content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import time
def sec_to_datetime(timestamp):
""" Convert secondes since epoch to a date and time
"""
return time.strftime("%d/%m/%Y %H:%M:%S %Z", time.localtime(timestamp))
|
e1e72e2e9e34259fcf2e2d3fcd6a6598dc77e3ae
| 699,511
|
def contains_failure(lines):
"""Check if any line starts with 'FAILED'."""
for line in lines:
if line.startswith('FAILED'):
return True
return False
|
c3a74373f351a946e7d8f9d9497c8ee9af32282e
| 699,512
|
import random
def shuffle_list(lista, seed=42):
"""
Shuffle two list with the same seed.
:param lista: List of elements
:type lista: List
:param listb: List of elements
:type listb: List
:param seed: Seed number
:type seed: int
:return: lista and listb shuffled
:rtype: (List, List)
"""
random.seed(seed)
random.shuffle(lista)
return lista
|
743d2ae479422020dcaef8111b2ad12dc635dbcd
| 699,513
|
def looper(f, delimiter=''):
"""Returns a function that applies function f to every element of an iterable."""
return lambda iterable: delimiter.join([str(f(i)) for i in iterable])
|
fb7e52c0b1e8aac8919f6ed9041d7e2eaaca8816
| 699,514
|
def form_concat_RE(re1, re2):
"""Helper for del_one_gnfa_state
---
Given two non-eps REs, form their concatenation.
"""
if re1=="":
return re2
elif re2=="":
return re1
else:
return ('.', (re1, re2))
|
621906db027421ffb03569671163fd2f6c2cac8c
| 699,515
|
def Jaccard3d(a, b):
"""
This will compute the Jaccard Similarity coefficient for two 3-dimensional volumes
Volumes are expected to be of the same size. We are expecting binary masks -
0's are treated as background and anything else is counted as data
Arguments:
a {Numpy array} -- 3D array with first volume
b {Numpy array} -- 3D array with second volume
Returns:
float
"""
if len(a.shape) != 3 or len(b.shape) != 3:
raise Exception(f"Expecting 3 dimensional inputs, got {a.shape} and {b.shape}")
if a.shape != b.shape:
raise Exception(f"Expecting inputs of the same shape, got {a.shape} and {b.shape}")
ba = (a > 0).astype(int)
bb = (b > 0).astype(int)
n = (ba + bb == 2).sum()
magna = ba.sum()
magnb = bb.sum()
return (n / (magna + magnb - n))
|
0c5e7be04f596736ab0184b2799708350691c240
| 699,516
|
def human_size(size):
"""
递归实现,精确为最大单位值 + 小数点后三位
:param size: 字节大小
:return:
"""
def strofsize(file_size, file_remainder, unit_level):
if file_size >= 1024:
file_remainder = file_size % 1024
file_size //= 1024
unit_level += 1
return strofsize(file_size, file_remainder, unit_level)
else:
return file_size, round(file_remainder / 1024, 2), unit_level
units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
integer, remainder, level = strofsize(size, 0, 0)
if level + 1 > len(units):
level = -1
return '{} {}'.format(integer + remainder, units[level])
|
c502a42fc111f6c985e6c5ccdca76b99a02707be
| 699,517
|
def strip(value):
"""
REMOVE WHITESPACE (INCLUDING CONTROL CHARACTERS)
"""
if not value or (ord(value[0]) > 32 and ord(value[-1]) > 32):
return value
s = 0
e = len(value)
while s < e:
if ord(value[s]) > 32:
break
s += 1
else:
return ""
for i in reversed(range(s, e)):
if ord(value[i]) > 32:
return value[s:i + 1]
return ""
|
380f2cdf5580b1dff02ff8e377942d443917842f
| 699,518
|
def is_behind_right_down(tile_ref, tile_test):
"""
Les fonction is_behind_xxx permettent de savoir si une tile est "derrière" une autre tile,
par rapport à la direction de conquête de Player (rightward, downward).
Renvoie True si tile_test est derrière tile_ref.
"""
return tile_test.x <= tile_ref.x and tile_test.y <= tile_ref.y
|
18677d7d646ada9963bc0a15c88df59c38895605
| 699,519
|
def imputation(matrix, nan_filling):
"""
takes in matrix dataframe and value for filling in NaNs for imputation
Parameters: matrix dataframe, NaN filling value
Returns: imputed matrix dataframe
"""
matrix.fillna(nan_filling, inplace=True)
return matrix
|
a6981e54f6228e9ebfcbb6ea65e5305f50a327ca
| 699,521
|
def index_types():
"""Returns a list of the supported index types"""
return ["UNIQUE", "CLUSTERED", "NONCLUSTERED"]
|
e6f8989b23c1800c8aec8aff12555c6ba0fb8c12
| 699,522
|
import pkg_resources
def is_version_greater_equal(version1, version2):
"""Returns True if version1 is greater or equal than version2 else False"""
return (pkg_resources.parse_version(version1) >=
pkg_resources.parse_version(version2))
|
0618f18c22121d954ae156af7bb6eff80236ae29
| 699,524
|
def get_config(config, group):
"""Return the tuple of song_data, log_data and output_data paths.
Arguments:
config -- ConfigParser object used to extract data values
group -- Top-level grouping of config values (AWS or LOCAL)"""
group = group.upper()
return config[group]['SONG_DATA'], config[group]['LOG_DATA'], config[group]['OUTPUT_DATA']
|
62af332b29e0a901c14143bd8b77834229ce0013
| 699,525
|
def singleton(cls):
"""
decorate a class and make it to generate singleton entity
@singleton
class xxx:
"""
instances = {}
def _singleton(*args, **kw):
"""
a closure function for decorator to execute each time
"""
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return _singleton
|
7a599472b7d1ba4a6f1b2a13fb600c98144c6ef5
| 699,527
|
import re
def sanitize_jinja(arg):
"""
For some string, prevent usage of Jinja-like flags
"""
if isinstance(arg, str):
# If the argument looks like it contains Jinja expressions
# {{ x }} ...
if re.search(r'\{\{[^}]+}}', arg) is not None:
raise ValueError('Inline Jinja variables are not allowed.')
# If the argument looks like it contains Jinja statements/control flow...
# {% if x.foo() %} ...
if re.search(r'\{%[^%]+%}', arg) is not None:
raise ValueError('Inline Jinja variables are not allowed.')
return arg
|
7c28e987b18e4395d2d80dead85f1ee699515309
| 699,528
|
def ancestor(synset1, synset2):
""" Returns the common ancestor of both synsets.
For example synsets("cat")[0].ancestor(synsets("dog")[0]) => Synset("carnivore")
"""
h1, h2 = synset1.hypernyms(recursive=True), synset2.hypernyms(recursive=True)
for s in h1:
if s in h2:
return s
|
4f37b5895c7455e560847f00358b3538b43aff03
| 699,529
|
import asyncio
def run_coro(coro):
"""Runs a co-routing in the default event loop and retuns it result."""
return asyncio.get_event_loop().run_until_complete(coro)
|
62f109ef4440ecb2807640ff91b27f07e91d8f9f
| 699,530
|
from typing import Dict
from typing import Any
import os
import json
import yaml
def _read_data(path: str) -> Dict[str, Any]:
"""
Read data from JSON and YAML files.
"""
with open(path, "r") as f:
ext = os.path.splitext(path)[-1]
if ext == ".json":
return json.load(f)
elif ext in [".yaml", ".yml"]:
return yaml.load(f, Loader=yaml.SafeLoader)
else:
raise ValueError("Invalid file type: `{}`".format(ext))
|
d3ff635c028cef9bc1be05a5c0c9be7e6d4f30c2
| 699,531
|
import numpy
def charge_exchange(ods, nc=10):
"""
Adds some FAKE CER channel locations so that the overlay plot will work in tests. It's fine to test
with dummy data as long as you know it's not real. This function can overwrite existing data if you're not careful.
The original is modified, so deepcopy first if you want different ODSs.
:param ods: ODS instance
:param nc: Number of channels to add.
:return: ODS instance with FAKE CER HARDWARE INFORMATION added.
"""
r = numpy.linspace(1.4, 2.2, nc)
z = numpy.linspace(0.05, -0.07, nc)
for i in range(nc):
ch = ods['charge_exchange.channel'][i]
ch['identifier'] = 'FAKE_CER_{:02d}'.format(i) # F for fake
ch['name'] = 'Fake CER channel for testing {}'.format(i)
for x in ['r', 'z', 'phi']:
ch['position'][x]['time'] = numpy.array([0])
ch['position.phi.data'] = numpy.array([6.5])
ch['position.r.data'] = numpy.array([r[i]])
ch['position.z.data'] = numpy.array([z[i]])
return ods
|
1e0f169ffa12263715fffdd6476da37300340c66
| 699,532
|
import subprocess
def run_pedr2tab(pedrlist):
"""
Use subprocess to call the external program, "pedr2tab."
Relies on the external program to decide if arguments are valid or not.
Pipe STDERR to STDOUT.
Parameters
----------
pedrlist : str
path to file containing list of PEDR binaries
"""
cmd_args = ["pedr2tab", pedrlist]
result = subprocess.run(cmd_args,check=True,stderr=subprocess.STDOUT,encoding='utf-8')
return result
|
05e16ebd12468a1e0c1bf30a6e928ece16c09022
| 699,533
|
def buildaff(ulx: float, uly: float, pixelres: float) -> tuple:
"""
Build a gdal GeoTransform tuple
Args:
ulx: projected geo-spatial upper-left x reference coord
uly: projected geo-spatial upper-left y reference coord
pixelres: pixel resolution
Returns:
affine tuple
"""
return ulx, pixelres, 0, uly, 0, -pixelres
|
43e593050a6b3ebef876f4347d3df787e2a49795
| 699,534
|
def parse_search_result_data(api_response):
"""
Parse the search result data from the given raw json by following the response style of tokopedia
Arg:
- api_response (list): list of products
Returns:
- product_list (list): list of compiled product properties
"""
product_list = []
for resp in api_response:
product_results = resp.get('data').get('ace_search_product_v4').get('data').get('products') # Standard tokopedia response style
for product in product_results:
product_dict = dict(
product_name=product.get('name'),
product_image_link=product.get('imageUrl'),
product_price=product.get('price'),
product_rating=product.get('rating'),
product_average_rating=product.get('ratingAverage'),
product_merchant=product.get('shop').get('name'),
product_target_url=product.get('url') # Going to be used to crawl further into the product page itself, to extract description
)
product_list.append(product_dict)
return product_list
|
ee1314589e1599f2d4a58523077abc8a7f270f88
| 699,535
|
def check_annulus(args):
"""
Checks and formats the annulus values.
:param args: The command-line arguments.
:type args: argparse.ArgumentParser Namespace
:returns: argparse.ArgumentParser Namespace -- The updated command-line
arguments.
"""
if not (args.annulus1 and args.annulus2) and not args.annulus:
args.annulus = None
elif args.annulus1 and args.annulus2:
args.annulus = [args.annulus1, args.annulus2]
else:
args.annulus = list(args.annulus)
if not (args.annulus1 and args.annulus2):
args.annulus1 = args.annulus[0]
args.annulus2 = args.annulus[1]
return args
|
cd99b7200d226d9e36c644351d8e696a25a1a81d
| 699,536
|
def computeSignalValueInFrame(startbit, ln, fmt, value):
"""
compute the signal value in the frame
"""
frame = 0
if fmt == 1: # Intel
# using "sawtooth bit counting policy" here
pos = ((7 - (startbit % 8)) + 8*(int(startbit/8)))
while ln > 0:
# How many bits can we stuff in current byte?
# (Should be 8 for anything but the first loop)
availbitsInByte = 1 + (pos % 8)
# extract relevant bits from value
valueInByte = value & ((1<<availbitsInByte)-1)
# stuff relevant bits into frame at the "corresponding inverted bit"
posInFrame = ((7 - (pos % 8)) + 8*(int(pos/8)))
frame |= valueInByte << posInFrame
# move to the next byte
pos += 0xf
# discard used bytes
value = value >> availbitsInByte
# reduce length by how many bits we consumed
ln -= availbitsInByte
else: # Motorola
# Work this out in "sequential bit counting policy"
# Compute the LSB position in "sequential"
lsbpos = ((7 - (startbit % 8)) + 8*(int(startbit/8)))
# deduce the MSB position
msbpos = 1 + lsbpos - ln
# "reverse" the value
cvalue = int(format(value, 'b')[::-1],2)
# shift the value to the proper position in the frame
frame = cvalue << msbpos
# Return frame, to be accumulated by caller
return frame
|
f35a63ea4811b248430ee457c64fda98ea17134d
| 699,537
|
import re
def parse_show_spanning_tree_mst_config(raw_result):
"""
Parse the 'show spanning-tree mst-config' command raw output.
:param str raw_result: vtysh raw result string.
:rtype: dict
:return: The parsed result of the show spanning-tree \
mst-config command in a dictionary of the form:
::
{
'mst_config_id': '70:72:cf:d9:2c:f6',
'mst_config_revision': '8'
'no_instances': '2',
'instance_vlan':
{'1': ['1','2'],
'2': ['3','4']}
}
"""
mst_conf_re = (
r'\s*MST\s*config\s*ID\s*:\s*(?P<mst_config_id>[^ ]+)\s*\n'
r'\s*MST\s*config\s*revision\s*:'
r'\s*(?P<mst_config_revision>[0-9]+)\s*\n'
r'\s*MST\s*config\s*digest\s*:\s*(?P<mst_digest>[^ ]+)\s*\n'
r'\s*Number\s*of\s*instances\s*:\s*(?P<no_instances>[0-9]+)\s*\n'
)
instance_re = (
r'(?P<instance>^[0-9]+)\s*(?P<vlan>.+)\s*'
)
error = [
r'No\s*record\s*found\.',
r'\s*Spanning-tree\s*is\s*disabled'
]
instance = {}
result = {}
for error_str in error:
re_result = re.search(error_str, raw_result)
if (re_result):
result['error'] = str(raw_result)
return result
re_result = re.search(mst_conf_re, raw_result)
assert re_result
result = re_result.groupdict()
for line in raw_result.splitlines():
re_result = re.search(instance_re, line)
if re_result:
partial = re_result.groupdict()
instance[partial['instance']] = partial['vlan'].split(',')
result['instance_vlan'] = instance
return result
|
2f07e13ff7f79e4c15e0fe5111cbc18fb638dae8
| 699,538
|
def do_logout(user):
"""
logout of Google
"""
return None
|
2d8b719c2f22de87bc2bdc6f0f6a27eb57ff4982
| 699,539
|
def read_sql_file(filename, encoding='utf-8') -> str:
"""Read SQL file, remove comments, and return a list of sql statements as a string"""
with open(filename, encoding=encoding) as f:
file = f.read()
statements = file.split('\n')
return '\n'.join(filter(lambda line: not line.startswith('--'), statements))
|
bd29c1080b2fd95d690b4696bf63c92932616964
| 699,540
|
def scenegraphLocationString(dataPacket):
"""
Given a datapacket, return a string representing its location in the
scenegraph. (::UUID:OUTPUT)
"""
return "::"+str(dataPacket.sourceNode.uuid)+":"+dataPacket.sourceOutputName
|
027a69984acac4454e27a149ad822864751a0983
| 699,541
|
def get_data_to_update_from_broker(file_type, database_columns, broker_table, fiscal_year,
fy_start, fy_end, unique_identifier):
"""
Generates SQL script to pull data from broker and compare it with website table
Creates Temporary table of the rows that differ between the two databases
"""
is_active = 'is_active = TRUE and' if file_type == 'fabs' else ''
columns = " ,".join(database_columns)
columns_type = " ,".join(["{} text".format(column) for column in database_columns])
sql_statement = """
CREATE TEMPORARY TABlE {file_type}_transactions_to_update_{fiscal_year} AS
SELECT * from dblink('broker_server','
SELECT
{unique_identifier},
{columns}
FROM {broker_table}
WHERE {is_active} action_date:: date >= ''{fy_start}'':: date AND
action_date:: date <= ''{fy_end}'':: date;
') AS (
{unique_identifier} text,
{columns_type}
)
EXCEPT
SELECT
{unique_identifier},
{columns}
FROM transaction_{file_type}
WHERE action_date:: date >= '{fy_start}':: date AND
action_date:: date <= '{fy_end}':: date;
-- Adding index to table to improve speed
CREATE INDEX {file_type}_unique_idx ON {file_type}_transactions_to_update_{fiscal_year}({unique_identifier});
""".format(file_type=file_type,
fiscal_year=fiscal_year,
unique_identifier=unique_identifier,
columns=columns,
broker_table=broker_table,
is_active=is_active,
fy_start=fy_start,
fy_end=fy_end,
columns_type=columns_type)
return sql_statement
|
675ccbce6e58e62568479c905a36b046e74e2399
| 699,542
|
import time
def get_epoch(year, month='01'):
"""
calculate the epoch of first day of a year-month
"""
pattern = '%Y.%m.%d %H:%M:%S'
return int(time.mktime(time.strptime(str(year) + '.' + str(month) + '.01 00:00:00', pattern)))
|
4126b720dedb0c91ec18f5198740896035da07e7
| 699,543
|
def get_directive_type(directive):
"""Given a dict containing a directive, return the directive type
Directives have the form {'<directive type>' : <dict of stuff>}
Example: {'#requirement': {...}} --> '#requirement'
"""
keys = list(directive.keys())
if len(keys) != 1:
raise ValueError('Expected directive dict to contain a single key: {}'.format(directive))
return keys[0]
|
584c1f22fc120815e79c781fc7ace69940c0f651
| 699,544
|
import json
def get_notebook_cells(path):
"""获取ipynb文档的cells"""
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
return data["cells"]
|
a7f4c9b45b1c58bdcf049c0834199f1a36402fa0
| 699,546
|
def u8(x: int) -> bytes:
"""
Encode an 8-bit unsigned integer.
"""
assert 0 <= x < 256
return x.to_bytes(1, byteorder='little')
|
c23bb4b6ea6bb610da5c3ecd281129e0bcc40bb7
| 699,547
|
def ultimate_answer(question):
"""Provides an answer to the ultimate question.
Returns '42' if the question is 'What is the meaning of Life, The Universe,
Everything?' otherwise returns 'That is not much of a question'
args:
question (str): The question to be answered.
returns:
str
"""
if question == "What is the meaning of Life, The Universe, Everything?":
answer = "42"
else:
answer = "That is not much of a question"
return answer
|
5fc1c51c3901d3005adc78468668317f86e54d5c
| 699,548
|
def last(s):
"""Return a word string sorted alpha-ly by last char in each word.
input = string, words
output = string, sorted words alphabetically by last char
ex: "man i need a taxi up to ubud") ==>["a", "need", "ubud", "i", "taxi", "man", "to", "up"]
"""
alpha = list(map(chr, range(97, 123)))
output = []
sp_s = s.split()
for ch in alpha:
for word in sp_s:
if ch == word[-1]:
output.append(word)
return output
|
ed1fc01420d1b89e6b52a54e7413e54fbc8ed691
| 699,549
|
def evaluate_poly(poly, x):
"""
Computes the polynomial function for a given value x. Returns that value.
Example:
>>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7x^4 + 9.3x^3 + 5x^2
>>> x = -13
>>> print evaluate_poly(poly, x) # f(-13) = 7(-13)^4 + 9.3(-13)^3 + 5(-13)^2
180339.9
poly: tuple of numbers, length > 0
x: number
returns: float
"""
eval_of_poly = 0.0
for idx, val in enumerate(poly):
eval_of_poly += (val * (x ** idx))
return eval_of_poly
|
2705dbdaa937c564454078dc2cbc8dd4a9bd56e8
| 699,551
|
import random
import os
def combine(df_T, df_B, indices_T, indices_B, outfile, outdir="./data"):
"""Combines dataframes and saves as a file."""
list_TB = (
df_T.iloc[indices_T, 1].reset_index(drop=True)
+ df_B.iloc[indices_B, 1].reset_index(drop=True)
).to_list()
list_BT = (
df_B.iloc[random.sample(indices_B, len(indices_B)), 1].reset_index(drop=True)
+ df_T.iloc[indices_T, 1].reset_index(drop=True)
).to_list()
with open(os.path.join(outdir, outfile), "w") as f:
f.write("\n".join(list_TB + list_BT))
print(len(list_TB + list_BT))
return list_TB + list_BT
|
2bc7631e0fc51891011cb55b0c85560aae00504c
| 699,552
|
def load_expected_whitelist(filename, logger):
"""
**Purpose**
Load the expected whitelist and output a set
"""
expected_whitelist = []
oh = open(filename, 'rt')
for line in oh:
expected_whitelist.append(line.strip())
oh.close()
expected_whitelist = set(expected_whitelist)
logger.info('Found {0:,} expected barcodes'.format(len(expected_whitelist)))
return expected_whitelist
|
097981e4d7e2c44931cdeebd935e6ba2b8f78e38
| 699,553
|
def split(string_to_split, separator):
"""Returns the list of strings divided by the separator."""
return string_to_split.split(separator)
|
c96d4ed6e3128617925c7d52c19d607cbfe1ece1
| 699,554
|
def _find_biggest_value(list):
"""
Get the intex of the largest value in list of values
:return: -1 if list empty, otherwise index of biggest value
"""
if len(list) < 1:
return -1
max = 0
for idx, val in enumerate(list):
if val > list[max]:
max = idx
return max
|
e4c4267ac2bfe73ad3bdb11433935805f4859e95
| 699,555
|
import numpy
def haversine(coord1, coord2, to_radians=True, earth_radius=6371):
"""
slightly modified version: of http://stackoverflow.com/a/29546836/2901002
Calculate the great circle distance between two points
on the earth (specified in decimal degrees or in radians)
All (lat, lon) coordinates must have numeric dtypes and be of equal length.
https://stackoverflow.com/questions/43577086/pandas-calculate-haversine-distance-within-each-group-of-rows
"""
lat1, lon1 = coord1
lat2, lon2 = coord2
if to_radians:
lat1, lon1, lat2, lon2 = numpy.radians([lat1, lon1, lat2, lon2])
a = numpy.sin((lat2-lat1)/2.0)**2 + \
numpy.cos(lat1) * numpy.cos(lat2) * numpy.sin((lon2-lon1)/2.0)**2
return earth_radius * 2 * numpy.arcsin(numpy.sqrt(a))
|
46d073421bed55e0ccd11f995dbcbfdaf5124720
| 699,556
|
def inline(s, fmt):
"""Wrap string with inline escape"""
return "`\u200B{}\u200B`".format(fmt.format(s))
|
3f07a4f55e60c763a10956c9ac52314b6958eca8
| 699,557
|
from typing import Optional
import cgi
def format_download_filename(content_disposition: Optional[str], download_url: str) -> str:
"""Uses RFC-6266 'Content-Disposition' header to get file name"""
value, params = cgi.parse_header(content_disposition or '')
download_filename = params.get('filename')
if download_filename:
return download_filename
return download_url.split('/')[-1]
|
0abd0d17db1b92afff1fc5163aadd6450dac7e1c
| 699,559
|
def _compute_cultural_score_building(building_geometry, historical_elements_gdf, historical_elements_gdf_sindex, score = None):
"""
Compute pragmatic for a single building. It supports the function "pragmatic_meaning"
Parameters
----------
buildings_geometry: Polygon
building_land_use: string
historical_elements_gdf_sindex: Rtree spatial index
score: string
Returns
-------
float
"""
possible_matches_index = list(historical_elements_gdf_sindex.intersection(building_geometry.bounds)) # looking for possible candidates in the external GDF
possible_matches = historical_elements_gdf.iloc[possible_matches_index]
pm = possible_matches[possible_matches.intersects(building_geometry)]
if (score is None):
cs = len(pm) # score only based on number of intersecting elements
elif len(pm) == 0:
cs = 0
else: cs = pm[score].sum() # otherwise sum the scores of the intersecting elements
return cs
|
743be39a3c100f53787df8195298c43affac8b4d
| 699,561
|
def grayscale_surface(surf) :
""" converts a pygame surface to gray scale values """
width , height = surf.get_size()
for x in range(width):
for y in range(height):
red , green , blue, alpha = surf.get_at((x,y))
L = 0.3 * red + 0.59 * green + 0.11 * blue
gs_color = (L, L, L, alpha)
surf.set_at((x,y), gs_color)
return surf
|
139e625ed448de84111e933dd3155fcef930ac19
| 699,562
|
import os
def _IsPlatformSupported():
"""Checks that this platform and build system are supported.
Args:
opts: The options parsed from the command line.
Returns:
True if the platform and build system are supported.
"""
# Haven't tested the script out on any other platforms yet.
supported = ['posix', 'nt']
return os.name in supported
|
9b4c5696d4c49298d688ddd0b893e24332b2bd0a
| 699,563
|
import socket
def find_port():
"""
Return an unbound port
"""
s=socket.socket()
s.bind(("127.0.0.1",0))
port=s.getsockname()[1]
s.close()
return port
|
a3a535e1bed9b079654a0ac8b3c329d8e575537c
| 699,564
|
def index():
"""The index page which provide information about other API end points"""
return """
<div>
<h1> Inception REST API </h1>
<h3> The following API end points are valid </h3>
<ul>
<h4> Inception V4 </h4>
<li> <code>/inception/v4/ping </code> - <br/>
<b> Description : </b> checks availability of the service. returns "pong" with status 200 when it is available
</li>
<li> <code>/inception/v4/classify/image</code> - <br/>
<table>
<tr><th align="left"> Description </th><td> This is a classifier service that can classify images</td></tr>
<tr><td></td> <td>Query Params : <br/>
<code>topn </code>: type = int : top classes to get; default : 5 <br/>
<code>min_confidence </code>: type = float : minimum confidence that a label should have to exist in topn; default : 0.015 <br/>
<code>human </code>: type = boolean : human readable class names; default : true <br/>
</td></tr>
<tr><th align="left"> How to supply Image Content </th></tr>
<tr><th align="left"> With HTTP GET : </th> <td>
Include a query parameter <code>url </code> which is an http url of JPEG image <br/>
Example: <code> curl "localhost:8764/inception/v4/classify/image?url=http://xyz.com/example.jpg"</code>
</td></tr>
<tr><th align="left"> With HTTP POST :</th><td>
POST JPEG image content as binary data in request body. <br/>
Example: <code> curl -X POST "localhost:8764/inception/v4/classify/image?topn=5&min_confidence=0.015&human=false" --data-binary @example.jpg </code>
</td></tr>
</table>
</li>
<li> <code>/inception/v4/classify/video</code> - <br/>
<table>
<tr><th align="left"> Description </th><td> This is a classifier service that can classify videos</td></tr>
<tr><td></td> <td>Query Params : <br/>
<code>topn </code>: type = int : top classes to get; default : 5 <br/>
<code>min_confidence </code>: type = float : minimum confidence that a label should have to exist in topn; default : 0.015 <br/>
<code>human </code>: type = boolean : human readable class names; default : true <br/>
<code>mode </code>: options = <code>{"center", "interval", "fixed"}</code> : Modes of frame extraction; default : center <br/>
  <code>"center"</code> - Just one frame in center. <br/>
  <code>"interval"</code> - Extracts frames after fixed interval. <br/>
  <code>"fixed"</code> - Extract fixed number of frames.<br/>
<code>frame-interval </code>: type = int : Interval for frame extraction to be used with INTERVAL mode. If frame_interval=10 then every 10th frame will be extracted; default : 10 <br/>
<code>num-frame </code>: type = int : Number of frames to be extracted from video while using FIXED model. If num_frame=10 then 10 frames equally distant from each other will be extracted; default : 10 <br/>
</td></tr>
<tr><th align="left"> How to supply Video Content </th></tr>
<tr><th align="left"> With HTTP GET : </th> <td>
Include a query parameter <code>url </code> which is path on file system <br/>
Example: <code> curl "localhost:8764/inception/v4/classify/video?url=filesystem/path/to/video"</code><br/>
</td></tr><br/>
<tr><th align="left"> With HTTP POST :</th><td>
POST video content as binary data in request body. If video can be decoded by OpenCV it should be fine. It's tested on mp4 and avi on mac <br/>
Include a query parameter <code>ext </code>this extension is needed to tell OpenCV which decoder to use, default is ".mp4" </br>
Example: <code> curl -X POST "localhost:8764/inception/v4/classify/video?topn=5&min_confidence=0.015&human=false" --data-binary @example.mp4 </code>
</td></tr>
</table>
</li>
<ul>
</div>
"""
|
7037c89f27342724960097db6518f30003c27f17
| 699,565
|
import requests
def get_json_from_url(url):
"""Retrieve JSON from a URL, raising on failure."""
response = requests.get(url)
response.raise_for_status()
return response.json()
|
c88b36ff6d4911aaa6d4115b5c054fbab2f3051f
| 699,568
|
def is_param(arg):
"""Returns whether the passed argument is a list or dictionary of params."""
return isinstance(arg, tuple) and arg[0] == "params"
|
bedb4745f8fc7095e235be588ad53c28db9fb4d8
| 699,569
|
def evaluate_numeric_condition(target, reveal_response):
"""
Tests whether the reveal_response contains a numeric condition. If so, it will
evaluate the numeric condition and return the results of that comparison.
:param target: the questions value being tested against
:param reveal_response: the numeric condition that will be evaluated against
:return: boolean result of numeric condition evaluation or None if there is no
numeric condition to evaluate.
"""
if target == '': # cannot evaluate if answer is blank
return None
if reveal_response.startswith('>='):
return float(target) >= float(reveal_response[2:])
elif reveal_response.startswith('<='):
return float(target) <= float(reveal_response[2:])
elif reveal_response.startswith('=='):
return float(target) == float(reveal_response[2:])
elif reveal_response.startswith('<'):
return float(target) < float(reveal_response[1:])
elif reveal_response.startswith('>'):
return float(target) > float(reveal_response[1:])
return None
|
1eeb170635e5fb0ac5fd379af885a7a0222fb722
| 699,570
|
def render_parse_tag():
"""Render a load more data button (only render the button)."""
return {}
|
71f2f8ffe7fc961b99acdc49ee4ab5d9d7cd1f91
| 699,571
|
def strip_string(string):
"""
:param string:
:return:
"""
return string.strip()
|
d57cae7b255d08505f05a7b97016e25f7a570995
| 699,572
|
import hashlib
def checksum(filepath, hcnstrctr=hashlib.md5, enc="utf-8"):
"""Compute the checksum of given file, `filepath`
:raises: OSError, IOError
"""
return hcnstrctr(open(filepath).read().encode(enc)).hexdigest()
|
a0a6c576ef9f22de106834088f69cbbc2b3c4bd0
| 699,573
|
import importlib
def import_module(path):
"""
基于指定的模块导入
点分割模块的导入路径。
"""
module_path, module = str(path).rsplit('.', maxsplit=1)
return getattr(importlib.import_module(module_path), module)
|
c79bbad91058b07f8b7ffd791e3db4d9988f6f46
| 699,574
|
def increment(x):
"""increments input by one"""
return x+1
|
416451d93765ee148de9b69bd3e1af0e846d6fb5
| 699,575
|
def dict_to_rule(rule, clf_feature_dict):
"""
Function to accept rule dict and convert to Rule object
Parameters:
rule: list of dict of schema
[
{
'feature': int,
'operator': str,
'value': float
},
]
"""
output = ''
for condition in rule:
output += '{} {} {} and '.format(
clf_feature_dict[int(condition['feature'])],
condition['operator'],
condition['pivot']
)
return output[:-5]
|
0f3cc79a86e62a6154d6d83ff4fb695cd181f0b8
| 699,576
|
def set_publish_time_series_args(args):
"""Set args to publish time-series
"""
public_time_series = {}
if args.public_time_series:
public_time_series = {"private": False}
if args.model_price:
public_time_series.update(price=args.model_price)
if args.cpp:
public_time_series.update(credits_per_prediction=args.cpp)
return public_time_series
|
90e3d362ba236752a18dd117b3bd9d23d2cefba1
| 699,577
|
from unittest.mock import patch
async def init_integration(hass, mock_config_entry):
"""Create a fake SMA Config Entry."""
mock_config_entry.add_to_hass(hass)
with patch("pysma.SMA.read"):
await hass.config_entries.async_setup(mock_config_entry.entry_id)
await hass.async_block_till_done()
return mock_config_entry
|
b4a99d12143be7e6b114fa06d1b32aa1de57489e
| 699,578
|
def flatten(list_like, recursive=True):
""" Flattens a list-like datastructure (returning a new list). """
retval = []
for element in list_like:
if isinstance(element, list):
if recursive:
retval += flatten(element, recursive=True)
else:
retval += element
else:
retval.append(element)
return retval
|
ad343decfa9e8ae949af303fc3f1a52179464009
| 699,579
|
from pathlib import Path
import os
import subprocess
def bedtoolscoverage(gfile, outdir, sortedbam):
"""computes the coverage for each mapped region
parameters
----------
bedtoolspath
path to the bedtools installation
gfile
genome file build by preparebedtools()
outdir
string, the path of the output directory
sortedbam
name of the sorted bam file
returns
----------
bg_file = the name of the bedgraph file
"""
stem = Path(sortedbam).stem
bg_file = os.path.join(outdir, stem.split('.')[0] + ".bg")
try:
cmd_bedtools = f"bedtools genomecov -bga -ibam {sortedbam} > {bg_file}"
res_bedtools = subprocess.check_output(cmd_bedtools, shell=True,\
stderr=subprocess.DEVNULL)
except(subprocess.CalledProcessError):
pass
return (bg_file)
|
3225526419f19e337f4e5ee41f851b96a0aede28
| 699,580
|
def intents_to_string(intents, queryset=False):
"""
Args:
intents: [{"action": "/application/json/view"}, ...] OR
[models.Intent] (if queryset=True)
Returns:
['<intent.action', ...]
"""
if queryset:
new_intents = [i.action for i in intents]
else:
new_intents = [i['action'] for i in intents]
return str(sorted(new_intents))
|
55e9350d2db63de474f46836e02ae32297e2c170
| 699,581
|
import re
def greek_to_english(string):
"""
Converts all greek letters to the corresponding english letters.
Useful for creating song slugs from greek song titles.
"""
GREEK_MAP = {
'α':'a', 'β':'b', 'γ':'g', 'δ':'d', 'ε':'e', 'ζ':'z', 'η':'h', 'θ':'th',
'ι':'i', 'κ':'k', 'λ':'l', 'μ':'m', 'ν':'n', 'ξ':'ks', 'ο':'o', 'π':'p',
'ρ':'r', 'σ':'s', 'τ':'t', 'υ':'y', 'φ':'f', 'χ':'x', 'ψ':'ps', 'ω':'w',
'ά':'a', 'έ':'e', 'ί':'i', 'ό':'o', 'ύ':'y', 'ή':'h', 'ώ':'w', 'ς':'s',
'ϊ':'i', 'ΰ':'y', 'ϋ':'y', 'ΐ':'i',
'Α':'A', 'Β':'B', 'Γ':'G', 'Δ':'D', 'Ε':'E', 'Ζ':'Z', 'Η':'H', 'Θ':'Th',
'Ι':'I', 'Κ':'K', 'Λ':'L', 'Μ':'M', 'Ν':'N', 'Ξ':'Ks', 'Ο':'O', 'Π':'P',
'Ρ':'R', 'Σ':'S', 'Τ':'T', 'Υ':'Y', 'Φ':'F', 'Χ':'X', 'Ψ':'Ps', 'Ω':'W',
'Ά':'A', 'Έ':'E', 'Ί':'I', 'Ό':'O', 'Ύ':'Y', 'Ή':'H', 'Ώ':'W', 'Ϊ':'I',
'Ϋ':'Y'
}
s = "".join(GREEK_MAP.keys())
result = ''
for piece in re.compile('[%s]|[^%s]+' % (s,s)).findall(string):
if piece in GREEK_MAP:
result += GREEK_MAP[piece]
else:
result += piece
return result.replace('oy', 'ou').replace('OY', 'OU').replace('Oy', 'Ou')
|
5c4752b1a1d08b0b37acc3f0e0c884d775eae637
| 699,582
|
def anum(self, num="", type_="", xhot="", yhot="", **kwargs):
"""Specifies the annotation number, type, and hot spot (GUI).
APDL Command: /ANUM
Parameters
----------
num
Annotation number. ANSYS automatically assigns the lowest
available number. You cannot assign a higher number if a lower
number is available; ANSYS will substitute the lowest available
number in place of any user-specified higher number.
type\_
Annotation internal type number. If TYPE = DELE, delete annotation
NUM.
1 - Text
2 - Block text (not available in GUI)
3 - Dimensions
4 - Lines
5 - Rectangles
6 - Circles
7 - Polygons
8 - Arcs
9 - Wedges, pies
11 - Symbols
12 - Arrows
13 - Bitmap
xhot
X hot spot (-1.0 < X < 2.0). Used for menu button item delete.
yhot
Y hot spot (-1.0 < Y < 1.0). Used for menu button item delete.
Notes
-----
This is a command generated by the GUI and will appear in the log file
(Jobname.LOG) if annotation is used. This command is not intended to
be typed in directly in an ANSYS session (although it can be included
in an input file for batch input or for use with the /INPUT command).
Type 13 (bitmap) annotation applies user defined bitmaps defined using
the FILE option of the /TXTRE command.
This command is valid in any processor.
"""
command = f"/ANUM,{num},{type_},{xhot},{yhot}"
return self.run(command, **kwargs)
|
be3acd32deffcd31a3a83758b64d0d6950bbd791
| 699,583
|
def main():
"""Manages the application root"""
return ('', 404)
|
cf1d676fc24d1db79c567d6d37d7d6660aaca977
| 699,584
|
def parse_params_arg(params_arg):
""" Parse Params Arg """
params = dict()
args = params_arg.split(',')
for arg in args:
keyvalue = arg.split('=')
params[keyvalue[0]] = keyvalue[1]
return params
|
2e5673b2bbe552cb751b1250161745d7913df1be
| 699,585
|
def nthUglyNumber(n: int) -> int:
"""
书中的解法
"""
q = [1]
t2, t3, t5 = 0, 0, 0
for i in range(n-1):
a2, a3, a5 = q[t2]*2, q[t3]*3, q[t5]*5
to_add = min(a2, a3, a5)
q.append(to_add)
if a2 == to_add:
t2 += 1
if a3 == to_add:
t3 += 1
if a5 == to_add:
t5 += 1
return q[-1]
|
a24806c1ff94ec1291c19bb1f1a8596e20c809b6
| 699,586
|
def livb_annotation():
"""Returns an annotation with species entities (LIVB) identified.
"""
annotation = {"ents": [{"text": "mouse", "label": "LIVB", "start": 0, "end": 0},
{"text": "human", "label": "LIVB", "start": 0, "end": 0}],
"text": "mouse and human",
"title": ""}
return annotation
|
78de25feab620347e08c8bc74ecf467db3bb477a
| 699,587
|
from typing import Union
import os
def ssh_get_submission_cmd(
filename: str,
cmd_line_arguments: Union[str, None],
job_arguments: dict,
ssh_settings: dict,
):
"""Create shell script string to execute on remote SSH server."""
if cmd_line_arguments is None:
cmd_line_arguments = ""
# Write the desired python/bash execution to slurm job submission file
f_name, f_extension = os.path.splitext(filename)
if f_extension == ".py":
cmd = f"python {filename} {cmd_line_arguments}"
elif f_extension == ".sh":
cmd = f"bash {filename} {cmd_line_arguments}"
else:
raise ValueError(
f"Script with {f_extension} cannot be handled"
" by mle-toolbox. Only base .py, .sh experiments"
" are so far implemented. Please open an issue."
)
# Add conda environment activation
if "use_conda_venv" in job_arguments:
if job_arguments["use_conda_venv"]:
script_cmd = "echo $$; /bin/bash -c 'source $(conda info --base)/etc/profile.d/conda.sh && conda activate {} && cd {} && {}'".format(
job_arguments["env_name"], ssh_settings["remote_dir"], cmd
)
else:
script_cmd = "echo $$; /bin/bash -c 'cd {} && {}'".format(
ssh_settings["remote_dir"], cmd
)
elif "use_venv_venv" in job_arguments:
if job_arguments["use_venv_venv"]:
script_cmd = "echo $$; /bin/bash -c 'source {}/{}/bin/activate && cd {} && {}'".format(
os.environ["WORKON_HOME"],
job_arguments["env_name"],
ssh_settings["remote_dir"],
cmd,
)
else:
script_cmd = "echo $$; /bin/bash -c 'cd {} && {}'".format(
ssh_settings["remote_dir"], cmd
)
else:
script_cmd = "echo $$; /bin/bash -c 'cd {} && {}'".format(
ssh_settings["remote_dir"], cmd
)
return script_cmd
|
7cac49ddabcc94fdfa1ee6d13384b12ba854f61d
| 699,588
|
def _to_int(parsed):
"""
Transforms the received parsed value into an integer.
:param parsed: the parsed value
:return: an integer created from the value
"""
if len(parsed) > 0:
return int(parsed[0])
else:
return None
|
1701648c7e42232c8be0c7451d19ffe43f322118
| 699,589
|
def get_model_string(model):
"""
:param model: model
:returns: <app_label>.<model_name> string representation for the model
"""
return "{app_label}.{model_name}".format(app_label=model._meta.app_label, model_name=model._meta.model_name)
|
d54323680c4a15cc99bbbcea09cf319c571ff9cf
| 699,590
|
import torch
def get_sift_pooling_kernel(ksize=25):
"""
Returns a weighted pooling kernel for SIFT descriptor
"""
ks_2 = float(ksize) / 2.0
xc2 = ks_2 - (torch.arange(ksize).float() + 0.5 - ks_2).abs()
kernel = torch.ger(xc2, xc2) / (ks_2**2)
return kernel
|
4576e97eaab4eba86c9a68edd67c00a2ede0db3f
| 699,591
|
def check_overscan(xstart, xsize, total_prescan_pixels=24,
total_science_pixels=4096):
"""Check image for bias columns.
Parameters
----------
xstart : int
Starting column of the readout in detector coordinates.
xsize : int
Number of columns in the readout.
total_prescan_pixels : int
Total prescan pixels for a single amplifier on a detector.
Default is 24 for WFC.
total_science_pixels : int
Total science pixels across a detector.
Default is 4096 for WFC (across two amplifiers).
Returns
-------
hasoverscan : bool
Indication if there are bias columns in the image.
leading : int
Number of bias columns on the A/C amplifiers
side of the CCDs ("TRIMX1" in ``OSCNTAB``).
trailing : int
Number of bias columns on the B/D amplifiers
side of the CCDs ("TRIMX2" in ``OSCNTAB``).
"""
hasoverscan = False
leading = 0
trailing = 0
if xstart < total_prescan_pixels:
hasoverscan = True
leading = abs(xstart - total_prescan_pixels)
if (xstart + xsize) > total_science_pixels:
hasoverscan = True
trailing = abs(total_science_pixels -
(xstart + xsize - total_prescan_pixels))
return hasoverscan, leading, trailing
|
934d7683a710e9fe88d488398a9ad9e769470460
| 699,592
|
def is_python(view):
"""Cosmetic sugar."""
return view.score_selector(0, 'source.python') > 0
|
18c6f14db5b24130e0fb04718e3d81ff7749a526
| 699,593
|
import re
def is_card(content, cards):
"""
Checks whether the current line contents is a data card starting string.
"""
card = None
for icards in cards:
actual_card = icards[0]
card_regex = re.compile(icards[1])
if card_regex.match(content) is not None:
card = actual_card
break
return card
|
6c07ea6d76a77b87288903584d295e4b26220f9c
| 699,594
|
def vec_reverse(a):
"""
Reverses a vector
Parameters
----------
a: list[]
A vector of scalar values
Returns
-------
list[]
The reversed vector
"""
return a[::-1]
|
b22e13746de1fe8de60d774b1e20f5c5528507ff
| 699,595
|
def t04_ValueDNE(C, pks, crypto, server):
"""Checks that values not stored at the server return None."""
score = 0
alice = C("alice")
score += alice.download("a") is None
score += alice.download("b") is None
score += alice.download("c") is None
alice.upload("d", "e")
score += alice.download("e") is None
score += alice.download("d") == "e"
return float(score) / 5.0
|
af42da60a48d407ad16da6801e847417dbcc69e9
| 699,596
|
def temp(input_temp):
"""
Formats input temperature with "+" or "-" sign
:param input_temp:
:return: formated temperature
"""
decimal = 0
temp2 = float(input_temp)
if temp2 < 0:
temp_sign = ''
elif temp2 > 0:
temp_sign = '+'
else:
temp_sign = ''
decimal = 0
temp_result = temp_sign + str(round(temp2, decimal))
return temp_result
|
9ce3be3ec362761c2a6aa43e4ae4191c7a471667
| 699,597
|
def get_cell_values(queries, subjects, key=len, attr=None):
"""Generates the values of cells in the binary matrix.
This function calls some specified key function (def. max) against all
values of a specified attribute (def. None) from Hits inside Subjects which
match each query. By default, this function will just count all matching Hits
(i.e. len() is called on all Hits whose query attribute matches). To find
maximum identities, for example, provide key=max and attr='identity' to this
function.
Parameters:
queries (list): Names of query sequences.
subjects (list): Subject objects to generate vlaues for.
key (callable): Some callable that takes a list and produces a value.
attr (str): A Hit attribute to calculate values with in key function.
"""
result = [0] * len(queries)
for index, query in enumerate(queries):
values = [
getattr(hit, attr) if attr else hit
for subject in subjects
for hit in subject.hits
if hit.query == query
]
result[index] = key(values)
return result
|
4725a4c9f9dc291ff0e8595bb25f51c4612f747d
| 699,598
|
def and_(fst, snd):
"""Wraps the logical and function."""
return fst and snd
|
c03f2cb9178aa2863e2da58e4fe2741f4a98ea79
| 699,599
|
def _partition(sequence, size, count):
"""Partition sequence into count subsequences of size
length, and a remainder.
Return (partitions, remainder), where partitions is a sequence of
count subsequences of cardinality count, and
apply(append, partitions) + remainder == sequence."""
partitions = []
for index in range(0, size * count, size):
partitions.append(sequence[index:index + size])
return (partitions, sequence[size * count:])
|
e33e7eaa35e3c57f0decda50e863686f529d5afa
| 699,600
|
def get_style_sheet(
bg: str = "", bg_lighter: str = "", text: str = "", text_button: str = ""
) -> str:
"""
Returns a string representing the style sheet.
Usage: get_style_sheet(True) for dark mode or get_style_sheet(False) for light mode
"""
return f"""QWidget {{
background: {bg};
color: {text};
font-size: 24pt;
font-weight: bold;
font-family: "Inconsolata Bold";
}}
QPushButton, QComboBox {{
background: transparent;
font-size: 25pt;
border-radius: 5;
padding: 8px;
text-align: left;
color: {text_button};
}}
QPushButton::hover, QComboBox::hover, QPushButton::focus, QComboBox::focus {{
background: transparent;
color: {text};
outline: none;
}}
QComboBox::down-arrow {{
background: transparent;
}}
QComboBox::item {{
background: {bg_lighter};
}}
QComboBox::item:selected {{
font-weight: bold;
color: {text};
}}
QLabel, QRadioButton, QScrollArea, QScrollBar::add-line:vertical,
QScrollBar::sub-line:vertical, #graphView {{
background: transparent;
border: none;
}}
QScrollBar {{
background: {bg};
}}
QScrollBar::handle {{
background: {text_button};
border: none;
}}
QScrollBar::handle:pressed {{
background: {text};
}}
#labelMainMenu, #labelTitle, #labelStatistics {{
font-size: 50pt;
}}
#labelDaysAgo {{
color: {text_button}
}}"""
|
1f760e240de493a34e4148f69ad64dc307b6dc99
| 699,601
|
import re
def parse_docket_number(docket_number):
""" Parse a Common Pleas docket number into its components.
A docket number has the form "CP-46-CR-1234567-2019"
This method takes a docket number as a string and
returns a dictionary with the different parts as keys
"""
patt = re.compile(
"(?P<court>[A-Z]{2})-(?P<county>[0-9]{2})-" +
"(?P<docket_type>[A-Z]{2})-(?P<docket_index>[0-9]{7})-" +
"(?P<year>[0-9]{4})")
match = patt.match(docket_number)
if match is None:
return None
else:
return match.groupdict()
|
8f9af7709f881cc82bb7d22b420a5361e085de70
| 699,602
|
def suffixes(word):
"""Returns the list of propper suffixes of a word
:param word: the word
:type word: str
:rtype: list
.. versionadded: 0.9.8"""
return [word[i:] for i in range(1, len(word))]
|
551ea4d612a6c9f0ffe432701e3bde2c80899d85
| 699,603
|
def build_url(param_dict):
"""
Builds the URL needed to query [University of Wyoming, College of Engineering, Department of Atmospheric Science's website](http://weather.uwyo.edu/upperair/sounding.html) to get the proper sounding data.
Parameters
----------
param_dict : dict
A dictionary containing the station number, year, month, and day/hour of the desired date and location.
Returns
-------
full_url : string
String of the query URL with the proper date and location of the desired atmospheric sounding.
"""
base_url = 'http://weather.uwyo.edu/cgi-bin/sounding?TYPE=TEXT%3ALIST'
full_url = base_url
for key in param_dict.keys():
full_url += '&' + key + '=' + param_dict[key]
return full_url
|
77825ae917650d1b832333920b6363d4dac7c36b
| 699,604
|
def smooth(values, factor):
"""smooth non zero values (by factor) towards 0th element."""
new_values = [0] * len(values)
for i in reversed(range(len(values))):
if values[i] != 0:
smoothed_value = values[i]
j = 0
while True:
if i-j < 0: break
new_values[i-j] += smoothed_value
smoothed_value *= factor
if abs(smoothed_value) < 1: break
j += 1
return new_values
|
055c4bbe5bd1e696c69ad1ff14beb72b4abbdd11
| 699,605
|
def in_month(ref_date):
""" which month contains a reference date
:param ref_date: mx.DateTime reference date
:rtype: range_string e.g. 2007-M12
"""
return "%4d-M%02d" % (ref_date.year, ref_date.mon)
|
fe8126529521565e35f2012e359d7a9c57b773d1
| 699,606
|
def _precipitable_water(ea, pair):
"""Precipitable water in the atmosphere (Eq. D.3)
Parameters
----------
ea : ee.Image
Vapor pressure [kPa].
pair : ee.Image or ee.Number
Air pressure [kPa].
Returns
-------
ee.Image or ee.Number
Precipitable water [mm].
Notes
-----
w = pair * 0.14 * ea + 2.1
"""
return ea.multiply(pair).multiply(0.14).add(2.1)
|
a56b3948167fb22bb49b6f84bd3980a2666dd345
| 699,607
|
def str2tuple(string: str):
"""Construct the tuple data from string for SecondQuantizedOp."""
return (string, 1)
|
f9b8fe56bf54d27c9aee6c7a3ec3ab797b08fcd0
| 699,608
|
import argparse
def set_args():
"""设置训练模型所需参数"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0', type=str, help='设置训练或测试时使用的显卡')
parser.add_argument('--config_path', default='./config/config.json', type=str, help='模型参数配置信息')
parser.add_argument('--vocab_path', default='./vocab/vocab.txt', type=str, help='词表,该词表为小词表,并增加了一些新的标记')
parser.add_argument('--train_file_path', default='./data_dir/train_data.json', type=str, help='新闻标题生成的训练数据')
parser.add_argument('--test_file_path', default='./data_dir/test_data.json', type=str, help='新闻标题生成的测试数据')
parser.add_argument('--pretrained_model_path', default=None, type=str, help='预训练的GPT2模型的路径')
parser.add_argument('--data_dir', default='./data_dir', type=str, help='生成缓存数据的存放路径')
parser.add_argument('--num_train_epochs', default=5, type=int, help='模型训练的轮数')
parser.add_argument('--train_batch_size', default=16, type=int, help='训练时每个batch的大小')
parser.add_argument('--test_batch_size', default=8, type=int, help='测试时每个batch的大小')
parser.add_argument('--learning_rate', default=1e-4, type=float, help='模型训练时的学习率')
parser.add_argument('--warmup_proportion', default=0.1, type=float, help='warm up概率,即训练总步长的百分之多少,进行warm up')
parser.add_argument('--adam_epsilon', default=1e-8, type=float, help='Adam优化器的epsilon值')
parser.add_argument('--logging_steps', default=20, type=int, help='保存训练日志的步数')
parser.add_argument('--eval_steps', default=4000, type=int, help='训练时,多少步进行一次测试')
parser.add_argument('--gradient_accumulation_steps', default=4, type=int, help='梯度积累')
parser.add_argument('--max_grad_norm', default=1.0, type=float, help='')
parser.add_argument('--output_dir', default='output_dir/', type=str, help='模型输出路径')
parser.add_argument('--seed', type=int, default=2020, help='随机种子')
parser.add_argument('--max_len', type=int, default=512, help='输入模型的最大长度,要比config中n_ctx小')
parser.add_argument('--title_max_len', type=int, default=32, help='生成标题的最大长度,要比max_len小')
return parser.parse_args()
|
cea63034d513b8717236d68c1270147d6ed1cdff
| 699,609
|
def pack_bits( longbits ):
"""Crunch a 64-bit int (8 bool bytes) into a bitfield."""
byte = longbits & (0x0101010101010101)
byte = (byte | (byte>>7)) & (0x0003000300030003)
byte = (byte | (byte>>14)) & (0x0000000f0000000f)
byte = (byte | (byte>>28)) & (0x00000000000000ff)
return byte
|
78fdf9828b4f98c9bc44233ef5f95244eefb24fc
| 699,610
|
from pathlib import Path
def fullpath(path=""):
""" Path: Expand relative paths and tildes. """
return Path.cwd() / Path(path).expanduser()
|
e7b7d1caa67a2a9988035713ec18347b5581406e
| 699,611
|
import io
def read_file(path):
"""Returns all the lines of a file at path as a List"""
file_lines = []
with io.open(path, mode="rt", encoding="utf-8") as the_file:
file_lines = the_file.readlines()
return file_lines
|
8e220e0b90ded168a1d1d8d37b7451b7796b1ed5
| 699,612
|
import os
def fixture(filename: str) -> str:
"""Load fixture JSON data from disk."""
path = os.path.join(os.path.dirname(__file__), "fixtures", "smartthings", filename)
with open(path, "r", encoding="utf8") as fp:
return fp.read()
|
cd8b938b20832e2f0dc41a1027734d1a753698cb
| 699,613
|
def target(func):
"""
This is a decorator function
:param func:
:return:
"""
def target_func(*original_args, **original_kwargs):
# print 'before the func'
# print original_kwargs
retV = func(*original_args, **original_kwargs)
if retV is None or retV == False:
return False
else:
return retV
# print 'after the func'
return target_func
|
0e77444acd4b3a2ba7efd49854a3c081a054d337
| 699,614
|
import turtle
def new_horse(image_file):
"""(str) -> turtle
Create a new horse where <image_file> is a valid shapename
Returns a turtle object
"""
horse = turtle.Turtle()
horse.hideturtle()
horse.shape(image_file)
return horse
|
8abd7ea09cfe3340c06250f430ee6f25b03f45aa
| 699,615
|
import re
def sort_simulations(df_ts, dyn_dend_order):
"""
Sorts the simulations in the dataframe according to the order in the list dyn_dend_order
"""
# Create a dictionary with the order of each simulation row in the plot
dyn_dend_order_dict = { dyn_name : dyn_dend_order.index(dyn_name) for dyn_name in dyn_dend_order }
# Adding column based in new order recieved from clustering
df_ts['clust_order'] = df_ts['Id'].apply(lambda x: dyn_dend_order_dict[x])
#Sorting by ballesteros Id's (helixloop column) and clustering order
df_ts['helixloop'] = df_ts['Position'].apply(lambda x: re.sub(r'^(\d)x',r'\g<1>0x',x))
df_ts = df_ts.sort_values(["helixloop",'clust_order'])
#Drop sort columns once used
df_ts.drop(['helixloop','clust_order'], axis = 1, inplace = True)
return df_ts
|
68ae24234698803e9f5dd861d7f5255f845401c7
| 699,616
|
import csv
def load_penetration(scenario, path):
"""
Load penetration forecast.
"""
output = {}
with open(path, 'r') as source:
reader = csv.DictReader(source)
for row in reader:
if row['scenario'] == scenario.split('_')[0]:
output[int(row['year'])] = float(row['penetration'])
return output
|
23a9730e9d8ec524fe79eaf50c3adb2a1641d002
| 699,617
|
def get4Neighbors(img, i, j):
"""
Get the 4 neighbours for the pixel analysed.
Parameters: img, image;
i, row number;
j, column number.
Returns: neighbors, list of neighbors.
"""
N, M = img.shape
neighbors = []
if i - 1 >= 0:
neighbors.append(img[i-1][j])
if j - 1 >= 0:
neighbors.append(img[i][j-1])
if j - 1 >= 0 and i - 1 >= 0:
neighbors.append(img[i-1][j-1])
if j + 1 < M and i - 1 >= 0:
neighbors.append(img[i-1][j+1])
return neighbors
|
e3765a34ad02b9cf8d1be19f6e0e03db20ea28df
| 699,618
|
import os
def default_log_path():
"""
:return: The absolute path to the directory that contains Rally's log file.
"""
return os.path.join(os.path.expanduser("~"), ".rally", "logs")
|
28e51033d17de5a15079ab062c7169c51a65bf95
| 699,619
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.