content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def _keytify_test_cases(test_cases):
"""Traverse the test cases list and return a dictionnary
which associate test case name to its duration. This is used for
fast access to tests cases duration.
"""
res = {}
for tc in test_cases:
key = "%s/%s" % (tc.get('classname'), tc.get('name'))
if tc.get('time') is None or float(tc.get('time')) == 0.0:
continue
res[key] = float(tc.get('time'))
return res
|
3adb4f94e617bc03722cb860f0bcd2c388d6ec1a
| 697,422
|
def vv_vel(vel, dt, force, force_previous, mass):
"""Computes the new velocities using the velocity-verlet integration scheme
Args:
vel -- np.array(N,dim) containing the current particle velocities
DT -- timestep
force -- np.array(N,dim) containing the current net forces on each particle
force_previous -- np.array(N,dim) contaning forces at previous timestep
mass -- value of particle mass
Returns:
vel -- np.array(N,dim) containing updated velocities
Notes:
-- the routine runs using Numba @njit decorator for faster run time
"""
for dim in range(vel.shape[1]):
for i in range(vel.shape[0]):
vel[i, dim] += 0.5*dt * (force[i, dim] + force_previous[i, dim])/mass
return vel
|
df56e09ad191b161d258f1decf2bdcaedf7bded9
| 697,423
|
import requests
import json
def getdetailedinfofromid(url, token, personid):
"""
@param url: url for the webex teams API calls
@param token: WebEx Teams Token to be used for the queries of the WebEx Teams Cloud
@param personid: personID of the end user that we would like to return the email to.
@return: Detailed array of all identification data for the user specifed by the personID field
This function will take the person ID value and query the WebEx Teams API to return all data associated with the user.
It includes:
"avatar":
"created":
"displayName":
"emails":
"firstName":
"id":
"lastName":
"nickName":
"orgId":
"type":
"""
apistring = url+"/v1/people?id="+personid
# Set up the Headers based upon the WebEx Teams API
headers = {'Authorization': 'Bearer {}'.format(token),
'content-type': 'application/json'}
# Send the request to the WebEx Teams API using the payload and headers defined above
try:
resp = requests.get(apistring, headers=headers)
except requests.exceptions.RequestException as e:
print(e)
return ''
if resp.status_code == 200:
message_dict = json.loads(resp.text)
message_dict['statuscode'] = str(resp.status_code)
return message_dict['items'][0]
else:
return ''
|
c6bd54182cb8c7cc109ad68505fca5887a6f9fad
| 697,425
|
import pkg_resources
def sample_lmp_zones_raster_file():
"""Return path for the sample lmp zoness raster file."""
return pkg_resources.resource_filename('cerf', 'data/lmp_zones_1km.img')
|
fe3f0c1157a1230675b52cde146921a3f7268a7a
| 697,426
|
def map_nlist(nlist, fn):
"""
Maps `fn` to elements in nested list that has arbitrary depth.
https://stackoverflow.com/a/26133679
:param nlist: Input list
:param fn: Function to be applied
:return: Modified list
"""
new_list = []
for i in range(len(nlist)):
if isinstance(nlist[i], list):
new_list.append(map_nlist(nlist[i], fn))
else:
new_list.append(fn(nlist[i]))
return new_list
|
5f808eff663eae9b38073804241295c6976237a3
| 697,427
|
def s3_upload_part_copy(
s3_obj, bucketname, copy_source, object_key, part_number, upload_id
):
"""
Boto3 client based upload_part_copy operation
Args:
s3_obj (obj): MCG or OBC object
bucketname (str): Name of the bucket
copy_source (str): Name of the source bucket and key name. {bucket}/{key}
part_number (int): Part number
upload_id (str): Upload Id
object_key (str): Unique object Identifier for copied object
Returns:
dict : upload_part_copy response
"""
return s3_obj.s3_client.upload_part_copy(
Bucket=bucketname,
CopySource=copy_source,
Key=object_key,
PartNumber=part_number,
UploadId=upload_id,
)
|
e89fdcf85616eeeab6c8da93dbbd290ad992820b
| 697,428
|
import math
import torch
def sdeint_euler(f, g, dif_g, t, h, x0, mid_state=None):
"""
SDE integration from t0=0 to t1=t. Assume diagnoal noise.
Args:
f: drift function of (t, X), t is time and X is a d-dimensional vector.
Outputs a d-dimensional vector
g: diffusion function of (t, X), t is time and X is a d-dimensional vector.
We assume G=g(t, X) is diagnoal matrix, so g(t, X) outputs the diagnoal
vector (d-dimensional).
t: final time.
h: step size of discritization (the real step size might be slightly smaller).
x0: initial value of X.
d: dimension of X.
Returns:
y: d-dimensional vector, storing the integration result X(t).
"""
N = int(t / h) + 1
h_real = t / N
root_h = math.sqrt(h_real)
# for storing the noise
tt = 0
x = x0
z = torch.randn_like(x0).to(x0)
z.requires_grad = False
for step in range(N):
if mid_state is not None:
mid_state.append(x.detach().clone())
tmp = root_h * z.normal_()
x = x + f(tt, x) * h_real + g(tt, x) * tmp
tt += h_real
return x
|
f9147add232a244cd94d91f95610ff37987c07c3
| 697,430
|
def _translate(expr, trexpr, newexpr=None):
"""Private translate function to allow repeated processing (in a loop)."""
# We use the string and translation map for both paths
expr = str(expr)
trexpr = str(trexpr)
trmap = dict()
if newexpr is not None:
# Create a translation map between the two strings
# In this iteration, we map positionally identical characters
# between the input string and the replacement string
# Characters without matches are deleted (i.e. if the
# replacement string is shorter than the translation string)
newmap = str(newexpr)
for i, c in enumerate(trexpr):
try:
trmap[ord(c)] = ord(newmap[i])
except IndexError:
trmap[ord(c)] = None
else:
# Create a translation map which deletes each character
for c in trexpr:
trmap[ord(c)] = None
# Return the translated string
return expr.translate(trmap)
|
2d3f9e9f6c1ee9fed6995ef6e60f989ffb690c82
| 697,431
|
def max_element(l):
"""
Returns the maximum element of a given list of numbers.
"""
max_ = None
for x in l:
if max_ is None or x > max_:
max_ = x
return max_
|
1596f33f0bb91839fbcaf2613892bf90fafd6afd
| 697,432
|
def mask_pipe_mw(text: str) -> str:
"""
Mask the pipe magic word ({{!}}).
:param text: Text to mask
:return: Masked text
"""
return text.replace("{{!}}", "|***bot***=***param***|")
|
546d7c4b71ce3403da7a33883dac2cd3171224e6
| 697,433
|
def to_scalar(var):
"""
convert a tensor to a scalar number
"""
return var.view(-1).item()
|
56170067e38773ce452268827ef87d7b1bab877a
| 697,434
|
def check_input(def_list):
"""Check that all defect structures in list are not None.
Args:
def_list (list): List of defect structures
Returns:
True if all defect structures are present.
"""
for defect in def_list:
if not defect:
return False
return True
|
0c1372688e4780dd44df575d470e0511366dbbc4
| 697,435
|
import os
def read_images():
"""Read images for directory test_image"""
images_buffer = []
image_files = []
for path, _, file_list in os.walk("./test_image/"):
for file_name in file_list:
image_file = os.path.join(path, file_name)
image_files.append(image_file)
for image_file in image_files:
with open(image_file, "rb") as fp:
images_buffer.append(fp.read())
return images_buffer, image_files
|
c88466737fba4ecd33aa8d62847e83bc86a88be9
| 697,436
|
def sdm_particular_from_rref(A, ncols, pivots):
"""Get a particular solution from A which is in RREF"""
P = {}
for i, j in enumerate(pivots):
Ain = A[i].get(ncols-1, None)
if Ain is not None:
P[j] = Ain / A[i][j]
return P
|
9743bfd1c30564c859c3a135d3df092c50dead75
| 697,437
|
import os
def get_dispatch_cmake_arg(args):
"""Returns the CMake argument to the Dispatch configuration to use for bulding SwiftPM."""
dispatch_dir = os.path.join(args.dispatch_build_dir, 'cmake/modules')
return '-Ddispatch_DIR=' + dispatch_dir
|
622b031de03c55705b0cf529d0c638ab08a099f3
| 697,438
|
def load_model(path, version=None):
"""
Load a model from disk
:param path: location of the model
:param version: defines requested version(None == latest)
:return: model
"""
return 3
|
b41b7f49080b07d98f4e1ac71d44a861bcf52a03
| 697,439
|
from time import strftime, localtime
from typing import Union
def format_time(time_tick: Union[int, float]) -> str:
"""
格式化时间戳为具体日期,例\n
>>> format_time(123456789)\n
>>> '1973-11-30 05:33:09'\n
:param time_tick: 时间戳
:return: 具体日期
"""
return strftime('%Y-%m-%d %H:%M:%S', localtime(time_tick))
|
8f3da87066013ce267b485d4924617c9615b455e
| 697,440
|
def pack(word, pattern):
"""Return a packed word given a spaced seed pattern.
>>> pack('actgac', [True, False, True, True, False, True])
'atgc'
"""
ret = []
for i, char in enumerate(word):
if pattern[i]:
ret.append(char)
return "".join(ret)
|
9697a4ee5b9bbc3d7f4d22040196bc8856fd2b6d
| 697,441
|
import io
import requests
def upload_prefixes_list(url, filename, prefixes_list, headers):
"""Upload a targets list given the target list path."""
fd = io.StringIO()
for prefix in prefixes_list:
fd.write(",".join(prefix) + "\n")
fd.seek(0)
req = requests.post(
url + "/targets/",
files={"target_file": (filename, fd)},
headers=headers,
)
fd.close()
if req.status_code == 201:
return True
else:
print(req.text)
return False
|
065231b0a6e81edac30591977b31976d0d5c1f01
| 697,442
|
import os
def config_dir():
"""
Get config directory for per-user configurations.
Configuration on a per-user level should be stored within a directory
(only) readable by the currently logged-in user.
Returns
-------
config_dir : :class:`str`
Path to config directory, usually in the user's directory
"""
config_dir_ = os.environ.get(
'XDG_CONFIG_HOME',
os.path.join(os.path.expanduser('~'), '.config')
)
return config_dir_
|
c6c84c3fdce9f7f78f71a786b079a73aa154a741
| 697,443
|
import os
def exists(path, strict=False):
"""Case-sensitive os.path.exists."""
if not strict:
return os.path.exists(path)
if os.path.exists(path):
dirpath, name = os.path.split(path)
return name in os.listdir(dirpath)
return False
|
92f0dc2f11cf421992e2c6ec6daad322995a7eb6
| 697,444
|
def read_timestamps(filename):
"""
assume the first column of the file contains timestamp in second
"""
file = open(filename)
data = file.read()
lines = data.replace(",", " ").replace("\t", " ").split("\n")
data_list = [[v.strip() for v in line.split(" ") if v.strip() != ""]
for line in lines if len(line) > 0 and line[0] != "#"]
stamps = [float(v[0]) for v in data_list]
return stamps
|
4ecc35c287eaa3c4240943b94b3761c769468903
| 697,445
|
def getVertexSortingLabel(vertex):
"""
Return a value used to sort vertices prior to poposing candidate pairs in
:meth:`__VF2_pairs`. The value returned is based on the vertex's
connectivity values (and assumes that they are set properly).
"""
return vertex.sortingLabel
|
265fc105637c5e9c301c7da3f1cd1818ec4f0d63
| 697,446
|
def agent_registration_details():
"""Data that an agent shares in response to the 'register' request."""
return {
"name": "PyTestAgent",
"display_name": "Pytest agent",
"description": "Just a trivial agent for testing purposes.",
"default_options": {},
}
|
9e187c2d42570b80d605ea4b2caf3175a6332c04
| 697,447
|
def get_shp_extent(gdf):
"""Fetch extent of input shapefile"""
extent = tuple(gdf.bounds.values[0])
return extent
|
d9343f94f349c1db5af033d78693d3b55407a3c8
| 697,448
|
def get_grid_data(df):
"""
Prunes dataframe to rows whose longitudes are multiples of 60
degrees and whose years are multiples of 10. This includes only
lat/lon grid locations for which we have USNO data for all eight
types of twilight events.
"""
bools = (df['Longitude'] % 60 == 0) & (df['Year'] % 10 == 0)
return df[bools]
|
4788356a9c0b14759a34c436f2f8267ea07043be
| 697,449
|
def factorial(value: int) -> int:
""" Calculates the factorial of the given value.
factorial
=========
The `factorial` function takes an positive integer value and calculates the
factorial (n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1).
Parameters
----------
value: int
an positive integer value
Returns
-------
factorial: int
factorial of the value (value!)
"""
if value == 1: # The base case: if the value is 1 then
return 1 # stop recursion and return
return value * factorial(value - 1) # The recursive case: call the
# factorial function with value
# decreased by 1
|
642700f9ec42c3ab47130d599626c44b2de4165c
| 697,450
|
import ast
def _build_table(src):
""" Builds AST tree table from given source.
Args:
src (str): source code
Returns:
dict: table of ast.AST nodes in tree
"""
table = {}
tree = ast.parse(src)
for node in ast.walk(tree):
curr = table.get(node.__class__, [])
table[node.__class__] = curr + [node]
return table
|
955fcec38e57a9657ffad183a7486ddfc5847bfc
| 697,451
|
import os
import shutil
def delete_after(filename):
"""Decorator to be sure the file given by parameter is deleted after the
execution of the method.
"""
def delete_after_decorator(function):
def wrapper(*args, **kwargs):
try:
return function(*args, **kwargs)
finally:
if os.path.isfile(filename):
os.remove(filename)
if os.path.isdir(filename):
shutil.rmtree(filename)
return wrapper
return delete_after_decorator
|
4b69a7bcfe65967aa0b4dca4a30793db594cfc15
| 697,452
|
import torch
def make_bow_vector(sentence, word_to_ix):
"""
Turn a sentence (list of words) into a vector using the dictionary (word_to_ix)
return data is a FloatTensor of shape 1 (batch size) by len(word_to_ix)"""
vec = torch.zeros(len(word_to_ix))
for word in sentence:
vec[word_to_ix[word]] += 1
return vec.view(1, -1)
|
ae0df26878537ae232e70881d5e8a56fcea0c350
| 697,453
|
def matmul(a, b):
"""
Multipy two matrices
:param a: list of list of floats
:param b: list of list of floats
:return: resulting matrix
"""
res = []
for r_idx, a_r in enumerate(a):
res_row = [
sum([a_v * b_r[b_idx] for a_v, b_r in zip(a_r, b)])
for b_idx in range(len(b[0]))
]
res.append(res_row)
return res
|
504f53c1de68a28a2c23c479b53acc76f359f347
| 697,454
|
import requests
def _generate_swagger_spec():
"""Downloads current Dialpad API swagger spec and returns it as a dict."""
# Unfortunately, a little bit of massaging is needed to appease the swagger parser.
def _hotpatch_spec_piece(piece):
if 'type' in piece:
if piece['type'] == 'string' and piece.get('format') == 'int64' and 'default' in piece:
piece['default'] = str(piece['default'])
if 'operationId' in piece and 'parameters' in piece:
for sub_p in piece['parameters']:
sub_p['required'] = sub_p.get('required', False)
if 'basePath' in piece:
del piece['basePath']
def _hotpatch_spec(spec):
if isinstance(spec, dict):
_hotpatch_spec_piece(spec)
for k, v in spec.items():
_hotpatch_spec(v)
elif isinstance(spec, list):
for v in spec:
_hotpatch_spec(v)
return spec
# Download the spec from dialpad.com.
spec_json = requests.get('https://dialpad.com/static/openapi/apiv2openapi-en.json').json()
# Return a patched version that will satisfy the swagger lib.
return _hotpatch_spec(spec_json)
|
ebde3f0ce27ca4df8e5f1888f61910e3b91c6f3c
| 697,455
|
from typing import Dict
from typing import Any
from typing import List
def directory(module_locals: Dict[str, Any]) -> List[str]:
"""
Return the module's public directory for dir function.
Parameters
----------
module_locals
The module's locals as generated by the locals() function.
Returns
-------
List of public objects.
"""
dir_ = []
for key in module_locals:
if key.startswith('_'):
continue
try:
include_in_dir = module_locals[key].__dict__['_include_in_dir']
except KeyError:
include_in_dir = True
except AttributeError:
include_in_dir = False
if include_in_dir:
dir_.append(key)
return dir_
|
37dc44ddc18a21c5aa6faba9887cae0aa6bcdd0b
| 697,456
|
def _comparable(klass):
""" C{__eq__}, C{__lt__}, etc. methods are added to the class,
relying on C{__cmp__} to implement their comparisons. """
def __ne__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return tuple(self) != tuple(other)
def __lt__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.precedence_key < other.precedence_key
def __le__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.precedence_key <= other.precedence_key
def __gt__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.precedence_key > other.precedence_key
def __ge__(self, other):
if not isinstance(other, self.__class__):
return NotImplemented
return self.precedence_key >= other.precedence_key
klass.__lt__ = __lt__
klass.__gt__ = __gt__
klass.__le__ = __le__
klass.__ge__ = __ge__
klass.__ne__ = __ne__
return klass
|
5cfeb87e225aa0f72c7489571c42c9f513c905a5
| 697,458
|
def SplitDataset_x_y(df, IndependentColumnName):
"""
This function split a dataframe into a dataframe with independent variables and a dataframe with dependent variables.
The IndependentColumnName define what is/are the independent variables based on the related column name.
Arguments:
----------
- df: pandas dataframe
The dataframe containing both the independent and dependent variables
- IndependentColumnName: list
The column name of the independent variables - can be a list of one element or more.
Return:
----------
- x: pandas dataframe
All columns contained in the initial df dataframe excepted the column provided into the IndependentColumnName list.
- y: pandas dataframe
Only the columns provided into the IndependentColumnName
"""
y = df[IndependentColumnName]
x = df.drop(IndependentColumnName, axis=1)
return x, y
|
a2e4a6244fc5bcee401981ee54f20d179c09dc89
| 697,459
|
def dedup_commands(command_list):
"""
Deduplicate a command list.
Now it only removes repeated commands.
"""
cmd_set = set()
deduped_cmd_list = []
for command in command_list:
if command.lower() not in cmd_set:
cmd_set.add(command.lower())
deduped_cmd_list.append(command)
return deduped_cmd_list
|
604dbaf60352924eebc46c29c54d3a7bbbf352b1
| 697,460
|
from functools import reduce
import operator
def validate_nmea_checksum(sentence):
"""
Validates NMEA sentence using checksum according to the standard.
:param sentence: NMEA sentence including checksum
:returns:
- Boolean result (checksum correct)
- raw NMEA data string, with prefix $Gx and checksum suffix removed
"""
sentence = sentence.strip('\n').strip('\r')
nmeadata, cksum = sentence.split('*', 1)
nmeadata = nmeadata.replace('$', '')
xcksum = str("%0.2x" % (reduce(operator.xor, (ord(c) for c in nmeadata), 0))).upper()
return (cksum == xcksum), nmeadata[2:]
|
82f5a63943916e4323178063366a0f8c276ad64a
| 697,461
|
def get_sorter_by_args(model, args: list):
"""Get list of SQLAlchemy order_by args from dictionary of arguments.
"""
sorters = []
for key in args:
if key[0] == '-':
sorters.append(getattr(model, key[1:]).desc())
else:
sorters.append(getattr(model, key))
return sorters
|
d9572ad576d8980dd453835b80f36673f6ab4f16
| 697,462
|
import sys
import re
def re_group(regexp, text):
"""search for regexp in text, return 1st group on match"""
if sys.version < '3':
m = re.search(regexp, text)
else:
# text is bytes-like
m = re.search(regexp, text.decode('ascii', 'replace'))
if m: return m.group(1)
|
1a9e1e3954fcecf56275befb35e31bdae419485b
| 697,463
|
def _draw_rectangle(data, obj, draw_options):
"""Return the PGFPlots code for rectangles.
"""
# Objects with labels are plot objects (from bar charts, etc).
# Even those without labels explicitly set have a label of
# "_nolegend_". Everything else should be skipped because
# they likely correspong to axis/legend objects which are
# handled by PGFPlots
label = obj.get_label()
if label == "":
return data, []
# get real label, bar charts by default only give rectangles
# labels of "_nolegend_"
# See
# <http://stackoverflow.com/questions/35881290/how-to-get-the-label-on-bar-plot-stacked-bar-plot-in-matplotlib>
handles, labels = obj.axes.get_legend_handles_labels()
labelsFound = [
label for h, label in zip(handles, labels) if obj in h.get_children()
]
if len(labelsFound) == 1:
label = labelsFound[0]
legend = ""
if label != "_nolegend_" and label not in data["rectangle_legends"]:
data["rectangle_legends"].add(label)
legend = ("\\addlegendimage{ybar,ybar legend,%s};\n") % (",".join(draw_options))
left_lower_x = obj.get_x()
left_lower_y = obj.get_y()
cont = (
"%s\\draw[%s] (axis cs:%.15g,%.15g) " "rectangle (axis cs:%.15g,%.15g);\n"
) % (
legend,
",".join(draw_options),
left_lower_x,
left_lower_y,
left_lower_x + obj.get_width(),
left_lower_y + obj.get_height(),
)
return data, cont
|
f3bd7c998f44109a6e6ec47a4e835bb5fdd8e1b8
| 697,464
|
def make_ordered_test():
"""this method is for comparing and arranging in order"""
order = {}
def ordered_method(f):
"""method for ordering"""
order[f.__name__] = len(order)
return f
def compare_method(a, b):
"""method for comparing order of methods"""
return [1, -1][order[a] < order[b]]
return ordered_method, compare_method
|
fcc5f86e18b312ad94f3613bba2440e33c3e9706
| 697,465
|
def get_crash_arg() -> bytes:
"""
This function returns the (pre-encoded) `password` argument to be sent to
the `sudo` program.
This data should cause the program to crash and generate a core dump. Make
sure to return a `bytes` object and not an `str` object.
WARNINGS:
0. Don't delete this function or change it's name/parameters - we are going
to test it directly in our tests, without running the main() function
below.
Returns:
The bytes of the password argument.
"""
return (135 * b'A' + 4 * b'B')
|
f25bf1c66c5387076830e77077b97d9844244428
| 697,466
|
def add_mappings(mappings):
"""Returns a dict with additional es mappings."""
# return mappings since we are not adding any new index fields
return mappings
|
a358c5dc17568f20a8ccbfd3b8d40e1a9b630d1b
| 697,467
|
def processRecord(rec):
"""return tuple of (cas#,[syn])"""
cas = 'Nope'
prime = ''
lst = []
fields = rec.split('FIELD ')
for fld in fields:
if 'Registry Number:' in fld:
start = fld.find(':')+1
end = fld.find('\n')
cas = fld[start:end]
if 'CA Index Name:' in fld:
start = fld.find(':')+1
end = fld.find('\n')
prime = fld[start:end].lower()
if 'Other Names:' in fld:
start = fld.find(':')+1
lst = fld[start:].split(';')
olst = [prime]
for syn in lst:
syn = syn.strip().lower()
if len(syn)>0:
if syn not in olst:
olst.append(syn)
return (cas,olst)
|
cf514412053ab7449887064c9fafa7e422c450ae
| 697,468
|
def row_indices(tbl):
""" table row_indices
"""
return tuple(tbl.index)
|
9eec5da90a9563687c66c26f6ad134973170301d
| 697,469
|
def ParseLine(line, new_target):
"""Parse one line of a GCC-generated deps file.
Each line contains an optional target and then a list
of space seperated dependencies. Spaces within filenames
are escaped with a backslash.
"""
filenames = []
if new_target and ':' in line:
line = line.split(':', 1)[1]
line = line.strip()
line = line.rstrip('\\')
while True:
# Find the next non-escaped space
line = line.strip()
pos = line.find(' ')
while pos > 0 and line[pos-1] == '\\':
pos = line.find(' ', pos+1)
if pos == -1:
filenames.append(line)
break
filenames.append(line[:pos])
line = line[pos+1:]
return filenames
|
ab0df773a9279f30b438ee7c325225a74574a588
| 697,470
|
def has_refseq(db_list):
"""
Return the index of the list where the 'RefSeq' string is located.
Otherwise return None
:param db_list: A list of db names taken as the first element of the tuples in a
Swissprot.record.cross_references list
:return: int: index or None
"""
if 'RefSeq' in db_list:
return db_list.index('RefSeq')
else:
return None
|
ffa175079e7e14e91fe9b8901c3d8cd60b200eea
| 697,472
|
def normalize_identity(my_string: str) -> str:
"""
Return identity if string
:param my_string: string
:return: my_string
"""
if my_string and isinstance(my_string, str):
return my_string
else:
return ''
|
efee4dd778dbb34aeacd11b5865d3241b0fdfa0b
| 697,473
|
def __or(funcs, args):
""" Support list sugar for "or" of two predicates. Used inside `select`. """
results = []
for f in funcs:
result = f(args)
if result:
results.extend(result)
return results
|
b7f6a558812de56bc8f2348be3e0a9edcc6339e7
| 697,474
|
import platform
def get_exec_env_parameters():
"""Params of env such as os info, cpu arch, python ver, etc.
:return Dict[str, str]:
"""
result = dict()
result["OperatingSystem"] = platform.system()
result["MachineHostName"] = platform.node()
result["OSReleaseInfo"] = platform.release()
result["CPU"] = platform.machine()
result["PythonVersion"] = platform.python_version()
return result
|
cb4c2d10dc33649312fd18fc6fb0fc32c00bbab6
| 697,475
|
import ipaddress
def prefix_to_network(prefix):
"""Convert an IP prefix to an IP-address and network mask."""
ipaddr = ipaddress.ip_interface(prefix) # turn into ipaddress object
address = ipaddr.ip
mask = ipaddr.netmask
return address, mask
|
ac521405d5bdd90f082bc4d0e5f434b7a5b7f3f7
| 697,476
|
def deflatten(d, sep='.', maxdepth=-1):
"""Build a nested dict from a flat dict respecting a separator.
>>> d_in = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
>>> d = flatten(d_in)
>>> for k, v in d.items(): print(k, v)
a 1
c.a 2
c.b.x 5
c.b.y 10
d [1, 2, 3]
>>> deflatten(d)
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
>>> deflatten(d, maxdepth=1)
{'a': 1, 'c': {'a': 2, 'b.x': 5, 'b.y': 10}, 'd': [1, 2, 3]}
>>> deflatten(d, maxdepth=0)
{'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd': [1, 2, 3]}
>>> d = flatten(d_in, sep='_')
>>> for k, v in d.items(): print(k, v)
a 1
c_a 2
c_b_x 5
c_b_y 10
d [1, 2, 3]
>>> deflatten(d, sep='_')
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
>>> deflatten({('a', 'b'): 'd', ('a', 'c'): 'e'}, sep=None)
{'a': {'b': 'd', 'c': 'e'}}
>>> deflatten({'a.b': 1, 'a': 2})
Traceback (most recent call last):
...
AssertionError: Conflicting keys! ('a',)
>>> deflatten({'a': 1, 'a.b': 2})
Traceback (most recent call last):
...
AssertionError: Conflicting keys! ('a', 'b')
"""
ret = {}
if sep is not None:
d = {
tuple(k.split(sep, maxdepth)): v for k, v in d.items()
}
for keys, v in d.items():
sub_dict = ret
for sub_key in keys[:-1]:
if sub_key not in sub_dict:
sub_dict[sub_key] = {}
assert isinstance(sub_dict[sub_key], dict), (
f'Conflicting keys! {keys}'
)
sub_dict = sub_dict[sub_key]
assert keys[-1] not in sub_dict, f'Conflicting keys! {keys}'
sub_dict[keys[-1]] = v
return ret
|
dc507bd9c167c1b2c9cb89605a424d235c11fb82
| 697,477
|
import threading
def makethread(func):
"""Função que transforma uma função qualquer numa Thread
Args:
func (function): função a ser transformada em Thread
Returns:
(function) wrapper da função a ser transformada em thread
"""
def _thread(*args, **kwargs):
"""Decorador interno da função
Args:
*args (tuple): tupla de argumentos da função
**kwargs (dict): dicionários de palavras-chave da função
"""
pcs = threading.Thread(target = func, args = args, kwargs = kwargs)
pcs.start()
return _thread
|
3c3565143b817c57903771e5a5c5aa904b44a4d5
| 697,478
|
import click
def config_option(config_function):
"""Helper decorator that turns an option function into a cli option"""
return (lambda function: click.option('--' + config_function.__name__,
help=config_function.__doc__.strip() + '. Example: "' +
str(config_function()) + '"')(function))
|
f6e8dd160bf6b1f38612cbf338140f6f94862644
| 697,479
|
import re
def strip_headers(pem_text):
"""
Strips the headers off a a FinCrypt key or message.
:param pem_text: Text of key or message (string)
:return: Tuple (header (ie. 'BEGIN FINCRYPT MESSAGE'), base64 (string))
"""
match = re.match(
r'(?:-+ (BEGIN FINCRYPT (?:PUBLIC |PRIVATE )?(?:KEY|MESSAGE)) -+\n)([a-zA-Z0-9\n\-_=]+[^\n])'
r'(?:\n-+ END FINCRYPT (?:PUBLIC |PRIVATE )?(?:KEY|MESSAGE) -+)', pem_text)
if match is None:
return None, None
return match[1], match[2]
|
c00f3006f392bde2ed835905cdf0582e25049a9d
| 697,480
|
def _CreateAssetsList(path_tuples):
"""Returns a newline-separated list of asset paths for the given paths."""
dests = sorted(t[1] for t in path_tuples)
return '\n'.join(dests) + '\n'
|
bb57f014e68d398eb89468a7c86c972f03e47b7d
| 697,481
|
def _read_json_success(response):
"""Attempts to read the `success` value from a JSON response, if
applicable. Returns True or False"""
if response.status_code != 200:
return False
try:
# requests > 1.0.0
return response.json().get('success', False)
except AttributeError:
# requests < 1.0.0 had a json attribute instead of a method.
return response.json.get('success', False)
|
97f48f24cea4be5fb2d648907282ab8eb3ac340e
| 697,482
|
def discount_with_dones(rewards, dones, gamma):
"""
Calculates discounted rewards. This is still valid if the episode
terminated within the sequence.
From OpenAI basline's A2C.
Parameters
----------
rewards: list
list of rewards with the last value being the state value
dones: list
list of dones as floats
gamma: float
discount factor
Returns
-------
list of discounted rewards
"""
discounted = []
r = 0
# discounted rewards are calculated on the reversed reward list.
# that returns are calculated in descending order is easy to
# overlook in the original pseudocode.
# when writing down an example of the pseudocode, it is clear, that
# r_t + gamma * V(s_tp1) is calculated for each list element and
# this is also what is done here.
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + gamma*r*(1.-done)
discounted.append(r)
return discounted[::-1]
|
2feef30d209795414029cfc79aef2ea8e65220af
| 697,484
|
def ema(series, n):
"""
指数加权移动平均线: 求series序列n周期的指数加权移动平均
计算公式:
ema(x, n) = 2 * x / (n + 1) + (n - 1) * ema(x, n).shift(1) / (n + 1)
注意:
1. n 需大于等于1
2. 对距离当前较近的k线赋予了较大的权重
Args:
series (pandas.Series): 数据序列
n (int): 周期
Returns:
pandas.Series: 指数加权移动平均线序列
Example::
from tqsdk import TqApi, TqSim, tafunc
api = TqApi(TqSim())
klines = api.get_kline_serial("CFFEX.IF1908", 24 * 60 * 60)
ema = tafunc.ema(klines.close, 5)
print(list(ema))
"""
ema_data = series.ewm(span=n, adjust=False).mean()
return ema_data
|
fcdf4a33821ba20d7026f30f4229ab7f62f32eda
| 697,485
|
import io
import numpy
def adapt_array(array):
"""
Using the numpy.save function to save a binary version of the array,
and BytesIO to catch the stream of data and convert it into a BLOB.
"""
out = io.BytesIO()
numpy.save(out, array)
out.seek(0)
return out.read()
|
2a9558bea44e124e846e8587f5280175be6911a6
| 697,487
|
def tile_square(F, data):
"""
Tiles an NxN matrix into N^2xN
:param F:
:param data:
:return:
"""
e = F.expand_dims(data, axis=0) # 1xNxN
f = F.broadcast_like(e, data, lhs_axes=0, rhs_axes=0) # NxNxN
g = F.reshape(f, (-3, 0)) # N^2 x N
return g
|
adde9f14acf5568bfbfe869fbc1a8f7967702206
| 697,488
|
def count_letters(word):
"""
count letters ignore , or -, or space
"""
count = 0
for letter in word:
if letter != ',' and letter !='-' and letter !=' ':
count += 1
return count
|
5ea2539cd5a81bdef6b8b3fed1a90410d43de7e0
| 697,489
|
from typing import Callable
import sys
def verify(func: Callable):
"""
verifies whether the response from a function is not None.
If it is None, sys.exit() is run to kill the process.
:param func -> ``Callable``: the function whose response to verify.
:returns ``Callable``: the 'wrapped' function.
"""
def wrapper(*args):
function_response = func(*args)
if not function_response:
sys.exit(1)
else:
return function_response
return wrapper
|
1088b541f5de0ff0cb38e9decf192020f383e328
| 697,490
|
from typing import Any
from typing import Dict
def _get_feature_row(features: Any, index: int) -> Dict[str, Any]:
"""Returns one row of the features table as a dictionary."""
return {name: values.iloc[index] for name, values in features.items()}
|
8729d3f4c8adaa00fd219e2bb74d6ba138776793
| 697,491
|
def biquad(X, c, x1, y1, x2, y2, xy):
"""
Biquadratic surface, for curve fitting
"""
x,y = X
return x2*x**2 + y2*y**2 + xy*x*y + x1*x + y1*y + c
|
e2f9da8552d7def47f26425055611cfe0b7bea0a
| 697,492
|
def findimagenumber (filename):
"""find the number for each image file"""
#split the file so that name is a string equal to OBSDATE+number
name=filename.split('/')[-1].split('.')[0]
return int(name[9:])
|
39219217644f264e089ba3adc94c1175f7c4a6dc
| 697,493
|
def get_quarter_from_month(month: int):
"""Returns the quarter for a given month"""
month_quarter_map = {1: 1, 2: 1, 3: 1, 4: 2, 5: 2, 6: 2, 7: 3, 8: 3, 9: 3, 10: 4, 11: 4, 12: 4}
return month_quarter_map[month]
|
ef7f3a83c3b4b75823e67bca9ce3f62dd1cae5cf
| 697,494
|
import subprocess
def is_tmm():
"""Determines if the TMOS dataplane microkernels are running"""
tmm_running = int(subprocess.Popen("ps -ef|grep /usr/bin/tmm|grep -v grep|wc -l| tr -d ';\n'",
stdout=subprocess.PIPE, shell=True).communicate()[0])
if tmm_running == 1:
return True
return False
|
0bbc1e811753b2381e7c1d94a4ffa9f87d213f0c
| 697,495
|
def _precision(tp, fp):
"""Calculate precision from true positive and false positive counts."""
if fp == 0:
return 1 # by definition.
else:
return tp / (tp + fp)
|
9bf80bc0ce2b657b1c8bbc8fb57e64e7df2081c9
| 697,496
|
def inference(model, X):
"""Run model inferences and return the predictions.
Inputs
------
model : ???
Trained machine learning model.
X : np.array
Data used for prediction.
Returns
-------
preds : np.array
Predictions from the model.
"""
return model.predict(X)
|
c9edd988933bff12fa4da14c9735f8f482e82ca8
| 697,497
|
from datetime import datetime
def now(frm: str = '%d/%m/%Y %H:%M:%S') -> str:
"""
Функция возвращает текущее время и дату
Args:
frm (str): Формат времени и даты
Returns:
str: Текущее время и дата
"""
return datetime.now().strftime(frm)
|
e21851f65de1e7640dc7e34f8f3761129052e1c3
| 697,498
|
async def put_url(session, path, headers, body):
"""
aiohttp: for use with BODY in PUT requests
"""
async with session.put(url=path, headers=headers, data=body) as resp:
res = await resp.json()
return res
|
876add17ed4c76b7d7c43a811fef9d1d720559a5
| 697,500
|
def get_full_piece_id(piece):
"""
Returns rdb piece id and append movement id if exists.
:param piece: A piece as stored in dataset
:return: A string containing either the piece ID (no movement information) like "123", or the piece ID followed
by dash, followed by the movement ID like "123-46123"
"""
piece_id_only = piece["rdb_id_piece"]
movement_id = str(piece.get("rdb_id_movement", ""))
piece_id = str(piece_id_only)
if movement_id:
piece_id += "-" + movement_id
return piece_id
|
7d9c0946d26035cdbf945f6d854913388818e8f9
| 697,501
|
import itertools
def maxgap(data, max_gap):
"""
Arrange data into groups where successive elements
differ by no more than *maxgap*
The input has to be a list of list with the structure:
[['id1', distance between start decay and last expression],['id2',dist2],...,['idn', distn]]
The output will be a list of lists with the identifiers clustered together by the distances if
the difference between them is less than the maxgap
[[id1, id2],[id3,..]]
Example:
in: [['id1',1], ['id2',-1], ['id3',2], ['id4',80], ['id5',81], ['id3',82]]
out: [['id1','id2','id3'], ['id4','id5','id3']]
"""
# Sort the list by the second value (distances)
data.sort(key=lambda x: x[1])
# Separate lists
identifiers = [x[0] for x in data]
distances = [x[1] for x in data]
# Cluster the distances by max gap and return the identifiers groupes
groups = []
for k, g in itertools.groupby(distances, key=lambda n: n//max_gap):
i = len(list(g))
groups.append(identifiers[:i])
identifiers = identifiers[i:]
return groups
|
fba36520d40263eafe25556304a8cbbaf8f724fb
| 697,502
|
def get_slice(img, ori, slc):
"""
Extract one slice from a 3D numpy.ndarray image.
:param img: np.array. input image to extract slice.
:param ori: int. orientation to extract slice. 1. sagittal. 2. coronal. 3. axial.
:param slc: int. slice number to extract.
:return: extracted 2D slice: np.array.
"""
if ori == 1 and 0 <= slc < img.shape[0]:
return img[slc, :, :]
elif ori == 2 and 0 <= slc < img.shape[1]:
return img[:, slc, :]
elif ori == 3 and 0 <= slc < img.shape[2]:
return img[:, :, slc]
else:
raise Exception('Invalid orientation or slice number')
|
dcf03eec0d16c68f55f701b2d312dbf4fa946ee7
| 697,503
|
def prune_multiple_copies_of_species(tree, g2s_map, s2g_map):
"""
Removes all but one leaf with the same species label
Parameters
----------
tree : treeswift tree object
g2s_map : dictionary
maps gene copy labels to species labels
s2g_map : dictionary
maps species label to gene copy labels
"""
found_duplicate = set([])
nLMX = 0
c = 0
for leaf in tree.traverse_leaves():
gene = leaf.get_label()
species = g2s_map[gene]
all_genes = s2g_map[species]
if gene == all_genes[0]:
leaf.set_label(species)
nLMX += 1
else:
leaf.contract()
if not (species in found_duplicate):
found_duplicate.add(species)
c += 1
tree.suppress_unifurcations()
return [nLMX, c]
|
a7b5b5a0b8af0ea157d5bbf1bbbfb1337dc7ee69
| 697,504
|
def _digit_span_to_special_tag(span):
"""
:param str span: 需要替换的str
:return:
"""
if span[0] == '0' and len(span) > 2:
return '<NUM>'
decimal_point_count = 0 # one might have more than one decimal pointers
for idx, char in enumerate(span):
if char == '.' or char == '﹒' or char == '·':
decimal_point_count += 1
if span[-1] == '.' or span[-1] == '﹒' or span[
-1] == '·': # last digit being decimal point means this is not a number
if decimal_point_count == 1:
return span
else:
return '<UNKDGT>'
if decimal_point_count == 1:
return '<DEC>'
elif decimal_point_count > 1:
return '<UNKDGT>'
else:
return '<NUM>'
|
8dc210f4e3834abbdbf23b9dad01e65f12289c80
| 697,505
|
def choose_window_type(measure):
""" # Chose Window Type
Args:
measure (float): dB value.
Returns:
str: name of window type.
"""
reference = {
'rectangular': -21,
'barlett': -25,
'hanning': -44,
'hamming': -53,
'blackman': -74
}
allow_values = list(
filter(lambda value: value[1] < measure, reference.items()))
closet_value = sorted(list(map(lambda value: (value[0], abs(
value[1]-measure)), allow_values)), key=lambda element: element[1])
return closet_value[0][0]
|
05cd22430f82fc08b3ab8fa5f4bad6a7866e3200
| 697,506
|
def get_link(task_id, tasks_df):
"""Return the task link from the task ID."""
task = tasks_df.loc[int(task_id)]
return task['info']['link']
|
a24c467f298526d2176747960430f5e283384043
| 697,507
|
def known_face_sentence(known_face_name):
"""
describe known person
Example:
Anuja is in front of you.
:param known_face_name: name of known person in the frame
:return: sentence descibing person
"""
return "%s in front of you" % (
known_face_name
)
|
266da5bf129ba6844dbe0bd3cbcf9b4663100d1c
| 697,508
|
from typing import Union
from pathlib import Path
def ensure_path(path: Union[str, Path]) -> Path:
"""
Ensure string is converted to a Path.
This is a more restrictive version of spaCy's [ensure_path](https://github.com/explosion/spaCy/blob/ac05de2c6c708e33ebad6c901e674e1e8bdc0688/spacy/util.py#L358)
# Parameters
path : `Union[str, Path]`
If string, it's converted to Path.
# Returns
`Path`
"""
if isinstance(path, str):
return Path(path)
return path
|
1f70ab426f6347399da73e854c0c2be9eee7843c
| 697,510
|
def api_client_pass(application_pass, api_client):
"""Create api_client for 'application_pass'"""
return api_client(application_pass, disable_retry_status_list={404})
|
b17c539e0c8df55f21a62015d4bee3fd243f7f5f
| 697,511
|
def mock_view_function(request):
"""
Function to mock a view function with a mock HTTP request
"""
return "this is a mock view function"
|
b2b95ae346ff1774252eb73cb36f9a0ff86b1e9c
| 697,512
|
from datetime import datetime
import sys
import requests
from bs4 import BeautifulSoup
import json
def fetch_heathrow_data(iso_date_str, direction):
"""
Returns python object with data from Heathrow API.
Inputs:
`iso_date_str` (str): YYYY-MM-DD format of the date for which you want data.
`direction` (str): Specify whether you want "departures" or "arrivals"
Outputs:
`heathrow_data` (dict);
Successful =
* Python Dictionary with keys: ['header', 'flightSummaryList', 'references']
* Payload is the list output['flightSummaryList']['flight']
* Where each dictionary in the list represents a different flightID.
Failure =
* Wrong Date will sys.exit("message")
"""
def check_date_format(iso_date_str):
"""Exit if date is not an iso date string"""
try:
datetime.strptime(iso_date_str, '%Y-%m-%d')
except ValueError as err:
sys.exit(f"Invalid Date: {iso_date_str}. Required Format is YYYY-MM-DD")
return iso_date_str
def make_url(iso_date_str, direction):
url = 'https://api-dp-prod.dp.heathrow.com/infohub/api/v1/flights/' + direction + '/inactive/' + iso_date_str + 'Z'
return url
def fetch_html_soup(url_to_scrape, headers=None):
"""Send a Get request to the specified URL.
Returns:
Fail:
Raises Error if the request fails
Success:
soup (bs4.BeautifulSoup): Soup with the response content
"""
r = requests.get(url_to_scrape, headers = headers)
r.raise_for_status() # Raise error if get request returned an unsuccessful status code
soup = BeautifulSoup(r.text, 'html.parser')
return soup
def soup_to_dict(soup, iso_date_str):
return json.loads(str(soup))
check_date_format(iso_date_str)
url = make_url(iso_date_str, direction)
headers={"origin": "https://www.heathrow.com"}
soup = fetch_html_soup(url, headers)
heathrow_data = json.loads(str(soup))
return heathrow_data
|
59e5ad69268d835b21d3f4540729a46cf0f3fd0d
| 697,514
|
def set_meta(request):
"""
This context processor returns meta informations contained in cached files.
If there aren't cache it calculates dictionary to return
"""
context_extras = {}
if not request.is_ajax() and hasattr(request, 'upy_context') and request.upy_context['PAGE']:
context_extras['PAGE'] = request.upy_context['PAGE']
context_extras['NODE'] = request.upy_context['NODE']
return context_extras
|
3ebcb2aa687d6d8b6b74fb603acbbc55069622b5
| 697,515
|
import argparse
def parse_options():
"""
Parse options
"""
parser = argparse.ArgumentParser(description="Generate SQLite3 database "
"with all options and switches for all "
"installed commands.")
parser.add_argument("--from-help", help="WARNING: Use this parameter only on "
"virtual machine, which could be lost. Try to run all "
"found commands with '--help' parameter to fetch all "
"options from the output. Please use this only if you "
"know what you are doing. ",
action="store_true")
parser.add_argument("--os-name", help="Name of the OS. Whole name will be "
"created by concatenating OS name and OS version.",
required=True)
parser.add_argument("--os-version", help="Version of OS. Whole name will be "
"created by concatenating OS name and OS version.",
required=True)
parser.add_argument("--schema-file", default="./schema.sql",
help="File with database schema. Default file: "
"./schema.sql")
parser.add_argument("--db-file", default="switch.sqlite3",
help="The name of the database file.")
parser.add_argument("--output-db-dir", default="/tmp/switchTest",
help="Directory to write generated database to. "
"Default directory: /tmp/switchTest/")
prog_args = parser.parse_args()
# Name of schema file.
if prog_args.schema_file:
global schema_file
schema_file = prog_args.schema_file
# Name of database file.
if prog_args.output_db_dir:
global db_path
db_path = prog_args.output_db_dir
# DB path
if prog_args.db_file:
global db_file
db_file = prog_args.db_file
return prog_args
|
187444d9407031ddea051403291e5a63fd3ee1d0
| 697,516
|
def tokenize_table_name(full_table_name):
"""Tokenize a BigQuery table_name.
Splits a table name in the format of 'PROJECT_ID.DATASET_NAME.TABLE_NAME' to
a tuple of three strings, in that order. PROJECT_ID may contain periods (for
domain-scoped projects).
Args:
full_table_name: BigQuery table name, as PROJECT_ID.DATASET_NAME.TABLE_NAME.
Returns:
A tuple of project_id, dataset_name, and table_name.
Raises:
ValueError: If full_table_name cannot be parsed.
"""
delimiter = '.'
tokenized_table = full_table_name.split(delimiter)
if not tokenized_table or len(tokenized_table) < 3:
raise ValueError('Table name must be of the form '
'PROJECT_ID.DATASET_NAME.TABLE_NAME')
# Handle project names with periods, e.g. domain.org:project_id.
return (delimiter.join(tokenized_table[:-2]),
tokenized_table[-2],
tokenized_table[-1])
|
a092f749e18cdec41b50a8f1b7e1e5e99cd8e2e3
| 697,517
|
def linear_annuity_mapping_fprime(underlying, alpha0, alpha1):
"""linear_annuity_mapping_fprime
first derivative of linear annuity mapping function.
See :py:func:`linear_annuity_mapping_func`.
The function calculates following formula:
.. math::
\\alpha^{\prime}(S) := \\alpha_{0.}
where
:math:`S` is underlying,
:math:`\\alpha_{0}` is alpha0.
:param float underlying:
:param float alpha0:
:param float alpha1: not used.
:return: value of first derivative of linear annuity mapping function.
:rtype: float.
"""
return alpha0
|
ff57723cad7ade65644744dc30abb6db5c1e6b95
| 697,518
|
def third_bashforth(state, tendencies_list, timestep):
"""Return the new state using third-order Adams-Bashforth. tendencies_list
should be a list of dictionaries whose values are tendencies in
units/second (from oldest to newest), and timestep should be a timedelta
object."""
return_state = {}
for key in tendencies_list[0].keys():
return_state[key] = state[key] + timestep.total_seconds() * (
23./12*tendencies_list[-1][key] - 4./3*tendencies_list[-2][key] +
5./12*tendencies_list[-3][key]
)
return return_state
|
6b1a62b94c662a1b14eafa3be6953e73486b6cfd
| 697,519
|
from typing import OrderedDict
def getAttrFromList(objList, attr):
"""\
Given a list of objects in objList, each having the attribute attr, return a list comprising the value of attr for each object in objList.
Return: A list of values.
Parameters:
* objList: The list of objects
* attr: The attribute had in common
"""
values = []
for o in objList:
if type(o) == dict or type(o) == OrderedDict:
values.append(o.get(attr, None))
else:
values.append(getattr(o, attr))
return values
|
bef6386afff15a0d6a78d92f02878a47171dd9d7
| 697,521
|
def environment_algorithm(db):
"""!
This algorithm interprets the data obtained from the environment sensors.
@param db: The master database
"""
# Check Temperature level
msg = ["environment_sensor", {}]
temperature = int(db['latest']['environment_sensor']['temperature'])
if temperature >= db['Temperature_High']:
flag = "HIGH"
elif temperature <= db['Temperature_Low']:
flag = "LOW"
else:
flag = None
msg[1]['temperature'] = {'value': temperature, 'flag': flag}
# Check Humidity level
humidity = int(db['latest']['environment_sensor']['humidity'])
if humidity >= db['Humidity_High']:
flag = "HIGH" # As we are not controlling humidity and only measuring, no action needed
elif humidity <= db['Humidity_Low']:
flag = "LOW" # As we are not controlling humidity and only measuring, no action needed
else:
flag = None
msg[1]['humidity'] = {'value': humidity, 'flag': flag}
# Check VOC/gas level
gas = round(int(db['latest']['environment_sensor']['gas'])/1000, 2)
if gas >= db['VOC_High']:
flag = "HIGH" # NOTE: In future iterations, poor VOC readings may result in the fan being turned on
elif gas <= db['VOC_Low']:
flag = "LOW" # If VOC is acceptable, no need to take any action.
else:
flag = None
msg[1]['gas'] = {'value': gas, 'flag': flag}
return msg
|
153d6e0e2cc4bb00535bf975d92926775ff36b32
| 697,522
|
def remove_control_char(pdf_content):
"""
移除控制字符,换行符、制表符、转义符等)python-docx是不支持控制字符写入的
:param pdf_content: PDF 文件内容
:return: 返回去除控制字符的内容
"""
# 使用str的translate方法,将ASCII码在32以下的都移除 http://ascii.911cha.com/
return pdf_content.translate(dict.fromkeys(range(32)))
|
84dff48a5654b12f7446f77cbc4d132716d2018c
| 697,523
|
def confirm(question: str) -> bool:
"""Ask a confirmation to the user in the console.
Args:
- question: the question to ask the user.
Returns:
True if the user answered 'yes' or 'y', False otherwise.
"""
input_ = input(question + " Enter (y)es or (n)o: ")
return input_ == "yes" or input_ == "y"
|
bd6415658d4c7adf73d682fb151dc8aecc7eaf6d
| 697,524
|
def get_flag_add(a, b, ci):
"""
get the result of a + b + ci
a,b: int
must be 4-bit number
ci: int
must be 1-bit number
ret: tuple[int,int]
return a tuple the cantain two 4-bit nubmers.
ret[0] is a number cantain ov and cy.
ret[0][3] is cy, ret[0][2] is ov.
ret[1] is the result of a+b+ci.
"""
R = a + b + ci
cy = (R >> 1) & 0x08 # carry at bit 3
# (A XNOR B) AND (A XOR R)
ov = (((~(a ^ b)) & (a ^ R)) >> 1) & 0x04 # ov at bit 2
return cy | ov , (R & 0xF)
|
eebc7eefa24cb7cd92265e5859ce8b4018348242
| 697,525
|
def make_safe_label(label):
"""Avoid name clashes with GraphViz reserved words such as 'graph'."""
unsafe_words = ("digraph", "graph", "cluster", "subgraph", "node")
out = label
for word in unsafe_words:
out = out.replace(word, "%sX" % word)
return out.replace(".", "__").replace("*", "")
|
e122575956e492cbb450287a6b91174fdc59233a
| 697,526
|
def load_bands(src, bands, masked=False):
"""
Load selected bands of a raster as array
*********
params:
--------
src : rasterio.DatasetReader object
bands : list
list of bands to load, e.g. [1,2,3]
masked : bool (default:False)
if True exclude nodata values
return:
tuple: array, metadata
"""
arr = src.read(bands, masked=masked)
metadata = src.profile
metadata.update({
'driver': 'GTiff',
'count': len(bands)})
return arr, metadata
|
e0c131ca93066387ae12f9bc6206626d4313cdf7
| 697,527
|
def is_in_tol(value, expected_value, tolerance):
"""Is the provided value within expected_value +/- tolerance
Parameters
----------
value : int, float
Value of interest
expected_value : int, float
Expected value
tolerance : int, float
Allowed deviation from expected_value
Returns
----------
bool
True if value is within within expected_value +/- tolerance, exclusive
"""
return expected_value + tolerance > value > expected_value - tolerance
|
b1cde33b7979995b86e3ecd4cd41330cfa31c447
| 697,529
|
def uncamel(name):
"""helloWorld => hello_world"""
n = ''
for c in name:
if c.isupper():
n += '_' + c.lower()
else:
n += c
return n
|
ab2496d24bff11f1ae24f6f480c5a8439fb24b04
| 697,530
|
def merge(left, right):
"""
Merge two sorted arrays in a resulting array of size len(left) + len(right)
"""
result = []
while len(left) != 0 and len(right) != 0:
if left[0] < right[0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))
if len(left) == 0:
result += right
else:
result += left
return result
|
9a962735cc157a135c4d65b4f18c5e55d8e182d2
| 697,531
|
import argparse
def parse_args():
"""Parse arguments from the command line."""
parser = argparse.ArgumentParser("Loaded_client")
parser.add_argument('--model-path', type=str, required=True,
help="path to a NN model.")
parser.add_argument('--save-dir', type=str, default="",
help="path to save logs.")
parser.add_argument("--history-len", type=int, default=10,
help="Feature history length.")
parser.add_argument("--input-features", type=str,
# default=["sent latency inflation", "latency ratio",
# "send ratio"],
default=["sent latency inflation", "latency ratio",
"recv ratio"], nargs=3, help="Feature type.")
args, unknown = parser.parse_known_args()
return args
|
57a80c25c8fe96e37ef48126966b80203525e3b2
| 697,532
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.