content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import argparse def separator(string): """Parse the separator, possibly raising error""" options = {"tab": "\t", "comma": ","} s = options.get(string, string) if len(s) == 1: return s else: raise argparse.ArgumentTypeError("must be a 1-character string")
df4712f01a552911d9d9d8bc70b4b3f31415ec4c
11,508
def read_params_Coulomb(fname='in.params.Coulomb'): """ Read in.params.Coulomb. But only for fixed or fixed_bvs charges. """ with open(fname,'r') as f: lines = f.readlines() mode = None chgtype = None chgs = {} coul = {} bvs = {} for line in lines: if line[0] in ('#','!'): continue data = line.split() if len(data) == 0: mode = None continue if data[0] == 'charges': mode = 'charges' chgtype = data[1] continue elif data[0] == 'terms': mode = None continue elif data[0] == 'interactions': mode = None continue elif data[0] == 'fbvs': mode = None coul['fbvs'] = float(data[1]) continue if mode == 'charges' and chgtype == 'fixed': if len(data) == 2: csp = data[0] chg = float(data[1]) chgs[csp] = chg elif mode == 'charges' and chgtype == 'fixed_bvs': if len(data) == 4: csp = data[0] vid = float(data[1]) rad = float(data[2]) npq = int(data[3]) bvs[csp] = (vid,rad,npq) if chgtype == 'fixed': coul['charges'] = chgs elif chgtype == 'fixed_bvs': coul['bvs'] = bvs return coul
a870d1a7b504fdbbc87f09db758bfd11b770be63
11,509
import json def mac_entry_info_get(client, vlan_name, port, peer_mac_addr): """based on the input information,found any mac entry is matched. :returns: True if one entry is matched """ status = False # show ethernet-switching table interface xxx command = 'exec cli show ethernet-switching table interface ' + \ port + ' \| display json' stdin, stdout, stderr = client.exec_command(command) output = json.loads(stdout.read()) mac_db = output["l2ng-l2ald-interface-macdb-vlan"][0] mac_entry_info = mac_db["l2ng-l2ald-mac-entry-vlan"][0] # "vlan_name, port_name, mac_addr" is matched, then return True for mac_entry in mac_entry_info["l2ng-mac-entry"]: if mac_entry["l2ng-l2-mac-vlan-name"][0]["data"] == vlan_name and \ mac_entry["l2ng-l2-mac-address"][0]["data"] == peer_mac_addr: status = True break return status
d8e01b4aa60741c355d80125d87b0a1ae02ee6f6
11,510
import sys def _catch_thread_exception(fn): """Sets self._worker_exception when fn raises an exception""" def wrapped(self, *args, **kwargs): try: ret = fn(self, *args, **kwargs) except Exception: self._worker_exception = sys.exc_info() else: return ret return wrapped
9c1f43c1c3237102c60367b6b5dc2967a74faec0
11,511
def generate_graph(data, course_to_id): """ Method to read the JSON and build the directed graph of courses (= DAG of course IDs) The graph is represented in an adjacency list format :return: A graph in adjacency list format, with vertices as course IDs and directed edges implying prerequisite relation :rtype: List[List[int]] """ graph = [] * len(course_to_id) ctr = 0 for obj in data: graph.append([]) for prereq in obj["prerequisites"]: graph[ctr].append(course_to_id[prereq.strip()]) ctr += 1 return graph
0a6fe305e39bd812e000a1d22d2374636a7900b2
11,513
from typing import Optional import math def round_for_theta( v: float, theta: Optional[float] ) -> float: """ Round a value based on the precision of theta. :param v: Value. :param theta: Theta. :return: Rounded value. """ if theta is None: return v else: return round(v, int(abs(math.log10(theta)) - 1))
ef6d18df588df8a80be9dc6c9b7f9104e3109d69
11,514
from typing import List def split_badge_list(badges: str, separator: str) -> List[str]: """ Splits a string of badges into a list, removing all empty badges. """ if badges is None: return [] return [badge for badge in badges.split(separator) if badge]
6dc53d45cc8390422e5a511e39475ae969bf37c9
11,516
def get_teams_of_coach(cursor, coach): """gets all the teams a coach has Args: cursor: the cursor coach: the name of the coach Returns: a list of all the teams a coach has """ cursor.execute( "Select team_name from TeamsCoaches where coach_name = '{}'".format(coach)) teams = [] while True: res = cursor.fetchone() if res is None: break else: # append_this = res[0] + ",coached by " + coach teams.append(res[0]) return teams
3d189a20ee23a2ace4b16bb66aca134f65635efb
11,520
import random def seq_generator(): """ Generate each part of sequence. :return: sequence part as str """ return random.choice(["T", "H"])
4714194dea06611b269a7157ac6f0f0cb7c1415c
11,521
import re import html def convert_html_escapes_to_xml(html_text): """Avoid XML parsing errors by converting HTML escape codes to XML.""" html_entities = set( re.findall(r'&(?!quot|lt|gt|amp|apos)[a-zA-Z]{1,30};', html_text) ) for entity in html_entities: html_text = html_text.replace(entity, html.unescape(entity)) return html_text
0ada386b69c8249db7cf1b356051e167a1b8dbdf
11,522
def column(matrix, col): """Returns a column from a matrix given the (0-indexed) column number.""" res = [] for r in range(len(matrix)): res.append(matrix[r][col]) return res
f5214b5a41bf265f6892fdfd9422061b02f61c63
11,523
import re def parse_scenario_gtest_name(name): """Parse scenario name to form acceptable by gtest""" # strip name = name.strip() # space and tab to _ name = name.replace(" ", "_").replace("\t", "_") # remove dots. commas name = re.sub('[^a-zA-Z_]+', '', name) # make lower name = name.lower() return name
faca8406a6b033536c3f9e0da21d9dc818fd2a7e
11,524
import json def load_json(filepath): """Load a json file. Args: filepath (str): A path to an input json file. Returns: dict: A dictionary data loaded from a json file. """ with open(filepath, 'r') as f: ret = json.load(f) return ret
c64fec0c861d223e28001051906e32d3aa9ffc7a
11,525
def sort_states(state, columns, reverse=True): """ Sort the states according to the list given by prioritize_jobs. prioritize_jobs (or columns in this case) is list of according to which state should be prioritized for job submission. The position in the list indicates the prioritization. columns = ["memory", "disk"] with reverse=True means jobs with high memory will be submitted before jobs with lower memory requirements, followed by jobs with high disk vs. low disk requirement. Jobs with high memory and disk requirements will be submitted first then jobs with high memory and medium disk requirements, and so on and so forth. Args: state: List of states columns: List of keys in the dict by which dict is sorted reverse: Reverse the sorting or not. True = Bigger first, False = smaller first """ key_cache = {} col_cache = dict([(c[1:],-1) if c[0] == '-' else (c,1) for c in columns]) def comp_key(key): if key in key_cache: return key_cache[key] if key in col_cache: ret = len(columns)-columns.index(key if col_cache[key] == 1 else '-'+key) else: ret = 0 key_cache[key] = ret return ret def compare(row): ret = [] for k in sorted(row, key=comp_key, reverse=True): v = row[k] if k in col_cache: v *= col_cache[k] ret.append(v) return ret return sorted(state, key=compare, reverse=reverse)
ae8c042d87e5bd2553ceaa08f5e7c88ea7ac2909
11,527
def statement(prop, value, source): """ Returns a statement in the QuickStatements experted format """ return "LAST\t{}\t{}\tS854\t\"{}\"".format(prop, value, source)
2c0b6ea8f757c8586ca462d85fca3b9d281adb26
11,529
import json def get_config_db_json_obj(dut): """ Get config_db content from dut Args: dut (SonicHost): The target device """ config_db_json = dut.shell("sudo sonic-cfggen -d --print-data")["stdout"] return json.loads(config_db_json)
92920197b2056d889ffb76ff66e01061f0654032
11,530
import argparse def get_arg_parser(parser=None): """Parse the command line arguments for merge using argparse Args: parser (argparse.ArgumentParser or CompliantArgumentParser): an argument parser instance Returns: ArgumentParser: the argument parser instance Notes: if parser is None, creates a new parser instance """ # add arguments that are specific to the component if parser is None: parser = argparse.ArgumentParser(description="Training arg parser") parser.add_argument( "--train_dir", type=str, help="Directory where training data is stored" ) parser.add_argument( "--valid_dir", type=str, help="Directory where validation data is stored" ) parser.add_argument( "--model_dir", type=str, help="Directory to output the model to" ) parser.add_argument("--num_epochs", type=int, help="Number of epochs to train for") parser.add_argument("--batch_size", type=int, help="Train batch size") parser.add_argument( "--learning_rate", type=float, help="Learning rate of optimizer" ) parser.add_argument("--momentum", type=float, help="Momentum of optimizer") return parser
f66745ab2d2d5ed80b4efc59bd90b5dfbefb1370
11,531
def check_sender(tx: dict, sender: str) -> bool: """ :param tx: transaction dictionary :param sender: string containing sender's address :return: boolean """ if tx["events"][0]["sub"][0]["sender"][0]["account"]["id"] == sender: return True return False
785c8453b876a2ca2b14f374836987c77a01f882
11,534
def is_prime_det(n): """ Returns <True> if <n> is a prime number, returns <False> otherwise. It uses an (optimized) deterministic method to guarantee that the result will be 100% correct. """ # 2 and 3 are prime numbers if (n <= 3): return (n > 1) # Corner cases to speed up the next loop if (n % 2 == 0) or (n % 3 == 0): return False # Using (6k-1) and (6k+1) optimization i = 5 while (i * i <= n): if (n % i == 0) or (n % (i + 2) == 0): # Not a prime number return False i += 6 return True
65ee46364510f45485c7d95ee0973d42ebc81d34
11,535
def count_indents(text): """Takes a string and counts leading white spaces, return int count""" return len(text) - len(text.lstrip(" ")) pass
1c0466c932f0a4204dc704d9718781821246ee89
11,538
def zippify(iterable, len=2, cat=False): """ Zips an iterable with arbitrary length pieces e.g. to create a moving window with len n Example: zippify('abcd',2, cat=False) --> [('a', 'b'), ('b', 'c'), ('c', 'd')] If cat = True, joins the moving windows together zippify('abcd',2, cat=True) --> ['ab', 'bc', 'cd'] """ iterable_collection = [iterable[i:] for i in range(len)] res = list(zip(*iterable_collection)) return [''.join(r) for r in res] if cat else res
def01ff9f940009f80c312fe9ee07b282733d99b
11,540
import os def find_paths(directory,stipe): """"" Arguments: directory {str} -- taranmak istenen ust dizin stipe {str} -- taranan uzanti Returns: path_list {list} -- path list for stipe """ if stipe.islower(): stipe_u = stipe.upper() else: stipe_u = stipe.lower() if directory: path_list = [] for root, subdirectory, files in os.walk(directory): for f in files: if f.endswith(stipe) or f.endswith(stipe_u): path_list.append(os.path.join(root,f)) return path_list else: return None
e30b7ee0427db2b4fa45d3944524e056043888f3
11,541
def sanitize_int(value): """ Sanitize an input value to an integer. :param value: Input value to be sanitized to an integer :return: Integer, or None of the value cannot be sanitized :rtype: int or None """ if isinstance(value, str): try: return int(value) except ValueError: return None elif isinstance(value, int): return value
5c0481c0c7414f5fdba946f66346b3233ffe6644
11,542
import sys import os def getResourcePath(relative_path): """Get absolute path to resource""" # if cx_freeze attribute found, use frozen resources if getattr(sys, 'frozen', False): base_path = os.path.dirname(sys.executable) else: # use path to development resources base_path = os.path.abspath(os.path.dirname(sys.argv[0])) return os.path.join(base_path, 'resources', relative_path)
fe7c087a81eef0e002f893a3f9a4e2a3a8b40ff9
11,543
def MeanIoUConfig(argument_parser): """ Set CLI arguments :param argument_parser: argument parser :type argument_parser: ```ArgumentParser``` :returns: argument_parser :rtype: ```ArgumentParser``` """ argument_parser.description = """Computes the mean Intersection-Over-Union metric. Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `sample_weight` and the metric is then calculated from it. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. Standalone usage: >>> # cm = [[1, 1], >>> # [1, 1]] >>> # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] >>> # iou = true_positives / (sum_row + sum_col - true_positives)) >>> # result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33 >>> m = tf.keras.metrics.MeanIoU(num_classes=2) >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1]) >>> m.result().numpy() 0.33333334 >>> m.reset_states() >>> m.update_state([0, 0, 1, 1], [0, 1, 0, 1], ... sample_weight=[0.3, 0.3, 0.3, 0.1]) >>> m.result().numpy() 0.23809525 Usage with `compile()` API: ```python model.compile( optimizer='sgd', loss='mse', metrics=[tf.keras.metrics.MeanIoU(num_classes=2)]) ```""" argument_parser.add_argument( "--num_classes", help="""The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated.""", required=True, ) argument_parser.add_argument( "--name", help="(Optional) string name of the metric instance.", required=True ) argument_parser.add_argument( "--dtype", help="(Optional) data type of the metric result.", required=True ) return argument_parser
119b3c005a47e92dad2d298befa330ddab33128e
11,545
def run_part2(_): """Implmentation for Part 2.""" # Reverse-engineered the input, it simply does: return sum(val for val in range(1, 10551340 + 1) if 10551340 % val == 0)
75cd89377d4500c8455b96ef1dcf010215e9d058
11,547
def _get_dir_names(param): """Gets the names of the directories for testing the given parameter :param param: The parameter triple to be tested. :returns: A list of directories names to be used to test the given parameter. """ return [ '-'.join([param[0], str(i)]) for i in range(0, 5) ]
8ef2ad44127402987a26ec0bc6bfffc372f3c64d
11,548
def bool_converter(value: str) -> bool: """ :param value: a string to convert to bool. :return: False if lower case value in "0", "n", "no" and "false", otherwise, returns the value returned by the bool builtin function. """ if value.lower() in ['n', '0', 'no', 'false']: return False return bool(value)
10251dfbb0200297d191dce1eb20237aed9e5ac9
11,550
def heat_stor(cp, spm, tdif): """ Calculate the heat storage Args: cp: specific heat of layer (J/kg K) spm: layer specific mass (kg/m^2) tdif: temperature change (K) """ return cp * spm * tdif
397736e091a2cea09328cbf7f6e81c99db6fe384
11,551
from typing import Any from typing import Optional from typing import IO import yaml def dump_yaml(data: Any, stream: Optional[IO[str]] = None) -> Optional[str]: """Dump YAML to stream or return as string.""" if stream is not None: return yaml.safe_dump(data, stream, default_flow_style=False) else: return yaml.safe_dump(data, default_flow_style=False)
7ff998722e5d7754f83e960127bbed39d4a8d728
11,552
def get_link_to_referenced_comment(subreddit_name, user_note): """Extracts the id of the comment referenced by the usernote and formats it as a reddit-internal link""" link_code_segments = user_note['l'].split(',') if len(link_code_segments) == 3: submission_id = link_code_segments[1] comment_id = link_code_segments[2] return '/r/{0}/comments/{1}/x/{2}/?context=3'.format(subreddit_name, submission_id, comment_id) else: return None
cb41189bc05962e37fdf91aa3e5c53c64acb9400
11,553
def _detects_peaks(ecg_integrated, sample_rate): """ Detects peaks from local maximum ---------- Parameters ---------- ecg_integrated : ndarray Array that contains the samples of the integrated signal. sample_rate : int Sampling rate at which the acquisition took place. Returns ------- choosen_peaks : list List of local maximums that pass the first stage of conditions needed to be considered as a R peak. possible_peaks : list List with all the local maximums in the signal. """ # Minimum RR interval = 200 ms min_rr = (sample_rate / 1000) * 200 # Computes all possible peaks and their amplitudes possible_peaks = [i for i in range(0, len(ecg_integrated)-1) if ecg_integrated[i-1] < ecg_integrated[i] and ecg_integrated[i] > ecg_integrated[i+1]] possible_amplitudes = [ecg_integrated[k] for k in possible_peaks] chosen_peaks = [] # Starts with first peak if not possible_peaks: raise Exception("No Peaks Detected.") peak_candidate_i = possible_peaks[0] peak_candidate_amp = possible_amplitudes[0] for peak_i, peak_amp in zip(possible_peaks, possible_amplitudes): if peak_i - peak_candidate_i <= min_rr and peak_amp > peak_candidate_amp: peak_candidate_i = peak_i peak_candidate_amp = peak_amp elif peak_i - peak_candidate_i > min_rr: chosen_peaks += [peak_candidate_i - 6] # Delay of 6 samples peak_candidate_i = peak_i peak_candidate_amp = peak_amp else: pass return chosen_peaks, possible_peaks
ab9dd461f65095f048942ab8b8c069c456ea4933
11,554
import re def pascal2title(string: str) -> str: """Splits on whitespace between capital and lowercase letters.""" # https://stackoverflow.com/a/29922050 return " ".join(re.findall(r"[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))", string))
c91019552d1d0a3e58b65b3d2d84ec78a48fec52
11,555
import copy def flatten_samplesets(samplesets): """ Takes a list of SampleSets (with one or multiple samples in each SampleSet) and returns a list of SampleSets (with one sample in each SampleSet) Parameters ---------- samplesets: list of SampleSets Input list of SampleSets (with one or multiple samples in each SampleSet """ new_samplesets = [] # Iterating over the samplesets for sset in samplesets: # Iterating over the samples, and deep copying each sampleset # for each sample for i, s in enumerate(sset): new_sset = copy.deepcopy(sset) new_sset.samples = [s] # Very important step # We need to redo the keys new_sset.key = f"{new_sset.key}-{i}" new_samplesets.append(new_sset) return new_samplesets
d89c5b58db69caa7570088fbfae4d7e414c5b9af
11,556
import torch def center_conv_point(bboxes, kernel_size=3, c_min=0, c_max=1, v3_form=False): """In a parallel manner also keeps the gradient during BP""" #bboxes.clamp_(min=c_min, max=c_max) if v3_form: base = torch.cat([bboxes[:, :2][:, (1, 0)]] * (kernel_size ** 2), dim=1) else: base = torch.cat([bboxes[:, :2]] * (kernel_size ** 2), dim=1) multiplier = torch.tensor([(2 * i + 1) / kernel_size / 2 for i in range(kernel_size)]).cuda(bboxes.device.index) # multiplier生成的时候顺序先从上往下数,再从左往右数 # 应当换成先从左往右数,再从上往下数的顺序,所以有了[:, :, (1, 0)] multiplier = torch.stack(torch.meshgrid([multiplier, multiplier]), dim=-1).contiguous().view(-1) multiplier = multiplier.unsqueeze(0).repeat(bboxes.size(0), 1) if v3_form: center = torch.stack([bboxes[:, 3] - bboxes[:, 1], bboxes[:, 2] - bboxes[:, 0]], dim=-1) else: center = torch.stack([bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1]], dim=-1) center = torch.cat([center] * (kernel_size ** 2), dim=1) return base + center * multiplier
a5b14c544525672f8f47fbdbb31a1ccb96ff8e8b
11,557
def auto_type_convert(value): """Try to convert 'value' to a int, float, or bool. Otherwise leave as a string. This is done recursively with complex values.""" if value is None: return None if isinstance(value, list): return [auto_type_convert(item) for item in value] elif isinstance(value, dict): return {key: auto_type_convert(val) for key, val in value.items()} if isinstance(value, (int, float, bool)): return value # Probably a string? try: return int(value) except ValueError: pass try: return float(value) except ValueError: pass if value in ('True', 'False'): return value == 'True' return value
1fe873dca7017d25128c30cc5144c3cf890319a1
11,559
import itertools def normalise_text(text): """ Removes leading and trailing whitespace from each line of text. Removes leading and trailing blank lines from text. """ stripped = text.strip() stripped_lines = [line.strip() for line in text.split("\n")] # remove leading and trailing empty lines stripped_head = list(itertools.dropwhile(lambda s: not s, stripped_lines)) stripped_tail = itertools.dropwhile(lambda s: not s, reversed(stripped_head)) return "\n".join(reversed(list(stripped_tail)))
52ab40cfa4c39ed194fa71aa28d70f5fa737d70c
11,560
def remove_stale_events(data): """ Parse an event dictionary and remove transitions to the same state: .. code:: event_dict = { (entity_id, cohort interval) : [(time, state), ..., (time, state)] (entity_id, cohort interval) : (time, state), ..., (time, state)] } :param data: a pandas dataframe :return: dict """ event_dict = {} for event_key in data.keys(): # Pull the list of all events for this entity in this time event_list = data[event_key] new_event_list = [] # Iterate over all events and only keep those leading to changed state for i in range(len(event_list) - 1): if event_list[i][1] != event_list[i + 1][1]: new_event_list.append(event_list[i]) # Last event added by default i = len(event_list) - 1 new_event_list.append(event_list[i]) event_dict[event_key] = new_event_list return event_dict
be80965efc7077e06d6e9b2ab5fb8ddc65df79a9
11,562
import sqlite3 def sqlite3get_table_names(sql_conn: sqlite3.Connection): """For a given sqlite3 database connection object, returns the table names within that database. Examples: >>> db_conn = sqlite3.connect('places.sqlite')\n >>> sqlite3get_table_names(db_conn)\n ['moz_origins', 'moz_places', 'moz_historyvisits', 'moz_inputhistory', 'moz_bookmarks', 'moz_bookmarks_deleted', 'moz_keywords', 'moz_anno_attributes', 'moz_annos', 'moz_items_annos', 'moz_meta', 'sqlite_stat1'] References: # How to list tables for a given database:\n https://techoverflow.net/2019/10/14/how-to-list-tables-in-sqlite3-database-in-python/\n # Firefox forensics - what sqlite databases store which artifacts\n https://www.foxtonforensics.com/browser-history-examiner/firefox-history-location\n Args: sql_conn (sqlite3.Connection): Reference an existing slite3 Connection object. Returns: list: Returns a list of the table names in the database. """ cursor = sql_conn.execute("SELECT name FROM sqlite_master WHERE type='table';") table_names = [ name[0] for name in cursor.fetchall() if name[0] != 'sqlite_sequence' ] cursor.close() return table_names
0cb1ba2ba475268d39fef8bdbe044436f51c4f07
11,563
def make_key_frames(): """ make key frames for the regions """ key_frames = {} key_frames[0] = [100, 200, 300] key_frames[1] = [50, 150] return key_frames
3b551b7bb7fb22fab8e35abc54b2c524bdfa36fd
11,565
from typing import List from typing import Any def sort(xs: List[Any]) -> List[Any]: """ Sort the list `xs` with the python `sort` function and return the sorted function. The given list is not modified. Parameters ---------- xs A list. Returns ------- xs_sorted A sorted copy of `xs`. """ xs_copy = xs.copy() xs_copy.sort() return xs_copy
706190a533c19b6a7ea4baf540823ca73406560b
11,566
def response_200(result=None): """GET에 대한 반환""" return { 'msg': 'success', 'result': result }, 200
2c2acbfed5ee678536671a367c67cc7d0b1fb6ba
11,567
def limit(): """The number of corpus files to process, e.g ``--limit 100`.""" return '--limit 50'
45638e81c16cc9a89a7137566581b43d7e952f46
11,568
def add_pacient(ime, priimek, cepivo=None): """Funkcija v bazo vstavlja novega pacienta za sprejem v bolnišnico.""" return None
18d302d4a926d7af194850f68425137f5ef48968
11,569
import pickle def read_solver(filename): """ This function reads a .pk1 file. Parameters: filename (str): A file name or path to file excluding file extension. Returns: Content of the loaded .pk1 file. """ try: file = open(filename+'.pk1', 'rb') except IOError: print('unable to open file') return False else: solver_obj = pickle.load(file) file.close() return solver_obj
da7bcfb75af1edde3d43091fdbc5c1829c13e5e0
11,570
def sentence_length_feature(sentences): """ List of values from 0 to 1 rating the length of the sentence in comparation with the longest one """ sentence_length_feature_values = [] max_length_sentence = len(sentences[0].original.split(' ')) # Find the longest sentence for sentence in sentences[1:]: if len(sentence.original.split(' ')) > max_length_sentence: max_length_sentence = len(sentence.original.split(' ')) # Normalize the lenght of every sentence for sentence in sentences: sentence_length_feature_values.append(len(sentence.original.split(' ' )) / max_length_sentence) return sentence_length_feature_values
89e705a6b12b30f29352d70977bd80db45a14b6a
11,571
import os def system_terminal_emulator() -> str: """ Goal: find the default terminal emulator """ try: return os.environ["TERM"] except KeyError: raise EnvironmentError("Cannot find default terminal")
21f6914a656fb018289b9193b9ab378de2bcf7ff
11,572
import inspect def get_argument_help_string(param: inspect.Parameter) -> str: """Get a default help string for a parameter :param param: Parameter object :type param: inspect.Parameter :return: String describing the parameter based on the annotation and default value :rtype: str """ help_str = "" if param.annotation is not param.empty: help_str = inspect.formatannotation(param.annotation) if param.default is not param.empty: if param.annotation is not param.empty: help_str += ", " help_str = f"{help_str}defaults to {param.default!r}" return help_str
7381591ce45591bf1aef62280fc4b98e57969576
11,573
def _dask_array_fft_has_norm_kwarg(): """returns True if dask.array's fft supports the norm keyword argument """ return False
93e111839aa5a175ebcdb995193c7774c45e25ec
11,574
def nested_select(d, v, default_selected=True): """ Nestedly select part of the object d with indicator v. If d is a dictionary, it will continue to select the child values. The function will return the selected parts as well as the dropped parts. :param d: The dictionary to be selected :param v: The indicator showing which part should be selected :param default_selected: Specify whether an entry is selected by default :return: A tuple of two elements, the selected part and the dropped part Examples: >>> person = {'profile': {'name': 'john', 'age': 16, 'weight': 85}, \ 'relatives': {'father': 'bob', 'mother': 'alice'}} >>> nested_select(person, True) ({'profile': {'name': 'john', 'age': 16, 'weight': 85}, 'relatives': {'father': 'bob', 'mother': 'alice'}}, {}) >>> nested_select(person, {'profile': False}) ({'relatives': {'father': 'bob', 'mother': 'alice'}}, {'profile': {'name': 'john', 'age': 16, 'weight': 85}}) >>> nested_select(person, {'profile': {'name': False}, 'relatives': {'mother': False}}) ({'profile': {'age': 16, 'weight': 85}, 'relatives': {'father': 'bob'}}, {'profile': {'name': 'john'}, 'relatives': {'mother': 'alice'}}) """ if isinstance(v, dict): assert isinstance(d, dict) choosed = d.__class__() dropped = d.__class__() for k in d: if k not in v: if default_selected: choosed.setdefault(k, d[k]) else: dropped.setdefault(k, d[k]) continue if isinstance(v[k], dict): assert isinstance(d[k], dict) child_choosed, child_dropped = nested_select(d[k], v[k]) if child_choosed: choosed.setdefault(k, child_choosed) if child_dropped: dropped.setdefault(k, child_dropped) else: if v[k]: choosed.setdefault(k, d[k]) else: dropped.setdefault(k, d[k]) return choosed, dropped else: other = d.__class__() if isinstance(d, dict) else None return (d, other) if v else (other, d)
84aa16adfb324fef8452966087cbf446d57893d2
11,575
import time def timestamp_2_datetime_str(timestamp): """将时间戳转为日期时间字符串""" datetime_tuple = time.localtime(timestamp) return time.strftime("%Y-%m-%d %H:%:%S", datetime_tuple)
1b8b5e4338d1fa49729fa253b029c0521a7f5f55
11,576
import os import pickle def load_parameters(): """Read the "bridge file to get back the arguments.""" parameter_file_name = os.path.abspath("gdb_driver.params") parameter_file = open(parameter_file_name, "rb") return pickle.loads(parameter_file.read())
521f2e71eee324ec048e79a300abdcfd26b73066
11,577
def is_trans(reaction): """Check if a reaction is a transporter.""" return len(reaction.metabolites) == 1
a0b9be30b4a88156e7a89cf48b8ecb76345e4cab
11,578
def format_tile(tile, tile_format, format_str='{x} {y} {z}'): """Convert tile to necessary format. Parameters ---------- tile: pygeotile.tile.Tile Tile object to be formatted. tile_format: str Desired tile format. `google`, `tms`, or `quad_tree` format_str: str String to guide formatting. Only used for `google` or `tms` (as quad_tree is one value). Default: "{x} {y} {z}". Example: "{z}-{x}-{y}" """ if tile_format == 'google': td = {key: val for key, val in zip(['x', 'y', 'z'], list(tile.google) + [tile.zoom])} return format_str.format(**td) elif tile_format == 'tms': td = {key: val for key, val in zip(['x', 'y', 'z'], list(tile.tms) + [tile.zoom])} return format_str.format(**td) elif tile_format == 'quad_tree': return tile.quad_tree else: raise ValueError('`tile_format`: {} not recognized'.format(tile_format))
e7ce2653f49f0c535bb3ea0a0c4bec3b48a74331
11,579
def percent(a, b): """ Given a and b, this function returns a% of b """ return (a/100)*b
d8adae353bb1b7aba6eb0149af065182bf752449
11,580
import math def filter_none(mongo_dict): """Function to filter out Nones and NaN from a dict.""" for key in list(mongo_dict.keys()): val = mongo_dict[key] try: if val is None or math.isnan(val): mongo_dict.pop(key) except Exception: continue return mongo_dict
6853a7153f98466dc00d262bfaf4a63db1b0cd5c
11,581
import configparser def read_configfile(): """Read the config file :returns: The ConfigParser object """ c = configparser.ConfigParser() c.read("config.conf") return c
cdc8b63cca40af1cc516161746ffd016aeb4d65d
11,583
import csv def read_us_counties_csv(file_name): """ """ # read the data with open(file_name) as csv_file: # convert each row to a list of strings csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 counties_with_deaths = [] for row in csv_reader: if line_count == 0: line_count += 1 continue if int(row[5]) > 0: counties_with_deaths.append(row) return counties_with_deaths
2b203f200d7efbe26cbcaff17c150afde388f7e3
11,584
def ARGmetric_params_from_row(row): """ Create some ARGmetric params (see ARGmetrics.py) from a row We hack the same polytomy seed as inference seed This stupidly has to be defined at the top level, since it is part of the function passed in to a multiprocessing Pool, and hence needs to be 'pickle'able :( """ return {'make_bin_seed':row.seed, 'reps':row.tsinfer_biforce_reps}
eeb43b5fdf0b1fd8705d95ab7dd6a2d7f6422801
11,585
def argument(*name_or_flags, **kwargs): """Helper function to satisfy argparse.ArgumentParser.add_argument()'s input argument syntax""" return (list(name_or_flags), kwargs)
24748b59202964d1bca05c5c24dac144e67d964e
11,586
import re def fetch_geneid(fn): """ fetch gene id from GTF records gene_id "FBgn0267431"; gene_name "Myo81F"; gene_source "FlyBase"; gene_biotype "protein_coding"; """ assert isinstance(fn, str) ps = fn.split(';') dn = {} for i in fn.split(';'): if len(i) < 8: # shortest field continue id = i.strip().split(' ') id = re.sub('"', '', id[1]) if 'gene_id' in i: dn['gene_id'] = id elif 'gene_name' in i: dn['gene_name'] = id elif 'transcript_id' in i: dn['transcript_id'] = id elif 'transcript_name' in i: dn['transcript_name'] = id elif 'exon_id' in i: dn['exon_id'] = id elif 'gene_biotype' in i: dn['gene_biotype'] = id else: pass return dn
c3ddb9c5c820799800131c6e11dc2ef91d4556c1
11,587
def fieldsMatch(f0, f1): """ Checks whether any entry in one list appears in a second list. """ for f in f0: if f in f1: return True return False
172772fca613fe97e32bb6860c3bd217b643fe2d
11,588
def list_to_str(lst): """convert list/tuple to string split by space""" result = " ".join(str(i) for i in lst) return result
1e6c59f834b98b1d49ca1c0919d2d976fd1de1de
11,589
def extract_bias_diagonal(module, S, sum_batch=True): """Extract diagonal of ``(Jᵀ S) (Jᵀ S)ᵀ`` where ``J`` is the bias Jacobian. Args: module (torch.nn.Conv1d or torch.nn.Conv2d or torch.nn.Conv3d): Convolution layer for which the diagonal is extracted w.r.t. the bias. S (torch.Tensor): Backpropagated (symmetric factorization) of the loss Hessian. Has shape ``(V, *module.output.shape)``. sum_batch (bool, optional): Sum out the batch dimension of the bias diagonals. Default value: ``True``. Returns: torch.Tensor: Per-sample bias diagonal if ``sum_batch=False`` (shape ``(N, module.bias.shape)`` with batch size ``N``) or summed bias diagonal if ``sum_batch=True`` (shape ``module.bias.shape``). """ start_spatial = 3 sum_before = list(range(start_spatial, S.dim())) sum_after = [0, 1] if sum_batch else [0] return S.sum(sum_before).pow_(2).sum(sum_after)
b2f8aaefa22d1ae915c59f80f98341059a4d1ad3
11,590
import time def read_device(net_connect, sleep=1): """Sleep and read channel.""" time.sleep(sleep) output = net_connect.read_channel() print(output) return output
b0c4c300a088886558203649f57c10cc34b88e21
11,592
import os def __work_mode__(path: str): """Determines the desired mode of operation""" if os.path.isfile(path): # Input is file return "file" if os.path.isdir(path): # Input is dir return "dir" else: return "no"
a26a214653855244cd9b0e9ed7fa5ca058e9d81d
11,593
def is_numeric_array(x): """ Returns whether an object is a ground numeric array. """ return False
8d119f10f08f08552c9dfb59fa13dd0bf644f47c
11,594
from gzip import GzipFile from typing import Any import json def gzip_load_var(gzip_file:str) -> Any: """ Load variable from .json.gz file (arbitrary extension!) Parameters ---------- gzip_file : str Filename containing the gzipped JSON variable Returns ------- var : Any Variable as decoded from gzipped JSON content """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT try: with GzipFile(gzip_file, 'r') as gzip_in: json_var = json.loads(gzip_in.read().decode('utf-8')) except: raise return json_var
b9f6fbad33b40bb18a1418f3134b0889d5344183
11,595
import os def verify_directory_layout(project_dir): """ Verifies if directory from path has Maven's "Standard Directory Layout" (src/main/java) :param project_dir: path to the project :raises FileNotFoundError: when a directory is requested but doesn't exist :raises NotADirectoryError: when path leads to something which is not a directory :return: True if directory from path has Maven's "Standard Directory Layout"; else False """ try: os.chdir(project_dir) except FileNotFoundError as fnfe: raise fnfe except NotADirectoryError as nade: raise nade maven_standard_directory_layout = os.path.join("src", "main", "java") path_to_analyse = os.path.join(project_dir, maven_standard_directory_layout) return os.path.exists(path_to_analyse)
583f3523df356a9ff30f488d1f5d400baef18701
11,596
def five_point_derivative(f,x,h): """#5-point function to calaculate 1st derivative""" h = float(h) return (1/(12*h))*(f(x-2*h)-f(x+2*h)- 8*f(x-h)+8*f(x+h))
186eb1ad0a01d96a85fb0d52bf0def8d3a0d00c0
11,597
def unique_count(value): """Count the number of unique characters in the string representation of a scalar value. Parameters ---------- value: scalar Scalar value in a data stream. Returns ------- int """ unique = set() for c in str(value): unique.add(c) return len(unique)
3a1481e06e6b5a57a2e4c28dc3b9b34dd5c3a977
11,599
import os def compare_file_contents(path_a, path_b) -> bool: """ Compares two files and returns whether the files are equal. """ if os.stat(path_a).st_size != os.stat(path_b).st_size: return False with open(path_a, 'rb') as file_a, open(path_b, 'rb') as file_b: while True: buf_a = file_a.read(1024*1024) buf_b = file_b.read(1024*1024) if buf_a != buf_b: return False if buf_a == b'' and buf_b == b'': return True
372aa296b1daa6a5e60083e65c0e6b5847bc03a8
11,600
def category_table_build(osm_table_name, categorysql): """ Returns an SQL OSM category table builder Args: osm_table_name (string): a OSM PostGIS table name Returns: sql (string): a sql statement """ sql = ("INSERT INTO category_%s (osm_id, cat) " "SELECT DISTINCT osm_id, " "%s as cat " "FROM %s as osm") sql = sql % (osm_table_name, categorysql, osm_table_name) return sql
147812bb68845e3fd0dca7e805f610d26428eac3
11,601
import time import re def get_uniqueID(idPrefix): """Generates a unique id """ t = time.ctime() uid = '_'.join([idPrefix, t]) return re.sub(r'[: ]', '_', uid)
b36bdd7548343f69cd2c093f66c74314d37b9665
11,602
def count_helices(d): """Return the helix count from structure freq data.""" return d.get('H', 0) + d.get('G', 0) + d.get('I', 0)
8469adabac42937009a1f8257f15668d630a7ca8
11,603
from datetime import datetime import itertools def satisfies(query, **kwargs): """Check whether a given datetime object satisfies day and time predicates Keyword Args: month: The month predicate (January, February, ...) day: The day of month predicate [1 31) weekday: The day of week predicate (Sunday, Monday, ...) hour: The hour of day predicate [0 24) minute: The minute of hour predicate [0 60) """ formatters = { 'month': lambda: datetime.strftime(query, '%B'), 'weekday': lambda: datetime.strftime(query, '%A'), 'day': lambda: query.day, 'hour': lambda: query.hour, 'minute': lambda: query.minute } attributes = kwargs.keys() predicates = itertools.product(*kwargs.values()) for values in predicates: if all([formatters[attr]() == value for attr,value in zip(attributes,values)]): return True return False
e36ff908a31e71eab242b9ff6cf4df6721a1fbf7
11,604
import os import json def check_completeness_single_job(out_file: str, job_no: int, iteration: int) -> bool: """ Check whether an individual inference job has been completed. Args: out_file: n5 file to save inference to. job_no: Number/id of the individual inference job. iteration: Iteration of the inference. Returns: If True, inference job has been completed. """ if os.path.exists(os.path.join(out_file, 'list_gpu_{0:}.json'.format(job_no))) and os.path.exists( os.path.join(out_file, 'list_gpu_{0:}_{1:}_processed.txt'.format(job_no, iteration))): block_list = os.path.join(out_file, 'list_gpu_{0:}.json'.format(job_no)) block_list_processed = os.path.join(out_file, 'list_gpu_{0:}_{1:}_processed.txt'.format(job_no, iteration)) with open(block_list, 'r') as f: block_list = json.load(f) block_list = {tuple(coo) for coo in block_list} with open(block_list_processed, 'r') as f: list_as_str = f.read() list_as_str_curated = '[' + list_as_str[:list_as_str.rfind(']') + 1] + ']' processed_list = json.loads(list_as_str_curated) processed_list = {tuple(coo) for coo in processed_list} if processed_list < block_list: complete = False else: complete = True else: complete = False return complete
a9ce3adab9121ac6044d535e8e4e4d3f7781a371
11,606
import requests import json def duckduckgo(search, appName=""): """Gives instant answers from DuckDuckGo (https://duckduckgo.com/). Keyword arguments: search -- <str>; what you are searching for (case sensitive) appName -- <str>; the name of your app Return value: { "AbstractText": <str>; topic summary, "AbstractSource": <str>; name of <AbstractText> source, "Heading": <str>; name of topic that goes with <AbstractText>, "Answer": <str>; instant answer, "Definition": <str>; dictionary definition (may differ from <AbstractText>), "DefinitionSource": <str>; name of <Definition> source, "DefinitionURL": <str>; deep link to expanded definition page in <DefinitionSource> "URL": <str>; URL associated with <AbstractText>, "URLText": <str>; text from <FirstURL> } """ url = "http://api.duckduckgo.com/?q={}&format=json&t={}" url = url.format(search, appName) data = requests.get(url).text data = json.loads(data) items = {"AbstractText": data["AbstractText"], "AbstractSource": data["AbstractSource"], "Heading": data["Heading"], "Answer": data["Answer"], "Definition": data["Definition"], "DefinitionSource": data["DefinitionSource"], "DefinitionURL": data["DefinitionURL"]} exists = data["Results"] items["URL"] = data["Results"][0]["FirstURL"] if exists else "" items["URLText"] = data["Results"][0]["Text"] if exists else "" return items
7bb2958986b0e1b0219e7d1a63e475ff840f0136
11,607
def binary_to_decimal(number): """ Calculates the decimal of the given binary number. :param number: decimal number in string or integer format :return integer of the equivalent decimal number """ decimal = [] number = list(str(number)[::-1]) for i in range(len(number)): decimal.append(int(number[i]) * (2 ** i)) return sum(decimal)
6d615b9bc5a50cc9d2a970fa77c989fa95d0d77e
11,608
def get_dom_attr_value(dom, tag_name, attr_name): """ Return value of a tag's attribute from dom (XML file). Arguments: tag_name -- name of dom tag in which the attribute is found. attr_name -- name of dom attribute for which the value should be returned. """ tag=dom.getElementsByTagName(tag_name) value=tag[0].attributes[attr_name].value return value
26f31fd7db526bb5503b7ce156b19a99705041d1
11,609
def plaintext(): """Test 6: Plaintext""" return b"Hello, World!", {"Content-Type": "text/plain"}
8005ee608a45956d5aa9fc4edf34c9ee3c8605d6
11,611
def EGCD(a, b): """ Extended Euclidean algorithm computes common divisor of integers a and b. a * x + b * y = gcd(a, b) returns gcd, x, y or gcd, y, x. Sorry, I can't remember """ if a == 0: return (b, 0, 1) else: b_div_a, b_mod_a = divmod(b, a) g, x, y = EGCD(b_mod_a, a) return (g, y - b_div_a * x, x)
81a9365bfe2b82f0856489710afb7186d1fcf803
11,613
def filter_attr(the_dict, attr_names): """ Only return the item that in the attr_names list :param the_dict: :param attr_names: comma separated names :return: dict """ if isinstance(the_dict, dict): attrs = attr_names.split(',') return dict((k, v) for k, v in the_dict.items() if k.strip() in attrs) return the_dict
1ca5ad38af808c6a533c3abb22ce7cc26d5f82f2
11,615
import torch def word_to_one_hot(word, word2idx): """Return the one hot encoding of the word given to this function. Args: word (str): The word for which one hot representation is required. word2idx (Dict): The dictionary mapping from word to indices. Returns: x (torch.Tensor): The one hot representation for the word. """ # Create a vector or zeros equal to the length of the vocab x = torch.zeros(len(word2idx)).float() # Setting the value corresponding to the index of word 1 x[word2idx[word]] = 1.0 return x
6628f25695cacb202dd51be070ff03f9a594654d
11,618
def rev_comp(seq: str) -> str: """ Generates the reverse complement of a sequence. """ comp = { "A": "T", "C": "G", "G": "C", "T": "A", "B": "N", "N": "N", "R": "N", "M": "N", "Y": "N", "S": "N", "W": "N", "K": "N", "a": "t", "c": "g", "g": "c", "t": "a", "n": "n", " ": "", } rev_seq = "".join(comp.get(base, base) for base in reversed(seq)) return rev_seq
cb6b95d2d3f15910ff3ad793d99bb56de898026e
11,619
def strip_variables(raw_df, targ_hd): """ Some of the ncdf files do not have a <complete> collection of variables (e.g. Rnet, Qg), such that the matrices are different shapes. In order to be able to concatenate all fluxnet datasets together, this function strips out the uncommon variables. """ # include the related QC flag columns as well for masking take_these = targ_hd + [hd + "_qc" for hd in targ_hd] # limit dataset to only these columns new_df = raw_df[take_these] return new_df
b732faf83d5946807c6e74b13297e52ced18ff1d
11,620
def find_nuc_indel(gapped_seq, indel_seq): """ This function finds the entire indel missing in from a gapped sequence compared to the indel_seqeunce. It is assumes that the sequences start with the first position of the gap. """ ref_indel = indel_seq[0] for j in range(1,len(gapped_seq)): if gapped_seq[j] == "-": ref_indel += indel_seq[j] else: break return ref_indel
d1f258229300f965d9e6d0a8fba0a7cb6a071131
11,621
def _match_identifier_re(): """ 匹配BundleId """ return r'^Identifier:\s*([a-zA-Z0-9_\-\.]+)\s*$'
cbca0e2924e77c43211bdadba4d434c178eb8e18
11,622
def get_stats_for_unweighted_hpo_aggregate_metric( hpo_object, metric, date, hpo_name, tables_and_classes_counted, statistics_to_average): """ Function is used once an HPO is found and warrants its own AggregateMetricForHPO because it has a unique set of date and metric parameters. This function, however, differs from get_stats_for_weighted_hpo_aggregate_metric in that it weights all of the different classes equally. The other function instead creates an 'aggregate' metric and weights the tables/categories by their relative row contributions. Parameters ---------- hpo_object (HPO): object of class HPO that has all the information we want to sort across (and ultimately average across all of the applicable tables) metric (string): represents the kind of metric that is to be investigated (e.g. duplicates) date (datetime): the datetime that should be unique for the AggregateMetricForHPO to be created. hpo_name (string): name of the HPO object tables_counted (list): list of tables that should not be counted in the 'overall tally'. this is used to prevent the same table from being counted more than once statistics_to_average (list): list of the 'values' associated with various DQM objects. this is to grow across the metric (through all tables) for the HPO. Returns ------- statistics_to_average (list): list of the 'values' associated with the HPO object for the relevant data quality metrics. these will all ultimately be averaged to create an 'aggregate unweighted' data quality metric for the HPO. tables_and_classes_counted (list): list of tables that should not be counted in the 'overall tally'. now also contains the tables that contributed to the overall tally for the particular HPO on the particular date """ relevant_dqms = hpo_object.use_string_to_get_relevant_objects( metric=metric) for dqm in relevant_dqms: # regardless of dqm.table_or_class if (dqm.date == date and dqm.hpo == hpo_name and dqm.metric_type == metric) and \ (hpo_object.date == date) and \ dqm.table_or_class not in tables_and_classes_counted: # add the value statistics_to_average.append(dqm.value) # prevent double counting tables_and_classes_counted.append(dqm.table_or_class) return statistics_to_average, tables_and_classes_counted
2b451f6fc15b9f96e343d5577626a62fd57662b7
11,623
def codeblock(text): """ Returns text in a Markdown-style code block :param text: Str :return: Str """ return "```\n" + text + "\n```"
fb8fd7314273b47ace577a72c705742d6646aa0d
11,626
def generate_ensemble(num_layers, *activations): """Given a set of string names and a number of target layers, generate a list of ensemble architectures with those activations Args: num_layers: int the number of hidden layers in the neural network, and also the number of activation functions activations: list of str a list of strings that indicates the candidates for activation functions at for every layer Returns: ensemble: list of list of str a list of architectures, where an architecture is given by a list of activation function names """ if num_layers == 0: return [] if num_layers == 1: return [[act] for act in activations] return [[act, *o] for act in activations for o in generate_ensemble(num_layers - 1, *activations)]
42bce2fc861122938d2e5da54e4538b0e6a285bc
11,627
def regular_graphing_method(): """ This function was created to determine whether the user wants to graph the data on top of each other or on separate graphs. :return boolean regular_ontop: regular_ontop is returned to determine how the data will graph Note: if regular_ontop is true, the non-derivative data will all graph on one graph """ regular_ontop = input("Do you want to graph the originally selected data on top of each other? (y / n)") try: if (regular_ontop[0] == "y" or regular_ontop[0] == "Y" or regular_ontop[0] == "t" or regular_ontop[0] == "T"): regular_ontop = True return regular_ontop elif (regular_ontop[0] == "n" or regular_ontop[0] == "N" or regular_ontop[0] == "f" or regular_ontop[0] == "F"): regular_ontop = False return regular_ontop else: print("Invalid input, try again!") regular_graphing_method() except IndexError: print("Invalid input, try again!") regular_graphing_method()
75cb8de45df76cb6facf91ac0ae6e0ca9f37cf31
11,629
def div_to_int(int_numerator, int_denominator, round_away=False): """Integer division with truncation or rounding away. If round_away evaluates as True, the quotient is rounded away from zero, otherwise the quotient is truncated. """ is_numerator_negative = False if int_numerator < 0: int_numerator = -int_numerator is_numerator_negative = True is_denominator_negative = False if int_denominator < 0: int_denominator = - int_denominator is_denominator_negative = True quotient, remainder = divmod(int_numerator, int_denominator) if round_away and remainder > 0: quotient += 1 if is_numerator_negative != is_denominator_negative: quotient = -quotient return quotient
3fc3b307cf691a9bea2a33a0bf468398c77db645
11,630
import os def dict_to_dir(data, path=str()): """dict_to_dir expects data to be a dictionary with one top-level key.""" dest = os.path.join(os.getcwd(), path) if isinstance(data, dict): for k, v in data.items(): os.makedirs(os.path.join(dest, k)) dict_to_dir(v, os.path.join(path, str(k))) elif isinstance(data, list): for i in data: if isinstance(i, dict): dict_to_dir(i, path) else: filename = i.split(' > ')[0] content = i.split(' > ')[1] with open(os.path.join(dest, filename), "a"): os.utime(os.path.join(dest, filename), None) with open(os.path.join(dest, filename), "wb") as outFile: outFile.write(content.encode()) if isinstance(data, dict): return list(data.keys())[0]
afb173d4963691033fe95fa7e5711a56ca90e139
11,631
import re def get_pids(linesl): """ Required layout lines. Returns dictionary of pid:meaning """ pids = {} foundstartpids = False for line in linesl: # After table if "These PIDs are superseded by PIDs 194, 195, and 196." in line: break # Before table if not foundstartpids and " TABLE 2 - PARAMETER IDENTIFICATION" in line: foundstartpids = True elif foundstartpids: if re.match(' +[0-9]+[^\.]',line): garbage,pid,meaning = re.split(" {9,}",line) pids[pid.strip()] = meaning.strip() return pids
1216b337283851ceb0e6721abd124b2a83a0157c
11,632
def match_server_args_factory(tick_rate: int, realtime: bool, observations_only: bool, env_config_string: str): """ Helper factory to make a argument dictionary for servers with varying ports """ def match_server_args(port): arg_dict = { "tick_rate": tick_rate, "port": port, "realtime": realtime, "observations_only": observations_only, "config": env_config_string } return arg_dict return match_server_args
5059d0a4224067f485455a54f4e6d1f83ba68531
11,633
from typing import Iterable from typing import Any def parametrize(arg_names: Iterable[str], arg_values: Iterable[Iterable[Any]]): """ Decorator to create parameterized tests. # Parameters arg_names : `Iterable[str]`, required. Argument names to pass to the test function. arg_values : `Iterable[Iterable[Any]]`, required. Iterable of values to pass to each of the args. The decorated test will be run for each inner iterable. """ def decorator(func): def wrapper(*args, **kwargs): for arg_value in arg_values: kwargs_extra = {name: value for name, value in zip(arg_names, arg_value)} func(*args, **kwargs, **kwargs_extra) return wrapper return decorator
e385d2449a2572d89a055d7cbdcc2475b00b2942
11,634
def default_colors_to_resets(s): """Hack to make sphinxcontrib.ansi recognized sequences""" return s.replace(b"[39m", b"[0m").replace(b"[49m", b"[0m")
0f025233ac63416fef47e85ebb258bb543a4c115
11,635
from typing import List import argparse def get_input() -> List[int]: """ Parse arguments passed to script. Return: Path path to gziped file for this problem. """ parser = argparse.ArgumentParser() msg = "comma separated numbers, i.e '0,3,6'" parser.add_argument("sequence", help=msg) args = parser.parse_args() return list(map(int, args.sequence.split(",")))
dba07be45f6b111cd89f7791769461864185ca9d
11,636
def mask_maxipix(mydata, mymask): """Mask the Maxipix frames.""" mydata[:, 255:261] = 0 mydata[255:261, :] = 0 mymask[:, 255:261] = 1 mymask[255:261, :] = 1 return mydata, mymask
0c508c6740569e99cdb745b75b399dac8021e9bf
11,637