput.input([]):
content.write(line)
content.seek(0)
if not content:
return
import_report_from_email(content)
| 18,492
|
def round_int(n, d):
"""Round a number (float/int) to the closest multiple of a divisor (int)."""
return round(n / float(d)) * d
| 18,493
|
def process(sample_nxs_list, mt_nxs_list, parameter_yaml):
"""process a series of files using a fixed set of parameters
This implementation just shows one way of processing a batch job,
where the processing parameters stay fixed except for
the sample and emtpy can nexus files.
For more complex batch processing, a user could follow this example and
implement his/her own methods.
"""
import os
from . import Context, context2kargs
from ..getdos import getDOS
assert len(sample_nxs_list) == len(mt_nxs_list)
# load parameters
params = Context()
params.from_yaml(parameter_yaml)
if hasattr(params, 'iqe_nxs'): del params.iqe_nxs
if hasattr(params, 'iqe_h5'): del params.iqe_h5
# process
for sample_nxs, mt_nxs in zip(sample_nxs_list, mt_nxs_list):
params.sample_nxs = sample_nxs
params.mt_nxs = mt_nxs
kargs = context2kargs(params)
workdir = 'work-%s,%s' % (os.path.basename(sample_nxs), os.path.basename(mt_nxs) if mt_nxs else mt_nxs)
if not os.path.exists(workdir):
os.makedirs(workdir)
with open(os.path.join(workdir, 'log.getdos'), 'wt') as log:
kargs['workdir'] = workdir
print("* Processing %s, %s" % (sample_nxs, mt_nxs))
for msg in getDOS(**kargs):
log.write('%s\n' % (msg,))
continue
| 18,494
|
def test_default_parameter_in_args():
"""
>>> from allure_commons.utils import represent
>>> allure_report = getfixture('allure_report')
>>> assert_that(allure_report,
... has_test_case('test_default_parameter_in_args',
... has_step('First step',
... has_parameter('arg_param', represent(1)),
... has_parameter('kwarg_param', represent(2)),
... )
... )
... )
"""
step_with_parameters(1, 2)
| 18,495
|
def zipdir(dir, zip_path):
"""Create a zip file from a directory.
The zip file contains the contents of dir, but not dir itself.
Args:
dir: (str) the directory with the content to place in zip file
zip_path: (str) path to the zip file
"""
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as ziph:
for root, dirs, files in os.walk(dir):
for file in files:
ziph.write(join(root, file),
join('/'.join(dirs),
os.path.basename(file)))
| 18,496
|
def merge_array_list(arg):
"""
Merge multiple arrays into a single array
:param arg: lists
:type arg: list
:return: The final array
:rtype: list
"""
# Check if arg is a list
if type(arg) != list:
raise errors.AnsibleFilterError('Invalid value type, should be array')
final_list = []
for cur_list in arg:
final_list += cur_list
return final_list
| 18,497
|
def load_callbacks(boot, bootstrap, jacknife,
out, keras_verbose, patience):
"""
Specifies Keras callbacks, including checkpoints, early stopping,
and reducing learning rate.
Parameters
----------
boot
bootstrap
jacknife
out
keras_verbose
patience
batch_size
Returns
-------
checkpointer
earlystop
reducelr
"""
if bootstrap or jacknife:
checkpointer = tf.keras.callbacks.ModelCheckpoint(
filepath=out + "_boot" + str(boot) + "_weights.hdf5",
verbose=keras_verbose,
save_best_only=True,
save_weights_only=True,
monitor="val_loss",
save_freq="epoch",
)
else:
checkpointer = tf.keras.callbacks.ModelCheckpoint(
filepath=out + "_weights.hdf5",
verbose=keras_verbose,
save_best_only=True,
save_weights_only=True,
monitor="val_loss",
save_freq="epoch",
)
earlystop = tf.keras.callbacks.EarlyStopping(
monitor="val_loss", min_delta=0, patience=patience
)
reducelr = tf.keras.callbacks.ReduceLROnPlateau(
monitor="val_loss",
factor=0.5,
patience=int(patience / 6),
verbose=keras_verbose,
mode="auto",
min_delta=0,
cooldown=0,
min_lr=0,
)
return checkpointer, earlystop, reducelr
| 18,498
|
def build_sentence_model(cls, vocab_size, seq_length, tokens, transitions,
num_classes, training_mode, ground_truth_transitions_visible, vs,
initial_embeddings=None, project_embeddings=False, ss_mask_gen=None, ss_prob=0.0):
"""
Construct a classifier which makes use of some hard-stack model.
Args:
cls: Hard stack class to use (from e.g. `spinn.fat_stack`)
vocab_size:
seq_length: Length of each sequence provided to the stack model
tokens: Theano batch (integer matrix), `batch_size * seq_length`
transitions: Theano batch (integer matrix), `batch_size * seq_length`
num_classes: Number of output classes
training_mode: A Theano scalar indicating whether to act as a training model
with dropout (1.0) or to act as an eval model with rescaling (0.0).
ground_truth_transitions_visible: A Theano scalar. If set (1.0), allow the model access
to ground truth transitions. This can be disabled at evaluation time to force Model 1
(or 2S) to evaluate in the Model 2 style with predicted transitions. Has no effect on Model 0.
vs: Variable store.
"""
# Prepare layer which performs stack element composition.
if cls is spinn.plain_rnn.RNN:
if FLAGS.use_gru:
compose_network = partial(util.GRULayer,
initializer=util.HeKaimingInitializer())
else:
compose_network = partial(util.LSTMLayer,
initializer=util.HeKaimingInitializer())
embedding_projection_network = None
elif cls is spinn.cbow.CBOW:
compose_network = None
embedding_projection_network = None
else:
if FLAGS.lstm_composition:
if FLAGS.use_gru:
compose_network = partial(util.TreeGRULayer,
initializer=util.HeKaimingInitializer())
else:
compose_network = partial(util.TreeLSTMLayer,
initializer=util.HeKaimingInitializer())
else:
assert not FLAGS.connect_tracking_comp, "Can only connect tracking and composition unit while using TreeLSTM"
compose_network = partial(util.ReLULayer,
initializer=util.HeKaimingInitializer())
if project_embeddings:
embedding_projection_network = util.Linear
else:
assert FLAGS.word_embedding_dim == FLAGS.model_dim, \
"word_embedding_dim must equal model_dim unless a projection layer is used."
embedding_projection_network = util.IdentityLayer
# Build hard stack which scans over input sequence.
sentence_model = cls(
FLAGS.model_dim, FLAGS.word_embedding_dim, vocab_size, seq_length,
compose_network, embedding_projection_network, training_mode, ground_truth_transitions_visible, vs,
predict_use_cell=FLAGS.predict_use_cell,
use_tracking_lstm=FLAGS.use_tracking_lstm,
tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim,
X=tokens,
transitions=transitions,
initial_embeddings=initial_embeddings,
embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
ss_mask_gen=ss_mask_gen,
ss_prob=ss_prob,
connect_tracking_comp=FLAGS.connect_tracking_comp,
context_sensitive_shift=FLAGS.context_sensitive_shift,
context_sensitive_use_relu=FLAGS.context_sensitive_use_relu,
use_input_batch_norm=False)
# Extract top element of final stack timestep.
if FLAGS.lstm_composition or cls is spinn.plain_rnn.RNN:
sentence_vector = sentence_model.final_representations[:,:FLAGS.model_dim / 2].reshape((-1, FLAGS.model_dim / 2))
sentence_vector_dim = FLAGS.model_dim / 2
else:
sentence_vector = sentence_model.final_representations.reshape((-1, FLAGS.model_dim))
sentence_vector_dim = FLAGS.model_dim
sentence_vector = util.BatchNorm(sentence_vector, sentence_vector_dim, vs, "sentence_vector", training_mode)
sentence_vector = util.Dropout(sentence_vector, FLAGS.semantic_classifier_keep_rate, training_mode)
# Feed forward through a single output layer
logits = util.Linear(
sentence_vector, sentence_vector_dim, num_classes, vs,
name="semantic_classifier", use_bias=True)
return sentence_model.transitions_pred, logits
| 18,499
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.