content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def puncstart(str1, punctuation):
"""returns all the punctuation from the start of the string"""
newstring = u""
for c in str1:
if c in punctuation or c.isspace():
newstring += c
else:
break
return newstring
|
57d686d2a38e9d28201f9d88a70d7a03610bbded
| 697,307
|
import os
def available_ifos():
"""List available included pre-defined IFOs"""
ifos = []
root = os.path.dirname(__file__)
for f in os.listdir(root):
if os.path.isdir(os.path.join(root, f)) and f[0] != "_":
ifos.append(f)
return sorted(ifos)
|
9a6cf2a27928468139f1f9b8cd1c353b1d64e37f
| 697,308
|
def _date(api):
"""Returns UTC YYYY.MM.DD to use in tags."""
return api.time.utcnow().strftime('%Y.%m.%d')
|
91e5c4c0bafa00b33e2b9c22d28b255a50f0d091
| 697,309
|
import json
def clean_data() -> list[dict[str, str]]:
"""Read data from file and generate some new composite fields.
Yields:
dict: A record with the new composite/cleaned fields.
"""
data = []
with open("data/no_duplicates.jsonl", "r") as file:
for line in file:
info: dict[str, str] = json.loads(line)
address = info.get("EventAddr", "").strip()
city = info.get("EventCity", "").strip()
state = info.get("EventState", "").strip()
zip_code = info.get("EventZip", "").strip()
combined_address = f"{address}, {city}, {state} {zip_code}"
info["combined_address"] = combined_address
causea = info.get("CauseA", "").strip()
causeb = info.get("CauseB", "").strip()
cause_other = info.get("CauseOther", "").strip()
combined_causes = f"{causea}, {causeb}, {cause_other}"
info["combined_causes"] = combined_causes
data.append(info)
return data
|
8380904159cd7f471bf1edaad23a3ff715bf4da9
| 697,310
|
def normal_func_parameter(plane):
"""
Calculate coefficients for plane function
pt1 = [x1, y1, z1]
pt2 = [x2, y2, z2]
pt3 = [x3, y3, z3]
vector1 = [x2 - x1, y2 - y1, z2 - z1]
vector2 = [x3 - x1, y3 - y1, z3 - z1]
"""
pt1 = plane[0]
pt2 = plane[1]
pt3 = plane[2]
vector1 = [pt2[0] - pt1[0], pt2[1] - pt1[1], pt2[2] - pt1[2]]
vector2 = [pt3[0] - pt1[0], pt3[1] - pt1[1], pt3[2] - pt1[2]]
cross_product = [vector1[1] * vector2[2] - vector1[2] * vector2[1],\
-1 * (vector1[0] * vector2[2] - vector1[2] * vector2[0]),\
vector1[0] * vector2[1] - vector1[1] * vector2[0]]
a = cross_product[0]
b = cross_product[1]
c = cross_product[2]
d = - (cross_product[0] * pt1[0] + cross_product[1] * pt1[1] + cross_product[2] * pt1[2])
return a, b, c, d
|
701e0416d501a40093b8dfd36c02cc0b45072aed
| 697,311
|
def lreplace(a, b, string):
""" Replaces the head of the string.
"""
if string.startswith(a):
return b + string[len(a):]
return string
|
73ac9d588c98350699bdcd0e2ea70035cd17c77c
| 697,312
|
import torch
def one_hot_encode(y: torch.Tensor, num_classes: int) -> torch.Tensor:
"""
Creates the one hot encoding of the provided class labels.
:param y: class labels of size (batch_size,)
:return y_one_hot: one hot encoding of size (batch_size, num_classes)
"""
return torch.zeros(y.size(0), num_classes).scatter_(1, y.view(-1, 1), 1.)
|
ba1cc5d556e17fa7d797efa32e697a9bdac4a3c0
| 697,313
|
def color_distance(c1, c2):
"""
Metric to define the visual distinction between two (r,g,b) colours.
Inspired by: https://www.compuphase.com/cmetric.htm
:param c1: (r,g,b) colour tuples. r,g and b are values between 0 and 1.
:param c2: (r,g,b) colour tuples. r,g and b are values between 0 and 1.
:return: distance: float representing visual distinction between c1 and c2.
Larger values = more distinct.
"""
r1, g1, b1 = c1
r2, g2, b2 = c2
mean_r = (r1 + r2) / 2
delta_r = (r1 - r2) ** 2
delta_g = (g1 - g2) ** 2
delta_b = (b1 - b2) ** 2
distance = (2 + mean_r) * delta_r + 4 * delta_g + (3 - mean_r) * delta_b
return distance
|
1f63d563d71373d7c27e446794745bcb2631e013
| 697,314
|
def tochr(lst):
"""Converts every value of a list into a character"""
return [chr(i) for i in list(lst)]
|
36bf8ead73aaf079cbf1f2d5f3cd243266f7fbd2
| 697,315
|
def find_pareto_front(population):
"""Finds a subset of nondominated individuals in a given list
:param population: a list of individuals
:return: a set of indices corresponding to nondominated individuals
"""
pareto_front = set(range(len(population)))
for i in range(len(population)):
if i not in pareto_front:
continue
ind1 = population[i]
for j in range(i + 1, len(population)):
ind2 = population[j]
# if individuals are equal on all objectives, mark one of them (the first encountered one) as dominated
# to prevent excessive growth of the Pareto front
if ind2.fitness.dominates(ind1.fitness) or ind1.fitness == ind2.fitness:
pareto_front.discard(i)
if ind1.fitness.dominates(ind2.fitness):
pareto_front.discard(j)
return pareto_front
|
2e53edda5e3d3afd541cedff3bb3d247f913969c
| 697,316
|
def __walk_chain(rel_dict, src_id):
"""
given a dict of pointing relations and a start node, this function
will return a list of paths (each path is represented as a list of
node IDs -- from the first node of the path to the last).
Parameters
----------
rel_dict : dict
a dictionary mapping from an edge source node (node ID str)
to a set of edge target nodes (node ID str)
src_id : str
Returns
-------
paths_starting_with_id : list of list of str
each list constains a list of strings (i.e. a list of node IDs,
which represent a chain of pointing relations)
"""
paths_starting_with_id = []
for target_id in rel_dict[src_id]:
if target_id in rel_dict:
for tail in __walk_chain(rel_dict, target_id):
paths_starting_with_id.append([src_id] + tail)
else:
paths_starting_with_id.append([src_id, target_id])
return paths_starting_with_id
|
24b3bea13f7d802043b595e48bedc6da2a782370
| 697,317
|
def getIndexesToParse(content: str, searchFor: str = '$'):
"""Gets the indexes of the searched substring into a string content
@type content: str
@param content: The parameter content
@type searchFor: str
@param searchFor: The substring to be searched indexes on the given content
@returns list: The positions indexes of the searched substring
"""
return [i for i, char in enumerate(content) if char == searchFor]
|
a087a69dc70467f5d8483b892132650585f9a416
| 697,318
|
from typing import Any
import importlib
def dynamic_import_from(source_file: str, class_name: str) -> Any:
"""Do a from source_file import class_name dynamically
Args:
source_file (str): Where to import from
class_name (str): What to import
Returns:
Any: The class to be imported
"""
module = importlib.import_module(source_file)
return getattr(module, class_name)
|
90c861f727c8e6f20f89b7af24c2163bc65bd516
| 697,319
|
from bs4 import BeautifulSoup
def prettify_html(html_str):
"""
:param html_str:
:return:
"""
soup = BeautifulSoup(html_str, 'html.parser')
return soup.prettify()
|
fedb96a62ba041a391fe67014c67444afa8e9163
| 697,320
|
import numpy
def interleave(arr):
"""Returns the interleaved array.
Example:
[10000, 3, 32, 32] => [10000, 32, 32, 3].
"""
last = arr.shape[-3]
b = numpy.empty((arr.shape[0],) + arr.shape[2:] + (last,), arr.dtype)
if len(b.shape) == 4:
for i in range(last):
b[:, :, :, i] = arr[:, i, :, :]
elif len(b.shape) == 3:
for i in range(last):
b[:, :, i] = arr[i, :, :]
else:
raise ValueError("a should be of shape 4 or 3.")
return b
|
369d21ae13bdb5e5c85f9f91e0e7ea9999a2c146
| 697,321
|
def _update_ZS(stored_dict,this_dict) -> dict:
"""Updates stats dictionary with values from a new window result
Parameters
----------
stored_dict:dict
Dictionary to be updated with new data
this_dict:dict
New data with which to update stored_dict
"""
out_dict = stored_dict
# loop over admin zones in this_dict
for k in this_dict.keys():
this_info = this_dict[k]
try:
stored_info = stored_dict[k]
except KeyError: # if stored_dict has no info for zone k (new zone in this window), set it equal to the info from this_dict
out_dict[k] = this_info
continue
# calculate number of visible arable pixels for both dicts by multiplying arable_pixels with percent_arable
arable_visible_stored = (stored_info["arable_pixels"] * stored_info["percent_arable"] / 100.0)
arable_visible_this = (this_info["arable_pixels"] * this_info["percent_arable"] / 100.0)
try:
# weight of stored_dict value is the ratio of its visible arable pixels to the total number of visible arable pixels
stored_weight = arable_visible_stored / (arable_visible_stored + arable_visible_this)
except ZeroDivisionError:
# if no visible pixels at all, weight everything at 0
stored_weight = 0
try:
# weight of this_dict value is the ratio of its visible arable pixels to the total number of visible arable pixels
this_weight = arable_visible_this / (arable_visible_this + arable_visible_stored)
except ZeroDivisionError:
# if the total visible arable pixels are 0, everything gets weight 0
this_weight = 0
## weighted mean value
value = (stored_info['value'] * stored_weight) + (this_info['value'] * this_weight)
## sum of arable pixels
arable_pixels = stored_info['arable_pixels'] + this_info['arable_pixels']
## directly recalculate total percent arable from sum of arable_visible divided by arable_pixels
percent_arable = ((arable_visible_stored + arable_visible_this) / arable_pixels) * 100
#percent_arable = (stored_info['percent_arable'] * stored_weight) + (this_info['percent_arable'] * this_weight)
out_dict[k] = {'value':value,'arable_pixels':arable_pixels,'percent_arable':percent_arable}
return out_dict
|
4afd294a05228e53bfa6874651d7b5d7f18f972e
| 697,322
|
def findAllPerson(tx):
"""
Method that finds all the nodes Person in the data base
:param tx: is the transaction
:return: a list of nodes
"""
query = (
"MATCH (p:Person) "
"RETURN p , ID(p);"
)
results = tx.run(query).data()
return results
|
c5e5af2c1267b7bc057135dc4cb64e2bb2c23198
| 697,323
|
def integral_image(image):
"""Create an integral image on the first 2 dimensions from the input.
Args:
image -- ndarray with ndim >= 2
Returns an integral image where every location i,j is the cumulative sum
of all preceeding pixels.
"""
return image.cumsum(1).cumsum(0)
|
567228d7089db2a58047bd5123a371c516198ab1
| 697,324
|
import numpy
def zeros(shape=()):
"""
Returns the ``shape`` zero tensor.
:param shape: input shape for the identity tensor
:type shape: ``tuple`` of ``int``
:return: array of shape filled with zeros
:rtype: ``numpy.ndarray``
"""
if len(shape)>0:
out=numpy.zeros(shape,numpy.float64)
else:
out=0.
return out
|
262e52ff70ab86abb33d94d0000dff0f59a1820b
| 697,325
|
def all_segments(n: int):
"""Generate all segments combinations"""
return ((i, j, k)
for i in range(n)
for j in range(i + 2, n)
for k in range(j + 2, n + (i > 0)))
|
23e6dbe5254f3d93299446a5a7bd3468fa277e78
| 697,326
|
def installed_headers_for_dep(dep):
"""Convert a cc_library label to a DrakeCc provider label. Given a label
`dep` for a cc_library, such as would be found in the the `deps = []` of
some cc_library, returns the corresponding label for the matching DrakeCc
provider associated with that library. The returned label is appropriate
to use in the deps of of a `drake_installed_headers()` rule.
Once our rules are better able to call native rules like native.cc_binary,
instead of having two labels we would prefer to tack a DrakeCc provider
onto the cc_library target directly.
Related links from upstream:
https://github.com/bazelbuild/bazel/issues/2163
https://docs.bazel.build/versions/master/skylark/cookbook.html#macro-multiple-rules
"""
suffix = ".installed_headers"
if ":" in dep:
# The label is already fully spelled out; just tack on our suffix.
result = dep + suffix
else:
# The label is the form //foo/bar which means //foo/bar:bar.
last_slash = dep.rindex("/")
libname = dep[last_slash + 1:]
result = dep + ":" + libname + suffix
return result
|
a25a50fa519018fec57b49c3d66a88b20cf21777
| 697,327
|
def hex_short(value):
"""
Give an integer in value, convert it to a hexidecial but remove the 0x
:param value: the integer
:return: the shorted version of hex
"""
hex_value = hex(value)[2:]
if len(hex_value) == 1: hex_value = f"0{hex_value}"
return hex_value
|
d7bb12b06001c44bdddfbe0c4f8d810c27862601
| 697,328
|
def storage_add_data(args):
""" Build the config file """
content = {
"apiVersion": "kadalu-operator.storage/v1alpha1",
"kind": "KadaluStorage",
"metadata": {
"name": args.name
},
"spec": {
"type": args.type,
"storage": []
}
}
# Device details are specified
if args.device:
for devdata in args.device:
node, dev = devdata.split(":")
content["spec"]["storage"].append(
{
"node": node,
"device": dev
}
)
return content
# Path is spacified instead of Raw device
if args.path:
for pathdata in args.path:
node, path = pathdata.split(":")
content["spec"]["storage"].append(
{
"node": node,
"path": path
}
)
return content
# If PVC is specified instead of Raw device and Path
if args.pvc:
for pvc in args.pvc:
content["spec"]["storage"].append(
{
"pvc": pvc
}
)
return content
# External details are specified
if args.external:
for voldata in args.external:
node, vol = voldata.split(":")
content["spec"]["storage"].append(
{
"gluster_host": node,
"gluster_volname": vol.strip("/")
}
)
return content
return ""
|
3a145e64907b54e2b64980b4d25d8c8f961a4cef
| 697,329
|
def lca(T, v, w):
"""
The lowest common ancestor (LCA) of two nodes v and w in a tree or directed
acyclic graph (DAG) T is the lowest (i.e. deepest) node that has both v and
w as descendants, where we define each node to be a descendant of itself
(so if v has a direct connection from w, w is the lowest common ancestor).
"""
if T is None:
return None
# This is the LCA
if T.value == v or T.value == w:
return T
# Explore subtrees.
left_lca = lca(T.left, v, w)
right_lca = lca(T.right, v, w)
if left_lca and right_lca:
return T
return left_lca if left_lca is not None else right_lca
|
1f0235c6364803aae4a28a9ad72ab433f22ef2a5
| 697,330
|
import re
def is_uuid(uuid):
"""
Check if value is a proper uuid
:param uuid: string to check
:return: bool
"""
UUID_PATTERN = re.compile(r'^[\da-f]{8}-([\da-f]{4}-){3}[\da-f]{12}$', re.IGNORECASE)
if UUID_PATTERN.match(uuid):
return True
return False
|
091464f66018c9913c19dcf307c1e193348c7023
| 697,331
|
from pathlib import Path
import json
def parse_annotation_background_width(bpmn_path: Path):
"""Get the width the image was resized to when annotating in the BPMN Annotator tool"""
assert bpmn_path.suffix == ".bpmn", f"{bpmn_path}"
img_meta_line = bpmn_path.read_text().split("\n")[1]
assert img_meta_line.startswith(
"<!--"
), f"{bpmn_path} has no meta line, line 1: {img_meta_line}"
img_meta = json.loads(img_meta_line.replace("<!-- ", "").replace(" -->", ""))
return img_meta["backgroundSize"]
|
aa1315aa2301a823d5e6fe83089698edd7600e4b
| 697,332
|
def parseRegionSetName(regionSetName):
""" Get region and setName from regionSetName """
if '.' in regionSetName: region,setName = regionSetName.split('.')
else: region,setName = 'Assembly',regionSetName
return region,setName
|
ebda9b44833e42127c7bec1169b9660137c8daa3
| 697,333
|
def flatten_object(obj, result=None):
"""
Convert a JSON object to a flatten dictionary.
example: { "db": { "user": "bar" }} becomes {"db.user": "bar" }
"""
if not result:
result = {}
def _flatten(key_obj, name=''):
if isinstance(key_obj, dict):
for item in key_obj:
arg = str(name) + str(item) + '.'
_flatten(key_obj[item], arg)
elif isinstance(key_obj, list):
index = 0
for item in key_obj:
arg = str(name) + str(index) + '.'
_flatten(item, arg)
index += 1
else:
result[name[:-1]] = key_obj
_flatten(obj)
return result
|
3a86a9c3ed1ad4add6027207a074ba0c0ed1b3c8
| 697,334
|
def check_view_filter_and_group_by_criteria(filter_set, group_by_set):
"""Return a bool for whether a view can be used."""
no_view_group_bys = {"project", "node"}
# The dashboard does not show any data grouped by OpenShift cluster, node, or project
# so we do not have views for these group bys
if group_by_set.intersection(no_view_group_bys) or filter_set.intersection(no_view_group_bys):
return False
return True
|
8baeeb827ba092a3b5262f076ba1fa77aaf55b5f
| 697,335
|
import torch
def convert_xywh_to_xyxy(boxes):
"""
Parameters
----------
boxes : torch.Tensor
Tensor of shape (..., 4).
Returns
torch.Tensor
Tensor of shape (..., 4).
"""
num_dims = boxes.ndim
x, y, w, h = torch.split(boxes, 1, dim=-1)
xmin = x - w / 2
ymin = y - h / 2
xmax = x + w / 2
ymax = y + h / 2
boxes_xyxy = torch.cat([xmin, ymin, xmax, ymax], dim=num_dims - 1)
return boxes_xyxy
|
e97e18c7d35433dc5b7ca4254c4a7d617da550da
| 697,336
|
def sentence2feature(sentences):
"""句子形式的语料转化为特征和标签"""
features, tags = [], []
for index in range(len(sentences)):
feature_list, tag_list = [], []
for i in range(len(sentences[index])):
feature = {"w0": sentences[index][i][0],
"p0": sentences[index][i][1],
"w-1": sentences[index][i - 1][0] if i != 0 else "BOS",
"w+1": sentences[index][i + 1][0] if i != len(sentences[index]) - 1 else "EOS",
"p-1": sentences[index][i - 1][1] if i != 0 else "un",
"p+1": sentences[index][i + 1][1] if i != len(sentences[index]) - 1 else "un"}
feature["w-1:w0"] = feature["w-1"] + feature["w0"]
feature["w0:w+1"] = feature["w0"] + feature["w+1"]
feature["p-1:p0"] = feature["p-1"] + feature["p0"]
feature["p0:p+1"] = feature["p0"] + feature["p+1"]
feature["p-1:w0"] = feature["p-1"] + feature["w0"]
feature["w0:p+1"] = feature["w0"] + feature["p+1"]
feature_list.append(feature)
tag_list.append(sentences[index][i][-1])
features.append(feature_list)
tags.append(tag_list)
return features, tags
|
13dc624a1bb2fef9d03ce7a9ccf1e8e0f2d72c7b
| 697,337
|
import numpy
def inner_product(state_1, state_2):
"""Compute inner product of two states."""
return numpy.dot(state_1.conjugate(), state_2)
|
37dcc39ff3b18dae95bb5959ba1afe9e5954fcf9
| 697,338
|
import numpy
def find_max_abs_stack(stack, windowstack, couplingmatrix):
"""Find the location and value of the absolute maximum in this stack
:param stack: stack to be searched
:param windowstack: Window for the search
:param couplingmatrix: Coupling matrix between difference scales
:return: x, y, scale
"""
pabsmax = 0.0
pscale = 0
px = 0
py = 0
nscales = stack.shape[0]
assert nscales > 0
pshape = [stack.shape[1], stack.shape[2]]
for iscale in range(nscales):
if windowstack is not None:
resid = stack[iscale, :, :] * windowstack[iscale, :, :] / couplingmatrix[iscale, iscale]
else:
resid = stack[iscale, :, :] / couplingmatrix[iscale, iscale]
# Find the peak in the scaled residual image
mx, my = numpy.unravel_index(numpy.abs(resid).argmax(), pshape)
# Is this the peak over all scales?
thisabsmax = numpy.abs(resid[mx, my])
if thisabsmax > pabsmax:
px = mx
py = my
pscale = iscale
pabsmax = thisabsmax
return px, py, pscale
|
bde60c76f71ce9fc92c5a17436af1fddfa190dab
| 697,339
|
def ping(event):
"""Responds 'pong' to your 'ping'."""
return 'pong'
|
48d07ca1e513b28212c56758c41e1757b5f75468
| 697,340
|
import functools
import operator
def _has_pattern_match(name: str, patterns) -> bool:
"""Check if name matches any of the patterns"""
return functools.reduce(
operator.or_,
map(lambda r: r.search(name) is not None, patterns),
False)
|
1dd6ad54ee35db20b6fcec0495e4c4ef61788aa0
| 697,341
|
import torch
def _get_zero_grad_tensor(device):
""" return a zero tensor that requires grad. """
loss = torch.as_tensor(0.0, device=device)
loss = loss.requires_grad_(True)
return loss
|
5bf67a7ab0ff50e041fcd07484d6f5468acf6d4e
| 697,343
|
import argparse
def get_parser():
"""Return the argument parser for the test runner"""
parser = argparse.ArgumentParser(__name__)
parser.add_argument(metavar="label", action="append", nargs="*", dest="labels")
return parser
|
0d72692f59a47660df6c2e54217a7ba8ea6bcff5
| 697,344
|
def update_borders(bb: list, roi_size: list):
"""
Update bounding box borders according to roi_size. Borders are updated from center of image.
:param bb: original bounding box
:param roi_size: output bounding box size
:return: modified bounding box
"""
mid_x = bb[0] + bb[2] / 2
mid_y = bb[1] + bb[3] / 2
new_x = int(mid_x - roi_size[1] / 2)
new_y = int(mid_y - roi_size[0] / 2)
return [new_x, new_y, roi_size[0], roi_size[1]]
|
15574e03cc3bea0b33e5f20014bc83ea60b47bfc
| 697,345
|
import random
def random_up(sentence: str) -> str:
"""
Randomly makes some letters lower case and some upper case
Parameters:
sentence(str): the sentence to mix case of the letters in
Returns:
str: modified sentence
Examples:
>>> random_up('abc')
'Abc'
>>> random_up('abcdef')
'acDeBf'
>>> random_up('i like python')
'i lIKE pYThOn'
"""
return ''.join(random.choice((str.upper, str.lower))(c) for c in sentence)
|
15d7300e258b54462ae51b8f70a1b8e8a59e0120
| 697,347
|
def read_File_text_0(sfile):
"""
read file text to Array String/ String
"""
ar = []
sres = ''
try:
try:# python 3
ins = open( sfile, mode="r", encoding='UTF-8')
except:# python 2
ins = open( sfile, mode="r")
#
for line in ins:
ar.append(line.replace("\n",""))
sres+=line
ins.close()
except OSError:
raise Exception(OSError.strerror)
#
return ar,sres
|
f0752ee84a2e58fbcc6162eb2f47aac623d111d6
| 697,348
|
import json
def load_scenario(json_file_path):
""" Load scenario from JSON """
json_file = open(json_file_path, 'r')
parsed_json = json.loads(json_file.read())
json_file.close()
return parsed_json
|
005eb73753fcbbd873e5cb73fa54142990ebc97d
| 697,349
|
def to_deg(value, loc):
"""convert decimal coordinates into degrees, munutes and seconds tuple
Keyword arguments: value is float gps-value, loc is direction list ["S", "N"] or ["W", "E"]
return: tuple like (25, 13, 48.343 ,'N')
"""
if value < 0:
loc_value = loc[0]
elif value > 0:
loc_value = loc[1]
else:
loc_value = ""
abs_value = abs(value)
deg = int(abs_value)
t1 = (abs_value-deg)*60
min = int(t1)
sec = round((t1 - min)* 60, 5)
return (deg, min, sec, loc_value)
|
5c2eb955bc3e05f5f8378bc0df2ed16ea7f7cf3b
| 697,350
|
def max_sub_array(nums):
""" Returns the max subarray of the given list of numbers.
Returns 0 if nums is None or an empty list.
Time Complexity: O(n)
Space Complexity: O(1)
"""
if nums == None:
return 0
if len(nums) == 0:
return 0
max_sum = nums[0]
curr_sum = nums[0]
for i in range(1, len(nums)):
curr_sum = max(curr_sum + nums[i], nums[i])
max_sum = max(curr_sum, max_sum)
return max_sum
|
729f277b61b517fe7e434812576347fe6742401c
| 697,351
|
import pathlib
def get_package_folder_name():
"""Attempt to guess the built package name."""
cwd = pathlib.Path.cwd()
directories = [
path for path in cwd.iterdir() if pathlib.Path(cwd, path).is_dir()
and pathlib.Path(cwd, path, '__init__.py').is_file() and path.name != 'test']
assert len(directories) == 2, directories
return directories[0].name
|
1ecfcbd46fbc960f37f89b3f8beb8604e83fa041
| 697,352
|
import random
import time
def delay(fn, opts, task, *args, **kwargs):
""" delay(t=5, stddev=0., pdf="gauss")
Wraps a bound method of a task and delays its execution by *t* seconds.
"""
if opts["stddev"] <= 0:
t = opts["t"]
elif opts["pdf"] == "gauss":
t = random.gauss(opts["t"], opts["stddev"])
elif opts["pdf"] == "uniform":
t = random.uniform(opts["t"], opts["stddev"])
else:
raise ValueError("unknown delay decorator pdf '{}'".format(opts["pdf"]))
time.sleep(t)
return fn(task, *args, **kwargs)
|
66b79012d62f1a4fc6b0cb1d79a3aea68fcdc0e1
| 697,353
|
from typing import Dict
import collections
def quantity_contained(container: Dict[str, collections.Counter],
color: str) -> int:
"""Quantity of bags contained."""
counter = 0
if color in container and container[color] is not None:
for bag_color, quantity in container[color].items():
counter += (
quantity * (1 + quantity_contained(container, bag_color))
)
return counter
|
f3262a4fc2a8228432e68a86c6728c89e8ed5d18
| 697,354
|
def add_camera_args(parser):
"""Add parser augument for camera options."""
parser.add_argument('--video', type=str, default=None,
help='video file name, e.g. traffic.mp4')
parser.add_argument('--video_looping', action='store_true',
help='loop around the video file [False]')
parser.add_argument('--onboard', type=int, default=None,
help='Jetson onboard camera [None]')
parser.add_argument('--copy_frame', action='store_true',
help=('copy video frame internally [False]'))
parser.add_argument('--do_resize', action='store_true',
help=('resize image/video [False]'))
parser.add_argument('--width', type=int, default=640,
help='image width [640]')
parser.add_argument('--height', type=int, default=480,
help='image height [480]')
return parser
|
21f74ccd2a092ba9620f40bb1a0a9c5c6dbf72a5
| 697,356
|
def process_wildcard(fractions):
"""
Processes element with a wildcard ``?`` weight fraction and returns
composition balanced to 1.0.
"""
wildcard_zs = set()
total_fraction = 0.0
for z, fraction in fractions.items():
if fraction == "?":
wildcard_zs.add(z)
else:
total_fraction += fraction
if not wildcard_zs:
return fractions
balance_fraction = (1.0 - total_fraction) / len(wildcard_zs)
for z in wildcard_zs:
fractions[z] = balance_fraction
return fractions
|
6358bfc7ee3b7f187b375b1df2cecd8ce104674a
| 697,357
|
def cover_email(email):
"""Replaces part of the username with dots
>>> cover_email('hello@example.com')
'hel…@example.com'
"""
try:
[user, domain] = email.split('@')
except ValueError:
# handle invalid emails... sorta
user = email
domain = ''
if len(user) <= 4:
user_prefix = user[:1]
elif len(user) <= 6:
user_prefix = user[:3]
else:
user_prefix = user[:4]
return f'{user_prefix}…@{domain}'
|
e24cb3273335504f9d0d245138752fa0b7cf53df
| 697,358
|
from pathlib import Path
import sys
def module_name() -> str:
"""Get the current module name."""
return Path(sys.argv[0]).stem
|
f6ccaad8e1b32fe2447d90b277dd1749b725f865
| 697,359
|
def _convert_ketone_unit(raw_value):
"""Convert raw ketone value as read in the device to its value in mmol/L."""
return int((raw_value + 1) / 2.) / 10.
|
804d34ecc9d901f3d958ebee34282885248c3499
| 697,361
|
import base64
def secret_to_bytes(secret):
"""Convert base32 encoded secret string to bytes"""
return base64.b32decode(secret)
|
81720bc65fa4be6a18cf0ba461adaf7b9227a417
| 697,362
|
import requests
import json
def call(method, url, payload=None, headers={'Content-Type': 'application/json'}):
""" Use for calling APIs.
Usage
call('delete', 'http://localhost:8888/delete')
"""
return getattr(getattr(requests, method)(url, data=json.dumps(payload), headers=headers), 'json')()
|
5f03eab3ad4b125feeaae4166e1188f9e166a688
| 697,364
|
def create_csv_header():
"""Creates a CSV header row for dialogue upload to Crowdflower.
Arguments:
dg -- a Django dialogue object
"""
return 'cid,code,code_gold'
|
b0cb1b6a2b8483fe4324431099e194c6ecbeb657
| 697,365
|
import numpy as np
import logging
def run_statistics(df, feature):
"""Takes DataFrame and calculates summary statistics for the experiment. The data must contain the 'Status' column, defining each row as 'Sample', 'Positive' or 'Negative' control, or 'Reference'. 'Reference' wells are excluded from the analysis.
"""
logging.basicConfig(level = logging.INFO)
st = None
df = df[df.Status != 'Reference'][[feature, 'Status']]
st = df.groupby(['Status']).agg([np.size, np.mean, np.std, np.var])
st.columns = st.columns.droplevel()
st['Feature'] = feature
if 'Positive' in df.Status.unique() and 'Negative' in df.Status.unique():
st['Z_factor'] = 1 - 3*(st.at['Positive','std'] + st.at['Negative','std'])/abs(st.at['Positive','mean'] - st.at['Negative','mean'])
st['SB'] = st.at['Positive','mean']/st.at['Negative','mean']
st = st.reset_index()[['Feature', 'Status', 'size', 'mean', 'std', 'var', 'Z_factor', 'SB' ]]
else:
logging.info(f'run_statistics: Failed calculate Z factor. Positive or Negative control is missing.\n')
st = st.reset_index()[['Feature', 'Status', 'size', 'mean', 'std', 'var']]
pass
return st
|
276a429774e8a285ad784a3aa57320fda93fb1a6
| 697,366
|
def get_longest_consecutive_sequence(array: list):
"""given array return longest consecutive sequence length
the following algorithm provides the length in O(N) time
"""
if len(array) < 1:
return 0
hashmap = {number: True for number in array}
longest_consecutive = 1 # array must have a value
while hashmap:
key = next(iter(hashmap.keys()))
distance_from_key = 1
current_consecutive = 1
# check descending consecutive integers
while hashmap.get(key - distance_from_key, False):
del hashmap[key - distance_from_key]
current_consecutive += 1
distance_from_key += 1
distance_from_key = 1
# check ascending consecutive integers
while(hashmap.get(key + distance_from_key)):
del hashmap[key + distance_from_key]
current_consecutive += 1
distance_from_key += 1
if current_consecutive > longest_consecutive:
longest_consecutive = current_consecutive
del hashmap[key]
return longest_consecutive
|
4e51defc98c7e899263b7519b1f3f85c190fa43a
| 697,367
|
import click
from typing import Iterator
def extra_context_callback(
context: click.Context, parameter: click.Parameter, args: tuple[str, ...]
) -> dict[str, str]:
"""Callback for the EXTRA_CONTEXT argument."""
def _generate() -> Iterator[tuple[str, str]]:
for arg in args:
try:
key, value = arg.split("=", 1)
yield key, value
except ValueError:
raise click.BadParameter(
"EXTRA_CONTEXT should contain items of the form key=value; "
f"'{arg}' doesn't match that form"
)
return dict(_generate())
|
656b2bb6a54c302ddeb63c82d238e4cbe304de70
| 697,369
|
def find_constraints(mol, sites):
"""
Find the NwChem constraints for a selection of sites on a molecule.
"""
# Find the corresponding atom numbers in string format
site_numbers = []
for i in range(len(mol.sites)):
if mol.sites[i] in sites:
site_numbers.append(str(i + 1) + ' ')
site_numbers = ''.join(site_numbers)
# Set up the constraints on the atoms
return {'fix atom': site_numbers}
|
978bef23a58ec670e4bf002b16ebca580acb5663
| 697,370
|
def decomp_proc (values):
"""
Given the row of predictions for the decomposition mode test output, remove the pointless training zeroes from
the time
:param values: A row of the decomposition predictions .csv, split by commas into a list
:return: Same row with pointless zeros after the time removed
"""
time = values[1]
times = time.split(".")
assert (len(times) == 2)
assert (times[1] == "000000")
values[1] = times[0]
return values
|
6898dc6586ffed0b16dbde1159861eccc63206c5
| 697,371
|
def _non_adjacent_filter(self, cmd, qubit_graph, flip=False):
"""A ProjectQ filter to identify when swaps are needed on a graph
This flags any gates that act on two non-adjacent qubits with respect to
the qubit_graph that has been given
Args:
self(Dummy): Dummy parameter to meet function specification.
cmd(projectq.command): Command to be checked for decomposition into
additional swap gates.
qubit_graph(Graph): Graph object specifying connectivity of
qubits. The values of the nodes of this graph are unique qubit ids.
flip(Bool): Flip for switching if identifying a gate is in this class
by true or false. Designed to meet the specification of ProjectQ
InstructionFilter and DecompositionRule with one function.
Returns:
bool: When flip is False, this returns True when a 2 qubit command
acts on non-adjacent qubits or when it acts only on a single qubit.
This is reversed when flip is used.
"""
if qubit_graph is None:
return True ^ flip
total_qubits = (cmd.control_qubits +
[item for qureg in cmd.qubits for item in qureg])
# Check for non-connected gate on 2 qubits
if ((len(total_qubits) == 1) or
(len(total_qubits) == 2 and
qubit_graph.is_adjacent(
qubit_graph.find_index(total_qubits[0].id),
qubit_graph.find_index(total_qubits[1].id)))):
return True ^ flip
return False ^ flip
|
9d3a55341c2a1410c5c1864ce5fcd6ea177d4026
| 697,373
|
def str2bool(str):
"""Tells whether a string is a Yes (True) or a No (False)"""
if str.lower() in ["y", "yes"]:
return True
elif str.lower() in ["n", "no"]:
return False
else:
raise Exception("Please enter Yes or No")
|
ba3f8a2fdca089ae5cdc608a04091009a57a7662
| 697,374
|
import argparse
def build_parser(parser=None, **argparse_options):
"""
Args:
parser (argparse.ArgumentParser):
**argparse_options (dict):
Returns:
"""
if parser is None:
parser = argparse.ArgumentParser(
**argparse_options,
description="""Search files recursively starting at 'base_directory'
and count the differents codecs found"""
)
parser.add_argument('-i', '--input',
nargs='+',
required=True,
dest='l_in_media_fp'
)
parser.add_argument('-o', '--output',
required=True,
dest='out_media_fp'
)
return parser
|
4122b7513f93bb68f20d7f318b3d2eb5460a3539
| 697,375
|
def body_title(entry: str):
"""Choose what is body and what is title.
Arguments:
entry {str} -- entry to decide on
"""
entry = entry[17:]
if "\n" in entry:
split = entry.split("\n")
else:
split = entry.split()
if split:
title = split[0]
split.pop(0)
body = " ".join(split)
else:
title, body = "",""
return title, str(body)
|
c90ae8480be3c5670ec9016cf6a68fc3cf6601a3
| 697,376
|
import re
def re_group(string: str) -> str:
"""
>>> re_group('..12345678910111213141516171820212223')
'1'
"""
match = re.search(r'([a-zA-Z0-9])\1+', string)
return match.group(1) if match else '-1'
|
d7e75a1af62f3266d789fda52ce49e9ff99b17b0
| 697,377
|
def plusOne(digits):
"""
:type digits: List[int]
:rtype: List[int]
"""
return list(str(int("".join(str(e) for e in digits))+1))
#return list(str(int("".join(digits))+1))
|
cbdfdc3acd57a89af1a96e16acd7a3976c74aa4c
| 697,378
|
def _make_value_divisible(value, factor, min_value=None):
"""
It ensures that all layers have a channel number that is divisible by 8
:param v: value to process
:param factor: divisor
:param min_value: new value always greater than the min_value
:return: new value
"""
if min_value is None:
min_value = factor
new_value = max(int(value + factor / 2) // factor * factor, min_value)
if new_value < value * 0.9:
new_value += factor
return new_value
|
89561ca1551b988030b3d0b4fdd5d17f5664607f
| 697,380
|
def contig_count(contig):
"""Return a count of contigs from a fasta file"""
return sum([1 for line in open(contig, 'r').readlines() if line.startswith('>')])
|
dde6bbcf5799dbea197c2b0f391bf26e9ac960b6
| 697,381
|
from pathlib import Path
def contour(anchor):
"""contour(anchor) -> Path
Returns a Path object representing the contour starting with the
Dart anchor. (syntactic sugar for 'Path(anchor.phiOrbit())')"""
return Path(anchor.phiOrbit())
|
c2fee570e3feb753439c5af941b0658e2aa49bbc
| 697,382
|
import sys
import traceback
def import_class(import_str):
"""
Returns a class from a string that specifies a module and/or class
:param import_str: import path, e.g. 'httplib.HTTPConnection'
:returns imported object
:raises: ImportedError if the class does not exist or the path is invalid
"""
(mod_str, separator, class_str) = import_str.rpartition('.')
try:
__import__(mod_str)
return getattr(sys.modules[mod_str], class_str)
except (ValueError, AttributeError):
raise ImportError('Class %s cannot be found (%)' %
(class_str,
traceback.format_exception(*sys.exc_info())))
|
950745dd8e71820099d1fc7d002cd485652ad7c9
| 697,383
|
def tcl(s, *args):
"""tcl(s, *args) -> str.
Run a tcl command. The arguments must be strings and passed to the command. If no arguments are given and the command has whitespace in it then it is instead interpreted as a tcl program (this is deprecated).
@param s: TCL code.
@param args: The arguments to pass in to the TCL code.
@return: Result of TCL command as string.
"""
return ''
|
3493531fa272dd91b61783d67fd5b91ff928158b
| 697,384
|
def HPX_grid_size(Nside):
"""Return the size of the pixel grid (Nx, Ny) for a given Nside"""
Nx = 8 * Nside
Ny = 4 * Nside + 1
return Nx, Ny
|
8e267c467ed52ef24b1d540cff9aeac84a1e1bb4
| 697,385
|
def chk_typ(ty):
"""
const __global char *__private
__private int
void
__global char *__private
__local int *__private
const __private int
__global float *const __private
"""
global id2obj, name2obj, rec2obj, td2obj
if 'attribute' in ty:
_ = 2+2
return
is_pointer = False
tl = ty.split()
if tl[-1] == '__attribute__((cdecl))':
tl = tl[:-1]
td = {}
i0 = 0
while tl[i0] in ('const','__global','__local','__private'):
i0 +=1
i = i0 # i0 = i = 1 if tl[0] == 'const' else 0;
while i < len(tl) and (tl[i].isidentifier()):
td[tl[i]] = td.get(tl[i],0) + 1
i += 1
while i < len(tl) and tl[i] in ('*','*const','*__private','*restrict','*volatile','**','**restrict','(*)[11]','(*)[n]','(*)[20]','(*)[50]')+('***','*[1]','[]','[8]','[9]','[12]','[24]','[50]','[64]','[101]','[101][101]','[101][102]','[102][102]'):
is_pointer = True
i += 1
if i < len(tl):
assert tl[i].startswith('(*)('), ty # (*)(void), (*)(const void *, const void *)
is_pointer = True
#
if 'struct' in td:
assert 'union' not in td and 'struct' == tl[i0], tl
sn = tl[i0+1]
if sn not in name2obj:
assert is_pointer
return 'P'
snd = name2obj[sn]
assert snd['kind'] == 'RecordDecl' and snd['tagUsed'] == 'struct', tl
assert len(tl) in (i0+2,i0+3), tl
if len(tl) == i0+3:
assert tl[-1] in ('*','*restrict','**'), tl
return 'P'
else:
sz = ty_rec_sz(snd)
return 'X' if sz <= 8 else 'Y'
elif 'union' in td:
assert 'union' == tl[i0], tl
sn = tl[i0+1]
snd = name2obj[sn]
assert snd['kind'] == 'RecordDecl' and snd['tagUsed'] == 'union', tl
assert False, ty
else:
_ = 2+2
|
adc5975b0f2713f6cf8dfe541beffa6939d24ca5
| 697,386
|
def email_signature():
"""
Gets the signature for the emails
"""
signature = ("Regards,\n\n"
"The PhysioNet Team,\n"
"MIT Laboratory for Computational Physiology,\n"
"Institute for Medical Engineering and Science,\n"
"MIT, E25-505 77 Massachusetts Ave. Cambridge, MA 02139"
)
return signature
|
4e70285c3b9b9d4aab916205a5d02b2738387e66
| 697,387
|
def _get_percent(text):
"""If text is formatted like '33.2%', remove the percent and convert
to a float. Otherwise, just convert to a float.
"""
if not text:
return None
if text.endswith('%'):
text = text[:-1]
return float(text.strip())
|
2975f0a603a113bf7991753250a83be4da363070
| 697,388
|
def contig_to_array(bw, chrm, res = None):
"""
Convert single basepair bigwig information to a numpy array
Args:
bw - a pyBigWig object
chrm - name of chromosome you want
res - resolution you want data at in bp.
Returns:
outarray - numpyarray at specified resolution
"""
chrm_length = bw.chroms(chrm)
# makes an array at 1 bp resolution
out_array = bw.values(chrm, 0, chrm_length, numpy=True)
if res:
out_array = out_array[::res]
return out_array
|
f09fb80ef5a073bf87f82b0d86c26153db404f4f
| 697,389
|
def generic_method(method):
"""Marks method as generic."""
method._is_generic = True
return method
|
9cc3cb91d61ef013385b345cc377d17bc7c8100c
| 697,390
|
def clean_empty_keyvalues_from_dict(d):
"""
Cleans all key value pairs from the object that have empty values, like [], {} and ''.
Arguments:
d {object} -- The object to be sent to metax. (might have empty values)
Returns:
object -- Object without the empty values.
"""
if not isinstance(d, (dict, list)):
return d
if isinstance(d, list):
return [v for v in (clean_empty_keyvalues_from_dict(v) for v in d) if v]
return {k: v for k, v in ((k, clean_empty_keyvalues_from_dict(v)) for k, v in d.items()) if v}
|
8769e5ceda55588a136fdf131f19aea4c5f06f95
| 697,391
|
import random
def session_id_generator(size = 8):
"""
Generating session id
"""
s = "0123456789ABCDEF"
return "".join(random.sample(s,size ))
|
b57ca24f6cc08cb465562f09495c99f25d72d296
| 697,392
|
def get_commands_if_mode_change(proposed, existing, group, mode):
"""Gets commands required to modify mode of a port-channel
Note: requires removing existing config and re-config'ing new
port-channel with new mode
Args:
existing (dict): existing config as defined in nxos_portchannel
proposed (dict): proposed config as defined in nxos_portchannel
group (str): port-channel group number
mode (str): on, active, or passive
Returns:
list: ordered list of cmds to be sent to device for a change in mode
Note:
Specific for Ansible module(s). Not to be called otherwise.
"""
proposed_members = proposed['members']
existing_members = existing['members']
members_to_remove = set(existing_members).difference(proposed_members)
members_to_remove_list = list(members_to_remove)
members_dict = existing['members_detail']
members_with_mode_change = []
for interface, values in members_dict.iteritems():
if interface in proposed_members \
and (interface not in members_to_remove_list):
# Could probabaly make an assumption after checking one instead
if values['mode'] != mode:
members_with_mode_change.append(interface)
commands = []
if members_with_mode_change:
for member in members_with_mode_change:
commands.append('interface ' + member)
commands.append('no channel-group ' + group)
for member in members_with_mode_change:
commands.append('interface ' + member)
commands.append('channel-group {0} mode {1}'.format(group, mode))
return commands
|
f2aa15cd7db621925d57f0a4f6a80cb5cbe4a664
| 697,394
|
def normalize_metric(metric):
"""监控返回标准,保留两位小数"""
return float("%.2f" % float(metric))
|
f4fb0e6f83be53a9c274dde67e525406ea1a3f53
| 697,395
|
def get_timesteps_per_episode(env):
"""Returns a best guess as to the maximum number of steps allowed in a given Gym environment"""
if hasattr(env, "_max_episode_steps"):
return env._max_episode_steps
if hasattr(env, "spec"):
return env.spec.tags.get("wrapper_config.TimeLimit.max_episode_steps")
if hasattr(env, "env"):
return get_timesteps_per_episode(env.env)
return None
|
40df292632c47b77047f99b51ff5373b9ec64c33
| 697,396
|
def _resource_name_package(name):
"""
pkg/typeName -> pkg, typeName -> None
:param name: package resource name, e.g. 'std_msgs/String', ``str``
:returns: package name of resource, ``str``
"""
if not '/' in name:
return None
return name[:name.find('/')]
|
f434aa1fcfd18797625ca63c7f121dce020f8585
| 697,398
|
def state_dict_cpu_copy(chkpt):
"""save cpu copy of model state, so it can be reloaded by any device"""
#if chkpt has things other than state_dict get the state_dict
if 'state_dict' in chkpt:
state_dict = chkpt['state_dict']
else:
state_dict = chkpt
for n, p in state_dict.items():
state_dict[n] = p.cpu()
return chkpt
|
a0b5cdeeab3255972be2536bcd2472401f48ec71
| 697,399
|
import importlib
def get_versio_versioning_scheme(full_class_path):
"""Return a class based on it's full path"""
module_path = '.'.join(full_class_path.split('.')[0:-1])
class_name = full_class_path.split('.')[-1]
try:
module = importlib.import_module(module_path)
except ImportError:
raise RuntimeError('Invalid specified Versio schema {}'.format(full_class_path))
try:
return getattr(module, class_name)
except AttributeError:
raise RuntimeError('Could not find Versio schema class {!r} inside {!r} module.'.format(class_name, module_path))
|
bac16d14ba32c2445acaaf7605e288a62606177b
| 697,401
|
def check_svc(tochecks) -> bool:
"""检查svc的声明规则
list: [("ts","TCP",8080),...],这里ts表示使用了torch serving框架
"""
if not isinstance(tochecks, list):
return False
for pair in tochecks:
name, protocol, port = pair
if not all([isinstance(name, str), protocol.upper() in ["TCP", "UDP", "HTTP"], isinstance(port, int)]):
return False
return True
|
b57afc9ae34be5d14037986c22054b7d4086d1ba
| 697,402
|
def hours2days(period):
"""
uses a tuple to return multiple values. Write an hours2days function that takes one argument, an integer, that is a time period in hours. The function should return a tuple of how long that period is in days and hours, with hours being the remainder that can't be expressed in days. For example, 39 hours is 1 day and 15 hours, so the function should return (1,15).
These examples demonstrate how the function can be used:
hours2days(24) # 24 hours is one day and zero hours
(1, 0)
hours2days(25) # 25 hours is one day and one hour
(1, 1)
hours2days(10000)
(416, 16)
"""
hours_of_day = 24
day = period // hours_of_day
hours = period % hours_of_day
return day, hours
|
2198538b30ae9e0b1b1c1ec6f9f7f76ac393cafb
| 697,403
|
import csv
import random
def get_tweet(tweets_file, excluded_tweets=None):
"""Get tweet to post from CSV file"""
with open(tweets_file) as csvfile:
reader = csv.DictReader(csvfile)
possible_tweets = [row["tweet"] for row in reader]
if excluded_tweets:
recent_tweets = [status_object.text for status_object in excluded_tweets]
possible_tweets = [tweet for tweet in possible_tweets if tweet not in recent_tweets]
selected_tweet = random.choice(possible_tweets)
return selected_tweet
|
0734a41413277d0af66acffb55716e396a4ff1bc
| 697,404
|
def filter_manifest_definition(manifest_definition, name_filter):
"""
Filters the manifest to only include functions that partially match
the specified filter.
:param manifest_definition: Dictionary of the manifest
:param name_filter: A function name specified in the manifest
:return: Filtered manifest definition
"""
manifest_definition['functions'] = {key: value for (key, value)
in manifest_definition['functions'].items()
if name_filter in key.lower()}
return manifest_definition
|
a971fab368aa6339850b785cb752ca00e09f7e5a
| 697,406
|
def top_ranked_final_primers(filter_merged_df):
"""
Drops duplicate sequence ids and keeps first (which also corresponds)
to the highest ranking primer pair for each sample.
Args:
filter_merged_df (DataFrame): input from filter_merged, where primers are only equal
to on target primers from initial primer generation.
Returns:
top_ranked_df (DataFrame): outputs only the highest scoring primer pair
at each position
"""
top_ranked_df = filter_merged_df.drop_duplicates('Sequence ID', keep='first')
return top_ranked_df
|
03f682a03d6454c3b142231fe78d82208117cf09
| 697,407
|
def gff3plsorting(gff_file, outgff_file):
""" """
inputs = [gff_file]
outputs = [outgff_file]
options = {
'cores': 1,
'memory': '4g',
'account': 'NChain',
'walltime': '01:00:00'
}
spec = '''
/home/marnit/bin/gff3sort.pl --chr_order natural {infile} > {outfile}
'''.format(infile=gff_file, outfile=outgff_file)
return inputs, outputs, options, spec
|
f2a07d66dd338aad4f12c29d22205bbdee3d20e3
| 697,408
|
def words_sent(message_container, start_date, end_date):
"""
Return number of words sent between start and end date contained by
message container (chat/member).
"""
words_sent = 0
for message in message_container.messages:
if (start_date <= message.timestamp.date() <= end_date
and message.type == 'text'):
words_sent += len(message.words())
return words_sent
|
c8e466a8d9c1049a6b5066fe0c9efccbbd3ae245
| 697,409
|
def field_lookup(field_string):
"""Attempts to find relevant error field for uniqueness constraint error, given SQL error message; broken off from translate_message logic
"""
output_format = "{0}; {0}"
bad_field = 'code' # assumes this field as a default
if field_string.startswith('uq_t_'):
bad_field = 'title'
elif field_string.endswith('email'):
bad_field = 'email'
elif field_string.endswith('title'):
bad_field = 'title'
return output_format.format(bad_field)
|
782480983e69ca975f80b5df4c16822a6ab41458
| 697,410
|
import math
def matrix_from_quaternion(quaternion):
"""Calculates a rotation matrix from quaternion coefficients.
Parameters
----------
quaternion : [float, float, float, float]
Four numbers that represents the four coefficient values of a quaternion.
Returns
-------
list[list[float]]
The 4x4 transformation matrix representing a rotation.
Raises
------
ValueError
If quaternion is invalid.
Examples
--------
>>> q1 = [0.945, -0.021, -0.125, 0.303]
>>> R = matrix_from_quaternion(q1)
>>> q2 = quaternion_from_matrix(R)
>>> allclose(q1, q2, tol=1e-03)
True
"""
sqrt = math.sqrt
q = quaternion
n = q[0]**2 + q[1]**2 + q[2]**2 + q[3]**2 # dot product
# perhaps this should not be hard-coded?
eps = 1.0e-15
if n < eps:
raise ValueError("Invalid quaternion, dot product must be != 0.")
q = [v * sqrt(2.0 / n) for v in q]
q = [[q[i] * q[j] for i in range(4)] for j in range(4)] # outer_product
rotation = [
[1.0 - q[2][2] - q[3][3], q[1][2] - q[3][0], q[1][3] + q[2][0], 0.0],
[q[1][2] + q[3][0], 1.0 - q[1][1] - q[3][3], q[2][3] - q[1][0], 0.0],
[q[1][3] - q[2][0], q[2][3] + q[1][0], 1.0 - q[1][1] - q[2][2], 0.0],
[0.0, 0.0, 0.0, 1.0]]
return rotation
|
57a38e4214c94e54e2cfb2fd71e1bfa57d4f714b
| 697,413
|
from typing import Iterable
def create_item_name(item_type: str, item_names: Iterable[str]) -> str:
"""
Translates an item with a type into a name. For instance, if there are two items of type 'POST', the first will
be named 'POST0' and the second will be 'POST1'
Args:
item_type: Type of item
item_names: Names of current items
Returns:
Translated item name
"""
name_index = len([name for name in item_names if name.startswith(item_type)])
return f"{item_type}{name_index}"
|
8ec37473ee0a3dc880dc962b9f1c622c2dfd9af3
| 697,414
|
import requests
def get_instance_id():
"""Check instance metadata for an instance id"""
r = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
return r.text
|
16a1104877e47f310c119b43eb52eab6dbeba104
| 697,416
|
def hex2str(data):
"""
:param data: '123'
:return: '303132'
"""
return ''.join('{:02X}'.format(ord(c)) for c in data)
|
35e046e820251c88867d33e7cccdb6b77c62a43d
| 697,417
|
import numpy
def batchify(data, bsz):
"""Transform data into batches."""
numpy.random.shuffle(data)
batched_data = []
for i in range(len(data)):
if i % bsz == 0:
batched_data.append([data[i]])
else:
batched_data[len(batched_data) - 1].append(data[i])
return batched_data
|
2f91d8ff2d68f99b5f32f12fa6df49a1fead2fbc
| 697,418
|
import requests
from bs4 import BeautifulSoup
def fetch_top_list(url, tag, attrs=None):
"""
use a link to fetch a list of image links
:param link:
:param attrs:
:return:
"""
state_page = requests.get(url)
soup = BeautifulSoup(state_page.content, 'html.parser')
return soup.find_all(tag, attrs=attrs)
|
9f1fc3588fa978642a6b30722c42123977f18e6b
| 697,419
|
def process_group(grp):
"""
Given a list of list of tokens,
of the form "A B ... C (contains x, y, z)"
where A, B, C are strings of ingredients,
and x, y, z are allergens, determine the
count of the ingredients that definitely
do not contain any allergens.
:param grp: A list of list of tokens.
:return: A count of the occurrences of
"good"(allergen-free) ingredients.
"""
def parse_line(s):
"""
Given a single token
of the form
"A B ... C (contains x, y, z)"
parse it and return a set of
ingredients and its corresponding
allergens.
:param s: A string representing token.
:return a, b: A tuple of sets representing
the ingredients and allergens.
"""
s = s.replace(" (", " ").replace(", ", " ").replace(")", " ")
ingredients, allergens = s.split(" contains ")
a = set(ingredients.split(" "))
b = set(allergens.split(" ")) - {""}
return a, b
aller_to_ing = dict()
computed = []
for idx, line in enumerate(grp):
ing, aller = parse_line(line)
computed.append((set(x for x in ing), set(a for a in aller)))
for a in aller:
if a not in aller_to_ing:
aller_to_ing[a] = {x for x in ing}
else:
aller_to_ing[a] &= ing
# Potentially bad ingredients.
potential = set()
for x in aller_to_ing.values():
potential |= x
counter = 0
for ing, aller in computed:
for x in ing:
if x not in potential:
counter += 1
return counter
|
001ca014e191baf570be9b4d604756dc3bdbeff1
| 697,420
|
def get_installed_tool_shed_repository( app, id ):
"""Get a tool shed repository record from the Galaxy database defined by the id."""
return app.install_model.context.query( app.install_model.ToolShedRepository ) \
.get( app.security.decode_id( id ) )
|
d76c3af3f159f9a0882a6b27951a2e8060f4bc28
| 697,421
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.