text
stringlengths
8
6.05M
import math from hypothesis import given, assume from hypothesis.strategies import sampled_from, floats, data, integers from pytest import raises from renard.renard import (RenardSeriesKey, series, rrange, find_less_than_or_equal, find_greater_than_or_equal, find_nearest, find_less_than, find_greater_than, find_nearest_few, open_rrange, R10, precision) @given(series_key=sampled_from(RenardSeriesKey)) def test_series_cardinality(series_key): assert len(series(series_key)) == series_key.cardinality @given(series_key=sampled_from(RenardSeriesKey), low=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_rrange_cardinality_over_one_order_of_magnitude(series_key, low): high = low * 10.0 assume(math.isfinite(high)) values = list(rrange(series_key, low, high)) include_end = bool(high in values) cardinality = series_key.cardinality + include_end assert len(values) == cardinality @given(series_key=sampled_from(RenardSeriesKey), low=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False), high=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_rrange_strictly_ordered(series_key, low, high): assume(low < high) values = list(rrange(series_key, low, high)) assert all(values[i] < values[i+1] for i in range(len(values)-1)) @given(series_key=sampled_from(RenardSeriesKey), low=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_open_rrange_cardinality_over_one_order_of_magnitude(series_key, low): high = low * 10.0 assume(math.isfinite(high)) values = list(open_rrange(series_key, low, high)) cardinality = series_key.cardinality assert len(values) == cardinality @given(series_key=sampled_from(RenardSeriesKey), low=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False), high=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_open_rrange_strictly_ordered(series_key, low, high): assume(low < high) values = list(open_rrange(series_key, low, high)) assert all(values[i] < values[i+1] for i in range(len(values)-1)) @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_less_than_or_equal(series_key, value): assert find_less_than_or_equal(series_key, value) <= value @given(data()) def test_less_than_or_equal_returns_value_from_series(data): series_key = data.draw(sampled_from(RenardSeriesKey)) value = data.draw(sampled_from(series(series_key))) assert find_less_than_or_equal(series_key, value) == value @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_less_than(series_key, value): assert find_less_than(series_key, value) < value @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_greater_than_or_equal(series_key, value): assert find_greater_than_or_equal(series_key, value) >= value @given(data()) def test_greater_than_or_equal_returns_value_from_series(data): series_key = data.draw(sampled_from(RenardSeriesKey)) value = data.draw(sampled_from(series(series_key))) assert find_greater_than_or_equal(series_key, value) == value @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_greater_than(series_key, value): assert find_greater_than(series_key, value) > value @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_find_nearest_in_range(series_key, value): nearest = find_nearest(series_key, value) assert find_less_than_or_equal(series_key, value) <= nearest <= find_greater_than_or_equal(series_key, value) @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_find_nearest_is_nearest(series_key, value): nearest = find_nearest(series_key, value) lower = find_less_than_or_equal(series_key, value) upper = find_greater_than_or_equal(series_key, value) assert (((nearest == lower) and (nearest - lower <= upper - nearest)) or ((nearest == upper) and (upper - nearest <= nearest - lower))) @given(data()) def test_nearest_returns_value_from_series(data): series_key = data.draw(sampled_from(RenardSeriesKey)) value = data.draw(sampled_from(series(series_key))) assert find_nearest(series_key, value) == value @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False), num=sampled_from((1, 2, 3))) def test_find_nearest_few_has_correct_cardinality(series_key, value, num): assert len(find_nearest_few(series_key, value, num)) == num @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False), num=integers()) def test_find_nearest_few_raises_error_with_num_out_of_range(series_key, value, num): assume(num not in {1, 2, 3}) with raises(ValueError): find_nearest_few(series_key, value, num) @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_find_nearest_three_includes_at_least_one_less(series_key, value): assert any(v < value for v in find_nearest_few(series_key, value)) @given(series_key=sampled_from(RenardSeriesKey), value=floats(min_value=1e-35, max_value=1e35, allow_nan=False, allow_infinity=False)) def test_find_nearest_three_includes_at_least_one_greater(series_key, value): assert any(v > value for v in find_nearest_few(series_key, value)) def test_erange_start_infinite_raises_value_error(): with raises(ValueError): inf = float("inf") rrange(R10, inf, 10) def test_erange_stop_infinite_raises_value_error(): with raises(ValueError): rrange(R10, 10, float("inf")) def test_erange_start_too_small_raises_value_error(): with raises(ValueError): rrange(R10, 0, 10) def test_erange_stop_too_small_raises_value_error(): with raises(ValueError): rrange(R10, 10, 0) def test_erange_start_stop_in_wrong_order_raises_value_error(): with raises(ValueError): rrange(R10, 10, 8) def test_open_erange_start_infinite_raises_value_error(): with raises(ValueError): inf = float("inf") open_rrange(R10, inf, 10) def test_open_erange_stop_infinite_raises_value_error(): with raises(ValueError): open_rrange(R10, 10, float("inf")) def test_open_erange_start_too_small_raises_value_error(): with raises(ValueError): open_rrange(R10, 0, 10) def test_open_erange_stop_too_small_raises_value_error(): with raises(ValueError): open_rrange(R10, 10, 0) def test_open_erange_start_stop_in_wrong_order_raises_value_error(): with raises(ValueError): open_rrange(R10, 10, 8) def test_illegal_series_key_raises_value_error(): with raises(ValueError): series(13) @given(series_key=sampled_from(RenardSeriesKey)) def test_series_precision_is_positive(series_key): assert precision(series_key) > 0 def test_illegal_precision_series_key_raises_value_error(): with raises(ValueError): precision(object())
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from image_cropping import ImageRatioField from ckeditor.fields import RichTextField from multisitesutils.models import SiteModel from magicgallery.models import GalleryItem from .models import Widget, SiteLink from .managers import BaseContentManager class BaseContent(SiteModel): # must be defined at children models, this is the value used by # get_widget_type method _widget_type = None PICTURE_FILTERS = ( ('', 'Original'), ('image-xpro2', 'XPro2'), ('image-willow', 'Willow'), ('image-inkwell', 'Inkwell'), ('image-walden', 'Walden'), ('image-toaster', 'Toaster'), ('image-sierra', 'Sierra'), ('image-nashville', 'Nashville'), ('image-mayfair', 'Mayfair'), ('image-kelvin', 'Kelvin'), ('image-hudson', 'Hudson'), ('image-brannan', 'Brannan'), ('image-1977', '1977'), ('image-blur', 'Blur'), ) widget = models.ForeignKey(Widget, verbose_name=_('widget')) title = models.CharField( _('title'), max_length=128, default='Edit title', blank=True) short_content = models.CharField( _('short content'), max_length=512, default='Edit content', blank=True) long_content = RichTextField( _('long content'), default='', blank=True) picture = models.ForeignKey(GalleryItem, null=True, blank=True) picture_filter = models.CharField( _('Image Filter'), max_length=32, default='', choices=PICTURE_FILTERS, blank=True) order = models.PositiveIntegerField(_('order'), default=99) is_active = models.BooleanField(_('active'), default=True) site_link = models.ForeignKey( SiteLink, verbose_name=_('link'), null=True, blank=True, on_delete=models.SET_NULL, help_text='''By selecting a target link, it will be possible for clicking over contents and send the user to other page''') link_label = models.CharField( _('link label'), max_length=64, default='', blank=True) objects = models.Manager() site_objects = BaseContentManager() class Meta: abstract = True ordering = ['order'] def __unicode__(self): return '{0}.{1}'.format(self.is_active, self.title) def _content(self): pass @classmethod def style_list(cls): raise Exception("A 'style_list' method is missing for {0}".format( cls)) @classmethod def can_edit_description(cls): return True @classmethod def picture_upload_help_text(cls_obj): fields = cls_obj._meta.fields cropping_lst = filter(lambda m: isinstance(m, ImageRatioField), fields) if cropping_lst: cropping_field = cropping_lst[0] height = cropping_field.height width = cropping_field.width shape = 'rectangular' if width == height: shape = 'squared' size = '1MB' if width > 1000 or height > 1000: size = '2MB' return 'Use a {0} image ({1}x{2}), max {3}'.format( shape, width, height, size) return '' @property def content(self): return self._content() @property def model_name(self): return self._meta.model_name @property def enable_picture(self): """ make contents have images manipulation, for contents such as Icon this method must be overwritten as False """ return True @property def link_url(self): if self.site_link: url = self.site_link.url # means it belongs to landingpage if url.startswith("#"): return '/' + url return url return '' @property def link_name(self): if self.site_link: return self.link_label or self.site_link.name or '' @property def allow_delete(self): return True @property def delete_url(self): reverse_name = 'magiccontent.{0}.delete'.format(self._meta.model_name) return reverse(reverse_name, args=[self.widget.pk, self.pk]) @property def update_url(self): reverse_name = 'magiccontent.{0}.update'.format(self._meta.model_name) return reverse(reverse_name, args=[self.widget.pk, self.pk])
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn from torch import optim from graphgallery.nn.models import TorchKeras from graphgallery.nn.layers.pytorch import GCNConv, activations from graphgallery.nn.metrics.pytorch import Accuracy from graphgallery.nn.init.pytorch import glorot_uniform, zeros class SimPGCN(TorchKeras): def __init__(self, in_features, out_features, hids=[64], acts=[None], lambda_=5.0, gamma=0.1, dropout=0.5, weight_decay=5e-4, lr=0.01, bias=False): super().__init__() self.lambda_ = lambda_ self.gamma = gamma assert hids, "hids should not empty" layers = nn.ModuleList() act_layers = nn.ModuleList() inc = in_features for hid, act in zip(hids, acts): layers.append(GCNConv(in_features, hid, bias=bias)) act_layers.append(activations.get(act)) inc = hid layers.append(GCNConv(inc, out_features, bias=bias)) act_layers.append(activations.get(None)) self.layers = layers self.act_layers = act_layers self.scores = nn.ParameterList() self.bias = nn.ParameterList() self.D_k = nn.ParameterList() self.D_bias = nn.ParameterList() for hid in [in_features] + hids: self.scores.append(nn.Parameter(torch.FloatTensor(hid, 1))) self.bias.append(nn.Parameter(torch.FloatTensor(1))) self.D_k.append(nn.Parameter(torch.FloatTensor(hid, 1))) self.D_bias.append(nn.Parameter(torch.FloatTensor(1))) # discriminator for ssl self.linear = nn.Linear(hids[-1], 1) self.compile(loss=nn.CrossEntropyLoss(), optimizer=optim.Adam(self.parameters(), lr=lr, weight_decay=weight_decay), metrics=[Accuracy()]) self.dropout = nn.Dropout(dropout) self.reset_parameters() def reset_parameters(self): for layer in self.layers: layer.reset_parameters() for s in self.scores: glorot_uniform(s) for b in self.bias: # fill in b with postive value to make # score s closer to 1 at the beginning zeros(b) for Dk in self.D_k: glorot_uniform(Dk) for b in self.D_bias: zeros(b) def forward(self, x, adj, adj_knn=None): adj_knn = self.from_cache(adj_knn=adj_knn) gamma = self.gamma embeddings = None for ix, (layer, act) in enumerate(zip(self.layers, self.act_layers)): s = torch.sigmoid(x @ self.scores[ix] + self.bias[ix]) Dk = x @ self.D_k[ix] + self.D_bias[ix] x = s * act(layer(x, adj)) + (1 - s) * act(layer(x, adj_knn)) + gamma * Dk * act(layer(x)) if ix < len(self.layers) - 1: x = self.dropout(x) if ix == len(self.layers) - 2: embeddings = x.clone() # self.ss = torch.cat((s_i.view(1, -1), s_o.view(1, -1), gamma * Dk_i.view(1, -1), gamma * Dk_o.view(1, -1)), dim=0) if self.training: return x, embeddings else: return x def regression_loss(self, embeddings, pseudo_labels=None, node_pairs=None): pseudo_labels, node_pairs = self.from_cache(pseudo_labels=pseudo_labels, node_pairs=node_pairs) k = 10000 if len(node_pairs[0]) > k: sampled = np.random.choice(len(node_pairs[0]), k, replace=False) embeddings0 = embeddings[node_pairs[0][sampled]] embeddings1 = embeddings[node_pairs[1][sampled]] embeddings = self.linear(torch.abs(embeddings0 - embeddings1)) loss = F.mse_loss(embeddings, pseudo_labels[sampled].unsqueeze(-1), reduction='mean') else: embeddings0 = embeddings[node_pairs[0]] embeddings1 = embeddings[node_pairs[1]] embeddings = self.linear(torch.abs(embeddings0 - embeddings1)) loss = F.mse_loss(embeddings, pseudo_labels.unsqueeze(-1), reduction='mean') return loss def train_step_on_batch(self, x, y=None, out_weight=None, device="cpu"): self.train() optimizer = self.optimizer loss_fn = self.loss metrics = self.metrics optimizer.zero_grad() assert len(x) == 5 *x, pseudo_labels, node_pairs = x out, embeddings = self(*x) if out_weight is not None: out = out[out_weight] # TODO loss = loss_fn(out, y) + self.lambda_ * self.regression_loss(embeddings, pseudo_labels, node_pairs) loss.backward() optimizer.step() for metric in metrics: metric.update_state(y.cpu(), out.detach().cpu()) results = [loss.cpu().detach()] + [metric.result() for metric in metrics] return dict(zip(self.metrics_names, results))
from sys import stdin from math import ceil, log from decimal import Decimal as d class RMQ(object): def __init__(self, numbers): self.e = [] n = len(numbers) if (n & (n-1))!=0: x = ceil(log(n, 2)) self.n = 2**x; while n != self.n: numbers.append(d('Infinity')) n += 1 else: self.n = n temp = numbers[::-1] for i in range(0, 2*(self.n-1), 2): temp.append(min(temp[i], temp[i+1])) temp.append(d('Infinity')) self.e = temp[::-1] self.size = len(temp) def recover(self, idx): while idx > 1: parent = idx//2 self.e[parent] = min(self.e[2*parent], self.e[2*parent+1]) idx = parent def min(self, left, right, begin = 1, end = None, idx = 1): if end is None: end = self.n if left==begin and right==end: return self.e[idx] mid = (begin + end) // 2 if left >= begin and right <= mid: return self.min(left, right, begin, mid, 2*idx) elif left > mid and right <= end: return self.min(left, right, mid+1, end, 2*idx+1) else: left_child = self.min(left, mid, begin, mid, 2*idx) right_child = self.min(mid+1, right, mid+1, end, 2*idx+1) return min(left_child, right_child) def set(self, origin, value): idx = self.size//2+origin-1 self.e[idx] = value self.recover(idx) if __name__ == '__main__': f = open('source/rmq2.txt', 'r') n, m = map(int, f.readline().split()) numbers = list(map(int, f.readline().split())) rmq = RMQ(numbers) for i in range(0, m): c, x, y = f.readline().split() if c == 'Min': print(rmq.min(int(x), int(y))) elif c == 'Set': rmq.set(int(x), int(y))
""" pluginSearch.py * This class looks for plugins and creates a dictionary containing. the plugin models. Plugin objects can be instanciated elsewhere. The plugins are identified by a certain string contained in the first x charcters of the python file. Plugins should have a .py extension. John Eslick, Carnegie Mellon University, 2014 See LICENSE.md for license and copyright details. """ import sys import os import importlib import logging import imp _log = logging.getLogger("foqus." + __name__) class plugins(): """ This class maintains a list of DFO solver plugins """ def __init__(self, idString, pathList, charLimit=200): self.idString = idString self.pathList = pathList self.charLimit = charLimit self.plugins = {} self.importPlugins() def importPlugins(self): ''' check files in self.pathList to see if they are plugins ''' for p in self.pathList: if os.path.exists(p): sys.path.append(p) pgfiles = os.listdir(p) for fname in pgfiles: mname = fname.rsplit('.', 1) #split off extension if len(mname) > 1 and mname[1] == 'py': with open(os.path.join(p, fname), 'r', encoding="utf-8") as f: try: l = self.idString in f.read(self.charLimit) except: _log.exception("error reading py file") l = False if not l: continue try: if mname[0] in self.plugins: _log.info("Reloading Plugin: {}".format( os.path.join(p, fname))) self.plugins[mname[0]] = \ imp.reload(self.plugins[mname[0]]) else: logging.getLogger("foqus." + __name__).\ info("Loading Plugin: " + \ os.path.join(p, fname)) self.plugins[mname[0]] = \ importlib.import_module(mname[0]) except: _log.exception("Error Loading Plugin: {}".format( os.path.join(p, fname))) # Now check that the plugins have what they need to be used for pkey, p in list(self.plugins.items()): try: av = p.checkAvailable() except: av = False if not av: del self.plugins[pkey] _log.info("Removing plugin, due to missing dependency: " + pkey)
#this is a simple program which verifies the creditcard number using luhns algorithm while True: card_number=list(map(int,input("Enter the card number here"))) if len(card_number)==16: break checker=card_number.pop() for x in range(14,-1,-2): card_number[x]*=2 if card_number[x]/10>=1: card_number[x]=card_number[x]%10+1 new=sum(card_number) new =(new*9)%10 if new ==checker: print("yes that is a valid card number") else: print("no that is not a valid card number")
#!/usr/bin/python import mysql.connector ## # Create .fasta file for trans and prot seqs from gene_db database ## ### Start up connection dbh_gene_db = mysql.connector.connect(user='s12', password='jazzduck', database='gene_db') cursor_gene_db = dbh_gene_db.cursor() # select all gene + transcripts from trancript table query = ("SELECT gene.gene_id ,trans_id, sequence, translation FROM gene, transcript WHERE gene.id=transcript.gene_id;") cursor_gene_db.execute(query) trans_out = "/home/grobeln2/trans.fasta" prot_out = "/home/grobeln2/prot.fasta" fh_trn = open(trans_out, 'w') fh_prt = open(prot_out, 'w') for line in cursor_gene_db: # generate seq name seq_name = ">" + line[0] + "_" + line[1] # write to file fh_trn.write("%s\n%s\n" % (seq_name, line[2])) fh_prt.write("%s\n%s\n" % (seq_name, line[3])) # close files fh_trn.close fh_prt.close
from util import NUM_NODES, read_file, get_initial_state, open_nodes, calc_heuristics def pathfinding(): open_states = [] initial_state = get_initial_state(nodes) open_states.append(initial_state) while len(open_states) > 0: current_state = open_states[0] if len(current_state.path) == NUM_NODES: return current_state open_states = open_nodes(nodes, current_state, open_states) open_states.pop(0) open_states.sort(key=lambda x: (x.distance + x.node.h)) return None nodes = read_file() calc_heuristics(nodes) final_state = pathfinding() print() print("FINAL_PATH:") for n in final_state.path: print(n.index)
MOVIE_API_KEY = '<19eb2c37e12c55e93facdf16eae63d25>'
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import logging from odoo import fields, models _logger = logging.getLogger(__name__) class ResPartner(models.Model): _inherit = 'res.partner' contract_count = fields.Integer(compute='_compute_contract_count', string='Contract Count') contract_ids = fields.One2many('sale.contract', 'partner_id', 'Contract') def _compute_contract_count(self): # retrieve all children partners and prefetch 'parent_id' on them all_partners = self.with_context(active_test=False).search([('id', 'child_of', self.ids)]) all_partners.read(['parent_id']) _logger.warning(all_partners) sale_contract_groups = self.env['sale.contract'].read_group( domain=[('partner_id', 'in', all_partners.ids)], fields=['partner_id'], groupby=['partner_id'] ) _logger.warning(sale_contract_groups) partners = self.browse() for group in sale_contract_groups: partner = self.browse(group['partner_id'][0]) while partner: if partner in self: partner.contract_count += group['partner_id_count'] partners |= partner partner = partner.parent_id (self - partners).contract_count = 0
import numpy as np import pandas as pd import networkx as nx class Simulador_MIP(): def __init__(self, archivo_domestico, archivo_total): self.carga_datos(archivo_domestico, archivo_total) self.define_varibles_calculadas() self.vectores_coeficientes() self.matrices_coeficientes_tecnicos() self.variables_macroeconomicas() self.crea_red() def carga_datos(self,archivo_domestico, archivo_total): # ToDo: Hacer cambios para hacer la improtacion mas rapida datosD = pd.read_excel(archivo_domestico,skiprows=5,index_col=0) datosT = pd.read_excel(archivo_total,skiprows=5,index_col=0) flujos_intermedios = ["111110 - Cultivo de soya","931810 - Actividades de seguridad nacional"] self.Zd = self.obtenerSubmatriz(flujos_intermedios,flujos_intermedios,datosD) self.Zt = self.obtenerSubmatriz(flujos_intermedios,flujos_intermedios,datosT) demanda_final = ["CP - Consumo Privado","YA0 - Discrepancia estadística"] self.Fd = self.obtenerSubmatriz(flujos_intermedios,demanda_final,datosD) Ft = self.obtenerSubmatriz(flujos_intermedios,demanda_final,datosT) self.Ft = np.delete(Ft,-2,1) self.etiSCIAN = datosD.loc[flujos_intermedios[0]:flujos_intermedios[1]].index eti = self.etiSCIAN.str.slice(9) reemp_dic = { "Fabricación de" : "Fab.", "Cultivo de" : "C.", "Explotación de" : "Exp.", "Producción" : "Prod.", "producción" : "prod.", "Minería de" : "Min.", "Elaboración de" : "Elab.", "Transporte de" : "Trans.", "Transporte" : "Trans.", "Alquiler" : "Alq.", "Servicios de" : "S.", "Servicios" : "S." } eti2 = list(self.etiSCIAN) for key,val in reemp_dic.items(): eti2 = list(map(lambda s: s.replace(key, val), eti2)) self.eti2 = eti2 self.REM = self.obtenerSubmatriz(["D.1 - Remuneración de los asalariados"]*2,flujos_intermedios,datosD) self.PT = self.obtenerSubmatriz(["PT - Puestos de trabajo"]*2,flujos_intermedios,datosD) self.PTR = self.obtenerSubmatriz(["PTR - Puestos de trabajo remunerados"]*2,flujos_intermedios,datosD) self.PIB = self.obtenerSubmatriz(["B.1bP - Producto interno bruto"]*2,flujos_intermedios,datosD) def obtenerSubmatriz(self,renglones,columnas,datos): datos2 = datos.fillna(0) datos_interes = datos2.loc[renglones[0]:renglones[1],columnas[0]:columnas[1]] matriz = np.array(datos_interes) return matriz def invD(self, vector): if vector.ndim > 1 : vector = vector.flatten() invertida = np.where(vector==0,0,1/vector) diagonal = np.diag(invertida) return diagonal def define_varibles_calculadas(self): self.n = len(self.Zd) self.fd = np.sum(self.Fd,1) ft = np.sum(self.Ft,1) self.x = np.sum(self.Zd,1) + self.fd self.M = self.Zt - self.Zd Fm = self.Ft - self.Fd Iota = np.ones([1,self.n]) def vectores_coeficientes(self): invD_x = self.invD(self.x) self.rem = np.matmul(self.REM,invD_x) self.pt = np.matmul(self.PT,invD_x) self.ptr = np.matmul(self.PTR,invD_x) self.pib = np.matmul(self.PIB,invD_x) imp = np.matmul(np.sum(self.M,0),invD_x) def matrices_coeficientes_tecnicos(self): #A = Zd . invD[x];(*Matriz de coeficientes técnicos domésticos*) self.A = np.matmul(self.Zd,self.invD(self.x)) #Am = M . invD[x];(*Matriz de coeficientes técnicos de importaciones*) self.Am = np.matmul(self.M,self.invD(self.x)) #At = A + Am;(*Matriz de coeficientes técnicos totales*) self.At = self.A + self.Am #L = Inverse[IdentityMatrix[n] - A];(*Matriz inversa de Leontief*) L = np.linalg.inv( np.identity(self.n) - self.A) def variables_macroeconomicas(self): #xtot = Total[x];(*Valor Bruto de la Producción total*) self.xtot = np.sum(self.x) #PIBtot = Total[PIB];(*PIB total*) self.PIBtot = np.sum(self.PIB) #REMtot = Total[REM];(*Remuneraciones totales*) self.REMtot = np.sum(self.REM) #PTtot = Total[PT];(*Puestos de trabajo totales*) self.PTtot = np.sum(self.PT) #PTRtot = Total[PTR];(*Puestos de trabajo remunerados totales*) self.PTRtot = np.sum(self.PTR) #IMPtot = Total[Total[M]];(*Importaciones totales*) self.IMPtot = np.sum(self.M) #macro0 = {xtot, PIBtot, REMtot, PTtot, PTRtot, IMPtot};(*Lista de variables macro originales*) self.macro0 = np.array([self.xtot, self.PIBtot, self.REMtot, self.PTtot, self.PTRtot, self.IMPtot]) def simular_tablas(self,lista): etiMacro = ["Producción (millones de pesos)", "PIB (millones de pesos)", "Remuneraciones (millones de pesos)", "Puestos de Trabajo", "Puestos de Trabajo Remunerados", "Importaciones (millones de pesos)"] #numSust = Length[lista];(*Número de insumos a integrar*) numSust = len(lista) Amod,AMmod = self.simula_adyacencia(lista) #Lmod = Inverse[ IdentityMatrix[n] - Amod];(*Inversa de Leontief doméstica modificada*) Lmod = np.linalg.inv( np.identity(self.n) - Amod) #xmod = Lmod . fd;(*Vector de VBP modificado*) xmod = np.matmul(Lmod , self.fd) #PIBmod = pib . xmod;(*Total del PIB modificado*) PIBmod = np.matmul(self.pib, xmod)[0] #PIBmodVec = pib*xmod;(*Vector del PIB por actividad modificado*) PIBmodVec = self.pib*xmod #REMmod = rem . xmod;(*Total de Remuneraciones modificadas*) REMmod = np.matmul(self.rem, xmod)[0] #REMmodVec = rem*xmod;(*Vector de Remuneraciones por actividad modificadas*) REMmodVec = self.rem*xmod #PTmod = pt . xmod;(*Total del PT modificados*) PTmod = np.matmul(self.pt , xmod)[0] #PTmodVec = pt*xmod;(*Vector de PT por actividad modificados*) PTmodVec = self.pt*xmod #PTRmod = ptr . xmod;(*Total del PTR modificados*) PTRmod = np.matmul(self.ptr , xmod)[0] #PTRmodVec = ptr*xmod;(*Vector del PTR por actividad modificados*) PTRmodVec = self.ptr*xmod #IMPmod = Total[AMmod] . xmod;(*Total del importaciones modificadas*) IMPmod = np.matmul( np.sum(AMmod,0), xmod) #(*-- Generación de tablas con resultados*) #(*Tabla de resultados macro*) resMacro = [np.sum(xmod) , PIBmod , REMmod , PTmod , PTRmod , IMPmod ] - self.macro0 tablaMacro = pd.DataFrame({"Variable":etiMacro, "Niveles originales (millones de pesos)":self.macro0, "Variación (millones de pesos)":resMacro.flatten(), "Variación porcentual (%)":(resMacro/self.macro0*100).flatten()}) #(*Tabla de principales sectores afectados vía PIB*) tablaPIB = pd.DataFrame({"Variable":self.etiSCIAN, "Niveles originales (millones de pesos)":self.PIB.flatten(), "Variación (millones de pesos)":(PIBmodVec - self.PIB).flatten(), "Variación porcentual (%)":((np.matmul(PIBmodVec , self.invD(self.PIB)) - 1)*100).flatten()}) #(*Tabla de principales sectores afectados vía Remuneraciones*) tablaREM = pd.DataFrame({"Variable":self.etiSCIAN, "Niveles originales (millones de pesos)":self.REM.flatten(), "Variación (millones de pesos)":(REMmodVec - self.REM).flatten(), "Variación porcentual (%)":((np.matmul(REMmodVec , self.invD(self.REM)) - 1)*100).flatten()}) #(*Tabla de principales sectores afectados vía Puestos de Trabajo Remunerados*) tablaPTR = pd.DataFrame({"Variable":self.etiSCIAN, "Niveles originales (Puestos)":self.PTR.flatten(), "Variación (Puestos)":(PTRmodVec - self.PTR).flatten(), "Variación porcentual (%)":((np.matmul(PTRmodVec , self.invD(self.PTR)) - 1)*100).flatten()}) #(*Tabla de principales sectores afectados vía Puestos de Trabajo*) tablaPT = pd.DataFrame({"Variable":self.etiSCIAN, "Niveles originales (Puestos)":self.PT.flatten(), "Variación (Puestos)":(PTmodVec - self.PT).flatten(), "Variación porcentual (%)":((np.matmul(PTmodVec , self.invD(self.PT)) - 1)*100).flatten()}) return [tablaMacro, tablaPIB, tablaREM, tablaPTR, tablaPT] def simula_adyacencia(self,lista): #Amod = ReplacePart[A, listaSustA];(*Matriz de coeficientes técnicos modificada*) #AMmod = ReplacePart[Am, listaSustAm];(*Matriz de coeficientes importados modificada*) Amod = self.A.copy() AMmod = self.Am.copy() for elem in lista: Amod[elem[0],elem[1]] += (elem[2]/100)*self.Am[elem[0],elem[1]] AMmod[elem[0],elem[1]] = (1 - elem[2]/100)* self.Am[elem[0],elem[1]] return [Amod,AMmod] def crea_red(self): DG = nx.DiGraph() DG.add_edges_from([(i,j,{"domestico":self.A[i,j],"total":destino,"importaciones":self.Am[i,j]}) for i, origen in enumerate(self.At) for j, destino in enumerate(origen) if destino > 0 and i != j and not i in [446, 447]]) for n in DG.nodes: DG.nodes[n]["etiqueta"] = self.etiSCIAN[n] self.red = DG def cerradura(self, elementos,funcion_pseudoclausura, red, **arg): sub_red = nx.DiGraph() nodos_elementos = [(x,red.nodes[x]) for x in elementos] sub_red.add_nodes_from(nodos_elementos) clausura = funcion_pseudoclausura(sub_red,red,**arg) while sub_red.nodes != clausura.nodes and sub_red.edges != clausura.edges: sub_red = clausura clausura = funcion_pseudoclausura(sub_red,red,**arg) return sub_red def presouclausura_atras(self,elementos,red,nivel,filtro): presouclausura = elementos.copy() for x in elementos.nodes: for y in red.nodes : if red.has_edge(y,x) and red.edges[y,x][nivel]>filtro: if not presouclausura.has_node(y): presouclausura.add_node(y,**red.nodes[y]) if not presouclausura.has_edge(y,x): presouclausura.add_edge(y,x,**red.edges[y,x]) return presouclausura def modifica_red(self,lista): redMod = self.red.copy() for elem in lista: #Amod[elem[0],elem[1]] += (elem[2]/100)*self.Am[elem[0],elem[1]] redMod.edges[elem[0],elem[1]]["domestico"] += (elem[2]/100)*redMod.edges[elem[0],elem[1]]["importaciones"] redMod.edges[elem[0],elem[1]]["importaciones"] = redMod.edges[elem[0],elem[1]]["total"] - redMod.edges[elem[0],elem[1]]["domestico"] return redMod def simula_red(self, sector_inicial, filtro=0.04, lista=[[]]): red_domestica = self.cerradura([sector_inicial],self.presouclausura_atras,self.red,nivel="domestico",filtro=filtro) red_total = self.cerradura([sector_inicial],self.presouclausura_atras,self.red,nivel="total",filtro=filtro) inicios = [x[0] for x in lista] red_simulada = self.cerradura(inicios,self.presouclausura_atras,self.modifica_red(lista),nivel="domestico",filtro=filtro) for e in red_total.edges: if red_domestica.has_edge(*e): tipo = "domestico" elif any([l[0] == e[0] and l[1] == e[1] for l in lista]): tipo = "simulado_directo" elif red_simulada.has_edge(*e): tipo = "simulado_indirecto" else: tipo = "total" red_total.edges[e]["tipo"] = tipo for n in red_total.nodes: if n == sector_inicial: tipo = "inicial" elif red_domestica.has_node(n): tipo = "domestico" else: tipo = "total" red_total.nodes[n]["tipo"] = tipo return red_total
def reverse_string_in_place(input): input = list(input) start = 0 end = len(input) - 1 while(start < end): input[start], input[end] = input[end], input[start] start += 1 end -= 1 return input if __name__ == "__main__": print(reverse_string_in_place("inputs"))
# -*- coding: utf-8 -*- import json import numpy as np import copy import time import os import sigraph import pandas as pd import random #Pytorch import torch import torch.nn as nn import torch.optim as optim from torch.utils.tensorboard import SummaryWriter #Brainvisa from soma import aims #from deepsulci.sulci_labeling.method.unet import UnetSulciLabeling from deepsulci.deeptools.dataset import extract_data#, SulciDataset from deepsulci.deeptools.models import UNet3D from deepsulci.sulci_labeling.analyse.stats import esi_score from deepsulci.sulci_labeling.method.cutting import cutting from deepsulci.deeptools.early_stopping import EarlyStopping from dataset import SulciDataset from divide_lr import DivideLr from pattern_class import UnetPatternSulciLabelling # -------------------------------------------------------------------------------------------------- # # Classe permettant d'entraîner le modèle UNET3D sur une cohorte # --------------------------------------------------------------------------------------------------- # class UnetTrainingSulciLabelling(UnetPatternSulciLabelling): def __init__(self, graphs, hemi, cuda=-1, working_path=None, dict_model={}, dict_names=None, dict_bck2=None, sulci_side_list=None): super().__init__(graphs, hemi, cuda, working_path, dict_model, dict_names, dict_bck2, sulci_side_list) #results self.results = {'lr': [], 'momentum': [], 'batch_size': [], 'num_epochs': [], 'graphs_train': [], 'graphs_test': [], 'patience': {}, 'epoch_loss_val': [], 'epoch_acc_val': [], 'epoch_loss_train': [], 'epoch_acc_train': [], 'best_acc': [], 'best_epoch': [], 'divide_lr_epoch': [], 'duration': [], 'threshold_scores': {} } def load_network(self): # NETWORK # Load file print('Network initialization...') self.model = UNet3D(self.num_channel, len(self.sulci_side_list), final_sigmoid=self.final_sigmoid, interpolate=self.interpolate, dropout=0., conv_layer_order=self.conv_layer_order, init_channel_number=self.num_filter) if self.num_conv > 1: fac = (self.dict_trained_model['init_channel_number'] - len(self.sulci_side_list)) / self.num_conv num_channel = self.dict_trained_model['init_channel_number'] self.model.final_conv = nn.Sequential() for n in range(self.num_conv): self.model.final_conv.add_module(str(n), nn.Conv3d(num_channel - round(n * fac), num_channel - round((n + 1) * fac), 1)) self.model = self.model.to(self.device) def learning(self, lr, momentum, num_epochs, gfile_list_train, gfile_list_test, batch_size=1, patience={}, save_results=True): #Training #Error if self.sulci_side_list is None or self.dict_bck2 is None or self.dict_bck2 is None: print('Error : extract data from graphs before learning') return 1 # # DATASET / DATALOADERS # # print('Extract validation dataloader...') valdataset = SulciDataset( gfile_list_test, self.dict_sulci, train=False, translation_file=self.trfile, dict_bck2=self.dict_bck2, dict_names=self.dict_names) if batch_size == 1: valloader = torch.utils.data.DataLoader( valdataset, batch_size=batch_size, shuffle=False, num_workers=0) else: val_img_size = [0, 0, 0] for inputs, _ in valdataset: size = inputs.size() val_img_size = [np.max([val_img_size[i], size[i + 1]]) for i in range(len(val_img_size))] print('Val dataset image size:', val_img_size, sep=' ') valdataset_resized = SulciDataset( gfile_list_test, self.dict_sulci, train=False, translation_file=self.trfile, dict_bck2=self.dict_bck2, dict_names=self.dict_names, img_size=val_img_size) valloader = torch.utils.data.DataLoader( valdataset_resized, batch_size=batch_size, shuffle=False, num_workers=0) print('Extract train dataloader...') traindataset = SulciDataset( gfile_list_train, self.dict_sulci, train=True, translation_file=self.trfile, dict_bck2=self.dict_bck2, dict_names=self.dict_names) if batch_size == 1: trainloader = torch.utils.data.DataLoader( traindataset, batch_size=batch_size, shuffle=False, num_workers=0) else: random.seed(42) np.random.seed(42) train_img_size = [0, 0, 0] for _ in range(num_epochs): for inputs, _ in traindataset: size = inputs.size() train_img_size = [np.max([train_img_size[i], size[i + 1]]) for i in range(len(train_img_size))] print('Train dataset image size:', train_img_size, sep=' ') traindataset_resized = SulciDataset( gfile_list_train, self.dict_sulci, train=True, translation_file=self.trfile, dict_bck2=self.dict_bck2, dict_names=self.dict_names, img_size=train_img_size) trainloader = torch.utils.data.DataLoader( traindataset_resized, batch_size=batch_size, shuffle=False, num_workers=0) np.random.seed(42) random.seed(42) # # MODEL # # self.load_network() optimizer = optim.SGD(self.model.parameters(), lr=lr, momentum=momentum, weight_decay=0) criterion = nn.CrossEntropyLoss(ignore_index=-1) if save_results: num_training = len(self.results['lr']) self.results['lr'].append(lr) self.results['momentum'].append(momentum) self.results['batch_size'].append(batch_size) self.results['num_epochs'].append(num_epochs) self.results['graphs_test'].append(list(gfile_list_test)) self.results['graphs_train'].append(list(gfile_list_train)) self.results['patience'] = patience if batch_size > 1: if num_training == 0: self.results['train_image_size'] = [int(i) for i in train_img_size] self.results['val_image_size'] = [int(i) for i in val_img_size] else: self.results['train_image_size'].append([int(i) for i in train_img_size]) self.results['val_image_size'].append([int(i) for i in val_img_size]) log_dir = os.path.join(self.working_path + '/tensorboard/' + self.model_name) os.makedirs(log_dir, exist_ok=True) writer = SummaryWriter(log_dir=log_dir+'/cv'+str(num_training)) #, comment=) # early stopping if "early_stopping" in patience.keys(): es_stop = EarlyStopping(patience=patience['early_stopping']) if "divide_lr" in patience.keys(): divide_lr = DivideLr(patience=patience['divide_lr']) # # TRAINING # # print('training...') since = time.time() best_model_wts = copy.deepcopy(self.model.state_dict()) best_acc, epoch_acc = 0., 0. best_epoch = 0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) start_time = time.time() # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': self.model.train() # Set model to training mode else: self.model.eval() # Set model to evaluate mode running_loss = 0.0 # compute dataloader dataloader = trainloader if phase == 'train' else valloader # Iterate over data. y_pred, y_true = [], [] for batch, (inputs, labels) in enumerate(dataloader): inputs = inputs.to(self.device) labels = labels.to(self.device) # zero the parameter gradients optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = self.model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) y_pred.extend(preds[labels != self.background].tolist()) y_true.extend(labels[labels != self.background].tolist()) if batch_size > 1: print('Batch n°{:.0f}/{:.0f} || Loss: {:.4f}'.format(batch+1, np.ceil(len(dataloader.dataset)/batch_size), loss.item())) epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = 1 - esi_score( y_true, y_pred, [self.dict_sulci[ss] for ss in self.sslist]) print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) if save_results: writer.add_scalar('Loss/'+phase, epoch_loss, epoch) writer.add_scalar('Accuracy/'+phase, epoch_acc, epoch) if epoch == 0: self.results['epoch_loss_'+phase].append([epoch_loss]) self.results['epoch_acc_'+phase].append([epoch_acc]) else: self.results['epoch_loss_'+phase][num_training].append(epoch_loss) self.results['epoch_acc_'+phase][num_training].append(epoch_acc) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_epoch = epoch best_model_wts = copy.deepcopy(self.model.state_dict()) # divide_lr if 'divide_lr' in patience.keys(): divide_lr(epoch_loss, self.model) if divide_lr.divide_lr: lr = lr / 10 print('\tDivide learning rate. New value: {}'.format(lr)) optimizer = optim.SGD(self.model.parameters(), lr=lr, momentum=momentum) self.results['divide_lr_epoch'].append(epoch) # early_stopping if "early_stopping" in patience.keys(): es_stop(epoch_loss, self.model) if es_stop.early_stop: print("Early stopping") break print('Epoch took %i s.' % (time.time() - start_time)) print('\n') time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}, Epoch {}'.format(best_acc, best_epoch)) if save_results: self.results['best_acc'].append(best_acc) self.results['best_epoch'].append(best_epoch) self.results['duration'].append(time_elapsed) writer.close() # load best model weights self.model.load_state_dict(best_model_wts) def reset_results(self): self.results = {'lr': [], 'momentum': [], 'batch_size': [], 'num_epochs': [], 'graphs_train': [], 'graphs_test': [], 'patience': {}, 'train_image_size': [], 'val_image_size': [], 'epoch_loss_val': [], 'epoch_acc_val': [], 'epoch_loss_train': [], 'epoch_acc_train': [], 'best_acc': [], 'best_epoch': [], 'divide_lr_epoch': [], 'duration': [], 'threshold_scores': {} }
import cv2 import numpy from matplotlib import pyplot as plt img = cv2.imread('./../sheep.jpg',0) # laplacian = cv2.Laplacian(img,cv2.CV_64F) sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5) laplacian = cv2.Sobel(sobelx,cv2.CV_64F,0,1,ksize=5) plt.subplot(2,2,1),plt.imshow(img,cmap='gray') plt.title('original'),plt.xticks([]),plt.yticks([]) plt.subplot(2,2,2),plt.imshow(laplacian,cmap='gray') plt.title('laplacian'),plt.xticks([]),plt.yticks([]) plt.subplot(2,2,3),plt.imshow(sobelx,cmap='gray') plt.title('Sobel X'),plt.xticks([]),plt.yticks([]) plt.subplot(2,2,4),plt.imshow(sobely,cmap='gray') plt.title('Sobel Y'),plt.xticks([]),plt.yticks([]) plt.show()
import pandas as pd import numpy as np data = pd.read_csv('/data-out/titanic.csv', index_col='PassengerId') passengers = len(data) """ Сколько м/ж """ male = (data['Sex'].value_counts()['male']) female = len(data) - male ans1 = (male, female) with open('/data-out/1.txt', 'w') as f: f.write(str(male)) f.write(str(female)) f.close() """ Сколько выжило в процентах """ survived = (data['Survived'].value_counts()[1]) ans2 = ("%.2f" % (survived/passengers*100)) with open('/data-out/2.txt', 'w') as f: f.write(ans2) f.close() """ Сколько отн первому классу в процентах """ firstclass = (data['Pclass'].value_counts()[1]) ans3 = ("%.2f" % (firstclass/passengers*100)) with open('/data-out/3.txt', 'w') as f: f.write(ans3) f.close() """ Средний и медианный возраст """ ans4 = ("%.2f" % data['Age'].mean(), "%.2f" % data['Age'].median()) with open('/data-out/4.txt', 'w') as f: f.write(str(ans4)) f.close() """ Корреляция между двумя колонками """ ans5 = ("%.2f" % data.corr()['SibSp']['Parch']) with open('/data-out/5.txt', 'w') as f: f.write(str(ans5)) f.close() print(data['Name'])
from django.conf.urls import url from .views import GithubWebHook urlpatterns = [ url(r'^github/web/', GithubWebHook.as_view(), name='github_web'), ]
import sqlite3 import time import os.path import feedparser from datetime import datetime import re from flask import g from views import app DATABASE = 'tmp/rockneurotiko.sqlite' DEBUG = True SECRET_KEY = 'zumTUzM3IhUVQgeX9c55' def connect_db(): """Returns a new connection to the sqlite database""" return sqlite3.connect(app.config['DATABASE'], detect_types=sqlite3.PARSE_DECLTYPES) def init_db(): """Create the database if it doesn't exist""" if not os.path.isfile(app.config['DATABASE']): app.logger.debug('DB disappeared, making a new one') f = app.open_resource('schema.sql') db = connect_db() db.cursor().executescript(f.read()) db.commit() def query_db(query, args=(), one = False): """Query database returning dictionary""" cur = g.db.execute(query, args) rv = [dict((cur.description[idx][0], value) for idx, value in enumerate(row)) for row in cur.fetchall()] return (rv[0] if rv else None) if one else rv def populate_database(): init_db() if data_is_stale(): load_twitter() load_github() def data_is_stale(): """Find the last entry in the sqlite database to determine if we need to refresh the data. This stops us from pulling them each request""" try: last_updated = g.db.cursor().execute('select last_refresh from entries order by last_refresh desc limit 1').fetchone()[0] except: return True if not last_updated or (datetime.now() - last_updated).seconds > 10800: return True return False def load_twitter(): #Chanchullo para RSS twitter: http://www.visioncritical.com/blog/how-add-twitter-feeds-feedly-or-how-add-rss-feeds-hootsuite-quick-tip twitter = feedparser.parse("https://script.google.com/macros/s/AKfycbw-WRJKn60YSrSXsxnT7Cv1SiOg0bPBj_fwEksDsvgXBtt60R4/exec") g.db.cursor().execute('DELETE FROM twitter') for entry in twitter.entries: data = parseLongURL(entry['summary']) g.db.cursor().execute('INSERT INTO twitter VALUES (?, ?, ?, ?, ?, ?, ?,?)', (None, entry['link'], "static/twitter_1.png", data, "twitter", datetime.strptime(entry['published'][:-6], '%a, %d %b %Y %H:%M:%S'), datetime.now(), None)) g.db.commit() def parseLongURL(cont): http = re.findall(r'(http|ftp|https):\/\/([\w\-_]+(?:(?:\.[\w\-_]+)+))([\w\-\.,@?^=%&amp;:/~\+#]*[\w\-\@?^=%&amp;/~\+#])?', cont) for j in http: url = "%s://%s%s" % (j[0],j[1],j[2]) splitted = cont.split(url) if len(url) > 25: url = url[:25] + "..." if len(splitted) == 2: cont = splitted[0] + url + splitted[1] else: print url, splitted #print cont[cont.find(url):cont.find(url)+len(url)] return cont def load_github(): github = feedparser.parse("http://github.com/rockneurotiko.atom") g.db.cursor().execute('DELETE FROM github') for entry in github.entries: title = entry['link'].split('/')[4] author = entry['title'].split()[0] g.db.cursor().execute('INSERT INTO github VALUES (?, ?, ?, ?, ?, ?, ?, ?)', (None, entry['link'], "static/cog.png", entry['title'], datetime.strptime(entry['updated'][:-1], '%Y-%m-%dT%H:%M:%S'), datetime.now(), title, author)) g.db.commit() def getFromSource(source, limit=20): return query_db("select * from " + source + " order by updated desc limit " + str(limit))
from employee import Employee class MyNode: def __init__(self,data,next1 = None): self.__data = data self.__next = next1 def getNext(self): return self.__next def setNext(self,other): self.__next = other def getData(self): return self.__data def setData(self,other1): self.__data = other1
#!/usr/bin/env python """ Josh's Dumb-Ass Classifier """ import pprint import sys,os, copy sys.path.append(os.environ.get("TCP_DIR") + '/Software/feature_extract/Code/extractors') import sdss, ned, ng class bogus_sdss: def __init__(self): self.in_footprint = False self.feature = {} class JDAC: def __init__(self,pos=(176.70883 ,11.79869),verbose=True,seeing=2.5, do_sdss=True): self.verbose=verbose self.pos = pos self.seeing = seeing/2 # in arcsec ... to make this circumnuclear if do_sdss: self._get_sdss_feature() else: self.s = bogus_sdss() #self._get_ned_features() self._get_mansi_gals() self.val_add = {} self.set_nearest_type() self.set_probability() if self.val_add["nearest_type_confidence"] < 0.95 and self.val_add["nearest_type"] in ["galaxy", "stellar"]: #pprint.pprint(self.val_add) #print "***"*10 self.ttt = copy.copy(self.val_add) ## probability is low here...compute for the other case if self.ttt["nearest_type"] == "galaxy": self.val_add["nearest_type"] = "stellar" else: self.val_add["nearest_type"] = "galaxy" self.val_add["nearest_type_confidence"] = 1.0 - self.ttt["nearest_type_confidence"] self.set_probability() self.val_add.pop("nearest_type_from") self.ttt.update({'alt': self.val_add}) self.val_add = self.ttt #pprint.pprint(self.val_add) self.make_clean_prob() self.make_clean_prob(doalt=True) #pprint.pprint(self.p) def make_clean_prob(self,doalt=False): if not doalt: self.p = {} for k,v in self.val_add.iteritems(): if k not in ["alt", "nearest_type", "nearest_type_confidence", "prob"]: if not self.p.has_key("flags"): self.p.update({"flags": {k: v}}) else: self.p["flags"].update({k: v}) else: if self.val_add.has_key("alt"): self.ttt = copy.copy(self.val_add) self.val_add = self.ttt['alt'] else: return if self.val_add['nearest_type'] in ['qso','galaxy']: top_prob = self.val_add['nearest_type_confidence'] self.p.update({"extragalactic": {"val": top_prob}}) for k,v in self.val_add['prob'].iteritems(): self.p['extragalactic'].update({k: {'val': v}}) elif self.val_add['nearest_type'] in ['stellar','cv']: top_prob = self.val_add['nearest_type_confidence'] self.p.update({"galactic": {"val": top_prob}}) multi = self.val_add['prob']['VarStar']['prob'] self.val_add['prob']['VarStar'].pop("prob") for k,v in self.val_add['prob']['VarStar'].iteritems(): self.p['galactic'].update({k: {'val': v}}) if doalt: self.val_add = self.ttt def _get_sdss_feature(self): self.s = sdss.sdssq(pos=self.pos,verbose=self.verbose,run_on_instance=False) self.s.feature_maker() def _get_ned_features(self): self.n = ned.NED(pos=self.pos,verbose=self.verbose) def _get_mansi_gals(self,radius=5): self.mansi = ng.GalGetter(verbose=self.verbose) self.mansi.getgals(pos=self.pos,radius=float(radius)/60.,sort_by="phys",max_d=500.0) self.m = self.mansi.grab_rez() def set_probability(self): if self.val_add["nearest_type_from"] == "unset": ## there's no context self.val_add.update({"prob": {}}) return if self.val_add["nearest_type"] == "unset": ## it's not in there, but in the footprint self.val_add.update({"prob": {'roid': 0.6, 'sn': 0.1, 'VarStar': {"prob": 0.2, 'low_mass_flare': 0.8}}}) return if self.val_add['nearest_type_from'] == "mansi" and self.val_add["nearest_type"] == "galaxy": ## could be a rather nearby galaxy. But's let's check to make sure it's not some ## more distant galaxy in projection self.tmp = copy.copy(self.val_add) self.set_nearest_type(skip_mansi=True) ## if the mansi confidence is low and the sdss confidence is high, then set that if self.tmp["nearest_type_confidence"] <= 0.9 and \ self.val_add["nearest_type"] == "galaxy" and \ self.val_add["nearest_type_confidence"] >= 0.60: ## we're good ... keep the val_add from sdss and note possible nearby big galaxy self.val_add.update({"possible_mansi_gal_nearby": True, 'possible_mansi_gal_mansi_pos': self.m['closest_in_light_galaxy_position']}) ## call ourselves again...this time without the mansi galaxy self.set_probability() else: ## no, the SDSS looks to be tentative, revert back to Mansi self.val_add = self.tmp del self.tmp ## now we can really belive mansi if self.m['closest_in_light_physical_offset_in_kpc'] < 0.5: if self.m['closest_in_light_angular_offset_in_arcmin'] < self.seeing/60.0: self.val_add.update({"apparently_nuclear": True}) else: # outside seeing disk self.val_add.update({"apparently_circumnuclear": True}) else: ## largert physical offset if self.m['closest_in_light_angular_offset_in_arcmin'] < self.seeing/60.0: self.val_add.update({"apparently_circumnuclear": True}) if self.m['closest_in_light_dm'] < 28.5: ## this is a really nearby galaxy < 5 Mpc self.val_add.update({"very_nearby_gal": True}) self.val_add.update({"prob": {"SN": 0.05, "Nova": 0.9}}) return else: self.val_add.update({"outskirts_of_mansi_nearby_gal": True}) self.val_add.update({"prob": {"SN": 0.9}}) if self.val_add.has_key("apparently_nuclear"): if self.val_add.has_key("prob"): self.val_add['prob'].update({"SN": 0.1, "AGN": 0.85, "TDF": 0.05}) else: self.val_add.update({"prob":{"SN": 0.1, "AGN": 0.85, "TDF": 0.05}}) return if self.val_add.has_key("apparently_circumnuclear"): self.val_add.update({"prob":{"SN": 0.95, "AGN": 0.05}}) else: if self.val_add["nearest_type"] == "galaxy": if self.ss["dist_in_arcmin"] < self.seeing/60.0: ## apparently right on top of the light centroid if self.ss["dered_r"] > 21.0: self.val_add.update({"prob":{"SN": 0.9, "AGN": 0.05}}) else: # if it's bright and right on top... self.val_add.update({"apparently_circumnuclear": True}) self.val_add.update({"prob":{"SN": 0.3, "AGN": 0.7}}) return else: self.val_add.update({"prob":{"SN": 0.9}}) return elif self.val_add["nearest_type"] == "qso": if self.ss["dist_in_arcmin"] < self.seeing/60.0: self.val_add.update({"prob":{"SN": 0.02, "AGN": 0.95}}) return else: self.val_add.update({"prob":{"SN": 0.05, "AGN": 0.93}}) return else: ## a star, probably ## is it red? if self.ss["dered_r"] - self.ss["dered_i"] > 1.5: self.val_add.update({"prob":{'VarStar': {"prob": 1.0, 'low_mass_flare': 0.8}}}) return # blue if self.ss["dered_r"] - self.ss["dered_i"] < 0.5 or self.val_add["nearest_type"] == "cv": self.val_add.update({"prob":{'VarStar': {"prob": 1.0, 'CV': 0.8}}}) return if self.ss["spectral_flag"] != None: ## probably a white dwarf spectroscopically if self.ss["spectral_flag"] in ['d','D']: self.val_add.update({"prob":{'VarStar': {"prob": 1.0, 'CV': 0.8}}}) return # no idea self.val_add.update({"prob":{'VarStar': {"prob": 1.0}}}) return def set_nearest_type(self,skip_mansi=False): ## is it in the SDSS footprint or mani? if not self.s.in_footprint and not self.m.has_key("closest_in_light"): self.val_add.update({'nearest_type_from': "unset", 'nearest_type': "not_in_footprint", "nearest_type_confidence": 1.0}) return if not skip_mansi: ## let's look at mansi's result for now if self.m.has_key("closest_in_light") and self.m.has_key('closest_in_light_physical_offset_in_kpc'): ## decreasing confidence in this being a galaxy if self.m['closest_in_light_physical_offset_in_kpc'] < 3.0 and self.m['closest_in_light'] < 1.0: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.98}) elif self.m['closest_in_light_physical_offset_in_kpc'] < 5.0 and self.m['closest_in_light'] < 2.0: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.9}) elif self.m['closest_in_light_physical_offset_in_kpc'] < 10.0 and self.m['closest_in_light'] < 3.0: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.8}) elif self.m['closest_in_light_physical_offset_in_kpc'] < 15.0 and self.m['closest_in_light'] < 3.5: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.7}) elif self.m['closest_in_light_physical_offset_in_kpc'] < 40.0 and self.m['closest_in_light'] < 5.0: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.6}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.55}) self.val_add.update({'nearest_type_from': 'mansi'}) return ## let's look at SDSS self.ss = self.s.feature if self.ss.has_key("dist_in_arcmin"): if self.ss["dist_in_arcmin"] > 0.12: ## this is pretty far away for a SDSS galaxy self.val_add.update({'nearest_type': "unset", "nearest_type_confidence": 0.5}) self.val_add.update({'nearest_type_from': 'sdss'}) return if self.ss.has_key("best_offset_in_kpc"): if self.ss["best_offset_in_kpc"] > 100.0: ## this is pretty far away for a SDSS galaxy self.val_add.update({'nearest_type': "unset", "nearest_type_confidence": 0.5}) self.val_add.update({'nearest_type_from': 'sdss'}) return if self.ss.has_key("type"): if self.ss['type'] == 'galaxy' or self.ss['classtype'] == 'gal': if self.ss.has_key("segue_class"): if self.ss['segue_class'] == 'galaxy': if self.ss.has_key("spec_z") and self.ss.has_key('spec_confidence'): if self.ss['spec_z'] > 0.01 and self.ss['spec_confidence'] > 0.3: if self.ss.has_key("best_offset_in_petro_g"): if self.ss["best_offset_in_petro_g"] < 10.0: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 1.0}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.95}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.90}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.85}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.85}) else: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.80}) else: self.val_add.update({'nearest_type': "stellar", "nearest_type_confidence": 0.95}) ## if the source is too faint, then it's hard to trust the classification if self.ss.has_key('dered_r'): if self.ss['dered_r'] > 21.5 and self.ss["spec_z"] == None: ## really hard to trust what's happening here. if self.ss['type'] == 'galaxy': self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.55}) else: self.val_add.update({'nearest_type': "stellar", "nearest_type_confidence": 0.55}) if self.ss.get('spectral_flag','') in ['xxxx', 'nnbn', 'enbn', 'ecbn']: if self.val_add.has_key("nearest_type_confidence"): if self.val_add["nearest_type_confidence"] < 0.9: self.val_add.update({'nearest_type': "galaxy", "nearest_type_confidence": 0.9}) if self.ss.get("classtype",'') == "qso": self.val_add.update({'nearest_type': "qso", "nearest_type_confidence": 0.70}) if self.ss["segue_star_type"] == "broadline": self.val_add.update({'nearest_type': "qso", "nearest_type_confidence": 0.95}) if self.ss["spectral_stellar_type"] == "cv" or self.ss["spec_zWarning"] == "not_qso": self.val_add.update({'nearest_type': "cv", "nearest_type_confidence": 0.95}) if self.ss.get("spectral_stellar_type",'') == 'qso' or (self.ss.get("bestz",'') > 0.6 and self.ss["bestz_err"] < 0.1): self.val_add.update({'nearest_type': "qso", "nearest_type_confidence": 0.95}) self.val_add.update({'nearest_type_from': 'sdss'}) return if __name__ == "__main__": #j = JDAC(seeing=2.5) j = JDAC(pos=(57.434622 , -3.264654 )) # try looking at j.p import pprint pprint.pprint(j.p)
#!/usr/bin/env python ''' package.py: part of singularity package ''' from singularity.runscript import get_runscript_parameters from singularity.utils import zip_up, read_file from singularity.cli import Singularity import tempfile import tarfile import hashlib import zipfile import json import os def package(image_path,output_folder=None,runscript=True,software=True,remove_image=False,verbose=False,S=None): '''package will take an image and generate a zip (including the image to a user specified output_folder. :param image_path: full path to singularity image file :param runscript: if True, will extract runscript to include in package as runscript :param software: if True, will extract files.txt and folders.txt to package :param remove_image: if True, will not include original image in package (default,False) :param verbose: be verbose when using singularity --export (default,False) :param S: the Singularity object (optional) will be created if not required. ''' if S == None: S = Singularity(verbose=verbose) tmptar = S.export(image_path=image_path,pipe=False) tar = tarfile.open(tmptar) members = tar.getmembers() image_name = os.path.basename(image_path) zip_name = "%s.zip" %(image_name.replace(" ","_")) # Include the image in the package? if remove_image: to_package = dict() else: to_package = {image_name:image_path} # Package the image with an md5 sum as VERSION version = get_image_hash(image_path) to_package["VERSION"] = version # Look for runscript if runscript == True: try: runscript_member = tar.getmember("./singularity") runscript_file = tar.extractfile("./singularity") runscript = runscript_file.read() to_package["runscript"] = runscript print("Found runscript!") # Try to extract input args, only python supported, will return None otherwise params_json = get_runscript_parameters(runscript=runscript, name=image_name, version=version) if params_json != None: print('Extracted runscript params!') to_package['%s.json' %(image_name)] = params_json except KeyError: print("No runscript found in image!") if software == True: print("Adding software list to package!") files = [x.path for x in members if x.isfile()] folders = [x.path for x in members if x.isdir()] to_package["files.txt"] = files to_package["folders.txt"] = folders # Do zip up here - let's start with basic structures zipfile = zip_up(to_package,zip_name=zip_name,output_folder=output_folder) print("Package created at %s" %(zipfile)) # return package to user return zipfile def list_package(package_path): '''list_package will list the contents of a package, without reading anything into memory :package_path: the full path to the package ''' zf = zipfile.ZipFile(package_path, 'r') return zf.namelist() def calculate_similarity(pkg1,pkg2,include_files=False,include_folders=True): '''calculate_similarity will calculate similarity of images in packages based on a comparator list of (files or folders) in each package, default will calculate 2.0*len(intersect) / total package1 + total package2 :param pkg1: packaged image 1 :param pkg2: packaged image 2 :param include_files: boolean, default False. If true, will include files :param include_folders: boolean, default True. If true, will include files ''' # Base names will be indices for full lists for comparator return object pkg1_name = os.path.basename(pkg1) pkg2_name = os.path.basename(pkg2) comparison = compare_package(pkg1,pkg2,include_files=include_files,include_folders=include_folders) score = 2.0*len(comparison["intersect"]) / (len(comparison[pkg1_name])+len(comparison[pkg2_name])) # Alert user if images are identical if score == 1.0: print("Package %s and %s are identical by this metric!" %(pkg1_name,pkg2_name)) return score def compare_package(pkg1,pkg2,include_files=False,include_folders=True): '''compare_package will return the lists of files or folders (or both) that are different and equal between two packages :param pkg1: package 1 :param pkg1: package 2 :param include_files: boolean, default False. If true, will include files :param include_folders: boolean, default True. If true, will include files :param get_score: if True, will calculate overall similarity as 2*len(intersect) / len(uniques) + len(intersect) ''' if include_files == False and include_folders == False: print("Please specify include_files and/or include_folders to be True.") else: # For future reference pkg1_name = os.path.basename(pkg1) pkg2_name = os.path.basename(pkg2) # Lists for all comparators for each package pkg1_comparators = [] pkg2_comparators = [] pkg1_includes = list_package(pkg1) pkg2_includes = list_package(pkg2) # Include files in comparison? if include_files == True: if "files.txt" in pkg1_includes and "files.txt" in pkg2_includes: pkg1_comparators += load_package(pkg1,get="files.txt")["files.txt"] pkg2_comparators += load_package(pkg2,get="files.txt")["files.txt"] # Include folders in comparison? if include_folders == True: if "folders.txt" in pkg2_includes and "folders.txt" in pkg2_includes: pkg1_comparators += load_package(pkg1,get="folders.txt")["folders.txt"] pkg2_comparators += load_package(pkg2,get="folders.txt")["folders.txt"] # Do the comparison intersect = [x for x in pkg1_comparators if x in pkg2_comparators] unique_pkg1 = [x for x in pkg1_comparators if x not in pkg2_comparators] unique_pkg2 = [x for x in pkg2_comparators if x not in pkg1_comparators] # Return data structure comparison = {"intersect":intersect, "unique_%s" %(pkg1_name): unique_pkg1, "unique_%s" %(pkg2_name): unique_pkg2, pkg1_name:pkg1_comparators, pkg2_name:pkg2_comparators} return comparison def load_package(package_path,get=None): '''load_package will return the contents of a package, read into memory :param package_path: the full path to the package :param get: the files to load. If none specified, all things loaded ''' if get == None: get = list_package(package_path) # Open the zipfile zf = zipfile.ZipFile(package_path, 'r') # The user might have provided a string and not a list if isinstance(get,str): get = [get] retrieved = dict() for g in get: filename,ext = os.path.splitext(g) if ext in [".img"]: tmpdir = tempfile.mkdtemp() print("Extracting image %s to %s..." %(g,tmpdir)) image_extracted_path = zf.extract(g,tmpdir) retrieved[g] = image_extracted_path elif ext in [".txt"] or g == "runscript": retrieved[g] = zf.read(g).decode('utf-8').split('\n') elif g == "VERSION": retrieved[g] = zf.read(g).decode('utf-8') elif ext in [".json"]: retrieved[g] = json.loads(zf.read(g).decode('utf-8')) else: print("Unknown extension %s, skipping %s" %(ext,g)) return retrieved def get_image_hash(image_path): '''get_image_hash will return an md5 hash of the file. Since we don't have git commits this seems like a reasonable option to "version" an image, since we can easily say yay or nay if the image matches the spec file :param image_path: full path to the singularity image ''' print("Generating unique version of image (md5 hash)") hash_md5 = hashlib.md5() with open(image_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def docker2singularity(docker_image,output_folder=None): '''docker2singulrity is a wrapper for the Singularity.docker2singularity client function. Does not currently include runscript (/singularity) in image, but does export full docker image spec under /singularity.json :param docker_image: the full docker repo/image,eg "ubuntu:latest" :param output_folder: the output folder to create the image in. If not specified, will use pwd. ''' S = Singularity() docker_image = S.docker2singularity(docker_image=docker_image, output_dir=output_folder) return docker_image
''' python test.py output_file ''' import numpy as np import sys from numpy.linalg import inv, det from math import pi, exp import time if len(sys.argv) != 2: print("python test.py output_file") exit() p_zero = 24720/(24720+7841) mean_zero = np.load("gen_model/0_mean.npy") mean_one = np.load("gen_model/1_mean.npy") cov_mutual = np.load("gen_model/mutual_cov.npy") test_x = np.load("gen_model/test_feature.npy") with open(sys.argv[1], 'w') as f: f.write("id,label\n") i = 1 for row in test_x: X = row - mean_zero up1 = -0.5*X.dot(inv(cov_mutual)).dot(X.transpose()) X = row - mean_one up2 = -0.5*X.dot(inv(cov_mutual)).dot(X.transpose()) ratio = exp(up2[0,0] - up1[0,0]) prob = p_zero / (p_zero + (1-p_zero)*ratio) if prob > 0.5: label = '0' else: label = '1' line = str(i) + "," + label + '\n' f.write(line) i += 1
from django.shortcuts import render_to_response, HttpResponseRedirect from django.template import RequestContext from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import User from django.contrib import messages from mapFriends.facebook import test_token, get_authorization_url,get_token,get_user_data,get_user_friends,get_coordinates from mapFriends.images import take_image from mapFriends.forms import LoginForm, RegisterForm from mapFriends.models import UserProfile def home(request): return render_to_response('index.html', {}, context_instance=RequestContext(request)) def login_view(request): if request.method == "POST": login_form = LoginForm(request.POST) if login_form.is_valid(): username = login_form.cleaned_data['username'] password = login_form.cleaned_data['password'] user = authenticate(username=username, password=password) if user is not None: if user.is_active: print "[login] Usuario valido" login(request, user) messages.add_message(request, messages.INFO, "Hola %s, te has logueado correctamente" % username) return HttpResponseRedirect("/") else: print "[login] Usuario no activo" messages.add_message(request, messages.ERROR, "Usuario no activo") return HttpResponseRedirect("/") else: print "[login] Usuario o pass incorrecto" messages.add_message(request, messages.ERROR, "Usuario o contrasena incorrecta") form = LoginForm() ctx = {'login' : form} print "[login] Enviando formulario de registro" return render_to_response('login.html', ctx, context_instance=RequestContext(request)) def register_view(request): form = RegisterForm() if request.method == "POST": token = request.session['token'] name = request.session['name'] register = RegisterForm(request.POST) if register.is_valid(): password = register.cleaned_data['password'] try: u = User.objects.get(username=name['name']) ctx = {'register' : form} print "[register] Usuario ya existe" messages.add_message(request, messages.WARNING, "%s ya existe, logueate" %name['name']) return HttpResponseRedirect('/login') except User.DoesNotExist: user = User.objects.create_user(username=name['name'], email=name['email'], password=password) facebook_user = UserProfile(user=user, access_token=token['access_token'][0]) facebook_user.save() ctx = {} print "[register] Registrando Usuario" messages.add_message(request, messages.INFO, "%s registrado correctamente" %name['name']) return render_to_response('index.html', ctx, context_instance=RequestContext(request)) else: ctx = {'register' : form} print "[register] Password no coinciden" messages.add_message(request, messages.ERROR, "Passsword no coinciden") return render_to_response('register.html', ctx, context_instance=RequestContext(request)) if 'code' not in request.GET: #Comprobamos si tenemos acceso a sus datos url = get_authorization_url(request) print "[register] Obteniendo facebook" return HttpResponseRedirect(url) token = get_token(request) name = get_user_data(request, token['access_token'][0]) request.session['token'] = token request.session['name'] = name ctx = {'register' : form} print "[register] Enviando un formuladio de registro" return render_to_response('register.html', ctx, context_instance=RequestContext(request)) def map(request): user = User.objects.filter(username=request.user) profile = UserProfile.objects.get(user=user) token = profile.access_token print "Ejecutando" url = test_token(request, token)#Test if token is valid if url != "": print "URL NOT EMPTY" return HttpResponseRedirect(url) print "[map] Change token" profile = UserProfile.objects.get(user=user) token = profile.access_token data = get_user_data(request, token) friends, sites = get_user_friends(request, token) location = get_coordinates(request, sites, token) friends = take_image(friends) ctx = {'data' : data, 'friends' : friends, 'places' : location} return render_to_response('map.html', ctx, context_instance=RequestContext(request)) def logout_view(request): messages.add_message(request, messages.INFO, "%s , te has deslogueado correctamente" %request.user) logout(request) print "[logout] Usuario deslogueado" return HttpResponseRedirect("/")
#!/usr/bin/python # Copyright (c) Members of the EGEE Collaboration. 2004. # See http://www.eu-egee.org/partners/ for details on the copyright # holders. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from xml import sax import socket import sys import time # Idiom for Python enums class ServerType: MDSERVER, MDREPDAEMON = range(2) class RepDaemonSession: def __init__(self, node, logDict): self.node = node self.logsSent = int(logDict["repdaemon.Session." + node + ".LogsSent"]) self.dataSent = int(logDict["repdaemon.Session." + node + ".DataSent"]) self.ackedXid = long(logDict["repdaemon.Session." + node + ".AckedXid"]) self.sentXid = long(logDict["repdaemon.Session." + node + ".SentXid"]) self.uptime = int(logDict["repdaemon.Session." + node + ".Uptime"]) self.sessionID = int(logDict["repdaemon.Session." + node + ".SessionID"]) def __str__(self): return str(self.__dict__) class RepDaemonLog: def __init__(self, logDict): self.logsPending = int(logDict["repdaemon.LogsPending"]) self.logsSentTotal = int(logDict["repdaemon.LogsSent.Total"]) self.dataSentTotal = int(logDict["repdaemon.DataSent.Total"]) self.writeXid = long(logDict["repdaemon.WriteXid"]) self.sessionsCurrent = int(logDict["repdaemon.Sessions.Current"]) self.sessionsTotal = int(logDict["repdaemon.Sessions.Total"]) self.uptime = int(logDict["repdaemon.Uptime"]) self.nodeName = logDict["NodeName"] self.sessions = {} for x in logDict: if x.startswith("repdaemon.Session."): # Extract the node name tokens = x.split(".") node = tokens[2] # Add this node if it wasn't already found if (node not in self.sessions): self.sessions[node] = RepDaemonSession(node, logDict) def __str__(self): lines = [x + ":" + str(self.__dict__[x]) for x in self.__dict__] lines = filter(lambda x: not x.startswith("sessions:"), lines) lines.sort() out = "\n".join(lines) out += "\nActive Sessions\n " out += "\n ".join([str(x) for x in self.sessions.values()]) return out class MDServerLog: def __init__(self, logDict): self.preparedConnections = int(logDict["PreparedConnections"]) self.maxSessions = int(logDict["MaxSessions"]) self.usedSessions = int(logDict["UsedSessions"]) self.usedConnections = int(logDict["UsedConnections"]) self.maxConnections = int(logDict["MaxConnections"]) self.sessionStorage = logDict["SessionStorage"] self.uptime = int(logDict["Uptime"]) self.nodeName = logDict["NodeName"] # self.logsWritten = int(logDict["repmaster.LogsWritten"]) # self.updates = int(logDict["mdserver.Updates"]) # self.commands = int(logDict["mdserver.Commands"]) def __str__(self): lines = [x + ":" + str(self.__dict__[x]) for x in self.__dict__] return "\n".join(lines) class ContentGenerator(sax.handler.ContentHandler): """ Parses the XML answer obtained from the server """ def __init__(self): sax.handler.ContentHandler.__init__(self) self.dict = {} self.key = None self.nextKey = False # ContentHandler methods def startDocument(self): pass def startElement(self, name, attrs): self.nextKey = (name == "Key") def endElement(self, name): pass def characters(self, content): content = content.strip() if len(content) == 0: return if self.nextKey: self.key = content # Make sure the map has an entry for this key, even if # the server sends an empty value string. self.dict[self.key] = "" self.nextKey = False else: if self.key != None: self.dict[self.key] = content self.key = None def ignorableWhitespace(self, content): pass def processingInstruction(self, target, data): pass class Parser: def __init__(self): self.handler = ContentGenerator() def parse(self, serverType, xmlData): self.handler.dict.clear() sax.parseString(xmlData, self.handler) if serverType == ServerType.MDSERVER: return MDServerLog(self.handler.dict) elif serverType == ServerType.MDREPDAEMON: return RepDaemonLog(self.handler.dict) else: return self.handler.dict def pollAMGA(host, port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((host, port)) data = "" # Read the three header lines while True: data += s.recv(1024) if data.count("\n") == 3: break if data.startswith("ARDA Metadata Server"): instance = ServerType.MDSERVER elif data.startswith("ARDA Metadata Replication Daemon"): instance = ServerType.MDREPDAEMON else: raise Exception("Unknown server identifier: " + data) # Send the command s.send('statistics\n\n') data = "" while True: newData = s.recv(4096) if newData == "": break data += newData s.close() return (instance, data) def main(): from optparse import OptionParser parser = OptionParser() parser.add_option("-p", "--port", dest="port", type="int", default=8822, help="AMGA instance port") parser.add_option("-i", "--interval", dest="interval", type="int", default=1, help="Poll interval") (opts, args) = parser.parse_args() if len(args) == 0: host = "localhost" else: host = args[0] print "Querying: " + host + ":" + str(opts.port) parser = Parser() log = None # count = 0 while True: (serverType, xmlData) = pollAMGA(host, opts.port) #print xmlData oldLog = log log = parser.parse(serverType, xmlData) print log # count += 1 # print "Queries:",count time.sleep(opts.interval) # while True: # s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # s.connect((host, opts.port)) # while True: # data = s.recv(1024) # if data == "": # break # count += 1 # print "Queries:",count if __name__ == "__main__": sys.exit(main())
class Number: def check(self,ch): if (ch>='a'and ch<='z'): print("Its an alphabet") elif(int(ch)>=0 and int(ch)<=9): print("Its an number") ss=Number() ch=input("Enter a charcater") ss.check(ch)
import time import numpy as num import scipy as sci import sympy as sym from sympy import * from numpy import * from scipy import * from scipy.sparse import * x1 = 0; x2 = 0; x3 = 0; x4 = 0; y1 = 0; y2 = 0; y3 = 0; y4 = 0 # Initializing all variables necessary for the program range_x = 0; range_y = 0; no_of_elements = 0; range_x_temp = 0; range_y_temp = 0 N1 = 0; N2 = 0; N3 = 0; N4 = 0; dN1s = 0; dN2s = 0; dN3s = 0; dN4s = 0; dN1t = 0; dN2t = 0; dN3t = 0; dN4t = 0 mx = []; my = []; ST = []; k_small = []; row = []; col = []; data = [] element = {}; xst = {}; yst = {}; J = {}; J_inv = {}; J_det = {}; XT = {}; XT_trans = {}; Ke = {}; K = {}; K_temp = {}; row_stiffness = {}; col_stiffness = {} s = symbols('s'); t = symbols('t'); k = symbols('k') n = 0 def input_geometry(): # First step of the program where the geopetry is specified global x1, x2, x3, x4, y1, y2, y3, y4 print ("""Please enter the corresponding coordinate values for the geometry under study""") ex = [float(input("x1\n> ")), float(input("x2\n> ")), float(input("x3\n> ")), float(input("x4\n> "))] wy = [float(input("y1\n> ")), float(input("y2\n> ")), float(input("y3\n> ")), float(input("y4\n> "))] ex.sort() wy.sort() x1 = ex[-1]; x2 = ex[0]; x3 = x2; x4 = x1 y1 = wy[-1]; y4 = wy[0]; y2 = y1; y3 = y4 # This is the part that sorts out the geometry irrespective of the way the coordinates are entered mesh_generation() # Calls for the next step def mesh_generation(): # Second step of the program where the mesh is generated global x1, x2, x3, x4, y1, y2, y3, y4, range_x, range_y, no_of_elements, mx, my, range_x_temp, range_y_temp print ("""Please enter what kind of mesh you want. 1. Enter 'coarse' for a rough mesh. 2. Enter 'normal' for a normal mesh. 3. Enter 'fine' for a smooth mesh.""") mesh_type = input("> ") if mesh_type == 'coarse': # Coarse mesh splits the geometry into 5 equal horizontal and vertical parts x = num.linspace(x2, x1, 5) y = num.linspace(y4, y1, 5) mx, my = meshgrid(x, y) print(mx) print(my) range_x_temp, range_y_temp = mx.shape print(mx.shape) print(my.shape) range_x = range_x_temp-1 range_y = range_y_temp-1 print(range_x, range_y) no_of_elements = range_x*range_y print(no_of_elements) elif mesh_type == 'normal': # Normal mesh splits the geometry into 10 equal horizontal and vertical parts x = num.linspace(x2, x1, 10) y = num.linspace(y4, y1, 10) mx, my = meshgrid(x, y) print(mx) print(my) range_y_temp, range_x_temp = mx.shape range_x = range_x_temp-1 range_y = range_y_temp-1 print (range_x, range_y) no_of_elements = range_x*range_y print(no_of_elements) elif mesh_type == 'fine': # Fine mesh splits the geometry into 20 equal horizontal and vertical parts x = num.linspace(x2, x1, 20) y = num.linspace(y4, y1, 20) mx, my = meshgrid(x, y) print(mx) print(my) range_x_temp, range_y_temp = mx.shape print(mx.shape) range_x = range_x_temp-1 range_y = range_y_temp-1 print (range_x, range_y) no_of_elements = range_x*range_y print(no_of_elements) elif mesh_type == 'sample': # Sample mesh splits the geometry into any equal horizontal and vertical parts specified by the programmer. Can only be tweaked from inside the code. x = num.linspace(x2, x1, 3) y = num.linspace(y4, y1, 3) mx, my = meshgrid(x, y) print(mx) print(my) range_x_temp, range_y_temp = mx.shape print(mx.shape) range_x = range_x_temp-1 range_y = range_y_temp-1 print (range_x, range_y) no_of_elements = range_x*range_y print(no_of_elements) else: mesh_generation() input() four_node_iso() # Calls for the next step of the process def boundary_conditions(): # Sixth step of the process that gathers temperature boundary conditions from the user. Not yet implemented. print ("""Here you will specify the boundary conditions for the problem. Temperature will assume the unit of Kelvin, heat flux will assume the unit of W/m2, conveciton coefficient will assume the unit of W/m2K and heat generation will assume the unit of W'm3. When specifying boundary conditions, please enter only the numerical values and not the units. Enter 'temp' for temperature boundary condition. Enter 'conv' for convection boundary condition. Enter 'flux' for heat flux boundary condition. Enter 'gen' for heat flux generation. Enter 'done' once everthing is specified.""") type = input("> ") if type == 'temp': print ("""Please choose the boundary in which you want to apply temperature boundary conditions.""") print ("Edge 1 is between the coordinates (%d, %d) and (%d, %d)" % (x1, y1, x2, y2)) print ("Edge 2 is between the coordinates (%d, %d) and (%d, %d)" % (x2, y2, x3, y3)) print ("Edge 3 is between the coordinates (%d, %d) and (%d, %d)" % (x3, y3, x4, y4)) print ("Edge 4 is between the coordinates (%d, %d) and (%d, %d)" % (x4, y4, x1, y1)) print ("""Please enter the no. of the edge you want to select""") edge = input("> ") if edge == '1': temp_1 = int(input("Please enter the temperature\n> ")) boundary_conditions() elif edge == '2': temp_2 = int(input("Please enter the temperature\n> ")) boundary_conditions() elif edge == '3': temp_3 = int(input("Please enter the temperature\n> ")) boundary_conditions() elif edge == '4': temp_4 = int(input("Please enter the temperature\n> ")) boundary_conditions() else: print("Sorry, that is not a valid value") boundary_conditions() elif type == 'conv': print ("""Please choose the boundary in which you want to apply convection boundary conditions.""") print ("Edge 1 is between the coordinates (%d, %d) and (%d, %d)" % (x1, y1, x2, y2)) print ("Edge 2 is between the coordinates (%d, %d) and (%d, %d)" % (x2, y2, x3, y3)) print ("Edge 3 is between the coordinates (%d, %d) and (%d, %d)" % (x3, y3, x4, y4)) print ("Edge 4 is between the coordinates (%d, %d) and (%d, %d)" % (x4, y4, x1, y1)) print ("""Please enter the no. of the edge you want to select""") edge = input("> ") if edge == '1': temp_amb_1 = int(input("Please enter the value of the ambient temperature\n> ")) conv_coeff_1 = int(input("Please enter the value of the convection coefficient\n> ")) boundary_conditions() elif edge == '2': temp_amb_2 = int(input("Please enter the value of the ambient temperature\n> ")) conv_coeff_2 = int(input("Please enter the value of the convection coefficient\n> ")) boundary_conditions() elif edge == '3': temp_amb_3 = int(input("Please enter the value of the ambient temperature\n> ")) conv_coeff_3 = int(input("Please enter the value of the convection coefficient\n> ")) boundary_conditions() elif edge == '4': temp_amb_4 = int(input("Please enter the value of the ambient temperature\n> ")) conv_coeff_4 = int(input("Please enter the value of the convection coefficient\n> ")) boundary_conditions() else: print("Sorry, that is not a valid value") boundary_conditions() elif type == 'flux': print ("""Please choose the boundary in which you want to apply heat flux boundary conditions.""") print ("Edge 1 is between the coordinates (%d, %d) and (%d, %d)" % (x1, y1, x2, y2)) print ("Edge 2 is between the coordinates (%d, %d) and (%d, %d)" % (x2, y2, x3, y3)) print ("Edge 3 is between the coordinates (%d, %d) and (%d, %d)" % (x3, y3, x4, y4)) print ("Edge 4 is between the coordinates (%d, %d) and (%d, %d)" % (x4, y4, x1, y1)) print ("""Please enter the no. of the edge you want to select""") edge = input("> ") if edge == '1': heat_flux_1 = int(input("Please enter the value of the heat flux in this edge\n> ")) boundary_conditions() if edge == '2': heat_flux_2 = int(input("Please enter the value of the heat flux in this edge\n> ")) boundary_conditions() if edge == '3': heat_flux_3 = int(input("Please enter the value of the heat flux in this edge\n> ")) boundary_conditions() if edge == '4': heat_flux_4 = int(input("Please enter the value of the heat flux in this edge\n> ")) boundary_conditions() else: print ("Sorry, that is not a valid value") boundary_conditions() elif type == 'gen': heat_gen = int(input("Please enter the value of the heat generation per unit volume within the object\n> ")) boundary_conditions() elif type == 'done': stiffness_matrix() else: print ("Sorry, that is not a valid command") boundary_conditions() four_node_iso() def four_node_iso(): # Third step of the process which implements a four node isoparametric element for the analysis global N1, N2, N3, N4, k_small, ST, dN1s, dN2s, dN3s, dN4s, dN1t, dN2t, dN3t, dN4t, s, t, k N1 = ((1+s)*(1+t)/4) # Shape functions N2 = ((1-s)*(1+t)/4) N3 = ((1-s)*(1-t)/4) N4 = ((1+s)*(1-t)/4) dN1s = sym.diff(N1, s); dN1t = sym.diff(N1, t) # Differentiating the shape functions dN2s = sym.diff(N2, s); dN2t = sym.diff(N2, t) dN3s = sym.diff(N3, s); dN3t = sym.diff(N3, t) dN4s = sym.diff(N4, s); dN4t = sym.diff(N4, t) ST = sym.Matrix([[dN1s, dN2s, dN3s, dN4s], [dN1t, dN2t, dN3t, dN4t]]) # Assembling the differentiated shape functions print(ST) k = 4 # k value can be tweaked here k_small = sym.Matrix([[k, 0], [0, k]]) # Calculating the k small matrix which will be the same for all elements since all elements are identical print(k_small) input() stiffness_matrix() # Calls for the next step of the process def stiffness_matrix(): # Fourth step of the process which calculates the element stiffness matrices for all the elements global range_x_temp, range_y_temp, no_of_elements, mx, my, element, xst, yst, J, J_inv, J_det, XT, XT_trans, Ke, K, K_temp, N1, N2, N3, N4, ST, k_small, s, t, k j = 0 i = 0 for h in range(no_of_elements): element[h] = sym.Matrix([[mx[i+1][j+1], my[i+1][j+1]], # Splitting the individual element coordinate matrices to extract the values [mx[i+1][j], my[i+1][j]], [mx[i][j], my[i][j]], [mx[i][j+1], my[i][j+1]]]) j += 1 if j == range_y: j = 0 i += 1 print(element) input() xst[0] = (element[0][0]*N1)+(element[0][2]*N2)+(element[0][4]*N3)+(element[0][6]*N4); print('x =', xst[0]); input() # Calculating the coordinate values in the isoparametric coordinates using yst[0] = (element[0][1]*N1)+(element[0][3]*N2)+(element[0][5]*N3)+(element[0][7]*N4); print('y =', yst[0]); input() # the coordinate values from the cartesian coordinates J[0] = sym.Matrix([[sym.diff(xst[0], s), sym.diff(yst[0], s)], [sym.diff(xst[0], t), sym.diff(yst[0], t)]]); print('Jacobian =', J[0]); input() # Jacobian matrix J_inv[0] = J[0].inv(); print('Jacobian inverse =', J_inv[0]); input() # Jacobian inverse J_det[0] = J[0].det(); print('Jacibian determinant =', J_det[0]); input() # Determinant of the Jacobian matrix XT[0] = J_inv[0]*ST; print('B =', XT[0]); input() # B matrix XT_trans[0] = XT[0].transpose(); print('B transpose =', XT_trans[0]); input() # Transpose of B matrix Ke[0] = sym.Matrix(4, 4, XT_trans[0]*k_small*XT[0]*J_det[0]).tolist(); print('Ke =', Ke[0]); input() # Substituting values into the stiffness matrix equation K[0] = sym.zeros(4, 4).tolist() for m in range(4): # Calculating stiffness matrices for each element for n in range(4): # Calculating K values for each point in an element stiffness matrix K[0][m][n] = (integrate(Ke[0][m][n], (t, -1, 1), (s, -1, 1))) # Integrating each term of the element stiffness matrix print ('Element Stiffness Matrix =', K[0]); input() stiffness_assembly() # Calls for the next step of rhe process def stiffness_assembly(): # Fifth step of the process that assembles all the element stiffness matrices into a single global stiffness matrix global n, mapping, K, row, col, data, row_stiffness, col_stiffness n = int(math.sqrt(no_of_elements)) mapping = num.array([2, 3, 1, 0]) # Mapping to help match values from element stiffness matrices to their respective positions in the global stiffness matrix element_stiffness = num.matrix([[4,-1,-2,-1], [-1,4,-1,-2], [-2,-1,4,-1], [-1,-2,-1,4]]).tolist() a = 0 # Calcualtes the row index values for row_index in range ((n**2)+(n-1)): if (row_index+1) % (n+1) == 0 and row_index != 0: continue row_stiffness[a] = num.array([row_index, row_index+1, row_index+n+1, row_index+n+2]) a += 1 print(row_stiffness) b = 0 # Calculates the column index values for column_index in range((n**2)+(n-1)): if (column_index+1) % (n+1) == 0 and column_index != 0: continue col_stiffness[b] = num.array([column_index, column_index+1, column_index+n+1, column_index+n+2]) b += 1 print(col_stiffness) for i in range(n**2): c = 0 column_final = col_stiffness[i] for j in range(4): row_final = row_stiffness[i][c] c += 1 row_element = mapping[j] col.append(column_final) for k in range(4): row.append(row_final) column_element = mapping[k] data.append(K[0][row_element][column_element]) row = ravel(row) col = ravel(col) data = ravel(data) print(row) print(shape(row)) input() print(col) print(shape(col)) input() print(data) print(shape(data)) input() stiffness = coo_matrix((data, (row, col)), shape=((n+1)**2,(n+1)**2), dtype = int8).toarray() # Assembles the global stiffness matrix print(stiffness) input() # Should call for the next step in the process which is getting boundary conditions from the user input_geometry() # Starts the program from input geometry
import numpy as np import matplotlib.pyplot as plt def load_data(filename): f= open(filename,'r') tmp_str=f.readline() tmp_arr=tmp_str[:-1].split(' ') N=int(tmp_arr[0]);n_row=int(tmp_arr[1]);n_col=int(tmp_arr[2]) print("N=%d, row=%d, col=%d" %(N,n_row,n_col)) data=np.zeros([N,n_row*n_col+1]) for n in range(N): tmp_str=f.readline() tmp_arr=tmp_str[:-1].split(' ') for i in range(n_row*n_col+1): data[n][i]=int(tmp_arr[i]) f.close() return N,n_row,n_col,data def dataset(): N,n_row,n_col,data=load_data('./AND.txt') X_train=data[:N,:-1];Y_train=data[:N,-1] return X_train, Y_train, N def gradient(X, Xm, Y, Ym, N, alpha, lr): for n in range(N): value = (Ym - predictor(X, Xm, N, alpha)) * ((np.dot(Xm, X[n]) +1)**2) alpha[n] = alpha[n] + (lr*value) return alpha def predictor(X, Xm, N, alpha): s = 0 for n in range(N): s = s + ((np.dot(Xm, X[n]) +1)**2)*alpha[n] sigma = sigmoid(s) return sigma def sigmoid(s): large=30 if s<-large: s=-large if s>large: s=large return (1 / (1 + np.exp(-s))) def cost(X,Y,N, alpha): En=0;epsi=1.e-12 for n in range(N): y_pred =predictor(X, X[n], N, alpha) if y_pred<epsi: y_pred=epsi if y_pred>1-epsi:y_pred=1-epsi En=En+Y[n]*np.log(y_pred)+(1-Y[n])*np.log(1-y_pred) En=-En/N return En def stocastic(X, Y, N, max_it, lr): alpha = np.zeros(N) error=[];error.append(cost(X,Y,N, alpha)) epsi=0.5 it=0 while(error[-1]>epsi): idx = np.random.randint(0, N) Xm = X[idx, :] Ym = Y[idx] alpha = gradient(X, Xm, Y, Ym, N, alpha, lr) error.append(cost(X,Y,N, alpha)) print('iteration %d, cost=%.2f\n' %(it,error[-1]),end='') #Second second codition to stop it=it+1 if(it>max_it): break return alpha, error def training(X, Y, N, it, lr): alpha, error = stocastic(X,Y, N, it, lr) plot_cost(error) print('\nin-samples error=%.2f' % (error[-1])) return alpha def validation(X, Y, N, alpha): predictions = [] for n in range(N): y_pred = predictor(X, X[n], N, alpha) if y_pred > 0.5: y_pred = 1 else: y_pred = 0 prediction = [] prediction.append(y_pred) prediction.append(Y[n]) predictions.append(prediction) plot_prediction(predictions) print('out-samples error=%.2f\n' % (cost(X,Y,N, alpha))) return predictions def confusion_matrix(predictions): TP = 0 TN = 0 FN = 0 FP = 0 for prediction in predictions: #Counting the number of true positives and true negatives if prediction[0] == prediction[1]: if prediction[0] == 1 and prediction[1] == 1: TP += 1 else: TN += 1 else: #Counting the number of false positives and false negatives if prediction[0] == 1 and prediction[1] == 0: FN += 1 else: FP += 1 matrix = np.matrix([[TP, FP], [FN, TN]]) try: recall = TP / (TP + FN) except Exception: recall = 0 try: precision = TP / (TP + FP) except Exception: precision = 0 try: accuracy = (TP + TN) / (TP + TN + FP + FN) except Exception: accuracy = 0 return accuracy, precision, recall, matrix def plot_cost(error): plt.plot(range(len(error)), error, marker='o') plt.xlabel('Iterations') plt.ylabel('Number of misclassifications') plt.ylim([0,max(error)+1]) plt.show() def plot_prediction(predictions): y_test = [] y_pred = [] for prediction in predictions: y_test.append(prediction[1]) y_pred.append(prediction[0]) plt.subplot(2,1,1) plt.step(range(len(y_test)),y_test, where="mid", color='g') plt.xlabel('x_test') plt.title('REAL VALUES') plt.ylabel('y_test') plt.subplot(2,1,2) plt.step(range(len(y_pred)),y_pred, where="mid", color='r') plt.xlabel('x_test') plt.title('PREDICTION VALUES') plt.ylabel('y_prediction') plt.tight_layout() plt.show() def main(): X_train, Y_train, N = dataset() max_iterations = 450 learning_rate = 0.02 alpha = training(X_train, Y_train, N, max_iterations, learning_rate) predictions = validation(X_train, Y_train, N, alpha) accuracy, precision, recall, matrix = confusion_matrix(predictions) print("Accuracy: %.2f" % (accuracy)) print("Precision: %.2f" % (precision)) print("Recall: %.2f" % (recall)) print("####Confusion Matrix####") print(matrix) print("########################") main()
import json from pprint import pprint data = json.load(open('file.json')) print (data) pprint(data)
from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^sentiment/', include('sentiment.urls', namespace='sentiment')), url(r'^twitter/', include('sentiment.urls', namespace='twitter')), url(r'^stocks/', include('stocks.urls', namespace='stocks')), url(r'^users/', include('users.urls', namespace='users')), url(r'^$', include('pages.urls', namespace='pages')), url(r'^admin/', include(admin.site.urls)), ]
#!/usr/bin/env python from flaskext.script import Manager, prompt_bool from marked import app # import fixtures as _fixtures from marked.database import init_db import os manager = Manager(app) @manager.shell def make_shell_context(): from marked import models return dict(app=app, mod=models) @manager.command def newdb(): """Deletes the database, and creates a new empty one.""" if prompt_bool("Are you sure you want to lose all your data"): try: os.remove('test.db') except OSError: print "Database did not exist" init_db() # @manager.command # def test(): # """docstring for tests""" # from unittest import TestLoader, TextTestRunner # cur_dir = os.path.dirname(os.path.abspath(__file__)) # loader = TestLoader() # test_suite = loader.discover(cur_dir) # runner = TextTestRunner(verbosity=2) # runner.run(test_suite) if __name__ == "__main__": manager.run()
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-14 14:42 from __future__ import unicode_literals from django.db import migrations, models import django_extensions.db.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Player', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', django_extensions.db.fields.CreationDateTimeField(auto_now_add=True, verbose_name='created')), ('modified', django_extensions.db.fields.ModificationDateTimeField(auto_now=True, verbose_name='modified')), ('first_name', models.CharField(max_length=64, verbose_name='first name')), ('last_name', models.CharField(max_length=64, verbose_name='last name')), ('photo', models.ImageField(null=True, upload_to='players_photos', verbose_name='photo')), ('PERSON_ID', models.PositiveIntegerField(unique=True, verbose_name='PERSON_ID')), ('PLAYERCODE', models.CharField(max_length=128, unique=True, verbose_name='PLAYERCODE')), ], options={ 'verbose_name_plural': 'players', 'ordering': ['last_name', 'first_name'], 'verbose_name': 'player', }, ), ]
#-------------------------------- IMPORTS ----------------------------------- import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt #------------------------ FUNCTION DEFINITIONS ------------------------------ def build_SQL_query(ra_range, dec_range, n_obj): """ Query is designed to return the following columns: catalog ID, right ascension, declination green-band magnitude, red-band magnitde, and infrared-band magnitude. The SQL query is formatted for http://skyserver.sdss.org/dr14/en/tools/search/x_results.aspx?searchtool=SQL&TaskName=Skyserver.Search.SQL&syntax=NoSyntax&ReturnHtml=true&cmd= 'ra_range' and 'dec_range' are two-element iterables representing ranges in degrees of right ascension and declination, respectively 'n_obj' is how many hits to return Returns a string containing the SQL query. """ select_stmt = 'SELECT TOP ' + str(n_obj) + ' p.objID, p.ra, p.dec, p.g, p.r, p.i' from_stmt = 'FROM photoobj as p' where_stmt = 'WHERE p.ra BETWEEN ' + \ str(ra_range[0]) + ' AND ' + str(ra_range[1]) + \ ' AND p.dec BETWEEN ' + str(dec_range[0]) + ' AND ' + str(dec_range[1]) + \ ' AND p.r > 1' + \ ' AND p.mode = 1' order_stmt = 'ORDER BY p.r ASC' query = ' '.join([select_stmt, from_stmt, where_stmt, order_stmt]) print('') print('QUERY:') print(query) return query def prep_str_for_http(s): """ SQL query will be over HTTP, so need to swap out certain characters """ new_s = s.replace(' ', '+') new_s = new_s.replace(',', '%2C') new_s = new_s.replace('\n', '%0D%0A') return new_s def build_query_URL(sql_str): """ Formats the SQL string into an URL for HTTP 'sql_str' is a properly formatted SQL query Returns the URL string. """ url_1 = 'http://skyserver.sdss.org/dr14/en/tools/search/x_results.aspx?searchtool=SQL&TaskName=Skyserver.Search.SQL&syntax=NoSyntax&ReturnHtml=true&cmd=' url_2 = prep_str_for_http(sql_str) url_3 = '&format=html&TableName=' return url_1 + url_2 + url_3 def submit_query_and_parse_response(ra_range, dec_range, n_obj): """ 'ra_range' and 'dec_range' are two-element iterables representing ranges in degrees of right ascension and declination, respectively 'n_obj' is how many hits to return Returns dataframe of catalog data, according to definitions in build_SQL_query() """ sql_str = build_SQL_query(ra_range, dec_range, n_obj) url = build_query_URL(sql_str) response = requests.get(url) raw_html = response.text soup = BeautifulSoup(raw_html, 'lxml') table_body = soup.find("table") rows = table_body.find_all("tr") header = rows[0] col_names = [c.text for c in header.find_all('td')] data_rows = rows[1:] row_data_lst = [] for i, r in enumerate(data_rows): row_data = [td.text for td in r.find_all("td")] row_data_lst.append(row_data) df = pd.DataFrame(row_data_lst, columns = col_names) df['objID'] = df['objID'].astype(str) df['ra'] = df['ra'].astype(float) df['dec'] = df['dec'].astype(float) df['g'] = df['g'].astype(float) df['r'] = df['r'].astype(float) df['i'] = df['i'].astype(float) return df def ra_dec_to_pixels(celestial_coords, dec, delta_dec, ra, delta_ra, img_size): """ Convert celestial coordinates into image coordinates. 'celestial_coords' is N x 2 array, with RA values in column 0, declination in column 1 'dec', and 'ra', are the center of the search window. 'delta_dec' and 'delta_ra' are the half-widths of the window. The search window is the same as the star field window. they are coextensive. We assume here that the window is square, which, in general, means that that ra_delta will have to be larger than dec_delta, because RA is azimuthal angle, which subtends smaller distances at large declinations, i.e. closer to poles. Higher values of RA will be on left side of image, for convention that star field is displayed with Eastern horizon is on left side. Higher values of declination will be on top side of image. Image format will have row zero displayed on top of image, and column zero displayed on left edge. """ image_y = ((dec + delta_dec)-celestial_coords[:,1]) * \ (img_size / (2*delta_dec)) image_x = -1*(celestial_coords[:,0] - (ra + delta_ra)) * \ (img_size / (2*delta_ra)) return np.concatenate([image_x.reshape(-1,1), image_y.reshape(-1,1)], axis=1)
import numpy as np import math # 30个点的坐标 points = [(0, 0), (20, 36), (96, 14), (14, 59), (15, 35), (59, 74), (6, 7), (65, 52), (12, 44), (-67, 73), (-23, 0), (-61, 68), (-25, 92), (-87, 87), (-81, 11), (-3, 16), (-24, -90), (-31, -50), (-30, -43), (-74, -28), (-24, -21), (-6, -30), (-95, -76), (29, -30), (3, -52), (30, -40), (45, -79), (64, -63), (29, -88), (95, -91)] # 30个点的属性 field = [91, 62, 69, 29, -43, 11, 29, -45, 56, -59, 87, 88, 24, -51, -77, 57, -98, 25, 0, 80, -50, -85, 60, 10, -31, 78, 99, 51, -42, 98] # 点的个数:30 count = len(field) #计算属性平均值 sum = 0.0 for i in range(count): sum += field[i] average = sum / count #计算权重矩阵 #采用两点之间距离的倒数 w = np.ones((count, count), dtype=float) for i in range(count): for j in range(count): if i != j: d_ij = math.sqrt((points[i][0] - points[j][0]) ** 2 + (points[i][1] - points[j][1]) ** 2) if d_ij > 0: w[i][j] = 1.0 / d_ij #计算叉积之和 sum1 = 0.0 for i in range(count): for j in range(count): sum1 += w[i][j] * (field[i] - average) * (field[j] - average) #计算偏差值平方和 sum2 = 0.0 for i in range(count): sum2 += (field[i] - average) ** 2 #计算权重聚合 s = 0.0 for i in range(count): for j in range(count): s += w[i][j] Moran_I = count / s * sum1 / sum2 print(Moran_I)
import random as r import time as t import os class Game(): incorrect = 0 count = 0 score_list = [] #타자연습에 들어갈 문장 Flower = [] Flower.append("여름장이란 애시당초에 글러서, 해는 아직 중천에 있건만") Flower.append("장판은 벌써 쓸쓸하고 더운 햇발이 벌여 놓은 전 휘장 밑으로 등줄기 훅훅 볶는다.") Flower.append("마을 사람들은 거지반 돌아간 뒤요, 팔리지 못한 나뭇군패가 길거리에 궁싯거리고들") Rain = [] Rain.append("소년은 개울가에서 소녀를 보자 곧 윤초시네 증손녀 딸이라는 걸 알 수 있었다.") Rain.append("소녀는 개울에다 손을 잠그고 물장난을 하고 있는 것이다. 서울서는 이런 개울물을 보지 못기나하니한듯이.") Rain.append("벌써 며칠 째 소녀는, 학교에서 돌아오는 길에 물장난이었다. 소년은 개울둑에 앉아버렸다.") Ball = [] Ball.append("사람들은 아버지를 난쟁이라고 불렀다. 사람들은 옳게 보았다. 아버지는 난쟁이다.") Ball.append("불행하게도 사람들은 아버지를 보는 것 하나만 옳았다. 그 밖의 것들은 하나도 옳지 않았다.") Ball.append("나는 아버지, 어머니, 영호, 영희, 그리고 나를 포함한 다섯 식구의 모든 것을 걸고 그들이") def pause_cls(self): os.system("pause") os.system("cls") player = Game() while True: print("타자게임") print(""" ================ 1. 게임 시작 2. 평균 타자 순위 출력 """) select1 = int(input("선택하시오. ")) if select1 == 1: os.system("cls") input("\n=== Enter로 시작 ===") os.system("cls") print(""" === 쳐보고 싶은 단어 선택하세요. === 1. 메밀꽃 필 무렵 2. 소나기 3. 난쟁이가 쏘아 올린 작은 공 """) select2 = int(input("선택하시오. ")) if select2 == 1: os.system("cls") print() print(player.Flower[0]) start = t.time() answer = input("") print(player.Flower[1]) answer = input("") print(player.Flower[2]) answer = input("") end = t.time() print("걸린 시간은 %.2f초입니다."%(end - start)) elif select2 == 2: os.system("cls") print(player.Rain[0]) answer = input("") start = t.time() print(player.Rain[1]) answer = input("") print(player.Rain[2]) answer = input("") end = t.time() print("걸린 시간은 %.2f초입니다."%(end - start)) elif select2 == 3: os.system("cls") print(player.Ball[0]) answer = input("") start = t.time() print(player.Ball[1]) answer = input("") print(player.Ball[2]) answer = input("") end = t.time() print("걸린 시간은 %.2f초입니다."%(end - start)) else: print("잘 못 입력하셨습니다.") player.score_list.append(end-start) if select1 == 2: player.score_list.sort() count = 1 for i in player.score_list: print("%d등 : %.2f"%(count,i)) count += 1
""" Fractal trees and plants are among the easiest of fractal objects to understand. They are based on the idea of self-similarity. Each of the branches is a smaller version of the main trunk of the tree. The main idea in creating fractal trees or plants is to have a base object and to then create smaller, similar objects protruding from that initial object. This method is a recursive method, meaning that it continues for each child down to a finite number of steps. """
from flask import Flask, request, render_template, flash, url_for from flask import Response from werkzeug.utils import redirect import psycopg2 from AirBnb import compute_predictions from werkzeug.utils import secure_filename import os from flask import send_from_directory from Airbnb_config import FeatureSelection, DateTimeColumns, Geo ,host_response_rate ,treat_missing_first, categorical_encoder, treat_missing_second ,Scaler_Min_Max, Mydimension_reducer import pandas as pd import numpy as np app=Flask(__name__,template_folder='Html') UPLOAD_FOLDER = 'Uploads' ALLOWED_EXTENSIONS = {'csv', 'xlsx'} app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.secret_key = "AIApps" @app.route('/') def index(): return render_template('index.html') @app.route('/AllApps') def AllApps(): return render_template('All_Apps.html') @app.route('/AirBnB') def AirBnB(): return render_template('AirBnB.html') def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/upload_airbnb', methods = ['GET', 'POST']) def upload_file(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] # if user does not select file, browser also # submit an empty part without filename if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) ##########################Compute########################### Predictions=compute_predictions('Uploads/'+filename) # Predictions=compute_predictions('Uploads/',filename) os.remove('Uploads/'+filename) ##########################Export########################### resp = Response(Predictions.to_csv()) # flash("Task Completed!") resp.headers["Content-Disposition"] = "attachment; filename=AirBNB_Predictions.csv" resp.headers["Content-Type"] = "text/csv" return resp # # return render_template('AirBnB.html') if __name__ == '__main__': app.run(debug=True)
from PIL import Image import numpy as np ################ dilation def dilation(kernel, input_name): img_input = Image.open(input_name) pixels_input = img_input.load() dilation_output = Image.new(img_input.mode, img_input.size) dilation_pixels = dilation_output.load() # initial for x in range(dilation_output.width): for y in range(dilation_output.height): dilation_pixels[x, y] = 0 for x in range(img_input.width): for y in range(img_input.height): if pixels_input[x, y] == 255: flag = True # check boundry for z in range(len(kernel)): x1 = x + kernel[z][0] y1 = y + kernel[z][1] if x1 < 0 or x1 > 511 or y1 < 0 or y1 > 511: flag = False break if flag == True: for z in range(len(kernel)): x1 = x + kernel[z][0] y1 = y + kernel[z][1] dilation_pixels[x1, y1] = 255 return dilation_output #dilation_output.save(output_name) ################ erosion def erosion(kernel, input_name): img_input = Image.open(input_name) pixels_input = img_input.load() erosion_output = Image.new(img_input.mode, img_input.size) erosion_pixels = erosion_output.load() # initial for x in range(erosion_output.width): for y in range(erosion_output.height): erosion_pixels[x, y] = 0 for x in range(img_input.width): for y in range(img_input.height): flag = True # check boundry for z in range(len(kernel)): x1 = x + kernel[z][0] y1 = y + kernel[z][1] if x1 < 0 or x1 > 511 or y1 < 0 or y1 > 511: flag = False break if pixels_input[x1, y1] != 255: flag = False break if flag == True: erosion_pixels[x, y] = 255 return erosion_output #erosion_output.save(output_name) kernel = [] for i in range(5): for j in range(5): temp = [i-2, j-2] kernel.append(temp) kernel.remove([-2,-2]) kernel.remove([-2,2]) kernel.remove([2,-2]) kernel.remove([2,2]) output = dilation(kernel, "binary.bmp") output.save("dilation.bmp") output = erosion(kernel, "binary.bmp") output.save("erosion.bmp") output = dilation(kernel, "erosion.bmp") output.save("opening.bmp") output = erosion(kernel, "dilation.bmp") output.save("closing.bmp") ################ h&m kernel = [[0,0],[-1,0],[0,1]] kernel2 = [[0,-1],[1,-1],[1,0]] img_input = Image.open("binary.bmp") pixels_input = img_input.load() complement_output = Image.new(img_input.mode, img_input.size) complement_pixels = complement_output.load() for x in range(img_input.width): for y in range(img_input.height): if pixels_input[x, y] == 0: complement_pixels[x, y] = 255 else: complement_pixels[x,y] = 0 complement_output.save("complement.bmp") output1 = erosion(kernel, "binary.bmp") output1_pixels = output1.load() output2 = erosion(kernel2, "complement.bmp") output2_pixels = output2.load() hnm_output = Image.new(output1.mode, output1.size) hnm_pixels = hnm_output.load() for x in range(output1.width): for y in range(output1.height): if output1_pixels[x, y] == 255 and output2_pixels[x, y] == 255: hnm_pixels[x, y] = 255 hnm_output.save("hnm.bmp")
from sender.celery_app import celery_app from sender.transport import Transport @celery_app.task def send_message(message_id): """Задача отправки сообщения :param message_id: идентификатор сообщения :return: результат отправки """ transport = Transport(message_id) return transport.send()
(this was done in the console) >>> #make a list with Monday, Tuesday, Wednesday >>> week = ['Monday','Tuesday','Wednesday'] >>> week ['Monday', 'Tuesday', 'Wednesday'] >>> week[1] 'Tuesday' >>> week[-2] 'Tuesday' >>> week.append('Thursday') >>> week ['Monday', 'Tuesday', 'Wednesday', 'Thursday'] >>> week[1:3] ['Tuesday', 'Wednesday'] >>> week.remove('Monday') >>> week ['Tuesday', 'Wednesday', 'Thursday'] >>> week.sort() >>> week ['Thursday', 'Tuesday', 'Wednesday'] >>> week.reverse() >>> week ['Wednesday', 'Tuesday', 'Thursday'] >>> week[1]='Friday' >>> week ['Wednesday', 'Friday', 'Thursday'] >>> len(week) 3 >>>
#With the "items" method, you can iterate over both keys and values of a dictionar l={"france":"paris","india":"delhi"} for country,capitals in l.items(): print("the capital of " + country + " is " + capitals + "")
import os import sys import logging ## ws_client and msg_ntk path sys.path.insert(0, os.path.abspath("../ws_client")) sys.path.insert(0, os.path.abspath("../msg_ntk")) from ws_client import WebsocketClient from msg_ntk import Map2DDataPUB from msg_ntk import Map2DDataSUB ## LOGGING INFO logging.basicConfig() LOGGER = logging.getLogger(__name__) LOGGER.setLevel(level=logging.INFO) class EdgeComm(): def __init__(self): # varaibles self.ws_hostaddress = 'https://heroku-uni-socket.herokuapp.com/' self.ws_sio = "" # init self.ws = WebsocketClient(self.ws_hostaddress,self.ws_msg) self.map_2d_data_sub = Map2DDataSUB(self.map_2d_data_pub_cb) def ws_msg(self,msg): LOGGER.info(" ws -> edge_comm got msg: %s", msg) def map_2d_data_pub_cb(self,msg): LOGGER.info(" msg_ntk -> edge_comm got msg") # emit self.ws_sio.emit('map_data', {'map': "MAP DATA"}) def start_it(self): # ws self.ws.start_it() # get ws_sio self.ws_sio = self.ws.get_ws_sio() # msg_ntk self.map_2d_data_sub.deamon = True self.map_2d_data_sub.start() if __name__ == '__main__': app = EdgeComm() app.start_it()
"""OctreeLevelInfo and OctreeLevel classes. """ from __future__ import annotations import logging import math from typing import TYPE_CHECKING, Dict, List, Optional import numpy as np from napari.layers.image.experimental.octree_chunk import ( OctreeChunk, OctreeChunkGeom, ) from napari.layers.image.experimental.octree_util import OctreeMetadata LOGGER = logging.getLogger("napari.octree") if TYPE_CHECKING: from napari.types import ArrayLike class OctreeLevelInfo: """Information about one level of the octree. This should be a NamedTuple. Parameters ---------- meta : OctreeMetadata Information about the entire octree. level_index : int The index of this level within the whole tree. """ def __init__(self, meta: OctreeMetadata, level_index: int) -> None: self.meta = meta self.level_index = level_index self.scale = 2**self.level_index base = meta.base_shape self.image_shape = ( int(base[0] / self.scale), int(base[1] / self.scale), ) tile_size = meta.tile_size scaled_size = tile_size * self.scale self.rows = math.ceil(base[0] / scaled_size) self.cols = math.ceil(base[1] / scaled_size) self.shape_in_tiles = [self.rows, self.cols] self.num_tiles = self.rows * self.cols class OctreeLevel: """One level of the octree. An OctreeLevel is "sparse" in that it only contains a dict of OctreeChunks for the portion of the octree that is currently being rendered. So even if the full level contains hundreds of millions of chunks, this class only contains a few dozens OctreeChunks. This was necessary because even having a null reference for every OctreeChunk in a level would use too much space and be too slow to construct. Parameters ---------- slice_id : int The id of the OctreeSlice we are in. data : ArrayLike The data for this level. meta : OctreeMetadata The base image shape and other details. level_index : int Index of this specific level (0 is full resolution). Attributes ---------- info : OctreeLevelInfo Metadata about this level. _tiles : Dict[tuple, OctreeChunk] Maps (row, col) tuple to the OctreeChunk at that location. """ def __init__( self, slice_id: int, data: ArrayLike, meta: OctreeMetadata, level_index: int, ) -> None: self.slice_id = slice_id self.data = data self.info = OctreeLevelInfo(meta, level_index) self._tiles: Dict[tuple, OctreeChunk] = {} def get_chunk( self, row: int, col: int, create=False ) -> Optional[OctreeChunk]: """Return the OctreeChunk at this location if it exists. If create is True, an OctreeChunk will be created if one does not exist at this location. Parameters ---------- row : int The row in the level. col : int The column in the level. create : bool If True, create the OctreeChunk if it does not exist. Returns ------- Optional[OctreeChunk] The OctreeChunk if one existed or we just created it. """ try: return self._tiles[(row, col)] except KeyError: if not create: return None # It didn't exist so we're done. rows, cols = self.info.shape_in_tiles if row < 0 or row >= rows or col < 0 or col >= cols: # The coordinates are not in the level. Not an exception because # callers might be trying to get children just over the edge # for non-power-of-two base images. return None # Create a chunk at this location and return it. octree_chunk = self._create_chunk(row, col) self._tiles[(row, col)] = octree_chunk return octree_chunk def _create_chunk(self, row: int, col: int) -> OctreeChunk: """Create a new OctreeChunk for this location in the level. Parameters ---------- row : int The row in the level. col : int The column in the level. Returns ------- OctreeChunk The newly created chunk. """ level_index = self.info.level_index meta = self.info.meta layer_ref = meta.layer_ref from napari.components.experimental.chunk._request import ( OctreeLocation, ) location = OctreeLocation( layer_ref, self.slice_id, level_index, row, col ) scale = self.info.scale tile_size = self.info.meta.tile_size scaled_size = tile_size * scale pos = np.array( [col * scaled_size, row * scaled_size], dtype=np.float32 ) data = self._get_data(row, col) # Create OctreeChunkGeom used by the visual for rendering this # chunk. Size it based on the base image pixels, not based on the # data in this level, so it's exact. base = np.array(meta.base_shape[::-1], dtype=float) remain = base - pos size = np.minimum(remain, [scaled_size, scaled_size]) geom = OctreeChunkGeom(pos, size) # Return the newly created chunk. return OctreeChunk(data, location, geom) def _get_data(self, row: int, col: int) -> ArrayLike: """Get the chunk's data at this location. Parameters ---------- row : int The row coordinate. col : int The column coordinate. Returns ------- ArrayLike The data at this location. """ tile_size = self.info.meta.tile_size array_slice = ( slice(row * tile_size, (row + 1) * tile_size), slice(col * tile_size, (col + 1) * tile_size), ) if self.data.ndim == 3: array_slice += (slice(None),) # Add the colors. return self.data[array_slice] def log_levels(levels: List[OctreeLevel], start_level: int = 0) -> None: """Log the dimensions of each level nicely. We take start_level so we can log the "extra" levels we created but with their correct level numbers. Parameters ---------- levels : List[OctreeLevel] Print information about these levels. start_level : int Start the indexing at this number, shift the indexes up. """ from napari._vendor.experimental.humanize.src.humanize import intword def _dim_str(dim: tuple) -> None: return f"({dim[0]}, {dim[1]}) = {intword(dim[0] * dim[1])}" for index, level in enumerate(levels): level_index = start_level + index image_str = _dim_str(level.info.image_shape) tiles_str = _dim_str(level.info.shape_in_tiles) LOGGER.info( "Level %d: %s pixels -> %s tiles", level_index, image_str, tiles_str, )
import yfinance as yf # msft = yf.Ticker("Visa") # print(msft.info) # #history = msft.history(period="max") # temp = yf.Tickers # history = msft.history(period="3d") # print(history.size) # print(len(history)) # #print(history.columns) # # print(history) # for ind in history.index: # for col in history.columns: # print(col, ind) # print(history[col][ind]) # print("----------------------") from symbol_manager import SymbolMananger # msft = yf.Ticker("MSFT") # history = msft.history(period="3d") sm = SymbolMananger() hundred_symbols = sm.get_symbols_space_separated() data = yf.download(hundred_symbols, period="5d") print(data.size) print(len(data))
######Selection Sort def selection_sort(l1) for i in range(0,len(l1)): max_index=0 max_val=l1[0] for j in range(0,len(l1)-i): if l1[j]>max_val: max_index=j max_val=l1[j] #swaping max index with last index of sub array last_index=len(l1)-i-1 tmp=l1[last_index] l1[last_index]=l1[max_index] l1[max_index]=tmp return l1 if __name__ == "__main__": #changing into python modules arr=[92,74,25,255,29,1,21] sorted_arr=selection_sort(arr) print(sorted_arr)
class Translator(): """Abstract class for translating standard ciphers (i.e. Morse Code)""" key = [] def translate(self, *args): """Base method for decoding a cipher""" raise NotImplementedError() def interactiveTranslate(self): """For quick translating with each character typed from the user, type ! to remove last characters""" print "Interactive translation:" result = "" while True: try: i = raw_input(" "*len(result)) if (len(i) and i[0] == "!"): result = result[:-len(i)] else: result += self.translate(i) print result except KeyboardInterrupt: print result return result def encode(self, *args): """Reversed translation""" raise NotImplementedError() def decode(self, *args): """Just and alias for translate""" return self.translate(*args) def graphicEncode(self, *args): """Return in numpy array for easy plotting""" raise NotImplementedError() def parseInput(self, cipher): """Standardize input to a list, values preferably integers indexed from 0""" return cipher def setKey(self, key): self.key = key
"""FAM URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views from investments import views as investment_views urlpatterns = [ path('admin/', admin.site.urls), path('', views.home, name='home'), path('signup/', views.signup_view, name='signup'), path('login/', views.login_view, name='login'), path('search/', investment_views.search_view, name="search_asset"), path('search/add-asset/', investment_views.add_asset, name="add_asset"), path('investments/', investment_views.investment_view, name="investments"), path('investments/remove-asset', investment_views.delete_asset, name="delete_asset"), ]
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.core import serializers from django.views import View from django.http import HttpResponseRedirect from django.shortcuts import render from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_exempt from rest_framework.parsers import JSONParser from rest_framework.response import Response from rest_framework import status from rest_framework.renderers import JSONRenderer from .serializers import CollectionSerializer, ExhibitSerializer, ModuleSerializer, QuestionSerializer from .models import Collection, Exhibit, Module, Question class CollectionView(View): @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(CollectionView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): try: data = Collection.objects.filter(colID = self.kwargs['cID']) except KeyError: data = Collection.objects.filter() ser = CollectionSerializer(data, many=True) return JsonResponse(ser.data, safe=False) def post(self, request, *args, **kwargs): #Request data data = JSONParser().parse(request) #Check to see if the entry already exists try: dataUp = Collection.objects.get(colID = data['colID']) if dataUp is not None: print("Found") ser = CollectionSerializer(dataUp, data = data ) ser.is_valid() ser.save() return HttpResponse(status=200) except Collection.DoesNotExist: ser = CollectionSerializer(data = data) if ser.is_valid(): ser.save() return HttpResponse(status=201) return HttpResponse(status=400) class ExhibitView(View): @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(ExhibitView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): try: data = Exhibit.objects.filter(exhID = self.kwargs['eID']) except KeyError: data = Exhibit.objects.filter() ser = ExhibitSerializer(data, many=True) return JsonResponse(ser.data, safe=False) def post(self, request, *args, **kwargs): #Request data data = JSONParser().parse(request) #Check to see if the entry already exists try: dataUp = Exhibit.objects.get(exhID = data['exhID']) if dataUp is not None: print("Found") ser = ExhibitSerializer(dataUp, data = data ) ser.is_valid() ser.save() return HttpResponse(status=200) except Exhibit.DoesNotExist: ser = ExhibitSerializer(data = data) if ser.is_valid(): ser.save() return HttpResponse(status=201) return HttpResponse(status=400) class ModuleView(View): @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(ModuleView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): try: data = Module.objects.filter(modID = self.kwargs['mID']) except KeyError: data = Module.objects.filter() ser = ModuleSerializer(data, many=True) return JsonResponse(ser.data, safe=False) def post(self, request, *args, **kwargs): #Request data data = JSONParser().parse(request) #Check to see if the entry already exists try: dataUp = Module.objects.get(modID = data['modID']) if dataUp is not None: print("Found") ser = ModuleSerializer(dataUp, data = data ) ser.is_valid() ser.save() return HttpResponse(status=200) except Module.DoesNotExist: ser = ModuleSerializer(data = data) if ser.is_valid(): ser.save() return HttpResponse(status=201) return HttpResponse(status=400) class QuestionView(View): @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(QuestionView, self).dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): try: data = Question.objects.filter(modID = self.kwargs['qID']) except KeyError: data = Question.objects.filter() ser = ModuleSerializer(data, many=True) return JsonResponse(ser.data, safe=False) def post(self, request, *args, **kwargs): #Request data data = JSONParser().parse(request) #Check to see if the entry already exists try: dataUp = Question.objects.get(modID = data['queID']) if dataUp is not None: print("Found") ser = ModuleSerializer(dataUp, data = data ) ser.is_valid() ser.save() return HttpResponse(status=200) except Question.DoesNotExist: ser = ModuleSerializer(data = data) if ser.is_valid(): ser.save() return HttpResponse(status=201) return HttpResponse(status=400)
import pygame, sys import itertools import time import OpenGL.GL as gl import neurodot_present.present_lib as pl from neurodot_present.present_lib import Screen, CheckerBoard, UserEscape, VsyncPatch pl.DEBUG = False ################################################################################ if __name__ == "__main__": pygame.init() pygame.mouse.set_visible(True) LOOP_MODE = 2 # 2 is using DoubleCheckerboardFlasher loop structure, 1 is using regular CheckerboardFlasher delay DURATION = 20 flash_rate = 19 # Hz display_mode = pygame.display.list_modes()[-1] scr = Screen(display_mode = display_mode) vsync_patch = VsyncPatch(left = scr.screen_right - pl.VSYNC_PATCH_WIDTH_DEFAULT, bottom = scr.screen_bottom, width = pl.VSYNC_PATCH_WIDTH_DEFAULT, height = pl.VSYNC_PATCH_HEIGHT_DEFAULT ) cb1 = CheckerBoard(1, color1 = [1.0, 1.0, 1.0], color2 = [0.0, 0.0, 0.0], width = 0.5) cb2 = CheckerBoard(1, color1 = [0.0, 0.0, 0.0], color2 = [1.0, 1.0, 1.0], width = 0.5) CB_cycle = itertools.cycle((cb2, cb1)) vvals_cycle = itertools.cycle((0, 15)) try: vsync_value = vvals_cycle.next() CB = CB_cycle.next() board_width = CB.width * CB.nrows dtc = 1.0/flash_rate tc = time.time() #time since last change t0 = time.time() t_list = [] def render_routine(): #prepare rendering model gl.glClear(gl.GL_COLOR_BUFFER_BIT) gl.glMatrixMode(gl.GL_MODELVIEW) gl.glLoadIdentity() # render vsync patch vsync_patch.render(value = vsync_value) # translate to position of board and render gl.glTranslatef(-board_width / 2.0, -board_width / 2.0, 0.0) CB.render() #show the scene pygame.display.flip() is_running = True while is_running: t = time.time() if t > (tc + dtc) and LOOP_MODE == 2: vsync_value = vvals_cycle.next() CB = CB_cycle.next() tc = t #update change time render_routine() t_list.append(t) #this is for measuring the loop delay if LOOP_MODE == 1: vsync_value = vvals_cycle.next() CB = CB_cycle.next() dt = scr.clock.tick_busy_loop(flash_rate) render_routine() #dt = scr.clock.tick_busy_loop(1000) #handle outstanding events is_running = scr.handle_events() #print t, t0, duration if t - t0 > DURATION: is_running = False #----------------------------------------------------------------------- #this is for measuring the loop delay import numpy as np print "Mean loop dt: ", np.array(np.diff(t_list).mean()) print "Frequency (Hz):", 1.0 / np.array(np.diff(t_list).mean()) except UserEscape as exc: print exc finally: pass #exit pygame.quit() sys.exit()
""" """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from astropy import units as u from astropy import constants as const import scipy.integrate as integrate from .default_cosmo import default_cosmo # define a default cosology for utilities from .distance_functions import hubble_distance, angular_diameter_distance, _Ez __all__=('comoving_volume',) __author__=('Duncan Campbell') def comoving_volume(z,dw,cosmo=None): """ Calculate comoving volume parameters ---------- z: float redshift dw: float solid angle cosmo: astropy.cosmology object, optional cosmology object specifying cosmology. If None, FlatLambdaCDM(H0=70,Om0=0.3) returns ------- VC: float comoving volume in Mpc^3 """ if cosmo==None: cosmo = default_cosmo DH = hubble_distance(cosmo.H0.value) f = lambda zz: DH*((1.0+zz)**2.0*angular_diameter_distance(zz,cosmo)**2.0)/(_Ez(zz, cosmo.Om0, cosmo.Ok0, cosmo.Ode0)) VC = integrate.quadrature(f,0.0,z,vec_func=False)[0]*dw return VC
import os import random import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use("ggplot") %matplotlib inline from tqdm import tqdm_notebook, tnrange from itertools import chain from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize from skimage.morphology import label from sklearn.model_selection import train_test_split import tensorflow as tf import skimage.io as io from keras.models import Model, load_model from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout from keras.layers.core import Lambda, RepeatVector, Reshape from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D from keras.layers.merge import concatenate, add from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.optimizers import Adam from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img from keras.layers import Lambda, LeakyReLU, Reshape, Add, Cropping2D, Conv2DTranspose, Permute, Conv2D, MaxPooling2D, Activation from keras.models import Sequential import numpy as np import pandas as pd import os from keras.layers import Dense,Input,LSTM,Bidirectional,Activation,Conv1D,GRU from keras.callbacks import Callback from keras.layers import Dropout,Embedding,GlobalMaxPooling1D, MaxPooling1D, Add, Flatten from keras.preprocessing import text, sequence from keras.layers import GlobalAveragePooling1D, GlobalMaxPooling1D, concatenate, SpatialDropout1D from keras import initializers, regularizers, constraints, optimizers, layers, callbacks from keras.callbacks import EarlyStopping,ModelCheckpoint from keras.models import Model from keras.optimizers import Adam from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import roc_auc_score from keras import backend as K from skimage.transform import rescale from skimage import img_as_uint import skimage.io as io import skimage.transform as trans n = 25 for i in range(0, n): path = str(i)+'.tif' img = io.imread('train/image/'+path) img_resized = rescale(img, (0.835,0.917), anti_aliasing=False) # print(img_resized.shape) img_resized = img_as_uint(img_resized) path = str(i)+'.tif' io.imsave('train/image_processed/'+path, img_resized) for i in range(0, n): path = str(i)+'.tif' img = io.imread('train/label/'+path) img_resized = rescale(img, (0.835,0.917), anti_aliasing=False) img_resized = img_as_uint(img_resized) path = str(i)+'.tif' io.imsave('train/label_processed/'+path, img_resized) n = 10 for i in range(0, n): path = str(i)+'.tif' img = io.imread('test/image/'+path) img_resized = rescale(img, (0.83479,0.9172), anti_aliasing=False) img_resized = img_as_uint(img_resized) path = str(i)+'.tif' io.imsave('test/image_processed/'+path, img_resized) def vgg_model (IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS): inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) c100 = Conv2D(64, (3, 3),activation='elu', kernel_initializer='he_normal', name='conv1_1', padding='same') (inputs) c1 = Conv2D(64, (3, 3),activation='elu', kernel_initializer='he_normal',name='conv1_2', padding='same') (c100) p1 = MaxPooling2D((2, 2),strides=(2,2)) (c1) c2 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1) c2 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2) p2 = MaxPooling2D((2, 2),strides=(2,2)) (c2) c3 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2) c3 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3) c3 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3) p3 = MaxPooling2D((2, 2),strides=(2,2)) (c3) c4 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3) c4 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4) c4 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4) p4 = MaxPooling2D(pool_size=(2, 2),strides=(2,2)) (c4) c5 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p4) # c5 = Dropout(0.3) (c5) c5 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5) c5 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5) p5 = MaxPooling2D(pool_size=(2, 2),strides=(2,2)) (c5) u6 = Conv2D(4096, (3, 3), strides=(3, 3), padding='same') (c5) # u6 = concatenate([u6, c4]) c6 = Conv2D(4096, (1, 1), strides=(1, 1), padding='same') (u6) # c6 = Dropout(0.2) (c6) # c6 = Conv2D(512, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6) c7=Conv2D(1, kernel_size=(1, 1), padding='same', activation='relu', name='score_fr')(c6) c8=LeakyReLU()(Conv2D(1, kernel_size=(4,4), padding='same', name='score14')(c7)) c9=(Cropping2D(cropping=((0, 2), (0, 2))))(c8) skip1=Add()([c9, inputs]) c99=LeakyReLU()(Conv2D(1, kernel_size=(8,8), padding='same', name='score14')(skip1)) c10=Cropping2D(cropping=((2, 2), (2, 2)))(c99) c10=LeakyReLU()(Conv2D(1, kernel_size=(8,8), padding='same', name='score14')(c10)) c10=Cropping2D(cropping=((2, 2), (2, 2)))(c10) outputs = Conv2D(1, (1, 1), activation='sigmoid') (c10) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer=Adam(lr = 1e-4), loss='binary_crossentropy', metrics=['accuracy']) model.summary() return model def trainGenerator(batch_size, train_path, img_folder, mask_folder, aug_dict, color_mode = 'grayscale', mask_color_mode = 'grayscale', target_size = (576,576), seed = 1): image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) image_generator = image_datagen.flow_from_directory(train_path, classes = [img_folder], class_mode = None, color_mode = color_mode, target_size = target_size, batch_size = batch_size, seed = seed) mask_generator = mask_datagen.flow_from_directory(train_path, classes = [mask_folder], class_mode = None, color_mode = mask_color_mode, target_size = target_size, batch_size = batch_size, seed = seed) train_generator = zip(image_generator, mask_generator) for (img,mask) in train_generator: img,mask = adjustData(img,mask) yield (img,mask) def adjustData(img,mask): if(np.max(img) > 1): img = img / 255 mask = mask /255 mask[mask > 0.5] = 1 mask[mask <= 0.5] = 0 return (img,mask) def testGenerator(test_path,num_image,target_size = (576,576),as_gray = True): for i in range(0, num_image): img = io.imread(os.path.join(test_path,"%d.tif"%i),as_gray = as_gray) img = img / 255 img = np.reshape(img,img.shape+(1,)) img = np.reshape(img,(1,)+img.shape) yield img data_gen_args = dict(rotation_range=0.2, width_shift_range=0.05, height_shift_range=0.05, shear_range=0.05, zoom_range=0.05, horizontal_flip=True, fill_mode='nearest') myGene = trainGenerator(5,'train','image_processed','label_processed',data_gen_args) model = vgg_model(576,576,1) model.fit_generator(myGene,steps_per_epoch=5,epochs=1,callbacks=None) model.save('vgg_model.h5') model = load_model('vgg_model.h5') testGene = testGenerator("test/image_processed/", 10) results = model.predict_generator(testGene,10,verbose=1) plt.imshow(np.squeeze(results[1]), cmap='Greys', vmin = 0.0, vmax = 0.09) plt.show() results_ = np.squeeze(np.multiply(results[1],255)) print (results_) plt.imshow(results_ , cmap='Greys', vmin = 0, vmax = 9) plt.show()
# -*- coding: utf-8 -*- """ Mesa Agent-Based Modeling Framework Core Objects: Model, and Agent. """ import datetime from .multilevel_mesa import MultiLevel_Mesa __all__ = ["MultiLevel_Mesa"] __title__ = 'multilevel_mesa' __version__ = '0.0.1' __license__ = 'MIT' __copyright__ = 'Copyright %s Tom Pike' % datetime.date.today().year
from bynarytree import ABR from bynarytree import ARN import random from timeit import default_timer as timer from matplotlib import pyplot as plt import pickle def random_array(n): array = range(n) for i in range(0, n): array[i] = random.randint(0, n * 10) return array def random_array_ordered(n): array = range(n) return array def File_Test_ABR(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array(dimensione_input) tree = ABR() for i in range(0, dimensione_input): start = timer() tree.insert(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi[0:len(Tempi)] = [] Tempi2.append(media) j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("InsertABR.p", "wb")) def File_Test_ABR_search(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 100: j = 0 while j < 5: array = random_array(dimensione_input) tree = ABR() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.find(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("SearchABR.p", "wb")) def File_Test_ABR_search_ordered(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 80: j = 0 while j < 5: array = random_array_ordered(dimensione_input) tree = ABR() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.find(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("SearchABR-Ord.p", "wb")) def File_Test_ABR_delete(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array(dimensione_input) tree = ABR() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.delete(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("DeleteABR.p", "wb")) def File_Test_ABR_delete_ordered(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array_ordered(dimensione_input) tree = ABR() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.delete(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("DeleteABR-Ord.p", "wb")) def File_Test_ABR_ordered(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array_ordered(dimensione_input) tree = ABR() for i in range(0, dimensione_input): start = timer() tree.insert(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi[0:len(Tempi)] = [] Tempi2.append(media) j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("InsertABR-Ord.p", "wb")) def File_Test_ARN(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array(dimensione_input) tree = ARN() for i in range(0, dimensione_input): start = timer() tree.insert(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("InsertARN.p", "wb")) def File_Test_ARN_ordered(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 200: j = 0 while j < 5: array = random_array_ordered(dimensione_input) tree = ARN() for i in range(0, dimensione_input): start = timer() tree.insert(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("InsertARN-Ord.p", "wb")) def File_Test_ARN_search(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 100: j = 0 while j < 5: array = random_array(dimensione_input) tree = ARN() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.find(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("SearchARN.p", "wb")) def File_Test_ARN_search_ordered(): Tempi = [] Tempi2 = [] Media = [] dimensione_input = 10 rip = 0 while rip < 100: j = 0 while j < 5: array = random_array_ordered(dimensione_input) tree = ARN() for i in range(0, dimensione_input): tree.insert(array[i]) for i in range(0, dimensione_input): start = timer() tree.find(array[i]) end = timer() tempo_esec = end - start Tempi.append(tempo_esec) somma = 0 for k in range(0, len(Tempi)): somma += Tempi[k] media = somma / len(Tempi) Tempi2.append(media) Tempi[0:len(Tempi)] = [] j += 1 somma = 0 for k in range(0, len(Tempi2)): somma += Tempi2[k] media = somma / len(Tempi2) Media.append(media) rip += 1 Tempi2[0:len(Tempi2)] = [] dimensione_input += 10 pickle.dump(Media, open("SearchARN-Ord.p", "wb")) def tree_height(): _HeightABR = [] _HeightARN = [] dimensione_input = 10 rip = 0 while rip < 80: tree = ABR() tree2 = ARN() A = random_array_ordered(dimensione_input) for j in range(0, dimensione_input): tree.insert(A[j]) tree2.insert(A[j]) _HeightABR.append(tree.height()) _HeightARN.append(tree2.height()) dimensione_input += 10 rip += 1 pickle.dump(_HeightABR, open("Height.p", "wb")) pickle.dump(_HeightARN, open("Height2.p", "wb")) def Grafic_Insert(): File_Test_ABR() File_Test_ARN() File_Test_ABR_ordered() File_Test_ARN_ordered() Media1 = pickle.load(open("InsertABR.p", "rb")) Media2 = pickle.load(open("InsertARN.p", "rb")) Media3 = pickle.load(open("InsertABR-Ord.p", "rb")) Media4 = pickle.load(open("InsertARn-Ord.p", "rb")) plt.plot(Media1, label="albero binario di ricerca") plt.plot(Media2, label="albero rosso nero") plt.plot(Media3, label="ABR: elementi ordinati") plt.plot(Media4, label="ARN: elementi ordinati") plt.legend() plt.xlabel("Numero di elementi") plt.ylabel("Tempi di esecuzione") plt.title("Alberi Binari a Confronto") plt.show() def Grafic_Search_ARN(): File_Test_ABR_delete_ordered() Media2 = pickle.load(open("DeleteABR-Ord.p", "rb")) plt.plot(Media2) plt.xlabel("Numero di elementi") plt.ylabel("Tempo di esecuzione") plt.title("Albero rosso-nero") plt.show() def Grafic_Search(): File_Test_ABR_search() File_Test_ABR_search_ordered() File_Test_ARN_search() File_Test_ARN_search_ordered() Media_Search = pickle.load(open("SearchABR.p", "rb")) Media_Search2 = pickle.load(open("SearchABR-Ord.p", "rb")) Media_Search3 = pickle.load(open("SearchARN.p", "rb")) Media_Search4 = pickle.load(open("SearchARN-Ord.p", "rb")) plt.plot(Media_Search, label="ABR: ricerca") plt.plot(Media_Search2, label="ABR: ricerca ordinata") plt.plot(Media_Search3, label="ARN: ricerca") plt.plot(Media_Search4, label="ARN: ricerca ordinata") plt.legend() plt.xlabel("Numero di elementi") plt.ylabel("Tempi di esecuzione") plt.title("Ricerca in ABR") plt.show() def Grafic_Delete(): File_Test_ABR_delete() File_Test_ABR_delete_ordered() Media_Delete = pickle.load(open("DeleteABR.p", "rb")) Media_Delete2 = pickle.load(open("DeleteABR-Ord.p", "rb")) plt.plot(Media_Delete, label="ABR elementi casuali") plt.plot(Media_Delete2, label="ABR elementi ordinati") plt.legend() plt.xlabel("Numero di elementi") plt.ylabel("Tempi di esecuzione") plt.title("Cancellazione in ABR") plt.show() def Grafic_Height(): tree_height() height = pickle.load(open("Height.p", "rb")) height2 = pickle.load(open("Height2.p", "rb")) plt.plot(height, label="ABR elementi ordinati") plt.plot(height2, label="ARN elementi ordinati") plt.legend() plt.xlabel("Dimensione di Input") plt.ylabel("Altezza") plt.title("Altezza degli Alberi") plt.show() # Grafic_Search_ARN()
import crypt, spwd, syslog def auth_log(msg): """Send errors to default auth log""" syslog.openlog(facility=syslog.LOG_AUTH) syslog.syslog("SSH Attack Logged: " + msg) syslog.closelog() def check_pw(user, password): """Check the password matches local unix password on file""" try: hashed_pw = spwd.getspnam(user)[1] except: return False return crypt.crypt(password, hashed_pw) == hashed_pw def pam_sm_authenticate(pamh, flags, argv): try: user = pamh.get_user() except pamh.exception, e: return e.pam_result if not user: return pamh.PAM_USER_UNKNOWN try: resp = pamh.conversation(pamh.Message(pamh.PAM_PROMPT_ECHO_OFF, 'Password:')) except pamh.exception, e: return e.pam_result if not check_pw(user, resp.resp): auth_log("Remote Host: %s (%s:%s)" % (pamh.rhost, user, resp.resp)) return pamh.PAM_AUTH_ERR return pamh.PAM_SUCCESS def pam_sm_setcred(pamh, flags, argv): return pamh.PAM_SUCCESS def pam_sm_acct_mgmt(pamh, flags, argv): return pamh.PAM_SUCCESS def pam_sm_open_session(pamh, flags, argv): return pamh.PAM_SUCCESS def pam_sm_close_session(pamh, flags, argv): return pamh.PAM_SUCCESS def pam_sm_chauthtok(pamh, flags, argv): return pamh.PAM_SUCCESS
#!/usr/bin/env python3 import time import random import typing import sys def pos(data, size=4): ret = [] for x in range(0, len(data), size): ret.append( int.from_bytes(data[x:x+size], 'big') ) return ret def neg(data, size=4): s = b''.join([e.to_bytes(size, 'big') for e in data]) return s def _encrypt(v: typing.List[int], key: typing.List[int]): counter, delta, mask = 0, 0xFACEB00C, 0xffffffff for i in range(32): counter = counter + delta & mask v[0] = v[0] + ((v[1] << 4) + key[0] & mask ^ (v[1] + counter) & mask ^ (v[1] >> 5) + key[1] & mask) & mask v[1] = v[1] + ((v[0] << 4) + key[2] & mask ^ (v[0] + counter) & mask ^ (v[0] >> 5) + key[3] & mask) & mask return v def _decrypt(v, key): deltas = get_delta() mask = 0xffffffff for i in range(32): counter = deltas[31-i] v[1] = v[1] - ((v[0] << 4) + key[2] & mask ^ (v[0] + counter) & mask ^ (v[0] >> 5) + key[3] & mask) & mask v[0] = v[0] - ((v[1] << 4) + key[0] & mask ^ (v[1] + counter) & mask ^ (v[1] >> 5) + key[1] & mask) & mask return v def get_delta(): counter, delta, mask = 0, 0xFACEB00C, 0xffffffff deltas = [] for i in range(32): counter = counter + delta & mask deltas.append(counter) return deltas def decrypt(cipher_text, key): clear_text = b'' for i in range(0, len(cipher_text), 8): clear_text += neg(_decrypt(pos(cipher_text[i:i+8]), pos(key))) return clear_text def _encrypt(v: typing.List[int], key: typing.List[int]): counter, delta, mask = 0, 0xFACEB00C, 0xffffffff for i in range(32): counter = counter + delta & mask v[0] = v[0] + ((v[1] << 4) + key[0] & mask ^ (v[1] + counter) & mask ^ (v[1] >> 5) + key[1] & mask) & mask v[1] = v[1] + ((v[0] << 4) + key[2] & mask ^ (v[0] + counter) & mask ^ (v[0] >> 5) + key[3] & mask) & mask return v def encrypt(clear_text: bytes, key: bytes): cipher_text = b'' for i in range(0, len(clear_text), 8): cipher_text += neg(_encrypt(pos(clear_text[i:i+8]), pos(key))) print(cipher_text[:8]) return cipher_text if __name__ == '__main__': rand_seed = int(time.time()) while True: random.seed(rand_seed) key = random.getrandbits(128).to_bytes(16, 'big') clear_text = decrypt(bytes.fromhex("77f905c39e36b5eb0deecbb4eb08e8cb"), key) print(rand_seed) if clear_text.lower().startswith(b'flag'): print(clear_text) sys.exit(0) else: rand_seed -= 1
s=input() def solve(s): l=s.split(" ") texto="" for i in l: if i!="": texto+=i.capitalize()+" " else: texto+=" " return texto print(solve(s))
# -*- coding: utf-8 -*- """ Created on Thu Aug 27 09:15:57 2020 @author: Administrator """ import os import sys sys.path.insert(0,os.path.abspath('..')) import time import numpy as np import pandas as pd import SIMLR from SIMLR import helper from sklearn import metrics from sklearn.metrics.cluster import adjusted_rand_score as ari from sklearn.metrics.cluster import normalized_mutual_info_score as nmi X = pd.read_csv('yan.csv',header=None) X = np.array(X) X = X.transpose() label = pd.read_csv('yan_label.csv') y=np.array(label) label = y.ravel() c = label.max() # number of clusters ### if the number of genes are more than 500, we recommend to perform pca first! start_main = time.time() if X.shape[1]>500: X = helper.fast_pca(X,500) else: X = X.todense() start_main = time.time() simlr = SIMLR.SIMLR_LARGE(c, 30, 0); ###This is how we initialize an object for SIMLR. the first input is number of rank (clusters) and the second input is number of neighbors. The third one is an binary indicator whether to use memory-saving mode. you can turn it on when the number of cells are extremely large to save some memory but with the cost of efficiency. S, F,val, ind = simlr.fit(X) julei = simlr.fast_minibatch_kmeans(F,c) print('NMI value is %f \n' % nmi(julei.flatten(),label.flatten())) print('ARI value is %f \n' % ari(julei.flatten(),label.flatten())) print('HOM value is %f \n' % metrics.homogeneity_score(julei,label)) print("AMI: %0.3f"% metrics.adjusted_mutual_info_score(label, julei))
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Oct 12 15:03:51 2017 @author: ian """ import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import pandas as pd from scipy.stats import linregress import DataIO as io # Get data f = '/home/ian/OzFlux/Sites/GatumPasture/Data/Processed/All/GatumPasture_L3.nc' df = io.OzFluxQCnc_to_data_structure(f, output_structure='pandas') sub_df = df[['Fe_CR3', 'Fe_EP']].dropna() # Do stats res = linregress(sub_df.Fe_CR3, sub_df.Fe_EP) x_line = np.linspace(-100, 400, 11) y_line = x_line * res.slope + res.intercept # Plot it font = FontProperties() font.set_family('sans serif') font.set_style('italic') fig, ax = plt.subplots(1, 1, figsize = (12, 8)) fig.patch.set_facecolor('white') ax.set_xlim([-100, 400]) ax.set_ylim([-100, 400]) ax.set_xlabel('F$_e\__{CR3}$ (W m$^{-2}$)', fontsize = 18, fontproperties = font) ax.set_ylabel('F$_e\__{EP}$ (W m$^{-2}$)', fontsize = 18, fontproperties = font) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis = 'x', labelsize = 14) ax.tick_params(axis = 'y', labelsize = 14) ax.plot(sub_df.Fe_CR3, sub_df.Fe_EP, marker = 'o', color = '0.5', ms = 3, ls = '') ax.plot(x_line, y_line, color = 'black') txt = 'y = {0}x + {1} (r$^2$ = {2})'.format(str(round(res.slope, 2)), str(round(res.intercept, 2)), str(round(res.rvalue ** 2, 2))) ax.text(-50, 400, txt, fontsize = 18, fontproperties = font, horizontalalignment = 'left', verticalalignment = 'center')
import mysql.connector import uuid import sys from PIL import Image import base64 import io import PIL.Image from mysql.connector.errors import custom_error_exception from datetime import datetime cnx = mysql.connector.connect(user="ugqiri0xcve8arnj", password="W05Xj0GMrQfciurwXyku", host="b1d548joznqwkwny7elp-mysql.services.clever-cloud.com",database="b1d548joznqwkwny7elp") cursor = cnx.cursor(buffered=True) def createTables () : query = ("CREATE TABLE Booking (Booking_id int(10) primary key, b_date date NOT NULL, Amount int(5) NOT NULL, Transaction_id int(10) NOT NULL)") cursor.execute(query) query = ("CREATE TABLE Room (room_id int(10) primary key ,type VARCHAR(10) NOT NULL, city VARCHAR(20) NOT NULL , owner_name VARCHAR(40) NOT NULL ,price int NOT NULL ,Amenities VARCHAR(40)NOT NULL, images BLOB, loaction VARCHAR(20))") cursor.execute(query) query = ("CREATE TABLE owner (o_id int(10) primary key ,name VARCHAR(40) NOT NULL ,gender VARCHAR(10) NOT NULL ,mobile double(10,0) NOT NULL ,email VARCHAR(40)NOT NULL ,Booking_id int(10) NOT NULL ,room_id int(10) NOT NULL,FOREIGN KEY(room_id) references Room(room_id))") cursor.execute(query) query = ("CREATE TABLE student_dataset (s_id int(10) primary key ,name VARCHAR(40) NOT NULL, address VARCHAR(40)NOT NULL ,gender VARCHAR(10)NOT NULL ,DOB date NOT NULL, Email VARCHAR(40) NOT NULL, mobile double(10,2) NOT NULL, Booking_id int(10) NOT NULL, FOREIGN KEY(Booking_id) references Booking(Booking_id))") cursor.execute(query) def encodeimage (F) : with open(F, 'rb') as f: photo = f.read() encodestring = base64.b64encode(photo) return encodestring def insertRoom() : valuetuple = (3, '2 BHK', 'Pune', 'Prajwal Gandhi', 10000, 'Wifi 24x7 Water and Electricity', encodeimage("D:\Programming\Python\Room Rental\Room3.jpg"), 'Katraj') query = ("insert into Room values (%s, %s, %s, %s, %s, %s, %s, %s)") cursor.execute(query,valuetuple) cnx.commit() def insertOwner() : valuetuple = (3, 'Prajwal Gandhi', 'Male', 8798120156, 'gandhi.prajwal@gmail.com', 1002, 3) query = ("insert into owner values (%s, %s, %s, %s, %s, %s, %s)") cursor.execute(query,valuetuple) cnx.commit() def insertStudent () : valuetuple = (1, 'Kishor Sawant', 'Pune', 'Male', datetime(2001,1,1), 'rajendra.patil@gmail.com', 7498173960, None) query = ("insert into student_dataset values (%s, %s, %s, %s, %s, %s, %s, %s)") cursor.execute(query,valuetuple) cnx.commit() def show (IDcol, ID, who, what) : if ID is not None and IDcol is not None : forone = " where {} = ".format(IDcol) + str(ID) else : forone = '' if what is not None : cols = ''.join(what) else : cols = '*' query = ("select {} from {}".format(cols, who) + forone) cursor.execute(query) data = cursor.fetchall() if what == 'images' : image = data[0][0] # Image if any binary_data = base64.b64decode(image) image = Image.open(io.BytesIO(binary_data)) image.show() else : for i in data : print(i) def deleteRecord (Table, key, keyval) : if key is not None and keyval is not None : query = ("delete from {} where {} = {}".format(Table, key, keyval)) else : query = ("truncate table {}".format(Table)) cursor.execute(query) cnx.commit() #createTables() #insertRoom() #insertOwner() #insertStudent() #addBooking() print("Owners : "); show('o_id', 1, 'owner', None) print("Rooms : "); show(None, None, 'Room', 'room_id, type, city, owner_name, price, Amenities') print("Students : "); show(None, None, 'student_dataset', None) show ('room_id', 1, 'Room', 'images') #deleteRecord('owner', 'o_id', 1) cursor.close() cnx.close()
from django.db import models import reversion @reversion.register() class TestModel(models.Model): name = models.CharField(max_length=10)
# Copyright 2016 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import mock from osc_lib.tests import utils from glareclient.common import utils as g_utils from glareclient.tests.unit.osc.v1 import fakes_schemas blob_fixture = { "status": "active", "url": "fake_url", "md5": "35d83e8eedfbdb87ff97d1f2761f8ebf", "sha1": "942854360eeec1335537702399c5aed940401602", "sha256": "d8a7834fc6652f316322d80196f6dcf2" "94417030e37c15412e4deb7a67a367dd", "external": False, "content_type": "application/octet-stream", "size": 594} def mock_list(*args, **kwargs): return [{'id': 'fc15c365-d4f9-4b8b-a090-d9e230f1f6ba', 'name': 'art1', 'version': '0.0.0', 'owner': 'f649c77999e449e89627024f71b76603', 'visibility': 'private', 'status': 'active', 'type_name': 'images'}, {'id': '48d35c1d-6739-459b-bbda-e4dcba8a684a', 'name': 'art2', 'version': '0.0.0', 'owner': 'f649c77999e449e89627024f71b76603', 'visibility': 'private', 'status': 'active', 'type_name': 'heat_templates'}] def mock_get(*args, **kwargs): return {'id': 'fc15c365-d4f9-4b8b-a090-d9e230f1f6ba', 'name': 'art1', 'version': '0.0.0', 'owner': 'f649c77999e449e89627024f71b76603', 'visibility': 'private', 'status': 'active', 'blob': blob_fixture, 'image': blob_fixture, 'package': blob_fixture, 'template': blob_fixture, 'environment': blob_fixture} def mock_g_servs(*args, **kwargs): return {'id': 'fc15c365-d4f9-4b8b-a090-d9e230f1f6ba', 'name': 'art1', 'version': '0.0.0', 'owner': 'f649c77999e449e89627024f71b76603', 'visibility': 'private', 'status': 'active'} def mock_g_schema(*args, **kwargs): return fakes_schemas.FIXTURE_SCHEMA def mock_get_data_file(*args, **kwargs): return 'data' class TestArtifacts(utils.TestCommand): def setUp(self): super(TestArtifacts, self).setUp() self.app.client_manager.artifact = mock.MagicMock() self.app.client_manager.artifact.artifacts.list = mock_list self.app.client_manager.artifact.artifacts.get = mock_get self.app.client_manager.artifact.artifacts.get_by_name = mock_get self.app.client_manager.artifact.artifacts.add_tag = mock_g_servs self.app.client_manager.artifact.artifacts.remove_tag = mock_g_servs self.app.client_manager.artifact.artifacts.create = mock_g_servs self.app.client_manager.artifact.artifacts.update = mock_g_servs self.app.client_manager.artifact.artifacts.delete = mock_g_servs self.app.client_manager.artifact.artifacts.activate = mock_g_servs self.app.client_manager.artifact.artifacts.deactivate = mock_g_servs self.app.client_manager.artifact.artifacts.reactivate = mock_g_servs self.app.client_manager.artifact.artifacts.publish = mock_g_servs self.app.client_manager.artifact.blobs.upload_blob = mock_g_servs self.app.client_manager.artifact.blobs.download_blob = mock_g_servs self.app.client_manager.artifact.blobs.add_external_location = \ mock_g_servs self.app.client_manager.artifact.artifacts.get_type_schema = \ mock_g_schema g_utils.get_data_file = mock.MagicMock() g_utils.get_data_file = mock_get_data_file g_utils.save_blob = mock.MagicMock() sys.stdout.isatty = mock.MagicMock() sys.stdout.isatty._mock_return_value = True
from django import forms from .models import Player from django.core.exceptions import ValidationError import re class PlayerForm(forms.ModelForm): class Meta: model = Player fields = ['name','count_correct_answers', 'money_won'] widgets = { 'name': forms.TextInput(attrs={'class':'form-control'}), } def clean_name(self): new_name = self.cleaned_data['name'] if not re.match (r'^[а-яА-ЯёЁa-zA-Z\s]+$', new_name): raise ValidationError('В имени могут содержаться только буквы') return new_name
from spack import * class Form(AutotoolsPackage): homepage = "http://www.example.com" url = "https://gosam.hepforge.org/gosam-installer/form-4.1.033e.tar.gz" version('4.1.033e', sha256='b182e10f9969238daea453c14ada9989a4818d23aad8855a8eb5968a231f545c') def configure_args(self): args = ['--enable-shared', '--disable-static','--without-gmp', 'CXXFLAGS=-fpermissive'] return args
from flask import Flask, jsonify from numeros import numero app = Flask(__name__) @app.route('/<string:entrada>', methods=['GET']) def response(entrada): resultado = numero(entrada) return jsonify(resultado=resultado) if __name__ == '__main__': app.run(port=5050, debug=True)
''' Created on 24 de abr de 2018 @author: maikon ''' import sys import cv2 import numpy as np from matplotlib import pyplot as plt # cascade_src = 'resource/cars.xml' cascade_src = '/home/maikon/git/OpencvPython/resource/haarcascade_russian_plate_number.xml' car_cascade = cv2.CascadeClassifier(cascade_src) def procurar_placa(frame, gray_image): # img = cv2.imread('resource/placaFoco.jpg',0) img = frame.copy() newImg = cv2.blur(gray_image,(5,5)) img = newImg laplacian = cv2.Laplacian(img,cv2.CV_64F) sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=3,scale=1,delta=0,borderType=cv2.BORDER_DEFAULT) sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=3,scale=1,delta=0,borderType=cv2.BORDER_DEFAULT) #aplicado o threshold sobre o Sobel de X tmp, imgThs = cv2.threshold(laplacian,0,255,cv2.THRESH_OTSU+cv2.THRESH_BINARY) #pequena chacoalhada nos pixels pra ver o que cai (isso limpa a img mas #distancia as regioes, experimente) #krl = np.ones((6,6),np.uint8) #erosion = cv2.erode(imgThs,krl,iterations = 1) #krl = np.ones((19,19),np.uint8) #dilation = cv2.dilate(erosion,krl,iterations = 1) #imgThs = dilation #estrutura proporcional aa placa morph = cv2.getStructuringElement(cv2.MORPH_RECT,(40,13)) #captura das regioes que possam conter a placa plateDetect = cv2.morphologyEx(imgThs,cv2.MORPH_CLOSE,morph) regionPlate = plateDetect.copy() _, contours, hierarchy = cv2.findContours(regionPlate,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for contour in contours: [x,y,w,h] = cv2.boundingRect(contour) if h>250 and w>250: continue if h<40 or w<40: continue cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,255),2) cv2.drawContours(regionPlate,contours,-1,(255,255,255),18) cv2.imshow("Output - Press 'q' to exit", regionPlate) def detectar_carro(frame, gray, car_cascade): cars = car_cascade.detectMultiScale(gray, 1.1, 1) for (x,y,w,h) in cars: cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2) cap = cv2.VideoCapture('resource/video.mp4') # cap = cv2.VideoCapture('/home/maikon/Downloads/video1.avi') img = cv2.imread("resource/meucarro.jpg") g = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) detectar_carro(img,g, car_cascade) cv2.imshow("carro", img) if not cap.isOpened(): print("cannot open video") sys.exit(1) fps = cap.get(cv2.CAP_PROP_FPS) delay = int((1.0 / float(fps)) * 1000) while (cap.isOpened()): ret, im = cap.read() if not ret: break gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # procurar_placa(im,gray) detectar_carro(im,gray, car_cascade) cv2.imshow("Orignal", im) k = cv2.waitKey(delay) if k & 0xFFF == ord('q'): break cap.release() cv2.destroyAllWindows()
#!/usr/bin/env python # coding: utf-8 # In[1]: import zipfile # In[ ]: def namelist_in_archive (archive): with zipfile.ZipFile(archive) as archive: namelist = archive.namelist() return namelist
from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import math import sys def Round(a): return int(a+.5) def init(): glClearColor(1.0,1.0,1.0,0.0) glColor3f(1.0,0.0,0.0) glPointSize(3.0) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluOrtho2D(0.0,600.0,0.0,600.0) def setpixel(x,y): glBegin(GL_POINTS) glVertex2f(x,y) glEnd() glFlush() def getinput(): global xc,yc,rx,ry xc=input("Enter xc centre of ellipse : ") yc=input("Enter yc centre of ellipse : ") rx=input("Enter radius rx of ellipse : ") ry=input("Enter radius ry of ellipse : ") def drawcir(xc,yc,rx,ry): setpixel(Round(xc),Round(yc)) theta=0 section=1000 steps=1/float(section) while(theta<=360): theta+=steps x=rx*math.cos(theta) y=ry*math.sin(theta) setpixel(Round(xc+x),Round(yc+y)) def display(): glClear(GL_COLOR_BUFFER_BIT) drawcir(xc,yc,rx,ry) def main(): glutInit(sys.argv) glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB) glutInitWindowSize(600,600) glutInitWindowPosition(200,200) glutCreateWindow(" Mid Point Circle ") getinput() glutDisplayFunc(display) init() glutMainLoop() main()
# -*- coding: utf-8 -*- #author:Haochun Wang # import scrapy from scrapy.spiders import Spider import re # from scrapy import * import re, sys import requests import math # if sys.getdefaultencoding() != 'utf-8': # reload(sys) # sys.setdefaultencoding('utf-8') url = 'http://www.boc.cn/sourcedb/whpj/index.html' # Bank of China currency website html = requests.get(url).content.decode('utf8') a = html.index('<td>澳大利亚元</td>') # get the position of AUS dollar s = html[a:a + 300] # narrow down the range rate_res = float(re.findall('<td>(.*?)</td>', s)[3]) # Regex get the currency rate_res = math.ceil(rate_res*0.1)*0.1 class ChemistSpider(Spider): name = "chemistwarehouse" allowed_domains = ["www.chemistwarehouse.com.au"] start_urls = [ "http://www.chemistwarehouse.com.au/Shop-Online/587/Swisse", "http://www.chemistwarehouse.com.au/Shop-Online/587/Swisse?page=2", "http://www.chemistwarehouse.com.au/Shop-Online/587/Swisse?page=3", "http://www.chemistwarehouse.com.au/Shop-Online/587/Swisse?page=4", "http://www.chemistwarehouse.com.au/Shop-Online/587/Swisse?page=5", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=2", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=3", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=4", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=5", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=6", "http://www.chemistwarehouse.com.au/Shop-Online/513/Blackmores?page=7", "http://www.chemistwarehouse.com.au/Shop-Online/660/Nature-s-Way", "http://www.chemistwarehouse.com.au/Shop-Online/660/Nature-s-Way?page=2", "http://www.chemistwarehouse.com.au/Shop-Online/660/Nature-s-Way?page=3", "http://www.chemistwarehouse.com.au/Shop-Online/660/Nature-s-Way?page=4", "http://www.chemistwarehouse.com.au/Shop-Online/722/Healthy-Care", "http://www.chemistwarehouse.com.au/Shop-Online/722/Healthy-Care?page=2", "http://www.chemistwarehouse.com.au/Shop-Online/722/Healthy-Care?page=3", "http://www.chemistwarehouse.com.au/Shop-Online/722/Healthy-Care?page=4", "http://www.chemistwarehouse.com.au/Shop-Online/722/Healthy-Care?page=5", "http://www.chemistwarehouse.com.au/Shop-Online/2128/Bio-Island" ] def parse(self, response): product_container = response.selector.xpath('//a[@class="product-container"]').extract() # name_space = response.selector.xpath('//a[@class="product-container"]/@title').extract() # price_space = response.selector.xpath('//span[@class="Price"]').extract() # pricesv = response.selector.xpath('//div[@class="prices"]').extract() with open("product_container.txt","a+") as file: # product_container = str(product_container).split(",") # for item in product_container: # file.write(str(item)+"\n") file.write(str(product_container)) file.close() # with open("name_space.txt","w") as file: # file.write(str(name_space)) # file.close() # with open("price_space.txt","w") as file: # file.write(str(price_space)) # file.close() # with open("pricesv.txt","w") as file: # file.write(str(type(pricesv))) # file.write(str(pricesv)) # file.close() # price_split_list = str(price_space).split(',') #p1 = r"(?<=u\''/buy'/\d+/).+?(?=\')" #pattern1 = re.compile(p1) # sample = '<span class="Price">$12.99 \n \n \n \n </span>' # p2 = r"(?<=\'<span class=\"Price\">).+?(?=</span>\')" # name_res_lst = [] # 商品名列表 product name list # price_res_lst = [] # 价格列表 price list # org_price_res_lst = []# 原价列表 original price list # discount_res_lst = [] # 折扣列表 discount list # for i in name_space: #name = re.search(pattern1, i) #name_res_lst.append(name.group(0)[1:]) # name_res_lst.append(i) product_list = [] p1 = r"(?<=title=\")[\s\w']*" pattern1 = re.compile(p1) p2 = r"(?<=<span class=\"Price\">\$).\d*.\d*" pattern2 = re.compile(p2) p3 = r"(?<=<span class=\"Save\">)\s*.*(?=Off)" pattern3 = re.compile(p3) for item in product_container: name = re.search(pattern1,item) price = re.search(pattern2,item) save = re.search(pattern3,item) if name: name_item = name.group(0) price_item = price.group(0) if save: save_item = save.group(0) save_item = save_item.split(" ")[-1].strip("$") with open("save_list.txt","a+",encoding="utf-8") as file: file.write(save_item+"\n") # save_item.strip("$") discount_item = '%.2f' % (float(price_item) / (float(price_item) + float(save_item))) else: discount_item = "1" price_item_cny = '%.2f' % (float(price_item) * rate_res ) product_list.append([name_item,price_item,price_item_cny,discount_item]) else: pass with open("res_tmp.txt", "a+") as b: for item in product_list: b.writelines(str(item) + '\n') # for j in price_split_list: # price = re.search(pattern2, j) # price_res_lst.append(price.group(0)) # for j in pricesv: # price = re.search(pattern2, j) # if price: # price = price.group(0) # price_res_lst.append(price) # price_item = float(price) # else: # price_item = 0 # # u = i.split('class="Price">') # # price_item = float(j.split('\n')[0][1:]) # if 'class="Save"' in j: # save_item = re.search(pattern3, j) # save_item = float(save_item.group(0).strip().strip("$")) # discount = '%.2f' % (price_item / (price_item + save_item)) # discount_res_lst.append(discount) # org_price = str(price_item + save_item) # org_price_res_lst.append(org_price) # else: # discount_res_lst.append("1") # with open("res_tmp.txt", "a+") as b: # for k in range(len(name_res_lst)): # b.writelines(name_res_lst[k] + ', '+price_res_lst[k].split(' ')[0] + ', ' + # str((float(price_res_lst[k].split(' ')[0])) * (rate_res + 0.3)) # + ', ' + str(discount_res_lst[k]) + '\n')
# -*- coding: utf-8 -*- from __future__ import unicode_literals import frappe from frappe import _ def get_data(): roles = frappe.get_roles(frappe.session.user) if 'Prospect' not in (roles): return { "mycfo": { "color": "grey", "icon": "icon-th", "type": "module", "label": _("Customer Details") }, "Checklist":{ "color": "blue", "icon": "icon-list", "type": "module", "label": _("Checklist") }, "IP Library": { "color": "#8e44ad", "icon": "octicon octicon-database", "type": "page", "label": _("IP Library"), "link":"ip-file-dashboard" }, "Trainings":{ "color": "#4aa3df", "icon": "octicon octicon-device-camera-video", "type": "page", "label": _("Trainings"), "link":"training-dashboard" }, "Discussion Forum": { "color": "#8e44ad", "icon": "octicon octicon-organization", "type": "page", "label": _("Discussion Forum"), "link":"discussion-forum" } } else: return { "Skill Mapping": { "color": "grey", "icon": "icon-th", "type": "doctype", "label": "Skill Mapping", "link": "List/Skill Mapping", "description": _("Skill Mapping Details"), }, "Resource Pool":{ "color": "blue", "icon": "icon-list", "type": "page", "label": _("Resource Pool"), "link":"resourcepool" } }
# the following is an attempt to handle the Sage script `RiordanGroup' as a # python module but it can be the case, since that file isn't a python module really. import sys entry_riordan_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(entry_riordan_path) # the following is only for debugging #print sys.path
#!/usr/bin/env python3 import logging import json from twilio.rest import Client """ Send text message to a list of numbers client - twilio client that will send the message client_number - number to send text from message - body of the text message """ def send_mass_texts(client:Client, client_number:str, message:str, number_file:str = "numbers.txt"): with open(number_file) as f: numbers = f.readlines() logging.info("--------------------") logging.info(f"{client} sending mass texts to {len(numbers)} phone numbers") logging.info("--------------------") for number in numbers: send_message(client, client_number, number, message) """ Send text message to a phone number client - twilio client that will send the message number - phone number to send the message to client_number - number to send text from message - body of the text message """ def send_message(client:Client, client_number:str, number:str, message:str): message = client.messages.create( body=message, from_=client_number, to=number ) logging.info(f"{client} sent SMS {message} to {number}") if __name__ == "__main__": with open("secrets.json") as f: data = json.load(f) account_sid = data["account_sid"] auth_token = data["auth_token"] client_number = data["client_number"] client = Client(account_sid, auth_token) message = "Don't forget to meditate today!" send_mass_texts(client, client_number, message)
from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn import datasets, linear_model, metrics, svm from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score, cross_val_predict from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import ShuffleSplit from math import sqrt from sklearn.learning_curve import learning_curve from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC import matplotlib.pyplot as plt import sklearn import datetime import numpy as np import pandas as pd import nltk # needed for Naive-Bayes # Preprocessing dataframe = pd.read_json('./data/users.json') # Determining if any value is missing # https://chartio.com/resources/tutorials/how-to-check-if-any-value-is-nan-in-a-pandas-dataframe/ # Chaining '.values.any()' if (dataframe.isnull().values.any()): dataframe = dataframe[dataframe['error'] != 'Permission denied'] dataframe = dataframe.dropna(subset=['created', 'karma', 'submitted'], how='all') dataframe = dataframe.drop(['about','error','id'], axis=1) dataframe['created'] = dataframe['created'].astype(int).values.reshape(-1,1) dataframe['karma'] = dataframe['karma'].astype(int).values.reshape(-1,1) dataframe['submitted'] = dataframe['submitted'].astype(int).values.reshape(-1,1) # Split dataset into train and test subsets (SciKit) x_train, x_test, y_train, y_test, z_train, z_test = sklearn.model_selection.train_test_split( dataframe['created'].values, dataframe['karma'].values, dataframe['submitted'].values, test_size=0.20, random_state=5) # Linear Regression - a linear approach for modeling the relationship between a scalar # dependent variable 'y' and one or more explanatory variables denoted 'x' linear_regr = linear_model.LinearRegression() # Training x_and_z_train = np.stack([x_train, z_train], axis=1).reshape(-1,2) x_and_z_test = np.stack([x_test, z_test], axis=1).reshape(-1,2) linear_regr.fit(x_and_z_train,y_train) predict_regr = linear_regr.predict(x_and_z_test) def kfold_cross_validation(): # We split out data into k different subsets kf = KFold(n_splits=10) mean_absolute_error_list = [] root_mean_square_error_list = [] for train_index, test_index in kf.split(dataframe['created'].values, dataframe['karma'].values, dataframe['submitted'].values): x_and_z_temp = np.stack([dataframe['created'].values, dataframe['submitted'].values], axis=1).reshape(-1,2) x_and_z_train, x_and_z_test = x_and_z_temp[train_index], x_and_z_temp[test_index] y_train, y_test = dataframe['karma'].values[train_index], dataframe['karma'].values[test_index] linear_model_temp = linear_model.LinearRegression() linear_model_temp.fit(x_and_z_train, y_train) predict_regr = linear_model_temp.predict(x_and_z_test) mean_absolute_error_temp = str(metrics.mean_absolute_error(y_test, predict_regr)) root_mean_square_error_temp = str(sqrt(metrics.mean_squared_error(y_test, predict_regr))) mean_absolute_error_list.append(mean_absolute_error_temp) root_mean_square_error_list.append(mean_absolute_error_temp) print("Mean Absolute Error (MAE): ", mean_absolute_error_temp) print("Root Mean Square Error (RMSE)", root_mean_square_error_temp) print("") mean_absolute_error_average = np.array(mean_absolute_error_list).astype(np.float) root_mean_square_error_average = np.array(root_mean_square_error_list).astype(np.float) print("Mean Absolute Error (MAE) Average, ", str(np.mean(mean_absolute_error_average))) print("Root Mean Square Error (RMSE) Average, ", str(np.mean(root_mean_square_error_average))) def logistic_regression(): dataframe_cancer = pd.read_csv('./data/breast_cancer.csv', sep=',') # Report the head of the table print(dataframe_cancer.head(10)) logistic_regr = linear_model.LogisticRegression() header_temp1 = ['Concavity1','Texture1','Symmetry1'] header_temp2 = ['Perimeter1','Area1','Compactness1'] header_temp3 = ['Perimeter1','Area1','Compactness1','Concavity1','Texture1','Symmetry1'] headers = [header_temp1, header_temp2, header_temp3] calculated_list = [] for vars in headers: x = dataframe_cancer[vars].values.reshape(-1, len(vars)) y = dataframe_cancer['Diagnosis'] kf = KFold(n_splits=10) calculated_accuracy_list = [] for train_index, test_index in kf.split(x, y): x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] logistic_regr.fit(x_train, y_train) predict_regr = cross_val_predict(logistic_regr, x_test, y_test, cv=10) calculated_accuracy = metrics.accuracy_score(y_test, predict_regr, normalize=True) calculated_accuracy_list.append(calculated_accuracy) print("Accuracy: ", calculated_accuracy) calculated_list.append(calculated_accuracy_list) print() average_size = np.array(calculated_list[1]).astype(np.float) average_shape = np.array(calculated_list[0]).astype(np.float) print("Average Size: ", str(np.mean(average_size))) print("Average Shape: ", str(np.mean(average_shape))) def generate_scatterplot(dataframe): # 3D scatter plot, compare 3 charachteristics of data instead of two # https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html model = plt.figure() plot = model.add_subplot(111, projection='3d') plot.scatter(xs=x_test, ys=y_test, zs=z_test, c='r', marker='o') plot.set_xlabel('created') plot.set_ylabel('karma') plot.set_zlabel('submitted') plot.get_figure().savefig('scatterplot.png') def run(): # Part 1 # Split data into 80/20 training and testing and create a new multivariate linear # analysis. In this model, include the number of posts as an addition to time #generate_scatterplot(dataframe) # Report the MAE and RMSE print("Mean Absolute Error (MAE)") print("Training Data: ", str(metrics.mean_absolute_error(y_train, linear_regr.predict(x_and_z_train)))) print("Test Data: ", str(metrics.mean_absolute_error(y_test, predict_regr))) print("Root-Mean-Square Error (RMSE)") print("Training Data: ", str(sqrt(metrics.mean_squared_error(y_train, linear_regr.predict(x_and_z_train))))) print("Test Data: ", str(sqrt(metrics.mean_squared_error(y_test, predict_regr)))) # Part 2 # Create 10 training/test data pairs # Train model using training data from current fold # Test model on the test data from current fold # Report MAE and RMSE on test data from current fold # Lastly take the average of each metric for all the folds kfold_cross_validation() # Part 3 # Load dataset and report the head # Using 10-fold cross-validation, train your logistic model using every # variable in the dataset # Report the accuracy logistic_regression() run()
# -*- coding: utf-8 -*- import logging from typing import Any import aiocache import aiocache.backends from .backends import SimpleMaxTTLMemoryCache from .serializers import CompressionSerializer from .cache_group import CacheGroup from ..typedefs import WebApp logger = logging.getLogger(__name__) # pylint: disable=unused-argument def setup_caches(app: WebApp, loop) -> Any: logger.info('before_server_start -> cache.setup_caches') args = app.config.args caches = [SimpleMaxTTLMemoryCache()] if args.redis_host: try: redis_cache = aiocache.RedisCache(endpoint=args.redis_host, port=args.redis_port, timeout=10, serializer=CompressionSerializer()) if redis_cache: caches.append(redis_cache) except Exception: logger.exception('failed to add redis cache to caches') configured_cache_group = CacheGroup(caches=caches) return configured_cache_group
from __future__ import absolute_import from data_structures import Candidate, Document, Sentence from readers import MinimalCoreNLPReader, RawTextReader from base import LoadFile from utils import (load_document_frequency_file, compute_document_frequency, train_supervised_model, load_references, compute_lda_model, load_document_as_bos, compute_pairwise_similarity_matrix) import unsupervised import supervised
class Area: @staticmethod def square(side ): return (side * side) if side > 0 else 0 @staticmethod def rectangle(length, breadth): return length * breadth @staticmethod def triangle(breadth, height): return (breadth * height) / 2 @staticmethod def circle(radius): return 3.14 * (radius * radius)
#!/usr/bin/env python """ Helper function used throughout the package. """ import typing as tp
import pygame from pygame.locals import * import random import time import sys import os #DEBUGGER DEVELOPER TOOL debug = False if debug == True: from threading import * from debug import * def passthu(): while True: debug.update(globals()) time.sleep(0.5) ptt = Thread(target=passthu) ptt.setDaemon(True) ptt.start() suits = ["C","D","H","S"] nums = ["A","2","3","4","5","6","7","8","9","10","J","K","Q"] unshuffled_deck = [] if False: import pygame._view class deckmaker: for suit in suits: for num in nums: unshuffled_deck.append(num+suit) def deckcreate(decks): deck=unshuffled_deck*+int(decks) random.shuffle(deck) return deck def rp(relative_path): try: raise Exception base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".") return os.path.join(base_path,relative_path) class inputbox: def get_key(): while 1: event = pygame.event.poll() if event.type == KEYDOWN: return event.key elif event.type == pygame.QUIT: pygame.quit() exit() else: pass def display_box(screen, message): fontobject = pygame.font.Font(rp('freesans.ttf'), 18) pygame.draw.rect(screen, (0, 0, 0), ((screen.get_width() / 2) - 100, (screen.get_height() / 2) - 10, 200, 20), 0) pygame.draw.rect(screen, (255, 255, 255), ((screen.get_width() / 2) - 102, (screen.get_height() / 2) - 12, 204, 24), 1) if len(message) != 0: screen.blit(fontobject.render(message, 1, (255, 255, 255)), ((screen.get_width() / 2) - 100, (screen.get_height() / 2) - 10)) pygame.display.flip() def ask(screen, question, money): pygame.font.init() current_string = [] inputbox.display_box(screen, question + ": " + "".join(current_string)) while 1: inkey = inputbox.get_key() if inkey == K_BACKSPACE: current_string = current_string[0:-1] elif inkey == K_RETURN: try: amount = int("".join(current_string)) if amount < money+1: break else: None except: None elif inkey == K_MINUS: current_string.append("_") elif inkey <= 127: current_string.append(chr(inkey)) inputbox.display_box(screen, question + ": " + "".join(current_string)) return "".join(current_string) chips = {"currency":"£","amount":999999999999999999999999} card_value = {"A":11,"1":1,"2":2,"3":3,"4":4,"5":5,"6":6,"7":7,"8":8,"9":9,"10":10,"J":10,"Q":10,"K":10} card_value_hard = {"A":1,"1":1,"2":2,"3":3,"4":4,"5":5,"6":6,"7":7,"8":8,"9":9,"10":10,"J":10,"Q":10,"K":10} con = ["bust","in","lose","bj","push"] def card_load(item,x=150,y=200): base_path = "./assets/cards/" to_load = base_path + item + ".png" card_image = pygame.image.load(to_load) card = pygame.transform.scale(card_image,(x,y)).convert_alpha() return card def card_load_unsafe(item): base_path = "./assets/cards/" to_load = base_path + item + ".png" card = pygame.image.load(to_load).convert_alpha() return card def add(give): global chips chips["amount"] += give def dubd(bet): return 2*bet def chip_command(command,bet): give=0 if command == "push": give = bet if command == "win": give = 2*bet if command == "lose": give = 0 if command == "bj": give = 2.5*bet add(give) bet = 0 pygame.init() size=(900,600) minsize=(800,550) if size[0] < minsize[0] or size[1] < minsize[1]: size = minsize fs = True if fs == True: screen = pygame.display.set_mode((0,0),pygame.FULLSCREEN) else: screen = pygame.display.set_mode(size) pygame.display.set_caption("AA Jack"); back_color = "red" num_decks = 8 backer = card_load(back_color+"_back") sides = (size[0] - 300)/2 cardx1 = sides cardy = size[1]/100*65 deck_start = deckmaker.deckcreate(num_decks) random.shuffle(deck_start) deck = deck_start done = False screen_width = pygame.display.get_surface().get_size()[0] screen_height = pygame.display.get_surface().get_size()[1] swh = pygame.display.get_surface().get_size() card_width = 150 clock = pygame.time.Clock() bg = pygame.image.load("assets/table.png") bg = pygame.transform.scale(bg,swh) split = False def check(): global deck,deck_start if len(deck) == 0: deck_start = deckmaker.deckcreate(num_decks) deck = deck_start def hit(person): global mycards,dealerscards,split,card_side if split == False: i = "Done" if person == "player": mycards.append(deck.pop(0)) elif person == "dealer": dealerscards.append(deck.pop(0)) else: i = "Fail" return i else: i = "Done" if person == "player": mycards[card_side].append(deck.pop(0)) elif person == "dealer": dealerscards.append(deck.pop(0)) else: i = "Fail" return i def reset(): global mycards,dealerscards, step,split mycards = [] split = False card_side = 0 splitdoubled = [0,0] dealerscards = [] check() step = 0 getbet() def getbet(): global bet bet = -1 screen.blit(bg, (0,0)) titlepic = card_load("title",int(screen_width/1.5),int(screen_height/6)) w = titlepic.get_rect().size[0] whomadeit = card_load("wb",int(screen_width/2.5),int(screen_height/5)) wm = whomadeit.get_rect().size[0] wh = whomadeit.get_rect().size[1] screen.blit(titlepic,((screen_width-w)/2,screen_height/8)) screen.blit(whomadeit,((screen_width-wm)/2,(screen_height-2*wh))) dis_money() pygame.display.flip() bet = int(inputbox.ask(screen,"Bet Amount",chips["amount"])) while bet == -1: None chips["amount"] -= int(bet) def dis_money(): text = font.render(("Chips: " + chips["currency"]) + str(chips["amount"]), True, (0, 0, 0), (255, 255, 255)) screen.blit(text, (0,screen_height/2)) if bet == -1: dim = "None" else: dim = chips["currency"]+str(bet) text = font.render(("Bet: " + str(dim)), True, (0, 0, 0), (255, 255, 255)) screen.blit(text, (0,screen_height/2+font.size(("Chips: " + chips["currency"]) + str(chips["amount"]))[1])) def check_amount(cards,who): global split if split == False or who == "d": total = 0 dsoft = True there_is_ace = False for card in cards: if "A" in card: there_is_ace = True if (there_is_ace and len(cards) == 2) or ("A" in cards[-1]): dsoft = False if dsoft == False: for card in cards: total += card_value[card[:-1]] else: for card in cards: total += card_value_hard[card[:-1]] else: total = [] for cardlist in cards: total_of = 0 dsoft = True there_is_ace = False for card in cardlist: if "A" in card: there_is_ace = True if (there_is_ace and len(cardlist) == 2) or ("A" in cardlist[-1]): dsoft = False if dsoft == False: for card in cardlist: total_of += card_value[card[:-1]] else: for card in cardlist: total_of += card_value_hard[card[:-1]] total.append(total_of) return total def gr(c): mess = card_load(c,x=500,y=400) w = mess.get_width() h = mess.get_height() x = screen_width y = screen_height x = (x-w)/2 y = (y-h)/2 screen.blit(mess,[x,y]) pygame.display.flip() time.sleep(3) def dis_cards(cards,y,r=True): row_width = int(card_width * (len(cards))) + int(len(cards) * 30) for card in range(len(cards)): card_x_pos = (int(screen_width / 2) - int(row_width / 2)) + (card * card_width) + (card * 30) screen.blit(card_load(str(cards[card])),[card_x_pos,y]) if r == False: screen.blit(backer,[card_x_pos,y]) def dis_screen(real=False): global split screen.blit(bg, [0,0]) if split == True: dis_cards_as(mycards,screen_height-210) else: dis_cards(mycards,screen_height-210) dis_cards(dealerscards,5,real) if real == True: a = dealer_total else: a = dealer_total-card_value[dealerscards[-1][0]] text = font.render(("Dealer: "+str(a)+"| Player: "+str(my_total)), True, (0, 0, 0), (255, 255, 255)) screen.blit(text, (0,0)) dis_money() cardx1 = (screen_width/2)-180 screen.blit(card_load("split",x=150,y=50),[cardx1,size[1]/2-55]) screen.blit(card_load("dd",x=150,y=50),[cardx1,size[1]/2]) screen.blit(card_load("hit",x=150,y=50),[cardx1+190,size[1]/2-55]) screen.blit(card_load("stand",x=150,y=50),[cardx1+190,size[1]/2]) def stand(): global dealer_total,my_total,bet,dealerscards,mycards,split,card_side,splitdoubled my_total = check_amount(mycards,"u") dealer_total = check_amount(dealerscards,"d") dis_screen() dis_money() if split == False: dis_screen(True) dis_money() pygame.display.flip() pygame.display.update() time.sleep(2) if (dealer_total>my_total) and (dealer_total< 22): gr("lose") chip_command("lose",bet) elif dealer_total == my_total: gr("push") chip_command("push",bet) elif dealer_total >21: gr("win") chip_command("win",bet) elif my_total > 21: gr("lose") chip_command("lose",bet) else: while (dealer_total<my_total) and (dealer_total<17): hit("dealer") dealer_total = check_amount(dealerscards,"d") dis_screen(True) pygame.display.flip() time.sleep(2) if dealer_total > 21 or my_total>dealer_total: gr("win") chip_command("win",bet) elif dealer_total == my_total: gr("push") chip_command("push",bet) else: if dealer_total > my_total: gr("lose") chip_command("lose",bet) reset() else: dis_screen() dis_money() if card_side == 0: card_side = card_side+1 else: my_totalq = check_amount(mycards,"u") c = 0 base_bet = bet /(splitdoubled[0]+splitdoubled[1]+2) amwin = 0 for my_total in my_totalq: bet = base_bet *(splitdoubled[c]+1) dis_screen(True) pygame.display.flip() pygame.display.update() time.sleep(2) if (dealer_total>my_total) and (dealer_total< 22): chip_command("lose",bet) amwin -= 1 elif dealer_total == my_total: chip_command("push",bet) elif dealer_total >21: chip_command("win",bet) amwin += 1 elif my_total > 21: chip_command("lose",bet) amwin -=1 else: while (dealer_total<my_total) and (dealer_total<17): hit("dealer") dealer_total = check_amount(dealerscards,"d") dis_screen(True) pygame.display.flip() time.sleep(2) if dealer_total > 21 or my_total>dealer_total: chip_command("win",bet) amwin += 1 elif dealer_total == my_total: chip_command("push",bet) else: if dealer_total > my_total: chip_command("lose",bet) amwin -= 1 c+1 if amwin == 0: wpl = "push" elif amwin < 0: wpl = "lose" else: wpl = "win" gr(wpl) time.sleep(2) reset() def double(): global chips,bet,card_side,split,splitdoubled if split == False: if chips["amount"] > bet-1: chips["amount"] -= bet bet = 2*bet time.sleep(2) hit("player") stand() else: #print("Cant Double Down, Not enough chips!") None else: if card_side == 0: if chips["amount"] > bet/2-1: chips["amount"] -= bet/2 bet += bet/2 splitdoubled[0] += 1 time.sleep(2) hit("player") card_side += 1 else: #print("Cant Double Down, Not enough chips!") None elif card_side == 1: if splitdoubled[0] == 0: if chips["amount"] > bet/2-1: chips["amount"] -= bet/2 bet += bet/2 splitdoubled[1] += 1 time.sleep(2) hit("player") stand() else: #print("Cant Double Down, Not enough chips!") None else: if chips["amount"] > bet/3-1: chips["amount"] -= bet/3 bet += bet/3 splitdoubled[1] += 1 time.sleep(2) hit("player") stand() else: #print("Cant Double Down, Not enough chips!") None step = 0 splitdoubled = [0,0] mycards = [] dealerscards = [] cardx1 = (screen_width/2)-180 split_button = pygame.Rect(cardx1, size[1]/2-55, 150, 50) dd_button = pygame.Rect(cardx1, size[1]/2, 150, 50) hit_button = pygame.Rect(cardx1+190, size[1]/2-55, 150, 50) stand_button = pygame.Rect(cardx1+190, size[1]/2, 150, 50) dealer_total = 0 my_total = 0 soft_total = False font = pygame.font.Font(rp('freesans.ttf'), 32) logo = card_load_unsafe("logo") pygame.display.set_icon(logo) def dis_cards_as(allcards,y): i = 0 for cards in allcards: row_width = int(card_width * (len(cards))) + int(len(cards) * 30) for card in range(len(cards)): if i==0: card_x_pos = (int(screen_width / 4) - int(row_width / 2)) + (card * card_width) + (card * 30) if i==1: card_x_pos = (int(screen_width / 4 * 3) - int(row_width / 2)) + (card * card_width) + (card * 30) screen.blit(card_load(str(cards[card])),[card_x_pos,y]) i = i+1 card_side = 0 getbet() #DAS #NSAS while not done: for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.MOUSEBUTTONDOWN: mouse_pos = event.pos if split_button.collidepoint(mouse_pos): #print('split_button was pressed at {0}'.format(mouse_pos)) if len(mycards) == 2 and split == False and ((chips["amount"] > bet-1)or bet == 0): if card_value[mycards[0][:-1]] == card_value[mycards[1][:-1]]: mycards = [[mycards[0]],[mycards[0]]] split = True card_side = 0 chips["amount"] -= bet bet +=bet dis_screen() pygame.display.flip() else: #print("Cant Split. Not same valued cards.") None else: #print("Cant Split. You have already split or not enough chips or not first turn.") None if dd_button.collidepoint(mouse_pos): #print('dd_button was pressed at {0}'.format(mouse_pos)) double() if hit_button.collidepoint(mouse_pos): #print('hit_button was pressed at {0}'.format(mouse_pos)) hit("player") check() step = 1 if stand_button.collidepoint(mouse_pos): #print('stand_button was pressed at {0}'.format(mouse_pos)) stand() if split == False: if my_total > 21 and soft_total == False: dis_screen(True) gr("bust") chip_command("lose",bet) reset() if my_total == 21 and len(mycards) == 2: dis_screen(True) if dealer_total == 21: gr("push") chip_command("push",bet) else: gr("bj") chip_command("bj",bet) reset() if dealer_total == 21 and len(dealerscards) == 2: dis_screen(True) gr("lose") chip_command("lose",bet) reset() if step == 0: for i in "12": check() mycards.append(deck.pop(0)) check() dealerscards.append(deck.pop(0)) step += 1 if step == 1: dealer_total = 0 my_total = 0 soft = False dsoft = False dealer_total = check_amount(dealerscards,"d") my_total = check_amount(mycards,"u") #print(dealer_total,my_total) step +=1 dis_screen() dis_money() pygame.display.flip() clock.tick(120) pygame.quit() exit()
# -*- coding: utf-8 -*- """ Created on Sat Aug 15 17:06:55 2020 @author: 91880 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns cars=pd.read_csv("cars_sampled.csv") cars.columns cars.shape cars.head() cars.info() description=cars.describe() cars.head() cars.columns[cars.isnull().any()] #The missing values are in columns 'vehicleType', 'gearbox', 'model', 'fuelType', 'notRepairedDamage' cars.groupby(by=['brand']).price.max().sort_values() #Max price is of ford i.e 12345678 #Min price is of daewoo i.e 2799 cars['price'].value_counts() cars1=cars.copy(deep=True) #Making two separate data on the basis of price car_low_price=cars1.loc[cars1['price']<100] car_data_new=cars1.loc[cars1['price']>=100] car_data_new.shape #Saving it to separate csv file car_low_price.to_csv('car_price_less_than_100.csv',index=False) car_data_new.to_csv('car_price_greater_than_100.csv',index=False) #Splitting the data from sklearn.model_selection import train_test_split train,test=train_test_split(car_data_new,test_size=0.2073957,random_state=0) train_new=pd.concat([train,car_low_price]) train.to_csv('train_without_price_missing.csv',index=False) train_new.to_csv('train_with_price_missing.csv',index=False) test.to_csv('test_data.csv',index=False) #Reading the train data that includes vague price values to impute X's train_data=pd.read_csv('train_with_price_missing.csv') train_data.head() #Cheching for randomness of data import missingno as msno msno.bar(train_data) msno.heatmap(train_data) msno.matrix(train_data) corr_matrix=train_data.corr() sns.heatmap(corr_matrix,annot=True) plt.show #Imputing missing values with term 'missing' train_data.isnull().sum() train_data['model'].fillna('missing_model',inplace=True) train_data['vehicleType'].fillna('missing_vehicle',inplace=True) train_data['gearbox'].fillna('missing_gear',inplace=True) train_data['fuelType'].fillna('missing_fuel',inplace=True) train_data['notRepairedDamage'].fillna('missing_damage',inplace=True) train_data.isnull().sum() #saving the imputed data train_data.to_csv('train_data_missing1.csv',index=False) data2=pd.read_csv('train_data_missing1.csv') #Finding the Outliers for i in data2.columns: if (data2[i].dtype=='O'): print( data2[i].value_counts(sort=False,normalize=True)) #The variables 'Offertype' and 'seller' can be dropped from the data as it have only one significant category data2.drop("seller",inplace=True,axis=1) data2.drop("offerType",inplace=True,axis=1) data2.info() #box plot import seaborn as sns sns.boxplot(x=data2['abtest'],y=data2['price']) #percentile np.percentile(data2['price'],99.4) #4.5 %of the data is below 100
from agent.agent import Agent from functions import * import sys import pandas as pd # import cudf as pd import os #set GPU Device os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0" main_df=pd.DataFrame() empty_list=[] if len(sys.argv) != 4: print( "Usage: python train.py [stock] [window] [episodes]") exit() stock_name, window_size, episode_count = sys.argv[1], int(sys.argv[2]), int(sys.argv[3]) agent = Agent(window_size) data = getStockDataVec(stock_name) # l = (data.size) -1 l = len(data) -1 #l=300 batch_size = 32 for e in range(episode_count + 1): print( "Episode " + str(e) + "/" + str(episode_count)) state = getState(data, 0, window_size + 1) total_profit = 0 agent.inventory = [] for t in range(l): # state=np.reshape(state,(state.shape[0],state.shape[1],1)) action = agent.act(state) # sit next_state = getState(data, t + 1, window_size + 1) reward = 0 if action == 1: # buy agent.inventory.append(data[t]) print( "Buy: " + formatPrice(data[t])+" index:"+str(t)) elif action == 2 and len(agent.inventory) > 0: # sell bought_price = agent.inventory.pop(0) reward = max(data[t] - bought_price, 0) total_profit += data[t] - bought_price empty_list.append({'Buy':bought_price,'Sell':data[t],'Profit':data[t] - bought_price}) print( "Sell: " + formatPrice(data[t]) + " | Profit: " + formatPrice(data[t] - bought_price)+" index:"+str(t)) done = True if t == l - 1 else False agent.memory.append((state, action, reward, next_state, done)) state = next_state if done: df1 = pd.DataFrame(empty_list, columns=['Buy','Sell','Profit']) path='./output/episode'+str(e)+'.csv' df1.to_csv(path) main_df=main_df.append(df1) print( "--------------------------------") print( "Total Profit: " + formatPrice(total_profit)) print( "--------------------------------") if len(agent.memory) > batch_size: agent.expReplay(batch_size) if e % 1 == 0: agent.model.save("models/model_ep" + str(e)) main_df.to_csv('./main_df.csv')
import cv2 as cv import numpy as np import os def limiarizar(origem, destino): nome = [] for n in os.listdir(origem): nome.append(n) for i in nome: os.chdir(origem) img = cv.imread(i) img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #Usando o método de Otsu para executar o limiar automático da imagem ret2,th2 = cv.threshold(img_gray,127,255,cv.THRESH_BINARY+cv.THRESH_OTSU) #criação do kernel para usar na dilatação e erosão da imagem kernel = np.ones((1,1),np.uint8) #aumenta a área da imagem. Usada para aumentar as bordas da imagem dilation = cv.dilate(th2,kernel,iterations = 1) #corroi os limites do objeto. Usado para diminir as bordas da imagem erosion = cv.erode(th2, kernel, iterations=3) os.chdir(destino) cv.imwrite(i, erosion) origem = r'C:\Users\carlo\OneDrive\Documents\GitHub\tcc_uel\cinza\.' destino = r'C:\Users\carlo\OneDrive\Documents\GitHub\tcc_uel\limiarizadas' limiarizar(origem, destino)
from django.contrib import admin from .models import Book, Category, BookImage from django.contrib.gis.admin import OSMGeoAdmin from django.utils.html import format_html # Register your models here. class BookImageInline(admin.StackedInline): model = BookImage list_display = ('thumbnail_tag') readonly_fields = ('thumbnail',) def thumbnail_tag(self, obj): if obj.thumbnail: return format_html( '<img src="%s"/>' % obj.thumbnail.url ) return "-" thumbnail_tag.short_description = "Thumbnail" class CategoryAdmin(admin.ModelAdmin): list_display=['name','slug'] prepopulated_fields={'slug':('name',)} class BookAdmin(OSMGeoAdmin): list_display=['name','category','price','date','seller','city','location', 'condition', 'isbn','rating'] list_filter =['category','date'] list_editable = ['price','city'] inlines = [BookImageInline] admin.site.register(Category,CategoryAdmin) admin.site.register(Book,BookAdmin)
# -*- coding: utf-8 -*- from __future__ import division, print_function import unittest import numpy as np from nufft import nufft1d1freqs, nufft1d1, nufft1d2, nufft1d3 def _get_data(): ms = 90 nj = 128 k1 = np.arange(-0.5 * nj, 0.5 * nj) j = k1 + 0.5 * nj + 1 x = np.pi * np.cos(-np.pi * j / nj) c = np.empty_like(x, dtype=np.complex128) c.real = np.sin(np.pi * j / nj) c.imag = np.cos(np.pi * j / nj) f = 48 * np.cos((np.arange(ms) + 1) * np.pi / ms) return x, c, f def _get_data_roundtrip(): ms = 512 nj = 200 x = np.sort(np.random.choice(np.linspace(-np.pi, np.pi, ms, endpoint=False), nj, replace=False)) c = np.random.randn(nj) f = np.empty(ms) return x, c, f def _error(exact, approx): return np.sqrt(np.sum(np.abs(exact - approx) ** 2) / np.sum(np.abs(exact)**2)) class NUFFT1DTestCase(unittest.TestCase): """Tests for 1D `nufft.py`.""" def setUp(self): self.x, self.c, self.f = _get_data() def _type_1_even(self, eps=1e-10): p2 = nufft1d1(self.x, self.c, len(self.f), direct=True) p1 = nufft1d1(self.x, self.c, len(self.f), eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 1: Discrepancy between direct and fft function") self.assertEqual(len(nufft1d1freqs(len(self.f))), len(p1), "Wrong length of frequency array") def _type_1_odd(self, eps=1e-10): p2 = nufft1d1(self.x, self.c, len(self.f) + 1, direct=True) p1 = nufft1d1(self.x, self.c, len(self.f) + 1, eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 1: Discrepancy between direct and fft function") self.assertEqual(len(nufft1d1freqs(len(self.f) + 1)), len(p1), "Wrong length of frequency array") def _type_2(self, eps=1e-10): c2 = nufft1d2(self.x, self.f, direct=True) c1 = nufft1d2(self.x, self.f, eps=eps) self.assertTrue(_error(c1, c2) < eps, "Type 2: Discrepancy between direct and fft function") def _type_3(self, eps=1e-10): p2 = nufft1d3(self.x, self.c, self.f, direct=True) p1 = nufft1d3(self.x, self.c, self.f, eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 3: Discrepancy between direct and fft function") def _type_1_2_roundtrip(self, eps=1e-10): x, c1, f = _get_data_roundtrip() p = nufft1d1(x, c1, len(f), iflag=-1, eps=eps) c2 = len(x) / len(f) * nufft1d2(x, p, iflag=1, direct=True) self.assertTrue(_error(c1, c2) < eps, "Type 1 and 2: roundtrip error.") def _type_1_and_3(self, eps=1e-10): f = nufft1d1freqs(len(self.f)) p2 = nufft1d3(self.x, self.c, f, eps=eps) p1 = nufft1d1(self.x, self.c, len(f), eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 1 and 3 and not close (even)") f = nufft1d1freqs(len(f) + 1) p2 = nufft1d3(self.x, self.c, f, eps=eps) p1 = nufft1d1(self.x, self.c, len(f), eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 1 and 3 and not close (odd)") df = 0.5 * (f[1] - f[0]) p1 = nufft1d1(self.x, self.c, len(f), eps=eps, df=df) f = nufft1d1freqs(len(f), df=df) p2 = nufft1d3(self.x, self.c, f, eps=eps) self.assertTrue(_error(p1, p2) < eps, "Type 1 and 3 and not close (even)") def test_type_1_even(self): """Is the 1D type 1 with even data correct?""" for eps in [1e-2, 1e-5, 1e-10, 1e-12]: self._type_1_even(eps) def test_type_1_odd(self): """Is the 1D type 1 with odd data correct?""" for eps in [1e-2, 1e-5, 1e-10, 1e-12]: self._type_1_odd(eps) def test_type_2(self): """Is the 1D type 2 correct?""" for eps in [1e-6, 1e-10, 1e-12]: self._type_2(eps) def test_type_3(self): """Is the 1D type 3 correct?""" for eps in [1e-2, 1e-5, 1e-10, 1e-12]: self._type_3(eps) def test_type_1_2_roundtrip(self): """Is the 1D roundtrip using type 1 and 2 correct?""" for eps in [1e-2, 1e-5, 1e-10, 1e-12]: self._type_1_2_roundtrip(eps) def test_1_and_3(self): """Are the 1D type 1 and 3 similar?""" for eps in [1e-2, 1e-5, 1e-10, 1e-12]: self._type_1_and_3(eps) if __name__ == '__main__': unittest.main()
#!flask/bin/python import imp import os from migrate.versioning import api from app import db from config import DevConfig, ProdConfig if os.environ.get('MDGIT_ENV') == 'dev': config = DevConfig else: config = ProdConfig migration = config.SQLALCHEMY_MIGRATE_REPO + '/versions/%03d_migration.py' % (api.db_version(config.SQLALCHEMY_DATABASE_URI, config.SQLALCHEMY_MIGRATE_REPO) + 1) tmp_module = imp.new_module('old_model') old_model = api.create_model(config.SQLALCHEMY_DATABASE_URI, config.SQLALCHEMY_MIGRATE_REPO) exec old_model in tmp_module.__dict__ script = api.make_update_script_for_model(config.SQLALCHEMY_DATABASE_URI, config.SQLALCHEMY_MIGRATE_REPO, tmp_module.meta, db.metadata) open(migration, "wt").write(script) api.upgrade(config.SQLALCHEMY_DATABASE_URI, config.SQLALCHEMY_MIGRATE_REPO) print 'New migration saved as ' + migration print 'Current database version: ' + str(api.db_version(config.SQLALCHEMY_DATABASE_URI, config.SQLALCHEMY_MIGRATE_REPO))
#!/usr/bin/env python # Copyright (c) 2009 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies building a target and a subsidiary dependent target from a .gyp file in a subdirectory, without specifying an explicit output build directory, and using the generated solution or project file at the top of the tree as the entry point. The configuration sets the Xcode SYMROOT variable and uses --depth= to make Xcode behave like the other build tools--that is, put all built targets in a single output build directory at the top of the tree. """ import TestGyp test = TestGyp.TestGyp() test.run_gyp('prog1.gyp', '-Dset_symroot=1', '--depth=.', chdir='src') test.relocate('src', 'relocate/src') # Suppress the test infrastructure's setting SYMROOT on the command line. test.build('prog1.gyp', SYMROOT=None, chdir='relocate/src') test.run_built_executable('prog1', stdout="Hello from prog1.c\n", chdir='relocate/src') test.run_built_executable('prog2', stdout="Hello from prog2.c\n", chdir='relocate/src') test.pass_test()
class LinkedList: def __init__(self): self.head = None class LLNode: def __init__(self, data=None, next=None): self.data = data self.next = None def build_linked_list(idx_max, idx, lst): lst.head = LLNode(idx) build_ll_nodes(idx_max, idx + 1, lst.head) return lst def build_ll_nodes(idx_max, idx, node): assert node is not False, "error, node None type in build_nodes" if idx < idx_max: node.next = LLNode(idx) build_ll_nodes(idx_max, idx + 1, node.next) def print_list(l_list): cursor = l_list.head while cursor is not None: print(cursor.data) cursor = cursor.next
#!/usr/bin/python import time var = 1 while var == 1 : # This constructs an infinite loop time.sleep(5) # Delay for 5 seconds
from sqlalchemy import * from sqlalchemy import event from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relation, backref, sessionmaker, scoped_session from sqlalchemy.ext.associationproxy import association_proxy import calendar import numbers import re import time import threading import uuid Base = declarative_base() ACCESS_LEVEL_NONE = 0 ACCESS_LEVEL_READ = 1 ACCESS_LEVEL_EDIT = 2 ACCESS_LEVEL_ADMIN = 3 class User( Base ): __tablename__ = 'users' user_id = Column( Integer, primary_key = True ) user_name = Column( Text, nullable = False ) password_hash = Column( Text, nullable = False ) access_level = Column( Integer, nullable = False, default = ACCESS_LEVEL_NONE ) can_logon = Column( Integer ) def __init__( self, user_name, password_hash ): self.user_name = user_name self.password_hash = password_hash def __repr__( self ): return 'User( %r, %r, %r, %r, %r, %r )' % ( self.user_id, self.user_name, self.can_admin, self.can_logon, self.child, self.parent, self.sort ) class Session( Base ): __tablename__ = 'sessions' session_id = Column( Text, primary_key = True ) user_id = Column( Integer, ForeignKey( 'users.user_id' ) ) expires_time = Column( Integer, nullable = False ) access_level = Column( Integer, nullable = False, default = ACCESS_LEVEL_NONE ) user = relation( 'User', backref = backref( 'sessions', lazy = 'dynamic' ) ) def __init__( self, expires_time ): self.session_id = str( uuid.uuid1() ) self.user_id = None self.expires_time = expires_time self.access_level = ACCESS_LEVEL_NONE def __repr__( self ): return 'Session( %r, %r, %r, %r )' % ( self.session_id, self.user_id, self.expires_time, self.access_level ) DBSession = None dbfile = None class WebMigrator: def __init__( self ): pass def determine_schema_info( self, session ): return None, None, None def init_schema( self, engine, ver, rev ): Base.metadata.create_all( engine ) def upgrade_schema( self, session, ver, rev ): assert False def init( database_file ): global dbfile global DBSession import hdbfs.db_utils migrators = { 'higu_web' : WebMigrator(), } dbfile = hdbfs.db_utils.DatabaseFile( database_file, migrators ) dbfile.init() dbfile.init_schema( 'higu_web', 1, 0 ) DBSession = dbfile.get_session def dispose(): global dbfile global DBSession if( dbfile is not None ): DBSession = None dbfile.dispose() dbfile = None
# data.py ofiledir = './data/' ofilename = 'IF9999.csv' ofileheader = ['date', 'time', 'open', 'high', 'low', 'close', 'vol', 'position'] start_time_am = ' 10:01:00' end_time_am = ' 11:20:00' start_time_pm = ' 13:31:00' end_time_pm = ' 14:50:00' xx_range = 30 yy_range = 1 # network.py logdir = './log/' savedir = './save/' training_start_date = '2011-1-1' training_end_date = '2013-12-31' backtest_start_date = '2014-1-1' backtest_end_date = '2014-12-31' # mystrategy weight_file = './minute/save/2016-09-07 18:41:41.weight' # backtest.py
import logging import importlib import inspect from .utils import import_class default_app_config = 'stretch.apps.StretchConfig' logger = logging.getLogger('stretch') def is_index(member): if not inspect.isclass(member): return False if not getattr(member, 'IS_INDEX', False): return False return True class StretchApp(object): """ A single point of reference for Stretch project settings. """ def __init__(self): from django.conf import settings self.settings = getattr(settings, 'STRETCH_SETTINGS', {}) self.settings['EXCLUDED_INDICES'] = getattr(self.settings, 'EXCLUDED_INDICES', []) self.settings['EXCLUDED_INDICES'].append('StretchIndex') self.settings.setdefault('SIGNAL_HANDLER', None) self.settings.setdefault('TEST', False) self.settings.setdefault('RAISE_EXCEPTIONS', False) def register_signals(self): for index in self.indices: index._register_signals() def deregister_signals(self): for index in self.indices: index._deregister_signals() def connect(self): """ Initialize or return the global elasticsearch connection """ if self.settings['TEST']: ## Monkey patch a mock backend to avoid ever trying to connect to Elasticsearch import elasticsearch_dsl.connections from stretch.tests.base import get_connection connections = getattr(elasticsearch_dsl.connections, 'connections') setattr(connections, 'get_connection', get_connection) else: from elasticsearch_dsl.connections import connections try: _connection = connections.get_connection() except KeyError: hosts = self.settings.get('HOSTS', ['localhost']) timeout = self.settings.get('TIMEOUT', 60) connections.create_connection(hosts=hosts, timeout=timeout) _connection = connections.get_connection() self.connection = _connection def get_indices_by_name(self, names): """ Fetch a list of indices by their index names """ selected = [] for index in self.indices: if index._get_index_name() in names: selected.append(index) return selected def get_indices_names(self): """ List the indices in the project by their index name """ names = [] for index in self.indices: names.append(index._get_index_name()) return names def register_index(self, index_class): """ Adds an index to the list of indices in the app """ self._indices.append(index_class()) def reset(self): """ Removes all signals, connections, and registered indices. """ self.deregister_signals() del self._indices self.connection = None self.connect() @property def indices(self): """ A list of StretchIndex classes in the project """ if not hasattr(self, '_indices'): apps = getattr(self.settings, 'APPS', None) if apps is None: from django.conf import settings apps = settings.INSTALLED_APPS self._indices = [] for app in apps: try: stretch_module = importlib.import_module('{0}.stretch_indices'.format(app)) except ImportError as e: logger.debug(e) continue for name, index_class in inspect.getmembers(stretch_module, is_index): if name not in self.settings.get('EXCLUDED_INDICES'): self._indices.append(index_class()) return self._indices global stretch_app stretch_app = StretchApp()
#! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt x = np.array([4.6, 0.0, 6.4, 6.5, 4.4, 1.1, 2.8, 5.1, 3.4, 5.8, 5.7, 5.5, 7.9, 3.0, 6.8, 6.2, 4.0, 8.6, 7.5, 1.3, 6.3, 3.1, 6.1, 5.3, 3.9, 5.8, 2.6, 4.8, 2.2, 5.3]) y = np.array([5.5, 1.7, 7.2, 8.3, 5.7, 1.1, 4.1, 6.7, 5.0, 6.6, 6.3, 5.6, 8.7, 3.6, 8.2, 6.2, 5.0, 9.5, 8.9, 2.6, 7.4, 5.0, 8.2, 6.6, 5.1, 7.0, 3.5, 6.3, 2.9, 6.9]) m = x.size X = np.c_[np.ones((m, 1)), x] alpha = 0.005 iterations = 100 print 'initialize theta' print theta theta = np.array([[1.], [1.]]) for i in xrange(iterations): temp = np.array([ [theta[0, 0] - alpha / m * (theta[0, 0] + theta[1, 0] * x - y).T.dot(X[:, 0])], [theta[1, 0] - alpha / m * (theta[0, 0] + theta[1, 0] * x - y).T.dot(X[:, 1])] ]) theta = temp print 'Calculated theta' print theta plt.plot(x, y, 'rx') plt.plot(X[:, 1], X.dot(theta), 'b-') plt.xlabel('xlabel') plt.ylabel('ylabel') plt.legend(('Training Data', 'Linear Regression'), loc='upper left') plt.show() # End of Line.
# -*- coding: cp1252 -*- from donees import * from fonctions import * score=recup_score(nom_fichier_scores) mot= mot_hoazard(liste_mots) lettres_recup=[] essai=0 utilisateur=recup_nom() if utilisateur not in score.keys() : score[utilisateur]=0 while essai < nb_coups: lettres_recup.append(recup_lettre()) result=affiche_result(lettres_recup,mot) print result if result==mot: print "mot trouver" break else: essai+=1 score[utilisateur]=calcul_score(essai,nb_coups) print 'votre score est' score[utulisateur] enregistrer_scores(nom_fichier_scores,score)
from _typeshed import Incomplete class MinHeap: class _Item: key: Incomplete value: Incomplete def __init__(self, key, value) -> None: ... def __init__(self) -> None: ... def min(self) -> None: ... def pop(self) -> None: ... def get(self, key, default: Incomplete | None = None) -> None: ... def insert(self, key, value, allow_increase: bool = False) -> None: ... def __nonzero__(self): ... def __bool__(self) -> bool: ... def __len__(self) -> int: ... def __contains__(self, key) -> bool: ... class PairingHeap(MinHeap): class _Node(MinHeap._Item): left: Incomplete next: Incomplete prev: Incomplete parent: Incomplete def __init__(self, key, value) -> None: ... def __init__(self) -> None: ... def min(self): ... def pop(self): ... def get(self, key, default: Incomplete | None = None): ... def insert(self, key, value, allow_increase: bool = False): ... class BinaryHeap(MinHeap): def __init__(self) -> None: ... def min(self): ... def pop(self): ... def get(self, key, default: Incomplete | None = None): ... def insert(self, key, value, allow_increase: bool = False): ...
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Cubic Bezier polynomial interpolating from P0 to P3 as u goes from 0 to 1 controlled by P1, P2:: B(u) = P0*(1-u)**3 + P1*3*u*(1-u)**2 + P2*3*u**2*(1-u) + P3*u**3 To apply to surface of revolution (rr,z) in range z1 to z2, equate (z - z1) u = -------- u = 0 at z=z1 u = 1 at z=z2 (z2 - z1) Or more in spirit of Bezier decide on begin/end points and control points :: (z1, rr1) (cz1, crr1) (cz2, crr2) (z2, rr2) * https://stackoverflow.com/questions/246525/how-can-i-draw-a-bezier-curve-using-pythons-pil :: In [6]: bezier([0,1]) Out[6]: [(50, 100), (100, 50)] In [7]: bezier([0,0.5,1]) Out[7]: [(50, 100), (77.5, 77.5), (100, 50)] In [8]: bezier([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]) Out[8]: [(50, 100), (55.900000000000006, 95.9), (61.60000000000001, 91.60000000000002), (67.1, 87.1), (72.4, 82.4), (77.5, 77.5), (82.4, 72.4), (87.1, 67.1), (91.60000000000001, 61.6), (95.89999999999999, 55.9), (100, 50)] """ def pascal_row(n): # This returns the nth row of Pascal's Triangle result = [1] x, numerator = 1, n for denominator in range(1, n//2+1): # print(numerator,denominator,x) x *= numerator x /= denominator result.append(x) numerator -= 1 if n&1 == 0: # n is even result.extend(reversed(result[:-1])) else: result.extend(reversed(result)) return result def make_bezier(xys): """ :param xys: sequence of 2-tuples (Bezier control points) :return func: call it over t parameter iterable Uses the generalized formula for bezier curves http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Generalization For cubic bezier with 4 points combinations is just (1,3,3,1) """ n = len(xys) combinations = pascal_row(n-1) def bezier(ts): result = [] for t in ts: tpowers = (t**i for i in range(n)) upowers = reversed([(1-t)**i for i in range(n)]) coefs = [c*a*b for c, a, b in zip(combinations, tpowers, upowers)] result.append( tuple(sum([coef*p for coef, p in zip(coefs, ps)]) for ps in zip(*xys))) return result pass return bezier from PIL import Image from PIL import ImageDraw def bezier_heart(): im = Image.new('RGBA', (100, 100), (0, 0, 0, 0)) draw = ImageDraw.Draw(im) ts = [t/100.0 for t in range(101)] xys = [(50, 100), (80, 80), (100, 50)] bezier = make_bezier(xys) points = bezier(ts) xys = [(100, 50), (100, 0), (50, 0), (50, 35)] bezier = make_bezier(xys) points.extend(bezier(ts)) xys = [(50, 35), (50, 0), (0, 0), (0, 50)] bezier = make_bezier(xys) points.extend(bezier(ts)) xys = [(0, 50), (20, 80), (50, 100)] bezier = make_bezier(xys) points.extend(bezier(ts)) draw.polygon(points, fill = 'red') im.save('out.png') if __name__ == '__main__': xys = [(50,100), (80,80), (100,50) ] bezier = make_bezier(xys)
import json import string from time import sleep import requests class DomainChecker: def __init__(self, tld): self.tld = tld self.check_url = "https://www.hosting.kr/domains?query={}" self.headers = { "content-type": "application/json", "x-requested-with": "XMLHttpRequest" } def check_target_domains(self, target_domains): found_domains = [] for d in target_domains: if self.check(self.get_target_url(d)): found_domains.append(d) sleep(0.5) return target_domains def find_short_domain(self): for a in string.ascii_lowercase: for b in string.ascii_lowercase: target_domain = self.get_target_domain(a + b) target_url = self.get_target_url(target_domain) if self.check(target_url): print(target_domain) sleep(0.5) def check(self, target_url): res = requests.get(target_url, headers=self.headers).json() return res['statusMsg'] == '등록가능' def get_target_domain(self, name): return "{}.{}".format(name, self.tld) def get_target_url(self, target_domain): return self.check_url.format(target_domain) if __name__ == '__main__': target_domains = ['jslee.me'] dc = DomainChecker("me") for d in target_domains: dc.check_target_domains(target_domains) # dc.find_short_domain()
#!/usr/bin/python # -*- coding: utf-8 -*- import socket import struct import time import app_pb2 XY_PKG_MAX_LEN = 2048000; XY_HEADER_LEN = 17; PACKAGE_HEADER = ">IIIHHb"; SERVER_HOST = '192.168.206.128'; SERVER_PORT = 10000; class CClient: HOST=SERVER_HOST; PORT=SERVER_PORT; UserID = 1472978293; Passwd = "12345"; s = None; def __init__(self, host, port): self.HOST = host; self.PORT = port; self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM); self.s.connect((self.HOST, self.PORT)); def __del__(self): self.s.close(); def SendRecvLoginReq(self): CurReq = app_pb2.LoginReq(); CurReq.userid = self.UserID; CurReq.passwd = self.Passwd; CurReq.plat = 1; content = CurReq.SerializeToString(); headerlen = XY_HEADER_LEN + len(content) header = struct.pack(PACKAGE_HEADER, headerlen, 0x00020003, 0, 0, 0, 0); data = header + content self.s.sendall(data); recv_data = self.s.recv(XY_PKG_MAX_LEN); recv_header = recv_data[0:XY_HEADER_LEN] recv_content = recv_data[XY_HEADER_LEN:]; PkgLen, CmdID, SN, CkSum, Ret, Compresse = struct.unpack(PACKAGE_HEADER, recv_header); print PkgLen, CmdID, SN, CkSum, Ret, Compresse CurRsp = app_pb2.LoginRsp(); CurRsp.ParseFromString(recv_content) print CurRsp.ret; if CurRsp.ret != 0: print 'login error' return -1; else: print '%d login success!!!'%self.UserID return 0; def SendRecvRegisterReq(self): passwd = '12345'; CurReq = app_pb2.RegisterReq(); CurReq.passwd = passwd; CurReq.nickname = 'mama'; CurReq.sex = 0; CurReq.birthday = 1472978293; CurReq.telno = '13724872174'; CurReq.address = u'广东省揭阳市惠来县仙庵镇京陇乡京东古祖东巷18号广东省揭阳市惠来县仙庵镇京陇乡京东古祖东巷18号'; CurReq.email = 'huixiaoke2009huixiaoke2009@qq.com' content = CurReq.SerializeToString(); headerlen = XY_HEADER_LEN + len(content) header = struct.pack(PACKAGE_HEADER, headerlen, 0x00020001, 0, 0, 0, 0); data = header + content self.s.sendall(data); recv_data = self.s.recv(XY_PKG_MAX_LEN); recv_header = recv_data[0:XY_HEADER_LEN] recv_content = recv_data[XY_HEADER_LEN:]; PkgLen, CmdID, SN, CkSum, Ret, Compresse = struct.unpack(PACKAGE_HEADER, recv_header); print PkgLen, CmdID, SN, CkSum, Ret, Compresse CurRsp = app_pb2.RegisterRsp(); CurRsp.ParseFromString(recv_content) print CurRsp.ret; if CurRsp.ret != 0: print 'register error' return -1; else: print '%d register success!!!'%CurRsp.userid self.UserID = CurRsp.userid; self.Passwd = passwd; return 0; def SendRecvAddFriendReq(self): CurReq = app_pb2.AddFriendReq(); CurReq.userid = 1472978286; content = CurReq.SerializeToString(); headerlen = XY_HEADER_LEN + len(content) header = struct.pack(PACKAGE_HEADER, headerlen, 0x00040003, 0, 0, 0, 0); data = header + content self.s.sendall(data); recv_data = self.s.recv(XY_PKG_MAX_LEN); recv_header = recv_data[0:XY_HEADER_LEN] recv_content = recv_data[XY_HEADER_LEN:]; PkgLen, CmdID, SN, CkSum, Ret, Compresse = struct.unpack(PACKAGE_HEADER, recv_header); print PkgLen, CmdID, SN, CkSum, Ret, Compresse CurRsp = app_pb2.AddFriendRsp(); CurRsp.ParseFromString(recv_content) print CurRsp.ret; if CurRsp.ret != 0: print 'add friend error' return -1; return 0; def Run(self): Ret = 0; print '-------------------------' Ret = self.SendRecvRegisterReq(); if Ret != 0: return -1; Ret = self.SendRecvLoginReq(); if Ret != 0: return -1; #self.SendRecvAddFriendReq(); return 0; def main(): c1 = CClient(SERVER_HOST, SERVER_PORT); c1.Run(); time.sleep(2); c2 = CClient(SERVER_HOST, SERVER_PORT); c2.Run(); time.sleep(2); c3 = CClient(SERVER_HOST, SERVER_PORT); c3.Run(); time.sleep(2); c4 = CClient(SERVER_HOST, SERVER_PORT); c4.Run(); time.sleep(2); time.sleep(100000); if __name__ == "__main__": main()
# -*- coding: utf-8 -*- """ Created on Tue Jul 16 19:59:46 2019 @author: PEKERPCLocal Description: Snippets of code for basic exploration of data. Moslty inspired by couple of blog posts and tutorials. """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use(style='ggplot') plt.rcParams['figure.figsize'] = (10, 6) # Load data #----------------------------------------------------------------------------- train = pd.read_csv(r'data\train.csv') test = pd.read_csv(r'data\test.csv') # We will use log of SalePrice since the competition does that for error calculation. #----------------------------------------------------------------------------- target = np.log(train.SalePrice) train["logSP"] = target #----------------------------------------------------------------------------- # Look at the distribution of the target. # Seaborn's plots are nice and are worth a look. plt.figure() plt.hist(train.SalePrice,bins=40) plt.title("SalePrice distribution") plt.figure() plt.hist(train.logSP,bins=30) plt.title("log(SalePrice) distribution") # Do the same with seaborn plt.figure() sns.distplot(train.SalePrice) plt.title("SalePrice distribution") plt.figure() sns.distplot(train.logSP,bins=30) plt.title("log(SalePrice) distribution") # Skew of the target distribution #----------------------------------------------------------------------------- print( "\n\n{}".format("="*80)) print( "SalePrice skew = %f." % train.SalePrice.skew() ) print( "log(SalePrice) skew = %f." % np.log(train.SalePrice).skew() ) # Select a subset of columns based on dtype (in this case, numeric) #----------------------------------------------------------------------------- numeric_features = train.select_dtypes(include=[np.number]) print( "\n\n{}".format("="*80)) print("Numeric features:\n------------------") print(numeric_features.dtypes) # Correlation between features. corr() function uses numeric features only. # Look at features highest (and most negative) correlated with SalePrice #----------------------------------------------------------------------------- c0 = train.corr() #c0 = numeric_features.corr() # corr() itself finds the numeric features in data. print( "\n\n{}".format("="*80)) print("Numeric features highly (or most negatively) correlated with SalePrice:") print( c0['SalePrice'].sort_values(ascending=False)[:10] ) print( c0['SalePrice'].sort_values(ascending=False)[-5:] ) # Plot of features and their correlation with SalePrice, sorted wrt correlation plt.figure() plt.plot(c0.SalePrice.sort_values(),"o-") plt.xticks(rotation=90) plt.title("Correlation of features with SalePrice") # What are the unique values in OverallQuall. # Will do this for all features in the uniq() function below. #----------------------------------------------------------------------------- print( "\n\n{}".format("="*80)) #print("OverallQual unique values: %s" % train.OverallQual.unique()) print("OverallQual unique values: %s" % sorted(train.OverallQual.unique())) # Box-plots are another way to look at relationships visually. # Can do this for other features as well. Seaborn does a nice job again. #----------------------------------------------------------------------------- plt.figure() sns.boxplot(x="Heating",y="logSP",data=train) # Pairplot of Seaborn is anothre powerful visual tool to investigate relationships. #----------------------------------------------------------------------------- plt.figure() cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt'] sns.pairplot(train[cols], height = 2.5) # height used to be size in older versions. # Following are small sample functions to do bits of exploration. # They are meant to be edited and ran for exploration purposes, not for production use. #----------------------------------------------------------------------------- def uniq(): '''Print unique values in each of the features. Sort values if possible.''' for c in train.columns: try: x = sorted(train[c].unique()) except: x = train[c].unique() print("-"*40,"\n",c,len(x)) if len(x) < 30: print(x) else: print("%d values. Min=%s, Max=%s" % (len(x), x[0], x[-1])) #----------------------------------------------------------------------------- def PivT(index='OverallQual', values='SalePrice'): ''' Print a pivot table of the given 2 features, and then plot. index is better to be a categorical value with a small cardinality. ''' quality_pivot = train.pivot_table(index=index, values=values, aggfunc=np.median) print(quality_pivot) quality_pivot.plot(kind='bar', color='blue') plt.xlabel(index) plt.ylabel('Median {}'.format(values)) plt.xticks(rotation=0) #----------------------------------------------------------------------------- def Scat(): '''Do a scatter plot of 2 features vs. Sale Price''' plt.figure() plt.scatter(x=train['GrLivArea'], y=target) plt.ylabel('Sale Price') plt.xlabel('Above grade (ground) living area square feet') plt.figure() plt.scatter(x=train['GarageArea'], y=target) plt.ylabel('Sale Price') plt.xlabel('Garage Area')
""" $ pylint birthday_cake_candles.py Your code has been rated at 10.00/10 (previous run: 5.00/10, +5.00) """ FILE_OPEN = open('DATA.lst', 'r') MESSAGE = FILE_OPEN.read() DATA = [MESSAGE] TYPE_DATA = [] DATA_INT = [] for line in DATA: # Convierto mi DATA que es un String en un Array de String TYPE_DATA = line.split() # Convierto mi Array de String en un Array de Enteros y lo casteo a una lista DATA_INT = list(map(int, TYPE_DATA)) DATA_FIND = DATA_INT.count(82) print(DATA_FIND) FILE_OPEN.close() # $ python guzmanandrew.py # 7
t,p=map(int,input().split()) temp=0 temp=t t=p p=temp print(t,p)
#!/usr/bin/env python3 from __future__ import print_function import aerospike from aerospike import exception as ex from aerospike_helpers.operations import operations from aerospike_helpers.operations import map_operations from aerospike import predicates as p from aslib.dbg import Dbg from aslib.asutils import Lck from aslib.asutils import ClientWrapper import inspect import json import os import random import signal import sys import time import uuid # TODO: # # add check for 2nd idx before calling query; or just once in run before loop # # add support to create 2nd index # cmd_info = [ "help: Print long help on Lck and this script\n", "put: Put a record\n", "mputs: Multi-put calls\n", "get: Get a record\n", "op: Run operate command\n", "del: Delete a record\n", "lck: Lock a record\n", "uck: Unlock a record\n", "clr: Clear a stale lock\n", "trunc: Truncate a set\n", "scan: Scan a set\n", "txn: Run a transaction\n", "rtxns: Random txn calls\n", "rcn: Reconcile logs to accounts\n", "cln: Cleanup stale pending transactions\n", "clnsvc: Cleanup service; loops 4eva calling cleanup\n", "info: Request info; ukey is info 'command'\n", # https://www.aerospike.com/docs/reference/info/ "tst: Testing hook\n" ] cmds = [] for cmd in cmd_info: cmds.append(cmd.split(':')[0]) cmd_hlp = "" for cmd in cmd_info: cmd_hlp += cmd try: as_host = os.environ['AS_HOST'] except: as_host = '127.0.0.1' # asdb host try: as_port = os.environ['AS_PORT'] except: as_port = 3000 # asdb port as_ns = 'test' # asdb namespace as_set = 'mxn' # asdb master set fpct = 0 # Failure percentage in 10ths of a percent # rec: { name: nm, bal: bal, # lck: { txnid: tid, ukey: ky}, # lckto: to, ptxns: [tid, tid2] } now = lambda: int(round(time.time() * 1000)) # command line parser def main_parser (argv): import argparse # define command line parser parser = argparse.ArgumentParser ( description="Multi-transaction test tool.") # cmd; see cmd_info above parser.add_argument ( "-cmd", metavar="cmd", #required=True, choices=cmds, help="PPrint:Command to execute.\n""{}".format(cmd_hlp) ) # namespace parser.add_argument ( "-ns", "--namespace", metavar="namespace", dest="ns", #required=True, default=as_ns, help="Aerospike namespace["+as_ns+"].") # set parser.add_argument ( "-set", metavar="set", dest="set", #required=True, default=as_set, help="Aerospike set["+as_set+"].") # user key parser.add_argument ( "-ukey", "--userKey", metavar="user_key", dest="ukey", help="Aerospike user key.") # transaction Id parser.add_argument ( "-txnid", "--transactionId", metavar="txnid", dest="txnid", help="Transaction Id.") # record parser.add_argument ( "-rec", "--record", metavar="record", dest="rec", help="PPrint:Aerospike record as a JSON string.\n" "e.g. '{\"name\": \"john\", \"bal\": 1000}'") # operations parser.add_argument ( "-ops", "--operations", metavar="ops", dest="ops", help="PPrint:operations to execute; e.g.\n" "'[ operations.read (\"name\"),\n" " operations.read (\"bal\")]'") # transaction amount parser.add_argument ( "-amt", "--amount", metavar="amount", dest="amt", type=int, help="Amount of transaction.") # count parser.add_argument ( "-n", "--count", metavar="count", dest="cnt", type=int, help="Count used with 'rtxns' or 'mputs' commands.") # failure percentage parser.add_argument ( "-fpct", "--failure_percent", metavar="percent", dest="fpct", type=int, default=fpct, help="Failure percentage in 10ths of a percent (10 is 1%%; 1 is 0.1%%). Introduces simulated asdb failures at given percentage.") # no exists parser.add_argument ( "-nx", "--no_exists", action='store_true', dest="nx", help="Record must not exist. Policy flag used with 'put' command.") # gen match parser.add_argument ( "-gen", "--generation", metavar="generation", dest="gen", type=int, default=0, help="Record generation match value. Used with 'put' command.") # host parser.add_argument ( "-host", metavar="host", default=as_host, help="Aerospike seed host name ["+as_host+"].") # port parser.add_argument ( "-port", metavar="port", type=int, default=as_port, help="Aerospike seed host port["+str(as_port)+"].") # add dbg parser for debug switches dbg_parser = Dbg.arg_parser(parser) # hack to show usage w/o the myriad dbg switches; get those w/ '-h' # main_parser(['usage', emsgs]) if argv[0] == 'usage': for emsg in argv[1]: print ("Error: {}".format(emsg)) print ("\n{}".format(parser.format_usage())) return return dbg_parser.parse_args(argv[1:]) #return parser.parse_args(argv[1:]) # main_parser # Create a client and connect it to the cluster def aero_connect (cfg, d=None): if d is None: d = Dbg('none') d.enter ("cfg:{}".format(cfg)) # check args errs = '' if cfg is None: errs += "cfg is req'd; " if errs: d.throw (ValueError, errs) try: client = aerospike.client(cfg).connect() except Exception as x: xmsg = "Failed to connect to the cluster with {}".format(cfg['hosts']) msg2 = "N.B. AS_HOST and AS_PORT env vars reset defaults of 127.0.0.1:3000" d.err (xmsg+"\n"+msg2) d.exc (x, xmsg, lvl=d.DBG) d.leave () return None if fpct is not None and fpct > 0: client = ClientWrapper (client, fpct=fpct) d.leave () return client # aero_connect # Get list of namespaces def info_hndlr (client, cmd, d=None): if d is None: d = Dbg('none') d.enter () errs = '' if cmd is None: errs += "cmd is req'd; " if errs: d.throw (ValueError, errs) res = client.info_all (cmd) d.leave (res) return res # Write a record def put_hndlr (client, ns, set, ukey, recstr, nx=False, gen=0, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{} recstr:{} nx:{}"\ .format(ns, set, ukey, recstr, nx)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if recstr is None: errs += "recstr is req'd; " if errs: d.throw (ValueError, errs) key = (ns, set, ukey) rec = json.loads(recstr) policy = {} meta = {} if nx: policy['exists'] = aerospike.POLICY_EXISTS_CREATE if gen > 0: policy['gen'] = aerospike.POLICY_GEN_EQ meta['gen'] = gen try: for ky in rec: # dmf: hack to provide for bin removal if rec[ky] == 'None': rec[ky] = aerospike.null() client.put(key, rec, meta=meta, policy=policy) except Exception as x: xmsg = "Exception: {}".format(x) d.exc (x, xmsg, lvl=d.ERR) d.leave (-1) return -1 d.leave (0) return 0 # put_hndlr # Multi-put handler # ukey is used as a prefix, appended with count def mputs_hndlr (client, ns, set, ukey, cnt, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{} cnt:{}".format(ns, set, ukey, cnt)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if cnt is None: errs += "cnt is req'd; " if errs: d.throw (ValueError, errs) rc = 0 for cnt in range(cnt): rkey = ukey+str(cnt) rec = {"name": rkey, "bal": 0} recstr = json.dumps(rec,sort_keys=True) rc = put_hndlr (client, ns, set, rkey, recstr, nx=False, gen=0, d=d) if rc < 0: d.err ("Failed to put {}.{}.{} {}".format(ns,set,rkey,recstr)) d.leave (rc) return rc d.leave (rc) return rc # mputs_hndlr # Read a record def get_hndlr (client, ns, set, ukey, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{}".format(ns, set, ukey)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if errs: d.throw (ValueError, errs) key = (ns, set, ukey) try: (rkey, meta, rec) = client.get(key) except Exception as x: xmsg = "Exception: {}".format(x) d.exc (x, xmsg) d.leave () return (None, None, None) # d.leave ((meta, json.dumps(rec,sort_keys=True))) d.leave ((meta, rec)) return (rkey, meta, rec) # get_hndlr # Read a record def operate_hndlr (client, ns, set, ukey, ops, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{}".format(ns, set, ukey)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if errs: d.throw (ValueError, errs) key = (ns, set, ukey) try: meta = None policy = None (rkey, meta, rec) = client.operate(key, eval(ops), meta, policy) except Exception as x: xmsg = "Exception: {}".format(x) d.exc (x, xmsg, lvl=d.ERR) d.leave () return (None, None, None) d.leave ((meta, json.dumps(rec,sort_keys=True))) return (rkey, meta, rec) # operate_hndlr # Delete a record def del_hndlr (client, ns, set, ukey, no_exist_allowed=False, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{}".format(ns, set, ukey)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if errs: d.throw (ValueError, errs) key = (ns, set, ukey) try: client.remove(key) except Exception as x: if no_exist_allowed and type(x) == ex.RecordNotFound: d.dbg ("record did not exist, but that's ok") d.leave (0) return 0 else: xmsg = "Exception: {}".format(x) d.exc (x, xmsg, lvl=d.ERR) d.leave (-1) return -1 d.leave (0) return 0 # del_hndlr # Truncate a set def trunc_hndlr (client, ns, set, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{}".format(ns, set)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if errs: d.throw (ValueError, errs) rc = 0 try: rc = client.truncate (ns, set, 0) except Exception as x: xmsg = "Exception: {}".format(x) d.exc (x, xmsg) d.leave (-1) return -1 d.leave (rc) return rc # trunc_hndlr # Scan a set def scan_hndlr (client, ns, set, callback, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} callback:{}".format(ns, set, callback)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if callback is None: errs += "callback is req'd; " if errs: d.throw (ValueError, errs) try: if set == '': res = client.scan(ns,None) else: res = client.scan(ns, set) res.foreach(callback) d.leave (0) return 0 except Exception as x: xmsg = "Exception: {}".format(x) d.exc (x, xmsg) d.leave () return d.leave () return # scan_hndlr # Transaction handler # lock record # log transaction # settle transaction, and unlock record def txn_hndlr (client, ns, set, ukey, txnid, amt, usr_ops=None, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{} amt:{} usr_ops:{}"\ .format(ns, set, ukey, amt, usr_ops)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if txnid is None: errs += "txnid is req'd; " if amt is None: errs += "amt is req'd; " if errs: d.throw (ValueError, errs) # lock the record try: lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) (rkey, rmeta, rec) = lck.acquire () except Exception as x: xmsg = "Failed to acquire lock; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) d.leave (xmsg) return (None, None, None) d.dbg ("rec:{} locked".format(ukey)) # log info log_set = as_set + 'log' log_key = ukey + ":" + txnid log_bin = 'log' log_rec = {"txnid": txnid, "amt": str(amt), "set": set, "ukey": ukey} log_rec_str = json.dumps(log_rec,sort_keys=True) # log transaction rc = 0 try: rc = put_hndlr (client, ns, log_set, log_key, log_rec_str, nx=True, d=d) except: d.err ("Error: failed putting rec:{} to set:{} in 'txn'"\ .format(log_rec, log_set)) d.leave ((None, None, None)) return (None, None, None) if rc < 0: d.dbg ("Failed to put {}.{}.{} {}".format(ns,log_set,log_key,log_rec_str)) d.leave ((None, None, None)) return (None, None, None) d.dbg ("logged txn {}".format(log_rec_str)) settle_ops = [ operations.increment("bal", amt), operations.read('name'), operations.read('bal') ] # add user ops if usr_ops is not None: for op in usr_ops: d.dbg ("usr op:{}".format(op)) settle_ops.append (op) # settle txn and release the lock try: (rkey, rmeta, rec) = lck.release (settle_ops) except Exception as x: d.err ("Exception caught releasing lock; {}".format(x)) d.leave ((None, None, None)) return (None, None, None) d.dbg ("rec {} settled: {}".format(ukey,rec)) d.leave ((rmeta, json.dumps(rec,sort_keys=True))) return (rkey, rmeta, rec) # txn_hndlr # Random transaction handler # Apply cnt transactions to random account records def rtxns_hndlr (client, ns, set, ukey, cnt, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} cnt:{}".format(ns, set, cnt)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if cnt is None: errs += "cnt is req'd; " if errs: d.throw (ValueError, errs) # Transact on a specific ukey if ukey is not None: (rkey, meta, rec) = get_hndlr (client, ns, set, ukey, d=d) if rec is None: d.err ("Failed to get ({}:{}:{})".format(ns,set,ukey)) d.leave (-1) return -1 usr_keys = [] # user keys usr_amts = {} # user amounts usr_keys.append(rec['name']) usr_amts[rec['name']] = rec['bal'] # Get list of ns.set usr_keys in order to randomly transact on them else: usr_keys = [] usr_amts = {} def get_names (kmr): try: rec = kmr[2] usr_keys.append(rec['name']) usr_amts[rec['name']] = rec['bal'] except Exception as x: xmsg = "rtxns: get_names: rec:{} Exception: {}".format(rec, x) d.exc (x, xmsg, lvl=d.ERR) scan_hndlr (client, ns, set, get_names, d=d) # Need records to transact upon if len(usr_keys) == 0: d.err ("{}.{} set is empty! Initial records required".format(ns, set)) d.leave (-1) return -1 d.dbg ("Initial balances: {}".format(usr_amts)) ops = [ operations.read('name'), operations.read('bal') ] # Loop executing random transactions for cnt in range(cnt): ukey = usr_keys[random.randint(0,len(usr_keys)-1)] amt = random.randint(-100, 1000) txnid = str(uuid.uuid4()) (rkey, meta, rec) = txn_hndlr (client, ns, set, ukey, txnid, amt, ops, d=d) if rec is None: d.err ("Error: Failed transaction; not aggregating ukey:{} amt:{}"\ .format(ukey,amt)) else: usr_amts[ukey] += amt if d.dlvl >= d.INF: d.out ("ran txn:{} amt:{:6d} rec:{}"\ .format(txnid,amt,json.dumps(rec,sort_keys=True))) d.out ("{}".format(usr_amts)) scan_hndlr (client, ns, set, lambda kmr: d.out ("{}".format(json.dumps(kmr[2],sort_keys=True))) , d=d) d.leave (0) return 0 # rtxns_hndlr # Reconciliation handler # aggregate txn logs and compare to account bals def rcn_hndlr (client, ns, set, ukey=None, d=None): if d is None: d = Dbg('none') d.enter () # loop over recs def get_recs (kmr): d.dbg ("get_recs entered") scan_rec = kmr[2] lck_rec = {} ukey = scan_rec['name'] txnid = str(uuid.uuid4()) # lock the record try: usr_ops = [ operations.read ('bal') ] lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) (rkey, rmeta, lck_rec) = lck.acquire (usr_ops) except Exception as x: lck_fails.append(ukey) xmsg = "Failed to acquire lock; {}".format(x) # d.inf (xmsg) d.exc (x, xmsg, lvl=d.ERR) #d.leave (xmsg) return d.dbg ("lck'd ukey:{} scan_rec:{} lck_rec:{}".format(ukey,scan_rec,lck_rec)) rec_bal = int(lck_rec['bal']) pend_amt = 0 log_amt = 0 d.dbg ("lck_rec:{}".format(lck_rec)) d.dbg ("rec_bal:{} pend_amt:{} log_amt:{}".format(rec_bal, pend_amt, log_amt)) rec_ptxn_ukeys = [] for ptxn in lck_rec['ptxns']: d.dbg ("ptxn:{}".format(ptxn)) rec_ptxn_ukeys.append(ptxn.split(':')[1]) d.dbg ("rec_ptxn_ukeys:{}".format(rec_ptxn_ukeys)) # loop over logs for rec (need 2idx on log[ukey]) d.dbg ("query'ing for {}".format(ukey)) query = client.query(ns, set+'log') query.where(p.equals('ukey', ukey)) query_recs = query.results( {'total_timeout':2000}) d.dbg ("query_recs:{}".format(query_recs)) for query_rec in query_recs: # query_recs is a list of kmr recs d.dbg ("query_rec:{}".format(query_rec)) log_rec = query_rec[2] d.dbg ("log_rec:{}".format(log_rec)) # pending txns get deducted from total log amount d.dbg ("log_rec['txnid']:{} rec_ptxn_ukeys:{}".format(log_rec['txnid'], rec_ptxn_ukeys)) if log_rec['txnid'] in rec_ptxn_ukeys: pend_amt += int(log_rec['amt']) d.dbg ("pend_amt:{}".format(pend_amt)) else: log_amt += int(log_rec['amt']) d.dbg ("log_amt:{}".format(log_amt)) lck.release() # report reconciliation errors balanced = False if rec_bal == log_amt: d.dbg ("rec_bal == log_amt") balanced = True else: rcn_fails.append(ukey) d.inf ("ukey:{} bal:{} pend_amt:{} log_amt:{} balanced:{}".format(ukey, rec_bal, pend_amt, log_amt, balanced)) if rec_bal != log_amt: d.inf ("{} Not Balanced!\n scan_rec:{}\n lck_rec:{}".format(ukey, scan_rec, lck_rec)) lck_fails = [] rcn_fails = [] if ukey is not None: kmr = get_hndlr (client, ns, set, ukey, d=d) get_recs (kmr) else: scan_hndlr (client, ns, set, get_recs, d=d) if len(lck_fails) > 0: d.dbg ("Failed to acquire lock on ukeys:{}".format(lck_fails)) if len(rcn_fails) > 0: d.dbg ("Failed to reconcile ukeys:{}".format(rcn_fails)) d.leave () return {'lck_fails': lck_fails, 'rcn_fails': rcn_fails} # rcn_hndlr def cln_callback (client, ns, set, ukey, txnid, d=None): if d is None: d = Dbg('none') d.enter ("ns:{} set:{} ukey:{} txnid:{}".format(ns, set, ukey, txnid)) # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if txnid is None: errs += "txnid is req'd; " if errs: d.throw (ValueError, errs) # remove transaction log record log_ukey = ukey + ":" + txnid d.inf ("deleting txn log record w/ key:{}".format(log_ukey)) rc = del_hndlr (client, ns, set+'log', log_ukey, no_exist_allowed=True, d=d) if rc < 0: d.dbg ("Failed to remove {}.{}.{}".format(ns,set+'log',log_ukey)) d.leave (-1) return -1 d.leave (0) return 0 # cln_callback def idx_hndlr (client, ns, set, ukey=None, d=None): if d is None: d = Dbg('none') d.enter () # check args errs = '' if ns is None: errs += "ns is req'd; " if set is None: errs += "set is req'd; " if ukey is None: errs += "ukey is req'd; " if errs: d.throw (ValueError, errs) # get a record from the set d.leave (0) return 0 def chk_func_args (dct, reqd): errs = '' for req in reqd: if dct[req] is None: errs += "arg {} req'd; ".format(req) if errs: func = inspect.currentframe().f_back.f_code.co_name errs = "Error: {}; {}".format(func,errs) return errs def chk_args (args, req_lst): emsgs = [] argv = vars(args) for req in req_lst: if argv[req] is None: if req == 'cmd': cmds_str = '' for cmd in cmds: cmds_str += " {}".format(cmd) emsgs.append ("'{}' argument required.\n One of: {}".format(req,cmds_str)) else: emsgs.append ("'{}' argument required.".format(req)) # Show usage if len(emsgs) != 0: # special arg list to generate usage; allows usage w/o debug switch listings main_parser(['usage', emsgs]) #return -1 sys.exit (1) return 0 # chk_args def main (): args = main_parser(sys.argv) # create dbg object d = Dbg (lvl = args.dbg_level, trc = args.dbg_trace, log_file = args.dbg_log_file, log_only = args.dbg_log_only, date_n_time = args.dbg_date_n_time, file_n_line = args.dbg_file_n_line, hdr_date_format = args.dbg_hdr_date_format, file_name = args.dbg_file_name, func_name = args.dbg_func_name, line_begin = args.dbg_line_begin, line_end = args.dbg_line_end) d.enter () global fpct cmd = args.cmd ns = args.ns set = args.set ukey = args.ukey txnid = args.txnid rec = args.rec ops = args.ops amt = args.amt cnt = args.cnt fpct = args.fpct nx = args.nx gen = args.gen host = args.host port = args.port chk_args (args, ['cmd']) # Create a basic ops list basic_ops = [ operations.read ("name"), operations.read ("bal"), operations.read (Lck.lck_bin), operations.read (Lck.timeout_bin), operations.read (Lck.pending_txns_bin) ] # Connect to asdb; always req'd client = aero_connect ({'hosts': [(host, port)]}, d=d) if client is None: d.err ("Failed connect") d.leave (-1) return -1 # Get help if cmd == 'help': import mxn d.out ("{}".format(help(mxn))) d.out ("\n\n") # d.out ("{}".format(help(Lck))) import aslib.asutils d.out ("{}".format(help(aslib.asutils))) pass # Get a list of namespaces elif cmd == 'info': chk_args (args, ['ukey']) ns_lst = info_hndlr (client, ukey, d=d) d.out ("{}".format(json.dumps(ns_lst,sort_keys=True))) # Put a record elif cmd == 'put': chk_args (args, ['ns', 'set', 'ukey', 'rec']) rc = put_hndlr (client, ns, set, ukey, rec, nx, gen, d=d) if rc < 0: d.err ("Failed to put {}.{}.{} {}".format(ns,set,ukey,rec)) # Put multiple random records elif cmd == 'mputs': chk_args (args, ['ns', 'set', 'ukey', 'cnt']) mputs_hndlr (client, ns, set, ukey, cnt, d=d) # Get a record elif cmd == 'get': chk_args (args, ['ns', 'set', 'ukey']) loop_cnt = cnt if loop_cnt is None: loop_cnt = 1 for i in range(loop_cnt): if ukey.isnumeric(): ukey = int(ukey) (rkey, meta, rec) = get_hndlr (client, ns, set, ukey, d=d) if rec is None: d.err ("Failed to get ({}:{}:{})".format(ns,set,ukey)) else: #d.out ("{}".format(json.dumps(rec,sort_keys=True))) d.out ("{}".format(rec)) # # get_record w/ field spec # lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) # if ops is None: # ops = '''[ # "lck", # "lck.txnid", # "txnid" field from "lck" map # "ptxns", # "ptxns.1" # 2nd elm of array # ]''' # (rkey, rmeta, rec) = lck.get_record (rec_fields=eval(ops)) # d.out ("fields:{}".format(json.dumps(rec,sort_keys=True))) # Run operate command elif cmd == 'op': chk_args (args, ['ns', 'set', 'ukey']) if ops is None: ops = basic_ops (rkey, meta, rec) = operate_hndlr (client, ns, set, ukey, ops, d=d) if rec is None: d.err ("Failed operate on ({}:{}:{})".format(ns,set,ukey)) else: d.out ("{}".format(json.dumps(rec,sort_keys=True))) # Scan a set elif cmd == 'scan': chk_args (args, ['ns', 'set']) # scan result foreach callback takes a (key,meta,rec) tuple global agg agg = 0 def txnid_amt (kmr): global agg try: rec = kmr[2] if set == 'mxn': name = rec['name'] bal = rec['bal'] try: lck = rec['lck'] lckto = rec['lckto'] ptxns = rec['ptxns'] except: lck = '{}' lckto = 0 ptxns = '[]' d.out ("{}\"name\" :\"{}\", \"bal\" :\"{}\", \"lck\" :\"{}\", \"lckto\" :\"{}\", \"ptxns\" :\"{}\" {}".format('{', name, bal, lck, lckto, ptxns, '}')) if set == 'mxnlog': txnid = rec['txnid'] amt = rec['amt'] ukey = rec['ukey'] uset = rec['set'] agg += int(amt) d.out ("{}\"txnid\": \"{}\", \"amt\" :\"{}\", \"ukey\" :\"{}\", \"set\" :\"{}\"{}".format('{', txnid, amt, ukey, uset, '}')) except Exception as x: xmsg = "txnid_amt: log_scan: rec:{} Exception: {}".format(rec,x) d.exc (x, xmsg, lvl=d.ERR) def print_rec (kmr): try: key = kmr[0] d.dbg ("{}".format(key)) rec = kmr[2] d.out ("{}".format(rec)) #d.out ("{}".format(json.dumps(rec,sort_keys=True,indent=2))) except Exception as x: xmsg = "print_rec: log_scan: rec:{} Exception: {}".format(rec,x) d.exc (x, xmsg, lvl=d.ERR) if set == '*': # dmf: add "-n 0" to just show counts ns_lst = info_hndlr (client, 'sets', d=d) #d.out ("ns_lst:{}".format(ns_lst)) for key in ns_lst.keys(): #d.out ("key:{}".format(key)) #d.out ("{}".format(ns_lst[key][1])) ns_set_specs = ns_lst[key][1] for ns_set_spec in ns_set_specs.split(';'): if ns_set_spec == '\n': break #d.out ("ns_set_spec:'{}'".format(ns_set_spec)) attrs = ns_set_spec.split(':') #d.out("attrs:{}".format(attrs)) ns_discovered = attrs[0].split('=')[1] set_discovered = attrs[1].split('=')[1] objects = attrs[2].split('=')[1] tombstones = attrs[3].split('=')[1] memory_data_bytes = attrs[4].split('=')[1] truncate_lut = attrs[5].split('=')[1] stop_writes_count = attrs[6].split('=')[1] disable_eviction = attrs[7].split('=')[1] if ns_discovered == ns: d.out ("ns:{} set:{} objs:{}".format(ns_discovered,set_discovered,objects)) if cnt is None: scan_hndlr (client, ns_discovered, set_discovered, print_rec, d=d) break else: # dmf: use set spec of '' to scan whole namespace with set of None scan_hndlr (client, ns, set, #lambda kmr: d.out ("{}".format(kmr[2])), #lambda kmr: d.out ("{}".format(json.dumps(kmr[2],sort_keys=True))), #txnid_amt, print_rec, d=d) # if set == 'mxnlog': # d.out ("agg:{}".format(agg)) # Delete a record elif cmd == 'del': chk_args (args, ['ns', 'set', 'ukey']) del_hndlr (client, ns, set, ukey, no_exist_allowed=True, d=d) # Truncate a set elif cmd == 'trunc': chk_args (args, ['ns', 'set']) trunc_hndlr (client, ns, set, d=d) # Lock a record w/ multi-trans locking model elif cmd == 'lck': chk_args (args, ['ns', 'set', 'ukey', 'txnid']) if ops is None: ops = basic_ops try: lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) (rkey, rmeta, rec) = lck.acquire (ops) d.out ("{}".format(json.dumps(rec,sort_keys=True))) d.dbg ("rmeta:{}".format(rmeta)) except Exception as x: xmsg = "Failed to acquire lock; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # Unlock a record - forced! - does not honor multi-trans locking model elif cmd == 'uck': chk_args (args, ['ns', 'set', 'ukey', 'txnid']) if ops is None: ops = basic_ops # lck = Lck (client, ns, set, ukey, 'mxn.uck', d=d, fpct=fpct) lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) try: (rkey, rmeta, rec) = lck.break_lock (ops, ignore_timeout=True) d.out ("{}".format(json.dumps(rec,sort_keys=True))) d.dbg ("rmeta:{}".format(json.dumps(rmeta,sort_keys=True))) except Exception as x: xmsg = "Failed to acquire lock; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # Cleanup all stale pending transactions on any record elif cmd == 'cln': chk_args (args, ['ns', 'set']) lck = Lck (client, ns, set, d=d, fpct=fpct) usr_ops = None lck.cleanup (cln_callback, usr_ops) # Cleanup service; just loops forever calling cleanup elif cmd == 'clnsvc': chk_args (args, ['ns', 'set']) lck = Lck (client, ns, set, d=d, fpct=fpct) usr_ops = None while True: beg = now() d.dbg ("beg:{}".format(beg)) try: lck.cleanup (cln_callback, usr_ops) end = now() d.dbg ("end:{} diff:{}".format(end, end-beg)) time.sleep(1000/1000) # 100 ms except: break; # Clear a stale lock; destructive action; no cleanup performed elif cmd == 'clr': chk_args (args, ['ns', 'set', 'ukey', 'txnid']) if ops is None: ops = basic_ops lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) try: (rkey, rmeta, rec) = lck.clear_lock (ops) d.out ("{}".format(json.dumps(rec,sort_keys=True))) d.dbg ("rmeta:{}".format(json.dumps(rmeta,sort_keys=True))) except Exception as x: xmsg = "Failed clearing lock; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # Drive a transaction - lock, transact, unlock - account settlement use case elif cmd == 'txn': chk_args (args, ['ns', 'set', 'ukey', 'txnid', 'amt']) (rkey, meta, rec) = txn_hndlr (client, ns, set, ukey, txnid, amt, d=d) d.out ("{}".format(json.dumps(rec,sort_keys=True))) # Drive random transactions elif cmd == 'rtxns': chk_args (args, ['ns', 'set', 'cnt']) rtxns_hndlr (client, ns, set, ukey, cnt, d=d) #d.out (Lck.get_stats()) try: Lck.put_stats(client, ns, set) except Exception as x: xmsg = "Failed putting lock stats; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # Aggregate log amounts (to reconcile logs w/ accounts) elif cmd == 'rcn': chk_args (args, ['ns', 'set']) fails = rcn_hndlr (client, ns, set, ukey, d=d) if len(fails['lck_fails']) != 0: d.out ("Failed to lock some records: {}".format(fails['lck_fails'])) if len(fails['rcn_fails']) == 0: if len(fails['lck_fails']) != 0: d.out ("Reconciled; except for failed locks") else: d.out ("Reconciled") else: d.out ("Unbalanced records found: {}".format(fails['rcn_fails'])) # Create 2nd idx elif cmd == 'idx': chk_args (args, ['ns', 'set', 'ukey']) rc = idx_hndlr (client, ns, set, ukey, d=d) if rc < 0: d.out ("Failed to create 2nd index on {} bin".format(ukey)) else: d.out ("2nd index created on {} bin".format(ukey)) # Test driver elif cmd == 'tst': try: lck = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) lck.acquire() lck.release() except Exception as x: xmsg = "Failed lock acquire/release; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # try: lck2 = Lck (client, ns, set, ukey, txnid, d=d, fpct=fpct) lck2.acquire() lck2.release() except Exception as x: xmsg = "Failed lock #2 acquire/release; {}".format(x) d.exc (x, xmsg, lvl=d.ERR) # d.out (lck.get_stats()) ### # chk_args (args, ['ns', 'set']) # def mxn_scan (kmr): # try: # rec = kmr[2] # name = rec['name'] # bal = rec['bal'] # lck = rec['lck'] # ptxns = rec['ptxns'] # #d.out ("name:{} bal:{}".format(name, bal)) # for ptxn in ptxns: # #d.out (" ptxn: {}".format(ptxn)) # d.out ("{} bal:{}".format(ptxn, bal)) # except Exception as x: # xmsg = "mxn_scan: Exception: {}".format(x) # d.exc (x, xmsg, lvl=d.ERR) # def mxnlog_scan (kmr): # try: # rec = kmr[2] # ukey = rec['ukey'] # txn = rec['txn'] # amt = txn['amt'] # txnid = rec['txnid'] # d.out ("{} amt:{}".format(ukey+":"+txnid, amt)) # except Exception as x: # xmsg = "mxnlog_scan: Exception: {}".format(x) # d.exc (x, xmsg, lvl=d.ERR) # scan_hndlr (client, ns, set, mxnlog_scan, d=d) # Disconnect from asdb; always req'd try: client.close() except: pass d.dbg ("Disconnected from aerospike cluster") d.leave (0) return 0 # main # allows for 'import mxn' and standard Python help(mxn) call if __name__ == "__main__": main()
from django.shortcuts import render,redirect,get_object_or_404 from django.utils import timezone from django.core.paginator import Paginator from django.views.generic.edit import FormView from .models import Notice,Comment from django.db.models import Q from django.views.generic.edit import FormView from .forms import NewNotice,SearchForm,CommentForm from django.contrib.auth.decorators import login_required # Create your views here. @login_required def home(request): return render(request,'notice/home.html') def test(request): return render(request,'notice/test.html') def detail(request, notice_id): notice_detail = get_object_or_404(Notice, pk=notice_id) return render(request, 'notice/detail.html', {'notice': notice_detail}) def comment_create(request, notice_id): # 요청 메서드가 POST방식 일 때만 처리 if request.method == 'POST': # Post인스턴스를 가져오거나 404 Response를 돌려줌 notice = get_object_or_404(Notice, pk=notice_id) # request.POST에서 'content'키의 값을 가져옴 content = request.POST.get('content') writer = request.POST.get('writer') # 내용이 전달 된 경우, Comment객체를 생성 및 DB에 저장 Comment.objects.create( notice=notice, # 작성자는 현재 요청의 사용자로 지정 comment_contents=content, comment_writer=writer, ) return redirect('detail_comment') def comment_remove(request, pk): comment = get_object_or_404(Comment, pk=pk) comment.delete() return redirect('detail_comment') def read(request): notice=Notice.objects counts=Notice.objects.count() notice_list=Notice.objects.all() paginator=Paginator(notice_list,10) page=request.GET.get('page') posts=paginator.get_page(page) #page 추가 max_index = len(paginator.page_range) page_numbers_range = 5 current_page = int(page) if page else 1 start_index = int((current_page - 1) / page_numbers_range) * page_numbers_range end_index = start_index + page_numbers_range if end_index >= max_index: end_index = max_index page_range = paginator.page_range[start_index:end_index] return render(request,'notice/home.html',{'notice':notice,'posts':posts,'counts':counts,'page_range':page_range}) def create(request): if request.method=='POST': form=NewNotice(request.POST) if form.is_valid: post=form.save(commit=False) post.pub_date=timezone.now() post.save() return redirect('home') else: form=NewNotice() return render(request,'notice/new.html',{'form':form}) return def update(request,pk): notice=get_object_or_404(Notice,pk = pk) form=NewNotice(request.POST, instance=notice) if form.is_valid(): form.save() return redirect('home') return render(request,'notice/new.html',{'form':form}) def delete(request,pk): notice=get_object_or_404(Notice,pk=pk) notice.delete() return redirect('home') class SearchFormView(FormView): # form_class를 forms.py에서 정의했던 PostSearchForm으로 정의 form_class = SearchForm template_name = 'notice/search.html' #정보 보내고싶은 곳 # 제출된 값이 유효성검사를 통과하면 form_valid 메소드 실행 # 여기선 제출된 search_word가 PostSearchForm에서 정의한대로 Char인지 검사 def form_valid(self, form): # 제출된 값은 POST로 전달됨 # 사용자가 입력한 검색 단어를 변수에 저장 search_word = self.request.POST['search_word'] # Post의 객체중 제목이나 설명이나 내용에 해당 단어가 대소문자관계없이(icontains) 속해있는 객체를 필터링 # Q객체는 |(or)과 &(and) 두개의 operator와 사용가능 post_list = Notice.objects.filter(Q(title__icontains=search_word) | Q(body__icontains=search_word)) context = {} # context에 form객체, 즉 PostSearchForm객체 저장 context['form'] = form context['search_term'] = search_word context['object_list'] = post_list return render(self.request, 'notice/search.html', context)
# -*- coding: utf-8 -*- """ Created on Mon Jun 24 14:19:28 2019 @author: Ananthan, James """ import numpy as np import pandas as pd import process as sp import os from sklearn.preprocessing import normalize import math import sys def t_n_d(file): """ gets title and description from a file """ s = file.read() des = s[s.index(','):] t = s[:s.index(',')] return t,des class Model: def __init__(self,tags,kind,th=0.2): """ :param tags: "nouns", "all", or "sic" :param kind: "boolean", "freq" or "tfidf" :param th: threshold for excluding words. th=0.2 means words occuring in more than 20% of documents are excluded """ self.dict=None self.model_vecs=None self.num_docs=0 self.tags=tags self.th=th self.kind=kind def make_dict_of_words(self,path, errorfile): """ :return: dict of words and freq in corpus. If tags are "sic", words are instead drawn from files in SIC_DESC_PATH, but frequency is still from corpus. """ word_dict={} total_docs=0 dictfails = 0 SIC_DESC_PATH = "sic_descriptions" if self.tags == "sic": word_dict = {} for filename in os.listdir(SIC_DESC_PATH): file = open(SIC_DESC_PATH + "/" + filename, 'r', encoding='utf8') text = file.read() des = set(sp.tokenize_str(text)) for word in des: if word not in word_dict: word_dict[word] = 0 file.close() for filename in os.listdir(path): file = open(path+"/"+filename,'r', encoding="utf8") title,des=t_n_d(file) try: if self.tags=="all": des_ls = sp.tokenize_str(des) elif self.tags=='nouns': des_ls = sp.tokenize_str_hp(des,title) elif self.tags =="sic": des_ls = sp.tokenize_str(des) total_docs+=1 except: des_ls = [] if errorfile is not None: dictfails += 1 exc1, exc2, exc3 = sys.exc_info() errorfile.write(filename + " failed in dictionary step: " + str(exc1) + " ; " + str(exc2)+ "\n") # words_in_doc = set() file.close() words = set(des_ls) for word in words: if self.tags == "sic": if word in word_dict: word_dict[word] += 1 else: if word not in word_dict: word_dict[word] = 1 else: word_dict[word] += 1 # for word in des_ls: # if word not in word_dict and word not in words_in_doc: # if self.tags == "sic": # pass # else: # word_dict[word]=1 # words_in_doc.add(word) # elif word not in words_in_doc: # word_dict[word]+=1 # words_in_doc.add(word) final_dict = {k: v for k, v in word_dict.items() if v/total_docs<=self.th} if errorfile is not None: errorfile.write(str(dictfails) + " documents failed in dictionary step\n") print('made dict with tags: ',self.tags,', th: ',self.th) self.dict=final_dict self.num_docs=total_docs return final_dict def make_seq_freq_vec(self,seq_ls,words,words_to_index): """ :param seq_ls: tokenized sentence as list :param words: list of words :param words_to_index: dict of word to index :return: """ vec=np.zeros(len(words)) if self.kind == 'boolean': seq_set = set(seq_ls) for i in range(len(words)): if words[i] in seq_set: vec[i] = 1 elif self.kind == 'freq': for word in seq_ls: if word in words_to_index: vec[words_to_index[word]] += 1 for i in range(len(words)): vec[i] = 1 + math.log(vec[i]) if vec[i] > 0 else vec[i] elif self.kind=='tfidf': for word in seq_ls: if word in words_to_index: vec[words_to_index[word]] += 1 for i in range(len(words)): vec[i] = vec[i]*math.log(self.num_docs/self.dict[words[i]]) if vec[i] > 0 else vec[i] mod = np.linalg.norm(vec) if mod != 0: vec = vec / mod else: vec =vec return vec def make_vec_df(self,path,w_dict, prefix, errorfile): data=[] firms=[] vecfails = 0 vecempty = 0 words=list(w_dict.keys()) words_to_index = {word : words.index(word) for word in words} word_dict_df=pd.DataFrame(words) word_dict_df.to_csv(prefix + '/' + self.tags+'_'+self.kind+'_'+str(self.th)+'_dict.csv') i=1 for filename in sorted(os.listdir(path)): file = open(path+"/"+filename,'r', encoding="utf8") title,des=t_n_d(file) try: if self.tags == 'nouns': des_ls = sp.tokenize_str_hp(des, title) elif self.tags == 'all' or self.tags == 'sic': des_ls = sp.tokenize_str(des) vec = self.make_seq_freq_vec(des_ls,words, words_to_index) # data.append(vec) # firms.append(title) if np.dot(vec, vec) != 0: data.append(vec) firms.append(title) else: vecempty += 1 if errorfile is not None: errorfile.write(filename + " contained no words after preprocessing\n") except: if errorfile is not None: vecfails += 1 exc1, exc2, exc3 = sys.exc_info() errorfile.write(filename + " failed in vector step: " + str(exc1) + " ; " + str(exc2)+ "\n") i+=1 file.close() data = np.array(data).T.tolist() df = pd.DataFrame(data, columns=firms) self.model_vecs=df if errorfile is not None: errorfile.write(str(vecfails) + " documents failed in vector step\n" + str(vecempty) + " documents contained no words after preprocessing\n") return df def make_model(tags,kind,th,errorfile=None,prefix=""): """ For tags, kind, th: see Model.__init__() :errorfile: string: path to text file to record errors while making the model, or None, to ignore errors. :prefix: string: path to folder containing model's output. """ model = Model(tags,kind,th) print('making model') model.make_vec_df('test_data',model.make_dict_of_words('test_data', errorfile), prefix, errorfile) model.model_vecs.to_csv(prefix + '/'+tags+'_'+kind+'_'+str(th)+'_vectors.csv') print('made vectors') return prefix + '/'+tags+'_'+kind+'_'+str(th)+'_vectors.csv' # make_model('nouns','freq',.2)
# Driver Code my_list = [923,6,234,56,3,0,123,5,7,3] # length of the list length = len(my_list) for i in range(length): # index of the element we consider to have the least value min_index = i # i + 1 beacuse i th index is the one we are comparing for j in range(i + 1, length): # if the value at index(currently having the min value) is greater than the value.. # ..present at another index in the same array/list # then the min_index is changed to the index having smaller value if my_list[min_index] > my_list[j]: min_index = j # after one complete loop, the index having smallest value is identified (ignoring the smallest values which have been sorted before) # this smallest value is replaced by the index we considered to be smallest ( refer to line 11 : min_index = i) my_list[i], my_list[min_index] = my_list[min_index], my_list[i] print("Sorted Array: ", my_list)