content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def get_frame_IDs(objects_archive, start, end, every): """ Returns list of ID numbers of the objects identified in each frame. Parameters ---------- objects_archive : dictionary Dictionary of objects identified in a video labeled by ID number start, end, every : ints start = index of first frame to analyze; end = index of last frame to analyze; every = analyze every `every` frame (e.g., if every = 3, analyzes every 3rd frame) Returns ------- frame_IDs : dictionary Dictionary indexed by frame number in the video. Each entry is a list of the ID numbers of the objects identified in that frame. """ # initializes dictionary of IDs for each frame frame_IDs = {} for f in range(start, end, every): frame_IDs[f] = [] # loads IDs of objects found in each frame for ID in objects_archive.keys(): obj = objects_archive[ID] frames = obj.get_props('frame') for f in frames: frame_IDs[f] += [ID] return frame_IDs
4826a4d226460e07fbd015e59a052d9792e8ac6a
28,875
def plan_exists(plan): """This function can be used to check if a plan trajectory was computed. Parameters ---------- plan : :py:obj:`!moveit_msgs.msg.RobotTrajectory` The computed robot trajectory. Returns ------- :py:obj:`bool` Bool specifying if a trajectory is present """ # Check if a trajectory is present on the plan object if not all( [ not ( len(plan.joint_trajectory.points) >= 1 ), # True when no trajectory was found not ( len(plan.multi_dof_joint_trajectory.points) >= 1 ), # True when no trajectory was found ] ): # A trajectory was found return True else: # No trajectory was found return False
e2eb384119ed55cb3561e9485bddc3a221a03f92
28,876
def format_message_pagination(text, max_characters=1500): """Splits text with lines > the max_characters length into chunks. :param text: :returns: """ chunks = str() messages = [] def is_newline_character(char): # noqa: WPS430 if char == "\n": return True return False for char in text: chunks += char if len(chunks) > max_characters: if is_newline_character(char): messages.append(chunks) chunks = str() messages.append(chunks) return messages
0ffa685ff084251f405f498e77490db0b300bfb6
28,878
import os def mock_env_settings_file(mock_os_environ, mock_settings_file): """Set the settings file env variable to a temporary settings file.""" os.environ["TEST_STUFF_SETTINGS_FILE"] = mock_settings_file[0] return mock_settings_file
0983959a9a57511f619e1f8f0f508bbf21fb0e45
28,879
def ISO_datestring(dt, cl): """ Convert a DateTime object to an ISO datestring. also fix an error in the conversion .isoformat() returns 12:00:00 for both Noon and Midnight. Also trim date to report only date, hours and minutes. """ isodatestr = dt.isoformat() if cl[4] == "12:00AM": # reset time to 00:00 since it incorrectly gets set to 12:00 isodatestr = isodatestr[0:11] + "00:00" else: isodatestr = isodatestr[0:16] # just slice off seconds and timezone return isodatestr
01ab02d2aa05405cd955670362bddf4a7467f3b1
28,880
import numpy def convert_ndarray_to_bytes(a): """Convert numpy array to numpy bytes array""" return a.view(numpy.uint8)
1c5a688bfca4bc58ff31e409a133070accb7eea6
28,881
def suggest_patience(epochs: int) -> int: """Current implementation: 10% of total epochs, but can't be less than 5.""" assert isinstance(epochs, int) return max(5, round(.1 * epochs))
e1631576d63dc3b62df636fb555739158035a25a
28,882
def offset_types(request): """ Fixture for all the datetime offsets available for a time series. """ return request.param
6ae26e175699dc3a304bff8755ce0fc6aecf0a32
28,883
def measure_diff(fakes, preds): """Measures difference between ground truth and prediction fakes (float array): generated "true" global scores preds (list list): list of [video_id: int, criteria_name: str, score: float, uncertainty: float] in same order Returns: (float): 100 times mean squared distance between ground truth and predicted score """ diff = 0 for fake, pred in zip(fakes, preds): f, p = round(fake, 2), pred[2] diff += 100 * abs(f - p) ** 2 return diff / len(preds)
824052778fe02620d52ad0ff5987e1f62363d7fc
28,884
def stringify(vals): """Return a string version of vals (a list of object implementing __str__) Args: vals (List[any]): List of object that implements __str__ Returns: str: A string representation """ if type(vals) == list: return '_'.join([str(e) for e in vals]) else: return str(vals)
cbd681b2435a919a91a7eeb905ca3279a9baeea6
28,885
import logging def get_stream_handler( formatter: logging.Formatter, level: int ) -> logging.StreamHandler: """ Create a ready-to-go stream handler for a Logger. Parameters ---------- formatter : logging.Formater Formatter to apply to the handler. level : int Level to apply to the stream handler. Returns ------- logging.StreamHandler """ handler = logging.StreamHandler() handler.setFormatter(formatter) handler.setLevel(level) return handler
2c6de5bec9fbcb3f7f76c1c21c0db2091b649c96
28,886
def print_to_log(message, log_file): """Append a line to a log file :param message: The message to be appended. :type message: ``str`` :param log_file: The log file to write the message to. :type log_file: ``Path`` """ with open(log_file, "a") as file_handle: message.rstrip() file_handle.write(message+"\n") return 0
cc79449ac082e3e1053e43bfe6d87c7b617c1923
28,887
def OneWay(transform, name='unnamed'): # language=rst """ Wrapper for staxplusplus networks. :param transform: spp network """ _init_fun, _apply_fun = transform def init_fun(key, input_shape, condition_shape): transform_input_shape = input_shape if len(condition_shape) == 0 else (input_shape,) + condition_shape return _init_fun(key, transform_input_shape) def forward(params, state, log_px, x, condition, **kwargs): network_input = x if len(condition) == 0 else (x, *condition) z, updated_state = _apply_fun(params, state, network_input, **kwargs) return log_px, z, updated_state def inverse(params, state, log_pz, z, condition, **kwargs): assert 0, 'Not invertible' return init_fun, forward, inverse
7cc3ee9264395f7e01d1481ce869d319e3e2002f
28,888
def can_replace(func, n): """ Write a higher-order function that takes in a function func and a value n. It return a function such that it takes in another function func2 and it will return True if func could be replaced by func2 at value n; False otherwise. >>> can_replace(lambda x: x, 1)(lambda x: x**2) True >>> can_replace(square, -1)(cube) False >>> can_replace(identity, -1)(identity) True """ def inner(func2): return func2(n) == func(n) return inner
5c550700015194682e4aa0c32212c55df648dd93
28,890
def get_prefix_repr(prefix, activities): """ Gets the numeric representation (as vector) of a prefix Parameters ------------- prefix Prefix activities Activities Returns ------------- prefix_repr Representation of a prefix """ this_pref_repr = [0] * len(activities) for act in prefix: i = activities.index(act) this_pref_repr[i] = this_pref_repr[i] + 1 return tuple(this_pref_repr)
3a194ba988ed5d1889e64df011cd7437e0354ce7
28,892
def sanitizeFilename(filename: str) -> str: """ Remove invalid characters <>:"/\\|?* from the filename. """ result = '' for c in filename: if c not in '<>:"/\\|?*': result += c return result
90068166ee5ca26cbe4713f2d4edb96be92b961c
28,893
def _os_symbol_file_path_prefix(): """ iOS系统相关符号文件路径前缀 """ return '~/Library/Developer/Xcode/iOS DeviceSupport'
046bb85a563ebb5c69539f7075fbe975f94583bf
28,895
import os def get_filename(path): """ Get the filename without extension input/a.txt -> a """ head, tail = os.path.split(path) return os.path.splitext(tail or os.path.basename(head))[0]
e7c3ec7899803ea701662aa3e57f7f576c6e5971
28,898
def format_time_delta(delta): """ Given a time delta object, convert it into a nice, human readable string. For example, given 290 seconds, return 4m 50s. """ d = delta.days h = delta.seconds / 3600 m = (delta.seconds % 3600) / 60 s = delta.seconds % 60 if d > 0: return '%sd %sh' % (d, h) elif h > 0: return '%sh %sm' % (h, m) else: return '%sm %ss' % (m, s)
8b795cdb716f78dc7c0be5b7454a9d63cd703463
28,899
import re def check_url(url): """ Check if url is actually a valid YouTube link using regexp. :param url: string url that is to be checked by regexp :return: boolean True if the url matches the regexp (it is a valid YouTube page), otherwise False """ youtube = re.compile(r'(https?://)?(w{3}\.)?(youtube.com/watch\?v=|youtu.be/).{11}') return True if youtube.match(url) else False
ab0874af82ebe4d7e9435a57a96feb8339da9e70
28,901
def eval_args(parser, dval_iter=500, show_val_batch_size=False, dval_batch_size=256, show_val_set_size=False, dval_set_size=0): """This is a helper method of the method `parse_cmd_arguments` to add an argument group for validation and testing options. Arguments specified in this function: - `val_iter` - `val_batch_size` - `val_set_size` Args: parser: Object of class :class:`argparse.ArgumentParser`. dval_iter (int): Default value of argument `val_iter`. show_val_batch_size (bool): Whether the `val_batch_size` argument should be shown. dval_batch_size (int): Default value of argument `val_batch_size`. show_val_set_size (bool): Whether the `val_set_size` argument should be shown. dval_set_size (int): Default value of argument `val_set_size`. Returns: The created argument group, in case more options should be added. """ ### Eval arguments agroup = parser.add_argument_group('Evaluation options') agroup.add_argument('--val_iter', type=int, metavar='N', default=dval_iter, help='How often the validation should be performed ' + 'during training. Default: %(default)s.') if show_val_batch_size: agroup.add_argument('--val_batch_size', type=int, metavar='N', default=dval_batch_size, help='Batch size during validation/testing. ' + 'Default: %(default)s.') if show_val_set_size: agroup.add_argument('--val_set_size', type=int, metavar='N', default=dval_set_size, help='If unequal "0", a validation set will be ' + 'extracted from the training set (hence, ' + 'reducing the size of the training set). ' + 'This can be useful for efficiency reasons ' + 'if the validation set is smaller than the ' + 'test set. If the training is influenced by ' + 'generalization measures on the data (e.g., ' + 'a learning rate schedule), then it is good ' + 'practice to use a validation set for this. ' + 'It is also desirable to select ' + 'hyperparameters based on a validation set, ' + 'if possible. Default: %(default)s.') return agroup
66cc6e1862ca1db18d69c7826049605f21916835
28,902
def backends_mapping(custom_backend, private_base_url): """ Creates four echo-api backends with the private paths being the keys in the dict """ return {"/bar": custom_backend("backend1", endpoint=f"{private_base_url('echo_api')}/backend1"), "/foo/boo": custom_backend("backend2", endpoint=f"{private_base_url('echo_api')}/backend2")}
30167e3165cc372d4812258a1bcb5e3973780642
28,903
def get_url_prefix(configdict, options): """ Get the url prefix based on options """ if 'servers' in options: urlprefix = configdict['servers']['http'][0] else: urlprefix = configdict['url_prefix'] return urlprefix
4f7065e9dd10f0f99dc9953fd8f22c0ec34746d2
28,904
def termcap_distance(ucs, cap, unit, term): """termcap_distance(S, cap, unit, term) -> int Match horizontal distance by simple ``cap`` capability name, ``cub1`` or ``cuf1``, with string matching the sequences identified by Terminal instance ``term`` and a distance of ``unit`` *1* or *-1*, for right and left, respectively. Otherwise, by regular expression (using dynamic regular expressions built using ``cub(n)`` and ``cuf(n)``. Failing that, any of the standard SGR sequences (``\033[C``, ``\033[D``, ``\033[nC``, ``\033[nD``). Returns 0 if unmatched. """ assert cap in ('cuf', 'cub') # match cub1(left), cuf1(right) one = getattr(term, '_%s1' % (cap,)) if one and ucs.startswith(one): return unit # match cub(n), cuf(n) using regular expressions re_pattern = getattr(term, '_re_%s' % (cap,)) _dist = re_pattern and re_pattern.match(ucs) if _dist: return unit * int(_dist.group(1)) return 0
731c4e02378a626c6a3c3dd7ee30848d88cc2f8a
28,905
def create_subnet(ec2_c, vpc, rt_table, networks, lab_tag): """ Must have a least one subnet to provision EC2 instances. """ subnet = ec2_c.create_subnet(CidrBlock=networks, VpcId=vpc.id) rt_table.associate_with_subnet(SubnetId=subnet.id) return subnet
05fb3cce87e4134d1a0c149b72381f5d6bf45375
28,906
def _bytes_to_string(value: bytes) -> str: """Decode bytes to a UTF-8 string. Args: value (bytes): The bytes to decode Returns: str: UTF-8 representation of bytes Raises: UnicodeDecodeError """ return value.decode(encoding="utf-8")
b33508db0184f21854c734bbef126ec39d95c7b1
28,907
def merge(intervals): """ Turns `intervals` [[0,2],[1,5],[7,8]] to [[0,5],[7,8]]. """ out = [] for i in sorted(intervals, key=lambda i: i[0]): if out and i[0] <= out[-1][1]: out[-1][1] = max(out[-1][1], i[1]) else: out += i, return out
b0a9eb30f81132f0af568f442465bdd9ce19ab83
28,908
def date_day_of_week(date): """Return the day of the week on which the given date occurred.""" day_of_week = date.strftime('%A') return day_of_week
14e5a60b3089f2ec1aed18f71929c73ea1b50731
28,909
import torch def scatter_embs(input_embs, inputs): """ For inputs that have 'input_embs' field passed in, replace the entry in input_embs[i] with the entry from inputs[i]['input_embs']. This is useful for the Integrated Gradients - for which the predict is called with inputs with 'input_embs' field which is an interpolation between the baseline and the real calculated input embeddings for the sample. :param input_embs: tensor of shape B x S x h of input embeddings according to the input sentences. :param inputs: list of dictionaries (smaples), for which the 'input_embs' field might be specified :return: tensor of shape B x S x h with embeddings (if passed) from inputs inserted to input_embs """ interp_embeds = [(ind, ex.get('input_embs')) for ind, ex in enumerate(inputs)] for ind, embed in interp_embeds: if embed is not None: input_embs[ind] = torch.tensor(embed) return input_embs
d0966c15f51b1b692995cd25076e455bea8a2b8a
28,910
def load_modules(agent_classes): """Each agent class must be in module class_name.lower(). Returns a dictionary class_name->class""" def load(class_name): module_name = class_name.lower() # by convention / fiat module = __import__(module_name) agent_class = module.__dict__[class_name] return (class_name, agent_class) return dict(map(load, agent_classes))
958a11ceb8f9442af6dd0a1e210f8efda04d5461
28,911
import os import json def json_from_file(string: str) -> dict: """load a `string` JSON file Args: string: a path to a JSON file Return: An `output` dictionary composed of: - `output['input_file']` is the path of the JSON file - `output['json']` is the contents of the JSON file as a Python object (`json.load()`). Raises: FileNotFoundError: If the `string` file does not exist. """ if not os.path.isfile(string): raise FileNotFoundError(string) # read the file with open(string, 'r', encoding='utf-8') as read_file: data = json.load(read_file) # return the content of the file return {'input_file': string, 'json': data}
bf3efe8027767a4ec6728cc222ead468721428e2
28,912
def sanitizeStr(data): """ Escape all char that will trigger an error. Parameters ---------- data: str the str to sanitize Returns ------- str The sanitized data. """ data = " ".join(data.split()) new_msg = [] for letter in data: if letter in ['"',"\\"]: new_msg.append("\\") new_msg.append(letter) return "".join(new_msg)
6fcd1455a01997d526cfd178d98ee3e9eca3c888
28,915
from typing import OrderedDict def group_unique_values(items): """group items (pairs) into dict of lists. Values in each group stay in the original order and must be unique Args: items: iterable of key-value pairs Returns: dict of key -> lists (of unique values) Raises: ValueError if value in a group is a duplicate """ result_lists = OrderedDict() result_sets = OrderedDict() for key, val in items: if key not in result_lists: result_lists[key] = [] result_sets[key] = set() if val in result_sets[key]: raise ValueError("Duplicate value: %s" % val) result_sets[key].add(val) result_lists[key].append(val) return result_lists
cd25d657117b34fe408c27149ddf034f3956383d
28,917
import io import csv def scanlist_csv() -> io.StringIO: """ Generates a placeholder ScanList.csv """ header = [ "No.", "Scan List Name", "Scan Channel Member", "Scan Channel Member RX Frequency", "Scan Channel Member TX Frequency", "Scan Mode", "Priority Channel Select", "Priority Channel 1", "Priority Channel 1 RX Frequency", "Priority Channel 1 TX Frequency", "Priority Channel 2", "Priority Channel 2 RX Frequency", "Priority Channel 2 TX Frequency", "Revert Channel", "Look Back Time A[s]", "Look Back Time B[s]", "Dropout Delay Time[s]", "Dwell Time[s]", ] sio = io.StringIO() writer = csv.writer(sio, dialect="d878uvii") writer.writerow(header) return sio
c5c4a8e6d860c3984c7c4af4ab869ca521b1c8cd
28,918
def standard_program_songs(): """ Standard program songs. """ standard_program_songs = [ "song1", "song2", "song3", "offering", "response", ] return standard_program_songs
b8e4a997541794894d875aa80ea11bad32abbdae
28,919
def getTableRADecKeys(tab): """Returns the column names in the table in which RA, dec coords are stored, after trying a few possible name variations. Args: tab (:obj:`astropy.table.Table`): The table to search. Returns: Name of the RA column, name of the dec. column """ RAKeysToTry=['ra', 'RA', 'RADeg'] decKeysToTry=['dec', 'DEC', 'decDeg', 'Dec'] RAKey, decKey=None, None for key in RAKeysToTry: if key in tab.keys(): RAKey=key break for key in decKeysToTry: if key in tab.keys(): decKey=key break if RAKey is None or decKey is None: raise Exception("Couldn't identify RA, dec columns in the supplied table.") return RAKey, decKey
93807fe56826ac680605b0494af60ddc6a5014a8
28,920
def convert_price(price): """Convert a price""" if price[0] == u'\xa3': return float(price[1:]) return float(price)
d5875bd87a1e772bac1aed1e7dc78928f1fb81fe
28,921
import re def generate_filename_chart(series, args): """returns the generated basename for files for this series""" s = str(series.get("title")).strip().replace(' ', '_') title_slug = re.sub(r'(?u)[^-\w.]', '', s) return f'tv_show_ratings_{series["movie_id"]}_{title_slug}.{args.format}'
d08451aa3fc10129bf811c28e63ce322d88efd5c
28,923
import typing def to_camel(d: typing.Dict[str, typing.Any]) -> typing.Dict[str, typing.Any]: """Converts dictionary keys from snake case to camel case.""" def convert(key: str) -> str: parts = key.split("_") return parts[0] + "".join(part.capitalize() for part in parts[1:]) return {convert(k): v for k, v in d.items()}
799d295aef19fbf4017eba477ce2f0f3d6a6061e
28,924
import os def pid_list(ext_name): """ Return list of PIDs for program name and arguments Whitespace output is compressed to single space """ # Just grep up to first space in command line. It was failing on ! prg_name = ext_name.split(' ', 1)[0] all_lines = os.popen("ps aux | grep -v grep | grep " + "'" + prg_name + "'").read().strip().splitlines PID = [] #for l in all_lines(): # Aug 13/2021 - Change for pycharm # l = ' '.join(l.split()) # Compress whitespace to single space # PID.append(int(l.split(' ', 2)[1])) for line in all_lines(): line = ' '.join(line.split()) # Compress whitespace to single space PID.append(int(line.split(' ', 2)[1])) #print('pid_list:',PID) return PID
09ff713b66c93a1fe0db59cf8cbb35b4b2732a6f
28,925
def create_astropy_time(py_obj, h_group, name, **kwargs): """ dumps an astropy Time object Args: py_obj: python object to dump; should be a python type (int, float, bool etc) h_group (h5.File.group): group to dump data into. call_id (int): index to identify object's relative location in the iterable. """ data = py_obj.value dtype = str(py_obj.value.dtype) # Need to catch string times if '<U' in dtype: dtype = dtype.replace('<U', '|S') print(dtype) data = [] for item in py_obj.value: data.append(str(item).encode('ascii')) d = h_group.create_dataset(name, data=data, dtype=dtype, **kwargs) fmt = str(py_obj.format).encode('ascii') scale = str(py_obj.scale).encode('ascii') d.attrs['format'] = fmt d.attrs['scale'] = scale return(d)
c11fc0e3737913363ae4f60df3dfe52c744b48e3
28,926
def format_channel_link(name: str, channel_id: str): """ Formats a channel name and ID as a channel link using slack control sequences https://api.slack.com/docs/message-formatting#linking_to_channels_and_users >>> format_channel_link('general', 'C024BE7LR') '<#C024BE7LR|general>' """ return '<#{}|{}>'.format(channel_id, name)
2745a21960c7a2200e07e28bc5644a09f609b8ba
28,927
import pickle def load_pickle(filepath_str): """ Load pickled results. Inputs: filepath_str: path to the pickle file to load Returns: loaded pickle file """ with open(filepath_str, 'rb') as pickle_file: return pickle.load(pickle_file)
a7cd817327e928a8d1f3ff3290923e9b878d2a06
28,928
import os def find_recording_dir(test_file): """ Find the directory containing the recording of given test file based on current profile. """ return os.path.join(os.path.dirname(test_file), 'recordings')
4a0071a1cc87792f4cf8ad17b93ab0d443b71801
28,929
def local_ij_delta_to_class(local_ij_delta): """ :param local_ij_delta: tuple (i, j) returned from local_ij_delta :return: a value 0-5 for the each of the possible adjecent hexagons, or -1 if the (i,j) tuple is representing a non-adjecent hexagon coordinate """ if (local_ij_delta == (0, 1)): return 0 elif (local_ij_delta == (1, 0)): return 1 elif (local_ij_delta == (0, -1)): return 2 elif (local_ij_delta == (-1, 0)): return 3 elif (local_ij_delta == (-1, -1)): return 4 elif (local_ij_delta == (1, 1)): return 5 else: return -1
ed16645346353304c62b4c6bd7e73ee7b3fb2ead
28,930
import torch def get_devices(cuda_device="cuda:0", seed=1): """Gets cuda devices """ device = torch.device(cuda_device) torch.manual_seed(seed) # Multi GPU? num_gpus = torch.cuda.device_count() if device.type != 'cpu': print('\033[93m' + 'Using CUDA,', num_gpus, 'GPUs\033[0m') torch.cuda.manual_seed(seed) return device, num_gpus
c2115ed5409d0e73da25ab91f33dc8d479cd1034
28,933
def prior_creator(vector, priors_lowbounds, priors_highbounds): """ Generates flat priors between *priors_lowbounds and *priors_highbounds for parameters in *vector :param vector: array containing parameters optimized within flat priors :param priors_lowbounds: array containing lower bound of flat priors :param priors_highbounds: array containing higher bound of flat priors :return: selection. selection = True if all *vector entries are within their flat prior. Otherwise selection = False """ selection = True for i, entry in enumerate(vector): if entry > priors_lowbounds[i] and entry < priors_highbounds[i]: selection = selection * True else: selection = selection * False return selection
6351b1946daf2f956b45dc181d7192aa2e70fbbf
28,934
def read_dataset_file_metadata(client, dataset_name, filename): """Return metadata from dataset's YAML file.""" with client.with_dataset(dataset_name) as dataset: assert client.get_dataset_path(dataset.name).exists() for file_ in dataset.files: if file_.path.endswith(filename): return file_
7bf9079614b02d984f722a593fbb81a3555705f2
28,935
import json def format_json(d): """ Covert a label like 'plate 1' to plate_1 """ return json.dumps(d)
1223ee362d7f5461bc9878eff5a57b84feafbd67
28,937
def to_string(pkt): """Pretty-prints a packet.""" name = pkt._name detail = '' if name == 'AppleMIDIExchangePacket': detail = '[command={} ssrc={} name={}]'.format( pkt.command.decode('utf-8'), pkt.ssrc, pkt.name ) elif name == 'MIDIPacket': items = [] for entry in pkt.command.midi_list: command = entry.command if command in ('note_on', 'note_off'): items.append('{} {} {}'.format(command, entry.params.key, entry.params.velocity)) elif command == 'control_mode_change': items.append( '{} {} {}'.format(command, entry.params.controller, entry.params.value) ) else: items.append(command) detail = ' '.join(('[{}]'.format(i) for i in items)) return '{} {}'.format(name, detail)
ecdd0dfe3dd9bb2cb24351567520fd821619e19c
28,939
def overflow_error(): """Value doesn't fit in object.""" try: int(float('inf')) except OverflowError: return "infinite is too big"
ea07b420001e57d6efd1ab9fa4afb335f81c69fa
28,940
def parse_args(parser): """ Takes ArgumentParser and parses arguments """ parser.add_argument( "-p", "--path", required=True, help="Path to database", action="store", type=str) parser.add_argument( "-s", "--scema", required=True, help="Path to database scema script", action="store", type=str) parser.add_argument( "-b", "--bot", required=True, help="Which bot should be used", action="store", type=str) parser.add_argument( "-head", "--headless", required=False, help="Should browser be run headlessly", action="count") parser.add_argument( "-bl", "--block", required=False, help="Path to ad blocking extension", action="store", type=str) return parser.parse_args()
7978aca0fd9fd1a6659e03d4c8c5aa814e45c840
28,941
import copy import numpy def _determine_stream_spread_single(sigomatrixEig, thetasTrack, sigOmega, sigAngle, allinvjacsTrack): """sigAngle input may either be a function that returns the dispersion in perpendicular angle as a function of parallel angle, or a value""" #Estimate the spread in all frequencies and angles sigObig2= sigOmega(thetasTrack)**2. tsigOdiag= copy.copy(sigomatrixEig[0]) tsigOdiag[numpy.argmax(tsigOdiag)]= sigObig2 tsigO= numpy.dot(sigomatrixEig[1], numpy.dot(numpy.diag(tsigOdiag), numpy.linalg.inv(sigomatrixEig[1]))) #angles if hasattr(sigAngle,'__call__'): sigangle2= sigAngle(thetasTrack)**2. else: sigangle2= sigAngle**2. tsigadiag= numpy.ones(3)*sigangle2 tsigadiag[numpy.argmax(tsigOdiag)]= 1. tsiga= numpy.dot(sigomatrixEig[1], numpy.dot(numpy.diag(tsigadiag), numpy.linalg.inv(sigomatrixEig[1]))) #correlations, assume half correlated for now (can be calculated) correlations= numpy.diag(0.5*numpy.ones(3))*numpy.sqrt(tsigOdiag*tsigadiag) correlations[numpy.argmax(tsigOdiag),numpy.argmax(tsigOdiag)]= 0. correlations= numpy.dot(sigomatrixEig[1], numpy.dot(correlations, numpy.linalg.inv(sigomatrixEig[1]))) #Now convert fullMatrix= numpy.empty((6,6)) fullMatrix[:3,:3]= tsigO fullMatrix[3:,3:]= tsiga fullMatrix[3:,:3]= correlations fullMatrix[:3,3:]= correlations.T return numpy.dot(allinvjacsTrack,numpy.dot(fullMatrix,allinvjacsTrack.T))
d6e5e101d327b0fef714ae5d6d67abc94f92b069
28,942
from typing import List def get_input_size_with_dependencies( combiner_output_size: int, dependencies: List[str], other_output_features # Dict[str, "OutputFeature"] ): """Returns the input size for the first layer of this output feature's FC stack, accounting for dependencies on other output features. In the forward pass, the hidden states of any dependent output features get concatenated with the combiner's output. If this output feature depends on other output features, then the input size for this feature's FCStack is the sum of the output sizes of other output features + the combiner's output size. """ input_size_with_dependencies = combiner_output_size for feature_name in dependencies: if other_output_features[feature_name].num_fc_layers: input_size_with_dependencies += other_output_features[feature_name].fc_stack.output_shape[-1] else: # 0-layer FCStack. Use the output feature's input size. input_size_with_dependencies += other_output_features[feature_name].input_size return input_size_with_dependencies
bb4ad34718829a7e545f81b3b83089cb3d11eaaa
28,944
def delete_after(list, key): """ Return a list with the item after the first occurrence of the key (if any) deleted. """ if list == (): return () else: head1, tail1 = list if head1 == key: # Leave out the next item, if any if tail1 == (): return list else: head2, tail2 = tail1 return (head1, tail2) else: return (head1, delete_after(tail1, key))
047ad50c25c1c6a2f2d25c5fba1d813b45bd1e17
28,945
def repeat(a, repeats, axis=None): """Repeat arrays along an axis. Args: a (cupy.ndarray): Array to transform. repeats (int, list or tuple): The number of repeats. axis (int): The axis to repeat. Returns: cupy.ndarray: Transformed array with repeats. .. seealso:: :func:`numpy.repeat` """ return a.repeat(repeats, axis)
4a7a9382b9aa125dc66c2aaf8da0567c49d9aaf3
28,948
def resolve_variables(template_configuration: dict) -> dict: """ The first step of the lifecycle is to collect the variables provided in the configuration. This will add the name and value of each variable to the run-configuration. :param template_configuration: :return: """ run_configuration = {} variables = template_configuration.get('variables') if variables: for variable in variables: if variable['name']: run_configuration[variable['name']] = variable['value'] else: raise AttributeError return run_configuration
60fb49eaa7ffac3b677bac450402c778a6a8832f
28,950
def read_gr(filename): """Reas a single graph from a file.""" f = open(filename, "r") string = f.readline().split() num_nodes = int(string[0]) num_edges = int(string[1]) graph = {} indeg_graph = {} g_map = {} inv_map = {} g_list = [] counter = 0 for line in f: line = line.split() u = int(line[0]) v = int(line[1]) weight = int(float(line[2])) label = line[3] if u not in graph: graph[u] = [(v, weight, label)] g_map[u] = counter inv_map[counter] = u counter += 1 else: graph[u].append((v, weight, label)) ####### if v not in graph: graph[v] = [] g_map[v] = counter inv_map[counter] = v counter += 1 if v not in indeg_graph: indeg_graph[v] = [(u, weight, label)] else: indeg_graph[v].append((u, weight, label)) if u not in indeg_graph: indeg_graph[u] = [] ####### # g_list = [i for i in range(len(g_map))] f.close() return graph, g_list, g_map, inv_map, indeg_graph
f9cd04b93977732cae46ec8f814f04bb1f21bbf0
28,951
import pickle def loadlists(): """Function to load all data""" with open("./data/members.txt", "rb") as file: members = pickle.load(file) with open("./data/signups.txt", "rb") as file: signups = pickle.load(file) with open("./data/joinrequests.txt", "rb") as file: joinrequests = pickle.load(file) with open("./data/feedback.txt", "rb") as file: feedback = pickle.load(file) with open("./data/videostarspickle.txt", "rb") as file: videostars = pickle.load(file) lists = { "members": members, "joinrequests": joinrequests, "feedback": feedback, "videostars": videostars, "signups": signups, } return lists
24a348d122fe11baa5075e84447a7c23746cac82
28,952
import json import base64 def extract_async_task_result_json_values(result_data): """Companion function to perform the inverse of `build_async_task_result()` """ payload = json.loads(result_data) content = base64.b64decode(payload['content']) content_type = payload['content_type'] filename = payload['filename'] return (content, content_type, filename,)
460d992af67f5b31508449f622af3d413b24f37f
28,953
def mini_max_sum(array): """ Docs """ array.sort() min_sum = sum(array[:-1]) max_sum = sum(array[1:]) return min_sum, max_sum
5d54fe230c96cb155adbf950b0b4ca71502dbcbe
28,954
def getsupportedcommands(qhlp, dostrip=True): """Parse qHLP answer and return list of available command names. @param qhlp : Answer of qHLP() as string. @param dostrip : If True strip first and last line from 'qhlp'. @return : List of supported command names (not function names). """ qhlp = qhlp.splitlines() if dostrip: qhlp = qhlp[1:-1] cmds = [] for line in qhlp: line = line.upper() cmds.append(line.split()[0].strip()) return cmds
90cce0dd689f836b57788632681d33f3f717d239
28,955
def text_to_json(f): """Performs basic parsing of an AFDO text-based profile. This parsing expects an input file object with contents of the form generated by bin/llvm-profdata (within an LLVM build). """ results = {} curr_func = None curr_data = [] for line in f: if not line.startswith(' '): if curr_func: results[curr_func] = ''.join(curr_data) curr_data = [] curr_func, rest = line.split(':', 1) curr_func = curr_func.strip() curr_data.append(':' + rest) else: curr_data.append(line) if curr_func: results[curr_func] = ''.join(curr_data) return results
efdf3cbba8fbacba78e05cf726dd619b54863866
28,956
def to_rational(s): """Convert a raw mpf to a rational number. Return integers (p, q) such that s = p/q exactly.""" sign, man, exp, bc = s if sign: man = -man if bc == -1: raise ValueError("cannot convert %s to a rational number" % man) if exp >= 0: return man * (1<<exp), 1 else: return man, 1<<(-exp)
3dccd2acc324d8b748fe95290c49d961f1c636e1
28,957
def int2ascii(i: int) -> str: """Convert an integer to an ASCII character. Args: i (int): Integer value to be converted to ASCII text. Note: The passed integer value must be <= 127. Raises: ValueError: If the passed integer is > 127. Returns: str: The ASCII character associated to the passed integer. """ if i > 127: raise ValueError('The passed integer value must be <= 127.') return chr(i)
f46ed05d425f9277ea6c97a0f8bafb070b15091c
28,958
def null_count(): """cleans Pandas Dataframes""" return 'this is a function'
4325a260f03c6e2de1d4e5cb56f0623628a53c4b
28,959
def strip_dollars(text): """ Remove all dollar symbols from text Parameters ---------- text : str Text to remove dollars from """ return text.strip('$')
ca084d64fb928f2374cbbf0a453bead52a2682a0
28,962
def get_from_dict_or_default(key, dict, default): """Returns value for `key` in `dict` otherwise returns `default`""" if key in dict: return dict[key] else: return default
14ad53c4cac7f554cfa537edeaf7a11e1e8ecac3
28,963
from typing import Mapping def genericDictValidator(value, prototype): """ Generic. (Added at version 3.) """ # not a dict if not isinstance(value, Mapping): return False # missing required keys for key, (typ, required) in prototype.items(): if not required: continue if key not in value: return False # unknown keys for key in value.keys(): if key not in prototype: return False # incorrect types for key, v in value.items(): prototypeType, required = prototype[key] if v is None and not required: continue if not isinstance(v, prototypeType): return False return True
0ad002c33c38a50f06041f133e98fc79a2307d36
28,964
import math def distance_formula(x1: float, y1: float, x2: float, y2: float) -> float: """ Distance between two points is defined as the square root of (x2 - x1)^2 + (y2 - y1) ^ 2 :raises TypeError: Any of the values are non-numeric or None. """ return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
5c1a4706365a2347bc23d7efcc74caa003405c0e
28,965
import os def _is_path_in(path, base): """Returns true if **path** is located under the **base** directory.""" if not path or not base: # empty path may happen, base too return False rp = os.path.relpath(path, base) return (not rp.startswith(os.path.pardir)) and (not rp == os.path.curdir)
c583bab64daae496973e6ea75738f5740d14b2b0
28,966
def validate_asn(asn): """ Validate the format of a 2-byte or 4-byte autonomous system number :param asn: User input of AS number :return: Boolean: True if valid format, False if invalid format """ try: if "." in str(asn): left_asn, right_asn = str(asn).split(".") asn_ok = (0 <= int(left_asn) <= 65535) and \ (0 <= int(right_asn) <= 65535) else: asn_ok = 0 <= int(asn) <= 4294967295 except ValueError: asn_ok = False return asn_ok
14806fc04132c06dbb75abb2ceefd0340b7845e6
28,967
def make_incrementtor(n): """Do thing , but document it jiushiwo """ return lambda x:x+n
92f82f8d17b587305c4e486cc826b7ddd3156de7
28,968
def bloch_sphere_plot_check(function): """Decorator to check the arguments of plotting bloch sphere function. Arguments: function {} -- The tested function """ def wrapper(u, v, w, xfigsize=15, yfigsize=7.5, frame_on=False, tight_layout_on=False, \ style='dark_background', surface_on=True, wireframe_on=True, surface_cmap='Blues_r', \ surface_alpha=0.3, wireframe_color='#d3d3d3', wireframe_linewidth=0.075, \ quiver_color='#ffffff', quiver_linewidth=1.5, quiver_ratio=0.1, line_color='#d3d3d3', \ line_linewidth=0.3, circle_edgecolor='#d3d3d3', circle_facecolor='none', \ circle_linewidth=0.3): """This function visualizes the qubit using its bloch coordinates and the matplotlib module. Arguments: u {int, float} -- 1st coordinate of Bloch representation v {int, float} -- 2nd coordinate of Bloch representation w {int, float} -- 3rd coordinate of Bloch representation Keyword Arguments: xfigsize {int, float} -- X size of figure (default: {15}) yfigsize {int, float} -- Y size of figure (default: {7.5}) frame_on {bool} -- Frame (default: {False}) tight_layout_on {bool} -- Tight layout (default: {False}) style {str} -- Style (default: {'dark_background'}) surface_on {bool} -- Surface (default: {True}) wireframe_on {bool} -- Wireframe (default: {True}) surface_cmap {str} -- Surface cmap (default: {'Blues_r'}) surface_alpha {int, float} -- Surface alpha (default: {0.3}) wireframe_color {str} -- Wireframe color (default: {'#d3d3d3'}) wireframe_linewidth {int, float} -- Width of wireframe line (default: {0.075}) quiver_color {str} -- Quiver color (default: {'#ffffff'}) quiver_linewidth {int, float} -- Width of quiver line (default: {1.5}) quiver_ratio {int, float} -- Quiver ratio (default: {0.1}) line_color {str} -- Line color (default: {'#d3d3d3'}) line_linewidth {int, float} -- Width of line (default: {0.3}) circle_edgecolor {str} -- Edge color of circle (default: {'#d3d3d3'}) circle_facecolor {str} -- Face color of circle (default: {'none'}) circle_linewidth {int, float} -- Width of circle line (default: {0.3}) Raises: ValueError, TypeError Examples: >>> import qvantum >>> >>> q = qvantum.Random_Qubit() >>> q.show() '|Ψ> = (0.6257-0.4027i)|0> + (-0.5114+0.4299i)|1>' >>> u = qvantum.bloch_coords(q)[0] >>> v = qvantum.bloch_coords(q)[1] >>> w = qvantum.bloch_coords(q)[2] >>> qvantum.bloch_sphere_plot(u, v, w) """ if all(isinstance(elem, (int, float)) for elem in [u, v, w]): if round(u ** 2 + v ** 2 + w ** 2 - 1, 10) == 0: return function(u, v, w, xfigsize, yfigsize, frame_on, tight_layout_on, \ style, surface_on, wireframe_on, surface_cmap, surface_alpha, \ wireframe_color, wireframe_linewidth, quiver_color, quiver_linewidth, \ quiver_ratio, line_color, line_linewidth, circle_edgecolor, \ circle_facecolor, circle_linewidth) else: raise ValueError('Invalid input! u, v and w must satisfy: ' +\ 'u\u00b2 + v\u00b2 + w\u00b2 = 1.') else: raise TypeError('Invalid input! u, v, and w must be integer or float.') return wrapper
a377a8b426ae004e0c22999c35b1a12dfb25e371
28,969
import math def get_points_distance(point1, point2): """ Gets the distance between two points :param point1: tuple with point 1 :param point2: tuple with point 2 :return: int distance """ return int(math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2))
40af84836715b49ba531fe5113e40230110d49b9
28,971
from typing import Tuple import unicodedata def validate_ae(value: str) -> Tuple[bool, str]: """Return ``True`` if `value` is a conformant **AE** value. An **AE** value: * Must be no more than 16 characters * Leading and trailing spaces are not significant * May only use ASCII characters, excluding ``0x5C`` (backslash) and all control characters Parameters ---------- value : str The **AE** value to check. Returns ------- Tuple[bool, str] A tuple of (bool, str), with the first item being ``True`` if the value is conformant to the DICOM Standard and ``False`` otherwise and the second item being a short description of why the validation failed or ``''`` if validation was successful. """ if not isinstance(value, str): return False, "must be str" if len(value) > 16: return False, "must not exceed 16 characters" # All characters use ASCII if not value.isascii(): return False, "must only contain ASCII characters" # Unicode category: 'Cc' is control characters invalid = [c for c in value if unicodedata.category(c)[0] == 'C'] if invalid or '\\' in value: return False, "must not contain control characters or backslashes" return True, ''
aee3ec59ea1965bd745f1527368053c5c04e5c4b
28,972
def state2bin(s, num_bins, limits): """ :param s: a state. (possibly multidimensional) ndarray, with dimension d = dimensionality of state space. :param num_bins: the total number of bins in the discretization :param limits: 2 x d ndarray, where row[0] is a row vector of the lower limit of each discrete dimension, and row[1] are corresponding upper limits. Returns the bin number (index) corresponding to state s given a discretization num_bins between each column of limits[0] and limits[1]. The return value has same dimensionality as ``s``. \n Note that ``s`` may be continuous. \n \n Examples: \n s = 0, limits = [-1,5], num_bins = 6 => 1 \n s = .001, limits = [-1,5], num_bins = 6 => 1 \n s = .4, limits = [-.5,.5], num_bins = 3 => 2 \n """ if s == limits[1]: return num_bins - 1 width = limits[1] - limits[0] if s > limits[1]: print( "Tools.py: WARNING: ", s, " > ", limits[1], ". Using the chopped value of s" ) print("Ignoring", limits[1] - s) s = limits[1] elif s < limits[0]: print( "Tools.py: WARNING: ", s, " < ", limits[0], ". Using the chopped value of s" ) s = limits[0] return int((s - limits[0]) * num_bins / (width * 1.0))
c2a0cb48864e58481681e8c72074e618dda7ddb8
28,973
import pickle def load_db(pathname): """ returns the stored database from a pickle file Parameters ---------- pathname: string Returns ------- database: dictionary mapping names to profiles """ with open(pathname, mode="rb") as opened_file: database = pickle.load(opened_file) return database
2ca73cfaf500fd6a841cfb9dc12c3b21d320ac69
28,974
import numpy def _gauss_legendre(order, composite=1): """Backend function.""" inner = numpy.ones(order+1)*0.5 outer = numpy.arange(order+1)**2 outer = outer/(16*outer-4.) banded = numpy.diag(numpy.sqrt(outer[1:]), k=-1) + numpy.diag(inner) + \ numpy.diag(numpy.sqrt(outer[1:]), k=1) vals, vecs = numpy.linalg.eig(banded) abscis, weight = vals.real, vecs[0, :]**2 indices = numpy.argsort(abscis) abscis, weight = abscis[indices], weight[indices] n_abscis = len(abscis) composite = numpy.array(composite).flatten() composite = list(set(composite)) composite = [comp for comp in composite if (comp < 1) and (comp > 0)] composite.sort() composite = [0]+composite+[1] abscissas = numpy.empty(n_abscis*(len(composite)-1)) weights = numpy.empty(n_abscis*(len(composite)-1)) for dim in range(len(composite)-1): abscissas[dim*n_abscis:(dim+1)*n_abscis] = \ abscis*(composite[dim+1]-composite[dim]) + composite[dim] weights[dim*n_abscis:(dim+1)*n_abscis] = \ weight*(composite[dim+1]-composite[dim]) return abscissas, weights
70689e5644355f8c0c8658b59fca1c5bf4fcb0e1
28,976
def Read_Finished(filename): """Extracts sequences from a .seqs file""" f = open(filename,'r') lines = f.readlines() f.close() sequences = {} strands = {} for line in lines: # Check for comment if '#' in line: line = line.split('#')[0] parts = line.split(' ') if len(parts) == 4: name = parts[1] namseq = parts[3] namlen = len(namseq) if parts[0] == 'sequence': sequences[name] = namseq[0:namlen-1] elif parts[0] == 'strand': strands[name] = namseq[0:namlen-1] return (sequences, strands)
30f16fd03e6a62454f3a01fe3fe3fb1ed6f792bb
28,978
import struct def stringarray(string): """Output array of binary values in string. """ arrstr = "" if (len(string) != 0): for i in range(0,len(string)): arrstr += "%x " % struct.unpack("=B",string[i])[0] return arrstr
1c96a78f11bc1ea781658c3b23ce801a37dbde25
28,979
import os def parent(path, level=1, sep="/", realpath=False): """ Get the parent of a file or a directory :param path: :param level: :param sep: :return list: """ path = os.path.realpath(path) if realpath else path def dir_parent(path, level=1): return sep.join(path.split(sep)[:-level]) return [dir_parent(_path) for _path in path] if type(path) == list else dir_parent(path, level)
aababa89db18c2a99c7c19053e75ac038829b7a1
28,981
def _is_user_author_or_privileged(cc_content, context): """ Check if the user is the author of a content object or a privileged user. Returns: Boolean """ return ( context["is_requester_privileged"] or context["cc_requester"]["id"] == cc_content["user_id"] )
7711d8fa31d3b6d590595ed0612cd19f6c1becc2
28,985
def gen_test_data(request): """ Generate test data. """ return request.param
18fcb668c1e46226289924f8f8a4f7d1d3588c36
28,988
def mkcol_mock(url, request): """Simulate collection creation.""" return {"status_code": 201}
313fb40302c282d102d6846980ce09ea3600c50c
28,989
def dict2bibtex(d): """ Simple function to return a bibtex entry from a python dictionary """ outstring = '@' + d.get('TYPE','UNKNOWN') + '{' + d.get('KEY','') + ',\n' kill_keys = ['TYPE','KEY','ORDER'] top_keys = ['AUTHOR','TITLE','YEAR'] top_items = [] rest_items = [] for k in d.keys(): if k in top_keys: top_items = top_items + [ ( k , d[k] )] elif not k in kill_keys: rest_items = rest_items + [ ( k , d[k] )] rest_items.sort() for k in top_items + rest_items: outstring = outstring + '\t' + k[0] + ' = {' + k[1] + '},\n' outstring = outstring + '}\n\n' return outstring
1ffbc9ec9754acf9904c959be05e0585302435a3
28,990
def random_permutation(df_list): """ Run permutations in the dataset Parameters --------- df_list: list list of pandas DataFrames, each DataFrames containing one traffic type Return ------ reordered_df_list: array Resulting array of pandas DataFrames """ df_list_size = len(df_list) reordered_df_list = df_list for idx in range(df_list_size): # Shuffle rows with a given seed to reproduce always same result reordered_df_list[idx] = df_list[idx].sample(frac=1, replace=False, random_state=0) return reordered_df_list
397328f9fe12a64d1cd4b552d680f4eea0fbbd89
28,991
def dict_as_args(input_dict: dict) -> str: """ Разложить словарь на последовательность аргументов будто это ключевые слова >>> dict_as_args(dict(a=1, b=2, c="test")) "a=1, b=2, c='test'" """ return ', '.join(f'{key}={value!r}' for key, value in input_dict.items())
9508c0517259056de8cf7570ab413d12eb4a65be
28,993
def generate_system_redaction_list_entry(newValue): """Create an entry for the redaction list for a redaction performed by the system.""" return { 'value': newValue, 'reason': 'System Redacted', }
22d7831106c6dd5350a3c86b51facc273835a1e6
28,994
from typing import Union def _print_result( start_quantity: Union[int, float], start_unit: str, end_unit: str, end_quantity: Union[int, float], ) -> str: """ Function to create final output string for conversion. :param start_quantity: Integer or float starting quantity which needed conversion. :param start_unit: Initial unit type of integer or float starting quantity. :param end_unit: Ending unit type of integer or float quantity. :param end_quantity: Integer or float of converted starting quantity from start unit to end unit. :return: String of values concatenated in user friendly message. """ if end_quantity < 0.000001: output = "Value smaller than decimal precision 6. Cannot output." else: output = f"```{start_quantity} {start_unit} = {end_quantity} {end_unit}```" return output
26228ea4c3064894748e5352ea117393031ee79b
28,995
import importlib def get_version(version_module_name): """Load currently declared package version.""" version_module = importlib.import_module(version_module_name) # always reload importlib.reload(version_module) version = f"{version_module.__version__}" print(f"version is {version}") return version
156d7e18e96ea0716011e0ca0536d38eaa078b9e
28,996
def _expand_task_collection(factory): """Parse task collection task factory object, and return task list. :param dict factory: A loaded JSON task factory object. """ return factory.tasks
1d2c0b2a763b9e3c78b4bea8d012575038a5804c
28,999
import platform def IsLinux(): """ Returns True if platform is Linux. Generic utility function. """ return (platform.uname()[0] == "Linux")
06ed6068d5914c25c5f24faf89979ca3e93620ca
29,002
from textwrap import dedent def dedent_docstr(s, n=1): """Dedent all lines except first n lines Args: s (type): some text to dedent n (int): number of lines to skip, (n == 0 is a normal dedent, n == 1 is useful for whole docstrings) """ lines = s.splitlines(keepends=True) if lines: first_n_lines = "".join([l.lstrip(' \t') for l in lines[:n]]) dedented = dedent("".join(lines[n:])) return first_n_lines + dedented else: return ""
ce9d89bbba7ef6784e707fcae0ea6b127ee3cdcd
29,003
def _split_path(loc): """ Split S3 path into bucket and prefix strings """ bucket = loc.split("s3://")[1].split("/")[0] prefix = "/".join(loc.split("s3://")[1].split("/")[1:]) return bucket, prefix
46ace1084e7688847d60fe34e4b3958c89cfbd31
29,004
def strip_white_space_from_columns_of_dtype_str(df): """ Takes one parameter, a dataframe. """ for i in df.select_dtypes([object]).columns: s = df[i].copy() s.update(s.dropna().astype(str).str.strip()) df.loc[: ,i] = s.copy() del i, s return df
4857ab2938567c99770889be16356b92272c7ecc
29,006
def GetStepStartAndEndTime(build, full_step_name): """Gets a step's start_time and end_time from Build. Returns: (start_time, end_time) """ for step in build.steps or []: if step.name == full_step_name: return step.start_time.ToDatetime(), step.end_time.ToDatetime() return None, None
ef3d2a017ad6aa1e0b5c9c974a64d715ae62d1c1
29,008
def part1(adapters): """ Find adapters with jolt diff of 1 and 3 """ adapters.sort() adapters.insert(0, 0) # add 0 at start for the wall jolt adapters.append(max(adapters) + 3) # adding phone's inbuilt adapter diff_of_one = 0 diff_of_three = 0 for i in range(len(adapters) - 1): diff = adapters[i + 1] - adapters[i] if diff == 1: diff_of_one += 1 elif diff == 3: diff_of_three += 1 return diff_of_one * diff_of_three
639b0d46c3621a55f27fe4702688e8ae353060b0
29,009
import os def does_exist(file_with_path): """Checks if a file exists """ return os.path.isfile(file_with_path)
2e5266ca650b794a8039752817dbaca9602eed9c
29,010
import os def convert_audio_to_mono_wav(decoded_data): """ Поскольку vosk api принимает аудио определенного формата mono wav, а пользователь отправляет данные в другим расширением, например mp3, mp4a, mp4 etc, необходимо преобразовать их к нужному формату. input: decoded_data - аудио данные в исходном расширении output: аудио данные в формате mono wav """ os.system(f'ffmpeg -i {decoded_data} -acodec pcm_s16le -ac 1 -ar 8000 {decoded_data}.wav') os.remove(decoded_data) return f'{decoded_data}.wav'
e27f0981eeca30b85bbb92e9e930bff6922c391d
29,011