content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def spectral_projection(u, eigenpairs):
"""
Returns the coefficients of each eigenvector
in a projection of the vector u onto the normalized
eigenvectors which are contained in eigenpairs.
eigenpairs should be a list of two objects. The
first is a list of eigenvalues and the second a list
of eigenvectors. The eigenvectors should be lists.
There's not a lot of error checking on lengths of
arrays, etc. so be careful.
"""
coeff = []
evect = eigenpairs[1]
for ev in evect:
c = sum([evv * uv for (evv, uv) in zip(ev, u)])
coeff.append(c)
return coeff
|
2b877e2e9a606c449b38101e1a23504bff999409
| 699,727
|
def _get_native_location(name):
# type: (str) -> str
"""
Fetches the location of a native MacOS library.
:param name: The name of the library to be loaded.
:return: The location of the library on a MacOS filesystem.
"""
return '/System/Library/Frameworks/{0}.framework/{0}'.format(name)
|
53cb9ac2a771883b791a111e53e23bd77c08f43b
| 699,728
|
def ra2float(ra):
"""
Convert ra to degress (float).
ra can be given as a time string, HH:MM:SS.SS or as string like '25.6554'
or (trivially) as a float.
An exception is thrown if ra is invalid
360 deg = 24 hrs, 360/24 = 15
"""
if ra is None:
return ra
if type(ra) is float or type(ra) is int:
return float(ra)
if (type(ra) is str or type(ra) is str) and ra.find(':') == -1:
return float(ra)
try:
return float(ra) # catch numpy types
except:
pass
assert type(ra) is str,'Invalid parameter format (ra2float - data type %r)' % type(ra)
h,m,s = ra.strip().split(':')
if h.find('-') != -1:
h=h.replace('-','')
sign = -1.0
else:
sign = 1.0
return sign*(float(h)*15.0 + float(m)/4.0 + float(s)/240.0)
|
d16e1163f9e821fdff4344eacf7c29b08a8ba266
| 699,729
|
def split_unknown_args(argv: list[str]) -> tuple[list[str], list[str]]:
"""Separate known command-line arguments from unknown one.
Unknown arguments are separated from known arguments by
the special **--** argument.
:param argv: command-line arguments
:return: tuple (known_args, unknown_args)
"""
for i in range(len(argv)):
if argv[i] == "--":
return argv[:i], argv[i + 1 :]
return argv, []
|
14e6f202e105cb1001563e9a5a5fc1c5f4bd9fd0
| 699,730
|
def season_validation(season):
""" Decide if the season inputs are valid then return valid inputs.
Parameters:
season(str): A user's inputs to the season factor.
Return:
(str): Valid strings without commas or spaces or characters.
"""
def is_valid_digit(season):
""" Decide the condition that controls the while loop.
Parameters:
continent(str): A user's inputs to the season question.
Return:
(bool): Decide which type the invalidation is.
"""
season_input_list = season.split(",")
for a in season_input_list :
try:
int_a = int(a)
except:
return True
else:
if int_a != 1 and int_a != 2 and int_a != 3 and int_a != 4 :
return True
else :
continue
while is_valid_digit(season) :
print("\nI'm sorry, but " + season + " is not a valid choice. Please try again.\n")
season = input("\nWhich seasons do you plan to travel in?"
+ "\n 1) Spring"
+ "\n 2) Summer"
+ "\n 3) Autumn"
+ "\n 4) Winter"
+ "\n> ")
return season
|
8633c7a1a39103daa212a227317a7d147c3a4bb3
| 699,731
|
def byte_to_megabyte(byte):
"""
Convert byte value to megabyte
"""
return byte / (1024.0 ** 2)
|
1b410bcec539e3946a7b5751b984758f89a7ed96
| 699,732
|
import string
def decode(digits, base):
"""Decode given digits in given base to number in base 10.
digits: str -- string representation of number (in given base)
base: int -- base of given number
return: int -- integer representation of number (in base 10)"""
# Handle up to base 36 [0-9a-z]
assert 2 <= base <= 36, 'base is out of range: {}'.format(base)
result = 0
power = len(digits)-1
for i in range(len(digits)):
if digits[i] in string.ascii_lowercase:
digit = ord(digits[i]) - 87
elif digits[i] in string.ascii_uppercase:
digit = ord(digits[i]) - 55
else:
digit = int(digits[i])
num = (base**power) * digit
result += num
power -= 1
return result
|
febdf9973a73de5b3686a20b8c2a5738391a815e
| 699,734
|
import argparse
def parseArgs():
"""Parse script parameters and return its values."""
parser = argparse.ArgumentParser(
description="Social Media Profile Cross Reference Tool.")
parser.add_argument("-i",
help="input csv file with emails",
required=True)
parser.add_argument("-o",
help="output csv file with social profiles",
required=True)
parser.add_argument("-k",
help="api key",
default="sample_key")
args = parser.parse_args()
return args.i, args.o, args.k
|
a3697b1d90f4cd868aac0f085f8a41674b729855
| 699,735
|
def pass_args(args):
"""Possible argument to attr_handler()"""
return args
|
5681a5f80c1f01bcae099d4baaf7fb07785c5983
| 699,736
|
def least_significan_bit(n):
"""Least significant bit of a number
num AND -num = LSB
Args:
n ([type]): [description]
Raises:
TypeError: [description]
Returns:
[type]: [description]
"""
if type(n) != int:
raise TypeError("Number must be Integer.")
if n > 0 :
return (n&-n)
|
5fcde70104f885eeb753697fb74d8ec2e7156eae
| 699,737
|
def is_k_anonymous(df,partition,sensitive_column,k =3):
"""
params
df: The dataframe on which to check the partition.
partition: The partition of the dataframe to check.
sensitive_column: The name of the sensitive column
k: The desired k
returns
True if the partition is valid according to our
k-anonimity criteria,False otherwise
"""
if len(partition)<k:
return False
return True
|
e58ae8f65524c8a9f7b404d391c2b1d3d0b188c2
| 699,738
|
def normalize_variant(variant: str) -> str:
"""
Normalize variant.
Reformat variant replace colons as separators
to underscore.
chromosome:position:reference:alternative
to
chromosome_position_reference_alternative
:param variant: string representation of variant
:return: reformatted variant
"""
cpra = variant.split(":")
cpra[0] = "X" if cpra[0] == "23" else cpra[0]
return "_".join(cpra)
|
2dc97b7f7b09add6a8062db94376c1ab030ff07c
| 699,739
|
from typing import Tuple
def compute_limits(
numdata: int, numblocks: int, blocksize: int, blockn: int
) -> Tuple[int, ...]:
"""Generates the limit of indices corresponding to a specific block. It
takes into account the non-exact divisibility of numdata into numblocks
letting the last block to take the extra chunk.
Parameters
----------
numdata : int
Total number of data points to distribute
numblocks : int
Total number of blocks to distribute into
blocksize : int
Size of data per block
blockn : int
Index of block, from 0 to numblocks-1
Return
----------
start : int
Position to start assigning indices
end : int
One beyond position to stop assigning indices
"""
start = blockn * blocksize
end = start + blocksize
if blockn == (numblocks - 1): # last block gets the extra
end = numdata
return start, end
|
748344d60baa8f2ecd31ce822c0e33aca981bc13
| 699,740
|
import json
def getToken(response):
"""
Get the tokenised card reference from the API response
:param response: Response object in JSON
:return: String - token
"""
resp_dict = json.loads(response.text)
try:
token = resp_dict["token"]
except KeyError:
print('Retrieval unsuccessful.')
return None
return token
|
b849f3b021b995b164b99690a82ecabf881bb18b
| 699,741
|
def _read_transition_statistics_from_files(model, verbose):
"""Parses the transitions statistics from the simulation output files for later analysis
Parameters
-------
model : obj
object containing all anchor and milestone information
Returns
---------
total_steps : int
total number of MD steps taken in all simulations in all anchors
"""
total_steps = 0
for site in model.sites:
for anchor in site.anchors:
if anchor.md == True and anchor.directory:
#if verbose: print 'parsing md transitions for:Anchor', milestone.fullname
#print info['max_steps']
print('parsing md transitions for:Anchor', anchor.fullname)
max_steps = anchor._parse_md_transitions()
print(max_steps, total_steps)
if max_steps > total_steps:
total_steps = max_steps
return total_steps
|
1a4f326bd628e6ddd9475c9610b92cb2ba564bba
| 699,742
|
def createSubsetGafDict(subset, gafDict):
"""
Generates a dictionary that maps the subset's Uniprot ACs to the GO IDs,
based on the provided gene subset and the gaf dictionary.
Parameters
----------
subset : set of str
A subset of Uniprot ACs of interest.
gafDict : dict of str mapping to set
A dictionary that maps Uniprot ACs (str) to a set GO IDs.
Generated by importGAF().
Returns
-------
dict of str mapping to set
A dictionary that maps the subset's Uniprot ACs to GO IDs.
"""
gafSubsetDict = {gene: gafDict[gene] for gene in subset if gene in gafDict}
return gafSubsetDict
|
76e69cd79c984a19254df171403c008405276408
| 699,743
|
def shortest_paths(graph, vertex_key):
"""Uses Dijkstra's algorithm to find the shortest path from
`vertex_key` to all other vertices. If we have no lengths, then each
edge has length 1.
:return: `(lengths, prevs)` where `lengths` is a dictionary from key
to length. A length of -1 means that the vertex is not connected to
`vertex_key`. `prevs` is a dictionary from key to key, giving for
each vertex the previous vertex in the path from `vertex_key` to that
vertex. Working backwards, you can hence construct all shortest
paths.
"""
shortest_length = { k : -1 for k in graph.vertices }
shortest_length[vertex_key] = 0
candidates = {vertex_key}
done = set()
prevs = {vertex_key:vertex_key}
while len(candidates) > 0:
next_vertex, min_dist = None, -1
for v in candidates:
dist = shortest_length[v]
if min_dist == -1 or dist < min_dist:
min_dist = dist
next_vertex = v
candidates.discard(next_vertex)
done.add(next_vertex)
for v in graph.neighbours(next_vertex):
edge_index, _ = graph.find_edge(next_vertex, v)
dist = min_dist + graph.length(edge_index)
current_dist = shortest_length[v]
if current_dist == -1 or current_dist > dist:
shortest_length[v] = dist
prevs[v] = next_vertex
if v not in done:
candidates.add(v)
return shortest_length, prevs
|
f2ac9abf9292364099748475988d4ee1dbeb4b23
| 699,744
|
def process_overall_mode_choice(mode_choice_data):
"""Processing and reorganizing the data in a dataframe ready for plotting
Parameters
----------
mode_choice_data: pandas DataFrame
From the `modeChoice.csv` input file (located in the output directory of the simulation)
Returns
-------
mode_choice: pandas DataFrame
Mode choice data that is ready for plotting.
"""
mode_choice = mode_choice_data
# Select columns w/ modes
mode_choice = mode_choice.iloc[-1,:]
mode_choice = mode_choice.drop(["iterations"])
# Replace "ride_hail" by "on_demand ride"
mode_choice.rename({"ride_hail":"on-demand ride"}, inplace = True)
return mode_choice
|
870685017d223f8a277265f80eea56e50eedec90
| 699,745
|
def flatten_datasets(rel_datasets):
"""Take a dictionary of relations, and returns them in tuple format."""
flattened_datasets = [[], [], []]
for kind in rel_datasets.keys():
for i in range(0, 3):
for rel in rel_datasets[kind][i]:
flattened_datasets[i].append([*rel, kind])
return flattened_datasets
|
70affa370a98c8328effed0bdb015999c5874913
| 699,746
|
import torch
def log_sum_exp(x, dim=None):
"""Log-sum-exp trick implementation"""
x_max, _ = torch.max(x, dim=dim, keepdim=True)
x_log = torch.log(torch.sum(torch.exp(x - x_max), dim=dim, keepdim=True))
return x_log+x_max
|
45b1f6d198569567d3284bab4116a4703b0589a3
| 699,747
|
def nb_year(p0, percent, aug, p):
"""
Finds the amount of years required for the population to reach a desired amount.
:param p0: integer of starting population.
:param percent: float of percent increase per year.
:param aug: integer of new inhabitants.
:param p: integer of desired population.
:return: the amount of years to reach the population
"""
if p0 >= p:
return 0
else:
return 1 + nb_year(p0 + (p0 * percent / 100) + aug, percent, aug, p)
|
054496347fc8bedca3424143d48d122712dd1363
| 699,748
|
def tshark_read(
device,
capture_file,
packet_details=False,
filter_str=None,
timeout=60,
rm_file=True,
):
"""Read the packets via tshark
:param device: lan or wan...
:type device: Object
:param capture_file: Filename in which the packets were captured
:type capture_file: String
:param packet_details: output of packet tree (Packet Details)
:type packet_details: Bool
:param filter_str: capture filter, ex. 'data.len == 1400'
:type filter_str: String
:param timeout: timeout after executing the read command; default is 30 seconds
:type timeout: int
:param rm_file: Flag to remove capture file
:type rm_file: bool
"""
command_string = "tshark -r {} ".format(capture_file)
if packet_details:
command_string += "-V "
if filter_str:
command_string += "{}".format(filter_str)
device.sendline(command_string)
device.expect(device.prompt, timeout=timeout)
output = device.before
if rm_file:
device.sudo_sendline("rm %s" % (capture_file))
device.expect(device.prompt)
return output
|
8fc31098e750691a1aa7c27a868abf0d6254adec
| 699,749
|
def resize_image(img):
"""resize images prior to utilizing in trianing model"""
width, height = img.size
ratio = width/height
new_height = 100
new_width = int(new_height*ratio)
img = img.resize((new_width, new_height))
return img
|
1aa0164e1e25ef0f22e55a15a654fda2dfef5b12
| 699,750
|
def _filter_calibration(time_field, items, start, stop):
"""filter calibration data based on time stamp range [ns]"""
if len(items) == 0:
return []
def timestamp(x):
return x[time_field]
items = sorted(items, key=timestamp)
calibration_items = [x for x in items if start < timestamp(x) < stop]
pre = [x for x in items if timestamp(x) <= start]
if pre:
calibration_items.insert(0, pre[-1])
return calibration_items
|
c7575ec85c7da9f1872150a1da3d7b02718df8a0
| 699,751
|
import torch
def phi_inv(D):
""" Inverse of the reallification phi"""
AB,_ = torch.chunk(D,2,dim=0)
A,B = torch.chunk(AB,2,dim=1)
return torch.stack([A,B],dim=len(D.shape))
|
b8198764b89f3f1261e96014697cf1346e1c7d43
| 699,752
|
import os
def is_created():
""" Checks to see if ginger new command has already been run on dir """
return os.path.isfile(os.getcwd()+'/_config.yaml')
|
3a91185bd5c17d659e8cd30bf57c781c6a657092
| 699,753
|
import argparse
def read_param() -> dict:
"""
read parameters from terminal
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--ScreenType", help="type of screen ['enrichment'/'depletion']", type=str, choices=["enrichment", "depletion"]
)
parser.add_argument("--LibFilename", help="filename of library spreadsheet", type=str)
parser.add_argument("--seq_5_end", help="5'-sequence adapter", type=str)
parser.add_argument("--CtrlPrefix", help="Name of control", type=str)
parser.add_argument("--NonTargetPrefix", help="prefix for non-targeting sgRNAs in library", type=str)
parser.add_argument("--NumGuidesPerGene", help="number of sgRNAs per gene", type=int)
args = parser.parse_args()
# create a dictionary to store arguments
args_dict = dict()
for arg in vars(args):
args_dict[arg] = getattr(args, arg)
return args_dict
|
5efb8419266b34807b286a411cfd36365c66c628
| 699,754
|
def Get_foregroundapp(device):
"""Return the foreground app"""
return device.shell("dumpsys activity recents | grep 'Recent #0' | cut -d= -f2 | sed 's| .*||' | cut -d '/' -f1").strip()
|
236986e3d08f6a4c7dd4cd8c8441806d25e76654
| 699,755
|
def chunk_size(request):
""" Set the chunk size for the source (or None to use the default).
"""
return request.param
|
c57269f434790953d475a2791c862d70d204ed86
| 699,756
|
from datetime import datetime
def isoformat(dt: datetime) -> str:
"""ISO format datetime object with max precision limited to seconds.
Args:
dt: datatime object to be formatted
Returns:
ISO 8601 formatted string
"""
# IMPORTANT should the format be ever changed, be sure to update TIMESTAMP_REGEX as well!
return dt.isoformat(timespec="seconds")
|
679ce7aa71ab30e4c78a0953272c17f487714177
| 699,758
|
import sqlite3
import os
def get_db_cache(cache_dir: str) -> sqlite3.Connection:
"""
Open cache and return sqlite3 connection
Table is created if it does not exists
"""
cache_file = os.path.join(cache_dir, "cache.sqlite3")
conn = sqlite3.connect(cache_file)
cursor = conn.cursor()
cursor.execute("""CREATE TABLE IF NOT EXISTS asn (
ip string unique,
asn int,
prefix string,
asname string,
cn string,
isp string,
peers string,
added int)
""")
cursor.execute("CREATE INDEX IF NOT EXISTS asn_ip on ASN(ip)")
return conn
|
7dd6a909ba210a261196ddd1273795d76a27464a
| 699,759
|
def _recursive_namedtuple_convert(data):
"""
Recursively converts the named tuples in the given object to dictionaries
:param data: An object in a named tuple or its children
:return: The converted object
"""
if isinstance(data, list):
# List
return [_recursive_namedtuple_convert(item) for item in data]
elif hasattr(data, '_asdict'):
# Named tuple
dict_value = dict(data._asdict())
for key, value in dict_value.items():
dict_value[key] = _recursive_namedtuple_convert(value)
return dict_value
else:
# Standard object
return data
|
292bc249b056c14eb1c700561d366ff4e6e64a10
| 699,760
|
def _find_start(score_matrix, align_globally):
"""Return a list of starting points (score, (row, col)).
Indicating every possible place to start the tracebacks.
"""
nrows, ncols = len(score_matrix), len(score_matrix[0])
# In this implementation of the global algorithm, the start will always be
# the bottom right corner of the matrix.
if align_globally:
starts = [(score_matrix[-1][-1], (nrows - 1, ncols - 1))]
else:
starts = []
for row in range(nrows):
for col in range(ncols):
score = score_matrix[row][col]
starts.append((score, (row, col)))
return starts
|
361a1ea87ecf9bbef0950521ed0fdcfd70b7b608
| 699,761
|
def get_f1_score(precision, recall):
"""
Calculate and return F1 score
:param precision: precision score
:param recall: recall score
:return: F1 score
"""
return (2 * (precision * recall)) / (precision + recall)
|
e94dd20acac443be9856b9dbb43adf2ead2e0ba5
| 699,762
|
def bh2u(x: bytes) -> str:
"""
str with hex representation of a bytes-like object
>>> x = bytes((1, 2, 10))
>>> bh2u(x)
'01020A'
"""
return x.hex()
|
8ab7bf9b536d13a1944e014ea83a4302917c2306
| 699,763
|
def vis_FasterRCNN_loss(self, scale_weight):
"""
Calculate the roi losses for faster rcnn.
Args:
-- self: FastRCNNOutputs.
-- scale_weight: the weight for loss from different scale.
Returns:
-- losses.
"""
return{
"loss_cls": self.vis_softmax_cross_entropy_loss_(scale_weight),
"loss_box_reg": self.vis_smooth_l1_loss_(scale_weight)
}
|
5832d7f28179085db939a7bd624e9ffb08461fe4
| 699,764
|
from typing import List
from functools import reduce
def decode(obs: int, spaces: List[int]) -> List[int]:
"""
Decode an observation from a list of gym.Discrete spaces in a list of integers.
It assumes that obs has been encoded by using the 'utils.encode' function.
:param obs: the encoded observation
:param spaces: the list of gym.Discrete spaces from where the observation is observed.
:return: the decoded observation.
"""
result = []
sizes = spaces[::-1]
shift = reduce(lambda x, y: x*y, sizes) // sizes[0]
for size in sizes[1:]:
r = obs // shift
result.append(r)
obs %= shift
shift //= size
result.append(obs)
return result[::-1]
|
6c3c1348776b7b164cf70a5bfa9da3e8b53a280f
| 699,765
|
def anagram_solution_1(words):
""" Complexity O(n2)
If it is possible to “checkoff” each character, then the two strings must be anagrams
:param words: Tuple
:return: bool
"""
s1, s2 = words
still_ok = True
if len(s1) != len(s2):
still_ok = False
a_list = list(s2)
pos_1 = 0
while pos_1 < len(s1) and still_ok:
pos_2 = 0
found = False
while pos_2 < len(a_list) and not found:
if s1[pos_1] == a_list[pos_2]:
found = True
else:
pos_2 = pos_2 + 1
if found:
a_list[pos_2] = None
else:
still_ok = False
pos_1 = pos_1 + 1
return still_ok
|
942ef7bb631bd803d89e71643e994505cb9b827a
| 699,766
|
import re
def empty_template(pattern, template):
"""F() to extract all {words} from the template using pattern"""
template = re.sub(pattern, "{}", template)
return template
|
b62592a449ce38971cc81083928cfd034be1984b
| 699,767
|
import pickle
def read_pickle(file_name):
"""Reload the dataset"""
with open (file_name,'rb') as file:
return pickle.load(file)
|
404d578de68db726e14f6214aed3e512a9abf947
| 699,768
|
import re
def duration_to_seconds(duration):
"""
Convert duration string to seconds
:param duration: as string (either 00:00 or 00:00:00)
:return: duration in seconds :class:`int` or None if it's in the wrong format
"""
if not re.match("^\\d\\d:\\d\\d(:\\d\\d)?$", duration):
return None
array = duration.split(':')
if len(array) == 2:
return int(array[0]) * 60 + int(array[1])
return int(array[0]) * 3600 + int(array[1]) * 60 + int(array[2])
|
25340e85fdc2db03eaa65aba60a158f951da389a
| 699,769
|
def flatten_tests(test_classes):
"""
>>> test_classes = {x: [x] for x in range(5)}
>>> flatten_tests(test_classes)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
>>> test_classes = {x: [x + 1, x + 2] for x in range(2)}
>>> flatten_tests(test_classes)
[(0, 1), (0, 2), (1, 2), (1, 3)]
"""
tests = []
for class_name, test_names in test_classes.items():
tests += [(class_name, test_name) for test_name in test_names]
return tests
|
332b98ab499ff53ba974d51ac862e7015f616e64
| 699,770
|
def clues_too_many(text: str) -> bool:
""" Check for any "too many connections" clues in the response code """
text = text.lower()
for clue in ("exceed", "connections", "too many", "threads", "limit"):
# Not 'download limit exceeded' error
if (clue in text) and ("download" not in text) and ("byte" not in text):
return True
return False
|
0d105985d7eb032668ad8b08704658846da725b7
| 699,771
|
def load_vocab(filename: str):
"""
load vocabulary from given dataset file
"""
with open(filename, 'r', encoding='utf-8') as f:
text = f.read().strip().split('\n')
text = [word.split(' ') for word in text]
vocab_dict = {word[0]: word[1:] for word in text}
vocab_dict = {k: [float(d) for d in v] for k, v in vocab_dict.items()}
return vocab_dict
|
fe11e129439173ba13ca276c788c0f27053f5e6a
| 699,773
|
import re
def normalize_whitespace(s: str) -> str:
"""Convert all whitespace (tabs, newlines, etc) into spaces."""
return re.sub(r"\s+", " ", s, flags=re.MULTILINE)
|
6d8b65bcdca9838aa0f4d16d158db5d2218cbf24
| 699,774
|
import os
import glob
def find_granule_metafiles_in_SAFE(inSAFE, tile_glob_pattern='*', tile_name=None):
"""Find granule metadata files in SAFE
Paramters
---------
inSAFE : str
path to .SAFE folder
tile_glob_pattern : str, optional
granule glob search pattern
e.g. '32???'
tile_name : str, optional
granule name
e.g. '32UPF'
overrides tile_glob_pattern
Returns
-------
list of str
paths to granule metadata files
"""
if tile_name is not None:
tile_glob_pattern = tile_name
tile_glob_pattern = '*_T{}*'.format(tile_glob_pattern.upper().lstrip('T'))
pattern = os.path.join(inSAFE, 'GRANULE', tile_glob_pattern, '*.xml')
return sorted(glob.glob(pattern))
|
8aed455fd01e9b74ec870ad6e4646521bc4cbe40
| 699,775
|
def set_dist_names(spc_dct_i, saddle):
""" Set various things needed for TSs
"""
dist_names = []
if saddle:
dist_names = []
mig = 'migration' in spc_dct_i['class']
elm = 'elimination' in spc_dct_i['class']
if mig or elm:
dist_names.append(spc_dct_i['dist_info'][0])
dist_names.append(spc_dct_i['dist_info'][3])
return dist_names
|
cb5f72b3d00efb8272f7b5012f776bbd63e38634
| 699,776
|
def fit_loss(ac, fit):
"""Loss of the fit """
r = ac - fit
error = sum(r ** 2) / sum(ac ** 2)
return error
|
00d41891dea7d914299d87d971fb2a41df2109ed
| 699,777
|
def growth_pos_check(clods, pos):
"""for checking the position of a growing seed tip
Like position_calc but amended for growing seed
each time the seed grows there is a cheek for clod collisions
:param clods: All the clod objects in the bed
:param pos: The proposed position of the seed tip
:return: found int 0 for no clod hit or the number of the clod hit
"""
found = 0
if len(clods) > 0:
for x in range(0, len(clods)):
if (pos[0]) >= (clods[x].pos[0] - clods[x].radi) and (pos[0]) <= (clods[x].pos[0] + clods[x].radi): # check x only move on if a clash is found
if (pos[1]) >= (clods[x].pos[1] - clods[x].radi) and (pos[1]) <= (clods[x].pos[1] + clods[x].radi): # check y
#print "pos seedling tip = " + str(pos)
#print "hiting clod " + str(x) + " or " + str(clods[x].clod_no) + " at pos = " + str(clods[x].pos) + " rdi=" + str(clods[x].radi)
if (pos[2]) >= (clods[x].pos[2] - clods[x].radi) and (pos[2]) <= (clods[x].pos[2] + clods[x].radi): # check z
#print "FAIL"
found = clods[x].clod_no # the seed grouth is inpeaded!
return found
|
743455907cc81dc3950db202b4f23a79c1eafd33
| 699,778
|
def determine_letter(current_score):
"""
Calculates the letter grade for a given score
:param current_score: the score to be evaluated
:return: the letter grade that score falls within
"""
if current_score >= 90:
return "A"
elif current_score >= 80:
return "B"
elif current_score >= 70:
return "C"
elif current_score >= 60:
return "D"
else:
return "F"
|
324aaa8e28a0cbc298410ecd83ea4eee6d39a970
| 699,779
|
from typing import Tuple
from typing import Dict
def parse_icf(icf_file: str) -> Tuple[Dict, Dict]:
"""Parse ICF linker file.
ST only provides .icf linker files for many products, so there is a need
to generate basic GCC compatible .ld files for all products.
This parses the basic features from the .icf format well enough to work
for the ST's .icf files that exist in `cmsis_device`
Args:
icf_file: .icf linker file read into a string
Returns:
(regions, blocks) where
`regions` is a map from region_name -> (start_hex, end_hex)
`blocks` is a map from block_name -> {feature_1: val_1,...}
Raises:
IndexError if .icf is malformed (at least compared to how ST makes them)
"""
symbols = {}
regions = {} # region: (start_addr, end_addr)
blocks = {}
for line in icf_file.split('\n'):
line = line.strip()
if line == '' or line.startswith('/*') or line.startswith('//'):
continue
tokens = line.split()
if len(tokens) < 2:
continue
if tokens[0] == 'define':
if tokens[1] == 'symbol':
symbols[tokens[2]] = tokens[4].strip(';')
elif tokens[1] == 'region':
regions[tokens[2].split('_')[0]] = (tokens[5],
tokens[7].strip('];'))
elif tokens[1] == 'block':
blocks[tokens[2]] = {
tokens[4]: tokens[6].strip(','),
tokens[7]: tokens[9]
}
parsed_regions = {
region: (symbols[start] if start in symbols else start,
symbols[end] if end in symbols else end)
for region, (start, end) in regions.items()
}
parsed_blocks = {
name:
{k: symbols[v] if v in symbols else v
for k, v in fields.items()}
for name, fields in blocks.items()
}
return (parsed_regions, parsed_blocks)
|
ddc1288603d0697bf915eb82a712f210f54efacd
| 699,780
|
def translate(word):
"""
translates third person words into first person words
"""
forms = {"is" : "am", 'she' : 'I', 'he' : 'I', 'her' : 'my', 'him' : 'me', 'hers' : 'mine', 'your' : 'my', 'has' : 'have'}
if word.lower() in forms:
return forms[word.lower()]
return word
|
ac433a4db5154c065e2cec1263976dba72863ad8
| 699,781
|
def normalize_attribute(attr):
"""
Normalizes the name of an attribute which is spelled in slightly different
ways in paizo HTMLs
"""
attr = attr.strip()
if attr.endswith(':'):
attr = attr[:-1] # Remove trailing ':' if any
if attr == 'Prerequisites':
attr = 'Prerequisite' # Normalize
if attr == 'Note':
attr = 'Prerequisite' # Normalize a very special case (Versatile Channeler)
if attr == 'Benefits':
attr = 'Benefit' # Normalize
if attr == 'Leadership Modifiers':
attr = 'Benefit' # Normalize a very special case (Leadership)
assert attr in ('Prerequisite', 'Benefit', 'Normal', 'Special')
return attr.lower()
|
2cb66878547ee8a98c14bf08261f2610def57a37
| 699,782
|
from typing import List
import shutil
def _get_build_bf_command(args: dict, in_fn: List[str]) -> List[str]:
"""Helper function to compose command to get the final Bloom Filter
:arg dict args: Dict of arguments.
:arg str in_fn: Path to file where the reads will be read
:ivar dict args: Dict of arguments. The ones used are:
- "kmer" (int): size of the kmers.
- "threads" (int): number of threads to be used.
- "bloom_size" (str): size of the Bloom filter in bytes. K/M/G units can be used.
- "levels" (int): number of Bloom filters used.
- "output_bloom" (str): path where to store the Bloom Filter
:ivar str in_fn: Path to file where the reads will be read. In later methods /dev/stdin is used.
:param dict args: Dict of arguments.
:param str in_fn: Input filename.
..seealso: Where it is used:
:py:meth: `build_baited_bloom_filter`
"""
abyss_bloom_path = shutil.which('abyss-bloom')
build_bf = [
abyss_bloom_path, 'build',
'--verbose',
'--kmer', str(args["kmer"]),
'--bloom-size', args["bloom_size"],
'--levels', str(args["levels"]),
'--threads', str(args["threads"]),
args["bloom"]
] + in_fn
return build_bf
|
9736a1825613dd518361bb1a5ded9b266293017a
| 699,783
|
import sys
def _is_venv():
"""
:return:
"""
return hasattr(sys, 'real_prefix') or getattr(sys, 'base_prefix', sys.prefix) != sys.prefix
|
87a6434bd4b572abbacf5b8bb81250e6287181d4
| 699,784
|
def is_user_diabetic(avg_glucose_level):
"""
desc: converts avg_glucose_level to category based on ADA Guidelines https://www.diabetes.org/a1c/diagnosis
args:
avg_glucose_level (float) : glucose level in blood based on mg/dL
returns:
blood_cat (string) : blood sugar category
"""
if avg_glucose_level >= 200:
return 1
else:
return 0
|
59b8a9937f620c28eb51da4ef56c493d1b2177d8
| 699,785
|
import array
def formatTilePlanar(tile, nPlanes):
"""Convert an 8x8 pixel image to planar tile data, 8 bytes per plane."""
if (tile.size != (8, 8)):
return None
pixels = iter(tile.getdata())
outplanes = [array.array('B')
for i in range(nPlanes)]
for y in range(8):
slivers = [0 for i in range(nPlanes)]
for x in range(8):
px = next(pixels)
for i in range(nPlanes):
slivers[i] = slivers[i] << 1
if px & 0x01:
slivers[i] = slivers[i] | 1
px >>= 1
for i in range(nPlanes):
outplanes[i].append(slivers[i])
out = b"".join(plane.tobytes() for plane in outplanes)
return out
|
5ff30470a1392744139a5577f2a51a519f58ab42
| 699,786
|
def gen_factory(func, seq):
"""Generator factory returning a generator."""
# do stuff ... immediately when factory gets called
print("build generator & return")
return (func(*args) for args in seq)
|
9188f5959ec2feb52b83f20f40474f91f4cbfe08
| 699,787
|
def _parseExpectedWords(wordList, defaultSensitivity=80):
"""Parse expected words list.
This function is used internally by other functions and classes within the
`transcribe` module.
Expected words or phrases are usually specified as a list of strings. CMU
Pocket Sphinx allows for additional 'sensitivity' values for each phrase
ranging from *0* to *100*. This function will generate to lists, first with
just words and another with specified sensitivity values. This allows the
user to specify sensitivity levels which can be ignored if the recognizer
engine does not support it.
Parameters
----------
wordList : list of str
List of words of phrases. Sensitivity levels for each can be specified
by putting a value at the end of each string separated with a colon `:`.
For example, ``'hello:80'`` for 80% sensitivity on 'hello'. Values are
normalized between *0.0* and *1.0* when returned.
defaultSensitivity : int or float
Default sensitivity to use if a word does not have one specified between
0 and 100%.
Returns
-------
tuple
Returns list of expected words and list of normalized sensitivities for
each.
Examples
--------
Specifying expected words to CMU Pocket Sphinx::
words = [('hello:95', 'bye:50')]
expectedWords = zip(_parseExpectedWords(words))
"""
defaultSensitivity = defaultSensitivity / 100. # normalized
sensitivities = []
if wordList is not None:
# sensitivity specified as `word:80`
wordListTemp = []
for word in wordList:
wordAndSense = word.split(':')
if len(wordAndSense) == 2: # specified as `word:80`
word, sensitivity = wordAndSense
sensitivity = int(sensitivity) / 100.
else:
word = wordAndSense[0]
sensitivity = defaultSensitivity # default is 80% confidence
wordListTemp.append(word)
sensitivities.append(sensitivity)
wordList = wordListTemp
return wordList, sensitivities
|
83512a86ae112de79bd84e1d9ea3ebebcb4cdefd
| 699,788
|
import six
import os
def get_file_name_list(paths, ending=None):
"""Returns the list of files contained in any sub-folder in the given paths (can be a single path or a list of
paths).
:param paths: paths to the directory (a string or a list of strings)
:param ending: if given, restrict to files with the given ending
"""
file_name_list = []
if isinstance(paths, six.string_types):
paths = [paths]
for path in paths:
for dir_path, dir_names, file_names in os.walk(path):
dir_names.sort()
file_names.sort()
for file_name in file_names:
if (ending and file_name.endswith(ending)) or not ending:
file_name_list.append(os.path.join(dir_path, file_name))
return file_name_list
|
c02e81e426937caed9c1d17c5e83147597e54a1a
| 699,790
|
import requests
def delete_menu(access_token):
"""
删除菜单 请谨慎使用
http请求方式:GET
https://api.weixin.qq.com/cgi-bin/menu/delete?access_token=ACCESS_TOKEN
:param str access_token: ACCESS_TOKEN
:rtype: json
"""
menu_url = 'https://api.weixin.qq.com/cgi-bin/menu/delete?access_token={access_token}'.format(
access_token=access_token)
r = requests.get(menu_url)
assert r.status_code == 200
return r.json()
|
fb52f406d52b2dad2aedfd8c04913a3ca94b6ca1
| 699,791
|
def _generate_trades_df_response(trades_df):
"""
Generates JSON response from trades
Attributes
----------
trades_df: DataFrame of Trades
"""
trades_df = trades_df.drop(
columns=["symbol", "trade_id", "stop_loss", "take_profit"]
)
trades_df = trades_df.rename(
columns={
"cash_value": "amount_invested",
"monetary_amount": "cash_allocated",
}
)
trades_df = trades_df.round(2)
trades = trades_df.to_dict(orient="records")
return trades
|
34244801babedeb75ec21001ea99a9e8aef863e2
| 699,792
|
def measurement(qreg=int(0),
creg=int(0)):
"""Generate QASM that takes a measurement from a qubit and stores it in a classical register.
Args:
qreg(int): Number of the Qubit to measure. (default 0)
creg(int): Number of the Classical Register to store the measurement to. (default 1)
Returns:
str: Generated QASM containing measurement instruction."""
# Ensure Integer Variables Have Correct Types
if qreg is not None:
qreg = int(qreg)
if creg is not None:
creg = int(creg)
# Generate a measurement argument for QASM 2.0.
meas_str = f'measure q[{str(qreg)}] -> c[{str(creg)}];'
# Return generated measurement argument.
return meas_str
|
9a9a24f390bf0745e7cdfe80bb1893f77161c171
| 699,794
|
def get_vplex_port_parameters():
"""This method provide parameter required for the ansible port
module on VPLEX"""
return dict(
cluster_name=dict(required=True, type='str'),
port_name=dict(required=True, type='str'),
enabled=dict(required=False, type='bool'),
state=dict(required=True, type='str', choices=['present', 'absent'])
)
|
9533cf6ff8eedd943b88c9cd08ea16407aa9ee64
| 699,795
|
def adjacent(p):
"""Return the positions adjacent to position p"""
return (
(p[0] + 1, p[1], p[2]),
(p[0] - 1, p[1], p[2]),
(p[0], p[1] + 1, p[2]),
(p[0], p[1] - 1, p[2]),
(p[0], p[1], p[2] + 1),
(p[0], p[1], p[2] - 1),
)
|
988597e0abd150ae60b556e52a217bd8a136707b
| 699,796
|
async def goodbye():
""" used in our randomized redirect """
return {"message": "Goodbye"}
|
2a0ce1fe99497b55cfd9a9853cd75a0c7eddac40
| 699,797
|
def make_table(*list_of_list):
"""
:param list_of_list: list of list of strings
:returns: a valid rst table
"""
lcols = [len(x) for x in list_of_list[0]]
for li in list_of_list : # compute the max length of the columns
lcols = [ max(len(x), y) for x,y in zip(li, lcols)]
form = '| ' + " | ".join("{:<%s}"%x for x in lcols).strip() + ' |'
sep = '+' + '+'.join((x+2) *'-' for x in lcols) + '+'
r = [sep]
for li in list_of_list: r += [form.format(*li), sep]
return '\n'.join(r) + '\n'
|
77153451571e70a77d6bd525bd252aa7efe1c693
| 699,798
|
import re
def replace_special_whitespace_chars(text: str) -> str:
"""It's annoying to deal with nonbreaking whitespace chars like u'xa0'
or other whitespace chars. Let's replace all of them with the standard
char before doing any other processing."""
text = re.sub(r"\s", " ", text)
return text
|
17be082a827039264cd75fb7459fc31eb7f617dd
| 699,799
|
import re
def processSets(results):
"""Process set results to be displayed in the set selection window
:param List[Dict[str, Union[int, str, Dict[str, str]]]] results: A list of raw set results
:return: A list of processed results in table form
:rtype: List[Union[str, int]]
"""
rows = []
for item in results:
if item['edition_size'] == 'unlimited':
char = '∞'
else:
char = 'LE'
name = item['name']
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
"]+", flags=re.UNICODE)
rows.append([emoji_pattern.sub(r'', name), item['creator']['name'], char, item['id']])
return rows
|
bf050015474691402d2d992070c487b45cc34a42
| 699,800
|
def two_sequences_in_parallel(sequence1, sequence2):
"""
Demonstrates iterating (looping) through TWO sequences in PARALLEL.
This particular example assumes that the two sequences are of equal
length and returns the number of items in sequence2 that are bigger
than their corresponding item in sequence1. For example,
if the sequences are:
[11, 22, 10, 44, 33, 12]
[55, 10, 30, 30, 30, 30]
then this function returns 3, since 55 > 11 and 30 > 10 and 30 > 12.
"""
# ------------------------------------------------------------------
# The TWO-SEQUENCES-IN-PARALLEL pattern is:
#
# for k in range(len(sequence1)):
# ... sequence1[k] ... sequence2[k] ...
#
# The above assumes that the sequences are of equal length
# (or that you just want to do the length of sequence1).
# ------------------------------------------------------------------
count = 0
for k in range(len(sequence1)):
if sequence1[k] > sequence2[k]:
count = count + 1
return count
|
c5dbce5f99d5c2efeee4048ec1451ea63f404fef
| 699,801
|
def image_crop(src, x1, y1, x2, y2):
"""
Crop image from (x1, y1) to (x2, y2).
Parameters
----------
:param src: Input image in BGR format
:param x1: Initial coordinates for image cropping
:param y1: Initial coordinates for image cropping
:param x2: End coordinates of image cropping
:param y2: End coordinates of image cropping
"""
return src[x1:x2, y1:y2]
|
6ab70dc644d0d7054ea70fadcf7ec0ca381918d8
| 699,802
|
import argparse
def parse_arguments():
"""
Simple argument parsing using python's argparse
return: Python's argparse parser object
"""
parser = argparse.ArgumentParser()
parser.add_argument("--input", help="Single XML file or directory", action="store")
parser.add_argument("--log", help="Generate a log file listing all XML files failining validation",
action="store_true")
return parser
|
0dcf19b43923c8e59af1444372421a07d6695534
| 699,803
|
import re
def get_doc(src) :
"""get comments from Python source code
Parameter
--------------
src@str - the source code
"""
pat = re.compile(r'((?:def|class)\s+[^\n]*\s*)"""(.*?)"""',re.MULTILINE|re.DOTALL)
return [gs for gs in pat.findall(src)]
|
bb9716a9f7b3c99d5ea3e468b7f69f893773feda
| 699,804
|
def _GetBinaryName(client):
"""Gets the GRR binary name on the client."""
client_data = client.Get().data
return client_data.agent_info.client_binary_name
|
c363a4a42e81184ce2cb74bfdc9c2fd01a746cb1
| 699,805
|
def fill_with_gauss(df, w=12):
"""
Fill missing values in a time series data using gaussian
"""
return df.fillna(
df.rolling(window=w, win_type="gaussian", center=True, min_periods=1).mean(
std=2
)
)
|
fdfdedaf7968f617ff98df586b89c30053a6c886
| 699,806
|
def swap(heights_list, index01, index02):
"""swap two positions in a list at given indexes
Args:
heights_list (list): iterable in which swapping occurs
index01 (int): index of first element
index02 (int): index of second element
Returns:
list: list with element positions swapped
"""
heights_list[index01], heights_list[index02] = heights_list[index02], heights_list[index01]
return heights_list
|
f7add4a06a79837766b5840840d17c3247b0bcae
| 699,807
|
def calibrate_seq(cigar_seq, sequence, md_seq, ref_positions):
"""
making cigar seq and seq as same length
with Deletions as '-'
"""
new_sequence = ''
new_pos = []
new_cigar = ''
new_md = ''
seq = iter(sequence)
pos = iter(ref_positions)
md = iter(md_seq)
current_position = 0
for cigar in cigar_seq:
if cigar == 'S':
seq.next()
elif cigar == 'D':
new_cigar += cigar
new_pos.append(current_position + 1)
new_sequence += '-'
new_md += md.next()
elif cigar == 'I':
new_cigar += cigar
new_pos.append(current_position)
current_base = seq.next()
new_sequence += current_base
new_md += '+'
elif cigar == 'M':
current_base = seq.next()
current_position = pos.next()
new_sequence += current_base
new_pos.append(current_position)
new_cigar += cigar
new_md += md.next()
return new_cigar, new_sequence, new_pos, new_md
|
b149587d8f61a4e7c82d4bde94e62512a5682346
| 699,808
|
def create_first_n_1_bits_mask(n, k):
""" Return a binary mask of first n bits of 1, k bits of 0s"""
if n < 0 or k < 0:
raise ValueError("n and k cannot be negative number")
if n == 0:
return 0
mask = (2 << n) - 1
return mask << k
|
5a9b637a8973f004da2330c8ebb06ea63fd542c3
| 699,809
|
import re
def clean_str(string):
"""
Strip and replace some special characters.
"""
msg = str(string)
msg = msg.replace("\n", " ")
msg = re.sub(r"\s+", r" ", msg)
msg = re.sub(r"^\s", r"", msg)
msg = re.sub(r"\s$", r"", msg)
return msg
|
50132d2c56498f4590fcba7837deb791500f3110
| 699,810
|
def char_to_ix(chars):
"""
Make a dictionary that maps a character to an index
Arguments:
chars -- list of character set
Returns:
dictionary that maps a character to an index
"""
return {ch: i for i, ch in enumerate(chars)}
|
8bfc5b99c7f5aef6d88276fe4b3ad005ce9a017e
| 699,811
|
def bool_tag(name, value):
"""Create a DMAP tag with boolean data."""
return name.encode('utf-8') + \
b'\x00\x00\x00\x01' + \
(b'\x01' if value else b'\x00')
|
dc914d262a20eed0732e477f75641daa4811fd9f
| 699,812
|
def _concat(*lists):
"""Concatenates the items in `lists`, ignoring `None` arguments."""
concatenated = []
for list in lists:
if list:
concatenated += list
return concatenated
|
a1eea1c074fe1eee1ca454899bf9dec2719a333e
| 699,813
|
def get_least_squares_size(modelform, r, m=0, affines=None):
"""Calculate the number of columns in the operator matrix O in the Operator
Inference least-squares problem.
Parameters
---------
modelform : str containing 'c', 'A', 'H', 'G', and/or 'B'
The structure of the desired reduced-order model. Each character
indicates the presence of a different term in the model:
'c' : Constant term c
'A' : Linear state term Ax.
'H' : Quadratic state term H(x⊗x).
'G' : Cubic state term G(x⊗x⊗x).
'B' : Input term Bu.
For example, modelform=="AB" means f(x,u) = Ax + Bu.
r : int
The dimension of the reduced order model.
m : int
The dimension of the inputs of the model.
Must be zero unless 'B' is in `modelform`.
affines : dict(str -> list(callables))
Functions that define the structures of the affine operators.
Keys must match the modelform:
* 'c': Constant term c(µ).
* 'A': Linear state matrix A(µ).
* 'H': Quadratic state matrix H(µ).
* 'G': Cubic state matrix G(µ).
* 'B': linear Input matrix B(µ).
For example, if the constant term has the affine structure
c(µ) = θ1(µ)c1 + θ2(µ)c2 + θ3(µ)c3, then 'c' -> [θ1, θ2, θ3].
Returns
-------
ncols : int
The number of columns in the Operator Inference least-squares problem.
"""
has_inputs = 'B' in modelform
if has_inputs and m == 0:
raise ValueError(f"argument m > 0 required since 'B' in modelform")
if not has_inputs and m != 0:
raise ValueError(f"argument m={m} invalid since 'B' in modelform")
if affines is None:
affines = {}
qc = len(affines['c']) if 'c' in affines else 1 if 'c' in modelform else 0
qA = len(affines['A']) if 'A' in affines else 1 if 'A' in modelform else 0
qH = len(affines['H']) if 'H' in affines else 1 if 'H' in modelform else 0
qG = len(affines['G']) if 'G' in affines else 1 if 'G' in modelform else 0
qB = len(affines['B']) if 'B' in affines else 1 if 'B' in modelform else 0
return qc + qA*r + qH*r*(r+1)//2 + qG*r*(r+1)*(r+2)//6 + qB*m
|
86cf6a0b3e4b256eaccb3f061d21f7de74dcc604
| 699,814
|
def read(rows):
"""Reads the list of rows and returns the sudoku dict.
The sudoku dict maps an index to a known value. Unknown values are not written.
Indices go from 0 to 80.
"""
sudoku = {}
i = 0
for rn, row in enumerate(rows):
if rn in (3, 7):
continue
j = 0
for cn, c in enumerate(row.rstrip()):
if cn in (3, 7):
continue
if c != ".":
sudoku[i * 9 + j] = int(c)
j += 1
i += 1
return sudoku
|
1f1a06a32d1be70f3d912bd42b9cca07f7d4879d
| 699,815
|
import subprocess
def get_server_info():
"""
Returns server information
"""
container_name = subprocess.check_output("uname -n", shell=True).decode("ascii").strip()
ip_addr = subprocess.check_output("hostname -I", shell=True).decode("ascii").strip()
cores = subprocess.check_output("nproc", shell=True).decode("ascii").strip()
cmd = "cat /sys/class/net/eth0/speed | awk '{print $0 / 1000\"GbE\"}'"
net_speed = subprocess.check_output(cmd, shell=True).decode("ascii").strip()
# cmd = "cat /sys/class/net/eth0/address"
# mac_address = subprocess.check_output(cmd, shell=True).decode("ascii").strip()
cmd = "grep MemTotal /proc/meminfo | awk '{print $2 / 1024 / 1024\"GB\"}'"
memory = subprocess.check_output(cmd, shell=True).decode("ascii").strip()
server_info = {'container_name': container_name,
'ip_address': ip_addr,
'net_speed': net_speed,
'cores': cores,
'memory': memory}
"""
if os.path.exists("/proc"):
server_info.update({'/proc/cpuinfo': open("/proc/cpuinfo", 'r').read(),
'/proc/meminfo': open("/proc/meminfo", 'r').read(),
'/proc/self/cgroup': open("/proc/meminfo", 'r').read(),
'/proc/cgroups': open("/proc/cgroups", 'r').read()})
"""
return server_info
|
0bbe71a91bd6e183fd3980f49935b801dede9fbf
| 699,816
|
def uniquify(iterable):
"""Remove duplicates in given iterable, preserving order."""
uniq = set()
return (x for x in iterable if x not in uniq and (uniq.add(x) or True))
|
563953cc6450a0136a4996d4a5f5a0057f6ad69b
| 699,817
|
def count_candidate_votes(candidate_dict: dict, csv_data: list) -> dict:
"""
Go through the candidate list and count the number of votes each time it appears.
:param candidate_dict:
:param csv_data:
:return:
"""
# Go through the csv and get the candidate's name
for row in csv_data:
candidate_name = row[2]
# Add the candidate vote to the dictionary and update it
for candidate, data in candidate_dict.items():
if candidate_name == candidate:
data["votes"] += 1
return candidate_dict
|
b2ca61d78183c1b152e22bb413ebb89a8dff8b0a
| 699,818
|
def __getDeviceByUDN(deviceElements, udn):
"""Search and return the device element defined by the UDN from the listDevices elements"""
for device_element in deviceElements:
if device_element.getAttribute("udn") == udn:
return device_element
|
84d271b18dbcdf60688c1d921469bef45b4e4721
| 699,819
|
def createTable(c):
"""This makes a table
Keyword arguments:
c -- the cursor object of the connected database
"""
try:
c.execute("""
CREATE TABLE IF NOT EXISTS members (
username TEXT,
password TEXT
);
""")
except:
print("Error")
return False
return True
|
37e7eb9fda45871c0b8890c3111c920d608f80fb
| 699,820
|
import os
def link_to_frontend():
"""
The backend expects a link to a directory called frontend at the same level.
Attempt to create one if it does not exist.
"""
backend_path = os.path.dirname(os.path.realpath(__file__))
link_path = backend_path + '/frontend'
frontend_path = backend_path.replace('backend', 'frontend')
if not os.path.isdir(link_path):
print("Expected to find a linked directory to the frontend.")
print("Checking default location %s." % frontend_path)
if os.path.isdir(frontend_path):
print("Attempting to create linked directory to %s." % frontend_path)
os.symlink(frontend_path, link_path)
else:
print("Frontend directory not found in %s." % frontend_path)
print("Either install the frontend to the default directory "
"or manually create a link in the backend directory called "
"'frontend' to the directory where the front end is installed.")
return 1
return 0
|
3e1ebad7bd42ce25f52416aa88eb09886b42b7d8
| 699,822
|
def badFormatting(s, charSet):
"""Tells if a character from charSet appears in a string s."""
for c in charSet:
if c in s:
return True
return False
|
23baba28be306e0d0c1ccaa0df48e1a9f94bdc8c
| 699,823
|
def column_to_width(df_in, column, width):
"""Pad the column header and the values in the column with whitespace to a
specific width.
"""
df = df_in.copy()
df[column] = df[column].apply(lambda x: ('{:>' + str(width) + '}').format(x))
df = df.rename(columns={column: ('{:>' + str(width) + '}').format(column)})
return df
|
988f021c7ff2f296ecacd83ddbced0de6404e3fc
| 699,824
|
def use_netrc(netrc, urls, patterns):
"""compute an auth dict from a parsed netrc file and a list of URLs
Args:
netrc: a netrc file already parsed to a dict, e.g., as obtained from
read_netrc
urls: a list of URLs.
patterns: optional dict of url to authorization patterns
Returns:
dict suitable as auth argument for ctx.download; more precisely, the dict
will map all URLs where the netrc file provides login and password to a
dict containing the corresponding login, password and optional authorization pattern,
as well as the mapping of "type" to "basic" or "pattern".
"""
auth = {}
for url in urls:
schemerest = url.split("://", 1)
if len(schemerest) < 2:
continue
if not (schemerest[0] in ["http", "https"]):
# For other protocols, bazel currently does not support
# authentication. So ignore them.
continue
host = schemerest[1].split("/")[0].split(":")[0]
if not host in netrc:
continue
authforhost = netrc[host]
if host in patterns:
auth_dict = {
"type": "pattern",
"pattern": patterns[host],
}
if "login" in authforhost:
auth_dict["login"] = authforhost["login"]
if "password" in authforhost:
auth_dict["password"] = authforhost["password"]
auth[url] = auth_dict
elif "login" in authforhost and "password" in authforhost:
auth[url] = {
"type": "basic",
"login": authforhost["login"],
"password": authforhost["password"],
}
return auth
|
561ee1388dbdde74614fdef1fb29b78c7ecc687b
| 699,825
|
def str_cutoff(string: str, max_length: int, cut_tail: bool = False) -> str:
"""
Abbreviate a string to a given length.
The resulting string will carry an indicator if it's abbreviated,
like ``stri#``.
Parameters
----------
string : str
String which is to be cut.
max_length : int
Max resulting string length.
cut_tail : bool
``False`` for string abbreviation from the front, else ``True``.
Returns
-------
str
Resulting string
"""
if max_length < 1:
raise ValueError("max_length < 1 not allowed")
if len(string) > max_length:
pos = max_length - 1
return string[:pos] + "#" if cut_tail else "#" + string[-pos:]
return string
|
05fdab8700dd07710c31d4007c9bc6b3f9eb6155
| 699,826
|
def is_over(board):
"""Returns True if the game is over, False if not"""
for player in range(2):
for move_x in range(board.height):
for move_y in range(board.width):
list_near_points = [] #list of the number of the player payns in each direction starting from the last one beginning with up then going clockwise
directions = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]
for dir in directions:
k=0
while move_y+dir[0]*k >= 0 and move_y+dir[0]*k < board.width and move_x+k*dir[1] >= 0 and move_x+k*dir[1] <board.width:
if board.read_tile(move_y+dir[0]*k,move_x+k*dir[1]) == player:
k+=1
else:
break
list_near_points.append(k-1)
for k in range(4):
if list_near_points[k]+list_near_points[k+4] >1 :
return True
is_full = True
for move in range(board.width):
for i in range(board.height):
if board.read_tile(i,move) == None:
is_full = False
if is_full:
return True
return False
|
9302d53f72ece8928763a70b10fb265bc6b8151b
| 699,827
|
def wireless(card, mode=None, apn=None):
"""Retrieve wireless modem info or customize modem behavior.
Args:
card (Notecard): The current Notecard object.
mode (string): The wireless module mode to set.
apn (string): Access Point Name (APN) when using an external SIM.
Returns:
string: The result of the Notecard request.
"""
req = {"req": "card.wireless"}
if mode:
req["mode"] = mode
if apn:
req["apn"] = apn
return card.Transaction(req)
|
355256bd8123f0f749561f61a2df3be93b91db61
| 699,828
|
def filter_none(x):
"""
Recursively removes key, value pairs or items that is None.
"""
if isinstance(x, dict):
return {k: filter_none(v) for k, v in x.items() if v is not None}
elif isinstance(x, list):
return [filter_none(i) for i in x if x is not None]
else:
return x
|
c1c478b2c367dd9453b5504bbfece7dfd8c05376
| 699,829
|
def _dmet_orb_list(mol, atom_list):
"""Rearrange the orbital label
Args:
mol (pyscf.gto.Mole): The molecule to simulate.
atom_list (list): Atom list for IAO assignment (int).
Returns:
newlist (list): The orbital list in new order (int).
"""
newlist = []
for i in range(mol.natm):
for j in range(mol.nao_nr()):
if (atom_list[j] == i):
newlist.append(j)
return newlist
|
7998d9cec104bc02ad3daf600d2e24d9b1f5f243
| 699,830
|
def _post_processing(metric_map: dict[str, float]) -> dict[str, float]:
"""
unit conversion etc...
time:
taskTime, executorDeserializeTime, executorRunTime, jvmGcTime are milliseconds
executorDeserializeCpuTime, executorCpuTime are nanoseconds
"""
metric_map["executorDeserializeCpuTime"] = metric_map[
"executorDeserializeCpuTime"] * 1e-6
metric_map["executorCpuTime"] = metric_map["executorCpuTime"] * 1e-6
return metric_map
|
23ff301d55e0dc2d2208aca5761059fb8ade3e4e
| 699,831
|
import re
def wildcard_to_regex(wildcard):
"""
Converts a * syntax into a parsed regular expression
Maya wildcard validation:
1. Maya does not support '-' characters so we change those characters by '_'
2. Maya uses | as separators, so we scape them
3. We need to replace any '*' into .+'
4. Expression must end with $
:param wildcard: str, wildcard to parse. If not wildcard is provided, we match everything.
:return: str
"""
if not wildcard:
expression = '.*'
else:
wildcard = wildcard.replace('-', '_')
expression = re.sub(r'(?<!\\)\|', r'\|', wildcard)
expression = re.sub(r'(?<!\\)\*', r'.*', expression)
if not expression[-1] == '$':
expression += '$'
regex = re.compile(expression, flags=re.I)
return regex
|
aa8460305a6129d1a114845882dfcf29b547431b
| 699,832
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.