content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import sys
import functools
import signal
def timeout(max_running_time):
"""Test method decorator that fails the test if it executes longer
than |max_running_time| seconds.
It exists to terminate tests in case of deadlocks. There's a high chance that
process is broken after such timeout (due to hanging deadlocked threads that
can own some shared resources). But failing early (maybe not in a cleanest
way) due to timeout is generally better than hanging indefinitely.
|max_running_time| should be an order of magnitude (or even two orders) larger
than the expected run time of the test to compensate for slow machine, high
CPU utilization by some other processes, etc.
Can not be nested.
Noop on windows (since win32 doesn't support signal.setitimer).
"""
if sys.platform == 'win32':
return lambda method: method
def decorator(method):
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
signal.signal(signal.SIGALRM, lambda *_args: self.fail('Timeout'))
signal.setitimer(signal.ITIMER_REAL, max_running_time)
try:
return method(self, *args, **kwargs)
finally:
signal.signal(signal.SIGALRM, signal.SIG_DFL)
signal.setitimer(signal.ITIMER_REAL, 0)
return wrapper
return decorator
|
f3f8c55aaea56d0dcf99f666e6f441373b9eff23
| 29,144
|
def z_minus_its_reciprocal(z: complex) -> complex:
"""
The function z - 1/z.
I define this function explicitly because it plays an important role in the model.
Furthermore, we also want to plot it and test it.
Note: I do not handle the case of zero (or infinite) argument here.
Args:
z (complex): a nonzero complex number
Returns:
complex: The value of z - 1/z.
"""
return z - (1 / z)
|
46de97ee9c628faf5fe626108af801827e2dfc8f
| 29,145
|
import subprocess
def run_test(cfg):
""" Runs `npm test` from the correct cwd and returns the return code. """
return subprocess.call(['npm', 'test'],
cwd=cfg.get('Directories', 'test_cwd'))
|
11a118c875b8354eb0b887e1149268a8438f2e0b
| 29,146
|
from typing import List
def split_str(data_str: str) -> List[str]:
"""
Split a string into a list of strings. The string will be split at ',' or '\n' with '\n' taking precedence.
:param data_str: A string to be split.
:return: List[str]
"""
if '\n' in data_str:
return list(str(data_str).splitlines())
elif ',' in data_str:
return list(str(data_str).split(','))
else:
i = list()
i.append(data_str)
return i
|
450b301f2b696e2240f9bb8fe49def815c59478d
| 29,147
|
def findAttrInAttributes(klass, classAttr):
"""Find classAttr in WorkflowAttributes of klass."""
for attr in klass.attributes:
if attr.classAttr == classAttr:
return attr
|
0ecf387b24af116e5d4a038d2788f4dab8a4aeeb
| 29,148
|
def remove_zp_cluster(clusters):
""" 移除clusters中的零指代
"""
clusters_wo_zp = list()
for cluster in clusters:
cluster_wo_zp = list()
for sloc, eloc in cluster:
if eloc - sloc > 0:
cluster_wo_zp.append([sloc, eloc])
if len(cluster_wo_zp) > 1:
clusters_wo_zp.append(cluster_wo_zp)
return clusters_wo_zp
|
13ee735f911e52302c34c46a2df66ef320a3f507
| 29,149
|
def cumulative_discounted_rewards(trajectories):
"""calculate the cumulative rewards for the given trajectories
1. input: a list of trajectories is a list of tuples, one tuple being comprised of the following values, IN ORDER:
1. current state (s)
2. action agent chooses (a)
3. reward (r)
4. state agent enters after choosing a (s2)
5. next action agent chooses from new state (a2)
2. output:
1. list of cumulative reward for each list of trajectories
"""
discount_factor = 0.9
# print("boop", discount_factor)
all_rewards = []
for i, trajectory_list in enumerate(trajectories):
curr_rewards = []
for j, trajectory in enumerate(trajectory_list):
state, action, reward, next_state, done = trajectory_list[0], trajectory[1], trajectory[2], trajectory[3], trajectory[4]
discounted_return = 0
count = 0
for k in range(j, len(trajectory_list)):
discounted_return += (discount_factor ** count) * trajectory_list[k][2]
count += 1
curr_rewards.append(discounted_return)
# done with the first list in all the trajectories
all_rewards.append(curr_rewards)
return all_rewards
|
897b08144093fd1e6bd1c6fd05db0f49be487a17
| 29,150
|
def file_util_read_byte(path):
"""读取二进制文件(byte)"""
with open(path, 'br') as f:
rst_bytes = bytes()
for line in f:
rst_bytes += line
return rst_bytes
|
eda93cffa54a7a7bdbf617954866bd5cbabdcc64
| 29,151
|
import os
def get_problems(fname="problem_names.txt"):
"""
Get the list of problems in `fname`.
:param fname: The name of the file that has problems.
"""
if os.path.exists(fname):
with open(fname, "r") as problem_file:
raw = problem_file.readlines()
return list(map(lambda _x: _x.strip(), raw))
return []
|
3b70822bf5ae4aae924b4fce6570c832f576d882
| 29,153
|
def tokenization(tweet):
"""
DESCRIPTION:
Tokenizes a tweet into words
INPUT:
tweet: a tweet as a python string
OUTPUT:
list of tweet's tokens (words)
"""
return list(tweet.split())
|
60c59fdbe775ea8178b3f2c4de6657e3fedd776a
| 29,155
|
def tree_named(tree):
"""single node tree fixture - where the node has the service_name field filled out"""
list(tree.values())[0].service_name = 'dummy'
return tree
|
fe5d1c10004035343498c2eb413f010baeb458e5
| 29,157
|
import time
def tic():
"""start = tic()
start tictoc timer
start - time in seconds
"""
global _tic
_tic = time.time()
return _tic
|
85f4e6ccbae8ecccf761e8474d42cb12fcc7466c
| 29,158
|
import numpy
def radians_angles_average(x: numpy.ndarray) -> float:
"""
Calculates the average between radian angles.
:param x: numpy array of degree angles in range (0, :math:`2\pi`) or (:math:`-\pi`, :math:`\pi`).
:return: the average.
"""
n = x.size
return numpy.arctan2((1 / n) * numpy.sum(numpy.sin(x)), (1 / n) * numpy.sum(numpy.cos(x)))
|
87ffa9c968c72f7246bd93b9766d4702a48276d6
| 29,159
|
import sys
import argparse
import os
def get_args(argv):
"""
get args using argparse.ArgumentParser ArgumentParser
e.g: argparse https://docs.python.org/3/library/argparse.html
jumeg wrapper for <mne.io.read_raw_bti>
https://martinos.org/mne/stable/generated/mne.io.read_raw_bti.html#mne.io.read_raw_bti
Results:
--------
parser.parse_args(), parser
"""
info_global = """
JuMEG import 4D/BTi data to FIF
call <mne.io.read_raw_bti>
used python version: {}
""".format(sys.version.replace("\n"," "))
h_fif_stage= """
fif stage: start path for fif files from list
-> start path to fif file directory structure
e.g. /data/megstore1/exp/INTEXT/mne/
"""
#h_fif_path_prefix="path prefix append to <fif stage>"
h_pdf_stage="""
pdf stage: start path for fif files from list
-> start path to fif file directory structure
e.g. /data/megstore1/exp/INTEXT/mne/"""
h_pdf_fname = "Path to the processed data file (PDF)"
h_config_fname = "Path to system config file"
h_head_shape_fname = "Path to the head shape file"
h_rotation_x = "Degrees to tilt x-axis for sensor frame misalignment. Ignored if convert is True."
h_translation = "array-like, shape (3,)\nThe translation to place the origin of coordinate system to the center of the head.\nIgnored if convert is True."
h_convert = "Convert to Neuromag coordinates or not."
h_rename_channels = "Whether to keep original 4D channel labels or not. Defaults to True."
h_sort_by_ch_name = "Reorder channels according to channel label.\n4D channels don’t have monotonically increasing numbers in their labels.\nDefaults to True."
h_ecg_ch = "The 4D name of the ECG channel.\nIf None, the channel will be treated as regular EEG channel."
h_eog_ch = "The 4D names of the EOG channels.\nIf None, the channels will be treated as regular EEG channels."
h_preload ="""Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires large amount of memory).
If preload is a string, preload is the file name of a memory-mapped file which is used
to store the data on the hard drive (slower, requires less memory)."""
h_verbose ="bool, str, int, or None"
h_overwrite ="overwrite existing fif files"
#--- parser
parser = argparse.ArgumentParser(info_global)
#--- bti input files
parser.add_argument("-spdf", "--pdf_stage", help=h_pdf_stage,metavar="PDF_STAGE",default=os.getenv("JUMEG_PATH_BTI_EXPORT","/data/MEG/meg_store2/megdaw_data21"))
# parser.add_argument("-spdf","--pdf_stage",help=h_pdf_stage,metavar="PDF_STAGE", default="${HOME}/MEGBoers/data/megdaw_data21")
#--- fif output
#parser.add_argument("-sfif", "--fif_stage", help=h_fif_stage,metavar="FIF_STAGE",default=os.getenv("JUMEG_PATH_MNE_IMPORT","/data/MEG/meg_strore1/exp"))
parser.add_argument("-sfif","--fif_stage",help=h_fif_stage,metavar="FIF_STAGE",default="${HOME}/MEGBoers/data/exp/INTEXT/mne")
#parser.add_argument("-fif_path_prefix","--fif_path_prefix",help=h_fif_path_prefix,default="mne")
parser.add_argument("-fif_ext","--fif_extention",help="fif file extention",default="-raw.fif")
#--- parameter
parser.add_argument("-pdf_fname","--pdf_fname",help=h_pdf_fname,default="c,rfDC")
parser.add_argument("-config_fname","--config_fname", help=h_config_fname, default="config")
parser.add_argument("-head_shape_fname","--head_shape_fname",help=h_head_shape_fname,default="hs_file")
parser.add_argument("-rot", "--rotation_x", help=h_rotation_x, default=None)
parser.add_argument("-translation", "--translation", help=h_translation, default=None)
parser.add_argument("-ecg_ch", "--ecg_ch", help=h_ecg_ch)
parser.add_argument("-eog_ch", "--eog_ch", help=h_eog_ch)
#--- flags
parser.add_argument("-prel", "--preload", action="store_true",default=True,help=h_preload)
parser.add_argument("-sort", "--sort_by_ch_name",action="store_true",default=True,help=h_sort_by_ch_name)
parser.add_argument("-rename","--rename_channels",action="store_true",default=True,help=h_rename_channels)
parser.add_argument("-conv", "--convert", action="store_true",default=True,help=h_convert)
parser.add_argument("-overwrite","--overwrite", action="store_true",help=h_overwrite)
parser.add_argument("-save", "--save", action="store_true",default=True,help="save as fif file")
parser.add_argument("-v", "--verbose", action="store_true",help=h_verbose)
parser.add_argument("-r", "--run", action="store_true",help="!!! EXECUTE & RUN this program !!!")
parser.add_argument("-log", "--logfile", action="store_true",help="generate logfile")
#--- init flags
# ck if flag is set in argv as True
# problem can not switch on/off flag via cmd call
opt = parser.parse_args()
for g in parser._action_groups:
for obj in g._group_actions:
if str( type(obj) ).endswith('_StoreTrueAction\'>'):
if vars( opt ).get(obj.dest):
opt.__dict__[obj.dest] = False
for flg in argv:
if flg in obj.option_strings:
opt.__dict__[obj.dest] = True
break
return opt, parser
|
50830fd4107a333945fb99558444cd0becbad791
| 29,160
|
def ps_probs(feedback_table, confidence, action):
"""
Returns the probability that an action is optimal based off of previous feedback and given the confidence in the
feedback.
"""
# The following is a pretty arbitrary way to prevent overflow, it also artificially limits how much feedback
# affects the agent. Worth changing if you know a better way.
if (feedback_table[action]) > 30:
return 1
elif (feedback_table[action]) < -30:
return 0
#if confidence == 1:
#confidence == .99999
fdbk_probs = []
for i, fdbk in enumerate(feedback_table):
# sides of the binomial probability calculation
left_side = confidence**fdbk
right_side_power = 0
for j, other_actions in enumerate(feedback_table):
if i != j:
right_side_power += other_actions
right_side = (1-confidence)**right_side_power
fdbk_probs.append(left_side*right_side)
if fdbk_probs[action] > 1:
fdbk_probs[action] = 1
#print(fdbk_probs[action])
return fdbk_probs[action]
|
46e3556d57b07ea1a8c43e02d58f5de08522cea8
| 29,162
|
import re
def _clean_multirc_inputs(dataset_name, text):
"""Removes HTML markup from Multi-RC task input text."""
if dataset_name == "super_glue/multirc":
# Remove HTML markup.
text = re.sub(r"<br>", " ", text.decode("utf-8"))
text = re.sub(r"<(/)?b>", " ", text)
return text
|
71d0999ddb9a3942e6d53473c534d55924a0aaa1
| 29,165
|
def is_complex_parsing_required(value):
"""
Determine if the string being parsed requires complex parsing.
Currently, this is solely determined by the presence of a colon (:).
Args:
value (str):
A string that will be parsed.
Returns:
bool:
Flag value to indicate whether the string requires complex parsing.
"""
return ":" in value
|
b5b13eb6f8a28d69a2a069fa8228ace0e842873b
| 29,166
|
def is_xxx_exist(data):
"""用来判断com_manage函数中,得到的whois信息是否包含xxx标志,若包括则需要重新发送"""
if data.find("\"xxx\"") != -1 and data.find("\"=xxx\"") != -1:
return True
else:
return False
|
e23d995e18d2c604e3d587ba1784bc0717f135e4
| 29,168
|
def merge_nodeproviders(*nodeproviders):
"""
Create a term-mixed NodeProvider from multiple instances.
"""
# General checks.
if len(nodeproviders) == 0:
return None
elif len(nodeproviders) == 1:
return nodeproviders[0]
if not len(set(type(np) for np in nodeproviders)) == 1:
raise TypeError('inconsistent provider types')
provider_class = type(nodeproviders[0])
new_provider = provider_class(romanize=True)
for provider in nodeproviders:
new_provider._merge(provider)
return new_provider
|
b67e44d293ce0d6da1bcc600b6f3c81d50f4b8f0
| 29,170
|
import inspect
def ismethod(func):
""" Is func a method?
Note that this has to work as the method is defined but before the class is
defined. At this stage methods look like functions.
"""
signature = inspect.signature(func)
return signature.parameters.get('self', None) is not None
|
bbc971ae9ccde0c44e12e89027cd7180bfeac178
| 29,171
|
def getPrefix(netmask):
"""
Get the CIDR prefix representing the netmask.
:param netmask: Netmask to convert to CIDR
:type netmask:
:returns: CIDR prefix representing the netmask
:rtype: int
"""
return sum([bin(int(x)).count('1') for x in netmask.split('.')])
|
ed721e171d76236d13a67c7f3ea164c996171a4b
| 29,172
|
def rolling_mean(ts, window):
"""Calculate rolling mean of time series.
Uses pandas.DataFrame.rolling() to calculate rolling mean
of a given window size.
If more than one column of data in ts, returns rolling mean
using given window size for each column of data.
Returns nans for times before first window.
:param ts: Time series data as a pandas DataFrame.
:param window: Window size over which to calculate mean (int).
:return ts_std: DataFrame with same columns as ts but with rolling
mean in place of data column.
"""
ts_mean = ts.rolling(window).mean()
ts_mean["time"] = ts["time"] # don't want mean of time!
return ts_mean
|
8cd2933b1a9c285666a62a5edacae8477dec1d3d
| 29,173
|
def X1X2_to_Xs(X1, X2):
"""Convert dimensionless spins X1, X2 to symmetric spin Xs"""
return (X1+X2)/2.
|
9938f188d766d7895986b8796bb8eeeafe3b5b7d
| 29,174
|
def confirm_new_game():
"""
Specialized input to ask confirmation about starting a new game.
:return: The user confirmation
:rtype: bool
"""
print("") # Empty line for aesthetical purposes
acceptable = set(["Y", "YES", "N", "NO"])
choice = ""
while choice not in acceptable:
choice = input("Do you want to play again (y/n)? ").upper()
return choice[0] == "Y"
|
6285e6d9250bfb814db71ab237e33884823b7096
| 29,175
|
def repeat(l, n):
""" Repeat all items in list n times
repeat([1,2,3], 2) => [1,1,2,2,3,3]
http://stackoverflow.com/questions/24225072/repeating-elements-of-a-list-n-times
"""
return [x for x in l for i in range(n)]
|
0a27596da9ef804a8a5badc0a0111b56c937aa35
| 29,178
|
import torch
def vec2mat0(vec):
"""Vector dim comes first, unlike v2m"""
return torch.unsqueeze(vec, 1)
|
e2d444b2772c092bb0375b6612b56d6b82a160f0
| 29,179
|
def roman_to_int(s):
"""
:type s: str
:rtype: int
"""
roman_dict = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000}
if len(s) == 1:
return roman_dict[s[0]]
# atleast 2 len
converted_int = 0
prev_item = -1
for idx, item in enumerate(s):
if prev_item == -1:
prev_item = item
if idx == len(s) - 1:
converted_int += roman_dict[item]
continue
if roman_dict[prev_item] < roman_dict[item]:
converted_int += (roman_dict[item] - roman_dict[prev_item])
prev_item = -1
else:
converted_int += roman_dict[prev_item]
if idx == len(s) - 1:
converted_int += roman_dict[item]
prev_item = item
return converted_int
|
b3cbe5ee251d9b6cbb909f45562677deb0839bb2
| 29,181
|
from typing import IO
import requests
def download_file(url: str) -> IO:
"""Download a remote file.
Parameters
----------
url: string
Request URL.
Returns
-------
io.BytesIO
"""
r = requests.get(url, stream=True)
r.raise_for_status()
return r.raw
|
85c1e885573bee2619a473a2d9954781d46d3f9d
| 29,182
|
import torch
def logit(p, a=torch.tensor(0.0), b=torch.tensor(1.0)):
"""
for scalar parameters with bounded support (no gaps)
basically a logit transform
"""
return torch.log(p - a) - torch.log(b - p)
|
2efd8cb775f987c9dcd09c3c964bf85a76ad72a8
| 29,183
|
from typing import List
from typing import Union
def append_case_sink_edges(edge_list:List[tuple], exposed_ids:List[int],
matching_ratio:Union[int, str],
matching_ratio_dic:Union[dict, None])->List[tuple]:
"""Append edges to edge_list which the exposed to the sink,
with capacities that result in constant 1:k matching or entire number matching."""
if isinstance(matching_ratio, int):
append_list = [(exp_id, 'sink', {'capacity':matching_ratio, 'weight':0})\
for exp_id in exposed_ids]
elif matching_ratio=='entire_number':
assert isinstance(matching_ratio_dic, dict), 'entire_number_dic is not a dictionary'
append_list = [(exp_id, 'sink', {'capacity':matching_ratio_dic[exp_id], 'weight':0})\
for exp_id in exposed_ids]
else:
assert False, f'{matching_ratio} not implemented yet'
return edge_list + append_list
|
dd64ca1bdfcecb1ef02bf2e6abe66db8ac5d04c9
| 29,184
|
def bytes2bin(bites, sz=8):
"""Accepts a string of ``bytes`` (chars) and returns an array of bits
representing the bytes in big endian byte order. An optional max ``sz`` for
each byte (default 8 bits/byte) which can be used to mask out higher
bits."""
if sz < 1 or sz > 8:
raise ValueError("Invalid sz value: %d" % sz)
'''
# I was willing to bet this implementation was gonna be faster, tis not
retval = []
for bite in bytes:
bits = [int(b) for b in bin(ord(bite))[2:].zfill(8)][-sz:]
assert(len(bits) == sz)
retval.extend(bits)
return retval
'''
retVal = []
for b in [bytes([b]) for b in bites]:
bits = []
b = ord(b)
while b > 0:
bits.append(b & 1)
b >>= 1
if len(bits) < sz:
bits.extend([0] * (sz - len(bits)))
elif len(bits) > sz:
bits = bits[:sz]
# Big endian byte order.
bits.reverse()
retVal.extend(bits)
return retVal
|
249bef3ef240f63273853ede0b820a9b59b935de
| 29,185
|
def find_degree_info(soup):
"""Find degree info in parsed html text"""
degree = None
doc = ["PhD", "Assistant Professor"]
bs = ["B.A.", "BA", "B.S.", "BS", "Student", "Undergraduate"]
ms = ["M.S.", "Graduate Student", "MS", "Adjunct Instructor", "Associate Instructor"]
mba = ["MBA", "M.B.A"]
try:
#linkedin headline if any
desc2 = soup.find('div', attrs={'class': 'f', 'class': 'slp'}).get_text()
# print desc2
if any(d in desc2 for d in doc):
degree = "PhD"
elif any(a in desc2 for a in mba):
degree = "MBA"
elif any(m in desc2 for m in ms):
degree = "MS/MA"
elif any(b in desc2 for b in bs):
degree = "BA/BS"
else:
degree = "None"
if degree == "None":
# all search descriptions
desc = soup.findAll('span', attrs={'class': 'st'})
for des in desc:
des = des.get_text()
# print des
if any(d in des for d in doc):
degree = "PhD"
break
elif any(a in des for a in mba):
degree = "MBA"
break
elif any(m in des for m in ms):
degree = "MS/MA"
break
elif any(b in des for b in bs):
degree = "BA/BS"
break
except AttributeError:
# all search descriptions
desc = soup.findAll('span', attrs={'class': 'st'})
for des in desc:
des = des.get_text()
# print des
if any(d in des for d in doc):
degree = "PhD"
break
elif any(a in des for a in mba):
degree = "MBA"
break
elif any(m in des for m in ms):
degree = "MS/MA"
break
elif any(b in des for b in bs):
degree = "BA/BS"
break
else:
degree = "None"
return degree
|
66df8f331df4f883bba4194d9ed584748ccd516a
| 29,187
|
def validate(state):
""" dict |-> bool
This predicate function takes a state dict and returns a bool
which is True if the state is valid and False if it is not valid
This does not check options, only if the state itself is consistent."""
return False
|
df9924e12a9797c2e89ee770286da894a5abf993
| 29,189
|
def multi_install(
pyenv, sequence, *, index_url="", pre=False, user=False, upgrade=False
):
"""
一次安装包名列表 sequence 中所有的包。
注意:如果 sequence 中有一个包不可安装(没有匹配的包等原因),那sequence中所有的
包都不会被安装,所以不是必须的情况下尽量不用这个函数来安装。
"""
return pyenv.install(
*sequence, pre=pre, user=user, index_url=index_url, upgrade=upgrade
)
|
fdd71b443f5054224226b1943b94b5066e3c6bec
| 29,190
|
import os
import shutil
def setup_report_directory(directory):
"""Create an empty report directory."""
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory)
return directory
|
0080208da6d48ed382e770f5732f61b49a6330a1
| 29,191
|
import os
def files():
"""return a list of `~/Library/LaunchAgents/*.plist` files"""
path = os.path.expanduser("~/Library/LaunchAgents")
if not os.path.exists(path):
return []
result = []
for root, dirs, files in os.walk(path):
plistfiles = list(
filter(lambda f: os.path.splitext(f)[1] == ".plist", files))
result += list(map(lambda f: os.path.join(root, f), plistfiles))
return result
|
d4718db9e622c24100884a0b41c0bdf405337dca
| 29,192
|
def get_cols_and_rows(payoff_entries):
"""Determine how many columns and rows the output plot should have based on
how many parameters are being swept."""
# make a list of the lengths of each parameter list that are more than one
# value for that parameter
lengths = [len(x) for x in payoff_entries if len(x) > 1]
if len(lengths) == 0:
# plot as a single subplot
n_cols, n_rows = 1, 1
elif len(lengths) == 1:
# plot as row with increasing parameter going from left to right
# find the param that has > 1 entry
longest = [[i, x] for i, x in enumerate(payoff_entries) if len(x) > 1]
col_params = longest[0][1]
n_cols, n_rows = len(col_params), 1
elif len(lengths) == 2:
# plot as lengths[0] x lengths[1] rectangular grid with increases down and right
# find the two params that have > 1 entry
longest = [[i, x] for i, x in enumerate(payoff_entries) if len(x) > 1]
col_params = longest[0][1]
row_params = longest[1][1]
n_cols, n_rows = len(col_params), len(row_params)
else:
# plot on an j x j square grid and just leave some blank at the end
tot_num = 1
for i in lengths:
tot_num *= i
j = 3
while j ** 2 < tot_num:
j += 1
n_cols, n_rows = j, j
return n_cols, n_rows
|
2ae73cf52cb68e7688816254e21d71b1747caa22
| 29,193
|
def get_filename(name):
"""Return filename for astrocats event."""
return name.replace('/', '_') + '.json'
|
e12598b6ca16299fd939bd3cfb619882bb50145c
| 29,194
|
def read_hex_digit(char: str) -> int:
"""Read a hexadecimal character and returns its positive integer value (0-15).
'0' becomes 0, '9' becomes 9
'A' becomes 10, 'F' becomes 15
'a' becomes 10, 'f' becomes 15
Returns -1 if the provided character code was not a valid hexadecimal digit.
"""
if "0" <= char <= "9":
return ord(char) - 48
elif "A" <= char <= "F":
return ord(char) - 55
elif "a" <= char <= "f":
return ord(char) - 87
return -1
|
071445b3c0ec7a5392a7b5b0b354b4d3c59a3687
| 29,195
|
import base64
def rest_md5_to_proto(md5):
"""Convert the REST representation of MD5 hashes to the proto representation."""
return base64.b64decode(md5)
|
64889241492ea5265c50b4ef95d55e864544d904
| 29,197
|
from pathlib import Path
def get_timestep(path):
"""
Get the timestep from a filename.
"""
path = Path(path)
fname = path.stem
tstep = fname.split('.')[-1]
return int(tstep)
|
f5eb746e06a6411008e609333cef8feb3250077c
| 29,199
|
def find_bit_ranges(bit_str: str):
""" returns [(1/0, msb, lsb)]"""
if len(bit_str) == 0: return []
if len(bit_str) == 1: return [(int(bit_str), 0 , 0)]
ranges = []
lsb = 0
val = bit_str[-1]
for ii, cc in enumerate(reversed(bit_str)):
if ii == lsb: continue
if cc != val:
ranges.append((int(val), ii-1, lsb))
val = cc
lsb = ii
ranges.append((int(val), len(bit_str) - 1, lsb))
return list(reversed(ranges))
|
2502283bfcdcbd6b0662a782aab0f802db8cb480
| 29,200
|
import math
def log_base(i, base):
"""Integer -> integer log_base.
"""
# Add a small epsilon since log() has a slight error and int() truncates,
# to avoid errors on powers of base.
if i == 0:
return 0
return int(math.log(i, base) + 0.00000000000001) + 1
|
6eda6e30a6d8aaa63e04130655e89cca55fa1d26
| 29,201
|
import itertools
def largest_group(iterable, key):
"""
Find a group of largest elements (according to ``key``).
>>> s = [-4, 3, 5, 7, 4, -7]
>>> largest_group(s, abs)
[7, -7]
"""
it1, it2 = itertools.tee(iterable)
max_key = max(map(key, it1))
return [el for el in it2 if key(el) == max_key]
|
3b3ead0361f3c1cc94bad8e8fdf3bddd73c36bb7
| 29,204
|
import jinja2
def render_template(env: jinja2.Environment, template: str, **context):
"""Render the given template with an additional context being made available in it."""
return env.get_template(template).render(**context)
|
99c71c306ee088e70a5168b4237709c4c71e8e80
| 29,205
|
def abg(hm, hp):
""" Calculate alpha, beta and gamma for first and second derivative approximation """
a1 = -hp/(hm*(hm+hp))
g1 = hm/(hp*(hm+hp))
b1 = -a1-g1
a2 = 2/(hm*(hm+hp))
g2 = 2/(hp*(hm+hp))
b2 = -a2-g2
return a1, a2, b1, b2, g1, g2
|
54b7b198d6b5bd9948e7abd7870589cbc4b8dcbf
| 29,208
|
from typing import Tuple
import subprocess
import re
def get_active_window_info_wayland() -> Tuple[str, str]:
"""Retrieve active window class and active window title on Wayland.
Inspired by https://gist.github.com/rbreaves/257c3edfa301786e66e964d7ac036269
Returns:
Tuple(str, str): window class, window title
"""
def _get_cmd_result(cmd: str) -> str:
stdout_bytes: bytes = subprocess.check_output(cmd, shell=True)
stdout = stdout_bytes.decode()
if match := re.search(r"'(.+)'", stdout):
return match.groups()[0].strip('"')
return ""
cmd_eval = (
"gdbus call -e -d org.gnome.Shell -o /org/gnome/Shell -m org.gnome.Shell.Eval"
)
cmd_win_idx = (
' "global.get_window_actors().findIndex(a=>a.meta_window.has_focus()===true)"'
)
window_idx = _get_cmd_result(cmd_eval + cmd_win_idx)
cmd_wm_class = (
f' "global.get_window_actors()[{window_idx}].get_meta_window().get_wm_class()"'
)
wm_class = _get_cmd_result(cmd_eval + cmd_wm_class)
cmd_wm_title = (
f' "global.get_window_actors()[{window_idx}].get_meta_window().get_title()"'
)
title = _get_cmd_result(cmd_eval + cmd_wm_title)
return wm_class, title
|
f06ecce611bed08d8105b982238f2624fde7fb68
| 29,210
|
def remove_non_ascii(text: str) -> str:
""" Removes non ascii characters
:param text: Text to be cleaned
:return: Clean text
"""
return ''.join(char for char in text if ord(char) < 128)
|
94a003856809eb740b5c85af094095acb2e07dad
| 29,211
|
def get_embedding_matrix(model):
"""Calculate 3 embedding matrix for bert model
@param model: (BertForSequenceClassification) bert model to extract embedding matrix
@return word_emb: (torch.tensor) word embedding
@return pos_emb: (torch.tensor) position embedding
@return sent_emb: (torch.tensor) position of sentence embedding
"""
word_emb, pos_emb, sent_emb = model.bert.embeddings.word_embeddings.weight, model.bert.embeddings.position_embeddings.weight, model.bert.embeddings.token_type_embeddings.weight
return word_emb, pos_emb, sent_emb
|
6cbb464ce93efce71f6d385d4b2e1ffacc976f32
| 29,212
|
def group_by_keys(dict_list, keys):
"""
>>> data = [
... {'a': 1, 'b': 2},
... {'a': 1, 'b': 3}
... ]
>>> group_by_keys(data, ['a', 'b'])
{(1, 2): [{'a': 1, 'b': 2}], (1, 3): [{'a': 1, 'b': 3}]}
"""
groups = {}
for d in dict_list:
value = tuple((d[k] for k in keys))
groups.setdefault(value, [])
groups[value].append(d)
return groups
|
425d223eff828e24ebdab4900c0c461868228eb4
| 29,213
|
def avg_bound(bounds):
"""A simple average of those bounds that are set"""
count = 0
bound_sum = 0
if bounds.has_upper_bound_success:
count += 1
bound_sum += bounds.upper_bound_success
if bounds.has_upper_bound_failure:
count += 1
bound_sum += bounds.upper_bound_failure
if bounds.has_lower_bound_success:
count += 1
bound_sum += bounds.lower_bound_success
if bounds.has_lower_bound_failure:
count += 1
bound_sum += bounds.lower_bound_failure
if count > 0:
return bound_sum / count
else:
return 0
|
85dcfe845bd717eebfbebed5668a499c96cfdf35
| 29,214
|
import re
def split_args(args):
"""Parse and split arguments."""
return [a.strip('"-') for a in re.findall(r'[^\s\"]+|".+"', args)]
|
765b10b6a2603843cda4a57264ac0f02359050e3
| 29,216
|
import time
def find_info(j, find_min=False, num_allowed=-1, num_sqr_end=-1, find_input=False):
"""
This function gets:
j - index of an input/output file
It returns the riddle's solution:
matchsticks - a Boolean array indexed 0 - 23 which represents the current matchsticks configuration:
True - the indexed matchstick exists, False - the indexed matchstick does not exist.
"""
par = ''
if num_allowed == -1:
par = 'num_allowed'
elif num_sqr_end == -1:
par = 'num_sqr_end'
f = open('output_sq' + str(j) + '.txt', 'r')
text = f.read()
while "Execution time: " not in text:
time.sleep(1)
f = open('output_sq' + str(j) + '.txt', 'r')
text = f.read()
rows = text.split('\n')
list_match_ind = []
arr_match = []
list_bool1_ind = []
arr_bool1 = []
for row in rows:
if 'matchsticks' in row and 'specification' not in row:
st, val = row.split(' = ')
if st not in list_match_ind:
list_match_ind.append(st)
arr_match.append(val)
else:
st = st.replace(']', '[')
var, ind, var2 = st.split('[')
arr_match[int(ind)] = val
if 'bool1' in row and 'specification' not in row:
st, val = row.split(' = ')
if st not in list_match_ind:
list_bool1_ind.append(st)
arr_bool1.append(val)
else:
st = st.replace(']', '[')
var, ind, var2 = st.split('[')
arr_bool1[int(ind)] = val
elif num_allowed == -1 and 'num_allowed' in row and '>' not in row and '!' not in row:
st, num_all = row.split(' = ')
num_allowed = int(num_all)
elif num_sqr_end == -1 and 'num_squares_end' in row and '>' not in row and '!' not in row:
st, num_sq = row.split(' = ')
num_sqr_end = int(num_sq)
matchsticks = [True if item == 'TRUE' else False for item in arr_match]
bool1 = [True if item == 'TRUE' else False for item in arr_bool1]
if find_input:
return matchsticks, bool1, num_sqr_end, num_allowed
if not find_min:
return matchsticks
elif par == 'num_sqr_end':
return matchsticks, num_sqr_end
elif par == 'num_allowed':
return matchsticks, num_allowed
|
de0a6bb269ad93ee0178d3a6f11278f5c3457b95
| 29,217
|
def _ParseSigsetT(sigset):
"""Parse a rendered sigset_t value.
This is the opposite of the Linux kernel's fs/proc/array.c:render_sigset_t
function.
@type sigset: string
@param sigset: Rendered signal set from /proc/$pid/status
@rtype: set
@return: Set of all enabled signal numbers
"""
result = set()
signum = 0
for ch in reversed(sigset):
chv = int(ch, 16)
# The following could be done in a loop, but it's easier to read and
# understand in the unrolled form
if chv & 1:
result.add(signum + 1)
if chv & 2:
result.add(signum + 2)
if chv & 4:
result.add(signum + 3)
if chv & 8:
result.add(signum + 4)
signum += 4
return result
|
0168c50cbe138814449dee454170b89fc37cc6d5
| 29,218
|
import json
def _format(dictionary):
"""Pretty format a dictionary
Format a dictionary object into a well formatted JSON string
:param dictionary Dictionary object to be pretty formatted
:return String with a pretty format of a dictionary or JSON document
"""
return json.dumps(dictionary, ensure_ascii=False, sort_keys=True, indent=2)
|
7686d9bbf75f6e33a60ae28b302a2fa2c3d02f64
| 29,219
|
import functools
import ctypes
def hash_code(text: str) -> int:
"""Implements Java's hashCode in Python.
Ref: https://stackoverflow.com/a/8831937
"""
return functools.reduce(lambda code, char: ctypes.c_int32(31 * code + ord(char)).value, list(text), 0)
|
eadda940e3b2d63b8ff83f74816024160334288f
| 29,220
|
def ask_yes_no(prompt="[y/n] :", default="y", valid=["y", "n"]):
"""Display a yes/no question and loop until a valid answer is entered
Keyword Arguments:
prompt {str} -- the question message (default: {'[y/n] :'})
default {str} -- the default answer if there is no answer (default: {"y"})
valid {list} -- the list of appropriate answers (default: {["y", "n"]})
Returns:
str -- the answer
"""
answer = input(prompt)
if answer in valid:
return answer
elif answer == "":
return default
else:
return ask_yes_no(prompt, default, valid)
|
f46dcd6ed7fefcb38c4bc5307b49cf59e0c813b4
| 29,221
|
def _process_line(request: dict, cost_price_delta: int):
"""The function that builds out the report line by line"""
asset = request["asset"]
created = request["created"]
try:
qty = int(asset["items"][0]["quantity"]) # [0] to filter out irrelevant skus
except IndexError:
# to handle some older requests without items
qty = 0
return (asset["id"], asset["tiers"]["customer"]["id"], qty, cost_price_delta * qty, created)
|
f650dd5cc7592f700e9b3aa9824b8d79679e4bbb
| 29,222
|
import socket
def iptoint(ip_v4: str) -> int:
"""
Convert an ip address to an integer.
Adopted from http://goo.gl/AnSFV
:param ip_v4: IPv4 address
:returns: int of IPv4 hex
"""
return int(socket.inet_aton(ip_v4).hex(), 16)
|
bcdad9f575ee4bb33bb4716f95eb8a4124824fe7
| 29,223
|
def pack_x_y_sample_weight(x, y=None, sample_weight=None):
"""Packs user-provided data into a tuple."""
if y is None:
return (x,)
elif sample_weight is None:
return (x, y)
else:
return (x, y, sample_weight)
|
d2a7aafff2073a17632ac858fe40093389494af2
| 29,224
|
import struct
def long_long_int(value):
"""Decode a long-long integer value
:param bytes value: Value to decode
:return tuple: bytes used, int
:raises: ValueError
"""
try:
return 8, struct.unpack('>q', value[0:8])[0]
except TypeError:
raise ValueError('Could not unpack data')
|
76e36535f382eb6e143b0d1f2f17102a8a9b886f
| 29,225
|
import re
def regex(pattern):
"""
Compile a case-insensitive pattern.
"""
return re.compile(pattern, re.I)
|
b30c594fc9d4134bf464d010d085bf8eb59157fc
| 29,226
|
import ast
def make_attr_call(attr1, attr2, args=None):
"""
flor._attr1_._attr2_(arg)
"""
if args is None:
return ast.Call(
func=ast.Attribute(
value=ast.Attribute(
value=ast.Name('flor', ast.Load()),
attr=attr1,
ctx=ast.Load()
),
attr=attr2,
ctx=ast.Load()
),
args=[], # arg is None
keywords=[]
)
else:
return ast.Call(
func=ast.Attribute(
value=ast.Attribute(
value=ast.Name('flor', ast.Load()),
attr=attr1,
ctx=ast.Load()
),
attr=attr2,
ctx=ast.Load()
),
args=args, # arg is not None
keywords=[]
)
|
1b2b839ab8e76730d33405782283b2fbc6e326d3
| 29,229
|
import os
import logging
import pickle
def load_pickled_model(filename):
"""
Purpose:
Load a model that has been pickled and stored to
persistance storage into memory
Args:
filename (String): Filename of a pickled model (.pkl)
Return:
model (Pickeled Object): Pickled model loaded from .pkl
"""
if not os.path.isfile(filename):
error_msg = f"Model Filename ({filename}) does not exist, exiting"
logging.error(error_msg)
raise Exception(error_msg)
try:
with open(filename, 'rb') as model_file:
model = pickle.load(model_file)
except Exception as err:
logging.exception(f"Exception Loading Pickle from File into Memory: {err}")
raise err
return model
|
15d366d4b6f610ea6f46a94f2140c8df5db5448b
| 29,230
|
def assign_assumed_width_to_national_roads_from_file(x, flat_width_range_list, mountain_width_range_list):
"""Assign widths to national roads assets in Vietnam
The widths are assigned based on our understanding of:
1. The class of the road which is not reliable
2. The number of lanes
3. The terrain of the road
Parameters
- x - Pandas DataFrame row with values
- road_class - Integer value of road class
- lanenum__s - Integer value of number of lanes on road
- flat_width_range_list - List of tuples containing (from_width, to_width, assumed_width)
- moiuntain_width_range_list - List of tuples containing (from_width, to_width, assumed_width)
Returns
assumed_width - Float assigned width of the road asset based on design specifications
"""
road_class = x.road_class
road_lanes = x.lanenum__s
if road_lanes is None:
road_lanes = 0
else:
road_lanes = int(road_lanes)
road_terrain = x.terrain
assumed_width = 3.5
if road_terrain == 'flat':
for vals in flat_width_range_list:
if road_class == vals.road_class:
if road_lanes > 0 and road_lanes <= 8:
assumed_width = road_lanes * vals.lane_width + \
vals.median_strip + 2.0 * vals.shoulder_width
else:
assumed_width = vals.road_width
break
else:
for vals in mountain_width_range_list:
if road_class == vals.road_class:
if road_lanes > 0 and road_lanes <= 8:
assumed_width = road_lanes * vals.lane_width + \
vals.median_strip + 2.0 * vals.shoulder_width
else:
assumed_width = vals.road_width
break
return assumed_width
|
83d408813057ff9b8a03ab9cb745ed7299be602c
| 29,231
|
def formation_temperature(surface_temperature, gradient, depth):
"""
Calculates formation temperature based on a gradient.
Parameters
----------
surface_temperature : float
Surface temperature (deg F or deg C)
gradient : float
Temperature gradient (degF/ft or degC/m)
depth : float
Depth at which temperature is required (ft or m)
Returns
-------
float
Returns formation temperature at a entered depth
"""
form_temp = surface_temperature + gradient * depth
return form_temp
|
13b55f67810775cbdd531036bb40780a4138af0a
| 29,232
|
def cassini_instrument():
"""CIRS instrument API output."""
return {
'id': -82898,
'name': 'CASSINI_CIRS_RAD',
}
|
a871a3560bcbf56b9b524bafa95a834093d04ee0
| 29,233
|
def fn_url_p(fn):
"""check if fn is a url"""
url_sw = ['http://', 'https://', 'ftp://', 'ftps://']
for u in url_sw:
try:
if fn.startswith(u):
return(True)
except:
return(False)
return(False)
|
0d56366d055b985bb819e0516c63acd117f371fd
| 29,234
|
import pickle
import base64
def ObjectFromBase64EncodedString(EncodedObject):
"""Generate Python object from a bas64 encoded and pickled
object string.
Arguments:
str: Base64 encoded and pickled object string.
Returns:
object : Python object or None.
"""
return None if EncodedObject is None else pickle.loads(base64.b64decode(EncodedObject))
|
ff82b5e3a130e563a11ed7ccfa4ce80b257b4ada
| 29,235
|
import os
def is_plain_file(path):
"""**is_plain_file(path)** -> return True if the file at path is a plain file
* path: (string) path to check
<code>
Example:
is_plain_file('/etc/passwd')
Returns:
True
</code>
"""
return os.path.isfile(path)
|
1f4cb257ee30b5291915b12ea9b23617271fe869
| 29,236
|
def insertion_sort(A):
"""Sort list of comparable elements into nondecreasing order."""
for i in range(1, len(A)):
value = A[i]
hole = i
while hole > 0 and A[hole-1] > value:
A[hole] = A[hole-1]
hole -= 1
A[hole] = value
return A
|
467f22572c775472d018f234be51d6ffb8effde2
| 29,237
|
def find_one_possible_value(sorted_values, all_matching_indices):
"""Return the value that has only one element."""
for key, value in all_matching_indices.items():
if len(value) == 1:
sorted_values[key] = value[0]
return value[0]
|
6ab3c7fee44fec1ca091cfbfa84f36c124632c9c
| 29,239
|
def v3_matrix_from_string(matrix_string):
"""Convert string-based rows of numbers to list of lists.
Turning everything into a list comprehension
"""
return [
[float(n) for n in row_string.split()]
for row_string in matrix_string.splitlines()
]
|
34bfc01415338f68d6f736e375ee51795a804ef5
| 29,240
|
def all_awards_are_reviewed(request):
""" checks if all tender awards are reviewed
"""
return all([award.status != "pending" for award in request.validated["tender"].awards])
|
325fb138db00b8696fa424b2a4c95e1378ddd667
| 29,241
|
def _knapsack(weights, capacity):
"""
Binary knapsack solver with identical profits of weight 1.
Args:
weights (list) : list of integers
capacity (int) : maximum capacity
Returns:
(int) : maximum number of objects
"""
n = len(weights)
# sol : [items, remaining capacity]
sol = [[0] * (capacity + 1) for i in range(n)]
added = [[False] * (capacity + 1) for i in range(n)]
for i in range(n):
for j in range(capacity + 1):
if weights[i] > j:
sol[i][j] = sol[i - 1][j]
else:
sol_add = 1 + sol[i - 1][j - weights[i]]
if sol_add > sol[i - 1][j]:
sol[i][j] = sol_add
added[i][j] = True
else:
sol[i][j] = sol[i - 1][j]
return sol[n - 1][capacity]
|
158e96376bc3e7a60bbb24111b4b26636aaa86d5
| 29,242
|
import random
def reduce_branch_length(size):
""" Reduce the branch by a random length of 60-95% """
factor = round(random.uniform(0.6, 0.95), 2)
return size * factor
|
52b14fe1007616badbaa95ffaebca0f4314cb21d
| 29,243
|
def explode():
"""This route is going to exception. Used for testing 500 page."""
return 1/0
|
70470176ec69c862e2d59a41fd90d3a32ed17102
| 29,244
|
def get_layer_save_path(layer):
"""Get custom HoudiniLayerInfo->HoudiniSavePath from SdfLayer.
Args:
layer (pxr.Sdf.Layer): The Layer to retrieve the save pah data from.
Returns:
str or None: Path to save to when data exists.
"""
hou_layer_info = layer.rootPrims.get("HoudiniLayerInfo")
if not hou_layer_info:
return
save_path = hou_layer_info.customData.get("HoudiniSavePath", None)
if save_path:
# Unfortunately this doesn't actually resolve the full absolute path
return layer.ComputeAbsolutePath(save_path)
|
16e20d0bcedf9717bb60af400548308ff05b0570
| 29,245
|
def prepare_mdtau(nrot, jobs):
"""
Returns what mdtau should be set to based on the number of hindered rotors and
inserts MdTau into the joblist if need be
"""
mdtau = None
if nrot > 0 and '1dTau' in jobs:
mdtau = '1'
if nrot > 1:
mdtau = '2'
if nrot > 2:
mdtau = '3'
if 'MdTau' not in jobs:
index = jobs.index('1dTau')
jobs.insert(index+1, 'MdTau')
return mdtau, jobs
|
cd05dc6aa6569efc7087d1769270910d1cf0bf2c
| 29,247
|
from typing import List
from typing import Any
from typing import Iterator
from typing import Tuple
import itertools
def pairwise(s: List[Any]) -> Iterator[Tuple[Any, Any]]:
"""
Iterates over neighbors in a list.
s -> (s0,s1), (s1,s2), (s2, s3), ...
From https://stackoverflow.com/a/5434936
"""
a, b = itertools.tee(s)
next(b, None)
return zip(a, b)
|
58bbd84005b8caef2535cf3477f8745d511b5a0b
| 29,249
|
import os
def get_sensor_path(sensor_path):
"""Gets the path to look for a sensor JSON file
Args:
sensor_path (str): the directory to look in
Returns:
str: the full path to the sensor JSON file
"""
return os.path.join(sensor_path, "calibrated_sensor.json")
|
738423a4c9a3f8bb11d431754d4a326b5d22cb23
| 29,252
|
def int_to_hexcolor(num: int, *mode: str):
"""Convert int to hex color
arg:
num: int (base=10)
return:
hexcolor string like 'ffba78'
"""
blue = num % 16**2
num = int(num / 16**2)
green = num % 16**2
num = int(num / 16**2)
red = num % 16**2
color = {'r': red, 'g': green, 'b': blue}
if 'lib' in mode:
# ライブラリのカラーコードだったら(GRB)
return '{g:02x}{r:02x}{b:02x}'.format(**color)
else:
return '{r:02x}{g:02x}{b:02x}'.format(**color)
|
06c709e3840a07c3c7e641ff9b1b8d011da54a43
| 29,253
|
def _znode_to_class_and_name(znode):
"""
Local helper function that takes a full znode path that returns it in the
service_class/service_name format expected in this module
"""
znode = znode.split("/")
znode.pop(0)
return (znode[0], znode[1])
|
7039b35227d967978c073a41fa044a75c4a1670d
| 29,258
|
def orbresurrect(orb):
"""Restore previous orb position variables"""
return orb.resurrect()
|
50167fbafabcc864c79e0997c4687f05baab84c5
| 29,259
|
def byteToInt(byte):
"""
byte -> int
Determines whether to use ord() or not to get a byte's value.
"""
if hasattr(byte, 'bit_length'):
# This is already an int
return byte
return ord(byte) if hasattr(byte, 'encode') else byte[0]
|
a4fe2eab760b5b5792d633a78f4bdd5378719bb7
| 29,260
|
import argparse
def parse_args():
"""
pass
"""
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--model_name_or_path', type=str, default='plato-mini',
help='The path or shortcut name of the pre-trained model.')
parser.add_argument('--seed', type=int, default=None, help='Random seed for initialization.')
parser.add_argument('--min_dec_len', type=int, default=1, help='The minimum sequence length of generation.')
parser.add_argument('--max_dec_len', type=int, default=64, help='The maximum sequence length of generation.')
parser.add_argument('--num_return_sequences', type=int, default=20,
help='The numbers of returned sequences for one input in generation.')
parser.add_argument('--decode_strategy', type=str, default='sampling', help='The decode strategy in generation.')
parser.add_argument('--top_k', type=int, default=5,
help='The number of highest probability vocabulary tokens to keep for top-k sampling.')
parser.add_argument('--temperature', type=float, default=1.0,
help='The value used to module the next token probabilities.')
parser.add_argument('--top_p', type=float, default=1.0, help='The cumulative probability for top-p sampling.')
parser.add_argument('--num_beams', type=int, default=0, help='The number of beams for beam search.')
parser.add_argument('--length_penalty', type=float, default=1.0,
help='The exponential penalty to the sequence length for beam search.')
parser.add_argument('--early_stopping', type=eval, default=False,
help='Whether to stop the beam search when at least `num_beams` '
'sentences are finished per batch or not.')
parser.add_argument('--device', type=str, default='cpu', help='The device to select for training the model.')
args_ = parser.parse_args()
return args_
|
57f9b236362bd7bd3fb1b4cd271fd51bd61e6858
| 29,262
|
def _get_cat_formulae(mpt):
""" Retrieve categories and respective formulae
Parameters
----------
mpt : MPT
model
"""
values = []
for _, value in mpt.formulae().items():
values.append(" + ".join(value))
return values
|
b40c60d10be4724eec32ed2d164b09fc722a7bed
| 29,264
|
def meta_REstring(REstr): # generic
""" get meta information of the RapidEye file name
Parameters
----------
REstr : string
filename of the rapideye data
Returns
-------
REtime : string
date "+YYYY-MM-DD"
REtile : string
tile code "TXXXXX"
REsat : string
which RapedEye satellite
Example
-------
>>> REstr = '568117_2012-09-10_RE2_3A_Analytic.tif'
>>> REtime, REtile, REsat = meta_REstring(REstr)
>>> REtime
'+2012-09-10'
>>> REtile
'568117'
>>> REsat
'RE2'
"""
assert type(REstr)==str, ("please provide a string")
REsplit = REstr.split('_')
REtime = '+' + REsplit[1][0:4] +'-'+ REsplit[1][5:7] +'-'+ REsplit[1][8:10]
REsat = REsplit[2]
REtile = REsplit[0]
return REtime, REtile, REsat
|
d325034dd8dc7e7033387e22796b1449ba14d4dc
| 29,265
|
def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]
|
268d56ff3a24b3a5c9b1e4b1d1ded557afcdce8c
| 29,266
|
def representationB(model):
""" An alternative representation of the model. """
result=''
for partition,weight in model.items():
if result!='':
result += '+'
l = [''.join((chr(65+read_ind) for read_ind in hap)) for hap in partition if len(hap)]
if weight!=1:
result += f'{weight:d}*'
result += f"{'*'.join(l):s}"
return result
|
9c2d09a690a19d9c336831461f7d41479734797e
| 29,269
|
def sort_string(s):
"""
:param s: string, ex: 'apple'
:return: string, sorted by a,b,c,d,e... ex: 'aelpp'
"""
sort_s = ''
for ch in sorted(list(s)):
sort_s += ch
return sort_s
|
8b4760977ea59275c92b4307666a6ec8ab36e030
| 29,271
|
def get_title_from_vuln(vuln):
"""
Returns CVE ID from vulnerability document
When there is no title, returns "No-title" string
"""
return vuln.get('title', "No-Title")
|
3c81cd0a873015d8e3d5a96819a7608dbfd8330f
| 29,272
|
import json
from datetime import datetime
def get_user_insert(user, event):
"""
Gets all insertion data for a single user
Parameters
----------
user: dict
Dictionary object of a Twitter user
event: str
Event name of query the user was retrieved from
Returns
-------
user_insert: dict
Dictionary of values extracted and formatted for insertion into a
PostgreSQL database
"""
# Description hashtags
try:
hashtags = [hashtag_info['tag'].replace('\x00', '')
for hashtag_info in user['entities']['description']['hashtags']]
except KeyError:
hashtags = None
# Description mentions
try:
mentions = [mention_info['tag'] for mention_info in user['entities']['description']['mentions']]
except KeyError:
mentions = None
# Description URLs
try:
urls = user['entities']['description']['urls']
urls = [json.dumps(url) for url in urls]
except KeyError:
urls = None
# Profile URL
try:
url = user['entities']['url']['urls'][0]['expanded_url']
except (KeyError, IndexError):
url = None
now = datetime.now()
user_insert = {
'id': user['id'],
'event': event,
'inserted_at': now,
'last_updated_at': now,
'created_at': user['created_at'],
'followers_count': user['public_metrics']['followers_count'],
'following_count': user['public_metrics']['following_count'],
'tweet_count': user['public_metrics']['tweet_count'],
'url': url,
'profile_image_url': user['profile_image_url'],
'description_urls': urls,
'description_hashtags': hashtags,
'description_mentions': mentions,
'verified': user['verified']
}
for f in ['description', 'location', 'pinned_tweet_id', 'name', 'username']:
try:
user_insert[f] = user[f].replace('\x00', '')
except KeyError:
user_insert[f] = None
return user_insert
|
8c9a269fb7fd349d26899f63af5f8415b7d86210
| 29,273
|
def parse_number_input(user_input):
"""Converts a string of space-separated numbers to an array of numbers."""
lst_str = user_input.strip().split(' ')
return list(map(int, lst_str))
|
5e03156c79814a7916d78203749cfd82ab6b98d5
| 29,275
|
import argparse
import pathlib
def parse_args(parser: argparse.ArgumentParser):
"""
Parse CLI arguments to control the prediction.
:param parser: Argument parser Object.
:return: CLI Arguments object.
"""
parser.add_argument(
"input",
type=pathlib.Path,
help="Path to the folder with the RGB images to be processed.",
)
parser.add_argument(
"extension",
type=str,
help="Name of the file extension. For example: <-e jpg>.",
)
parser.add_argument(
"model",
type=pathlib.Path,
help="Path to the architecture/model file.",
)
parser.add_argument(
"output",
type=pathlib.Path,
help="Path to folder in which the segmented images are to be stored.",
)
parser.add_argument(
"-v",
"--vistype",
type=str,
help="Visualisation type. Default is grayscale.",
choices=["grayscale", "heatmap", "binary"],
default="grayscale",
required=False,
)
parser.add_argument(
"-t",
"--threshold",
type=float,
help="Threshold for binary classification. Default is 0.5.",
default=0.5,
required=False,
)
parser.add_argument(
"-mt",
"--multiple-thresholds",
action="store_true",
help="Store all thresholds from 0-10 in 1, 10-100 in 10, 90-100 in 1 steps.",
default=False,
required=False,
)
parser.add_argument(
"-p",
"--progress",
action="store_true",
help="Show progress bar on stdout.",
default=False,
required=False,
)
parser.add_argument(
"--height",
type=int,
help="Height of the output image.",
default=160,
required=False,
)
parser.add_argument(
"-w",
"--width",
type=int,
help="Width of the output image.",
default=320,
required=False,
)
parser.add_argument(
"-g",
"--gpu",
type=int,
help="Select the GPU id to predict on.",
default=0,
required=False,
)
return parser.parse_args()
|
583766506d45335e9ab2cfa6d954a67838e79087
| 29,276
|
def _is_finite(constraints):
"""
Return ``True`` if the dictionary ``constraints`` corresponds to
a finite collection of ordered multiset partitions into sets.
If either ``weight`` or ``size`` is among the constraints, then
the constraints represent a finite collection of ordered multiset
partitions into sets. If both are absent, one needs ``alphabet`` to be
present (plus a bound on length or order) in order to have a
finite collection of ordered multiset partitions into sets.
EXAMPLES::
sage: from sage.combinat.multiset_partition_into_sets_ordered import _is_finite
sage: W = {"weight": {1:3, 2:3, 4:1}, "length": 5}
sage: S = {"size": 44, "min_length": 5}
sage: AO = {"alphabet": range(44), "max_order": 5}
sage: all(_is_finite(constr) for constr in (W, S, AO))
True
sage: AL = {"alphabet": range(44), "min_order": 5}
sage: _is_finite(AL)
False
"""
if "weight" in constraints or "size" in constraints:
return True
elif "alphabet" in constraints:
# Assume the alphabet is finite
Bounds = set(["length", "max_length", "order", "max_order"])
return Bounds.intersection(set(constraints)) != set()
|
5802604f8a338b8e0c7b5a99e63661637350371f
| 29,277
|
import math
def atanh(x):
"""Get atanh(x)"""
return math.atanh(x)
|
b721fd642ac99dd7e790db4baa73792333d7af7c
| 29,278
|
def get_strata(creel_run):
"""Given a creel_run, return a list of tuples that represent the rows
in the Strata table - each row contains the strata label, and foreign
keys to the corresponding creel_run, season, space, daytype, period and
fishing mode.
Arguments:
- `creel_run`: An FN011 creel_run object.
"""
all_strata = []
modes = creel_run.creel.modes.all()
spots = creel_run.creel.spatial_strata.all()
seasons = creel_run.creel.seasons.all()
for season in seasons:
daytypes = season.daytypes.all()
for spot in spots:
for daytype in daytypes:
periods = daytype.periods.all()
for period in periods:
for mode in modes:
strata = "{}_{}{}_{}_{}".format(
season.ssn, daytype.dtp, period.prd, spot.space, mode.mode
)
all_strata.append(
(
creel_run.id,
strata,
season.id,
spot.id,
daytype.id,
period.id,
mode.id,
)
)
return all_strata
|
845295eb27b1951e8cc90971419583fc41231b0f
| 29,279
|
from datetime import datetime
from dateutil.tz import tzlocal
import pytz
def timestamp_to_datetime(timestamp):
"""Converts timestamp to datetime string."""
timeUTC = datetime.utcfromtimestamp(timestamp)
timeLocal = pytz.utc.localize(timeUTC).astimezone(tzlocal())
return timeLocal.strftime("%Y-%m-%d %H:%M:%S.%f%z")
|
59f410f72beced48792fb4c40796da7393285c28
| 29,280
|
def create_service(ctx, name, args=None):
""" Create service with args if required. """
smgr = ctx.getServiceManager()
if args:
return smgr.createInstanceWithArgumentsAndContext(name, args, ctx)
else:
return smgr.createInstanceWithContext(name, ctx)
|
6d1b1908c3c1a7d64c34d9fc83a7843905da7a87
| 29,281
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.