content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def input_block(config, section):
"""Return the input block as a string."""
block = ''
if section not in config:
return ''
for key in config[section]:
value = config[section][key].strip()
if value:
block += '{} {}\n'.format(key, value)
else:
block += key + '\n'
return block
|
4f6ff5979c99171b390429bc6e90b325986d9f99
| 699,620
|
import os
def get_working_dir():
"""
Returns the base directory of the cartridge agent.
:return: Base working dir path
:rtype : str
"""
#"/path/to/cartridgeagent/modules/util/".split("modules") returns ["/path/to/cartridgeagent/", "/util"]
return os.path.abspath(os.path.dirname(__file__)).split("modules")[0]
|
74fb1e3c792f51a9245a01353b1dbecb11a39e0c
| 699,621
|
import ast
import json
def strtojson(intxt):
"""str to json function"""
out = {}
try:
out = ast.literal_eval(intxt)
except ValueError:
out = json.loads(intxt)
except SyntaxError as ex:
raise Exception("SyntaxError: Failed to literal eval dict. Err:%s " % ex) from ex
return out
|
d4b1ba11dd6a064f46d4e07284b54f59072e15ef
| 699,623
|
import hashlib
def git_hash_data(data, typ='blob'):
"""Calculate the git-style SHA1 for some data.
Only supports 'blob' type data at the moment.
"""
assert typ == 'blob', 'Only support blobs for now'
return hashlib.sha1(b'blob %d\0%s' % (len(data), data)).hexdigest()
|
b3195de0c04444a811308e8b2b79b5d136095ea8
| 699,624
|
def _vector_clock_equal(clock1, clock2):
"""
Compares two vector clocks, ignoring the timestamp field, which may be skewed.
"""
clock1_entries = dict((entry.node_id, entry.version) for entry in clock1.entries)
clock2_entries = dict((entry.node_id, entry.version) for entry in clock2.entries)
return clock1_entries == clock2_entries
|
2402724d75f7e3b48b05764e056756bdb883ef2e
| 699,625
|
def handle_response(response):
"""
Correct the response datatype if returned incorrectly
:response Requests.models.Response: a response from the api
:return: response ready for consumption from wrapper
"""
print
data = response.json()
if data['err_no'] == 0:
return data['data']
else:
print(data['err_msg'])
return data['err_msg']
|
f18b26d2df8e6abf7625d1ad1153877eae6ecd64
| 699,626
|
import os
def get_workdir(iteration, workroot):
"""Find what is the root of the work-tree at a given iteration"""
if workroot is None:
workdir = None
else:
if iteration is None:
myworkdir = 'noiter'
else:
try:
myworkdir = '-'.join([str(it) for it in iteration])
except TypeError:
myworkdir = str(iteration)
workdir = os.path.abspath(os.path.join(workroot, myworkdir))
return workdir
|
817bd4d31cb50f9df14b2793c204b11f72b8bc37
| 699,627
|
def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
new_table = []
n_row = len(table)
n_col = len(table[0])
for col in range(n_col):
each_col = []
for row in range(n_row):
each_col.append(table[row][col])
new_table.append(each_col)
# print(table)
# print(new_table)
return new_table
|
11c74863d8b1941f1a74fb1c054f67b8dd2f22e8
| 699,628
|
def num_processes():
""" Return the number of MPI processes
(not used for SpiNNaker, always returns 1)
"""
return 1
|
51bcd083a57cbce544b52cc1f1ef3772fb0d362c
| 699,629
|
def hash_generator(token_to_id, tokens):
"""Generate hash for tokens in 'tokens' using 'token_to_id'.
Args:
token_to_id: dict. A dictionary which maps each token to a unique ID.
tokens: list(str). A list of tokens.
Returns:
int. Hash value generated for tokens in 'tokens' using 'token_to_id'.
"""
hash_val = 0
n = len(tokens) - 1
base = len(token_to_id) ** n
for x in tokens:
hash_val += token_to_id[x] * base
base /= len(token_to_id)
return hash_val
|
d9a059e22ab8574fd3c49dfa594cd903edb64d8b
| 699,630
|
def pack_varint(data):
"""Pack a VARINT for the protocol."""
return bytes([(0x40 * (i != data.bit_length() // 7)) +
((data >> (7 * i)) % 128) for i in range(1 + data.bit_length() // 7)])
|
1bdb283a787fc6b9e65e278d581b7654088ddf87
| 699,631
|
import argparse
def get_args() -> argparse.Namespace:
"""Gets arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
'-cc',
'--common-config',
required=True,
help='Path to common config file',
)
parser.add_argument(
'-m',
'--method',
required=True,
help='The used node embedding method',
)
parser.add_argument(
'-d',
'--dim',
required=True,
help='The node embedding method dimensionality',
)
return parser.parse_args()
|
5e9f5c825804572e4f6eeeae5ab0a3aa5b0a0d82
| 699,632
|
def getSheetContent(sheet):
"""
Returns two dimensional array of all non empty content of the given
sheet. Array contains string and double values.
"""
cursor = sheet.createCursor()
cursor.gotoStartOfUsedArea(False)
cursor.gotoEndOfUsedArea(True)
return [list(row) for row in cursor.getDataArray()]
|
9a77c7dadcdf5247f30fa3dc4fa87cc5683cfee2
| 699,633
|
def sbas_nav_decode(dwrds: list) -> dict:
"""
Helper function to decode RXM-SFRBX dwrds for SBAS navigation data.
:param list dwrds: array of navigation data dwrds
:return: dict of navdata attributes
:rtype: dict
"""
return {"dwrds": dwrds}
|
215d945ac939a817ae84fa08607b72e0c14a1cc9
| 699,634
|
def constant(step, total_train_steps, value=1.0):
"""Constant learning rate (multiplier).
Args:
step: a tf.Scalar
total_train_steps: a number
value: a number or tf.Scalar
Returns:
a tf.Scalar, the learning rate for the step.
"""
del step, total_train_steps
return value
|
53285310764c8d627ae366b2ec8e5ff98339e612
| 699,635
|
def encriptar(frase: str, clave: str, s: str = "02468") -> str:
"""Función que encripta una frase.
:param frase: Frase a encriptar.
:type frase: str
:param clave: Clave de encriptación.
:type clave: str
:param s: Símbolo de sustitución.
:type s: str
:return: Frase encriptada.
:rtype: str
"""
for letra in frase.lower():
if letra in clave:
frase = frase.replace(letra, s[clave.find(letra)])
return frase
|
1e1a4e3369180418184411b4c74fa468976ff872
| 699,636
|
def set_image(images, row, issues, pre, overrides={}, verbose=False):
"""
Update an image based on known issues.
Given an image, image metadata, and a set of known issues, determine if any
of the known issues apply to the image in question and, if they do, make
the appropriate edits to the image.
Parameters
----------
images : dict
Dict of (SCI, ERR, DQ) np.ndarray images
row : abscal.common.exposure_data_table.AbscalDataTable
A single-row table containing metadata on the image
issues : dict
A dictionary containing a set of parameters, along with information to
identify files whose parameters should be adjusted.
overrides : dict
A dictionary containing any parameters whose value is being overridden
by the user.
verbose : bool
Whether or not informational output should be printed.
Returns
-------
image : tuple
Tuple of (SCI, ERR, DQ) np.ndarray images, as edited.
"""
# print("set_image with {}, {}, {}, {}".format(images, row, issues, overrides))
for issue in issues:
# print(issue)
# print(issue["column"], type(issue["column"]))
# print(row)
found = False
if issue["column"] in row:
if isinstance(issue["column"], str):
issue_len = len(issue["value"])
if issue["value"] == row[issue["column"]][:issue_len]:
found = True
else:
if issue["value"] == row[issue["column"]]:
found = True
if found:
if len(issue["x"]) > 1:
x1, x2 = issue["x"][0], issue["x"][1]
else:
x1, x2 = issue["x"][0], issue["x"][0]+1
if len(issue["y"]) > 1:
y1, y2 = issue["y"][0], issue["y"][1]
else:
y1, y2 = issue["y"][0], issue["y"][0]+1
images[issue["ext"]][y1:y2,x1:x2] = issue["value"]
if verbose:
reason = issue["reason"]
source = issue["source"]
value = issue["value"]
msg = "{}: changed ({}:{},{}:{}) to {} because {} from {}"
print(msg.format(pre, y1, y2, x1, x2, value, reason, source))
return images
|
fae11f006dc93abdc0b04dc0aaf09c2ce4642450
| 699,637
|
import os
import errno
def makedirs(path, *paths):
"""Join one or more path components, make that directory path (using the
default mode 0o0777), and return the full path.
Raise OSError if it can't achieve the result (e.g. the containing directory
is readonly or the path contains a file); not if the directory already
exists.
"""
full_path = os.path.join(path, *paths)
try:
os.makedirs(full_path)
except OSError as e:
if e.errno != errno.EEXIST or not os.path.isdir(full_path):
raise
return full_path
|
2645f2cc3b7503da95898c3b6dbb991c8ee24aa4
| 699,638
|
def boyer_moore_preprocessing(pattern, alphabet_size=4):
"""
Bad character rule used by Boyer-Moore algorithm:
For each character x in the alphabet, let R(x) be the position of right-most occurrence of character x in P.
R(x) is defined to be zero if x does not occur in P.
"""
R = [0] * alphabet_size
for i in range(len(pattern)):
R[pattern[i]] = i
return R
|
1d70891cfe0f0f55579c7a9349fb24d6954379fd
| 699,639
|
def max_consecutive_sum(array):
"""
given an array of numbers (positive, negative, or 0)
return the maximum sum of consecutive numbers
"""
max_value = max(array)
running_sum = 0
for num in array:
if running_sum < 0:
running_sum = 0
running_sum += num
if running_sum > max_value:
max_value = running_sum
return max_value
|
32e7322f8936f8399ec2ebe0702dbb10332cb529
| 699,640
|
def _feature_importances(clf, FEATURES):
""" finds and prints feature importances for given clf """
if hasattr(clf, "feature_importances_"):
results = {}
params = zip(FEATURES, clf.feature_importances_)
for param, importance in sorted(params, key=lambda x: x[1], reverse=True):
param = param.replace("_", " ")
results[param] = importance
print(f'{param:>27} {importance:.3f}')
return results
else:
return False
|
96e218ec60c0a780624524187274a6a7e1ea61a7
| 699,641
|
import signal
import subprocess
def run_process(process_arg_list, on_interrupt=None, working_dir=None):
"""
This runs a process using subprocess python module but handles SIGINT
properly. In case we received SIGINT (Ctrl+C) we will send a SIGTERM to
terminate the subprocess and call the supplied callback.
@param process_arg_list Is the list you would send to subprocess.Popen()
@param on_interrupt Is a python callable that will be called in case we
received SIGINT
This may raise OSError if the command doesn't exist.
@return the return code of this process after completion
"""
assert isinstance(process_arg_list, list)
old_handler = signal.getsignal(signal.SIGINT)
process = subprocess.Popen(process_arg_list, cwd=working_dir)
def handler(signum, frame):
process.send_signal(signal.SIGTERM)
# call the interrupted callack
if on_interrupt:
on_interrupt()
# register the signal handler
signal.signal(signal.SIGINT, handler)
rv = process.wait()
# after the process terminates, restore the original SIGINT handler
# whatever it was.
signal.signal(signal.SIGINT, old_handler)
return rv
|
75b53dc2b877791f37eb6f01669ea58a423a17e0
| 699,642
|
def _mask_for_bits(i):
"""Generate a mask to grab `i` bits from an int value."""
return (1 << i) - 1
|
53fc285225632cce34a74536a085cfe0af10300a
| 699,644
|
import random
def random_int(min_num=1, max_num=200):
"""
return an int inclusively between min_nim and max_num
:param min_num:
:param max_num:
:return: {int} a number
"""
return random.randint(min_num, max_num)
|
0c481f889f4a40e8a72a1efa44244e113f395168
| 699,646
|
import os
import sys
def gettestfiles(testdir=None, randomizer=None):
"""Get all test files from the passed test directory. If none is
passed, use the default sdl test directory.
"""
if not testdir:
testdir = os.path.dirname(__file__)
if testdir not in sys.path:
sys.path.append(testdir)
names = os.listdir(testdir)
testfiles = []
for name in names:
if name.endswith("_test" + os.extsep + "py"):
testfiles.append(name)
if randomizer:
randomizer.shuffle(testfiles)
else:
testfiles.sort()
return testdir, testfiles
|
64383d657f074f22d9193e49e3838ee6f4a8c290
| 699,647
|
def normalize_prefix(prefix):
"""
Removes slashes from a URL path prefix.
:param str prefix:
:rtype: str
"""
if prefix and prefix.startswith("/"):
prefix = prefix[1:]
if prefix and prefix.endswith("/"):
prefix = prefix[:-1]
return prefix
|
0db359f10fa213bf638fa3fca5bd58c530faf788
| 699,648
|
def checkIfDuplicates_2(listOfElems):
""" Check if given list contains any duplicates """
setOfElems = set()
for elem in listOfElems:
if elem in setOfElems:
return True
else:
setOfElems.add(elem)
return False
|
a7d9f322faefa4b0b0191ca96097bbf38c61ee3d
| 699,649
|
import platform
def is_windows():
"""
Check and return if running platform is Windows.
Arguments:
None
Returns:
bool
"""
return any(platform.win32_ver())
|
4c166c57d96c84bafa6750327b7481be584129e8
| 699,650
|
async def root():
"""
Default endpoint for testing if the server is running
:return: Positive JSON Message
"""
return {"MLDatasetTemplate is Running!"}
|
17fccde4f21561a5166e39ca43df9e88539e0b2e
| 699,651
|
def get_details_format(s: str, lang: str = 'zh-cn'):
"""
Get API Request
Parameters
----------
s: Company Name
lang: Lang
Returns
-------
URL
"""
return "http://www.solvusoft.com/%s/file-extensions/software/%s/" % (lang, s)
|
4df1c9526febf2eadb9f6fe9d13d8b9615535aa2
| 699,652
|
def delete(context, key):
"""Delete a key from the current task context."""
return context.pop(key, None)
|
0b697ede943653ba41e7c50fff86907f93becee1
| 699,653
|
def matches_beginning(prefix: str, allowlist_key: str) -> bool:
""""
:param prefix: the value of the prefix query parameter
:param allowlist_key: the key from
:return: a bool of whether the prefix can be found on the allowlist.
Both values are stripped of leading `/` before comparison.
"""
return prefix.lstrip('/').find(allowlist_key.lstrip('/')) == 0
|
ef047dfe16722d98b8fe894d3c400330a2defd74
| 699,654
|
def ExecuteFunction(function, *args, **kwargs):
"""Stub method so that it can be used for mocking purposes as well.
"""
return function(*args, **kwargs)
|
1b3d30c4053fe7b64f530d1c2e45518473c27b0e
| 699,655
|
import torch
def create_tau( fval, gradf, d1x, d2x, smoothing_operator=None ):
"""
tau = create_tau( fval, gradf, d1x, d2x )
In:
fval: torch.FloatTensor
of shape B
gradf: torch.FloatTensor
of shape B*C*H*W
d1x: torch.FloatTensor
of shape B*C*H*W
d2x: torch.FloatTensor
of shape B*C*H*W
smoothing_operator: function
A self-adjoint smoothing operator sending torch.FloatTensor
of shape B*2*H*W to torch.FloatTensor of shape B*2*H*W.
Out:
tau: torch.FloatTensor
of shape B*H*W*2
"""
B,C,H,W = gradf.shape
# Sum over color channels
alpha1 = torch.sum( gradf*d1x, 1).unsqueeze_(1)
alpha2 = torch.sum( gradf*d2x, 1).unsqueeze_(1)
# stack vector field components into shape B*2*H*W
tau = torch.cat([alpha1,alpha2], 1)
# Smoothing
if smoothing_operator:
tau = smoothing_operator( tau )
# torch can't sum over multiple axes.
norm_squared_alpha = (tau**2).sum(1).sum(1).sum(1)
# In theory, we need to apply the filter a second time.
tau = smoothing_operator( tau )
else:
# torch can't sum over multiple axes.
norm_squared_alpha = (tau**2).sum(1).sum(1).sum(1)
scale = -fval/norm_squared_alpha
tau *= scale.view(B,1,1,1)
# rearrange for compatibility with compose(), B*2*H*W -> B*H*W*2
return tau.permute( 0, 2, 3, 1 ).detach()
|
5e086908e432fbc6a34e1ce72bee84a1f467823e
| 699,656
|
def format_seconds(delta):
"""
Given a time delta object, calculate the total number of seconds and return
it as a string.
"""
def _total_seconds(td):
return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / 10 ** 6
return '%s' % (_total_seconds(delta))
|
60248f96a64b04be6480e27aa134c943461a6daa
| 699,657
|
def defineShapePerimeter():
"""Define the perimeter and radius of each shape for different sizes"""
allowedRadius = {
"circle" : {
"small" : [16,25], "medium" : [32,40], "large" : [45,58]
},
"quadrilateral" : {
"small" : [16,32], "medium" : [40,48], "large" : [56,72]
},
"triangle" : {
"small" : [20,38], "medium" : [50,60], "large" : [70,88]
},
"pentagon" : {
"small" : [14,28], "medium" : [36,44], "large" : [52,68]
},
"hexagon" : {
"small" : [14,28], "medium" : [35,44], "large" : [49,64]
}
}
return allowedRadius
|
92ad63dcfe4f93fc8910bdb41d52f80169a91c1c
| 699,658
|
def scanner_position(n, t):
"""Return positin of scanner of range n at time t."""
n1 = n - 1
return n1 - abs(t % (2*n1) - n1)
|
3651f5997b370e703e09ff1f97c1d7d249cf286c
| 699,659
|
import socket
import struct
def discover(service, timeout=2, retries=1):
"""discover pilight servers"""
group = ("239.255.255.250", 1900)
message = "\r\n".join([
'M-SEARCH * HTTP/1.1',
'HOST: {0}:{1}'.format(*group),
'MAN: "ssdp:discover"',
'ST: {st}', 'MX: 3', '', ''])
responses = {} # pylint: disable=redefined-outer-name
i = 0
for _ in range(retries):
i += 1
sock = socket.socket(socket.AF_INET,
socket.SOCK_DGRAM,
socket.IPPROTO_UDP)
sock.setsockopt(socket.SOL_SOCKET,
socket.SO_RCVTIMEO,
struct.pack('LL', 0, 10000))
sock.setsockopt(socket.SOL_SOCKET,
socket.SO_REUSEADDR,
1)
sock.setsockopt(socket.IPPROTO_IP,
socket.IP_MULTICAST_TTL,
2)
sock.settimeout(timeout)
sock.sendto(bytes(message.format(st=service), 'UTF-8'), group)
while True:
try:
responses[i] = sock.recv(1024+1)
break
except socket.timeout:
break
except Exception as ex: # pylint: disable=broad-except
print("no pilight ssdp connections found")
print(ex)
break
sock.close()
return list(responses.values())
|
6e220b66de64b00d18d71883791dd2d1ad5d9a96
| 699,660
|
import argparse
def load_arguments():
"""
Parse the arguments for the cli_env_autoinstall.py module.
"""
# cur_path = os.path.dirname(os.path.realpath(__file__))
# config_file = os.path.join(cur_path, "config.toml")
p = argparse.ArgumentParser(
description="Create a new conda environment for a repo and installs its dependencies.")
p.add_argument(
"folder_input", default="", help="Folder containing the source files")
p.add_argument("--conda_env", "-n", default="test",
help="Name of conda environment to create")
p.add_argument("--python_version", "-py", default="3.6.7",
help="Python version to use in the conda environment")
p.add_argument("--packages", "-p", default="numpy",
help="Custom/extra packages to install in conda env, e.g., \"numpy tensorflow\"")
p.add_argument("--mode", default="test",
help="conda environment mode which can be test/ prod /uat")
arg = p.parse_args()
return arg
|
f9e0b2b3bed71bb149478e86729e60cc9fe15af7
| 699,661
|
def find_tree_root(tree, key):
"""Find a root in a tree by it's key
:param dict tree: the pkg dependency tree obtained by calling
`construct_tree` function
:param str key: key of the root node to find
:returns: a root node if found else None
:rtype: mixed
"""
result = [p for p in tree.keys() if p.key == key]
assert len(result) in [0, 1]
return None if len(result) == 0 else result[0]
|
372bf64f3230fe01d4369ae79bd61edc503b0fd6
| 699,662
|
def convert_str_to_list(sequence: str, is_ordered_sequence: bool = True, is_first_term_seq_name: bool = True):
"""
sequence: A string that contains a comma seperated numbers
is_first_term_seq_name: True to drop the first term (i.e. A01255,1,3,5, ...)
return: A list of integers in a list (String ---> List)
"""
terms_split: list
sequence = sequence.strip().strip(",")
if is_ordered_sequence:
terms_split = sequence.split(",")
else:
terms_split = sequence.split(" ")
if is_first_term_seq_name:
del terms_split[0] # Delete the name of the sequence
int_list: list = [0] * (len(terms_split))
for idx in range(0, len(terms_split)):
int_list[idx] = int(terms_split[idx])
return int_list
|
f73213ae3484e00824920722eb58368bb116886b
| 699,663
|
import os
def extract_SENTINEL_date(sen_directory):
"""
extracts the acquisition date of SENTINEL scenes sorted earlier on into a new list
:return:
"""
SENTINEL_date_list = []
for filename in os.listdir(sen_directory):
timestamp = filename[8:18]
SENTINEL_date_list.append(os.path.join(timestamp))
return SENTINEL_date_list
|
1688953656cbb48a088b5ed89159847cf66a17f7
| 699,664
|
import requests
import sys
import re
from bs4 import BeautifulSoup
def souper(url):
"""Turns a given URL into a BeautifulSoup object."""
try:
html = requests.get(url)
except requests.exceptions.RequestException:
print('''Dope was unable to fetch Stack Overflow results.
Please check that you are connected to the internet.\n''')
sys.exit(1)
if re.search("\.com/nocaptcha", html.url): # URL is a captcha page
return None
else:
return BeautifulSoup(html.text, "html.parser")
|
4701c096b19a093eb16d169270368b7be6fe0344
| 699,665
|
def filter_chants_without_notes(chants, logger=None):
"""Exclude all chants without notes"""
notes_pattern = r'[89abcdefghjklmnopqrs\(\)ABCDEFGHJKLMNOPQRS]+'
contains_notes = chants.volpiano.str.contains(notes_pattern) == True
return chants[contains_notes]
|
98324a2b9c17d975ebfc7860ad9ca38e65db481e
| 699,666
|
def correct_eval_poly(d):
"""This function evaluates the polynomial poly at point x.
Poly is a list of floats containing the coeficients
of the polynomial
poly[i] -> coeficient of degree i
Parameters
----------
poly: [float]
Coefficients of the polynomial,
where poly[i] -> coeficient of degree i
x : float
Point
Returns
-------
float
Value of the polynomial at point x
Example
-------
>>> eval_poly( [1.0, 1.0], 2)
3.0
"""
poly, x = d["poly"], d['x']
result = 0.0
power = 1
degree = len(poly) - 1
i = 0
while i <= degree:
result = result + poly[i] * power
power = power * x
i = i + 1
return (d,result)
|
5a0042c0fb28a5fa4891f86b8b8fa70516fbed34
| 699,667
|
import torch
def zeros(shape, dtype=None, device = None):
"""
Creates a tensor with all elements set to zero.
Parameters
----------
shape : A list of integers
a tuple of integers, or a 1-D Tensor of type int32.
dtype : tensor
The DType of an element in the resulting Tensor
Returns
-------
A Tensor with all elements set to zero.
"""
if device == 'cpu':
device = torch.device('cpu')
elif device == 'gpu':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
return torch.zeros(size=shape, dtype=dtype, device = device)
|
e8e7b18a1f0d2999152504536709388440c56f1a
| 699,668
|
import random
def chapter_uid_generator() -> str:
"""Random number generator for Mastroka chapter UIDs."""
return str(random.choice(range(int(1E18), int(1E19))))
|
024ea43a93d3e94576324364375542338b859d13
| 699,669
|
import os
import requests
import json
def Geocoding(long, lat):
"""
经纬度获取街道信息
:param long: 经度
:param lat: 维度
:return: 地址,json信息
"""
baidu_key = os.environ.get('baidu', '')
url = "http://api.map.baidu.com/geocoder/v2/?location=%s,%s&output=json&pois=1&ak=%s"\
%(lat, long, baidu_key)
r = requests.get(url)
print("Geocoding url ==> %s" % r.url)
print("Geocoding text ==> %s" % r.text)
data = r.json()
if data['status'] == 0:
return data['result']['formatted_address'], json.dumps(data)
else:
return "", json.dumps(data)
|
01cf7f8bde7a365f70e67a5ef1cc6d2af74d00e5
| 699,670
|
from datetime import datetime
def generate_header(header: str = "") -> str:
"""
Generates a file header.
Args:
header: A custom header to insert.
Returns:
str: The generated header of a file.
"""
syntax = " Warning generated file ".center(90, "-")
date = datetime.now().isoformat()
syntax += "\n"
syntax += f"Generated at: {date}"
syntax += "\n"
syntax += "".center(90, "-")
return header if header else syntax
|
0821aef1f5f77dcd7b9fb1bcbcbca74749c3ed4a
| 699,671
|
def _mbits(num_bytes, duration_ms) -> float:
"""Return Mbit/s."""
mbits = (num_bytes * 8) / (1024 * 1024)
seconds = duration_ms / 1000
if seconds == 0:
return 0
return mbits / seconds
|
8e4a1157ddb5f4d0361a553081aa8c6c3b0d62a6
| 699,672
|
def goto_definitions(script):
"""Get definitions for thing under cursor."""
return script.goto_definitions()
|
b614c72080b51e7c91100359cd863f9a8deae228
| 699,673
|
import argparse
def nstr(value):
"""String converter that checks for contents"""
value = value.strip()
if not value:
raise argparse.ArgumentTypeError("a non-empty, non-whitespace string is expected")
return value
|
7b395e2384cc90956c5938a5d0717a8789eb8337
| 699,674
|
def get_adgroup_df(ads_df, num_days=90):
"""
Adgroups - Look at the effectiveness of different ad groups in bounce and close rate.
* time windowed - look at the last 1, 7, 14, 28, and 90 days. Look for major changes in 1-7 and 7-28
"""
adgroups = ads_df.groupby('adgroup')
adgroup_df = adgroups.mean()
adgroup_df['num_users'] = adgroups.count()['user']
adgroup_df['nav_depth_var'] = adgroups.var().get('nav_depth')
adgroup_df = adgroup_df.sort_values('num_users', ascending=False)
adgroup_df = adgroup_df.drop(columns=['survey_id', 'user', 'is_bot'])
adgroup_df = adgroup_df.loc[adgroup_df['num_users'] > 10]
adgroup_df.reset_index(level=0, inplace=True)
return adgroup_df
|
1723064da39554cdc6ddea50d69a07ffc65c08b1
| 699,675
|
def star(fn):
"""Wrap function to expand input to arguments"""
return lambda args: fn(*args)
|
4ec8eb075fda1b091cb780ef6af5f42284de96dd
| 699,676
|
import argparse
def _comma_separated_strings(string):
"""Parses an input consisting of comma-separated strings."""
error_msg = 'Argument should be a comma-separated list of strings: {}'
values = string.split(',')
if not values:
raise argparse.ArgumentTypeError(error_msg.format(string))
return values
|
cb552351fc40eb59fe7a60cd4064d25e040f0a7b
| 699,677
|
def convert2numeral(item, cls=int, default=None):
"""
Convert an argument to a new type unless it is `None`.
"""
try:
num = cls(item)
except (ValueError, TypeError):
num = default
return num
|
4c2e741eb0d7bcf6d6450db7c49f14895e0f1b15
| 699,678
|
import os
def randomize_queries(queries):
"""
Formats the results `query.get_randomize`.
:type list
:param queries: Unformatted queries
:rtype str
:return Formatted queries
"""
if len(queries) > 0:
separator = ';' + os.linesep
return separator.join(queries) + separator
return ''
|
28b8db4ebb5ac476868808457f4f34f9d0418730
| 699,679
|
import re
def dna_to_re(seq):
"""
Return a compiled regular expression that will match anything described by
the input sequence. For example, a sequence that contains a 'N' matched
any base at that position.
"""
seq = seq.replace('K', '[GT]')
seq = seq.replace('M', '[AC]')
seq = seq.replace('R', '[AG]')
seq = seq.replace('Y', '[CT]')
seq = seq.replace('S', '[CG]')
seq = seq.replace('W', '[AT]')
seq = seq.replace('B', '[CGT]')
seq = seq.replace('V', '[ACG]')
seq = seq.replace('H', '[ACT]')
seq = seq.replace('D', '[AGT]')
seq = seq.replace('X', '[GATC]')
seq = seq.replace('N', '[GATC]')
return re.compile(seq)
|
86afb929b2281f0f875a1f11ca8cf36584b2f895
| 699,680
|
from typing import Callable
import time
def create_timer() -> Callable[[], float]:
"""Create a timer function that returns elapsed time since creation of the timer function"""
start = time.time()
def elapsed():
return time.time() - start
return elapsed
|
e97fbb8b6fded209d1e5659f548feac726d9cf04
| 699,681
|
import requests
import logging
def get_recent_posts_instagram(handle):
"""Api for basic details
Arguments:
handle {str}: username
Returns:
json -- returns basic details
"""
result = None
try:
url = "https://www.instagram.com/{}/?__a=1".format(handle)
response = requests.get(url)
if (response.status_code != 200):
return None
result = response.json()
except Exception as e:
logging.error("error is {}".format(e))
return result
|
a9e60be1d4f31e3c14831eaf64b5eb2ff43d249d
| 699,682
|
import os
import logging
import requests
def download_file(filename, url, overwrite=False):
"""
Check if file exist and download it if necessary.
Parameters
----------
filename : str
Full filename with path.
url : str
Full URL to the file to download.
overwrite : boolean (default False)
If set to True the file will be downloaded even though the file exits.
"""
if not os.path.isfile(filename) or overwrite:
if overwrite:
logging.warning("File {0} will be overwritten.".format(filename))
else:
logging.warning("File {0} not found.".format(filename))
logging.warning("Try to download it from {0}.".format(url))
req = requests.get(url)
with open(filename, "wb") as fout:
fout.write(req.content)
logging.info(
"Downloaded from {0} and copied to '{1}'.".format(url, filename)
)
r = req.status_code
else:
r = 1
return r
|
18a9458cc04eec3f713c21296358e2cc0fe497c3
| 699,683
|
def remove_base64(examples):
"""Remove base64-encoded string if "path" is preserved in example."""
for eg in examples:
if "audio" in eg and eg["audio"].startswith("data:") and "path" in eg:
eg["audio"] = eg["path"]
if "video" in eg and eg["video"].startswith("data:") and "path" in eg:
eg["video"] = eg["path"]
return examples
|
44442b868ff57d57d65f63bc65b681c859a1ca52
| 699,684
|
from typing import Mapping
def recursive_update(old_dict, update_dict):
"""
Update one embed dictionary with another, similar to dict.update(),
But recursively update dictionary values that are dictionaries as well.
based on the answers in
https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth
"""
for k, v in update_dict.items():
if isinstance(v, Mapping):
old_dict[k] = recursive_update(old_dict.get(k, {}), v)
else:
old_dict[k] = v
return old_dict
|
7f0c4fdca6a58f8416e5f9c2762918fa776d8d9d
| 699,685
|
import copy
def merge_dicts(dict1, dict2):
"""Recursively merge two dictionaries.
Values in dict2 override values in dict1. If dict1 and dict2 contain a dictionary as a
value, this will call itself recursively to merge these dictionaries.
This does not modify the input dictionaries (creates an internal copy).
Parameters
----------
dict1: dict
First dict.
dict2: dict
Second dict. Values in dict2 will override values from dict1 in case they share the same key.
Returns
-------
return_dict: dict
Merged dictionaries.
"""
if not isinstance(dict1, dict):
raise ValueError(f"Expecting dict1 to be dict, found {type(dict1)}.")
if not isinstance(dict2, dict):
raise ValueError(f"Expecting dict2 to be dict, found {type(dict2)}.")
return_dict = copy.deepcopy(dict1)
for k, v in dict2.items():
if k not in dict1:
return_dict[k] = v
else:
if isinstance(v, dict) and isinstance(dict1[k], dict):
return_dict[k] = merge_dicts(dict1[k], dict2[k])
else:
return_dict[k] = dict2[k]
return return_dict
|
b3dccd6301be21a096bb3d299793b4cf1461c3d9
| 699,686
|
def convert_geoId(fips_code):
"""Creates geoId column"""
return 'geoId/' + str(fips_code).zfill(2)
|
76c644d3f4d4da292d33b3e61e82eecfe7860434
| 699,687
|
def adder_function(args):
"""Dummy function to execute returning a single float."""
loc, scale = args
return loc + scale
|
7646bb1acc324f05c92268b78fefaa75283f812a
| 699,688
|
import requests
def get_api_results(url, id):
"""[summary]
Args:
url ([str]): [External API url]
id ([int]): [member id]
Returns:
[json]: [API request response]
"""
r = requests.get(url.format(id))
return r.json()
|
4dc686c616f3ea9124c866b593d44bdc63e54d1d
| 699,689
|
def window_optical_flow(vec, window):
"""
Return pairs of images to generate the optical flow.
These pairs contains the first and the last image of the optical flow
according to the size of the window.
Parameters:
-----------
vec : array_like
sorted list containing the image ids (type int)
window : int
size of the window to generate the optical flow
Returns:
--------
pairs : array_like
list containing tuples with pairs as (first image, last image)
of the optical flow
Usage:
------
>>> vec = [0, 1, 2, 3]
>>> window_optical_flow(vec, 2)
[(0, 2), (1, 3), (2, 3), (3, 3)]
"""
pairs = []
for img in vec:
last_img = img + window
if last_img in vec:
pairs.append((img, last_img))
else:
pairs.append((img, vec[-1]))
return pairs
|
dde566f6eff6845cb16a1acec95a7bdbc4609b11
| 699,691
|
def text_width(text_item):
"""Returns width of Autocad `Text` or `MultiText` object
"""
bbox_min, bbox_max = text_item.GetBoundingbox()
return bbox_max[0] - bbox_min[0]
|
001816ff5937d1e286f00088ede076b86590a951
| 699,692
|
def get_years_for_valid_fwi_values(df) -> list:
""" List each year that is sorted """
ffmc_data_years = df[df['ffmc_valid']].year.unique().tolist()
bui_data_years = df[df['bui_valid']].year.unique().tolist()
isi_data_years = df[df['isi_valid']].year.unique().tolist()
# Combine them and remove duplicates
data_years = list(set(ffmc_data_years) | set(
bui_data_years) | set(isi_data_years))
data_years.sort()
return data_years
|
41b3725680b322932217c5d3cd97c5922eca5105
| 699,693
|
from bs4 import BeautifulSoup
def is_html(string):
"""
Check if string contains html.
If html, return true, otherwise, return false.
"""
result = bool(BeautifulSoup(string, 'html.parser').find())
return result
|
404723e869608ad7949c144c2f11c0bf629b0262
| 699,694
|
def load_sig_owners(sig_name):
"""
Load owners specified sig
"""
owners = []
owners_file = "sig/{}/OWNERS".format(sig_name)
try:
with open(owners_file, 'r') as file_descriptor:
lines = file_descriptor.readlines()
for line in lines:
if line.strip().startswith('-'):
owner = line.replace('- ', '@').strip()
owners.append(owner)
except IOError as error:
print("Error: 没有找到文件或读取文件失败 {}.", owners_file, error)
return None
return owners
|
725cfdceea02a319121770f3ec20c192f641193c
| 699,695
|
import codecs
def get_text(filename:str) -> str:
"""
Load and return the text of a text file, assuming latin-1 encoding as that
is what the BBC corpus uses. Use codecs.open() function not open().
"""
f = codecs.open(filename, encoding='latin-1', mode='r')
s = f.read()
f.close()
return s
|
43d6036ba8c10946d704dee1cd32b1968de5c199
| 699,696
|
def summerE(n: int) -> int:
"""
Uses the arithmetic series formula.
Avoids generating the multiples, thanks to math.
"""
def sum_multiples(divisor: int, terms: int) -> int:
return divisor * (terms * (terms + 1)) // 2
fizzsum = sum_multiples( 3, (n-1) // 3)
buzzsum = sum_multiples( 5, (n-1) // 5)
intersectsum = sum_multiples(15, (n-1) // 15)
return fizzsum + buzzsum - intersectsum
|
6b4ee36075a5b46bd51c58c3bd44c103061c7cd1
| 699,697
|
import requests
def post_data(url, file):
"""
:param url: 接口url
:param file: 上传文件的路径
:return:
"""
files = {"file": open(file, "rb")}
s = requests.session()
r = s.post(url, files=files, verify=False)
r_json = r.json()
print('r', r_json)
if r_json.get('success'):
return r_json.get('data').get('picName')
else:
return False
|
24e53797698e61789c3233cc1bf150fdbf0485fd
| 699,698
|
def evidence_type_number_to_name(num: int) -> str:
"""
Transforms evidence type number to it's corresponding name
:param num: The evidence type number
:return: The string name of the evidence type
"""
name: str = str()
supported_types = ['Network', 'Process', 'File', 'Registry', 'Security', 'Image', 'DNS']
try:
name = supported_types[num - 1]
except IndexError:
name = 'Unknown'
finally:
return name
|
1f6a8e57334e08e997a3f86e629df04cb9602594
| 699,699
|
def energy(_x, _params):
"""Kinetic and Potential Energy of rigid body.
_x is an array/list in the following order:
q1: Yaw q2: Lean |-(Euler 3-1-2 angles used to orient A
q3: Pitch /
q4: N[1] displacement of mass center.
q5: N[2] displacement of mass center.
q6: N[3] displacement of mass center.
u1: A[1] measure number of angular velocity
u2: A[2] measure number of angular velocity
u3: A[3] measure number of angular velocity
u4: N[1] velocity of mass center.
u5: N[2] velocity of mass center.
u6: N[3] velocity of mass center.
_params is an array/list of:
m: Mass of first pendulum point mass.
g: Gravitational constant.
I11: Principal moment of inertia about A[1]
I22: Principal moment of inertia about A[2]
I33: Principal moment of inertia about A[3]
Returns a list/array of kinetic energy and potential energy, respectively.
"""
# Unpack function arguments
q1, q2, q3, q4, q5, q6, u1, u2, u3, u4, u5, u6 = _x
# Unpack function parameters
m, g, I11, I22, I33 = _params
# Calculate return values
ke = I11*u1**2/2 + I22*u2**2/2 + I33*u3**2/2 + m*u4**2/2 + m*u5**2/2 + m*u6**2/2
pe = -g*m*q6
# Return calculated values
return [ke, pe]
|
f83a9c292cd370614c04b14d8ba3c96bf0f6143e
| 699,700
|
def solution(n):
"""Returns the largest palindrome made from the product of two 3-digit
numbers which is less than n.
>>> solution(20000)
19591
>>> solution(30000)
29992
>>> solution(40000)
39893
"""
# fetchs the next number
for number in range(n - 1, 10000, -1):
# converts number into string.
strNumber = str(number)
# checks whether 'strNumber' is a palindrome.
if strNumber == strNumber[::-1]:
divisor = 999
# if 'number' is a product of two 3-digit numbers
# then number is the answer otherwise fetch next number.
while divisor != 99:
if (number % divisor == 0) and (
len(str(int(number / divisor))) == 3):
return number
divisor -= 1
|
67e91eb9bbd778dd67bac7a2287f1d333ff49961
| 699,701
|
import requests
def get_epoch():
"""
get current epoch
"""
web_address = "https://0l.interblockcha.in:444/epochs"
response = requests.get(web_address)
epochs = response.json()
return epochs
|
f46af8fe10e7b8dec5368b949c1e338a2c02b340
| 699,702
|
def select(population, to_retain):
"""Retain those that meet criteria"""
sorted_population = sorted(population)
to_retain_by_sex = to_retain//2
members_per_sex = len(sorted_population)//2
females = sorted_population[:members_per_sex]
males = sorted_population[members_per_sex:]
selected_females = females[-to_retain_by_sex:]
selected_males = males[-to_retain_by_sex:]
return selected_males, selected_females
|
8621bf02dc4ba528b4d7e327826c3d53e893065e
| 699,703
|
import os
import yaml
def load_conf(config_path):
"""
Load the configuration file
:return:
"""
try:
with open(os.path.expandvars(os.path.expanduser(config_path))) as config_file:
config = yaml.load(config_file, Loader=yaml.FullLoader)
except FileNotFoundError:
print("No configuration found. To create configuration try \"pingmfa --configure\"")
config = {}
return config
|
f8c9b3c27ca11286a4b771203eb54826b7bc9a6a
| 699,704
|
def axis_slicer(n, sl, axis):
"""
Return an indexing tuple for an array with `n` dimensions,
with slice `sl` taken on `axis`.
"""
itup = [slice(None)] * n
itup[axis] = sl
return tuple(itup)
|
0fdd64be34428da20c79d8c52a22c916cb5afe19
| 699,705
|
def zzx_degree(f):
"""Returns leading degree of f in Z[x]. """
return len(f) - 1
|
f24b966a69c998014a54542d906bbbf62f027126
| 699,706
|
import socket
import ssl
def wrap_socket(
conn: socket.socket, keyfile: str,
certfile: str,
) -> ssl.SSLSocket:
"""Use this to upgrade server_side socket to TLS."""
ctx = ssl.create_default_context(
ssl.Purpose.CLIENT_AUTH,
)
ctx.options |= ssl.OP_NO_SSLv2 | ssl.OP_NO_SSLv3 | ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1
ctx.verify_mode = ssl.CERT_NONE
ctx.load_cert_chain(
certfile=certfile,
keyfile=keyfile,
)
return ctx.wrap_socket(
conn,
server_side=True,
)
|
8981c86922aa28c6aded189ef425e232e93425b0
| 699,707
|
import argparse
def get_args(batch_size=64, image_size=32, n_classes=10, max_iter=100000, sample_size=50000):
"""
Get command line arguments.
Arguments set the default values of command line arguments.
"""
description = "Example of Self-Attention GAN (SAGAN)."
parser = argparse.ArgumentParser(description)
parser.add_argument("-d", "--device-id", type=str, default="0",
help="Device id.")
parser.add_argument("-c", "--context", type=str, default="cudnn",
help="Context.")
parser.add_argument("--type-config", "-t", type=str, default='float',
help='Type of computation. e.g. "float", "half".')
parser.add_argument("--image-size", type=int, default=image_size,
help="Image size.")
parser.add_argument("--batch-size", "-b", type=int, default=batch_size,
help="Batch size.")
parser.add_argument("--max-iter", "-i", type=int, default=max_iter,
help="Max iterations.")
parser.add_argument("--num-generation", "-n", type=int, default=1,
help="Number of iterations for generation.")
parser.add_argument("--save-interval", type=int, default=sample_size // batch_size,
help="Interval for saving models.")
parser.add_argument("--latent", type=int, default=128,
help="Number of latent variables.")
parser.add_argument("--maps", type=int, default=128,
help="Number of latent variables.")
parser.add_argument("--monitor-path", type=str, default="./result/example_0",
help="Monitor path.")
parser.add_argument("--model-load-path", type=str,
help="Model load path to a h5 file used in generation and validation.")
parser.add_argument("--lrg", type=float, default=1e-4,
help="Learning rate for generator")
parser.add_argument("--lrd", type=float, default=1e-4,
help="Learning rate for discriminator")
parser.add_argument("--n-critic", type=int, default=5,
help="Learning rate for discriminator")
parser.add_argument("--beta1", type=float, default=0.5,
help="Beta1 of Adam solver.")
parser.add_argument("--beta2", type=float, default=0.9,
help="Beta2 of Adam solver.")
parser.add_argument("--lambda_", type=float, default=10.0,
help="Coefficient for gradient penalty.")
parser.add_argument("--up", type=str,
choices=["nearest", "linear", "unpooling", "deconv"],
help="Upsample method used in the generator.")
args = parser.parse_args()
return args
|
96065f41d0744ddef244a515b44d9073dfdf94ad
| 699,708
|
def is_visible(self, y):
"""Checks whether a given point is within the currently visible area of the markdown area.
The function is used to handle text which is longer than the specified height of the markdown area and
during scrolling.
:param self: MarkdownRenderer
:param y: y-coordinate
:return: boolean
"""
return not self.is_above_area(y) and not self.is_below_area(y)
|
aa982d8fadf70f970e084ead9be07916d2599217
| 699,709
|
import resource
def _IncreaseSoftLimitForResource(resource_name, fallback_value):
"""Sets a new soft limit for the maximum number of open files.
The soft limit is used for this process (and its children), but the
hard limit is set by the system and cannot be exceeded.
We will first try to set the soft limit to the hard limit's value; if that
fails, we will try to set the soft limit to the fallback_value iff this would
increase the soft limit.
Args:
resource_name: Name of the resource to increase the soft limit for.
fallback_value: Fallback value to be used if we couldn't set the
soft value to the hard value (e.g., if the hard value
is "unlimited").
Returns:
Current soft limit for the resource (after any changes we were able to
make), or -1 if the resource doesn't exist.
"""
# Get the value of the resource.
try:
(soft_limit, hard_limit) = resource.getrlimit(resource_name)
except (resource.error, ValueError):
# The resource wasn't present, so we can't do anything here.
return -1
# Try to set the value of the soft limit to the value of the hard limit.
if hard_limit > soft_limit: # Some OS's report 0 for "unlimited".
try:
resource.setrlimit(resource_name, (hard_limit, hard_limit))
return hard_limit
except (resource.error, ValueError):
# We'll ignore this and try the fallback value.
pass
# Try to set the value of the soft limit to the fallback value.
if soft_limit < fallback_value:
try:
resource.setrlimit(resource_name, (fallback_value, hard_limit))
return fallback_value
except (resource.error, ValueError):
# We couldn't change the soft limit, so just report the current
# value of the soft limit.
return soft_limit
else:
return soft_limit
|
aa71fa41f721a612e44c7ce9b65a025f2e9d1bba
| 699,710
|
def get_edges(tree):
"""
Get edges from url tree. Where url tree is tuple of (url, list of tuples(
url, list)) etc.
Example tree:
(url, [(url1, [...]),
(url2, [...]).
])
Parameters
----------
tree : tuple
Tree of urls.
Returns
-------
list
List of tuples (source page, end page).
"""
edges = []
url, elements = tree
if isinstance(elements, list):
for element in elements:
if isinstance(element, str):
edges.append((url.split("/")[-1], element.split("/")[-1]))
else:
edges.append((url.split("/")[-1], element[0].split("/")[-1]))
edges += get_edges(element)
return edges
|
f0e5d591e1453c6b7507c889a51f9c7064f4be39
| 699,711
|
def atom_type():
"""Returns this atom type"""
return 'vmhd'
|
81f90f2f95729ededd8d1242f4b10ddec8b25fb9
| 699,712
|
def asstring(bitArray):
"""
Return string representation of bit array
Parameters:
bitArray (list): an array of bits
Returns:
(string): string form of bitArray
"""
return ''.join([str(bit) for bit in bitArray])
|
23df601aa1b66c89428004d2e1e8a5961066c8be
| 699,713
|
def is_in_fold_innermost_scope_scope(context):
"""Return True if the current context is within a scope marked @fold."""
return 'fold_innermost_scope' in context
|
6bed2406d28ce17c09c6dd293fe61e7f70fbf4b2
| 699,714
|
import collections
def coords_assign(coords, dim, new_name, new_val):
"""Reassign an xray.DataArray-style coord at a given dimension.
Parameters
----------
coords : collections.OrderedDict
Ordered dictionary of coord name : value pairs.
dim : int
Dimension to change (e.g. -1 for last dimension).
new_name : string
New name for coordinate key.
new_val : any
New value, e.g. numpy array of values
Returns
-------
new_coords : collections.OrderedDict
Ordered dictionary with altered dimension.
Example
-------
lat = np.arange(89., -89., -1.0)
lon = np.arange(0., 359., 1.)
data = np.ones((len(lat), len(lon)), dtype=float)
coords = coords_init(data)
coords = coords_assign(coords, -1, 'lon', lon)
coords = coords_assign(coords, -2, 'lat', lat)
"""
items = list(coords.items())
items[dim] = (new_name, new_val)
new_coords = collections.OrderedDict(items)
return new_coords
|
ed5210ec2f5399aa8302eadc53e515bdd6722307
| 699,715
|
import os
def find_devices(device_mapping):
"""Finds the peripheral devices that are present on the system.
Parameters
----------
device_mapping : dict
A dict whose keys are the Unix group names and whose values are lists of the corresponding
device files.
Returns
-------
dict
A dict with the same structure as the input device_mapping, but with values that only
include the device files that are actually present on the system. An empty dict is returned
if no files are found.
"""
filtered_mapping = {}
for group, devices in device_mapping.items():
device_file_list = [device for device in devices if os.path.exists(device)]
if device_file_list:
filtered_mapping[group] = device_file_list
return filtered_mapping
|
5c58a2c67c1ddb43776a54efd1983a365faf2522
| 699,716
|
def set_paths():
"""
Sets directory paths based on the machine being used
:return: PATH_TO_INPUT, PATH_TO_OUTPUT, PATH_TO_CHECKPOINTS and PATH_TO_VAL
"""
path_to_input = "../data/flaskv3/input/"
path_to_output = "../data/flaskv3/output/"
path_to_cov_output = "../data/flaskv4/output/"
path_to_checkpoints = ""
path_to_val = "../validation_101.npz"
return path_to_input, path_to_output, path_to_cov_output, path_to_checkpoints, path_to_val
|
b590eaba0b1327dfafd69dbf9777669c7cd5505a
| 699,718
|
def add_clusters(data, clusters):
"""
Adds the cluster predictions to the original data for interpretation.
:param data: DataFrame. The data to have the cluster predictions added on to.
:param clusters: List. The list of cluster predictions to be added to the DataFrame.
"""
addclusters = data
addclusters["cluster"] = clusters
return addclusters
|
5a91c9af1bccf6ee76d419ceba3274dcecef7535
| 699,719
|
def extract_label_from_txt(filename):
"""Get building type and building function."""
with open(filename, 'r') as in_file:
txt = in_file.readline()
split = txt.split(";")
return split[0], split[1][:-1]
|
d0ed3ea611d631b4dfef6ed7e6637172ed9740e4
| 699,720
|
def compose_gates(cliff, gatelist):
"""
Add gates to a Clifford object from a list of gates.
Args:
cliff: A Clifford class object.
gatelist: a list of gates.
Returns:
A Clifford class object.
"""
for op in gatelist:
split = op.split()
q1 = int(split[1])
if split[0] == 'v':
cliff.v(q1)
elif split[0] == 'w':
cliff.w(q1)
elif split[0] == 'x':
cliff.x(q1)
elif split[0] == 'y':
cliff.y(q1)
elif split[0] == 'z':
cliff.z(q1)
elif split[0] == 'cx':
cliff.cx(q1, int(split[2]))
elif split[0] == 'h':
cliff.h(q1)
elif split[0] == 's':
cliff.s(q1)
elif split[0] == 'sdg':
cliff.sdg(q1)
else:
raise ValueError("Unknown gate type: ", op)
return cliff
|
bcbade0ec400b46805f73512a1c2fc64ac866404
| 699,721
|
def is_same_hour(dt1, dt2):
"""
判断两个datetime对象是否是同一时
:param dt1:
:param dt2:
:return:
"""
if (dt1.year == dt2.year) and (dt1.month == dt2.month) and (
dt1.day == dt2.day) and (dt1.hour == dt2.hour):
return True
else:
return False
|
76e225db9076bf3d2a9816d495aa9959015d8e61
| 699,722
|
import math
def color_distance(from_color, to_color):
"""
Calculate the euclidean distance of two colors in 3D space
"""
return math.sqrt(
(from_color[0] - to_color[0]) ** 2
+ (from_color[1] - to_color[1]) ** 2
+ (from_color[2] - to_color[2]) ** 2
)
|
b72e9101682bd498ed21e8fb9f73b8f52401b888
| 699,723
|
def convert_percent(s):
"""
Convert the percentage string to an actual floating point percent
- Remove %
- Divide by 100 to make decimal
http://pbpython.com/pandas_dtypes.html
"""
new_s = s.replace('%', '')
return float(new_s) / 100
|
161f72166105fb8c915b7dfef8cd1ac62a057ac8
| 699,724
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.