content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import json def _pretty_json(data): """ Pretty string of JSON data :param data: JSON data :return: Pretty string :rtype: str """ return json.dumps(data, sort_keys=True, indent=2)
5bc0bed881bbacd89caa320d47b81c71e2377211
29,282
def insertion_sort2(array): """ 插入排序算法的代码实现-升级版 :param array: 一个数组 :return: 一个升序数组 """ for insert_index, insert_value in enumerate(array[1:]): temp_index = insert_index while insert_index >= 0 and insert_value < array[insert_index]: array[insert_index + 1] = array[insert_index] insert_index -= 1 if insert_index != temp_index: array[insert_index + 1] = insert_value return array
4785d4c3ffb554d55057874ecf470f51777cb39f
29,283
import socket import re import subprocess import logging def macAddress(hostname): """Return the MAC address and interface name used to reach the given host Returns usable strings on error. Inputs: hostname: string name of the target host Returns: string name and string form of MAC address of interface used to reach the given host """ ipAddr = socket.gethostbyname(hostname) match = re.search(r"^.* dev (.*?) .*$", str(subprocess.check_output(["ip", "route", "get", ipAddr]))) if not match: logging.warning(f"Unable to find interface for {ipAddr}") return "n/a", "00:00:00:00:00:00" intf = match.group(1) try: macAddr = subprocess.check_output(["cat", f"/sys/class/net/{intf}/address"]).strip().decode("utf-8") except Exception as ex: logging.warning("Failed to get MAC address for '{hostname}': {ex}") return "n/a", "00:00:00:00:00:00" return intf, macAddr
89eb323f4f6ee84de82146b30b7bf0976132591c
29,285
def set_payment_id_to_tx_extra_nonce(payment_id): """ Sets payment ID to the extra :param payment_id: :return: """ return b"\x00" + payment_id
b2a15fcb1dbfdfa56b334bbbb50c530e5e83a0f6
29,286
def _get_harvester_connection_msg( farmer_id: str, harvester_id: str, ip_address: str, is_connected: bool, ) -> str: """Get the connection msg for a harvester Parameters ---------- farmer_id : str id of the farmer harvester_id : str id of the harvester ip_address : str harvester ip address is_connected: bool connection status Returns ------- msg : str harvester connection message """ # send message icon = "🟢" if is_connected else "🟠" connection_status = "connected" if is_connected else "disconnected" CONNECTION_MSG: str = "{icon} Farmer {farmer_id} {status} to Harvester {harvester_id} ({ip})." msg = CONNECTION_MSG.format( icon=icon, harvester_id=harvester_id[:10], ip=ip_address, status=connection_status, farmer_id=farmer_id, ) return msg
0e32ca3c4463d802a1c719441ae9bf6dabd5cb8d
29,287
import time def datestr(): """ Generate a string of current time :return: """ return time.strftime("%Y-%m-%dT%H:%M:%S", time.localtime())
8f8cbb496f92149e4b004ad8c7edfcd9bd05c1e6
29,289
def merge_pixel_values(meta_df, l_28_28_df, rgb_28_28_df): """ Merges metadata dataframe with RGB and luminance pixel values dfs Parameters ---------- meta_df metadata dataframe l_28_28_df 28 X 28 luminance dataframe rgb_28_28_df 28 X 28 RGB dataframe Returns ------- pandas.core.frame.DataFrame Merged dataframe """ # Add suffix to names to ensure they are unique after merge l_28_28_df.columns = [str(col) + '_l_28_28' for col in l_28_28_df.columns] rgb_28_28_df.columns = [str(col) + '_rgb_28_28' for col in rgb_28_28_df.columns] # Merge first with luminance then rgb using append with transpose # Transpose makes sure axis direction is correct merged_df_l = (l_28_28_df.T.append(meta_df.T, sort=False)).T merged_df_l_rgb = (rgb_28_28_df.T.append(merged_df_l.T, sort=False)).T return(merged_df_l_rgb)
1a12d6e3f84a80eeaf99125e4e144c2a8cd9e08c
29,290
def CMDlogout(parser, args): """Revokes cached authentication token and removes it from disk.""" _, authenticator = parser.parse_args(args) done = authenticator.logout() print('Done.' if done else 'Already logged out.') return 0
6c4a9f4357aac8fa21488ba37d3a51102d4fa4b9
29,291
def get_snapshots_list(response, is_aurora): """ Simplifies list of snapshots by retaining snapshot name and creation time only :param response: dict Output from describe_db_snapshots or describe_db_cluster_snapshots :param is_aurora: bool True if output if from describe_db_cluster_snapshots, False otherwise :return: Dict with snapshot id as key and snapshot creation time as value """ snapshots = {} response_list_key = "DBClusterSnapshots" if is_aurora else "DBSnapshots" identifier_list_key = "DBClusterSnapshotIdentifier" if is_aurora else "DBSnapshotIdentifier" for snapshot in response[response_list_key]: if snapshot["Status"] != "available": continue snapshots[snapshot[identifier_list_key]] = snapshot["SnapshotCreateTime"] return snapshots
349657e7face0287f5b0f5f0e02b8c5067acf53f
29,293
def assign_params(keys_to_ignore=None, values_to_ignore=None, **kwargs): """Creates a dictionary from given kwargs without empty values. empty values are: None, '', [], {}, () ` Examples: >>> assign_params(a='1', b=True, c=None, d='') {'a': '1', 'b': True} >>> since_time = 'timestamp' >>> assign_params(values_to_ignore=(15, ), sinceTime=since_time, b=15) {'sinceTime': 'timestamp'} >>> item_id = '1236654' >>> assign_params(keys_to_ignore=['rnd'], ID=item_id, rnd=15) {'ID': '1236654'} :type keys_to_ignore: ``tuple`` or ``list`` :param keys_to_ignore: Keys to ignore if exists :type values_to_ignore: ``tuple`` or ``list`` :param values_to_ignore: Values to ignore if exists :type kwargs: ``kwargs`` :param kwargs: kwargs to filter :return: dict without empty values :rtype: ``dict`` """ if values_to_ignore is None: values_to_ignore = (None, '', [], {}, ()) if keys_to_ignore is None: keys_to_ignore = tuple() return { key: value for key, value in kwargs.items() if value not in values_to_ignore and key not in keys_to_ignore }
e6bc55c91a1670d2dc2eb5ce998a55d78f342dd2
29,294
import os def scripts_folder() -> str: """Target folder for script generation.""" return os.environ.get('MXENV_SCRIPTS_FOLDER', os.path.join('venv', 'bin'))
7d4858a99ade92fe955ef4a4d67ec64e85ac0054
29,295
import string def file_name_for_term(term): """Return a valid filename that corresponds to an arbitrary term string.""" valid_characters = '-_' + string.ascii_letters + string.digits no_space = term.replace(' ', '_') return ''.join(c for c in no_space if c in valid_characters) + '.txt'
0a23bfca56310810ffe1d6e414eaf9237e9a9be4
29,296
from typing import Iterable from typing import List import re def split(delimiters: Iterable[str], s: str, maxsplit: int = 0) -> List[str]: """Split the string over an iterable of delimiters. Based on https://stackoverflow.com/a/13184791 """ pattern = "|".join(map(re.escape, delimiters)) return re.split(pattern, s, maxsplit)
42ab4216b6c24e28fb98970b85e7492612ac1a21
29,297
import csv def get_file_list(map_fp): """creates a list of Sample objects""" samples = list() reader = csv.DictReader(open(map_fp), delimiter='\t') for row in reader: if row['#SampleID'] == '': continue if row.get('ForwardFastqFile'): samples.append(row['ForwardFastqFile']) if row.get('ReverseFastqFile'): samples.append(row['ReverseFastqFile']) return samples
07362fbeb74cc2d307a295ce70e4dfbcb6e4935e
29,298
def transform_config_name(config_name): """Change the legend names to whatever you want it to be.""" return config_name
c53ffc4ec8fac01d9d97f4cb6bb7e91cbd0cbf1e
29,299
def split_raw_df(raw_results): """Split combined dataframe into a dict entry for each ROI""" ROI_dict = {} grouped = raw_results.groupby(raw_results.ROI) for ROI in raw_results.ROI.unique(): ROI_dict[f'{ROI}'] = grouped.get_group(ROI).dropna() ROI_dict[f'{ROI}'].columns = [x.replace(' ', '_') for x in ROI_dict[f'{ROI}'].columns] return ROI_dict
9949df128c9b7c7fdfbff5fab4e135403118b708
29,301
def remove_user_from_group(db, user_id, group_id): """Removes user from user group. Args: db (object): The db object user_id (int): User ID group_id (int): Group ID Returns: A boolean value indicating whether the given user was removed from the given group """ db.execute("""DELETE FROM user_group_has_user WHERE user_id = ? AND user_group_id=?""", (user_id, group_id,)) return db.rows_affected != 0
94a02c44878a7fe2f4f162b943ebf4f2b0254403
29,302
def sort_windows(l): """Sort a list of sliding windows.""" parsed_l = [w.split(".") for w in l] parsed_l = [ ( int(w[0][1:].split("to")[0]), int(w[0][1:].split("to")[1]), int(w[1][1:].split("to")[0]), int(w[1][1:].split("to")[1]), ) for w in parsed_l ] parsed_l = sorted(parsed_l, key=lambda tup: (-tup[0], tup[3])) new_l = [] for w in parsed_l: new_l.append( "u" + str(w[0]) + "to" + str(w[1]) + ".d" + str(w[2]) + "to" + str(w[3]) ) return new_l
e134512fce738c24869855791c9d271d5022f235
29,305
def resize_bbox(bbox, in_size, out_size): """ bbox (~numpy.ndarray): (R, 4) : R is the number of bounding boxes. : 4 is (y_{min}, x_{min}, y_{max}, x_{max}) in_size (tuple): 2 values before resized, (height, width) out_size (tuple): 2 values after resized, (height, width) Return: ~numpy.ndarray """ bbox = bbox.copy() y_scale = float(out_size[0]) / in_size[0] x_scale = float(out_size[1]) / in_size[1] bbox[:, 0] = y_scale * bbox[:, 0] bbox[:, 2] = y_scale * bbox[:, 2] bbox[:, 1] = x_scale * bbox[:, 1] bbox[:, 3] = x_scale * bbox[:, 3] return bbox
874c521dae53f678aa233efd23adc8d43bc24071
29,306
def _add_reciprocal_relations(triples_df): """Add reciprocal relations to the triples Parameters ---------- triples_df : Dataframe Dataframe of triples Returns ------- triples_df : Dataframe Dataframe of triples and their reciprocals """ # create a copy of the original triples to add reciprocal relations df_reciprocal = triples_df.copy() # swap subjects and objects cols = list(df_reciprocal.columns) cols[0], cols[2] = cols[2], cols[0] df_reciprocal.columns = cols # add reciprocal relations df_reciprocal.iloc[:, 1] = df_reciprocal.iloc[:, 1] + "_reciprocal" # append to original triples triples_df = triples_df.append(df_reciprocal) return triples_df
8ca96fc2162d80041c21db8e6b81718781784ffe
29,307
def direction(input_key, a, b, speed = 5): """ Update position by arrow key input: input_key(str) output: x,y (float) """ if input_key == 'w': b -= speed elif input_key == 's': b += speed elif input_key == 'd': a += speed elif input_key == 'a': a -= speed return a, b
51c07f0a032f01d2b47daab88f40424949eacac5
29,308
import binascii def adjust_get_sends_results(query_result): """Format the memo_hex field. Try and decode the memo from a utf-8 uncoded string. Invalid utf-8 strings return an empty memo.""" filtered_results = [] for send_row in list(query_result): try: if send_row['memo'] is None: send_row['memo_hex'] = None send_row['memo'] = None else: send_row['memo_hex'] = binascii.hexlify(send_row['memo']).decode('utf8') send_row['memo'] = send_row['memo'].decode('utf-8') except UnicodeDecodeError: send_row['memo'] = '' filtered_results.append(send_row) return filtered_results
7d2e6cb1b1e5781123fbfd0d953b9c22ffea1a37
29,309
def chr(i): # real signature unknown; restored from __doc__ """ chr(i) -> character Return a string of one character with ordinal i; 0 <= i < 256. """ return ""
c40cf6ea1f747aa78c697e05ce9d7f3474c75ed6
29,310
def is_geographic(dataset, variable_name): """ Try to determine if dataset appears to be geographic. This is a fallback if a true CRS cannot be obtained using other functions. Currently limited to checking names of spatial dimensions. :param dataset: open netCDF dataset :param variable_name: name of data variable :returns: True if variable appears to be in geographic coordinates """ options = ( {'lat', 'lon'}, {'lat', 'long'}, {'latitude', 'longitude'} ) variable = dataset.variables[variable_name] dim_names = set([d.lower() for d in variable.dimensions[-2:]]) for option in options: if not option.difference(dim_names): return True return False
20b9ca538cbf2c3d143197444d0168cf5eb18858
29,312
import re def validateTitle( title): """ 将 title 名字 规则化 :param title: title name 字符串 :return: 文件命名支持的字符串 """ rstr = r"[\"\“\”=\(\)\,\/\\\:\*\?\"\<\>\|\' ']" # '= ( ) , / \ : * ? " < > | ' 还有空格 new_title = re.sub(rstr, "", title) # 替换为空 return new_title
a614cd9ab9e93d30afc64f45b1ed007d524af093
29,313
import numpy def hessian(ps, xs): """ Calculate the hessian of a polynomial term (i.e. a monomial) at a given point, represented as two aligned sequences, the first, `ps`, containing the powers of the term, and the second, `xs`, containing the point at which to evaluate the monomial. Since differentiation is linear, this can be repeated for multiple terms, and the result can be summed to calculate the hessian of their sum (i.e. a polynomial). """ f_out = numpy.prod(numpy.power(xs, ps)) jac = numpy.empty((len(ps),)) jac[:] = f_out hess = numpy.empty((len(ps), len(ps))) for i in range(len(ps)): jac[i] *= ps[i] / xs[i] for j in range(len(ps)): ps_j = ps[j] if i != j else ps[j] - 1 hess[i, j] = jac[i] * ps_j / xs[j] return f_out, jac, hess
f4273e166277ea01ddd6e0ef9062d028144604a7
29,314
def get_port_result(used, unreachable, excluded, max_port: int): """ Generates json-serializable dict from given lists. """ # filtering excluded port outside range. excluded_in_range = [i for i in excluded if i <= max_port] closed_combined = set(used) | set(unreachable) | set(excluded_in_range) total = set(i for i in range(max_port + 1)) result_all = { 'Occupied': used, 'Unreachable': unreachable, 'Excluded': excluded_in_range, 'Combined': list(closed_combined), 'Available': list(total ^ closed_combined) } return result_all
be11b684aef1ed84738633aa691006479f66d4c4
29,315
import os import pickle def load_datasets(pickle_dir="."): """ Loads the randomly shuffled data sets from their pickles on disk. """ def loader(name): path = os.path.join(pickle_dir, name+".pickle") with open(path, 'rb') as f: data = pickle.load(f) return name, data return dict(loader(name) for name in ('test', 'devtest', 'training'))
e3f687c3b2a9e44caa91befffc64854252613278
29,316
def RoIFeatureTransform( self, blobs_in, blob_out, blob_rois='rois', method='RoIPoolF', resolution=7, spatial_scale=1. / 16., sampling_ratio=0 ): """Add the specified RoI pooling method. The sampling_ratio argument is supported for some, but not all, RoI transform methods. RoIFeatureTransform abstracts away: - Use of FPN or not - Specifics of the transform method """ assert method in {'RoIPoolF', 'RoIAlign'}, \ 'Unknown pooling method: {}'.format(method) # Single feature level # sampling_ratio is ignored for RoIPoolF # >> mislim da se tu klice roipoolf iz caffe xform_out = self.net.__getattr__(method)( [blobs_in, blob_rois], [blob_out], pooled_w=resolution, pooled_h=resolution, spatial_scale=spatial_scale, sampling_ratio=sampling_ratio ) # Only return the first blob (the transformed features) return xform_out[0] if isinstance(xform_out, tuple) else xform_out
c3f4346b77f1cc77c9329b9f1e8d5513c4d235d8
29,317
def calc_ema(smoothed, new_data, N=22): """ INPUT: smoothed (Series) - Last record's smoothed EMA value (a copy) new_data (Series) - New values, prepended with last value N (int) - Number of time periods for smoothing OUTPUT: Exponential Moving Average as a pandas Series """ K = 2/(N + 1) # coefficient for incoming datum J = 1 - K # coefficient for fading data # if first smoothed, use last data value if not len(smoothed.index): smoothed[new_data.index.values[0]] = new_data[0] for n,index in enumerate(new_data[1:].index, start=1): smoothed[index] = K*new_data[n] + J*smoothed[n-1] return smoothed
0bc9d61d9c982c58ab176c9506553a8458a7b7fc
29,318
import numpy def compute_snr(array: numpy.ndarray, double=True): """Compute the Signal-to-noise-ratio (SNR) of a batched array.""" if double: array = array.astype(numpy.float64) def expectation(array): N_axis = 0 return numpy.mean(array, axis=N_axis) mean = expectation(array) var = expectation((array - mean) ** 2) return mean ** 2 / var
33d5cd1b849eebb8e5b02bf8465a81a9092b9fd2
29,319
def monoalphabetic_substitution_cipher(message, plaintext_alphabet, ciphertext_alphabet): """ monoalphabetic substitution cipher implementation for uppercase alpha letters Args: messsage -- string -- the message to cipher plaintext_alphabet -- string -- message's alphabet ciphertext_alphabet -- string -- alphabet to cipher the message return the ciphertext """ message = message.upper() plaintext_alphabet_dic = {k: v for v, k in enumerate(plaintext_alphabet)} # return the encrypted message return ''.join([ciphertext_alphabet[plaintext_alphabet_dic[c]] for c in message])
2359b7ba4e88667e3467fd0ecfb68a08d57ba9b1
29,320
def find_difference(left: dict, right: dict) -> dict: """Accepts two dicts with list values. Check which items are present in left but not in right, similar to set difference. Args: left (dict): Dict with list values right (dict): Dict with list values Returns: dict: Dict with list values. Contains items in left but not in right """ diff = {} # Empty dict to store differences for key, values in left.items(): if key in right.keys(): right_values = [v for v in right[key]] diff[key] = set(values).difference( set(right_values) ) else: # If key doesn't exist in right, all values are new diff[key] = left[key] diff = {k:v for k,v in diff.items() if len(v) > 0} # Remove empty return diff
c8f523b0d6d8352c253e3c596e551ea4ff35b4f8
29,321
from datetime import datetime def salutation(): """ Retorna saudação adequada ao período do dia Returns: str: saudação """ current_hour = datetime.now().hour if current_hour < 12: return 'Bom dia' elif current_hour < 18: return 'Boa tarde' else: return 'Boa noite'
640bd80cd8a85612777d29a23e8476cb2f94cd76
29,322
def get_gcp_zones(compute, project): """ Get all zones in GCP (needs compute engine) """ zones = [] details = compute.zones().list(project=str(project)).execute() if details.has_key('items'): for item in details['items']: zones.append(str(item['name'])) return zones
042a67f6b8a51ca4022f435adb205b5e919b0351
29,323
from sys import modules def str_to_object(string): """Return python object from string. Parameters ---------- string : str Dot (.) separated location of python object. Returns ------- module : python object The actual python object. Examples -------- >>> text_input = str_to_object('django.forms.widgets.TextInput') """ module = modules[__name__] for submodule in string.split('.'): module = getattr(module, submodule) return module
f8b7be26064d4f7eac15995834c80093823a76a0
29,324
import os def get_class_attribute_names(img_dir = 'datasets/CUB_200_2011/data/images/', feature_file='datasets/CUB_200_2011/data/attributes/attributes.txt'): """ Returns: class_to_folder: map class id (0 to 199) to the path to the corresponding image folder (containing actual class names) attr_id_to_name: map attribute id (0 to 311) to actual attribute name read from feature_file argument """ class_to_folder = dict() for folder in os.listdir(img_dir): class_id = int(folder.split('.')[0]) class_to_folder[class_id - 1] = os.path.join(img_dir, folder) attr_id_to_name = dict() with open(feature_file, 'r') as f: for line in f: idx, name = line.strip().split(' ') attr_id_to_name[int(idx) - 1] = name return class_to_folder, attr_id_to_name
f06e744d250b6c65fdbfd63bd7d15ff69deb3a4d
29,325
def account_state_icon(state): """Highlight the state of user account Args: state (str): The state of the user's account Returns: str: A set of HTML classes. """ state_lowercase = state.lower() if state_lowercase == "active": return 'fa fa-circle text-success' else: return 'fa fa-circle text-danger'
31a4c24b4745b3df51ba214ce077f6252ec6a837
29,326
def prob4(): """Find the roots of the system [ -x + y + z ] [0] [ 1 + x^3 - y^2 + z^3 ] = [0] [ -2 - x^2 + y^2 + z^2 ] [0] Returns the values of x,y,z as an array. """ return NotImplementedError("Problem 4 not implemented")
fb27aaf3f8a4bf7c7e7035b05e01b67c318a1a9b
29,327
import itertools def _cells_state_info(cells): """ Given a list of cells, combine the individual state_info's of the cells into a single state_info for the collection of cells, i.e. do the equivalent of sum([c.state_info for c in cells], []), but using itertools instead because it's much faster Note: the goal here is to simply convert lists of dicts into a single list of dicts. Arguments: ---------- cells: list containing cell objects """ return list(itertools.chain(*[c.state_info for c in cells]))
f123801e6b234571857e6fe18c05e431ec52aef5
29,329
def listUpTo(num): """ Returns a lists of integers from 1 up to num """ return list(range(1, num + 1))
aa15d7e14912bdaf3bc8801c4b853c8b392db021
29,330
def decimal_rep(a): """ Returns decimal representation of a """ div = 1 stack = list() if a == 0: return '0' while a > 0: rem = a % 2 a = a // 2 stack.append(rem) stack.reverse() return ''.join([str(x) for x in stack])
0f7f2f735697ba656e143214e5718320b0ad19c2
29,331
def mirror(matrix): """Mirror a matrix.""" return [reversed(_row) for _row in matrix]
778405db16d5865a555db44538e0e11d9c9258f9
29,332
def valid_att_in_form(arch): """A `string` attribute must be on a `form` node.""" return not arch.xpath('//form[not (@string)]')
f3c34f100dcc6c2fc55539f253c0b1b64f4799e6
29,333
def is_category_suspicious(category, reputation_params): """ determine if category is suspicious in reputation_params """ return category and category.lower() in reputation_params['suspicious_categories']
864aa520eba53c2e0ea2a6d2fbd3f0172bcab05f
29,335
from typing import Iterable def replace_symbols_with_values(list_of_lists, replacements): """ Take iteratively a list of lists (at any depth level) and replace strings with the corresponding values in the ``replacements`` dictionary, leaving other types of values (floats, ints, ...) untouched. :return: a new list_of_lists with the same shape, with strings replaced by numbers. :raise ValueError: if one of the values is not found """ if isinstance(list_of_lists, str): # Check this first, a str is also Iterable try: return replacements[list_of_lists] except KeyError: raise ValueError("Unknown replacement '{}'".format(list_of_lists)) elif isinstance(list_of_lists, Iterable): return [ replace_symbols_with_values(elem, replacements=replacements) for elem in list_of_lists ] else: return list_of_lists
d3ab32e2527ad2e29515aa727676f8cbc86c9ee0
29,336
def build_arguments(path="/tmp"): """builds the arguments for the CaptureInfo Args: path (str): path to the file Returns: dict: arguments to build the Capture Info """ return dict(path=path)
62b53bcee9f10fda1879de618cd059d459c738c8
29,338
def _return_value(resource, key): """ Return the value from the resource """ return resource[key]
80cc72be0955e1b931422288dc84ede1d2098334
29,339
def clean_soup(soup): """Function to clean scraped soup object. The downloaded soup could change over time. Args: soup: bs4.BeautifulSoup Returns: bs4.BeautifulSoup """ for script in soup.find_all("script", src=False): script.decompose() return soup
2d3caf6c72a51a0ceb6cf4241879c03f5dc60bac
29,340
def message_to_feature(message, liked): """return single feature object""" feature = {"type": "Feature", "properties": { "id": message.message_id, "text": message.message_text, "liked": liked, "country" : message.country, "city": message.city, "state": message.state }, "geometry": { "type": "Point", "coordinates": [message.lng, message.lat] } } return feature
a1f91872b2ce829c161dfaedf5b84177cd13040f
29,341
def handled_float(value, default=0): """ Returns ``float(value)`` if value is parseable by ``float()``. Otherwise returns ``default``. """ ret_val = default try: ret_val = float(value) except (TypeError, ValueError): pass return ret_val
d905695486c05ed11413307d3f5877ff905654d4
29,343
def group_by_company(devices): """Group a list of devices by company.""" grouped = {} for dev in devices: try: grouped[dev['company']['name']].append(dev) except KeyError: grouped[dev['company']['name']] = [dev] return grouped
9b5b1c56a95132a8777e3206116819e528483a43
29,344
def first(items): """ Get the first item from an iterable. Warning: It consumes from a generator. :param items: an iterable :return: the first in the iterable """ for item in items: return item
2ed7fa730b1b1c1588bc98e93ac8ef02a669ae98
29,346
def ast2tuple(space, node, line_info=0): """Quick dummy implementation of parser.ast2tuple(tree) function""" return node.descr_totuple( line_info )
b9f7008eafc26f0700995b8f3d85679941a4ca67
29,347
from typing import List import itertools def mixup_arguments(*args) -> List: """mixups given arguments [argument_1_1, argument_1_2], [argument_2_1] => [(argument_1_1, argument_2_1), (argument_1_2, argument_2_1)] Returns: List: [(arg1, arg2), ...] """ return list(itertools.product(*args))
cf21e83b2ac07834220fab4bf000f98462c33a01
29,348
def cal_words_num(lines): """ Calculate number of words in lines :param lines: lines to be calculate :return: number of words """ return sum(map(len, lines))
fc8f6022620687d21d0fa26bd51466a738eb0333
29,351
import os def find_dataset(path): """ Returns pair of (images, labels) Where images is list of filepaths, Where labels is list of filepaths, or None if the corresponding image has no labels file, """ image_extensions = [ '.bmp', '.dib', '.png', '.jpg', '.jpeg', '.jpe', '.tif', '.tiff', ] images = [] labels = [] for dirpath, dirnames, filenames in os.walk(path): for fn in filenames: basename, ext = os.path.splitext(fn) if ext.lower() not in image_extensions: continue # This file is not an image, ignore it. file_path = os.path.join(dirpath, fn) if basename.endswith(".label"): labels.append(file_path) else: images.append(file_path) # Match the images with their labels. images.sort() labels.sort() # Insert None's into the labels list where there are missing labels. for index, image in enumerate(images): image_name, image_ext = os.path.splitext(image) try: label = labels[index] # This should be the corresponding label file label_name, label_ext = os.path.splitext(label) image_from_label, dot_label = os.path.splitext(label_name) has_label = (image_name == image_from_label) # File names match except IndexError: # index >= len(labels) has_label = False if not has_label: labels.insert(index, None) return images, labels
cd4a36aa7936393c28505c687cc260656c2ca446
29,355
import os import string def parse_settings(): """Returns a dict of key -> value's from settings.sh""" settings = {} with open(os.path.join('conf', 'settings.sh'), 'rt') as f: for s in f: n = s.find('#') if n >= 0: s = s[:n] s = s.strip() if not s: continue key, value = s.split('=') settings[key] = value # substitute any ${...} values for key in settings.keys(): settings[key] = string.Template(settings[key]).substitute(settings) # lowercase all keys result = {} for key, item in settings.items(): result[key.lower()] = item return result
74060cf83fbf0f18f30fce1dabf801ab357260b0
29,356
def add_delayed(df): """ Add col Delayed. 0 = punctual, 1 = delayed by more than 10 min """ _df = df.copy() delayed = [] for index, row in _df.iterrows(): if row['Timedelta'] > 10: delayed.append(1) else: delayed.append(0) _df['Delayed'] = delayed return _df
06f187dc06b934a8f9384972c2f6bfe9461607b7
29,357
def get_opt_pareto_values(pareto_fronts, objective): """ Return the best objective function values of the first paretofront Parameters ---------- pareto_fronts : list List of pareto fronts objective : str objective : str Objective function Options: 'mc_risk_av_ann_co2_to_net_energy': 'ann_and_co2_to_net_energy_ref_test' 'ann_and_co2_ref_test' 'mc_risk_av_ann_and_co2' 'mc_mean_ann_and_co2' 'mc_risk_friendly_ann_and_co2' 'mc_min_std_of_ann_and_co2' 'mc_dimless_eco_em_2d_mean' 'mc_dimless_eco_em_2d_risk_av' 'mc_dimless_eco_em_2d_risk_friendly' 'mc_dimless_eco_em_2d_std' 'ann_and_co2_dimless_ref' 'mc_dimless_eco_em_3d_mean' 'mc_dimless_eco_em_3d_risk_av' 'mc_dimless_eco_em_3d_risk_friendly' 'mc_dimless_eco_em_3d_std' 'ann_and_co2_dimless_ref_3d' Returns ------- tuple_res : tuple 4d results tuple (min_ann, min_co2, int(idx_ann), int(idx_co2)) min_ann : float Minimum annuity min_co2 : float Minimum CO2 idx_ann : int Index of min_ann value on pareto front idx_co2 : int Index of min_co2 value on pareto front """ # Objectives for minimization if (objective == 'mc_risk_av_ann_co2_to_net_energy' or objective == 'ann_and_co2_to_net_energy_ref_test' or objective == 'ann_and_co2_ref_test' or objective == 'mc_risk_av_ann_and_co2' or objective == 'mc_mean_ann_and_co2' or objective == 'mc_risk_friendly_ann_and_co2' or objective == 'mc_min_std_of_ann_and_co2' or objective == 'mc_dimless_eco_em_2d_mean' or objective == 'mc_dimless_eco_em_2d_risk_av' or objective == 'mc_dimless_eco_em_2d_risk_friendly' or objective == 'ann_and_co2_dimless_ref' or objective == 'mc_dimless_eco_em_2d_std' ): # Initial, dummy values min_ann = 100000000000000 min_co2 = 100000000000000 idx_ann = None idx_co2 = None for i in range(len(pareto_fronts[0])): # If fitness value is better (smaller) if min_ann > pareto_fronts[0][i].fitness.values[0]: # Save new best objective function value min_ann = pareto_fronts[0][i].fitness.values[0] idx_ann = i # If fitness value is better (smaller) if min_co2 > pareto_fronts[0][i].fitness.values[1]: # Save new best objective function value min_co2 = pareto_fronts[0][i].fitness.values[1] idx_co2 = i return (min_ann, min_co2, idx_ann, idx_co2) elif (objective == 'mc_dimless_eco_em_3d_mean' or objective == 'mc_dimless_eco_em_3d_risk_av' or objective == 'mc_dimless_eco_em_3d_risk_friendly' or objective == 'ann_and_co2_dimless_ref_3d' or objective == 'mc_dimless_eco_em_3d_std' ): # Initial, dummy values min_ann = 100000000000000 min_co2 = 100000000000000 max_beta_el = -10000000000000 idx_ann = None idx_co2 = None idx_beta_el = None for i in range(len(pareto_fronts[0])): # If fitness value is better (smaller) if min_ann > pareto_fronts[0][i].fitness.values[0]: # Save new best objective function value min_ann = pareto_fronts[0][i].fitness.values[0] idx_ann = i # If fitness value is better (smaller) if min_co2 > pareto_fronts[0][i].fitness.values[1]: # Save new best objective function value min_co2 = pareto_fronts[0][i].fitness.values[1] idx_co2 = i # If fitness value is better (larger) if max_beta_el < pareto_fronts[0][i].fitness.values[2]: # Save new best objective function value max_beta_el = pareto_fronts[0][i].fitness.values[2] idx_beta_el = i return (min_ann, min_co2, max_beta_el, idx_ann, idx_co2, idx_beta_el) else: msg = 'Unknown/not implemented objective in get_opt_pareto_values!' raise NotImplementedError(msg)
03c90f81bbe0913d4358fab77db7d8f70f742913
29,358
from typing import Collection def key_map(data_: Collection) -> dict: """ Map all keys in a given data collection to their respective values. e.g. For the next data collection: data = [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'bar', 'age': 31, 'country': 'US' }, { 'name': 'Mr. X', 'age': 29, 'country': 'UK' } ] mapped_data = key_mep(data) mapped_data['age'][31] will return: [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'bar', 'age': 31, 'country': 'US' } ] mapped_data['country']['UK'] will return: [ { 'name': 'foo', 'age': 31, 'country': 'UK' }, { 'name': 'Mr. X', 'age': 29, 'country': 'UK' } ] :param data_: :return: """ mapped_data = {} for item in data_: for k, v in item.items(): if k not in mapped_data: mapped_data[k] = {} if v not in mapped_data[k]: mapped_data[k][v] = [] mapped_data[k][v].append(item) return mapped_data
f9939e79090831d140e41158e175bc61661cc740
29,359
import os def get_project_dirs(root, maxdepth=2): """ Search for datman project directories below root. A project directory is defined as a directory having a metadata/checklist.csv file. Returns a list of absolute paths to project folders. """ paths = [] for dirpath, dirs, files in os.walk(root): checklist = os.path.join(dirpath, 'metadata', 'checklist.csv') if os.path.exists(checklist): del dirs[:] # don't descend paths.append(dirpath) depth = dirpath.count(os.path.sep) - root.count(os.path.sep) if depth >= maxdepth: del dirs[:] return paths
640ad39929cb73b012b5bc5be4d019cd22f53318
29,360
def parser_class_from_module(module): """Inspects module for having a *Parser class""" for k in module.__dict__: is_base_parser = k == "BaseParser" if isinstance(k, str) and k.endswith("Parser") and not is_base_parser: return module.__dict__[k] return None
5b6ff3eae055d13d8b83a4a27b441de977ee0fed
29,361
import math def call_user(funcid,argc,argv): """ Вызывает пользвательскую функцию \param funcid:int индификатор \param argc:int количество параметров \param argv:list аргументы со стека \return соответствующее значение """ ret = 0; if (funcid == 0): print("Called user function 0 => stop.\n"); if (funcid == 1): ret = math.cos(argv[-1]); if (funcid == 2): ret = math.sin(argv[-1]); print("Called user function %d with %d args:"%( funcid, argc)); for i in range(0,argc): print(" %f"%argv[i]); print("\n"); return ret;
f1e3893623990bc58a29ea36284281a96037d6e1
29,362
def _parse_cpmd_atoms_block(lines, line_idx, parsed): """Add to ``parsed`` ``cpmd_atom_to_line_idx``. ``cpmd_atom_to_line_idx`` is a Dict[int, int] that associates a CPMD atom index to the line number where its coordinates are stored. Parameters ---------- lines : List[str] The lines of the entire file as read by file.readlines(). line_idx : int The index of the first line after '&ATOMS'. parsed : Dict A memo dictionary where the parsed info is saved. Returns ------- line_idx : int The line index right after the '&END' directive of the '&MIMIC' block. """ parsed['cpmd_atom_to_line_idx'] = {} current_atom_idx = 0 while line_idx < len(lines): line = lines[line_idx].strip() if line.startswith('*'): # New atom type. First line is nonlocality, second is number of atoms. n_atoms = int(lines[line_idx+2]) # Add the atoms to the map. line_idx += 3 for element_atom_idx in range(n_atoms): parsed['cpmd_atom_to_line_idx'][current_atom_idx] = line_idx+element_atom_idx current_atom_idx += 1 line_idx += n_atoms elif line.startswith('&END'): break else: # Empty line. line_idx += 1 return line_idx + 1
0dd693c4ca02af2b77288fd1c7a8ce2d2ab213bd
29,363
import numpy as np def volume(dlat,dlon,dh,rlat=0): """ dlat, dlon : float. should be in degrees dh : float : should be in km """ adj = np.cos(rlat * np.pi / 180.0) deg2km = 111.0 km2m = 1e3 rval = adj * dlat * dlon * (deg2km)**2 * dh * (km2m)**3 return rval
a1a455d5a52dabca6733e8973ef460d8c34b559e
29,365
def mndvi(b2, b4, b8): """ Modified Normalized Difference Vegetation Index \ (Main et al., 2011). .. math:: MNDVI = (b8 - b4) / (b8 + b4 - 2 * b2) :param b2: Blue. :type b2: numpy.ndarray or float :param b4: Red. :type b4: numpy.ndarray or float :param b8: NIR. :type b8: numpy.ndarray or float :returns MNDVI: Index value .. Tip:: Main, R., Cho, M. A., Mathieu, R., O’kennedy, M. M., Ramoelo, A., \ Koch, S. 2011. An investigation into robust spectral indices for \ leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and \ Remote Sensing 66, 751-761. doi:10.1016/j.isprsjprs.2011.08.001. """ MNDVI = (b8 - b4) / (b8 + b4 - 2 * b2) return MNDVI
af90990cf706ec353b1b435dc3d48a3c9801be92
29,366
def get_heading_text_lines(heading_regions): """ Given a list of TextRegion objects ``heading_regions`` (of type heading) return all of their text lines as one big list. :param heading_regions: List of TextRegion objects of type heading. :type heading_regions: List[TextRegion] :return: List of all TextLine objects belonging to the heading regions. """ text_lines = [] for heading_region in heading_regions: text_lines.extend(heading_region.text_lines) return text_lines
671d2de7ce90319307199d14805f9ac0f0bf76fd
29,367
from unittest.mock import MagicMock def AsyncMock(): """ Mock class that support asyncio. NOTE: AsyncMock support exists from python >= 3.8 in "unittest.mock.AsyncMock. """ class AsyncMock(MagicMock): async def __call__(self, *args, **kwargs): return super(AsyncMock, self).__call__(*args, **kwargs) return AsyncMock
016b01830e04aec473e3988a0b7ea13355197103
29,369
from typing import List from typing import Dict from typing import Any def validate_cell_header( headers: List[str], cell: Dict[str, Any] ) -> List[str]: """Check that header of a cell meets project specifications.""" content = [line.rstrip('\n') for line in cell['source']] curr_header = content[0] msg = f"Cell header must be h2 (i.e. start with ##), found: {curr_header}" if not curr_header.startswith('## '): raise ValueError(msg) msg = f"Each header must appear only once, '{curr_header}' is duplicated" if curr_header in headers: raise ValueError(msg) headers.append(curr_header) return headers
c18c385792a0f04661ca3961e31d7bb7ce8e5801
29,372
def truncate_datalists(chunk, info): """This sampler function truncates the last data entry in the chunk and returns the rest. For an example key in the chunk, if the input shape is ``(batch_size, T+1, ...)``, it will become ``(batch_size, T, ...)``. This is basically to remove the final "half-step" taken in the environment. """ params = info["truncate_datalists"] n = params["n"] for key in chunk: chunk[key] = chunk[key][:,:-n] return chunk
3b2cc0278bc202dd21c4af329e80f86b8d8ff73a
29,373
def write_multithreading(): """Find the number of processors and use as many threads as possible if the number of processors isn't found, default to 1""" text = """ifeq ($(UNAME_S), Darwin) NPROCS = $(shell sysctl -n hw.ncpu) else NPROCS = $(shell grep -c 'processor' /proc/cpuinfo) endif ifeq ($(NPROCS),) NPROCS = 1 endif MAKEFLAGS += -j$(NPROCS) """ return text
5a2369de5a5da5ee1b6a6fccf385a30bfac7f706
29,375
def zaction(op, inv): """ Return a function f: (G, Z) -> G g, n |-> g op g op ... (n-1 times) ... op g If n is zero, it returns identity element. If n is negative, it returns |n|-1 times op on the inverse of g. """ def f(g, n): result = op(g, inv(g)) # identity if n < 0: g, n = inv(g), -n for i in range(n): result = op(result, g) return result return f
a75f061221ce28b03f3bcc4ddbbc6985f20339b2
29,376
def _trim_vals(temps, vals): """ trim off values that are undefined """ trim_temps, trim_vals = [], [] for temp, val in zip(temps, vals): if val is not None: trim_temps.append(temp) trim_vals.append(val) return trim_temps, trim_vals
5f5f21e8c660a3047151ad9ab4e90d27fd3be9eb
29,377
def get_table_e_3(): """表E.3 ガスユニットの定格暖房効率を補正する係数及びガスユニットの筐体放熱損失 Args: Returns: list: 表E.3 ガスユニットの定格暖房効率を補正する係数及びガスユニットの筐体放熱損失 """ table_e_3 = [ (1.064, 1.038), (123.74, 225.26) ] return table_e_3
51012a43a3cbed0bdc36e6c032c1ede28a5d3802
29,378
def percentage_to_int(value): """ Scale values from 0-100 to 0-255 """ return round((255.0 / 100.0) * float(value))
b7bbc35da0fc704db0f454692b52286123cbb942
29,380
import torch def select_seeds(dist1: torch.Tensor, R1: float, scores1: torch.Tensor, fnn12: torch.Tensor, mnn: torch.Tensor): """ Select seed correspondences among the set of available matches. dist1: Precomputed distance matrix between keypoints in image I_1 R1: Base radius of neighborhoods in image I_1 scores1: Confidence scores on the putative_matches. Usually holds Lowe's ratio scores. fnn12: Matches between keypoints of I_1 and I_2. The i-th entry of fnn12 is j if and only if keypoint k_i in image I_1 is matched to keypoint k_j in image I_2 mnn: A mask indicating which putative matches are also mutual nearest neighbors. See documentation on 'force_seed_mnn' in the DEFAULT_CONFIG. If None, it disables the mutual nearest neighbor filtering on seed point selection. Expected a bool tensor with shape (num_keypoints_in_source_image,) Returns: Indices of seed points. im1seeds: Keypoint index of chosen seeds in image I_1 im2seeds: Keypoint index of chosen seeds in image I_2 """ im1neighmap = dist1 < R1**2 # (n1, n1) # find out who scores higher than whom im1scorescomp = scores1.unsqueeze(1) > scores1.unsqueeze(0) # (n1, n1) # find out who scores higher than all of its neighbors: seed points if mnn is not None: im1bs = (~torch.any(im1neighmap & im1scorescomp & mnn.unsqueeze(0), dim=1)) & mnn & (scores1 < 0.8**2) # (n1,) else: im1bs = (~torch.any(im1neighmap & im1scorescomp, dim=1)) & (scores1 < 0.8**2) # collect all seeds in both images and the 1NN of the seeds of the other image im1seeds = torch.where(im1bs)[0] # (n1bs) index format im2seeds = fnn12[im1bs] # (n1bs) index format return im1seeds, im2seeds
36ac7c9e9f6ccef31e487d350acfa2b4e496a7d4
29,381
def getarg(args, index): """ Helper to retrieve value from command line args """ return args[index] if index < len(args) else None
256de43dda23c9f613c61a8dca456a3d507ca332
29,384
def resize_to(img_obj, new_height, new_width): """ Resize an image to the specified dimensions """ assert isinstance(new_height, int) assert isinstance(new_width, int) assert new_height > 0 assert new_width > 0 return img_obj.resize((new_width, new_height))
38303694e840ca29f01d6cb5b80e54d6f1c29008
29,387
def uniq_add(my_list=[]): """ adds all unique elements of a list of ints together """ return (sum({ele for ele in my_list}))
46b547488493f23d647bac621b70ba6313e20bd4
29,388
def recs_to_metrics(recs, ground_truth_dict, g): """ Given the recommendations and the ground_truth, computes precision, recall & coverage. """ # precision k_relevant = 0 k_total = 0 for uid, iids in recs.items(): k_total += len(iids) k_relevant += len([id_ for id_ in iids if id_ in ground_truth_dict[uid]]) precision = k_relevant/k_total # recall k_relevant = 0 k_total = 0 for uid, iids in recs.items(): k_total += len(ground_truth_dict[uid]) k_relevant += len([id_ for id_ in ground_truth_dict[uid] if id_ in iids]) recall = k_relevant/k_total # coverage nb_total = g.num_nodes('item') recs_flatten = [item for sublist in list(recs.values()) for item in sublist] nb_recommended = len(set(recs_flatten)) coverage = nb_recommended / nb_total return precision, recall, coverage
89c4c52991888a9c45dfde370e9349a16bf3ac11
29,391
def fib(n): """ Função usada para calcular o enésimo termo da sequência de fibonacci """ a,b = 0,1 for i in range(n): a,b = b, a+b return a
53734e6bd69dee2ab917adc6fa586976028ff2e4
29,392
def label(dt): """ Setting the label for the integration timestep """ return 'dt = {} s'.format(dt)
5cf5bce8079b2a0685eab0d54f16c4e61028b279
29,393
def try_to_convert(value): """Tries to convert [value] to an int, returns the original string on fail""" try: return int(value) except: return value
a4358e0827691262469ca776af6c207e5e09f8a2
29,395
def sf_mag(a: tuple) -> int: """ Calculates the magnitude of a snailfish number :param a: a snailfish number :return: the magnitude as int >>> sf_mag((9, 1)) 29 >>> sf_mag((1, 9)) 21 >>> sf_mag(((9, 1),(1, 9))) 129 >>> sf_mag(((1,2),((3,4),5))) 143 >>> sf_mag(((((0,7),4),((7,8),(6,0))),(8,1))) 1384 >>> sf_mag(((((1,1),(2,2)),(3,3)),(4,4))) 445 >>> sf_mag(((((3,0),(5,3)),(4,4)),(5,5))) 791 >>> sf_mag(((((5,0),(7,4)),(5,5)),(6,6))) 1137 >>> sf_mag(((((8,7),(7,7)),((8,6),(7,7))),(((0,7),(6,6)),(8,7)))) 3488 >>> sf_mag(((((6,6),(7,6)),((7,7),(7,0))),(((7,7),(7,7)),((7,8),(9,9))))) 4140 """ if type(a[0]) is int: left = a[0] else: left = sf_mag(a[0]) if type(a[1]) is int: right = a[1] else: right = sf_mag(a[1]) return left * 3 + right * 2
8292494f9e8ef4fe63dbaa7aef1c0973576aba64
29,399
import time def poll(function, step=0.5, timeout=3, ignore_exceptions=(), exception_message='', message_builder=None, args=(), kwargs=None, ontimeout=()): """Calls the function until bool(return value) is truthy @param step: Wait time between each function call @param timeout: Max amount of time that will elapse. If the function is in progress when timeout has passed, the function will be allowed to complete. @type ignore_exceptions: tuple @param ignore_exceptions: A tuple of exceptions that will be ignored if they are raised @param exception_message: The message that will be raised as an AssertionError if the function never returns bool(True) @param ontimeout: On timeout, execute the functions in order, but do not fail if execution fails @return: True """ # Validate usage try: iter(ontimeout) except TypeError: raise ValueError('Please specify an iterable of callable functions for ontimeout') kwargs = kwargs or dict() end_time = time.time() + timeout while True: try: value = function(*args, **kwargs) if bool(value): return value except ignore_exceptions: pass time.sleep(step) if time.time() > end_time: break # Execute the callbacks for fn in ontimeout: try: fn(), except: continue if message_builder: exception_message = message_builder(*args, **kwargs) raise AssertionError(exception_message)
a4a8858d039e982ac0840bc20f92bde4a6a30394
29,400
def fix_ghdx_ages(df): """Fix inconsistency in the age variables. Some entries of age variables are very obvious transcription errors. These lead to misclassifying an observation into the wrong age-specific module. This analysis is using g5_04 set of variable to calculate age instead of the g1_07 used by the original authors. The g1_07 series were ages collected from medical records whereas the g5_04 series are responses from respondents and better reflect the quality of information available from a verbal autopsy interview. For discussion on the discrepancies between various methods in calculating age for records in the PHMRC dataset see the review of the dataset by Byass [byass]_. Args: df (dataframe): GHDx data. Returns: (dataframe): the same dataframe is returned with inplace modifications. """ idx = df.index.intersection(['Adult3138', 'Adult7459']) df.loc[idx, 'g5_04a'] = df.loc[idx, 'g5_04c'] df.loc[idx, 'g5_04c'] = float('nan') idx = df.index.intersection(['Child954', 'Child1301', 'Child1329']) df.loc[idx, 'g5_04b'] = df.loc[idx, 'g5_04a'] df.loc[idx, 'g5_04a'] = float('nan') idx = df.index.intersection(['Child1372']) df.loc[idx, 'g5_04c'] = 29 idx = df.index.intersection(['Child2062']) df.drop(idx, inplace=True) idx = df.index.intersection(['Neonate545', 'Neonate2152']) df.loc[idx, 'g5_04c'] = df.loc[idx, 'g5_04a'] df.loc[idx, 'g5_04a'] = float('nan') idx = df.index.intersection(['Neonate1192', 'Neonate1377']) df.loc[idx, 'g5_04c'] = df.loc[idx, 'g5_04b'] df.loc[idx, 'g5_04b'] = float('nan') return df
10fc98421f179a953f5dd84d9e8905db62347f7f
29,401
def Features2Msg(features): """ """ center, end, bif = features[0].astype(int), features[1].astype(int), features[2].astype(int) center_msg = "{:3d}{:3d}".format(center[0], center[1]).replace(' ', '0') n = end.shape[0] m = bif.shape[0] end_msg = '' for point in end: end_msg += "{:3}{:3}".format(point[0], point[1]).replace(' ', '0') bif_msg = '' for point in bif: bif_msg += "{:3}{:3}".format(point[0], point[1]).replace(' ', '0') return "{}{:3}{:3}{}{}".format(center_msg, n, m, end_msg, bif_msg).replace(' ', '0')
6d9cdcfa65ab0ca0ddf6b0f2733157d72527671a
29,402
import os def get_module_name(module): """ Get the name of the module from the basename of its path. :param module: The module. :type module: types.ModuleType :return: The base name of the module. :rtype: str """ return os.path.splitext(os.path.basename(module.__file__))[0]
579ccb2b12896491a698bb6fa3fc264332f96be3
29,406
def get_message(ftp_socket): """ goal: receive a message type: (socket) -> string """ if ftp_socket: return ftp_socket.recv(1024).decode()
053db20cff075bfe202f42d79dcd702fa9117189
29,407
import time def create_datasplit(train_set, validation_set, test_set, name=None): """Create a datasplit dict from user-defined data sets Args: train_set (set): set of audio file paths valid_set (set): set of audio file paths test_set (set): set of audio file paths name (str): name of the datasplit (set to unix timestamp if not specified) Returns: a dict with train_set, validation_set and test_set, as sets of audio file paths """ if not name: name = int(time.time()) return {"id": "{}".format(name), "sets": {"train": train_set, "validation": validation_set, "test": test_set} }
a6d35205dc8c5d31662301a471e291cd578f77ee
29,408
import threading def synchronized(f): """ Creates an internal lock for this function and synchronizes across all threads that can access this function. This method can be used with a decorator @synchronized above the definition of the function f. Args: f (func): Function to synchronize Returns: (func): A synchronized function Examples: `@synchronized def incr_cnt(): global cnt cnt += 1` """ f.__lock__ = threading.Lock() def synced_func(*args, **kwargs): with f.__lock__: return f(*args, **kwargs) return synced_func
c1b1457305e78c964c18635ee7a27ca7a46fb8d6
29,410
def ndmi(b8, b11): """ Normalized Difference Moisture Index \ (Gerard et al., 2003). .. math:: NDMI = (b8 - b11) / (b8 + b11) :param b8: NIR. :type b8: numpy.ndarray or float :param b11: SWIR 1. :type b11: numpy.ndarray or float :returns NDMI: Index value .. Tip:: Gerard, F., Plummer, S., Wadsworth, R., Sanfeliu, \ A. F., Iliffe, L., Balzter, H., & Wyatt, B. 2003. \ Forest fire scar detection in the boreal forest with \ multitemporal SPOT-VEGETATION data. IEEE Transactions \ on Geoscience and Remote Sensing 41(11), 2575-2585. \ doi:10.1109/tgrs.2003.819190. """ NDMI = (b8 - b11) / (b8 + b11) return NDMI
ed60cd5bae20167a747d3df1e9a5e9aa386ce385
29,411
import struct def build_buf(shellcode: bytes = b"") -> bytes: """ Builds buffer for GMON exploit of vulnserver with egghunter""" # bad_chars: \x00\x20\x25\x2b\x2f\x5c # ************* # Buffer Layout # ************* # # Overwrite w/ 4061 bytes # SEH overwrite 0x1002324c : pop esi # pop edi # ret | ascii {PAGE_EXECUTE_READ} [ImageLoad.dll] # net jump over seh # shellcode # pad to 500 bytes payload = b"A" * 4061 payload += struct.pack("<L", 0x04750674) #nseh payload += struct.pack("<L", 0x1002324c) #seh payload += shellcode payload += b"\xcc" * (5000 - len(payload)) buf = b"GET " buf += payload buf += b" HTTP/1.1\r\n" return buf
993df18178e8012b85fe50a394c0289b1d3b248e
29,412
import numpy def storedGrids(): """ #------------------------------------------------------------------- # # purpose: to construct a grid coordinate which is random # # passed : nothing # # returned: lati -- a 60 element latitude grid from -90. to +90. degrees # latiSort -- lati sorted to be montonically decreasing # loni -- a 120 element longitude grid from 0. to 360. degrees # loniSort -- loni sorted to be montonically increasing # #------------------------------------------------------------------------""" latiList = [ 1.3092E+01, 7.1081E+01, 3.2199E+01, 2.6314E+01, -7.5665E+01, -7.2182E+00, -2.1963E+01, -8.3351E+01, 4.8161E+01, 8.6379E+01, -5.6722E+01, -3.3604E+01, 3.4670E-01, -5.9393E+00, -1.7894E+01, 1.7068E+01, -1.0846E+01, -6.0505E+00, -4.9974E+01, 7.1796E+01, 3.3333E+01, 8.0870E+01, 2.7362E+00, 2.6315E+00, -3.9012E+01, 5.2667E+00, -8.1956E+01, 8.8042E+01, 8.0710E+00, -5.3203E+01, -6.5512E+00, 5.0851E+01, 2.2580E+00, -2.2110E+01, 5.3739E+01, -8.7512E+01, 6.7964E+01, 3.9599E+01, 1.2495E+01, -1.1603E+01, -1.3217E+01, 3.0072E+01, -6.2477E+01, 8.9158E+01, 6.1896E+01, 3.5624E+01, -3.5438E+01, 6.2368E+01, -3.2040E+01, 7.2130E+01, -7.9999E+01, 6.4780E+01, 5.3882E+01, 6.9012E+01, 7.9715E+01, -7.2460E+01, 7.5047E+00, -1.5061E+01, 2.5178E+01, 6.9948E+00] latiSortList = [ -8.7512E+01, -8.3351E+01, -8.1956E+01, -7.9999E+01, -7.5665E+01, -7.2460E+01, -6.2477E+01, -5.6722E+01, -5.3203E+01, -4.9974E+01, -3.9012E+01, -3.5438E+01, -3.3604E+01, -3.2040E+01, -2.2110E+01, -2.1963E+01, -1.7894E+01, -1.5061E+01, -1.3217E+01, -1.1603E+01, -1.0846E+01, -7.2182E+00, -6.5512E+00, -6.0505E+00, -5.9393E+00, 3.4670E-01, 2.2580E+00, 2.6315E+00, 2.7362E+00, 5.2667E+00, 6.9948E+00, 7.5047E+00, 8.0710E+00, 1.2495E+01, 1.3092E+01, 1.7068E+01, 2.5178E+01, 2.6314E+01, 3.0072E+01, 3.2199E+01, 3.3333E+01, 3.5624E+01, 3.9599E+01, 4.8161E+01, 5.0851E+01, 5.3739E+01, 5.3882E+01, 6.1896E+01, 6.2368E+01, 6.4780E+01, 6.7964E+01, 6.9012E+01, 7.1081E+01, 7.1796E+01, 7.2130E+01, 7.9715E+01, 8.0870E+01, 8.6379E+01, 8.8042E+01, 8.9158E+01] latiSortList.reverse() loniList = [ 1.0950E+02, 3.1987E+02, 1.6087E+02, 2.2737E+02, 1.4790E+02, 6.2704E+01, 6.2566E+01, 2.4556E+02, 2.4902E+01, 9.1912E+01, 1.2039E+02, 1.6807E+02, 1.8303E+02, 2.4495E+02, 1.1643E+01, 9.5821E+01, 1.6826E+02, 2.3723E+02, 1.4022E+01, 2.6537E+02, 3.4034E+01, 1.0511E+02, 2.4025E+02, 1.0651E+02, 8.4892E+01, 3.4940E+02, 1.6315E+02, 1.1100E+02, 1.4735E+02, 1.7356E+02, 7.5067E+01, 2.9491E+02, 1.3526E+02, 3.4038E+02, 3.1191E+02, 2.4636E+02, 1.0361E+02, 3.1934E+02, 2.5720E+02, 3.5403E+02, 1.8194E+02, 2.8795E+02, 9.0098E+01, 2.7536E+02, 4.1070E+01, 3.7064E+01, 1.5244E+02, 8.5413E+01, 1.3328E+02, 3.2401E+02, 2.7889E+01, 1.3045E+02, 2.3126E+01, 2.2804E+02, 1.2270E+02, 1.5981E+02, 2.1705E+02, 2.2611E+02, 2.9517E+02, 3.5181E+02, 3.0866E+02, 1.0522E+01, 2.2290E+01, 1.2809E+02, 3.1070E+01, 2.3676E+02, 1.6915E+01, 3.2640E+02, 7.1367E+01, 1.9983E+02, 1.0566E+02, 2.7452E+02, 1.3069E+02, 2.5578E+02, 2.2619E+02, 3.5151E+02, 3.3032E+01, 1.2169E+02, 1.4333E+02, 8.3669E+01, 3.3945E-01, 2.8520E+02, 9.7079E+01, 3.1794E+02, 1.7400E+02, 3.1042E+02, 1.2403E+02, 2.8891E+02, 2.5776E+02, 1.5096E+02, 4.0489E+01, 2.1803E+02, 2.6891E+02, 2.5970E+02, 2.3404E+02, 3.2476E+01, 6.4254E+01, 2.9157E+02, 4.8417E+00, 2.7701E+02, 7.5394E+01, 1.5646E+02, 4.3079E+01, 1.6228E+02, 3.3645E+02, 2.8462E+02, 3.4708E+02, 1.8942E+02, 1.4303E+02, 1.8721E+00, 1.3013E+02, 1.9077E+02, 1.8328E+02, 3.5694E+02, 3.5559E+02, 1.4661E+01, 8.7624E+01, 2.0111E+02, 1.5145E+02, 1.8391E+02] loniSortList = [ 3.3945E-01, 1.8721E+00, 4.8417E+00, 1.0522E+01, 1.1643E+01, 1.4022E+01, 1.4661E+01, 1.6915E+01, 2.2290E+01, 2.3126E+01, 2.4902E+01, 2.7889E+01, 3.1070E+01, 3.2476E+01, 3.3032E+01, 3.4034E+01, 3.7064E+01, 4.0489E+01, 4.1070E+01, 4.3079E+01, 6.2566E+01, 6.2704E+01, 6.4254E+01, 7.1367E+01, 7.5067E+01, 7.5394E+01, 8.3669E+01, 8.4892E+01, 8.5413E+01, 8.7624E+01, 9.0098E+01, 9.1912E+01, 9.5821E+01, 9.7079E+01, 1.0361E+02, 1.0511E+02, 1.0566E+02, 1.0651E+02, 1.0950E+02, 1.1100E+02, 1.2039E+02, 1.2169E+02, 1.2270E+02, 1.2403E+02, 1.2809E+02, 1.3013E+02, 1.3045E+02, 1.3069E+02, 1.3328E+02, 1.3526E+02, 1.4303E+02, 1.4333E+02, 1.4735E+02, 1.4790E+02, 1.5096E+02, 1.5145E+02, 1.5244E+02, 1.5646E+02, 1.5981E+02, 1.6087E+02, 1.6228E+02, 1.6315E+02, 1.6807E+02, 1.6826E+02, 1.7356E+02, 1.7400E+02, 1.8194E+02, 1.8303E+02, 1.8328E+02, 1.8391E+02, 1.8942E+02, 1.9077E+02, 1.9983E+02, 2.0111E+02, 2.1705E+02, 2.1803E+02, 2.2611E+02, 2.2619E+02, 2.2737E+02, 2.2804E+02, 2.3404E+02, 2.3676E+02, 2.3723E+02, 2.4025E+02, 2.4495E+02, 2.4556E+02, 2.4636E+02, 2.5578E+02, 2.5720E+02, 2.5776E+02, 2.5970E+02, 2.6537E+02, 2.6891E+02, 2.7452E+02, 2.7536E+02, 2.7701E+02, 2.8462E+02, 2.8520E+02, 2.8795E+02, 2.8891E+02, 2.9157E+02, 2.9491E+02, 2.9517E+02, 3.0866E+02, 3.1042E+02, 3.1191E+02, 3.1794E+02, 3.1934E+02, 3.1987E+02, 3.2401E+02, 3.2640E+02, 3.3645E+02, 3.4038E+02, 3.4708E+02, 3.4940E+02, 3.5151E+02, 3.5181E+02, 3.5403E+02, 3.5559E+02, 3.5694E+02] lati = numpy.array((latiList), numpy.float32) latiSort = numpy.array((latiSortList), numpy.float32) loni = numpy.array((loniList), numpy.float32) loniSort = numpy.array((loniSortList), numpy.float32) return lati, latiSort, loni, loniSort
06b69a2749a07495badd6fc26c9dadf534f1da91
29,414
def letter_frequency_sort(freqs): """Sorted frequency dict as list of pairs.""" return sorted(freqs.items(), key = lambda x: (-x[1], x[0]))
a16cbcdc44120aa773b35c8ab3af92bf43d087aa
29,416
def chunker(df, size): """ Split dataframe *df* into chunks of size *size* """ return [df[pos:pos + size] for pos in range(0, len(df), size)]
ea96315f9963551f4870d6732570d0ae375bd3c3
29,418
def update_text_content(part, translated_body): """ Updates "text/plain" email body part with translated body. Parameters ---------- parsed_email: email.message.Message, required EmailMessage representation the downloaded email Returns ------- email.message.Message EmailMessage representation the translated email """ text_content = part.get_content() text_content = text_content + "\n\n" + translated_body return text_content
0e637a61d6e3c096bee3fc3ad95bddf45ef9c76b
29,420
def cli(ctx, group_id, group_name="", user_ids="", role_ids=""): """Update a group. Output: None """ return ctx.gi.groups.update_group(group_id, group_name=group_name, user_ids=user_ids, role_ids=role_ids)
2bfad4f784cfe4bc2a2136be42bee9da6a7271fa
29,422
import random def generate_message(chain, seed=['END'], count=100, verbose_failure=True): """Seed is the starting point for the chain - must be a list!!!""" print('Making markov chain...') finalmessage = "" attempts = 0 while len(finalmessage) < 15 and attempts < 50: if len(seed) > 1: seedl = [x.lower() for x in seed] message = ' '.join(seedl) word1 = seedl[-1] else: word1 = seed[0] if word1 != 'END': word1 = word1.lower() message = word1 ended = False while len(message.split(' ')) < count and not ended: if word1 in chain: word2 = random.choice(chain[word1]) word1 = word2 if word1 != 'END': if word1 in ['.',',', '!', '?', ';']: message += word2 else: message += ' ' + word2 count += 1 else: ended = True else: if verbose_failure: return "%s? that doesn't make any sense" % word1 else: return None attempts += 1 finalmessage = message.replace('&&newline', '\n') finalmessage = finalmessage.replace('END', '') if attempts == 50: if verbose_failure: return "that doesn't make any sense at all." else: return None else: print('Made a markov chain: %s' % finalmessage) return finalmessage
7a294caafbb2ac9fb2f37652588a302d9382d460
29,424