content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import os
def resolve(path):
"""
Converts path by interpreting tilde and environmental variables
"""
return os.path.expandvars(os.path.expanduser(path))
|
5c47e7de63a65908f25438ed244a765b90ac788f
| 697,198
|
import os
def get_size(filepath):
"""Get file size and return string with appropriate unit"""
size_bytes = os.path.getsize(filepath)
if size_bytes < 1024:
size_bytes = round(size_bytes, 2)
size = f'{size_bytes} B'
else:
size_kilobytes = size_bytes / 1024
if size_kilobytes < 1024:
size_kilobytes = round(size_kilobytes, 2)
size = f'{size_kilobytes} KB'
else:
size_megabytes = size_kilobytes / 1024
if size_megabytes < 1024:
size_megabytes = round(size_megabytes, 2)
size = f'{size_megabytes} MB'
else:
size_gigabytes = size_megabytes / 1024
if size_gigabytes < 1024:
size_gigabytes = round(size_gigabytes, 2)
size = f'{size_gigabytes} GB'
else:
size = "Wow, that's huge."
return size
|
6036b0ecec6276be781f73682bce0024ebaeaec4
| 697,199
|
def is_viable_non_dupe(text: str, comparison) -> bool:
"""text must be longer than 2 ('""'), not 'NULL' and not in comparison.
:param text: String to be tested.
:param comparison: Dictionary or set to search for text in.
:return: bool
"""
return 2 < len(text) and text != 'NULL' and text not in comparison
|
da575dffde2f13e849949350aabe73f40802f14a
| 697,200
|
def total_profit(attributes):
"""
rounds the total profit under the assumption that all inventory was sold.
"""
return round((attributes['sell_price'] - attributes['cost_price']) * attributes['inventory'])
|
f2b7f9f7d19738ad4476ef7d3454c4aa34616faf
| 697,201
|
def _proc(tr, sampling_rate=10):
"""
Basic processing including downsampling, detrend, and demean.
:param tr: raw trace
:param sampling_rate:
:return tr: trace after processing
"""
# deep copy
tr2 = tr.copy()
tr2.interpolate(sampling_rate)
tr2.detrend(type="linear")
tr2.detrend(type="demean")
return tr2
|
99dab5d384b9db80b257c8bd0068f96cbc82c532
| 697,202
|
def get_neighbors(point):
"""Given a 2D point (represented as a Point object), returns a list of the
four points that neighbor it in the four coordinate directions. Uses the
"copy" method to avoid modifying the original point."""
p1 = point.copy()
p2 = point.copy()
p3 = point.copy()
p4 = point.copy()
p1.setX(point.getX() - 1)
p2.setX(point.getX() + 1)
p3.setY(point.getY() - 1)
p4.setY(point.getY() + 1)
points = []
points.append(p1)
points.append(p2)
points.append(p3)
points.append(p4)
return points
|
67df39fe0d6fd61fed70f1521b13754d1230ac9e
| 697,203
|
def get_user_from_email(github, email):
"""Returns a user for that email or None."""
users = list(github.search_users(f'type:user {email} in:email'))
if len(users) == 0:
return None
elif len(users) == 1:
return users[0]
else:
raise RuntimeError(f'{email} associated with {len(users)} users.')
|
8016081e8f9ff737369fdb957055c243372485a6
| 697,204
|
def fixDelex(filename, data, data2, idx, idx_acts):
"""Given system dialogue acts fix automatic delexicalization."""
try:
turn = data2[filename.strip('.json')][str(idx_acts)]
except:
return data
if not isinstance(turn, str): # and not isinstance(turn, unicode):
for k, act in turn.items():
if 'Attraction' in k:
if 'restaurant_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("restaurant", "attraction")
if 'hotel_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("hotel", "attraction")
if 'Hotel' in k:
if 'attraction_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("attraction", "hotel")
if 'restaurant_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("restaurant", "hotel")
if 'Restaurant' in k:
if 'attraction_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("attraction", "restaurant")
if 'hotel_' in data['log'][idx]['text']:
data['log'][idx]['text'] = data['log'][idx]['text'].replace("hotel", "restaurant")
return data
|
cd9fc035165f931183d28d456d4b879eb98c552a
| 697,205
|
from typing import Dict
def read_config(return_config: str, config: Dict):
"""
Reads the config file and goes through the config dictionary to load all of the parameters.
Depending on whether return_config is dashboard or logger it returns the necessary information to create the
dashboard or the logger.
If any of the logger or dashboard options are not included in the config file, returns them as None.
The constructor handles default values if this happens.
:param return_config: String indicating what information I am asking for. It should only be 'logger' or 'dashboard'
respectively.
:param config: The dictionary that needs to be read.
"""
lg_parameters = []
dash_plots = []
refresh = None
ips = None
load_directory = None
save_directory = None
for key in config.keys():
# check if the key is options and load the specified settings.
if key == 'options':
if 'refresh_rate' in config[key]:
refresh = config[key]['refresh_rate']
if 'allowed_ip' in config[key]:
ips = config[key]['allowed_ip']
if 'load_and_save' in config[key]:
load_directory = config[key]['load_and_save']
save_directory = config[key]['load_and_save']
else:
if 'save_directory' in config[key]:
save_directory = config[key]['save_directory']
if 'load_directory' in config[key]:
load_directory = config[key]['load_directory']
elif key == 'plots':
for plot in config[key].keys():
# check what information it needs
if return_config == 'logger':
for params in config[key][plot].keys():
# default configs. If they exist in config they will get overwritten. Used for constructor.
server_param = 'localhost'
port_param = 5555
interval_param = 1
# check if the optional options exist in the dictionary and overwrites them if they do.
if 'server' in config[key][plot][params]:
server_param = config[key][plot][params]['server']
if 'port' in config[key][plot][params]:
port_param = config[key][plot][params]['port']
if 'options' in config[key][plot][params]:
if 'interval' in config[key][plot][params]['options']:
interval_param = config[key][plot][params]['options']['interval']
# a tuple with the specified parameters for the logger
name = params
source_type = config[key][plot][params]['source_type']
parameter_path = config[key][plot][params]['parameter_path']
# appends the tuple with the information for the parameters constructor
lg_parameters.append((name,
source_type,
parameter_path,
server_param,
port_param,
interval_param))
elif return_config == 'dashboard':
name_list = []
for params in config[key][plot].keys():
# append the names of the parameter
name_list.append(params)
# append a touple with the plot and a list of the parameters.
dash_plots.append((plot, name_list))
# returns the correct information for each object
if return_config == 'logger':
return lg_parameters, refresh, save_directory
elif return_config == 'dashboard':
return dash_plots, refresh, load_directory, ips
|
cc91ebe633f01259fa3344f93698ab806ee9d9fc
| 697,206
|
def check_pair_sum_divisible(arr, k):
"""
Check if an array can be divided into pairs whose sum is divisible by k.
"""
rem_freq_map = {}
for elem in arr:
rem = elem % k
rem_freq_map[rem] = rem_freq_map.get(rem, 0) + 1
for rem, freq in rem_freq_map.items():
if rem == 0 or rem * 2 == k:
if freq & 1:
return False
elif not freq == rem_freq_map.get(k - rem, 0):
return False
return True
|
536833113554e50f61a78bc988662edaf190b2b3
| 697,207
|
def shouldIgnore(s):
"""Should we ignore the key s?
(Right now, returns true if s takes the form
"__xxxxx...", prepended by two '_' chars
"""
return len(s) > 1 and s[:2] == "__"
|
07a260a0236444f568c3047ddb3988509f2e7c77
| 697,208
|
def total_yngve_depth(yngve_tree_root):
"""Returns the total depth of the ynvge tree of the sentence
Args:
yngve_tree_root (obj): The root node
Returns:
int: The total depth of the yngve tree
"""
tot_score = 0
for leaf in yngve_tree_root.leaves:
tot_score += leaf.score
return tot_score
|
9220147ed529bac780b7cb5e60ab2364af47f9f6
| 697,209
|
def is_function(f):
"""
Is it a function?
:param f: function
:return: boolean
"""
return hasattr(f, '__call__')
|
c330b81c3b09a0ba8e475e322df5f90d89e39e21
| 697,210
|
def inRects(R, x, y):
"""inRects returns True if (x, y) is in any of the rectangles in R.
"""
return any(x0 <= x < x1 and y0 <= y < y1 for x0, y0, x1, y1 in R)
|
f2e4a5c5d60e4f37ee1a8ec9d54a050b3e12b022
| 697,211
|
def cal_linear(iaql_lo, iaql_hi, bp_lo, bp_hi, cp):
"""
范围缩放
"""
return (iaql_hi-iaql_lo)*(cp-bp_lo)/(bp_hi-bp_lo) + iaql_lo
|
b1aba33f4ee2c42b62de66a710c327b4ffc7838a
| 697,212
|
def _gen_runtime_script(inputs, user_data):
"""
生产运行时脚本
Args:
inputs:
user_data:
Returns:
"""
mec_runtime_script = ''
if 'ak' in inputs and 'sk' in inputs:
mec_runtime_script = 'echo \'ak=$ak$\\nsk=$sk$\\n\' >> /root/init.txt\n'
if '$ak$' not in user_data['str_replace']['params']:
user_data['str_replace']['params']['$ak$'] = {
'get_input': 'ak'
}
if '$sk$' not in user_data['str_replace']['params']:
user_data['str_replace']['params']['$sk$'] = {
'get_input': 'sk'
}
return mec_runtime_script
|
cac5421552df6b58a1a3849e5173884e3eb09416
| 697,213
|
def load_corpus(corpus_path, proc_mode=0):
"""Load the corpus from disk."""
corpus_text=""
with open(corpus_path, 'r') as corpusFile:
corpus_text=corpusFile.read()
return corpus_text
|
045ed4aa97a6e685edefaf03d8f45cd5afb51526
| 697,214
|
def _dict_to_tuple(d):
"""
Recursively converts a dictionary to a list of key-value tuples
Only intended for use as a helper function inside memoize!!
May break when keys cant be sorted, but that is not an expected use-case
"""
if isinstance(d, dict):
return tuple([(k, _dict_to_tuple(d[k])) for k in sorted(d.keys())])
else:
return d
|
4a7137b7aeefc8d9137ec5d1177d0635ef5b5627
| 697,215
|
import token
def decompose_name(node):
"""
NOTE: Per the lib2to3 grammar:
dotted_name: NAME ('.' NAME)*
This means that dotted_name can be either dotted or not dotted, i.e. it's a generalized
form of NAME. So this function will cover both cases.
Given a dotted_name node this will return a tuple of the form (pkg, name, full_string) where
all are str
ex: a.b.c => (a.b, c, a.b.c)
b.c => (b, c, b.c)
c => (None, c, c)
otherwise it will return None for each field
"""
if node.type == token.NAME:
# node is just a name, no dots
return '', node.value, node.value
if node.children:
# Right most node will be the name, i.e. a.b.c = ['a','.','b','.','c']
name_node = node.children[-1]
package_nodes = node.children[:-2]
name = str(name_node).strip()
package = ''.join(str(n).strip() for n in package_nodes)
full = ''.join(str(n).strip() for n in node.children)
return package, name, full
return None, None, None
|
2be377913f6dd2a13335d29b0f932de6ebe35c12
| 697,216
|
from typing import Counter
def composition(mol):
"""Molecular composition in dict format
(ex. Glucose {'C': 6, 'H': 12, 'O': 6}).
"""
mol.require("Valence")
c = Counter()
for _, a in mol.atoms_iter():
c += a.composition()
return c
|
6d677e7390fe815570080dd051edc747ef5a9393
| 697,217
|
from pathlib import Path
from typing import Callable
from typing import List
def find_paths(path: Path, pattern: str, filter: Callable[[Path], bool]) -> List[Path]:
"""
Glob pattern relatively to path and filter results by predicate.
"""
return [x for x in sorted(path.glob(pattern), key=str) if filter(x)]
|
cce368e6dc3b97f715b3f82a5cc5837942d600b9
| 697,218
|
def concatenate(dic):
""" dic: dict of DataFrames
merge all using index and outer join
"""
keys = list(dic)
d = dic[keys[0]].merge(dic[keys[1]], left_index=True, right_index=True, how='outer', suffixes=('.'+keys[0],'.'+keys[1]))
for k in keys[2:]:
d = d.merge(dic[k], left_index=True, right_index=True, how='outer', suffixes=('','.'+k))
return d
|
0e12100664c868c6f2eec9cd9133c9823238b418
| 697,219
|
def abv(og, fg, from_carbonation=0):
"""Work out alcohol content from fermentation data (optionally including carbonation)
"""
value = (float(og) - float(fg)) / 1.938 + float(from_carbonation)
return float(value)
|
d3cf1e0c645d07bf98c70f1b087f0f1213e4bf21
| 697,221
|
def is_winning(p, state):
"""Defines all of the states where a player wins in function of morpions
rules."""
return state[0][0] == state[0][1] == state[0][2] == p or \
state[1][0] == state[1][1] == state[1][2] == p or \
state[2][0] == state[2][1] == state[2][2] == p or \
state[0][0] == state[1][0] == state[2][0] == p or \
state[0][1] == state[1][1] == state[2][1] == p or \
state[0][2] == state[1][2] == state[2][2] == p or \
state[0][0] == state[1][1] == state[2][2] == p or \
state[0][2] == state[1][1] == state[2][0] == p
|
3dafa09f34f48499eb661f577fea5473f57a3b0f
| 697,223
|
import os
def list_notebooks(path='ipynb', skip=''):
"""All notebooks in the directory notebooks/path,
or in the package itself"""
if path == 'ipynb':
return list_notebooks('ipynb_julia', skip=skip) + \
list_notebooks('ipynb_py', skip=skip) + \
list_notebooks('ipynb_R', skip=skip)
nb_path = os.path.dirname(os.path.abspath(__file__))
if path.startswith('.'):
nb_path = os.path.join(nb_path, path)
else:
nb_path = os.path.join(nb_path, 'notebooks', path)
notebooks = [os.path.join(nb_path, nb_file) for nb_file in
os.listdir(nb_path) if not skip or skip not in nb_file]
assert notebooks
return notebooks
|
bb585d58950adf65e2ae2a47ae52a40c530a9eba
| 697,224
|
def find_remote_addr(req):
"""Determine the correct IP address of the requester."""
if req.headers.get('CF-Connecting-IP'):
return req.headers.get('CF-Connecting-IP')
if req.headers.get('X-Forwarded-For'):
return req.headers.get('X-Forwarded-For')
return req.remote_addr
|
ddef91a116fb47a12acd71417b70af88484fd780
| 697,225
|
def linkage_to_leaves(Z,data_size):
""" Convert the linkage formated matrix to a dictionary,
key is a node number while values is a array of leaves of the node
Parameters:
----------
Z: 2-d numpy matrix, shape(n_merges, 4), float
The linkage matrix that generated by See in scipy.cluster.hierarchy.linkage
data_size: integer, _, _
The size of the orignal dataset, the same as the total number of leaves in the likage tree (dendrogram)
Return:
------
node_to_leaves: dictionary, (node number, set of leaves), (integer, list(integer))
A dictionary that can parse a integer node (indexed by a integer) in the linkage tree (dendrogram), to it corresponding leaf nodes.
"""
node_id = data_size
node_to_leaves = {}
for merge in Z[:,:2].astype(int):
# Both node have node id < number of node, the two merging nodes are leaves
if(merge.max()< data_size):
node_to_leaves[node_id] = []
node_to_leaves[node_id].extend(merge)
# One of the merging node (the one with small node index) is a leaf node
elif(merge.min() < data_size):
s,l = merge.min(),merge.max()
node_to_leaves[node_id]= []
node_to_leaves[node_id].extend(node_to_leaves[l])
node_to_leaves[node_id].append(s)
# Both nodes are internal nodes
else:
node_to_leaves[node_id]= []
node_to_leaves[node_id].extend(node_to_leaves[merge[0]])
node_to_leaves[node_id].extend(node_to_leaves[merge[1]])
node_id = node_id + 1
return node_to_leaves
|
0b713962f4d1f594e196a77bc1c955c4a4b57505
| 697,226
|
import re
def remove_comments(data):
"""Return the supplied VHDL file data string, *data*, with all comments
removed."""
return re.sub(r'--[^\n]*', '', data)
|
832e3a66de83cffa764e04a1baef017763af519d
| 697,227
|
import argparse
def get_user_args():
""" Get user commands and return a dictionary with the user input.
Returns:
A dict containing the user input including username, password, host file and command
"""
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--INPUT", help="name of hosts CSV file", required=True)
args = parser.parse_args()
params = {key: value for key, value in args._get_kwargs()}
return params
|
acd65fbb912c10699c38f9a976817ae62a6569a9
| 697,228
|
def probes_to_genes(df, probe_to_gene):
"""Converts probe level dataframe to gene level dataframe."""
get_gene = lambda probe: probe_to_gene.get(probe)
grouped = df.groupby(by=get_gene, axis=0)
gene_df = grouped.mean()
return gene_df
|
348dc91ae5c49904cdfab8c52b2d421220b493e1
| 697,229
|
def target_to_bits(target):
""" Creates a compact target representation for a given target.
Args:
target (Bignum): The long-form target to make compact.
Returns:
ct (int): Compact target
"""
# Get bit length
nbits = target.bit_length()
# Round up to next 8-bits
nbits = ((nbits + 7) & ~0x7)
exponent = (int(nbits/8) & 0xff)
coefficient = (target >> (nbits - 24)) & 0xffffff
if coefficient & 0x800000:
coefficient >>= 8
exponent += 1
return (exponent << 24) | coefficient
|
8a1d996d653388d49d96d51409029f7d8cde283f
| 697,230
|
from typing import ChainMap
def chainmap_context_factory(parent_context=None):
"""
A ``ChainMap`` context, to avoid copying any data
and yet preserve strict one-way inheritance
(just like with dict copying)
"""
if parent_context is None:
# initial context
return ChainMap()
else:
# inherit context
if not isinstance(parent_context, ChainMap):
# if a dict context was previously used, then convert
# (without modifying the original dict)
parent_context = ChainMap(parent_context)
return parent_context.new_child()
|
ff9446d9547dcd042589c402048527a0644fb2c3
| 697,231
|
def get_rectangle_edges(x, y, width, height):
"""Return the 4 edges of a rectangle as a list.
Edges are in clock-wise order, starting from the top.
Each edge is returned as ``(start_point, end_point)`` and each point
as ``(x, y)`` coordinates.
"""
# In clock-wise order, starting on top left
corners = [
(x, y),
(x + width, y),
(x + width, y + height),
(x, y + height)]
# clock-wise order, starting on top right
shifted_corners = corners[1:] + corners[:1]
return zip(corners, shifted_corners)
|
e0738bd8d742eb9f9ae076e2e89031cd8eb74796
| 697,232
|
def get_committee_indices(spec, state, duplicates=False):
"""
This utility function allows the caller to ensure there are or are not
duplicate validator indices in the returned committee based on
the boolean ``duplicates``.
"""
state = state.copy()
current_epoch = spec.get_current_epoch(state)
randao_index = (current_epoch + 1) % spec.EPOCHS_PER_HISTORICAL_VECTOR
while True:
committee = spec.get_next_sync_committee_indices(state)
if duplicates:
if len(committee) != len(set(committee)):
return committee
else:
if len(committee) == len(set(committee)):
return committee
state.randao_mixes[randao_index] = hash(state.randao_mixes[randao_index])
|
f53ffdf01382c45b9f89419a8b4419c66ffbf8ea
| 697,233
|
import math
def comb(n,r):
"""Combinations of n objects by r, namely picking r among n possible.
comb(n,r) = n!/(r!(n-r)!)
"""
return math.factorial(n)/(math.factorial(r)*math.factorial(n-r))
|
61944512cec3555bc15efb73e1ca90510c86caa9
| 697,234
|
def schema_to_dtypes(schema):
"""Converts a schema to a Pandas dtypes dictionary
Args:
schema (list): A schema to get the dtypes from.
"""
dtypes = {}
for item in schema:
name = item['name']
type = item['type']
if type == 'STRING':
dtypes[name] = 'str'
elif type == 'INTEGER':
dtypes[name] = 'float64'
elif type == 'NUMERIC':
dtypes[name] = 'float64'
elif type == 'DATETIME':
dtypes[name] = 'str'
elif type == 'DATE':
dtypes[name] = 'str'
return dtypes
|
b3f2d41b3c6fad5f197da48b236e4ef3801614f7
| 697,235
|
def set_monthly_base_periods_defaults(double_link):
"""Set default to single link on Jan, or double link on n"""
base_periods = [1]
if double_link:
base_periods.append(12)
return base_periods
|
15fc7d30064b6888a6e1df3ef60cf25fa8f101fb
| 697,236
|
import itertools
def part2(data):
"""
>>> part2([[5, 9, 2, 8], [9, 4, 7, 3], [3, 8, 6, 5]])
9
>>> part2(read_input())
280
"""
checksum = 0
for row in data:
for (a, b) in itertools.permutations(row, 2):
if a % b == 0:
checksum += a // b
break
return checksum
|
95fa69b80b064dabf21057791417c769fda3c14e
| 697,237
|
import re
def safe_dag_id(s: str) -> str:
"""
Remove invalid characters for dag_id
"""
return re.sub('[^0-9a-zA-Z_]+', '_', s)
|
950dd59baaea5b0a94b1d5f67e8699c8779dae15
| 697,239
|
import yaml
def unicode_representer(self, value):
"""
Represents unicode strings as regular strings.
"""
return yaml.ScalarNode(tag='tag:yaml.org,2002:str', value=value)
|
7eaa92e17be6fa707cb84cdea877ee451dc48694
| 697,240
|
import argparse
def parse_arguments():
"""Argument parser"""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'-file1',
help='File containing sequences',
required=True
)
parser.add_argument(
'-file2',
help='File containing reverse end sequences',
required=True
)
parser.add_argument(
'-barcodes',
help='File containing barcodes',
required=True
)
parser.add_argument(
'-bc_pos',
help='Start and end index of barcodes (default: 7 14)',
type=int,
nargs=2,
default=[7, 14]
)
parser.add_argument(
'-prefix',
help='Filename prefixes',
required=True
)
parser.add_argument(
'-r2bc',
help='Flag that barcode is on read 2',
action='store_true'
)
parser.add_argument(
'-count_sum',
help='Flag for printing count summary',
action='store_true'
)
args = parser.parse_args()
return args
|
c441b3f165b59e66598a6ef8935ec94a73aa88ed
| 697,241
|
def rnn_args_from_config(rnn_config):
"""
Takes a Config object corresponding to RNN settings
(for example `config.algo.rnn` in BCConfig) and extracts
rnn kwargs for instantiating rnn networks.
"""
return dict(
rnn_hidden_dim=rnn_config.hidden_dim,
rnn_num_layers=rnn_config.num_layers,
rnn_type=rnn_config.rnn_type,
rnn_kwargs=dict(rnn_config.kwargs),
)
|
54cf542122036510c70fe7a53a47dd724880a912
| 697,242
|
def gldas_variables():
"""
List of the plottable variables from the GLDAS 2.1 datasets used
"""
return {
'Air Temperature': 'Tair_f_inst',
'Surface Albedo': 'Albedo_inst',
'Surface Temperature': 'AvgSurfT_inst',
'Canopy Water Amount': 'CanopInt_inst',
'Evaporation Flux From Canopy': 'ECanop_tavg',
'Evaporation Flux From Soil': 'ESoil_tavg',
'Water Evaporation Flux': 'Evap_tavg',
'Surface Downwelling Longwave Flux In Air': 'LWdown_f_tavg',
'Surface Net Downward Longwave Flux': 'Lwnet_tavg',
'Potential Evaporation Flux': 'PotEvap_tavg',
'Surface Air Pressure': 'Psurf_f_inst',
'Specific Humidity': 'Qair_f_inst',
'Downward Heat Flux In Soil': 'Qg_tavg',
'Surface Upward Sensible Heat Flux': 'Qh_tavg',
'Surface Upward Latent Heat Flux': 'Qle_tavg',
'Surface Runoff Amount': 'Qs_acc',
'Subsurface Runoff Amount': 'Qsb_acc',
'Surface Snow Melt Amount': 'Qsm_acc',
'Precipitation Flux': 'Rainf_f_tavg',
'Rainfall Flux': 'Rainf_tavg',
'Root Zone Soil Moisture': 'RootMoist_inst',
'Surface Snow Amount': 'SWE_inst',
'Soil Temperature': 'SoilTMP0_10cm_inst',
'Surface Downwelling Shortwave Flux In Air': 'SWdown_f_tavg',
'Surface Snow Thickness': 'SnowDepth_inst',
'Snowfall Flux': 'Snowf_tavg',
'Surface Net Downward Shortwave Flux': 'Swnet_tavg',
'Transpiration Flux From Veg': 'Tveg_tavg',
'Wind Speed': 'Wind_f_inst',
}
|
5fc8e24d7e58e0d7a892775b8be34d5fc1322f58
| 697,243
|
from typing import Any
from typing import Tuple
from typing import Dict
import json
def flask_http_response(status: int, data: Any) -> Tuple[str, int, Dict[str, str]]:
"""Create a tuple for flask to return
Args:
status: integer http status to use
data: json dumpable data for the return body
"""
return json.dumps(data, separators=(",", ":")), status, {"Content-Type": "application/json"}
|
33584b4c66f08174ca7ad93e1b11193707a65892
| 697,244
|
import itertools
def generate_configs(params, description_skeleton):
"""This function generates all combinations of given parameters. Format of
returnev value is appropriate for @performance decorator
:param description_skeleton: skeleton of config description, it will be
filled with parameter values
:param params: dictionary of parameters in form
{"param_name": [val1, val2, val3]}
"""
keys = params.keys()
configs = {}
combinations = itertools.product(*params.values())
for i, combination in enumerate(combinations):
conf_name = 'config{}'.format(i)
configs[conf_name] = dict()
new_params = dict(zip(keys, combination))
description = description_skeleton.format(**new_params)
for key, value in new_params.items():
new_params[key] = {'value': value}
configs[conf_name].update({
'parameters': new_params,
'description': description
})
return configs
|
027180b38cbac1769136ed99f901328a84d8b655
| 697,245
|
def max4(x):
"""
>>> max4(20)
20.0
"""
return max(1, 2.0, x, 14)
|
95a78f9ae81ba5f04d6abd09a7a2cd5f248e0e12
| 697,246
|
import requests
def get_response_commits(commits_url, my_token):
"""
Wrapper around the function `requests.get()`.
If my_token is supplied by me (i.e. it's not an empty string), then use authentication.
Otherwise, go ahead without authentication.
Args:
commits_url: URL with JSON metadata for commits.
my_token: your own GitHub personal access token for authentication. Authenticated requests get a higher hourly API rate limit.
Returns:
Response object for no. of commits by the GitHub user on the API.
"""
if my_token:
response_commits = requests.get(commits_url, headers={'Authorization': 'token %s' % my_token})
else:
response_commits = requests.get(commits_url)
return response_commits
|
7d8350540944aef18631b9122e1180d21f9a6f8a
| 697,247
|
def _validate_image_segment_id(the_sicd):
"""
Validate the image segment id.
Parameters
----------
the_sicd : sarpy.io.complex.sicd_elements.SICD.SICDType
Returns
-------
bool
"""
if the_sicd.ImageFormation is None or the_sicd.RadarCollection is None:
return False
# get the segment identifier
seg_id = the_sicd.ImageFormation.SegmentIdentifier
# get the segment list
try:
seg_list = the_sicd.RadarCollection.Area.Plane.SegmentList
except AttributeError:
seg_list = None
if seg_id is None:
if seg_list is not None:
the_sicd.log_validity_error(
'ImageFormation.SegmentIdentifier is not populated, but\n'
'RadarCollection.Area.Plane.SegmentList is populated.\n'
'ImageFormation.SegmentIdentifier should be set to identify the appropriate segment.')
return False
return True
if seg_list is None:
the_sicd.log_validity_error(
'ImageFormation.SegmentIdentifier is populated as {},\n'
'but RadarCollection.Area.Plane.SegmentList is not populated.'.format(seg_id))
return False
# let's double check that seg_id is sensibly populated
the_ids = [entry.Identifier for entry in seg_list]
if seg_id not in the_ids:
the_sicd.log_validity_error(
'ImageFormation.SegmentIdentifier is populated as {},\n'
'but this is not one of the possible identifiers in the\n'
'RadarCollection.Area.Plane.SegmentList definition {}.\n'
'ImageFormation.SegmentIdentifier should be set to identify the '
'appropriate segment.'.format(seg_id, the_ids))
return False
return True
|
3cf356f0ff94f4550eb756abda6fce100bb9c1c8
| 697,248
|
def get_locale_parts(locale):
"""Split a locale into three parts, for langauge, script, and region."""
parts = locale.split('_')
if len(parts) == 1:
return (parts[0], None, None)
elif len(parts) == 2:
if len(parts[1]) == 4: # parts[1] is a script
return (parts[0], parts[1], None)
else:
return (parts[0], None, parts[1])
else:
assert len(parts) == 3
return tuple(parts)
|
6a2a5f8600470ff13323482c478dcb1494b410a7
| 697,249
|
import re
def strip_markdown_directives(line):
"""strips markdown directives from a line"""
line = line.strip()
if line.startswith("<") and line.endswith(">"):
# Let's assume it's inline HTML and skip it
return ""
# Remove URLs (assume remote starts with http and local ends with html)
line = re.sub(r'\[(.+?)]\(http[^\)]+\)', r'\1', line)
line = re.sub(r'\[(.+?)]\(.+?html\)', r'\1', line)
line = re.sub(r'<http:.+?>', r'', line)
return line
|
8a1ad9076d058ecabbce0720d3c960601c14e3de
| 697,250
|
import random
def pick_random_worker_set(worker_sets):
"""Pick random set of workers"""
return random.choice(worker_sets)
|
86725e54659e0577ef5ff548e0b997261f876c75
| 697,251
|
import logging
def filter_event_tags(tags, device):
"""Drop unknown tags not listed in device's event-log-tags file."""
device.wait()
supported_tags = set()
for l in device.shell(
['cat', '/system/etc/event-log-tags'])[0].splitlines():
tokens = l.split(' ')
if len(tokens) >= 2:
supported_tags.add(tokens[1])
filtered = []
for tag in tags:
if tag in supported_tags:
filtered.append(tag)
else:
logging.warning('Unknown tag \'%s\'. Ignoring...', tag)
return filtered
|
dba8fcdf92e41e5b348548c840b67a0ba3b13db7
| 697,252
|
import json
def is_valid_json(stuff):
"""Checks if a string is valid json."""
try:
json.loads(stuff)
except:
return False
else:
return True
|
f949b00d31fe682c1974e93619a79a573802a2fe
| 697,253
|
def package_installed(module, package_name):
"""
Determine if the package is already installed
"""
cmd = ['pacman', '-Q', package_name]
exit_code, _, _ = module.run_command(cmd, check_rc=False)
return exit_code == 0
|
5382a160e3c55d23bcf20b6bd8d360b11cd71410
| 697,254
|
def set_ipu_model_options(opts, compile_ipu_code=True):
"""Set the IPU Model options.
Args:
compile_ipu_code: Whether or not to actually compile real IPU code for
modelling.
Returns:
The IpuOptions configuration protobuf, with IPU model options set.
"""
opts.ipu_model_config.compile_ipu_code = compile_ipu_code
return opts
|
d5e9577fb9ebad81b6fedb1988561197dbd3028e
| 697,255
|
def _ExtractResNetThroughput(output):
"""Extract throughput from Horovod output.
Args:
output: Horovod output
Returns:
A tuple of:
Average throuput in images per second (float)
Unit of the throughput metric (str)
"""
# Start from last line and iterate backwards.
avg_throughput = 0
for line in output.splitlines()[::-1]:
if 'train_throughput' in line:
split_line = line.split()
avg_throughput = float(split_line[-1])
break
return round(avg_throughput, 1), 'images/second'
|
671d745b0f73e9a84fa9a8b55f45054c711329c0
| 697,256
|
from typing import Any
def map_index(x: Any, column_map: dict) -> str:
"""Makes column list index human-readable."""
return f'{column_map[x]}'
|
ab7c371cbcb9949e66a9a8adcc153c2e85646d01
| 697,257
|
def cuda_collate_fn(batch):
"""
don't need to zip the tensor
"""
return batch[0]
|
14c9f98b0f4073757cd9f880d73aae984119bf70
| 697,258
|
from math import factorial
def fatorial(num, show=False):
"""
- > Calcula o fatorial de um número
:param num: Número a ser calculado
:param show: (opcional) Mostra ou não a conta
:return: O valor do fatorial de um número
"""
if show:
cont = num
fat = 1
while cont >= 1:
if cont != 1:
print(cont, end=' x ')
fat *= cont
else:
print(cont, end=' = ')
cont -= 1
else:
fat = factorial(num)
return fat
|
74705b909376cdb8abdd366bc1ed0dc654981a4b
| 697,259
|
def is_decoy(psm, prefix=None):
"""Given a PSM dict, return :py:const:`True` if it is marked as decoy,
and :py:const:`False` otherwise.
Parameters
----------
psm : dict
A dict, as yielded by :py:func:`read`.
prefix : ignored
Returns
-------
out : bool
"""
return psm['PeptideHit'][0]['target_decoy'] == 'decoy'
|
b901eeb4fc0938d64b06bce0972fadcdf9bd05d5
| 697,260
|
def complaint_image_download(self, media_url):
"""下载客户投诉图片
:param media_url: 图片下载地址,示例值:'https://api.mch.weixin.qq.com/v3/merchant-service/images/xxxxx'
"""
path = media_url[len(self._core._gate_way):] if media_url.startswith(self._core._gate_way) else media_url
return self._core.request(path, skip_verify=True)
|
345db60477b122109ba5a9e16077483581b5d107
| 697,261
|
import math
def calc_mean_and_sd(values_list):
"""
Calculates arithmetic mean and SD of provided data. Used to aggregate variable values of
iterations/repetitions of an experiment. Thanks to the database check, all values are available and valid.
Handwritten function to allow usage of the specific storage format used in this database.
Textbook implementation following ref [Press2002] (identical to standard statistics definition)
:param values_list: list of ints or floats
:return: mean (float), sd (float), n (int)
"""
n = 0
sum = 0.0
for value in values_list:
n += 1
sum += float(value)
if n == 0:
return 0.0, 0.0, 0
if n == 1:
return sum, 0.0, 1
mean = sum / float(n)
variance = 0.0
for value in values_list:
delta = float(value) - mean
variance += delta * delta
variance /= float(n - 1)
return mean, math.sqrt(variance), n
|
46ff39c31812f9df7e3a68da758095607db8656e
| 697,262
|
def clsName2Ind(lbls, cls):
"""
Converts a cls name to an ind
"""
if cls in lbls:
return lbls.index(cls) + 1
else:
raise ValueError('unknown class')
|
15676bb297e42562a02b7e9af0c8d9de6fb890df
| 697,263
|
def site_facility(hybrid_plant_size_MW, hybrid_construction_months, num_turbines):
"""
Uses empirical data to estimate cost of site facilities and security, including
Site facilities:
Building design and construction
Drilling and installing a water well, including piping
Electric power for a water well
Septic tank and drain field
Site security:
Constructing and reinstating the compound
Constructing and reinstating the batch plant site
Setting up and removing the site offices for the contractor, turbine supplier, and owner
Restroom facilities
Electrical and telephone hook-up
Monthly office costs
Signage for project information, safety and directions
Cattle guards and gates
Number of access roads
In main.py, a csv is loaded into a Pandas dataframe. The columns of the
dataframe must be:
Size Min (MW)
Minimum power output for a plant that needs a certain size of
building.
Size Max (MW)
Maximum power output of a plant that need a certain size of
building.
Building Area (sq. ft.)
The area of the building needed to provide O & M support to plants
with power output between "Size Min (MW)" and "Size Max (MW)".
Returns
-------
float
Building area in square feet
"""
if hybrid_plant_size_MW > 15:
building_area_sq_ft = float(4000)
construction_building_cost = building_area_sq_ft * 125 + 176125
ps = hybrid_plant_size_MW
ct = hybrid_construction_months
nt = num_turbines
if nt < 30:
nr = 1
acs = 30000
elif nt < 100:
nr = round(0.05 * nt)
acs = 240000
else:
nr = round(0.05 * nt)
acs = 390000
compound_security_cost = 9825 * nr + 29850 * ct + acs + 60 * ps + 62400
site_facility_cost = construction_building_cost + compound_security_cost
else:
site_facility_cost = 0
return site_facility_cost
|
c34056318103d6353add03f05925a2fffc69d51e
| 697,265
|
import six
def load_from_hparams_overrides(params, params_source, hparams_overrides):
"""Given a dictionary of hyperparameters and a list of overrides, merge them.
Args:
params: Python dict containing a base hyperparameters set.
params_source: Python dictionary to record source of hyperparameters.
hparams_overrides: Python list of strings. This is a set of k=v overrides
for the hyperparameters in `params`; if `k=v1` in `params` but `k=v2` in
`hparams_overrides`, the second value wins and the value for `k` is `v2`.
Returns:
Python dict of hyperparameters.
"""
if params is None:
raise ValueError(
'Input dictionary is empty. It is expected to be loaded with default '
'values')
if not isinstance(params, dict):
raise ValueError(
'The base hyperparameters set must be a Python dict, was: {}'.format(
type(params)))
if hparams_overrides is None:
return params, params_source
if isinstance(hparams_overrides, six.string_types):
hparams_overrides = [hparams_overrides]
if not isinstance(hparams_overrides, list):
raise ValueError(
'Expected that hparams_overrides would be `None`, a single string, or a'
' list of strings, was: {}'.format(type(hparams_overrides)))
for kv_pair in hparams_overrides:
if not isinstance(kv_pair, six.string_types):
raise ValueError(
'Expected that hparams_overrides would contain Python list of strings,'
' but encountered an item: {}'.format(type(kv_pair)))
key, value = kv_pair.split('=')
parser = type(params[key])
if parser is bool:
params[key] = value not in ('0', 'False', 'false')
else:
params[key] = parser(value)
params_source[key] = 'Command-line `hparams` flag'
return params, params_source
|
2365a3ce67d4855662912bbd865e1e731648e7b1
| 697,266
|
def flatten_report_for_csv(report):
"""
Flattens the data structure returned by `watson.report()` for a csv export.
Dates are formatted in a way that Excel (default csv module dialect) can
handle them (i.e. YYYY-MM-DD HH:mm:ss).
The result is a list of dictionaries where each element can contain two
different things:
1. The total `time` spent in a project during the report interval. In this
case, the `tag` value will be empty.
2. The partial `time` spent in a tag and project during the report
interval. In this case, the `tag` value will contain a tag associated
with the project.
The sum of all elements where `tag` is empty corresponds to the total time
of the report.
"""
result = []
datetime_from = report['timespan']['from'].format('YYYY-MM-DD HH:mm:ss')
datetime_to = report['timespan']['to'].format('YYYY-MM-DD HH:mm:ss')
for project in report['projects']:
result.append({
'from': datetime_from,
'to': datetime_to,
'project': project['name'],
'tag': '',
'time': project['time']
})
for tag in project['tags']:
result.append({
'from': datetime_from,
'to': datetime_to,
'project': project['name'],
'tag': tag['name'],
'time': tag['time']
})
return result
|
a7af0385bb846aa7d88e5e5ef939c40712ea5f2e
| 697,267
|
def countAddendCombinations(num, addends):
"""Count how many combinations of addends can add to the value of 'num'.
Parameters:
'num' must be positive.
'addends' must be sorted.
"""
if len(addends) == 0:
return 0
elif num == 0:
return 1
elif num < addends[-1]:
return countAddendCombinations(num, addends[:-1])
else:
lastRemoved = countAddendCombinations(num, addends[:-1])
lastSubtracted = countAddendCombinations(num - addends[-1], addends)
return lastRemoved + lastSubtracted
|
1816351b3b94b44c29bef2761f8f2ea778d4ab6b
| 697,268
|
import threading
import warnings
def pool(klass):
"""Thread-safe pool of objects not currently in use, generates new object
when empty.
Use as a decorator. Decorated classes must have init() method to
prepare them for reuse."""
lock = threading.Lock()
pool = set()
orig_new = klass.__new__
orig_init = klass.__init__
def __new__(cls, *args, **kwargs):
"Get object from pool, generating a new one if empty"
with lock:
if pool:
obj = pool.pop()
obj._used = True
return obj
return orig_new(cls, *args, **kwargs)
klass.__new__ = __new__
def __init__(self, *args, **kwargs):
if hasattr(self, '_used'):
self.init()
del self._used
return
orig_init(self, *args, **kwargs)
klass.__init__ = __init__
def release(self):
"""Release for reuse"""
if self in pool:
warnings.warn(RuntimeWarning('Attempting double-release of ' +
klass.__name__))
else:
pool.add(self)
klass.release = release
return klass
|
edc979b5aa5508d1cf950d26b92f8a3fa34efc20
| 697,269
|
import re
def postfinance_preprocess_notice(payment_notice):
"""Remove spaces from potential invoice numbers"""
return re.sub(
r"\b([0-9]{4}\s*-\s*[0-9]{4}\s*-\s*[0-9]{4})\b",
lambda match: re.sub(r"\s+", "", match.group(0)),
payment_notice,
)
|
ce806fda4c63030b21d3e1747d31349b3757dadb
| 697,270
|
def get_verbose_name(address_object):
"""Возвращает имя нас. пункта в формате: г. Москва
:param address_object: объект FiasAddressObject
"""
return u'{0}. {1}'.format(address_object.short_name,
address_object.formal_name)
|
c94b4003071003c95b4f2edb450f50680cff5055
| 697,271
|
import os
import fnmatch
def find_all_matching(path, pattern):
"""Utility function that works like 'find' in bash."""
if not os.path.exists(path):
raise RuntimeError("Invalid path '{0}'".format(path))
result = []
for root, _, files in os.walk(path):
for thisfile in files:
if fnmatch.fnmatch(thisfile, pattern):
result.append(os.path.join(root, thisfile))
return result
|
c6f6cadd0558c05573e4a8cdefa801369c8c5b6e
| 697,273
|
import re
def reDiac():
"""
Generate regex pattern to locate diacritics
Requires regex module as re
Return compiled regex pattern
"""
unicodeBlockList = [r'\p{InCombining_Diacritical_Marks_for_Symbols}',
r'\p{InSuperscripts_and_Subscripts}',
r'\p{InCombining_Diacritical_Marks}',
r'\p{InSpacing_Modifier_Letters}',
r'\p{InCombining_Diacritical_Marks_Extended}'
r'\p{InCombining_Diacritical_Marks_Supplement}']
additionalChars = [r'ᴸ', r'ᵇ', r':', r'<', r'←', r'=', r"'", r"‚", r"ᵊ"]
pattern = r'(' + r'|'.join(unicodeBlockList+additionalChars) + r')'
pattern = re.compile(pattern)
return pattern
|
8c35844dc0d4d6dfa399efae3d2c58b885258348
| 697,274
|
import ipaddress
def _evaluate_ip_address(ip_address):
"""Evaluate supplied IPv4 address.
Returns the supplied IPv4 address if valid and specified without a
netmask, or returns the subnet broadcast address if the supplied
IPV4 address is specified with a netmask such as '192.168.1.5/24' or
'192.168.1.5/255.255.255.0'.
Parameters
----------
ip_address : str
Supplied IP address.
Returns
-------
str
Valid IPv4 address.
Raises
------
ValueError
If `ip_address` does not contain a valid IPv4 address.
"""
ip = ip_address.strip()
try:
ip = str(ipaddress.IPv4Address(ip))
except ipaddress.AddressValueError:
try:
ip = str(ipaddress.IPv4Network(ip, strict=False).broadcast_address)
except Exception as e:
raise ValueError(f"[Error] Invalid IP address: {ip_address}") from e
return ip
|
67b45d1ba169c9880c68d800efb944ff05f2c51b
| 697,275
|
from typing import Callable
def get_linear_anneal_func(
start_value: float, end_value: float, start_step: int, end_step: int
) -> Callable:
"""Create a linear annealing function.
Parameters
----------
start_value : float
Initial value for linear annealing.
end_value : float
Terminal value for linear annealing.
start_step : int
Step to start linear annealing.
end_step : int
Step to end linear annealing.
Returns
-------
linear_anneal_func : Callable
A function that returns annealed value given a step index.
"""
def linear_anneal_func(step):
if step <= start_step:
return start_value
if step >= end_step:
return end_value
# Formula for line when two points are known:
# y1 - y0
# y - y0 = --------- (x - x0)
# x1 - x0
return (end_value - start_value) / (end_step - start_step) * (
step - start_step
) + start_value
return linear_anneal_func
|
affe767318be5b07dfcf23d1a3e2e58e67750611
| 697,276
|
import time
def get_run_id():
"""Generates unique identifier
Parameters
----------
Return
----------
"""
run_id = str(int(time.time()))
return run_id
|
dfcfe2df2a94d707adfe31e2f582554f66e1f97f
| 697,277
|
import os
def testdata():
"""Returns testing dataset used in tests."""
return os.path.join(
os.path.dirname(os.path.realpath(__file__)), "testdata", "testdata")
|
58e8dd63239209d278e6b98100221be69f7116ae
| 697,278
|
def bump_version(base: str, index: int = -1) -> str:
"""
Increment one of the numerical positions of a version.
:param base: Version core, such as 0.1.0.
Do not include pre-release identifiers.
:param index: Numerical position to increment. Default: -1.
This follows Python indexing rules, so positive numbers start from
the left side and count up from 0, while negative numbers start from
the right side and count down from -1.
:return: Bumped version.
"""
bases = [int(x) for x in base.split(".")]
bases[index] += 1
limit = 0 if index < 0 else len(bases)
i = index + 1
while i < limit:
bases[i] = 0
i += 1
return ".".join(str(x) for x in bases)
|
48d5c85c106e87733702f33dfcdd7c654478949e
| 697,279
|
import torch
def ssim(prediction: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
"""
Function computes the structural similarity
Source: https://github.com/ChristophReich1996/CellFlowNet
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:return: (torch.Tensor) SSMI value
"""
assert prediction.numel() == label.numel(), 'Prediction tensor and label tensor must have the number of elements'
# Calc means and vars
prediction_mean = prediction.mean()
prediction_var = prediction.var()
label_mean = label.mean()
label_var = label.var()
# Calc correlation coefficient
correlation_coefficient = (1 / label.numel()) * torch.sum((prediction - prediction_mean) * (label - label_mean))
return ((2.0 * prediction_mean * label_mean) * (2.0 * correlation_coefficient)) / \
((prediction_mean ** 2 + label_mean ** 2) * (prediction_var + label_var))
|
2cdf069823f195f9730b13d00d48a25c13bc4884
| 697,280
|
def validate_pin_input(value):
"""Validate that the GPIO PIN is prefixed with a D."""
try:
int(value)
return f"D{value}"
except ValueError:
return value.upper()
|
da5d27a57911819a99375d97f22e503067ee301c
| 697,281
|
def searchInsert(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
if target in nums:
return nums.index(target)
else:
for i in range(len(nums)):
if target < nums[i]:
return i
if target > nums[i]:
if i == len(nums) - 1:
return i + 1
continue
|
fb79487e2f92229f609425638517618cdad5e3e4
| 697,283
|
def cards_remaining(card_list):
""" this function returns the number of cards that have not been matched yet """
num_remaining = 0
for c in card_list:
if c.is_unsolved():
num_remaining += 1
return num_remaining
|
b99e5fc8c1fe32e0b8ccb36548e094b9bf0f39ab
| 697,284
|
def get_network_id(networks, name):
"""
Get network id based on name provided
"""
for network in networks:
if network["Name"] == name:
return network["Id"]
|
12e53ade2d661587a674435d8c57160d740aa48c
| 697,286
|
def get_table(connect, market, code, ktype):
"""note: market: 'DAY' | 'MIN' | 'MIN5' """
cur = connect.cursor()
schema = "{market}_{ktype}".format(market=market, ktype=ktype).lower()
cur.execute("SELECT 1 FROM information_schema.SCHEMATA where SCHEMA_NAME='{}'".format(schema))
a = cur.fetchone()
if not a:
cur.execute("CREATE SCHEMA `{}`".format(schema))
connect.commit()
tablename = code.lower()
cur.execute("SELECT 1 FROM information_schema.tables "
"where table_schema='{schema}' and table_name='{name}'"
.format(schema=schema, name=tablename))
a = cur.fetchone()
if not a:
sql = """
CREATE TABLE `{schema}`.`{name}` (
`date` BIGINT(20) UNSIGNED NOT NULL,
`open` DOUBLE UNSIGNED NOT NULL,
`high` DOUBLE UNSIGNED NOT NULL,
`low` DOUBLE UNSIGNED NOT NULL,
`close` DOUBLE UNSIGNED NOT NULL,
`amount` DOUBLE UNSIGNED NOT NULL,
`count` DOUBLE UNSIGNED NOT NULL,
PRIMARY KEY (`date`)
)
COLLATE='utf8_general_ci'
ENGINE=MyISAM
;
""".format(schema=schema, name=tablename)
cur.execute(sql)
connect.commit()
cur.close()
return "`{schema}`.`{name}`".format(schema=schema, name=tablename)
|
93cbeee43f2660693ff827f3f2442f7d97fe6565
| 697,287
|
import torch
def normal_transform_pixel(shape):
""" Compute the normalization matrix from image size in pixels to [-1, 1].
"""
tr_mat = torch.tensor([[1.0, 0.0, 0.0, -1.0],
[0.0, 1.0, 0.0, -1.0],
[0.0, 0.0, 1.0, -1.0],
[0.0, 0.0, 0.0, 1.0]])
for idx in range(len(shape)):
tr_mat[idx, idx] = tr_mat[idx, idx] * 2.0 / (shape[idx] - 1.0)
tr_mat = tr_mat.unsqueeze(0)
return tr_mat
|
8f178255108e565d9156cb01a8da5b88cd46c73a
| 697,288
|
def remove_config_prefix(config, prefix, skip=None):
"""Iterate over keys in dict and remove given prefix.
Arguments
---------
config : dict
The configuration data.
prefix : str
The prefix to remove.
skip : List[str], optional
A list of keys which should not be altered.
Returns
-------
ret : dict
The transformed configuration.
"""
if skip is None:
skip = []
def helper(key):
return key.split(f"{prefix}.")[-1]
return {helper(key): value for key, value in config.items() if f"{prefix}." in key and key not in skip}
|
0c557e673a42d93772bf357250435d1ca203d072
| 697,289
|
import tempfile
import sys
import subprocess
import shlex
import os
def survivor(samples, distance, ignore_type, minlength):
"""
Executes SURVIVOR merge, with parameters:
-samples.fofn (truth and test)
-distance between calls (args.distance)
-number of callers to support call (1)
-require variants to have sampe type (args.ignore_type)
-require variants to be on same strand (no)
-estimate distance between calls (no)
-specify minimal size of SV event (args.minlength)
"""
fhf, fofn_f = tempfile.mkstemp()
fhv, vcf_out = tempfile.mkstemp()
with open(fofn_f, 'w') as fofn:
for s in samples:
fofn.write(s + "\n")
survivor_cmd = f"SURVIVOR merge {fofn_f} {distance} 1 {ignore_type} -1 -1 {minlength} {vcf_out}"
sys.stderr.write("Executing SURVIVOR...\n")
subprocess.call(shlex.split(survivor_cmd), stdout=subprocess.DEVNULL)
os.close(fhf)
os.close(fhv)
return vcf_out
|
3a16c331cda610ecd9cf2d9321d88c86f5532c6b
| 697,290
|
def lengthOfLongestSubstring(s):
"""
:type s: str
:rtype: int
"""
if len(s) == 0:
return 0
maxVal = 1
for i in range(0, len(s)-1):
checkStr = s[i+1:]
if (s[i] in checkStr): # check to prevent exception in index() when char repitition not found
curVal = checkStr.index(s[i]) + 1
# print("Check string is ", checkStr)
# print("Next ", s[i], " found at ", checkStr.index(s[i]))
# print("Cur val is: ", checkStr.index(s[i]) + 1)
if curVal > maxVal:
maxVal = curVal
else:
return len(s[i:])
# print("Brfeak")
# this is the largest possible substring, so break after calculating length from i to len
return maxVal
|
43f8915567aa93e6aadb7b00b57d0a8d7e41fe9a
| 697,292
|
def format_result(input, params, offset=True):
"""
Fromat result to a epiviz compatible format
Args:
input : input dataframe
params : request parameters
offset: defaults to True
Returns:
formatted JSON response
"""
# measurement = params.get("measurement")[0]
# input_json = []
# for item in input_data:
# input_json.append({"chr":item[0], "start": item[1], "end": item[2], measurement: item[3]})
# input = pandas.read_json(ujson.dumps(input_json), orient="records")
# input = input.drop_duplicates()
input.start = input.start.astype("float")
input.end = input.end.astype("float")
# input[measurement] = input[measurement].astype("float")
# input["chr"] = params.get("seqName")
# input = bin_rows(input)
# input = pandas.DataFrame(input_data, columns = ["start", "end", measurement])
globalStartIndex = None
data = {
"rows": {
"globalStartIndex": globalStartIndex,
"useOffset" : offset,
"values": {
"id": None,
"chr": [],
"strand": [],
"metadata": {}
}
},
"values": {
"globalStartIndex": globalStartIndex,
"values": {}
}
}
if len(input) > 0:
globalStartIndex = input["start"].values.min()
if offset:
minStart = input["start"].iloc[0]
minEnd = input["end"].iloc[0]
input["start"] = input["start"].diff()
input["end"] = input["end"].diff()
input["start"].iloc[0] = minStart
input["end"].iloc[0] = minEnd
col_names = input.columns.values.tolist()
row_names = ["chr", "start", "end", "strand", "id"]
data = {
"rows": {
"globalStartIndex": globalStartIndex,
"useOffset" : offset,
"values": {
"id": None,
"chr": [],
"strand": [],
"metadata": {}
}
},
"values": {
"globalStartIndex": globalStartIndex,
"values": {}
}
}
for col in col_names:
if params.get("measurement") is not None and col in params.get("measurement"):
data["values"]["values"][col] = input[col].values.tolist()
elif col in row_names:
data["rows"]["values"][col] = input[col].values.tolist()
else:
data["rows"]["values"]["metadata"][col] = input[col].values.tolist()
else:
data["rows"]["values"]["start"] = []
data["rows"]["values"]["end"] = []
if params.get("metadata") is not None:
for met in params.get("metadata"):
data["rows"]["values"]["metadata"][met] = []
# else:
# data["rows"]["values"]["metadata"] = None
data["rows"]["values"]["id"] = None
if params.get("datasource") != "genes":
data["rows"]["values"]["strand"] = None
return data
|
d304817cbeb993eef52e86a28187978f1a7887f0
| 697,293
|
def are_entangled(q1, q2):
"""
Check for entanglement betwee ntwo Qubits
:param q1: Qubit Type Object
:param q2: Qubit Type Object
:return: boolean absed on entanlgement
"""
return q1.is_entangled() == id(q2)
|
49315c4a92d09180761047ec7b5ec93ff761afab
| 697,294
|
def read_messages(msg_file):
"""(file open for reading) -> list of str
Precondition: The parameter msg_file should be a message file that is
already open for reading and that file contains one message per line.
Read and return the contents of the file as a list of messages. The returned
message should strip the newline from each line,
and in order in which they appear in the file.
"""
new_message = []
for line in msg_file:
new_message.append(line.strip())
# Since The returned message should strip the newline from each line.
return new_message
|
220cda7e055f9c3b6a483500fe3aeef7d9752b70
| 697,295
|
def get_all_objs(content, vimtype):
"""
Return all object for a given VIM Type
:param content:
:param vimtype:
:return:
"""
obj = {}
container = content.viewManager.CreateContainerView(
content.rootFolder, vimtype, True)
for managed_object_ref in container.view:
obj.update({managed_object_ref: managed_object_ref.name})
return obj
|
50c2ef6345761da0faf1fe33d5cb32e4883d6875
| 697,296
|
def doi_conflict_check(agr_data, value):
"""
check a database reference has a conflict from DOI. always pass this here, it gets checked during cross_reference resolution
:param agr_data:
:param value:
:return:
"""
return 'Success'
|
a54b0839fe1a85226591bb2e4a35c75d1732f1bb
| 697,297
|
from typing import Dict
from typing import List
def avoid_body(my_head: Dict[str, int], body: List[dict]):
"""
my_head: Dictionary of x/y coordinates of the Battlesnake head.
e.g. {"x": 0, "y": 0}
my_body: List of dictionaries of x/y coordinates for every segment of a Battlesnake.
e.g. [ {"x": 0, "y": 0}, {"x": 1, "y": 0}, {"x": 2, "y": 0} ]
possible_moves: List of strings. Moves to pick from.
e.g. ["up", "down", "left", "right"]
return: The list of remaining possible_moves, with the 'neck' direction removed
"""
bad_moves = set()
right = { "x": my_head["x"] + 1, "y": my_head["y"] }
left = { "x": my_head["x"] - 1, "y": my_head["y"] }
up = { "x": my_head["x"], "y": my_head["y"] + 1 }
down = { "x": my_head["x"], "y": my_head["y"] - 1 }
for part in body:
print(f"{part} <> {right}")
if ((part["x"] == right["x"] and part["y"] == right["y"])):
print("ADD RIGHT")
bad_moves.add("right")
print(f"{part} <> {left}")
if ((part["x"] == left["x"] and part["y"] == left["y"])):
print("ADD LEFT")
bad_moves.add("left")
print(f"{part} <> {up}")
if ((part["x"] == up["x"] and part["y"] == up["y"])):
print("ADD UP")
bad_moves.add("up")
print(f"{part} <> {down}")
if ((part["x"] == down["x"] and part["y"] == down["y"])):
print("ADD DOWN")
bad_moves.add("down")
return bad_moves
|
3d7a151b694c6a6915f9c7c508cf7cd0e2e4d6f0
| 697,298
|
import numpy
def to_rad(angle_grad: float) -> float:
""" convert given angle(grad) to radians """
return angle_grad / 180 * numpy.pi
|
81b6fcf352c9c509e746a32a36f133904d9c2938
| 697,299
|
def AfficherDuree(duree):
""" Retourne une cha\xeene de caract\xe8res repr\xe9sentant 'duree' """
dureeSeconde = duree / 1000
ms = duree % 1000
mn = dureeSeconde / 60
sec = dureeSeconde % 60
chaine = ''
if mn > 0:
chaine += repr(mn) + ' min ' + repr(sec) + ' s '
elif sec > 0:
chaine += repr(sec) + ' s '
chaine += repr(ms) + ' ms'
return chaine
|
096179837e9551685d81269df9aa7c9bcb89acdf
| 697,300
|
def get_area(a, b):
"""Calculate area of rectangle with sides a and b."""
return a * b
|
2907400c82c018634daf51091b509ab65258c269
| 697,301
|
import argparse
def parse(argv):
"""Parses command-line arguments"""
parser = argparse.ArgumentParser()
parser.add_argument("project", default="fableproject.json", help="JSON project file")
return parser.parse_args(argv)
|
441f33828f3234d5aa48ef60d03f385ff3876f90
| 697,302
|
def macro_with_both(name, number = 3, *args, **kwargs):
"""Oh wow this macro has both.
Not much else to say.
Args:
name: The name of the test rule.
number: Some number used for important things
*args: Other arguments to include
**kwargs: Other attributes to include
Returns:
An empty list.
"""
_ignore = [name, number, args, kwargs]
return []
|
b1d1fce22662830de6ea1a9c3eee677c48c65a23
| 697,303
|
def output_filter_enabled(session, Type='Boolean', RepCap='', AttrID=1150055, buffsize=0, action=['Get', '']):
"""[Output Filtering Enabled <?>]
Enables output filtering selected by the FilterBandwidth property.
Set:
RepCap=< channel# (1-2) >
"""
return session, Type, RepCap, AttrID, buffsize, action
|
23745d5a8f6b9727e33a0189c39466ef216fc081
| 697,304
|
def increment_duplicates(arr):
"""Increments duplicates in an array until there are no duplicates.
Uses a hash set to keep track of which values have been seen in the array.
Runs in O(n^2) time worst case (e.g. all elements are equal),
O(n) time best case (elements are already unique).
"""
seen = set()
for i in range(len(arr)):
while arr[i] in seen:
arr[i] += 1
seen.add(arr[i])
return arr
|
33a456c75b7ca00ddb535a6726af3fe1944efc21
| 697,305
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.