content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def mybio_to_pymol_selection(entity):
"""Transform an :class:`~luna.MyBio.PDB.Entity.Entity` instance into a Pymol selection-expression,
which can then be used to select atoms in a Pymol session.
Parameters
----------
entity : :class:`~luna.MyBio.PDB.Entity.Entity`
An entity to be transformed into a Pymol selection-expression.
Returns
-------
: str
The Pymol selection-expression.
Examples
--------
First, let's parse a PDB file to work with.
>>> from luna.util.default_values import LUNA_PATH
>>> from luna.MyBio.PDB.PDBParser import PDBParser
>>> pdb_parser = PDBParser(PERMISSIVE=True, QUIET=True)
>>> structure = pdb_parser.get_structure("Protein", f"{LUNA_PATH}/tutorial/inputs/3QQK.pdb")
Now, let's get the Pymol selection-expression for the chain A.
>>> from luna.wrappers.pymol import mybio_to_pymol_selection
>>> print(mybio_to_pymol_selection(structure[0]['A']))
chain A
Finally, we can get the Pymol selection-expression for the ligand X02.
>>> from luna.wrappers.pymol import mybio_to_pymol_selection
>>> print(mybio_to_pymol_selection(structure[0]["A"][('H_X02', 497, ' ')]))
resn X02 AND res 497 AND chain A
"""
params = {}
if entity.level == 'S' or entity.level == 'M':
params[''] = 'all'
elif entity.level == 'C':
params['chain'] = entity.id
elif entity.level == 'R':
params['resn'] = entity.resname
params['res'] = str(entity.id[1]) + entity.id[2].strip()
params['chain'] = entity.get_parent().id
elif entity.level == 'A':
residue = entity.get_parent()
params['id'] = entity.serial_number
params['name'] = entity.name
params['resn'] = residue.resname
params['res'] = str(residue.id[1]) + residue.id[2].strip()
params['chain'] = residue.get_parent().id
else:
return {}
if "resn" in params:
# Escape characters that can generate problems with Pymol
params['resn'] = params['resn'].replace("+", "\\+")
params['resn'] = params['resn'].replace("-", "\\-")
return (' AND ').join(['%s %s' % (k, str(v)) for k, v in params.items()])
|
1952af51b67676f2bf19775b52d5f721ae1e62cc
| 11,362
|
from sys import modules
import unittest
def suite():
""" Create the test suite for this module. """
loader = unittest.TestLoader()
suite = loader.loadTestsFromModule(modules[__name__])
return suite
|
1d14f1fa9fd4936ae841be11fe3bd2a37b5e421d
| 11,363
|
def update_rooms_slider(area):
"""
Update rooms slider to sensible values.
"""
return [1, min(int(area / 30) + 1, 6)]
|
af721d72b9d122d2d129797453cee2801e45eec9
| 11,365
|
def find_changes(vals, threshold=None, change_pct=0.02, max_interval=None):
"""Returns an array of index values that point at the values in the 'vals'
array that represent signficant changes. 'threshold' is the absolute amount
that a value must change before being included. If 'threshold' is None,
'change_pct' is used to determine a threshold change by multiplying
'change_pct' by the difference between the minimum and maximum value. If
'max_interval' is provided, it will be the maximum allowed separation between
returned index values. This forces some some points to be returned even if
no signficant change has occurred.
Index 0, pointing at the first value is always returned.
"""
# special case of no values passed
if len(vals) == 0:
return []
if threshold is None:
# compute the threshold difference that constitutes a change
# from the change_pct parameter
threshold = (max(vals) - min(vals)) * change_pct
if threshold == 0.0:
threshold = 0.01 # keep it from showing every point
# Start with the first value
final_ixs = [0]
last_val = vals[0]
last_ix = 0
for ix in range(1, len(vals)):
v = vals[ix]
include_this_index = False
if abs(v - last_val) >= threshold:
# if the prior value was not included, include it
if last_ix != ix - 1:
final_ixs.append(ix - 1)
include_this_index = True
elif max_interval is not None and ix - last_ix >= max_interval:
include_this_index = True
if include_this_index:
final_ixs.append(ix)
last_val = v
last_ix = ix
return final_ixs
|
e6c66d3636f80ee310dcb7ae790bb30a27598aaa
| 11,366
|
import argparse
def _key_val_pair(value):
"""
Type checker to ensure that --field values are of the format key=val
"""
if '=' not in value:
msg = 'values must be of the form `header=field`'
raise argparse.ArgumentTypeError(msg)
return value
|
eede8a3975eb58d503419a0d990115c84f72813c
| 11,367
|
from pathlib import Path
import os
def module_to_path(homeassistant_root: Path, module: str) -> Path:
"""Convert module name to Path."""
if module.endswith(".*"):
typed_path = homeassistant_root / Path(module[:-2].replace(".", os.path.sep))
assert typed_path.is_dir(), typed_path
else:
module = module.replace(".", os.path.sep)
typed_path = homeassistant_root / (module + ".py")
if not typed_path.is_file():
typed_path = homeassistant_root / module
assert typed_path.is_dir()
typed_path = typed_path / "__init__.py"
return typed_path
|
3ab08c33922250ffda1d530a4760329410ed1ae6
| 11,368
|
from operator import or_
def or_many_condition(condition: list):
""" 有时候or能比in产生更好的性能,例如
filter(or_many_condition([UserDB.id == i for i in user_ids]))
会比
filter(UserDB.id.in_(user_ids))
性能更加好
"""
if len(condition) == 0:
return True
if len(condition) == 1:
return condition[0]
return or_(*condition)
|
a707919908c42f3db62a74290a61cd8586c31213
| 11,369
|
def data_value(value: str) -> float:
"""Convert to a float; some trigger values are strings, rather than
numbers (ex. indicating the letter); convert these to 1.0."""
if value:
try:
return float(value)
except ValueError:
return 1.0
else:
# empty string
return 0.0
|
24087c1733be5932428a63811abbb54686836036
| 11,370
|
from typing import Tuple
import logging
async def mark_next_person(queue_array: list) -> Tuple[list, int]:
"""Mark next person in the queue (transfers current_turn to them).
Parameters
----------
queue_array : list
This array represents the queue
Returns
-------
Tuple[list, int]
The modified queue_array & the id of the person marked
"""
for index, member in enumerate(queue_array):
if member["current_turn"]:
queue_array[index]["current_turn"] = False
# shouldnt fail when next person is at the beginning of the
# queue
next_person_pos = (index + 1) % len(queue_array)
queue_array[next_person_pos]["current_turn"] = True
return (queue_array, queue_array[next_person_pos]["user_id"])
logging.error("Failed to find next person in the queue")
return ([], 0)
|
e792dbf2ac10f44bda53a6429ba43180bdefd144
| 11,371
|
def need_new_decimal_value(old, new, delta=0.001):
""" Определяет приблизительным сравнением, необходимо ли записывать новое значение в базу."""
if new is None:
return False
elif old is None:
return True
old = float(old)
new = float(new)
delta = float(delta)
try:
if old - new / new < delta:
return False
except ZeroDivisionError:
return False
return True
|
0bf496c19555a6f8a878acb57322f266fb470f24
| 11,372
|
def xnnpack_optional_gemmlowp_copts():
"""Compiler flags to optionally enable Gemmlowp benchmarks."""
return []
|
1f5648d61235343ebc0e3bd601a004b81e0fb65b
| 11,373
|
def costs_matrix(a, b, costs):
"""
a = 'xyz'
b = 'ayzb'
m = / a y z b
0 1 2 3 4
x 1 2 3 4 5
y 2 3 2 3 4
z 3 4 3 2 3
m[row][col] -> m[2][4] == 6
"""
height = len(a) + 1
width = len(b) + 1
m = [[0] * width for _ in range(height)]
for row in range(height):
m[row][0] = row * costs.delete
for col in range(width):
m[0][col] = col * costs.insert
for row in range(1, height):
for col in range(1, width):
north = m[row - 1][col]
west = m[row][col - 1]
north_west = m[row - 1][col - 1]
if a[row - 1] == b[col - 1]:
m[row][col] = north_west
else:
m[row][col] = min(
north + costs.delete,
west + costs.insert,
north_west + costs.change
)
if row > 1 and col > 1 and \
a[row - 2] == b[col - 1] and \
a[row - 1] == b[col - 2]:
before_two = m[row - 2][col - 2]
m[row][col] = min(
m[row][col],
before_two + costs.swap
)
return m
|
f2845efbe55a12806d3d9b464cbe2c0f8efd8c56
| 11,374
|
import time
def get_process_id(id):
"""
get_process_id: generate a string of dmYHMS
:param id: process_id
:return: unique name of string and dateyeartime
"""
return id + "-" + str(time.strftime("%d%m%Y%H%M%S"))
|
22f2c88dc14b89a54651f58b03e16e167fbd640d
| 11,375
|
import hashlib
import sys
import os
def import_module(path, module_name=None):
"""
Import module from path.
:param path: full path to module to import
:param module_name: name to map module in sys.modules
:returns: imported module
Based on code from the following:
:source: http://stackoverflow.com/questions/1096216/override-namespace-in-python
"""
if not module_name:
m = hashlib.sha1()
m.update(path)
module_name = m.hexdigest()
sys.path.insert(0, os.path.dirname(path))
try:
mod_path, ext = os.path.splitext(os.path.basename(path))
module = __import__(mod_path)
sys.modules[module_name] = module
finally:
sys.path.pop(0)
return module
|
a0b2be49149e0b49e45d297ae91a3d53d4bc3558
| 11,377
|
from typing import List
import subprocess
def _container_names_by_prefix(prefix: str) -> List[str]:
"""Return a list of all containers (running or not) whose names begin
with `prefix`.
Provide a `docker-compose` project name as a prefix to retrieve
containers associated with that project. (We don't use
`docker-compose` to do this directly because of our rather complex
usage of multiple compose files at a time.)
Raises an error if no such containers are found.
"""
result = subprocess.run(
[
"docker",
"ps",
"--all",
"--filter",
f"name={prefix}",
"--format",
"{{.Names}}",
],
capture_output=True,
text=True,
)
containers = result.stdout.split()
if not containers:
raise ValueError(f"Couldn't find any containers for '{prefix}'")
return containers
|
21794b0be7476444f867d2a6aeba18d47f916ba7
| 11,378
|
from typing import Dict
from typing import Any
def map_key(dictionary: Dict, search: Any) -> Any:
"""Find and return they key for given search value."""
for key, value in dictionary.items():
if value == search:
return key
return None
|
c9e200bb352b68c7468ae0511f11f7eff5e46b52
| 11,379
|
def get_requirements(filename):
"""
Get requirements file content by filename.
:param filename: Name of requirements file.
:return: Content of requirements file.
"""
return open("requirements/" + filename).read().splitlines()
|
3dab39352bb69798e076a9d97077902580f50640
| 11,380
|
def is_operator(token):
"""Checks if token is an operator '-+/*'."""
return token in '-+/*'
|
24b57d2a299df263c900cc94e2e18a9fc7d026b1
| 11,382
|
import itertools
def duel(state, agent_1, agent_2, max_game_length=1e99):
"""Plays two agants against each other"""
history = []
agents = itertools.cycle([agent_1, agent_2])
move_number = 0
while not state.game_over and move_number < max_game_length:
actor = next(agents)
actor.perform_simulations()
choice = actor.decision()
history.append(actor.tree_root.history_sample())
state.step(choice)
agent_1.update_state(choice)
agent_2.update_state(choice)
move_number += 1
if move_number >= max_game_length:
state.winner = state._compute_winner()
return history, state.winner
|
871d2e0ee036878c10c0acb6fc51349a0edcd4da
| 11,383
|
def add_date_end(record: dict):
"""
Function to make ``date_end`` ``date_start`` if ``measure_stage`` is "Lift"
Parameters
----------
record : dict
Input record.
Returns
-------
type
Record with date_end changed conditionally, or original record.
"""
if record['measure_stage'] == 'Lift':
record['date_end'] = record['date_start']
return(record)
|
67f6ae063aabdf7a7d456ed0ce9660a75b37b6c2
| 11,385
|
def multy(b: int) -> int:
"""2**b via naive recursion.
>>> multy(17)-1
131071
"""
if b == 0:
return 1
return 2*multy(b-1)
|
272cd138de2209093c0a32e1c7b2f1c08d0dc2be
| 11,386
|
def get_ens(sets):
"""
Puts all entities appeared in interpretation sets in one set.
:param sets: [{en1, en2, ...}, {en3, ..}, ...]
:return: set {en1, en2, en3, ...}
"""
ens = set()
for en_set in sets:
for en in en_set:
ens.add(en)
return ens
|
7f5b59d6f5786ee9506bda72a4ee3f8cdf787c33
| 11,387
|
def is_in_group(user, group_name):
"""
Check if a user in a group named ``group_name``.
:param user User:
The auth.User object
:param group_name str:
The name of the group
:returns: bool
"""
return user.groups.filter(name__exact=group_name).exists()
|
25e51e483b0c18c03f8e897725f07e9e63cc160a
| 11,389
|
import os
def join_file_path(*args):
"""
Preprocesses the given values and runs them through os.path.join.
"""
args = list(args)
if args[0] == '':
args[0] = '/'
for i in range(1, len(args)): # First value can start with /
args[i] = args[i].strip('/')
return os.path.join(*args)
|
71e63993ef9a40ced16dafec75442c95229f4537
| 11,390
|
def post_process_tree(G):
"""
Given a networkx graph in the form of a tree, assign sample identities to character states.
:param graph: Networkx Graph as a tree
:return: postprocessed tree as a Networkx object
"""
new_nodes = []
new_edges = []
for n in G.nodes:
spl = n.split("_")
if len(spl) > 2:
name = "_".join(spl[1:-1])
new_nodes.append(name)
new_edges.append((n, name))
G.add_nodes_from(new_nodes)
G.add_edges_from(new_edges)
return G
|
aba4654d174e3bf5e8706ca3e8a8d2bae8461129
| 11,391
|
def __data_suppression(indicator_dataframe):
"""Helper function to reduce data used by the large indicator dataframe"""
# Couple columns we just don't need
indicator_dataframe.drop(columns = {'SpatialDimType','TimeDimType','DataSourceDimType',
'Date','TimeDimensionValue','TimeDimensionBegin','TimeDimensionEnd'},
inplace = True)
# Memory suppression of columns: Numerical
indicator_dataframe['TimeDim'] = indicator_dataframe['TimeDim'].astype('Int16') # Note, we have to make it Int16 to support Nulls, rather than int16
indicator_dataframe['ID'] = indicator_dataframe['ID'].astype('int32')
# Memory suppression of columns: Object -> Category
indicator_dataframe[['IndicatorCode','SpatialDim','Dim1','Dim1Type','Dim2','Dim2Type','Dim3','Dim3Type','DataSourceDim']] = \
indicator_dataframe[['IndicatorCode','SpatialDim','Dim1','Dim1Type','Dim2','Dim2Type','Dim3','Dim3Type','DataSourceDim']].astype('category')
return indicator_dataframe
|
fa9d205c2d5b9ae8a668247fc32abc76c562a9e7
| 11,394
|
def strip_email(s: str) -> str:
"""
Filter which extracts the first part of an email to make an shorthand
for user.
:param s: Input email (or any string).
:type s: str
:return: A shorthand extracted.
:rtype: str
"""
return s.split('@', 1)[0]
|
36ea94b9eb12e0e64b78965c66233578790e6a13
| 11,395
|
def name_item_info(mosaic_info, item_info):
"""
Generate the name for a mosaic metadata file in Azure Blob Storage.
This follows the pattern `metadata/quad/{mosaic-id}/{item-id}.json`.
"""
return f"metadata/quad/{mosaic_info['id']}/{item_info['id']}.json"
|
db78eb175f6530ace2037ed89cb090591c82147f
| 11,396
|
def ptfhost(testbed_devices):
"""
Shortcut fixture for getting PTF host
"""
return testbed_devices["ptf"]
|
25fdbc9520c4cda9719887ff213ccb2b88918dcc
| 11,397
|
from datetime import datetime
def add_current_time_to_state(state):
"""Annotate state with the latest server time"""
state['currentTime'] = datetime.now().timestamp()
return state
|
f61fa2d7b127fbebb22fc277e16f2f79cdd4acd3
| 11,398
|
import time
def delay(fn):
"""Decorator function to delay the execution of a function.
The function that use this decorator must have delay as a keyword
argument.
"""
def wrapper(*args, **kwargs):
seconds = kwargs.get('delay', 0)
time.sleep(seconds)
return fn(*args, **kwargs)
return wrapper
|
459fe2741af565225b1d9aee4e8841460d1bff4e
| 11,400
|
import re
def normalize_rgb_colors_to_hex(css):
"""Convert `rgb(51,102,153)` to `#336699`."""
regex = re.compile(r"rgb\s*\(\s*([0-9,\s]+)\s*\)")
match = regex.search(css)
while match:
colors = map(lambda s: s.strip(), match.group(1).split(","))
hexcolor = '#%.2x%.2x%.2x' % tuple(map(int, colors))
css = css.replace(match.group(), hexcolor)
match = regex.search(css)
return css
|
e3650f525d1d9c1e7bbf7d5b4161712a7439b529
| 11,401
|
def method_codes_to_geomagia(magic_method_codes,geomagia_table):
"""
Looks at the MagIC method code list and returns the correct GEOMAGIA code number depending
on the method code list and the GEOMAGIA table specified. Returns O, GEOMAGIA's "Not specified" value, if no match.
When mutiple codes are matched they are separated with -
"""
codes=magic_method_codes
geomagia=geomagia_table.lower()
geomagia_code='0'
if geomagia=='alteration_monit_corr':
if "DA-ALT-V" or "LP-PI-ALT-PTRM" or "LP-PI-ALT-PMRM" in codes:
geomagia_code='1'
elif "LP-PI-ALT-SUSC" in codes:
geomagia_code='2'
elif "DA-ALT-RS" or "LP-PI-ALT-AFARM" in codes:
geomagia_code='3'
elif "LP-PI-ALT-WALTON" in codes:
geomagia_code='4'
elif "LP-PI-ALT-TANGUY" in codes:
geomagia_code='5'
elif "DA-ALT" in codes:
geomagia_code='6' #at end to fill generic if others don't exist
elif "LP-PI-ALT-FABIAN" in codes:
geomagia_code='7'
if geomagia=='md_checks':
if ("LT-PTRM-MD" in codes) or ("LT-PMRM-MD" in codes):
geomagia_code='1:'
if ("LP-PI-BT-LT" in codes) or ("LT-LT-Z" in codes):
if "0" in geomagia_code:
geomagia_code="23:"
else:
geomagia_code+='2:'
geomagia_code=geomagia_code[:-1]
if geomagia=='anisotropy_correction':
if "DA-AC-AMS" in codes:
geomagia_code='1'
elif "DA-AC-AARM" in codes:
geomagia_code='2'
elif "DA-AC-ATRM" in codes:
geomagia_code='3'
elif "LT-NRM-PAR" in codes:
geomagia_code='4'
elif "DA-AC-AIRM" in codes:
geomagia_code='6'
elif "DA-AC" in codes: #at end to fill generic if others don't exist
geomagia_code='5'
if geomagia=='cooling_rate':
if "DA-CR" in codes: #all current CR codes but CR-EG are a 1 but may change in the future
geomagia_code='1'
if "DA-CR-EG" in codes:
geomagia_code='2'
if geomagia=='dm_methods':
if "LP-DIR-AF" in codes:
geomagia_code='1'
elif "LT-AF-D" in codes:
geomagia_code='1'
elif "LT-AF-G" in codes:
geomagia_code='1'
elif "LT-AF-Z" in codes:
geomagia_code='1'
elif "LP-DIR-T" in codes:
geomagia_code='2'
elif "LT-AF-Z" in codes:
geomagia_code='2'
elif "LP-DIR-M" in codes:
geomagia_code='5'
elif "LT-M-Z" in codes:
geomagia_code='5'
if geomagia=='dm_analysis':
if "DE-BFL" in codes:
geomagia_code='1'
elif "DE-BLANKET" in codes:
geomagia_code='2'
elif "DE-FM" in codes:
geomagia_code='3'
elif "DE-NRM" in codes:
geomagia_code='6'
if geomagia=='specimen_type_id':
if "SC-TYPE-CYC" in codes:
geomagia_code='1'
elif "SC-TYPE-CUBE" in codes:
geomagia_code='2'
elif "SC-TYPE-MINI" in codes:
geomagia_code='3'
elif "SC-TYPE-SC" in codes:
geomagia_code='4'
elif "SC-TYPE-UC" in codes:
geomagia_code='5'
elif "SC-TYPE-LARGE" in codes:
geomagia_code='6'
return geomagia_code
|
7939704ba51f8e199b79ddf89611ec63c6ead703
| 11,404
|
import torch
import math
def decode_μ_law(x: torch.Tensor, μ: int = 255) -> torch.Tensor:
"""
Applies the element-wise inverse μ-law encoding to the tensor.
Args:
x: input tensor
μ: size of the encoding (number of possible classes)
Returns:
the decoded tensor
"""
x = x.type(torch.float32)
# out = (x + 0.5) * 2. / (μ + 1)
out = x / math.ceil(μ / 2)
out = torch.sign(out) / μ * (torch.pow(1 + μ, torch.abs(out)) - 1)
return out
|
84b991fdb80b845796ec751756ae56140dfc2f45
| 11,405
|
def _get_histogram_data(tracking_data):
"""Returns the histogram data for the plot.
Currently we return the bins and values of the last iteration tracked before
this plot.
Args:
tracking_data (pandas.DataFrame): DataFrame holding the tracking data.
Returns:
list: Bins of the histogram.
list: Mid points of the bins.
list: Width of the bins.
"""
clean_data = tracking_data.GradHist1d.dropna()
last_step_data = clean_data[clean_data.index[-1]]
vals = last_step_data["hist"]
bins = last_step_data["edges"]
width = bins[1] - bins[0]
mid_points = (bins[1:] + bins[:-1]) / 2
return vals, mid_points, width
|
18afd4fc320ae67c25beb635144da76a0ca81b5f
| 11,406
|
def constant_array(context, builder, ty, pyval):
"""
Create a constant array (mechanism is target-dependent).
"""
return context.make_constant_array(builder, ty, pyval)
|
eefd69b2f8f355e2af61f7636a586dd87a0e0419
| 11,409
|
def shape_to_spacing(region, shape, pixel_register=False):
"""
Calculate the spacing of a grid given region and shape.
Parameters
----------
region : list = [W, E, S, N]
The boundaries of a given region in Cartesian or geographic
coordinates.
shape : tuple = (n_north, n_east) or None
The number of points in the South-North and West-East directions,
respectively.
pixel_register : bool
If True, the coordinates will refer to the center of each grid pixel
instead of the grid lines. In practice, this means that there will be
one less element per dimension of the grid when compared to grid line
registered (only if given *spacing* and not *shape*). Default is False.
Returns
-------
spacing : tuple = (s_north, s_east)
The grid spacing in the South-North and West-East directions,
respectively.
Examples
--------
>>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 11))
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 1.0
>>> spacing = shape_to_spacing([0, 10, -5, 1], (14, 11))
>>> print("{:.1f}, {:.1f}".format(*spacing))
0.5, 1.0
>>> spacing = shape_to_spacing([0, 10, -5, 1], (7, 21))
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 0.5
>>> spacing = shape_to_spacing(
... [-0.5, 10.5, -5.5, 1.5], (7, 11), pixel_register=True,
... )
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 1.0
>>> spacing = shape_to_spacing(
... [-0.25, 10.25, -5.5, 1.5], (7, 21), pixel_register=True,
... )
>>> print("{:.1f}, {:.1f}".format(*spacing))
1.0, 0.5
"""
spacing = []
for i, n_points in enumerate(reversed(shape)):
if not pixel_register:
n_points -= 1
spacing.append((region[2 * i + 1] - region[2 * i]) / n_points)
return tuple(reversed(spacing))
|
bc943f55330c17295bdb078d732c6ebc9f8cecfe
| 11,410
|
import math
def choose_grid_size(train_inputs, ratio=1.0, kronecker_structure=True):
"""
Given some training inputs, determine a good grid size for KISS-GP.
:param x: the input data
:type x: torch.Tensor (... x n x d)
:param ratio: Amount of grid points per data point (default: 1.)
:type ratio: float, optional
:param kronecker_structure: Whether or not the model will use Kronecker structure in the grid
(set to True unless there is an additive or product decomposition in the prior)
:type kronecker_structure: bool, optional
:return: Grid size
:rtype: int
"""
# Scale features so they fit inside grid bounds
num_data = train_inputs.numel() if train_inputs.dim() == 1 else train_inputs.size(-2)
num_dim = 1 if train_inputs.dim() == 1 else train_inputs.size(-1)
if kronecker_structure:
return int(ratio * math.pow(num_data, 1.0 / num_dim))
else:
return ratio * num_data
|
1d3e30a6b7b419a1e2fcdc245830aa00d1ba493d
| 11,411
|
import math
def factors_convert_fract2cartes(cif_data):
"""
Edge vectors (a, b, c) in fractional coordinate –> (x, y, z) in Cartesian coordinate
cos(alpha) = b*c/(|b||c|)
cos(beta) = a*c/(|a||c|)
cos(gamma) = a*b/(|a||b|)
a = (a, 0, 0)
b = (bcos(gamma), bsin(gamma), 0)
c = (cx, cy, cz)
x = La*u + Lb*cos(gamma)*v + Lc*cos(beta)*w
y = Lb*sin(gamma)*v + Lc*((cos(alpha)cos(gamma) - cos(alpha))/sin(gamma))*w
z = Lc * (sqrt(1 - cos_a**2 - cos_b**2 - cos_g**2 + 2*cos_a*cos_b*cos_g)/sin_g)*w
"""
# Lengths of the unit cell
La = cif_data["_cell_length_a"]
Lb = cif_data["_cell_length_b"]
Lc = cif_data["_cell_length_c"]
# Angles in the unit cell
alpha = math.radians(cif_data["_cell_angle_alpha"])
beta = math.radians(cif_data["_cell_angle_beta"])
gamma = math.radians(cif_data["_cell_angle_gamma"])
cos_a = math.cos(alpha)
sin_a = math.sin(alpha)
cos_b = math.cos(beta)
sin_b = math.sin(beta)
cos_g = math.cos(gamma)
sin_g = math.sin(gamma)
ax = La
# ay = az = 0
bx = Lb * cos_g
by = Lb * sin_g
# bz = 0
cx = Lc * cos_b
cy = Lc * (cos_a - cos_g*cos_b)/sin_g
cz = Lc * math.sqrt(1 - cos_a**2 - cos_b**2 - cos_g**2 + 2*cos_a*cos_b*cos_g)/sin_g
# Use the volume to check that we calculated the vectors correctly
V = ax * by * cz
if abs(V - cif_data["_cell_volume"]) > 0.1:
print("WARNING: Volume calculated with the real vectors is not the same as the volume in CIF file.")
return({"ax": ax, "ay": 0, "az": 0, "bx": bx, "by": by, "bz": 0, "cx": cx, "cy": cy, "cz": cz})
|
b60afbbed466efd0f2016e771323d3d56c3ffaf8
| 11,412
|
import requests
def get(path, params=None, filename=None, keyfile='api-key.txt'):
"""
Query Illustris API
Args:
path (str): API query path
params: ...
filename (str): filename and directory to save content.
"""
with open('api-key.txt', 'r') as myfile:
key=myfile.read()
key = key.replace("\n", "")
headers = {"api-key": key};
# make HTTP GET request to path
r = requests.get(path, params=params, headers=headers);
# raise exception if response code is not HTTP SUCCESS (200)
r.raise_for_status();
if r.headers['content-type'] == 'application/json':
return r.json(); # parse json responses automatically
if 'content-disposition' in r.headers:
if filename is None:
filename = r.headers['content-disposition'].split("filename=")[1];
with open(filename, 'wb') as f:
f.write(r.content);
return filename; # return the filename string
return r;
|
b2f1226bd66325a012872d3d07d5c10648aa8680
| 11,413
|
def compute_ngrams (sentence, n): # OK
"""la fonction qui renvoie la liste de ngrams à partir d'une phrase"""
sentence = sentence.lower()
ngrams = zip(*[sentence.split()[i:] for i in range(n)])
return [" ".join(ngram) for ngram in ngrams]
|
495505f4183d56a5a76339826f8306186191c6b1
| 11,414
|
import pandas
def cell_id_count(dataframe: pandas.DataFrame, col_name: str) -> pandas.DataFrame:
"""
Count/tally the unique cell ID's to generate coverage density.
In general this could work for any field
and was initi.
"""
counts = dataframe.groupby([col_name])[col_name].agg("count").to_frame("count")
return counts.reset_index()
|
2d6e47efc181e00e102ae51adc85c674a2bf53f4
| 11,416
|
def parameter_tuple_parser(parameter_tuple, code_list, relative_base):
"""
Accepts parameter_tuple, code_list, and relative_base. Returns parameter for use in intcode operation.
"""
if parameter_tuple[0] == 0:
return code_list[parameter_tuple[1]]
elif parameter_tuple[0] == 1:
return parameter_tuple[1]
elif parameter_tuple[0] == 2:
return code_list[parameter_tuple[1] + relative_base]
else:
print('And I oop.... parameter_tuple_parser')
|
f869240666f2adca0551a3620644023b88930a5a
| 11,417
|
def sum_of_factorial_pure_recursion(number: int) -> int:
"""
>>> sum_of_factorial_pure_recursion(0)
0
>>> sum_of_factorial_pure_recursion(1)
1
>>> sum_of_factorial_pure_recursion(2)
3
>>> sum_of_factorial_pure_recursion(5)
153
"""
if number == 1 or number == 0:
return number # 1! or 0!
elif number == 2:
return 3 # 1! + 2!
else:
return (
sum_of_factorial_pure_recursion(number - 1)
+ (
sum_of_factorial_pure_recursion(number - 1)
- sum_of_factorial_pure_recursion(number - 2)
)
* number
)
|
12ca71c011535bcff990f49cf8716aca3ecc5226
| 11,418
|
def _compute_padding_to_prevent_task_description_from_moving(unfinished_tasks):
"""Compute the padding to have task descriptions with the same length.
Some task names are longer than others. The tqdm progress bar would be constantly
adjusting if more space is available. Instead, we compute the length of the longest
task name and add whitespace to the right.
Example
-------
>>> unfinished_tasks = ["short_name", "long_task_name"]
>>> _compute_padding_to_prevent_task_description_from_moving(unfinished_tasks)
14
"""
len_task_names = list(map(len, unfinished_tasks))
padding = max(len_task_names) if len_task_names else 0
return padding
|
82a2fffa0a35036901affe11fdf98d875445ffea
| 11,420
|
import math
def float_in_range(value: float, lower: float, upper: float) -> bool:
"""Checks if a float is within a range.
In addition to checking if lower < value < upper, checks if value is close to the end points;
if so, returns True. This is to account for the vageries of floating point precision.
args:
value: The value to check.
lower: The lower bound of the range.
upper: The upper bound of the range.
return:
_: The value is in the range.
"""
return (
(lower <= value <= upper)
or math.isclose(value, lower)
or math.isclose(value, upper)
)
|
e971c082e8019f545c9ccc1024f37d3bab61b64e
| 11,421
|
def _parse_int(s, start, end):
"""Parse a number and check for overflows"""
result = 0
i = start
while i < end:
c = ord(s[i])
if ord("0") <= c <= ord("9"):
try:
result = result * 10
if result > 1000000000: # this is not going to overflow in CPython
raise OverflowError
except OverflowError:
msg = "too many decimal digits in format string"
raise ValueError(msg)
result += c - ord("0")
else:
break
i += 1
if i == start:
result = -1
return result, i
|
9719efbdbbd230c26ec5824ca150fbcc1e062057
| 11,422
|
import argparse
import ast
def get_args():
"""get args"""
parser = argparse.ArgumentParser(description="SSD training")
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
help="run platform, only support Ascend.")
parser.add_argument("--mindrecord_url", type=str, default=None, help="mindrecord path, default is none.")
parser.add_argument("--mindrecord_eval", type=str, default=None, help="mindrecord_eval path, default is none.")
parser.add_argument("--eval_callback", type=ast.literal_eval, default=False,
help="verify or not during training.")
parser.add_argument("--distribute", type=ast.literal_eval, default=False,
help="Run distribute, default is False.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--data_url", type=str, default="", help="cocoo 14mini data path.")
parser.add_argument("--train_url", type=str, help="path for checkpoint.")
parser.add_argument("--run_online", type=str, default=False, help="run online,default is False.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument("--epoch_size", type=int, default=100, help="Epoch size, default is 500.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--pre_trained", type=str, default="", help="Pretrained Checkpoint file path.")
parser.add_argument("--backbone_pre_trained", type=str, default="",
help="BackBone Pretrained Checkpoint file path.")
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 10.")
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
help="Filter head weight parameters, default is False.")
parser.add_argument('--freeze_layer', type=str, default="none", choices=["none", "backbone"],
help="freeze the weights of network, support freeze the backbone's weights, "
"default is not freezing.")
parser.add_argument("--data_complete", type=ast.literal_eval, default=True, help="dataset preparation complete.")
parser.add_argument("--data_url_raw", type=str, default="", help="coco2017 path.")
parser.add_argument("--number_path", type=str, default="", help="number_id_val path")
args = parser.parse_args()
return args
|
fbc0d92a70d69a7953583f8540338e793451c150
| 11,425
|
def flat_list(source):
"""Make sure `source` is a list, else wrap it, and return a flat list.
:param source: source list
:returns: flat list
"""
if not isinstance(source, (list, tuple)):
source = [source]
r = []
list(map(lambda x: r.extend(x)
if isinstance(x, (list, tuple))
else r.append(x), source))
return r
|
d118388794cdef72200ad43ab88d9f964b633851
| 11,426
|
def git_ref_from_eups_version(version: str) -> str:
"""Given a version string from the EUPS tag file, find something that
looks like a Git ref.
"""
return version.split("+")[0]
|
c6a429878c2150ce58b262e9f1fb187226336b0b
| 11,427
|
import re
def page_to_books(page_content):
"""Funkcija poišče posamezne knjige, ki se nahajajo v spletni strani in
vrne njih seznam"""
izraz = re.compile(r'<tr>.*?<td><i><a (.*?)</td></tr>', re.DOTALL)
return [m.group(0) for m in re.finditer(izraz, page_content)]
|
2954ef11dce788b1232976d9b523f9e0b9a69cfc
| 11,428
|
def collapse(iter_flow_result:dict)->list:
""" Return iter_flow dict result as a single flat list"""
nested_lists = [iter_flow_result[k] for k in iter_flow_result.keys()]
flat_list = [item for sublist in nested_lists for item in sublist]
return(flat_list)
|
ada0d654ed36df8168b4835fbde3b91b7f56fb72
| 11,431
|
import os
def parse_settings() -> dict:
"""
봇 세팅에 필요한 여러 옵션을 가져옵니다.
"""
ret = dict()
try:
ret["BOT_DB_NAME"] = os.environ["BOT_DB_NAME"]
ret["BOT_DB_USERNAME"] = os.environ["BOT_DB_USERNAME"]
ret["BOT_DB_HOST"] = os.environ["BOT_DB_HOST"]
ret["BOT_DB_PORT"] = os.environ["BOT_DB_PORT"]
except KeyError as e:
raise RuntimeError(f"환경변수 {str(e)}가 존재하지 않습니다.")
ret["BOT_DB_PASSWORD"] = os.environ.get("BOT_DB_PASSWORD")
try:
if ret["BOT_DB_PASSWORD"] is None:
filename = os.environ["BOT_DB_PASSWORD_FILE"]
with open(filename, "r") as password_file:
ret["BOT_DB_PASSWORD"] = password_file.readline().strip()
except KeyError as e:
raise RuntimeError("DB 비밀번호와 관련된 환경변수가 존재하지 않습니다.")
except FileNotFoundError as e:
raise RuntimeError("비밀번호에 해당하는 파일을 찾을 수가 없습니다.")
ret["BOT_SLACK_TOKEN"] = os.environ.get("BOT_SLACK_TOKEN")
try:
if ret["BOT_SLACK_TOKEN"] is None:
filename = os.environ["BOT_SLACK_TOKEN_FILE"]
with open(filename, "r") as password_file:
ret["BOT_SLACK_TOKEN"] = password_file.readline().strip()
except KeyError as e:
raise RuntimeError("슬랙 토큰과 관련된 환경변수가 존재하지 않습니다.")
except FileNotFoundError as e:
raise RuntimeError("슬랙 토큰에 해당하는 파일을 찾을 수가 없습니다.")
return ret
|
52495ca767fad780c27b428000cecd2862c1c1b3
| 11,432
|
import os
def lastlines(filename, lines=1, max_line_length=255):
"""Returns the last n lines of a text file"""
with open(filename, 'rb') as f:
f.seek(-(lines+1)*max_line_length, os.SEEK_END)
endlines = f.read().decode().split('\n')
return endlines[-lines:]
|
f7d4602bceb1ac060f458d8df8e3a34676020963
| 11,433
|
def changes(new_cmp_dict, old_cmp_dict, id_column, columns):
"""Return a list dict of the changes of the
rows that exist in both dictionaries
User must provide an ID column for old_cmp_dict
"""
update_ldict = []
same_keys = set(new_cmp_dict).intersection(set(old_cmp_dict))
for same_key in same_keys:
# Get the Union of the set of keys
# for both dictionaries to account
# for missing keys
old_dict = old_cmp_dict[same_key]
new_dict = new_cmp_dict[same_key]
dict_keys = set(old_dict).intersection(set(new_dict))
update_dict = {}
for dict_key in columns:
old_val = old_dict.get(dict_key, 'NaN')
new_val = new_dict.get(dict_key, 'NaN')
if old_val != new_val and new_val != 'NaN':
if id_column!=None:
try:
update_dict[id_column] = old_dict[id_column]
except KeyError:
print("Input Dictionary 'old_cmp_dict' must have ID column")
update_dict[dict_key] = new_val
if update_dict:
update_ldict.append(update_dict)
return update_ldict
|
0b10755dcac69eb11bf47fdd2309308e0d2266c8
| 11,435
|
from typing import Union
from pathlib import Path
def relative_to(
path: Union[str, Path], source: Union[str, Path], include_source: bool = True
) -> Union[str, Path]:
"""Make a path relative to another path.
In contrast to :meth:`pathlib.Path.relative_to`, this function allows to keep the
name of the source path.
Examples
--------
The default behavior of :mod:`pathlib` is to exclude the source path from the
relative path.
>>> relative_to("folder/file.py", "folder", False).as_posix()
'file.py'
To provide relative locations to users, it is sometimes more helpful to provide the
source as an orientation.
>>> relative_to("folder/file.py", "folder").as_posix()
'folder/file.py'
"""
source_name = Path(source).name if include_source else ""
return Path(source_name, Path(path).relative_to(source))
|
26caa33770617361406915c9b301b5fe1a0ba9ef
| 11,437
|
import sys
def get_current_platform_dll_extension():
"""
Return the dynamic loading library extension for the current platform
"""
if sys.platform == 'win32':
return 'dll'
elif sys.platform == 'darwin':
return 'dylib'
else:
return 'so'
|
fb23730ab975624329ec2ae25cfeb434e1b35a99
| 11,438
|
def _normalize_value_string(s):
"""Flatten value into a single line."""
final_lines = []
for line in s.splitlines():
line = line.strip()
# remove line continuation \
if line.endswith('\\'):
line = line[:-1]
final_lines.append(line)
return ''.join(final_lines)
|
00ce1b63eb4418bd490df754a50d2ad4bbd7618a
| 11,439
|
def packing_fraction_state(state):
"""
Calculates the packing fraction of a state.
Parameters
----------
state : :class:`peri.states.ImageState`
Returns
-------
Float
The volume fraction
"""
return state.get('obj').get()[state.inner].mean()
|
fc9cc7c3aea2bcb9415aa3591f85a76c6c6a1412
| 11,440
|
def get_creds(filename):
"""
Read credentials from a file. Format is:
URL
USERNAME
PASSWORD
Parameters
----------
filename: string
path to the file with the credentials
Returns
-------
list as [URL, USERNAME, PASSWORD]
"""
f = open(filename, "r")
lines = f.readlines()
if len(lines) != 3:
raise ValueError("Not a valid credentials file.")
# strip out newline chars
content = [x.rstrip() for x in lines]
return content
|
7b308a2e140a809e0bb11804750370bb4326796d
| 11,441
|
def create_path(createFn):
""" Decorator to create a path from the path provided """
def decorator(fn):
def wrapper(self, *args, create=False):
path = fn(self, *args, create=create)
if create:
createFn(path)
return path
return wrapper
return decorator
|
e4fecc33e051f0b1384f9b3b41f49fcd938357c9
| 11,442
|
def uri_base(uri):
"""
Get the base URI from the supplied URI by removing any parameters and/or fragments.
"""
base_uri = uri.split("#", 1)[0]
base_uri = base_uri.split("?", 1)[0]
return base_uri
|
8655b8717261dcd419f1c3ac0153ec51d348ca57
| 11,443
|
def sequalsci(val, compareto) -> bool:
"""Takes two strings, lowercases them, and returns True if they are equal, False otherwise."""
if isinstance(val, str) and isinstance(compareto, str):
return val.lower() == compareto.lower()
else:
return False
|
5e96233ead44608ce70ad95e936c707af8bcb130
| 11,444
|
def n_rots(request):
"""Number of rotations in random layer."""
return request.param
|
93d55281a83be9e4acba951d1de8a9e7d5081182
| 11,445
|
from typing import Any
def try_to_cuda(t: Any) -> Any:
"""
Try to move the input variable `t` to a cuda device.
Args:
t: Input.
Returns:
t_cuda: `t` moved to a cuda device, if supported.
"""
try:
t = t.cuda()
except AttributeError:
pass
return t
|
9b6643f169c1eb8fc65de8b1bff55668f8cba950
| 11,446
|
def fixtableforhtml(tablecolumn):
"""
fix the formatting to make the decimals into percents and
add comma seps to long numbers
"""
new_table = []
for x in tablecolumn:
if float(x) < 1:
x = str(round(float(x) * 100, 2))+"%"
else:
x = int(float(x))
x = f"{x:,d}"
new_table.append(x)
return(new_table)
|
f57f2ef4145a7389e6160316750e64d0903ddc02
| 11,447
|
from typing import Sequence
from typing import Iterator
def apply(masks: Sequence[int], value: int) -> Iterator[int]:
"""Apply each bit mask to the given value using bitwise AND.
Args:
masks: Bit masks to apply.
value: Value to mask.
Returns:
Iterator with each mask independently applied to the value.
"""
return ((value & mask) for mask in masks)
|
6eafc88977eea0d50173a4c37c12b43f5c80a870
| 11,449
|
def filter_df_for_pred_a(df, list_freq_outliers):
"""
Exclude frequency outliers according to list and drop all hex bin / time window combinations with 0 RTA's
"""
df_pred_a = df.loc[~df["h3_zone_6"].isin(list_freq_outliers)]
df_pred_a = df_pred_a.reset_index()
df_pred_a = df_pred_a.drop(["uid", "latitude", "longitude", "time", "time_window", "time_window_str", "day", "weekday", "month", "half_year", "rainy_season",
"year", "date_trunc", "holiday", "time_window_key", "index"], axis=1)
df_pred_a.columns = ["datetime", "hex_bins"]
return df_pred_a
|
1115c845593ec2aabf55f6c5d52f4ef8b23fc121
| 11,450
|
def group(seq, groupSize, noneFill=True):
"""Groups a given sequence into sublists of length groupSize."""
ret = []
L = []
i = groupSize
for elt in seq:
if i > 0:
L.append(elt)
else:
ret.append(L)
i = groupSize
L = []
L.append(elt)
i -= 1
if L:
if noneFill:
while len(L) < groupSize:
L.append(None)
ret.append(L)
return ret
|
a7314803cb3b26c9bd69a2dbc2c0594181085c2c
| 11,451
|
def strip_comments(contents):
"""Strips the comments from coq code in contents.
The strings in contents are only preserved if there are no
comment-like tokens inside of strings. Stripping should be
successful and correct, regardless of whether or not there are
comment-like tokens in strings.
The behavior of this method is undefined if there are any
notations which change the meaning of '(*', '*)', or '"'.
Note that we take some extra care to leave *) untouched when it
does not terminate a comment.
"""
contents = contents.replace('(*', ' (* ').replace('*)', ' *) ')
tokens = contents.split(' ')
rtn = []
is_string = False
comment_level = 0
for token in tokens:
do_append = (comment_level == 0)
if is_string:
if token.count('"') % 2 == 1: # there are an odd number of '"' characters, indicating that we've ended the string
is_string = False
elif token.count('"') % 2 == 1: # there are an odd number of '"' characters, so we're starting a string
is_string = True
elif token == '(*':
comment_level += 1
do_append = False
elif comment_level > 0 and token == '*)':
comment_level -= 1
if do_append:
rtn.append(token)
return ' '.join(rtn).replace(' (* ', '(*').replace(' *) ', '*)').strip('\n\t ')
|
2c7ddc9fb3e2981cf297ff37a4bb0b7019247a3a
| 11,456
|
def diff(x):
"""
Computes the approximate local derivative of `x` via finite differencing assuming unit spacing.
Can be viewed as the opposite of trapz().
Args:
x: The vector-like object (1D np.ndarray, cas.MX) to be integrated.
Returns: A vector of length N-1 with each piece corresponding to the difference between one value and the next.
"""
return x[1:] - x[:-1]
|
e7e21447f2c745ab8d05f05a9c6c50e24a9aec55
| 11,457
|
import random
def random_sentence_swap(sentences, p):
"""Swaps sentences with probability p."""
def swap_sentence(s):
idx_1 = random.randint(0, len(s) - 1)
idx_2 = idx_1
counter = 0
while idx_2 == idx_1:
idx_2 = random.randint(0, len(s) - 1)
counter += 1
if counter > 3:
return s
s[idx_1], s[idx_2] = s[idx_2], s[idx_1]
return s
new_sentences = sentences.copy()
n = int(p * len(sentences))
for _ in range(n):
new_sentences = swap_sentence(new_sentences)
return new_sentences
|
5a2fa1a7303dc6fe924803fe6fad2ef5da998733
| 11,458
|
def process_not_implemented(**kwargs):
""" default process function - return not implemented """
ret_dict = { 'function_return': 'not-implemented',
'slack_response': {} }
return ret_dict
|
c78b7cda6e52471a5839d1231f45ba45d077888b
| 11,460
|
import json
def create_mapping_dict(total_parsed_results, type_field):
"""
Create a {'field_name': 'fields_properties'} dict to be used as mapping schemas.
Args:
total_parsed_results: list. the results from the splunk search query
type_field: str. the field that represents the type of the event or alert.
Returns:
"""
types_map = {}
for result in total_parsed_results:
raw_json = json.loads(result.get('rawJSON', "{}"))
event_type_name = raw_json.get(type_field, '')
if event_type_name:
types_map[event_type_name] = raw_json
return types_map
|
3dd29abbd986a42a2c3a2cab8cd5e40b0b6a65ca
| 11,463
|
import csv
import numpy
def read_file(input_filename, parm):
"""
Read the given parameter from the given file and return array of data
"""
# print('Reading', input_filename)
infile = open(input_filename)
reader = csv.DictReader(infile)
vals = []
for row in reader:
vals.append(float(row[' ' + parm]))
return numpy.array(vals)
|
af9417ae42a582aae69b5209d6bf73f7e890dc4a
| 11,464
|
def not_safe_gerone(a, b, c):
"""
Compute triangle area from valid sides lengths
:param float a: first side length
:param float b: second side length
:param float c: third side length
:return: float -- triangle area
>>> not_safe_gerone(3, 4, 5)
6.0
"""
p = (a+b+c)/2
return (p*(p-a)*(p-b)*(p-c))**(1/2)
|
499cf398158d170363ea22096b44ea16e402a23a
| 11,465
|
def compName(n1, n2):
""" Compare names: n1 n2 strings, blankspace separated names
return value between -1 (mismatch) and 1 (match)
return None if any of n1, n2 is empty
can be used on names, normalised names
"""
if (not n1) or (not n2): return None
nn1 = n1.strip().split()
nn2 = n2.strip().split()
if (not nn1) or (not nn2): return None
if (len(nn1) > len(nn2)):
return (2.0 * len(set(nn2).intersection(nn1)) - len(nn2)) / float(len(nn2))
else:
return (2.0 * len(set(nn1).intersection(nn2)) - len(nn1)) / float(len(nn1))
|
7a37261779f38040e0baa3bf99bbaf66569d6962
| 11,468
|
def add(cm_response, **data):
"""
Creates template of VM. Template has a name and some description.
It defines VM's hardware parameters: CPU and memory. It also defines
number of points utilized by VM created of it (per hour and overly).
@clmview_admin_cm
@cm_request_transparent{user.add()}
"""
return cm_response
|
ff8b29ccb0fa288c018275d09208a0b3cfddfce0
| 11,469
|
def change_config(set_attr):
"""
因为每次更改属性都要刷新托盘菜单,并且写到配置文件中,
所以定义一个装饰器,以简化代码
:param set_attr: 更改属性的函数
:return: 装饰过的函数
"""
def wrapper(plugin, option_text):
f = set_attr(plugin, option_text)
plugin.save_config()
plugin.root.refresh_menu()
return f
return wrapper
|
0f497fb83007dbcd353f44a684c5be995821b424
| 11,470
|
def sqs_lookup_url(session, queue_name):
"""Lookup up SQS url given a name.
Args:
session (Session) : Boto3 session used to lookup information in AWS.
queue_name (string) : Name of the queue to lookup.
Returns:
(string) : URL for the queue.
Raises:
(boto3.ClientError): If queue not found.
"""
client = session.client('sqs')
resp = client.get_queue_url(QueueName=queue_name)
return resp['QueueUrl']
|
4f7bfb98d10a372b3b07f270e2a25e3227732f41
| 11,474
|
def get_government_factions(electoral_term):
"""Get the government factions for the given electoral_term"""
government_electoral_term = {
1: ["CDU/CSU", "FDP", "DP"],
2: ["CDU/CSU", "FDP", "DP"],
3: ["CDU/CSU", "DP"],
4: ["CDU/CSU", "FDP"],
5: ["CDU/CSU", "SPD"],
6: ["SPD", "FDP"],
7: ["SPD", "FDP"],
8: ["SPD", "FDP"],
9: ["SPD", "FDP"],
10: ["CDU/CSU", "FDP"],
11: ["CDU/CSU", "FDP"],
12: ["CDU/CSU", "FDP"],
13: ["CDU/CSU", "FDP"],
14: ["SPD", "BÜNDNIS 90/DIE GRÜNEN"],
15: ["SPD", "BÜNDNIS 90/DIE GRÜNEN"],
16: ["CDU/CSU", "SPD"],
17: ["CDU/CSU", "FDP"],
18: ["CDU/CSU", "SPD"],
19: ["CDU/CSU", "SPD"],
}
return government_electoral_term[electoral_term]
|
cfd502f81ebb0536432da4974ab9f25724dc83df
| 11,475
|
def VectorVector_scalar(vectorA, vectorB):
""" N diemnsional. Return a float as a scalar resulting from vectorA * vectorB"""
result = 0
for i in range(0, len(vectorA)):
result += vectorA[i] * vectorB[i]
return result
|
c7f0448a05573b8ddba63ed7a8262072ffcda38f
| 11,476
|
def describeTreeProductions(tree, links, offset=0):
"""
Write out the PCFG node productions
"""
s = "%s ->" % tree.node
for ch in tree:
s += " %s" % ch.node
return s
|
8f0ec7db35316684441863c8475b6089da0c7e98
| 11,477
|
def eval_shift_distance(shift, reg_matches):
"""
Compute the distance in characters a match has been shifted over.
"reg_matches" is the set of regular matches as returned by find_regular_matches().
The distance is defined as the number of characters between the shifted match
and the closest regular match.
"""
mid_matches = sorted(m for m in reg_matches
if (m[0] < shift[0] and m[1] > shift[1])
or (m[0] > shift[0] and m[1] < shift[1]))
return (-(shift[0] - mid_matches[0][0])
if mid_matches[0][0] < shift[0]
else (mid_matches[-1][0] + len(mid_matches[-1][2])
- (shift[0] + len(shift[2]))))
|
aceb705d0f89cacb6f7738667e6dfaf803bed85c
| 11,478
|
def get_common_basename(paths):
""" Return common "basename" (or "suffix"; is the last component of path)
in list "paths". Or return None if all elements in paths do not share a common last
component. Generate an error if any path ends with a slash."""
if len(paths) == 0:
return None
# get suffix of first element:
first_path = paths[0]
first_suffix = first_path.rsplit('/', 1)[-1]
assert first_suffix !='', "Invalid path, has trailing slash: %s" % first_path
match = True
for path in paths:
prefix, suffix = path.rsplit('/', 1)
assert suffix !='', "Invalid path, has trailing slash: %s" % path
if suffix != first_suffix:
match = False
break
if not match:
# suffixes do not match
return None
# suffixes match
return first_suffix
|
e2189244ef556038caea24ba6aa85792f34868db
| 11,479
|
def even(n: int) -> bool:
"""
Check that given number is even.
>>> [(n, even(n)) for n in range(5)]
[(0, True), (1, False), (2, True), (3, False), (4, True)]
"""
return n % 2 == 0
|
b96403b1b250560b29aafc253aaa1883f4018002
| 11,481
|
def is_owner(org):
"""
Function for checking if a user's org has ownership rights
SINCE WE ARE KEEPING ACCESS CONTROL SIMPLE, WE ARE DEFAULTING THIS TO TRUE
:param str org: An organization
:return bool: whether the organization matches the current user or the group of admins
"""
return True
# return current_user.organization.organization == 'admins' or current_user.organization.organization == org
|
ba326c4524cd30038e5a8a1f88aa6b8f80b9a57f
| 11,482
|
def percent_yield(actual_yield, theoretical_yield):
"""Finds theoretical_yield\n
actual_yield:\n\tThe yield given in the equation\n
theoretical_yield:\n\tThis yield can be calculated with the theoretical_yield() function"""
yielded = (actual_yield / theoretical_yield) * 100
return yielded
|
ceef481ebae8be223bdb9b9c1f2c8a0c8713fcca
| 11,485
|
from typing import Union
import os
from pathlib import Path
def make_db_path(in_path: Union[str, os.PathLike, Path]) -> str:
"""
Returns the provided path resolved and as a String so APSW can understand it.
Peewee (or APSW) seems to not follow the `os.PathLike`-Protocol.
Args:
in_path (Union[str, os.PathLike, Path])
Returns:
str: The resolved and normalized path to the db.
"""
return str(Path(in_path).resolve())
|
9b34f8cc5de51d5b115b7829463e08465fcaeb62
| 11,486
|
def contains_all_required_firewalls(firewall, topology):
"""
Check that the list of firewall settings contains all necessary firewall settings
"""
for src, row in enumerate(topology):
for dest, col in enumerate(row):
if src == dest:
continue
if col == 1 and (str((src, dest)) not in firewall or str((dest, src)) not in firewall):
return False
return True
|
a4dbbb5833909e816c5b7568cf75da68c06d9e4c
| 11,487
|
def _get_upload_headers(first_byte, file_size, chunk_size):
"""Prepare the string for the POST request's headers."""
content_range = 'bytes ' + \
str(first_byte) + \
'-' + \
str(first_byte + chunk_size - 1) + \
'/' + \
str(file_size)
return {'Content-Range': content_range}
|
3ccfec747ce8f8f31b97489005b1ac421f7c9024
| 11,490
|
def format_uptime(uptime_in_seconds):
"""Format number of seconds into human-readable string.
:param uptime_in_seconds: The server uptime in seconds.
:returns: A human-readable string representing the uptime.
>>> uptime = format_uptime('56892')
>>> print(uptime)
15 hours 48 min 12 sec
"""
m, s = divmod(int(uptime_in_seconds), 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
uptime_values = []
for value, unit in ((d, 'days'), (h, 'hours'), (m, 'min'), (s, 'sec')):
if value == 0 and not uptime_values:
# Don't include a value/unit if the unit isn't applicable to
# the uptime. E.g. don't do 0 days 0 hours 1 min 30 sec.
continue
elif value == 1 and unit.endswith('s'):
# Remove the "s" if the unit is singular.
unit = unit[:-1]
uptime_values.append('{0} {1}'.format(value, unit))
uptime = ' '.join(uptime_values)
return uptime
|
a6a4544b6754113d0c5ed13a18838770448be6a8
| 11,495
|
def chunker(arrays, chunk_size):
"""Split the arrays into equally sized chunks
:param arrays: (N * L np.array) arrays of sentences
:param chunk_size: (int) size of the chunks
:return chunks: (list) list of the chunks, numpy arrays"""
chunks = []
# sentence length
sent_len = len(arrays[0])
# chunk the arrays over the sentence in chunk sizes
for pos in range(0, sent_len, chunk_size):
chunk = []
for array in arrays:
chunk.append(array[pos: pos+chunk_size])
chunks.append(chunk)
return chunks
|
42a6867464e32d59a50927e8e88d067fc86f4fa1
| 11,497
|
import requests
import json
def get_device_response(ctx):
"""Return the deserialized JSON response for /stat/device (devices)"""
r = requests.get(
ctx.obj["URL"] + "stat/device",
verify=ctx.obj["VERIFY"],
cookies=ctx.obj["COOKIES"],
)
return json.loads(r.text)
|
a763e3a5aedb0b2124244424f44fe7aa56bb8963
| 11,500
|
def unique_mers(sequencelist, sizeofmer):
""" WEV
This will create a list of all of the unique Nmers of the object
The goal is to have this be flexible enough to take a list or string
"""
output = []
if isinstance(sequencelist, list) or isinstance(sequencelist, set):
for sequence in sequencelist:
sizeofsequence = len(sequence)
for index in range(sizeofmer, sizeofsequence + 1):
output.append(sequence[(index - sizeofmer): index])
#print output
#raw_input()
return set(output)
elif isinstance(sequencelist, str):
sizeofsequence = len(sequencelist)
for index in range(sizeofmer, sizeofsequence + 1):
output.append(sequencelist[(index - sizeofmer): index])
return set(output)
|
e5e24a968dfe65480bebc2ebeaef39a3510fc4bb
| 11,501
|
def parse_context_var(context, variable_name):
"""解析上下文中的变量
如果以'$'字符开头,那么返回上下文中的对应变量
其它的情况会直接返回字符串
开头两个$$连续为转义,比如'$$aa$$a'为'$aa$$a'
:param context 上下文
:param variable_name
"""
if not isinstance(variable_name, str):
return variable_name
elif variable_name.startswith("$$"):
return variable_name.replace("$$", "$")
elif variable_name.startswith("$"):
return context[variable_name[1:]]
else:
return variable_name
|
d9dbe2a8341179cc5157396a74125b488c0ff053
| 11,502
|
def logo_round(v, *args):
"""
ROUND num
outputs the nearest integer to the input.
"""
return round(v, *args)
|
fcbf49a40ee95fcbf4c9af62f6b52aed5bfac0a6
| 11,503
|
import pickle
def get_palette(palette_file):
"""
load color palette
:param palette_file:
:return:
"""
with open(palette_file, 'rb') as fr:
color_palette = pickle.load(fr)
return color_palette
|
29d8a661eed7f50d67e108a07017fc93019bfa3c
| 11,504
|
import math
def calculate_ransac_iterations(min_points_per_sample, outlier_rate, desired_success_probability):
"""Estimates how many RANSAC iterations you should run.
Args:
min_points_per_sample: Minimum number of points to build a model hypothesis.
outlier_rate: Float, 0-1, how often outliers are expected.
desired_success_probability: Float, 0-1 exclusive, desired certainty that the
RANSAC run will find the correct model. Higher certainty requires more iterations.
Returns:
Number of iterations.
"""
if not 0 < desired_success_probability < 1:
raise ValueError('desired_success_probability should fall between 0 and 1, exclusive.')
if not 0 <= outlier_rate <= 1:
raise ValueError('outlier_rate should fall between 0 and 1.')
if min_points_per_sample <= 0:
raise ValueError('min_points_per_sample must be a positive integer.')
assert 0 < desired_success_probability < 1
return math.ceil(math.log(1 - desired_success_probability) /
math.log((1 - (1 - outlier_rate) ** min_points_per_sample)))
|
cafca93f052770f695f90d5f37e088e880fd0c45
| 11,506
|
import csv
import logging
def load_patterns(file_path):
"""
loads the patterns from csv file
"""
patternsDict = {}
try:
with open(file_path, mode='r') as csvfile:
reader = csv.reader(csvfile)
patternsDict = {rows[0]: (rows[1], rows[2]) for rows in reader}
except FileNotFoundError:
logging.error("patterns file not found!")
return patternsDict
|
330472f0507ffc4e9d967ef3027e362e47e0d4d2
| 11,507
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.