text
stringlengths
8
6.05M
import random lower = "abcdefghjiklmnopqrstuvwxyz" upper = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" numbers = "0123456789" symbols = "!”#$%&'()*+,-./:;<=>?@[]^_`{|}~" characters = lower + upper + numbers + symbols password = "".join(random.sample(characters, random.randint(8, 25))) print(password)
#! /usr/bin/env python def f(x): return x**3 - 1 def nwtn_meth(f,x_0,i): """nwtn_meth(f,x_0,i) Finds one of the roots of formula f, using newton's method starting at point x_0 and iterating over i iterations""" import num_diff grad = num_diff.num_diff(f, x_0, 0.0001) x_j = x_0 for j in range(i): x_j_new = x_j - f(x_j)/grad grad = num_diff.num_diff(f, x_j_new, 0.0001) x_j = x_j_new return x_j_new import numpy import matplotlib.pyplot as plt import matplotlib.image as img import sys numberOfPoints = int(sys.argv[1]) print sys.argv[1] #numberOfPoints = 100 result_array = numpy.zeros((2*numberOfPoints,2*numberOfPoints,3), dtype="uint8") numberOfRoots = 0 resultList = [] for i in range(-numberOfPoints,numberOfPoints,1): print i for k in range(-numberOfPoints,numberOfPoints,1): result = (nwtn_meth(f, i+(k*1j), 1000)) # if the result is a root to the function fResult = f(result) if (fResult.real**2 + fResult.imag**2 < 0.01) & (fResult.real**2 + fResult.imag**2 > -0.01): # insert thing to find distinct roots here if len(resultList) == 0: resultList.append(result) distinctResult=True for l in range(len(resultList)): # for each previously found result, if the currently found result is very similar then the current result is not a distinct root if (result.real - resultList[l].real < 0.01) & (result.real - resultList[l].real > -0.01) & (result.imag - resultList[l].imag < 0.01) & (result.imag - resultList[l].imag > -0.01): distinctResult=False rootNumber=l if distinctResult==True: resultList.append(result) rootNumber = len(resultList) # if (result.real >= 0.99) & (result.real <= 1.01) & (result.imag <=0.01) & (result.imag >= -0.01): if(rootNumber == 0): result_array[k+numberOfPoints][i+numberOfPoints] = (255,0,0) # elif (result.real >= -0.51) & (result.real <= -0.49) & (result.imag >= 0.865) & (result.imag <= 0.867): if(rootNumber == 1): result_array[k+numberOfPoints][i+numberOfPoints] = (0,255,0) # elif (result.real >= -0.51) & (result.real <= -0.49) & (result.imag <= -0.865) & (result.imag >= -0.867): if(rootNumber == 2): result_array[k+numberOfPoints][i+numberOfPoints] = (0,0,255) if(rootNumber == 3): result_array[k+numberOfPoints][i+numberOfPoints] = (0,125,125) image = plt.imshow(result_array) numberOfRoots = len(resultList) print "There are %d roots: " % (numberOfRoots) for l in range(len(resultList)): print "%f + %fj" % (resultList[l].real, resultList[l].imag) plt.show()
# Given a string, you need to reverse the order of characters in each # word within a sentence while still preserving whitespace # and initial word order. class Solution: def reverseWords(self, s): return " ".join([word[::-1] for word in s.split()]) if __name__ == "__main__": testinput = "Let's take LeetCode contest" print(Solution.reverseWords(Solution, testinput))
from squirrel.config import register_config @register_config('valid') def build_valid_config(parser): parser.add_argument( '--valid_batch_size', type=int, default=2048, help='# of tokens processed per batch') parser.add_argument( '--valid_maxlen', type=int, default=10000, help='limit the train set sentences to this many tokens') parser.add_argument( '--length_ratio', type=int, default=3, help='maximum lengths of decoding') parser.add_argument( '--beam_size', type=int, default=1, help='beam-size used in Beamsearch, default using greedy decoding') parser.add_argument( '--alpha', type=float, default=1, help='length normalization weights') parser.add_argument( '--original', action='store_true', help='output the original output files, not the tokenized ones.') parser.add_argument( '--decode_test', action='store_true', help='evaluate scores on test set instead of using dev set.') parser.add_argument( '--output_decoding_files', action='store_true', help='output separate files in testing.') parser.add_argument( '--output_on_the_fly', action='store_true', help='decoding output and on the fly output to the files') parser.add_argument( '--decoding_path', type=str, default=None, help='manually provide the decoding path for the models to decode') parser.add_argument( '--output_confounding', action='store_true', help='language confounding.') parser.add_argument( '--metrics', nargs='*', type=str, help='metrics used in this task', default=['BLEU'], choices=[ 'BLEU', 'GLEU', 'RIBES', 'CODE_MATCH', 'TER', 'METEOR', 'CIDER' ]) parser.add_argument( '--real_time', action='store_true', help='real-time translation.') return parser
#!/usr/bin/env /data/mta/Script/Python3.8/envs/ska3-shiny/bin/python ############################################################################# # # # mta_common_functions.py: colleciton of funtions used by mta # # # # author: t. isobe (tisobe@cfa.harvard.edu) # # # # last update: Mar 16, 2021 # # # ############################################################################# import os import sys import re import string import random import time import math import numpy #import astropy.io.fits as pyfits from datetime import datetime import Chandra.Time from io import BytesIO import codecs import unittest # #--- from ska # from Ska.Shell import getenv, bash ascdsenv = getenv('source /home/ascds/.ascrc -r release; source /home/mta/bin/reset_param ', shell='tcsh') tail = int(time.time() * random.random()) zspace = '/tmp/zspace' + str(tail) house_keeping = '/data/mta/Script/Python3.8/MTA/' #-------------------------------------------------------------------------- #-- read_data_file: read a data file and create a data list -- #-------------------------------------------------------------------------- def read_data_file(ifile, remove=0, ctype='r'): """ read a data file and create a data list input: ifile --- input file name remove --- if > 0, remove the file after reading it ctype --- reading type such as 'r' or 'b' output: data --- a list of data """ # #--- if a file specified does not exist, return an empty list # if not os.path.isfile(ifile): return [] try: with open(ifile, ctype) as f: data = [line.strip() for line in f.readlines()] except: with codecs.open(ifile, ctype, encoding='utf-8', errors='ignore') as f: data = [line.strip() for line in f.readlines()] # #--- if asked, remove the file after reading it # if remove > 0: rm_files(ifile) return data #-------------------------------------------------------------------------- #-- rm_files: remove a file of named file in a list -- #-------------------------------------------------------------------------- def rm_files(ifile): """ remove a file of named file in a list input: ifile --- a file name or a list of file names to be removed output: none """ mc = re.search('\*', ifile) if mc is not None: cmd = 'rm -fr ' + ifile os.system(cmd) else: if isinstance(ifile, (list, tuple)): ilist = ifile else: ilist = [ifile] for ent in ilist: if os.path.isfile(ent): cmd = 'rm -fr ' + ent os.system(cmd) def rm_file(ifile): rm_files(ifile) #-------------------------------------------------------------------------- #-- sort_list_with_other: order a list with the order of another sorted list #-------------------------------------------------------------------------- def sort_list_with_other(list1, list2, schoice=1): """ order a list with the order of another sorted list input: list1 --- a list list2 --- a list schoice --- which list to be used to order; default:fist output: list1, list2 --- sorted/reordered lists """ if len(list1) != len(list2): return False if schoice == 1: list1, list2 = (list(t) for t in zip(*sorted(zip(list1, list2)))) else: list2, list1 = (list(t) for t in zip(*sorted(zip(list2, list1)))) return [list1, list2] #-------------------------------------------------------------------------- #-- sort_multi_list_with_one: order all lists in a list by nth list order - #-------------------------------------------------------------------------- def sort_multi_list_with_one(clists, col=0): """ order all lists in a list by nth list sorted order input: clist --- a list of lists col --- position of a list to be use for sorting output: save --- a list of lists, sorted """ array1 = numpy.array(clists[col]) index = numpy.argsort(array1) save = [] for ent in clists: save.append(list(numpy.array(ent)[index])) return save #-------------------------------------------------------------------------- #-- is_leapyear: check whether the year is a leap year -- #-------------------------------------------------------------------------- def is_leapyear(year): """ check whether the year is a leap year input: year --- year output: True/False """ year = int(float(year)) chk = year % 4 #--- every 4 years: leap year chk2 = year % 100 #--- but every 100 years: not leap year chk3 = year % 400 #--- except every 400 year: leap year val = False if chk == 0: val = True if chk2 == 0: val = False if chk3 == 0: val = True return val def isLeapYear(year): is_leapyear(year) #-------------------------------------------------------------------------- #-- is_neumeric: checking the input is neumeric value -- #-------------------------------------------------------------------------- def is_neumeric(val): """ checking the input is neumeric value input: val --- input value output: True/False """ try: var = float(val) return True except: return False def chkNumeric(val): is_neumeric(val) #-------------------------------------------------------------------------- #-- convert_date_format: convert date format -- #-------------------------------------------------------------------------- def convert_date_format(date, ifmt="%Y:%j:%H:%M:%S", ofmt="%Y-%m-%dT%H:%M:%S"): """ convert date format input: date --- the original date ifmt --- input date format. default: %Y:%j:%H:%M:%S if input is chandara time, it will ignore the input format ofmt --- output date format. default: %Y-%m-%dT%H:%M:%S output: date --- converted date """ # #--- if it is chandra time, convert the date into '%Y:%j:%H:%M:%S' # if is_neumeric(date) and (ifmt in ['%Y:%j:%H:%M:%S', 'chandra']): date = Chandra.Time.DateTime(date).date # #--- chandra time give a dicimal part in the second; get rid of it # atmp = re.split('\.', date) date = atmp[0] ifmt = '%Y:%j:%H:%M:%S' # #--- convert it to time struct # out = time.strptime(str(date), ifmt) # #--- if output format is chandra time # if ofmt.lower() == 'chandra': ofmt = '%Y:%j:%H:%M:%S' ochk = 1 else: ochk = 0 date = time.strftime(ofmt, out) if ochk == 1: date = Chandra.Time.DateTime(date).secs return date #-------------------------------------------------------------------------- #-- ydate_to_dom: find dom for a given year and ydate --- #-------------------------------------------------------------------------- def ydate_to_dom(year, ydate): """ find dom for a given year and ydate input: year --- year ydate --- ydate output: dom """ year = int(float(year)) ydate = int(float(ydate)) dom = ydate if year == 1999: dom -= 202 elif year >= 2000: # #--- add adjust leap year from the last year. 2100 is not a leap year #--- so we need to correct that # add = int((year - 1997) / 4.0) if year == 2101: add -= 1 dom = dom + 163 + (year - 2000) * 365 + add else: dom = 0 dom = int(dom) return dom #-------------------------------------------------------------------------- #-- dom_to_ydate: find year and ydate from dom -- #-------------------------------------------------------------------------- def dom_to_ydate(dom): """ find year and ydate from dom input: dom --- day of mission output: year --- year ydate --- ydate """ dom += 202 year = 1999 chk = 0 while chk == 0: if is_leapyear(year): base = 366 else: base = 365 dom -= base if dom < 0: ydate = dom + base chk = 1 break else: year += 1 return (year, ydate) #-------------------------------------------------------------------------- #-- chandratime_to_fraq_year: convert chandra time into a fractional year date format #-------------------------------------------------------------------------- def chandratime_to_fraq_year(ctime): """ convert chandra time into a fractional year date format input: ctime --- time in seconds from 1998.1.1 output: ytime --- time in fractional year format """ atime = convert_date_format(ctime, ofmt='%Y:%j:%H:%M:%S') btemp = re.split(':', atime) year = float(btemp[0]) ydate = float(btemp[1]) hour = float(btemp[2]) mins = float(btemp[3]) sec = float(btemp[4]) if is_leapyear(year): base = 366.0 else: base = 365.0 ydate = ydate + (hour/24.0 + mins/1440.0 + sec/86400.0) frac = ydate/base ytime = year + frac return ytime #-------------------------------------------------------------------------- #-- chandratime_to_yday: convert chandra time into a day of year -- #-------------------------------------------------------------------------- def chandratime_to_yday(ctime): """ convert chandra time into a day of year input: ctime --- time in seconds from 1998.1.1 output: ydate --- a day of year (fractional) """ atime = convert_date_format(ctime, ofmt='%Y:%j:%H:%M:%S') btemp = re.split(':', atime) year = float(btemp[0]) ydate = float(btemp[1]) hour = float(btemp[2]) mins = float(btemp[3]) sec = float(btemp[4]) ydate = ydate + (hour/24.0 + mins/1440.0 + sec/86400.0) return ydate #-------------------------------------------------------------------------- #-- mk_empty_dir: empyty or create a named directory -- #-------------------------------------------------------------------------- def mk_empty_dir(name): """ empty the existing directory. if it doesnot exist, create an empty directory Input: name --- the name of direcotry Output: <chk> --- if it is created/emptyed, return 1 otherwise 0 """ try: if os.path.isdir(name): cmd = 'rm -rf ' + name os.system(cmd) cmd = 'mkdir ' + name os.system(cmd) return 1 except: return 0 #-------------------------------------------------------------------------- #-- add_leading_zero: add leading 0 to digit -- #-------------------------------------------------------------------------- def add_leading_zero(val, dlen=2): """ add leading 0 to digit input: val --- neumeric value or string value of neumeric dlen --- length of digit output: val --- adjusted value in string """ try: val = int(val) except: return val val = str(val) vlen = len(val) for k in range(vlen, dlen): val = '0' + val return val #-------------------------------------------------------------------------- #-- add_tailing_zero: add '0' to the end to fill the length after a dicimal point #-------------------------------------------------------------------------- def add_tailing_zero(val, digit): """ add '0' to the end to fill the length after a dicimal point input: val --- value digit --- the number of decimal position output: val --- adjust value (str) """ val = str(val) atemp = re.split('\.', val) vlen = len(atemp[1]) diff = digit - vlen if diff > 0: for k in range(0, diff): atemp[1] = atemp[1] + '0' val = atemp[0] + '.' + atemp[1] return val #-------------------------------------------------------------------------- #-- check_file_with_name: check files with the name with a part 'part' exist #-------------------------------------------------------------------------- def check_file_with_name(tdir, part=''): """ check files with the name with a part 'part' exist in dir input: tdir --- a directory path or a full path with the full file name part --- a part of the name of files which we want to check output: Ture/False """ if part == '': if os.path.isfile(tdir): return True else: return False else: if tdir == './': if os.path.isfile(test): return True else: return False try: part = part.rstrip('\/') part = part.rstrip('*') part = part.rstrip('\\') if os.path.isdir(tdir): cmd = 'ls ' + tdir + '> ' + zspace os.system(cmd) f = open(zspace, 'r') out = f.read() f.close() rm_files(zspace) mc = re.search(part, out) if mc is not None: return True else: return False else: return False except: return False #-------------------------------------------------------------------------- #-- remove_duplicated_lines: remove duplicated lines from a file or a list #-------------------------------------------------------------------------- def remove_duplicated_lines(iname, chk=1, srt=1): """ remove duplicated lines from a file or a list input: iname --- input file or a input list name chk --- input is a list if 0, otherwise a file srt --- if 1, sort requested output: if chk == 0: return a list chk > 0: updated file """ if (chk == 1) and (not os.path.isfile(iname)): return [] else: new = [] if chk == 1: data = read_data_file(iname) else: data = iname if len(data) > 1: if srt > 0: data = sorted(data) first = data[0] new = [first] for i in range(1, len(data)): ichk = 0 for k in range(len(new)-1, -1, -1): if data[i] == new[k]: ichk = 1 break if ichk == 0: new.append(data[i]) if chk == 1: with open(iname, 'w') as fo: for ent in new: fo.write(ent + '\n') else: return new else: if chk == 0: return data def removeDuplicate(iname, chk = 1, srt=1): remove_duplicated_lines(iname, chk=1, srt=1) #-------------------------------------------------------------------------- #-- change_month_format: cnvert month format between digit and three letter month #-------------------------------------------------------------------------- def change_month_format(month): """ cnvert month format between digit and three letter month input: month --- either digit month or letter month oupupt: either digit month or letter month """ m_list = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',\ 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] # #--- check whether the input is digit # try: var = int(float(month)) if (var < 1) or (var > 12): return 'NA' else: return m_list[var-1] # #--- if not, return month # # except: mon = 'NA' var = month.lower() for k in range(0, 12): if var == m_list[k].lower(): return k+1 return mon #-------------------------------------------------------------------------- #-- today_date_display: get today's date in <mmm>-<dd>-<yyyy> --- #-------------------------------------------------------------------------- def today_date_display(): """ get today's date in <mmm>-<dd>-<yyyy> (e.g., Jan-01_2018) input: none output:<mmm>-<dd>-<yyyy> """ out= time.strftime('%Y:%m:%d', time.gmtime()) atemp = re.split(':', out) lmon = change_month_format(atemp[1]) current = lmon + '-' + atemp[2] + '-' + atemp[0] return current #-------------------------------------------------------------------------- #-- today_date_display2 : get today's date in <mmm> <dd>, <yyyy> --- #-------------------------------------------------------------------------- def today_date_display2(): """ get today's date in <mmm>-<dd>-<yyyy> (e.g., Jan-01_2018) input: none output:<mmm>-<dd>-<yyyy> """ out= time.strftime('%Y:%m:%d', time.gmtime()) atemp = re.split(':', out) lmon = change_month_format(atemp[1]) current = lmon + ' ' + atemp[2] + ', ' + atemp[0] return current #-------------------------------------------------------------------------- #-- today_date: return today's year, mon, and day -- #-------------------------------------------------------------------------- def today_date(): """ return today's year, mon, and day input: none output: [year, mon, day] """ out = time.strftime('%Y:%m:%d', time.gmtime()) atemp = re.split(':', out) year = int(atemp[0]) mon = int(atemp[1]) day = int(atemp[2]) return [year, mon, day] #-------------------------------------------------------------------------- #-- separate_data_to_arrays: separate a table data into arrays of data -- #-------------------------------------------------------------------------- def separate_data_to_arrays(data, separator='\s+', com_out=''): """ separate a table data into arrays of data input: data --- a data table separator --- what is the delimited charactor.default: '\s+' com_out --- if this is provided, the beginning of the line marked with that won't be read in (e.g. by '#') output: coldata --- a list of lists of each column """ atemp = re.split(separator, data[0]) alen = len(atemp) coldata = [[] for x in range(0, alen)] for ent in data: if ent == '': continue if (com_out != '') and (ent[0] == com_out): continue atemp = re.split(separator, ent) for j in range(0, alen): try: val = float(atemp[j]) except: val = atemp[j] coldata[j].append(val) return coldata #-------------------------------------------------------------------------- #-- run_arc5gl_process: un arc5gl process -- #-------------------------------------------------------------------------- def run_arc5gl_process(cline): """ run arc5gl process input: cline --- command lines output: f_list --- a list of fits (either extracted or browsed) *fits --- if the command asked to extract; resulted fits files """ with open(zspace, 'w') as fo: fo.write(cline) try: cmd = ' /proj/sot/ska/bin/arc5gl -user isobe -script ' + zspace + ' > ./zout' os.system(cmd) except: try: cmd = ' /proj/axaf/simul/bin/arc5gl -user isobe -script ' + zspace + ' > ./zout' os.system(cmd) except: cmd1 = "/usr/bin/env PERL5LIB= " cmd2 = ' /proj/axaf/simul/bin/arc5gl -user isobe -script ' + zspace + ' > ./zout' cmd = cmd1 + cmd2 bash(cmd, env=ascdsenv) rm_files(zspace) out = read_data_file('./zout', remove=1) save = [] for ent in out: if ent == "": continue mc = re.search('Filename', ent) if mc is not None: continue mc = re.search('Retrieved', ent) if mc is not None: continue mc = re.search('---------------', ent) if mc is not None: continue atemp = re.split('\s+', ent) save.append(atemp[0]) return save #-------------------------------------------------------------------------- #-- run_arc5gl_process_user: un arc5gl process with a user option -- #-------------------------------------------------------------------------- def run_arc5gl_process_user(cline, user='isobe'): """ run arc5gl process with a user option input: cline --- command lines user --- user option output: f_list --- a list of fits (either extracted or browsed) *fits --- if the command asked to extract; resulted fits files """ with open(zspace, 'w') as fo: fo.write(cline) try: cmd = ' /proj/sot/ska/bin/arc5gl -user ' + user + ' -script ' + zspace + ' > ./zout' os.system(cmd) except: try: cmd = ' /proj/axaf/simul/bin/arc5gl -user ' + user + ' -script ' + zspace + ' > ./zout' os.system(cmd) except: cmd1 = "/usr/bin/env PERL5LIB= " cmd2 = ' /proj/axaf/simul/bin/arc5gl -user ' + user + ' -script ' + zspace + ' > ./zout' cmd = cmd1 + cmd2 bash(cmd, env=ascdsenv) rm_files(zspace) out = read_data_file('./zout', remove=1) save = [] for ent in out: if ent == "": continue mc = re.search('Filename', ent) if mc is not None: continue mc = re.search('Retrieved', ent) if mc is not None: continue mc = re.search('---------------', ent) if mc is not None: continue atemp = re.split('\s+', ent) save.append(atemp[0]) return save #-------------------------------------------------------------------------- #-- separate_data_into_col_data: separate a list of data lines into a list of lists #-------------------------------------------------------------------------- def separate_data_into_col_data(data, spliter = '\s+'): """ separate a list of data lines into a list of lists of column data input: data --- data list spliter --- spliter of the line. default: \s+ output: save --- a list of lists of data """ atemp = re.split(spliter, data[0]) alen = len(atemp) save = [[] for x in range(0, alen)] for ent in data: atemp = re.split(spliter, ent) for k in range(0, alen): try: val = float(atemp[k]) except: val = atemp[k].strip() save[k].append(val) return save #-------------------------------------------------------------------------- #-- remove_non_neumeric_values: remove all rows of lists in a list which correspond to non-neumeric #-------------------------------------------------------------------------- def remove_non_neumeric_values(alist, pos): """ remove all rows of lists in a list which correspond to non-neumeric entries in pos-th list. input: alist --- a list of lists pos --- position of a list which contains non nuemeric values output: slist --- a list of lists removed non-neumeric entries """ # #--- get a list of which we want to find non-numeric entries # tlist = alist[pos] tlist = genfromtxt3(tlist) tarray = numpy.array(tlist) # #--- create index to remove non-neumeric values # oindex = ~numpy.isnan(tarray) # #--- apply the index to all lists # slist = [] for ent in alist: tarray = numpy.array(ent) # #--- make sure that all entries are numeric not string # nlist = list(tarray[oindex]) if isinstance(nlist[0], str): nlist = list(genfromtxt3(nlist)) slist.append(nlist) return slist #-------------------------------------------------------------------------- #-- genfromtxt3: genfromtxt python3 version --- correcting python 3 bug --- #-------------------------------------------------------------------------- def genfromtxt3(alist): """ genfromtxt python3 version --- correcting python 3 bug input: alist --- a list of string entries output: out --- a list of numeric entries """ out = numpy.array(alist) out = numpy. genfromtxt(map(lambda s:s.encode('utf8'), out)) return out #-------------------------------------------------------------------------- #-- TEST TEST TEST TESt TESt TEST TEST TEST TEST TESt TESt TEST --- #-------------------------------------------------------------------------- class TestFunctions(unittest.TestCase): def test_is_leapyear(self): year = 2000 self.assertTrue(is_leapyear(year)) year = 2100 self.assertFalse(is_leapyear(year)) #-------------------------------------------------------------------------- def test_sort_list_with_other(self): list1 = ['z', 'v', 't', 'k'] list2 = ['a', 'b', 'c', 'd'] list1, list2 = sort_list_with_other(list1, list2) self.assertEqual(list2, ['d', 'c', 'b', 'a']) #-------------------------------------------------------------------------- def test_sort_multi_list_with_one(self): list1 = [4,3,2,1] list2 = [10, 9, 8, 7] list3 = ['z', 'v', 't', 'k'] list4 = ['a', 'b', 'c', 'd'] clists = [list1, list2, list3, list4] out = sort_multi_list_with_one(clists, 0) self.assertEqual(out[3], ['d', 'c', 'b', 'a']) #-------------------------------------------------------------------------- def test_convert_date_format(self): date = '2019:184:00:43:32' cdate = convert_date_format(date) self.assertEqual(cdate, '2019-07-03T00:43:32') cdate = convert_date_format(date, ofmt='%Y:%m:%d:%H:%M:%S') self.assertEqual(cdate, '2019:07:03:00:43:32') cdate = convert_date_format(date, ofmt="chandra") self.assertEqual(cdate, 678501881.184) cdate = convert_date_format(678501881.184) self.assertEqual(cdate, '2019-07-03T00:43:32') cdate = convert_date_format('20190626223528', ifmt='%Y%m%d%H%M%S', ofmt='%Y:%j:%H:%M:%S') print("I AM HERE Cdate: " + str(cdate)) #-------------------------------------------------------------------------- def test_ydate_to_dom(self): year = 1999 ydate = 202 out = ydate_to_dom(year, ydate) self.assertEqual(out, 0) year = 2012 ydate = 1 out = ydate_to_dom(year, ydate) self.assertEqual(out, 4547) year = 2019 ydate = 202 out = ydate_to_dom(year, ydate) self.assertEqual(out, 7305) #-------------------------------------------------------------------------- def test_dom_to_ydate(self): dom = 7175 [year, ydate] = dom_to_ydate(dom) line = str(year) + ':' + str(ydate) self.assertEqual(line, '2019:72') #-------------------------------------------------------------------------- def test_chandratime_to_fraq_year(self): ctime = 584150395 fyear = chandratime_to_fraq_year(ctime) self.assertEqual(fyear, 2016.5136588620724) #-------------------------------------------------------------------------- def test_add_leading_zero(self): val = 2 val = add_leading_zero(val) self.assertEqual(val, '02') val = 33 val = add_leading_zero(val, dlen=3) self.assertEqual(val, '033') val = 33 val = add_leading_zero(val) self.assertEqual(val, '33') val = '33' val = add_leading_zero(val, dlen=3) self.assertEqual(val, '033') #-------------------------------------------------------------------------- def test_remove_duplicated_lines(self): test = ['5,3,4', '1,2,3', '2,3,4', '1,2,3'] out = remove_duplicated_lines(test, chk=0) chk = ['1,2,3', '2,3,4','5,3,4'] self.assertEqual(out, chk) #-------------------------------------------------------------------------- def test_run_arc5gl_process(self): line = 'operation=browse\n' line = line + 'dataset=flight\n' line = line + 'detector=acis\n' line = line + 'level=1\n' line = line + 'filetype=evt1\n' line = line + 'tstart=2019-01-01T00:00:00\n' line = line + 'tstop=2019-01-05T00:00:00\n' line = line + 'go\n' fits = 'acisf22032_000N001_evt1.fits' out = run_arc5gl_process(line) if fits in out: self.assertEqual(fits, fits) #-------------------------------------------------------------------------- def test_separate_data_into_col_data(self): data = ['1 2 3 4', '5 6 7 8'] out = separate_data_into_col_data(data, spliter='\s+') print("I AM HERE: " + str(out)) #-------------------------------------------------------------------------- def test_remove_non_neumeric_values(self): in_list= [[1,2,3,4], [2,'test',4,5], [3,4,5,6]] out_list = [[1, 3, 4], [2.0, 4.0, 5.0], [3, 5, 6]] out = remove_non_neumeric_values(in_list, 1) self.assertEqual(out, out_list) #-------------------------------------------------------------------------- if __name__ == '__main__': unittest.main()
# -*- coding: utf8 -*- # [학번] [이름] # https://wikidocs.net/13 <- 이 웹사이트 내용을 참고하여 아래 각 행 출력 내용을 예상하시오 # 실행 결과와 예상을 비교하시오 print("1234567890" * 4) # print(math.pi) # 예상 : 3.14159265359 # 결과 : 3.14159265359 # print("%f" % math.pi) # 예상 : # 결과 : # print("%d" % math.pi) # 예상 : # 결과 : # print("%5d" % math.pi) # 예상 : # 결과 : # print("%5f" % math.pi) # 예상 : # 결과 : # print("%8f" % math.pi) # 예상 : # 결과 : # print("%+8f" % math.pi) # 예상 : # 결과 : # print("%16.8f" % math.pi) # 예상 : # 결과 : print("1234567890" * 4) # math.pi 를 전체 8칸, 소숫점 3자리까지 표시하시오 # math.pi 를 전체 10칸, 소숫점 5자리까지 표시하시오 # math.pi 를 부호를 포함하여 전체 7칸, 소숫점 4자리까지 표시하시오
f_path=open("ticket.txt","r") lines=f_path.readlines() lines="".join(lines).split(";") newlines=[] for x in lines: newlines.append(x.replace("\n","")) print(newlines)
# KVM-based Discoverable Cloudlet (KD-Cloudlet) # Copyright (c) 2015 Carnegie Mellon University. # All Rights Reserved. # # THIS SOFTWARE IS PROVIDED "AS IS," WITH NO WARRANTIES WHATSOEVER. CARNEGIE MELLON UNIVERSITY EXPRESSLY DISCLAIMS TO THE FULLEST EXTENT PERMITTEDBY LAW ALL EXPRESS, IMPLIED, AND STATUTORY WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS. # # Released under a modified BSD license, please see license.txt for full terms. # DM-0002138 # # KD-Cloudlet includes and/or makes use of the following Third-Party Software subject to their own licenses: # MiniMongo # Copyright (c) 2010-2014, Steve Lacy # All rights reserved. Released under BSD license. # https://github.com/MiniMongo/minimongo/blob/master/LICENSE # # Bootstrap # Copyright (c) 2011-2015 Twitter, Inc. # Released under the MIT License # https://github.com/twbs/bootstrap/blob/master/LICENSE # # jQuery JavaScript Library v1.11.0 # http://jquery.com/ # Includes Sizzle.js # http://sizzlejs.com/ # Copyright 2005, 2014 jQuery Foundation, Inc. and other contributors # Released under the MIT license # http://jquery.org/license __author__ = 'jdroot' from collection import MongoCollection class MetaInfo(object): collection = None external = None mapping = None def __init__(self, meta): self.__dict__.update(meta.__dict__) class MetaObject(type): def __new__(mcs, name, bases, attrs): new_class = super(MetaObject, mcs).__new__(mcs, name, bases, attrs) try: meta = getattr(new_class, 'Meta') delattr(new_class, 'Meta') except: meta = None # Will be none for Model if meta is not None: info = MetaInfo(meta) info.collection = info.collection or name.lower() # Create the collection and add it to the new class import pycloud.pycloud.cloudlet as cloudlet coll = MongoCollection(cloudlet.get_cloudlet_instance().db, info.collection, obj_class=new_class) new_class._collection = coll # Create the external attributes list and add it to the new class if isinstance(info.external, list): #print 'Mapping _external attributes for "%s"' % str(new_class) #print info.external new_class._external = info.external else: new_class._external = None if isinstance(info.mapping, dict): new_class.variable_mapping = info.mapping else: new_class.variable_mapping = None # Setup find and find one static methods new_class.find = new_class._collection.find new_class.find_one = new_class._collection.find_one new_class.find_and_modify = new_class._collection.find_and_modify new_class.external = external return new_class def external(obj): ret = obj if hasattr(ret, '_external'): if isinstance(ret._external, list): ret = {} for key in obj._external: tmp = obj[key] if hasattr(tmp, 'external'): if hasattr(tmp.external, '__call__'): tmp = tmp.external() ret[key] = tmp return ret
import torch import cv2 from .modules.darknet import Darknet from ..utils.image_preprocess import to_tensor, prepare_raw_imgs from ..utils.utils import load_classes, get_correct_path from ..utils.bbox import non_max_suppression, rescale_boxes_with_pad, diff_cls_nms class CarLocator(): def __init__(self, cfg): # Yolov3 stuff class_path = get_correct_path(cfg['class_path']) weights_path = get_correct_path(cfg['weights_path']) model_cfg_path = get_correct_path(cfg['model_cfg']) self.img_size = cfg['img_size'] self.n_cpu = cfg['n_cpu'] self.conf_thres = cfg['conf_thres'] self.nms_thres = cfg['nms_thres'] self.classes = load_classes(class_path) self.pred_mode = cfg['pred_mode'] self.device = "cuda" if torch.cuda.is_available() else "cpu" # Set up model self.model = Darknet(model_cfg_path, img_size=cfg['img_size']).to(self.device) if cfg['weights_path'].endswith(".weights"): # Load darknet weights self.model.load_darknet_weights(weights_path) else: # Load checkpoint weights self.model.load_state_dict(torch.load(weights_path, map_location=self.device)) self.model.eval() # Set in evaluation mode # Define car detection classes self.target_classes = ['car', 'bus', 'truck'] self.idx2targetcls = {idx:cls_name for idx, cls_name in enumerate(self.classes) if cls_name in self.target_classes} def predict(self, img_lst, sort_by='conf'): ''' Inputs img_lst: list of np.array(h,w,c) Can be empty Cannot have any None elements output: [ # For each frame (empty list if no car in the frame) [ # For each detected car { 'coords': (x1,y1,x2,y2), 'confidence': 0.99 } ] ] ''' if not img_lst: # Empty imgs list return [] # Prepare input input_imgs, imgs_shapes = prepare_raw_imgs(img_lst, self.pred_mode, self.img_size) input_imgs = input_imgs.to(self.device) # Yolo prediction with torch.no_grad(): imgs_detections = self.model(input_imgs) imgs_detections = non_max_suppression(imgs_detections, self.conf_thres, self.nms_thres) # if no car in the frame, output empty list output = [[] for _ in range(len(imgs_detections))] for i, (img_detection, img_shape) in enumerate(zip(imgs_detections, imgs_shapes)): # for each image if img_detection is not None: # Rescale boxes to original image img_detection = rescale_boxes_with_pad(img_detection, self.img_size, img_shape).numpy() # Filter out wanted classes and perform diff class NMS img_detection = [det for det in img_detection if int(det[-1]) in self.idx2targetcls] img_detection = diff_cls_nms(img_detection, self.nms_thres, sort_by=sort_by) ''' img_detection: [ np.array([x1,y1,x2,y2,conf,cls_conf,cls]), ... ] now make dict for output ''' img_detection = [{ 'coords': tuple(det[:4]), 'confidence': det[4] } for det in img_detection] output[i] = img_detection return output
import numpy as np import cv2, math, sys def get_val(img, x, y): if x < 0 or x > img.shape[0]-1 or y < 0 or y > img.shape[1]-1: return 0 return img[x, y] def get_neighbors(img, origin, sizes): neighbors = np.zeros((sizes[0], sizes[1]), int) half = sizes[0] / 2 x = origin[0] y = origin[1] for row in xrange(-half, half + 1): for col in xrange(-half, half + 1): neighbors[half + row, half + col] = get_val(img, x + row, y + col) return neighbors def magnitude(neighbors, mask): magnitude = 0 size_x = len(mask) size_y = len(mask[0]) for row in xrange(size_x): for col in xrange(size_y): magnitude += neighbors[row][col] * mask[row][col] return magnitude def laplace(img, mask, mask_ratio, threshold): ret_img = np.zeros(img.shape, int) for row in xrange(img.shape[0]): for col in xrange(img.shape[1]): neighbors = [] neighbors = get_neighbors(img, (row, col), [3, 3]) if((magnitude(neighbors, mask) / mask_ratio) > threshold): ret_img[row, col] = 0 else: ret_img[row, col] = 255 return ret_img def MVL(img, threshold): ret_img = np.zeros(img.shape, int) mask = [[2, -1, 2], [-1, -4, -1], [2, -1, 2]] mask_div_ratio = 3 neighbors = [] for row in xrange(img.shape[0]): for col in xrange(img.shape[1]): neighbors = get_neighbors(img, (row, col), [3, 3]) if((magnitude(neighbors, mask) / mask_div_ratio) > threshold): ret_img[row, col] = 0 else: ret_img[row, col] = 255 return ret_img def LOG(img, threshold): ret_img = np.zeros(img.shape, int) mask = [[0, 0, 0, -1, -1, -2, -1, -1, 0, 0, 0], [0, 0, -2, -4, -8, -9, -8, -4, -2, 0, 0], [0, -2, -7, -15, -22, -23, -22, -15, -7, -2, 0], [-1, -4, -15, -24, -14, -1, -14, -24, -15, -4, -1], [-1, -8, -22, -14, 52, 103, 52, -14, -22, -8, -1], [-2, -9, -23, -1, 103, 178, 103, -1, -23, -9, -2], [-1, -8, -22, -14, 52, 103, 52, -14, -22, -8, -1], [-1, -4, -15, -24, -14, -1, -14, -24, -15, -4, -1], [0, -2, -7, -15, -22, -23, -22, -15, -7, -2, 0], [0, 0, -2, -4, -8, -9, -8, -4, -2, 0, 0], [0, 0, 0, -1, -1, -2, -1, -1, 0, 0, 0]] neighbors = [] for row in xrange(img.shape[0]): for col in xrange(img.shape[1]): neighbors = get_neighbors(img, (row, col), [11, 11]) if(magnitude(neighbors, mask) > threshold): ret_img[row, col] = 0 else: ret_img[row, col] = 255 return ret_img def DOG(img, threshold): ret_img = np.zeros(img.shape, int) mask = [[-1, -3, -4, -6, -7, -8, -7, -6, -4, -3, -1], [-3, -5, -8, -11, -13, -13, -13, -11, -8, -5, -3], [-4, -8, -12, -16, -17, -17, -17, -16, -12, -8, -4], [-6, -11, -16, -16, 0, 15, 0, -16, -16, -11, -6], [-7, -13, -17, 0, 85, 160, 85, 0, -17, -13, -7], [-8, -13, -17, 15, 160, 283, 160, 15, -17, -13, -8], [-7, -13, -17, 0, 85, 160, 85, 0, -17, -13, -7], [-6, -11, -16, -16, 0, 15, 0, -16, -16, -11, -6], [-4, -8, -12, -16, -17, -17, -17, -16, -12, -8, -4], [-3, -5, -8, -11, -13, -13, -13, -11, -8, -5, -3], [-1, -3, -4, -6, -7, -8, -7, -6, -4, -3, -1]] neighbors = [] for row in xrange(img.shape[0]): for col in xrange(img.shape[1]): neighbors = get_neighbors(img, (row, col), [11, 11]) if(magnitude(neighbors, mask) > threshold): ret_img[row, col] = 255 else: ret_img[row, col] = 0 return ret_img def main(): # usage: python ./hw10.py [operator] [threshold] # default threshold = 12 threshold = '12' if(len(sys.argv) == 2 and sys.argv[1] == '-h'): print "usage: python ./hw10.py [-h] [operator] [threshold]" print "Options and argmuments:" print "-h: print this help message and exit" print "operator: laplace1, laplace2, MVL, LOG, DOG" print "threshold: an integer for the operator" else: assert(len(sys.argv) == 3) operator = sys.argv[1] threshold = sys.argv[2] assert operator == 'laplace1' or \ operator == 'laplace2' or \ operator == 'MVL' or \ operator == 'LOG' or \ operator == 'DOG' # img is a 512*512 array img = cv2.imread('lena.bmp', 0) # Do Laplace mask [[0, 1, 0], [1, -4, 1], [0, 1, 0]] if operator == 'laplace1': laplace_mask1 = [[0, 1, 0], [1, -4, 1], [0, 1, 0]] mask_div_ratio1 = 1 img_laplace1 = laplace(img, laplace_mask1, mask_div_ratio1, int(threshold)) cv2.imwrite('laplace1_' + threshold + '.bmp', img_laplace1) # Do Laplace mask [[1, 1, 1], [1, -8, 1], [1, 1, 1]] / 3 if operator == 'laplace2': laplace_mask2 = [[1, 1, 1], [1, -8, 1], [1, 1, 1]] mask_div_ratio2 = 3 img_laplace2 = laplace(img, laplace_mask2, mask_div_ratio2, int(threshold)) cv2.imwrite('laplace2_' + threshold + '.bmp', img_laplace2) # Do Minimum variance Laplacian elif operator == 'MVL': img_mvl = MVL(img, int(threshold)) cv2.imwrite('MVL' + threshold + '.bmp', img_mvl) # Do Laplace of Gaussian elif operator == 'LOG': img_log = LOG(img, int(threshold)) cv2.imwrite('LOG' + threshold + '.bmp', img_log) # Do Difference of Gaussian elif operator == 'DOG': img_dog = DOG(img, int(threshold)) cv2.imwrite('DOG' + threshold + '.bmp', img_dog) print "The operator finished." if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from time import sleep import math, random import sqlite3 from threading import Thread from Battery import Battery from drone_state import DroneState from Log import Log as l from threading import Thread, Lock from utils import * from parametersModel import oneSecond #from Simulator import main l.flags = l.LOG_ALL_ENABLE class Drone: MOVE_UPDATE_FREQ = 0.05 CONSUME_BATTERY_FREQ = 1 global django_status; django_status = [ "0", "UNINIT", "BOOT", "CALIBRATING", "STANDBY", "ACTIVE", "CRITICAL", "EMERGENCY", "POWEROFF", ] TAG = "DRONE" """ ctor """ def __init__(self, droneId = -1, homeLocation = (0,0), position = (0,0), altitude= 0, failureFrequency = 0, velocity = 1, battery = None): self.id = droneId self.homeLocation = homeLocation self.position = position self.state = DroneState.ON_LAND | DroneState.OFF self.failureFrequency = failureFrequency self.battery = battery self.altitude = altitude self.velocity = velocity self.packet = None self.deliveryList = [] self.currentDelivery = None thread = Thread(target=self.consumeBattery, args=()) thread.daemon = True # Daemonize thread thread.start() #battery consumption def consumeBattery(self): while True: if self.state & DroneState.RUNNING: l.info(Drone.TAG, "Battery consumption lvl: " + str(self.battery.chargePercentage)) self.battery.use() # percentage 0 attery if self.battery.chargePercentage <= 0: if self.state & DroneState.IN_AIR: l.error(Drone.TAG, "WARNING CRASH !!!") self.state = DroneState.OUT_OF_ORDER | DroneState.ON_LAND else: l.info(Drone.TAG, "WARNING NO BATTERY") self.state = DroneState.ON_LAND | DroneState.OFF break sleep(Drone.CONSUME_BATTERY_FREQ * oneSecond) def start(self): if self.battery != None and self.state & DroneState.OFF and self.state & DroneState.OUT_OF_ORDER == 0: self.state = DroneState.IDLE | DroneState.RUNNING | DroneState.ON_LAND return 0 elif self.battery != None and self.state & DroneState.OUT_OF_ORDER == 0: l.info(Drone.TAG, "The drone is already started") elif self.battery != None and self.state & DroneState.OFF: l.info(Drone.TAG, "Drone out of service please repair it") else: l.info(Drone.TAG, "Can't start drone please plug a battery") return -1 def stop(self): if self.battery != None and self.state & DroneState.RUNNING: if self.state & DroneState.IN_AIR: l.debug(Drone.TAG, "Stopping drone in air. Bad idea. CRASHING !") self.state = DroneState.OUT_OF_ORDER | DroneState.ON_LAND | DroneState.OFF else: l.debug(Drone.TAG, "Shut off the drone") self.state = DroneState.OFF | DroneState.ON_LAND return 0 elif self.battery != None: l.info(Drone.TAG, "Can't stop drone not started") return -1 else: l.info(Drone.TAG, "Irrelevant to stop drone. No battery found plugged into the drones") return -1 def land(self, speed): if self.altitude <= 0: l.error(Drone.TAG, "The drone is already on the land") return -1 if self.state & DroneState.IN_AIR and self.state & DroneState.RUNNING: self.state = DroneState.LANDING | DroneState.RUNNING | DroneState.IN_AIR while self.altitude > 0 and self.state & DroneState.RUNNING: self.altitude = self.altitude - speed l.info(Drone.TAG, "Drone ID " + str(self.id) + " landing altitude = " + str(self.altitude)) sleep(Drone.MOVE_UPDATE_FREQ * oneSecond) if self.altitude > 0: l.error(Drone.TAG, "NO ENERGY CRASHING") return -1 else: self.altitude = 0 self.state = DroneState.ON_LAND | DroneState.RUNNING | DroneState.IDLE return 0 elif self.state & DroneState.RUNNING: l.error(Drone.TAG, "The drone is not in the air impossile to land") return -1 else: l.error(Drone.TAG, "The drone is not running. Please call start() method before") return -1 def takeoff(self, altitude, speed): if self.state & DroneState.ON_LAND and self.state & DroneState.RUNNING: if self.altitude > altitude: l.error(Drone.TAG, "Impossible to take off to this altitude") return -1 self.state = DroneState.TAKE_OFF | DroneState.RUNNING | DroneState.IN_AIR while self.altitude < altitude and self.state & DroneState.RUNNING: self.altitude = self.altitude + speed l.info(Drone.TAG, "Drone ID " + str(self.id) + " taking off altitude = " + str(self.altitude)) sleep(Drone.MOVE_UPDATE_FREQ * oneSecond) if self.altitude < altitude: l.error(Drone.TAG, "NO ENERGY CRASHING") return -1 else: self.altitude = altitude self.state = DroneState.IN_AIR | DroneState.IDLE | DroneState.RUNNING return 0 elif self.state & DroneState.RUNNING: l.error(Drone.TAG, "The drone is not on the land impossile to takeoff") return -1 else: l.error(Drone.TAG, "The drone is not running. Please call start() method before") return -1 #TODO: implement the goto method def goto(self, destPoint): if self.state & DroneState.RUNNING and self.state & DroneState.IN_AIR: self.state = DroneState.FLYING | DroneState.RUNNING | DroneState.IN_AIR | (DroneState.DELYVERING if self.currentDelivery == None else 0) startPos = self.position distance = dist(self.position, destPoint) l.debug(Drone.TAG, "Distance: " + str(distance)) vecDir = vec2d_normalize(vec2d_sub(destPoint, self.position)) vecDir = vec2d_multiply_scalar(vecDir, self.velocity) #vecDir = vec2d_multiply_scalar(vecDir, elapsed) while(dist(startPos, self.position) < distance and self.state & DroneState.RUNNING): #l.info(Drone.TAG, " direction vect : " + str(vecDir)) self.position = vec2d_add(vecDir, self.position) sleep(Drone.MOVE_UPDATE_FREQ*oneSecond) #l.info(Drone.TAG, " drone position : " + str(self.position)) if dist(startPos, self.position) < distance: l.error(Drone.TAG, "NO ENERGY CRASHING") return -1 else: self.position = destPoint self.state = DroneState.IN_AIR | DroneState.IDLE | DroneState.RUNNING else: l.error(Drone.TAG, "Please takeoff after go to a point") def removePacketFromWarehouse(self, landingSpeed, takeoffSpeed, packet): # land to retrieve the packe if self.land(landingSpeed) != 0: l.error(TAG, "Impossible to land to retrieve the packet") return -1 self.packet = packet # takeoff again if self.takeoff(takeoffSpeed) != 0: return -1 def executeDelivery(self, delivery): l.info(Drone.TAG, "Delivering packet : " + delivery.packet.name) self.currentDelivery = delivery self.followPoints(self.currentDelivery.path) if self.currentDelivery.path[len(self.currentDelivery.path) - 1] == self.position: l.info(Drone.TAG, "Packet delivered : " + delivery.packet.name) self.state = DroneState.IN_AIR | DroneState.IDLE | DroneState.RUNNING else: l.info(Drone.TAG, "Delivery failed for packet " + delivery.packet.name) self.currentDelivery = None ## # Suit les points fournit par un eventuelle calculateur de vol def followPoints(self, path): for point in path: self.goto(point)
class Persegi: def __init__ (self, panjang, lebar) : self.panjang = panjang self.lebar = lebar self.luas = panjang * lebar def itung (self): print (f'Luas Persegi Panjang anda sebesar {self.luas}') panjang = int(input("Tentukan Panjang Dari Persegi Panjang Anda : ")) lebar = int(input("Tentukan lebar Dari Persegi Panjang Anda : ")) xoxo = Persegi (panjang, lebar) xoxo.itung()
from collections import namedtuple, deque import numpy as np import copy import random import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new single experience to memory. Params ====== state : the state array action: the action array reward: the reward array next_state: the array with the next states done: the array with the dones """ e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) #print("len experiences:{}".format(len(experiences))) #print("shape experiences state:{}".format(experiences[0].state[0].shape)) #print("shape experiences action:{}".format(experiences[0].action.shape)) #print("shape experiences reward:{}".format(experiences[0].reward)) states = torch.from_numpy(np.vstack([np.dstack(e.state.T) for e in experiences if e is not None])).float().to(device) #print("State shape after stack: {}".format(states.shape)) actions = torch.from_numpy(np.vstack([np.dstack(e.action.T) for e in experiences if e is not None])).long().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([np.dstack(e.next_state.T) for e in experiences if e is not None])).float().to(device) dones = torch.from_numpy(np.vstack([np.dstack(e.done) for e in experiences if e is not None]).astype(np.uint8)).float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory) class OUNoise: """Ornstein-Uhlenbeck process.""" def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.3): """Initialize parameters and noise process. PARAMS ===== size: The dimension of the noise process mu: the drift of the stochastic process theta: The multiplier of the deterministic part of the stochastic process sigma: The """ self.mu = mu * np.ones(size) self.theta = theta self.sigma = sigma random.seed(seed) self.reset() def reset(self): """Reset the internal state (= noise) to mean (mu).""" self.state = copy.copy(self.mu) def sample(self): """Update internal state and return it as a noise sample.""" x = self.state dx = self.theta * (self.mu - x) + self.sigma * np.array([np.random.standard_normal(len(x))]) self.state = x + dx return self.state
from django.db import models from django.db.models.query import QuerySet from django.utils.translation import ugettext_lazy as _ class TeamMixin(object): pass class TeamQuerySet(QuerySet, TeamMixin): pass class TeamManager(models.Manager, TeamMixin): def get_queryset(self): return TeamQuerySet(self.model, using=self._db).filter(delete=False) class Team(models.Model): """ model to store team records """ name = models.CharField(_("Team Name"), max_length=64) logouri = models.URLField(_("Team Logo URI")) club_state = models.CharField(_("Club State"), max_length=32) delete = models.BooleanField(default=False) objects = TeamManager() class Meta: verbose_name = "Team" verbose_name_plural = "Teams" app_label = "teams" ordering = ("-name", ) def __unicode__(self): return "%s" % (self.name)
h,w = map(int,input().split()) field = [] xx = [-1, -1, -1, 0, 0, 1, 1, 1] yy = [-1, 0, 1, -1, 1, -1, 0, 1] for i in range(h): field.append(input()) for i in range(h): line = '' for j in range(w): if field[i][j] == '#': line += '#' else: temp = 0 for x,y in zip(xx,yy): if i+x < 0 or i+x > h-1: continue elif j+y < 0 or j+y > w-1: continue elif field[i+x][j+y] == '#': temp += 1 line += str(temp) print(line)
#!/usr/local/bin/python import os import sys import json import pickle #Sagemaker directory structure prefix = '/opt/ml/' input_path = prefix + 'input/data' output_path = os.path.join(prefix, 'output') model_path = os.path.join(prefix, 'model') param_path = os.path.join(prefix, 'input/config/hyperparameters.json') inputdata_path = os.path.join(prefix,'input/config/inputdataconfig.json') with open(param_path, 'r') as tc: trainingParams = json.load(tc) print ("Training Params") print (trainingParams) with open(inputdata_path, 'r') as ip: inputParams = json.load(ip) print ("Input Params") print (inputParams) #Set-up environment variables for later bash processes for key in inputParams.keys(): var_name="SM_CHANNEL_{}".format(key.upper()) path_name="/opt/ml/input/data/{}".format(key) os.environ[var_name]=path_name os.environ['SM_EPOCH']=trainingParams['epoch'] print ("Start Training") os.system('/bin/bash sagemaker_train_tesseract.sh') print ("Training Complete")
from itertools import combinations #operator.le() x = "5 1 4 2 3".split() perms = [] y = [] for i in range(2, len(x)+1): for c in combinations(x, i): perms.append("".join(c)) for i in range(0, len(perms)): x = list(perms[i]) if (x == sorted(x)): y.append("".join(str(x))) print(max((y), key=len)) y = [] for i in range(0, len(perms)): x = list(perms[i]) if (x == sorted(x)[::-1]): y.append("".join(str(x))) print(max((y), key=len))
from django.test import TestCase from django.db.utils import IntegrityError from products.models import Category, Product, ProductType def model_setup(): prod_type_female = ProductType.objects.create(name='Footwear', sex='Female') prod_type_male = ProductType.objects.create(name='Footwear', sex='Male') prod_type_junior = ProductType.objects.create(name='Footwear', sex='Junior') for cat in ['Air Max', 'Jordan', 'Runners']: Category.objects.create(name=cat) cat1 = Category.objects.all()[0] cat2 = Category.objects.all()[1] cat3 = Category.objects.all()[2] cat4 = Category.objects.all()[:2] cat5 = Category.objects.all()[1:] cat6 = Category.objects.all()[::2] cat7 = Category.objects.all() prod_type_female.category.set(cat4) prod_type_male.category.set(cat5) prod_type_junior.category.add(cat3) product_1 = Product( title='Air Jordan 11 Retro "Space Jam"', price = 2000, description='The Air Jordan 11 originally released in 1996\ and is famous for its patent leather upper. The shoes were\ designed by Tinker Hatfield and Michael Jordan himself calls\ it his favorite Air Jordan sneaker', ) product_1.save() prod_type_female.product_class.add(product_1) product_2 = Product( title='Nike Air Max 270', price = 200, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_2.save() prod_type_female.product_class.add(product_2) product_3 = Product( title='adidas NMD R2', price = 149, description='The adidas NMD R2 is a new low-top sneaker from adidas Originals.\ It is the second version of the adidas NMD R1 and features a mix of Primeknit,\ suede, and Boost cushioning. ', ) product_3.save() prod_type_female.product_class.add(product_3) product_4 = Product( title='Reebok Classic Leather', price = 49.01, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_4.save() prod_type_male.product_class.add(product_4) product_5 = Product( title='Vans x Rains UA Old Skool Lite', price = 149.98, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_5.save() prod_type_male.product_class.add(product_5) product_6 = Product( title='Asics x asphaldgold GEL-DS Trainer OG', price = 309, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_6.save() prod_type_male.product_class.add(product_6) product_7 = Product( title='Nike Air Max 98', price = 200, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_7.save() prod_type_junior.product_class.add(product_7) product_8 = Product( title='adidas ZX750', price = 38, description='Delivery takes place from 4 days after an order has been confirmed.', ) product_8.save() prod_type_junior.product_class.add(product_8) product_1.category.add(cat1) product_2.category.add(cat2) product_3.category.add(cat3) product_4.category.set(cat4) product_5.category.set(cat5) product_6.category.set(cat6) product_7.category.set(cat7) product_8.category.add(cat1) class ProductModelTest(TestCase): def setUp(self): model_setup() def test_get_all_products_from_footwear_product_class(self): prod = Product.objects.filter(product_class__name='Footwear') self.assertQuerysetEqual(prod, ['<Product: Reebok Classic Leather>', '<Product: Air Jordan 11 Retro "Space Jam">', '<Product: Vans x Rains UA Old Skool Lite>', '<Product: Asics x asphaldgold GEL-DS Trainer OG>', '<Product: Nike Air Max 270>', '<Product: adidas NMD R2>', '<Product: Nike Air Max 98>', '<Product: adidas ZX750>'], ordered=False ) class ProductManagerModelTest(TestCase): def setUp(self): model_setup() def test_custom_function_search(self): qs = Product.objects.search('air') self.assertQuerysetEqual(qs, [# Result of product attributes '<Product: Air Jordan 11 Retro "Space Jam">', '<Product: Nike Air Max 270>', '<Product: Nike Air Max 98>', # Result of category attributes '<Product: Reebok Classic Leather>', '<Product: Asics x asphaldgold GEL-DS Trainer OG>', '<Product: adidas ZX750>',], ordered=False ) def test_get_product_by_slug(self): obj = Product.objects.get_product_by_slug('reebok-classic-leather') exp = Product.objects.get(title='Reebok Classic Leather') self.assertEquals(obj.id, exp.id) def test_sort_product_by_timestamp(self): reversed_prod_list = Product.objects.all()[::-1] sorted_prod_list = Product.objects.sort_product_by_timestamp()[::1] self.assertEquals(sorted_prod_list, reversed_prod_list) class CategoryModelTest(TestCase): @classmethod def setUpTestData(cls): Category.objects.create(name='Air Max') Category.objects.create(name='Jordan') def test_name_getting(self): category = Category.objects.first().name self.assertEquals(category, 'Air Max') class ProductTypeModelTest(TestCase): def setUp(self): model_setup() def test_display_of___str___function(self): prod_type = ProductType.objects.filter(name='Footwear', sex='Female') self.assertQuerysetEqual(prod_type, ['<ProductType: Footwear -> Female>'], ordered=False) def test_unique_together_for_name_and_sex(self): with self.assertRaises(IntegrityError): ProductType.objects.create(name='Footwear', sex='Female') def test_get_all_female_categories(self): prod_type = ProductType.objects.get(name='Footwear', sex='Female') categories = prod_type.category.all() self.assertQuerysetEqual(categories, ['<Category: Air Max>', '<Category: Jordan>'], ordered=False) def test_get_all_male_products(self): prod_type = ProductType.objects.get(name='Footwear', sex='Male') products = prod_type.product_class.all() self.assertQuerysetEqual(products, ['<Product: Reebok Classic Leather>', '<Product: Vans x Rains UA Old Skool Lite>', '<Product: Asics x asphaldgold GEL-DS Trainer OG>'], ordered=False ) def test_get_all_male_products_with_respect_to_categories(self): prod_type = ProductType.objects.get(name='Footwear', sex='Male') products = prod_type.product_class.filter(category__in=prod_type.category.all()) self.assertQuerysetEqual(products, ['<Product: Reebok Classic Leather>', '<Product: Vans x Rains UA Old Skool Lite>', '<Product: Vans x Rains UA Old Skool Lite>', '<Product: Asics x asphaldgold GEL-DS Trainer OG>'], ordered=False ) def test_get_product_when_categories_do_not_match(self): ''' Try to get product when ProductType and Product categories do not match. We should get empty QuerySet as the output. ''' prod_type = ProductType.objects.get(name='Footwear', sex='Junior') products = prod_type.product_class.filter(title='adidas ZX750')\ .filter(category__in=prod_type.category.all()) self.assertQuerysetEqual(products, [], ordered=False )
#!/usr/bin/env python """ pyjld.phidgets.erl_manager.erl_server """ __author__ = "Jean-Lou Dupont" __email = "python (at) jldupont.com" __fileid = "$Id: erl_server.py 77 2009-05-04 18:10:24Z jeanlou.dupont $" __all__ = ['',] class ErlServer(object): """ """ def __init__(self): pass def link(self): """ Links to dll/so """
import requests from urllib.request import urlopen, Request from bs4 import BeautifulSoup import re import os import gzip import json ''' 测试网页httpbin.org Attention: 1.网址中的参数有中文报错,要变成编码形式。e.g. name=周杰伦 --->name=%E5%91%A8%E6%9D%B0%E4%BC%A6 ''' url = 'http://tool.liumingye.cn/music/?page=audioPage&type=migu&name=%E5%91%A8%E6%9D%B0%E4%BC%A6' #url = 'https://www.douban.com/' # # 获取一个get请求 # response = urlopen(url, timeout=10) # # (response.read().decode('utf-8')) # print(response.status) # 获取一个post请求 # import urllib.parse # # data = bytes(urllib.parse.urlencode({'hello': 'world'}), encoding='utf-8') # response = urlopen(url, data=data) # print(response.read().decode('utf-8')) # 增加信息,模拟浏览器 headers = {"Accept": "text/html,application/xhtml+xml," "application/xml;q=0.9,image/webp,image/apng," "*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding":" gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "max-age=0", "Cookie": "UM_distinctid=173b301acfc308-04faef6924753b-3972095d-1fa400-173b301ad004d3; " "myfreemp3_lang=zh-cn; CNZZDATA1277593802=1255473617-1596435498-%7C1596605456", "user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/84.0.4147.105 Safari/537.36"} req = Request(url=url, headers=headers) response = urlopen(req) response_decode=gzip.decompress(response.read()).decode('utf-8') print(response_decode) if __name__ == '__main__': os.chdir('/home/jzy/Desktop/Scrapy_project')
""" 我的哈希的理解: 1. 哈希是一种一一映射方法 2. 它需要保证对不同的对象生成的哈希值不可以相同 3. 哈希过程很快 4. 也叫散列技术 """ print(hash('sdg'))
# -*- coding: utf-8 -*- import math import time import random from heap import * h = 0 # Global räknare för Vertex-ID:n d = 2 # Djikstras algoritm # G is the graph # s is the starting node # e is the ending node def djikstra(G, s, e): unvisited = [] # Here we can do variations of d visited = [] for i in G: # Runs in |V| time as we need to initialise the algoritm i.dist = float("inf") i.prev = None unvisited.append(i) visited.append(False) s.dist = 0 visited[s.n] = True # We assume constant time for python lists unvisited.remove(s) curr = s global d adjacent = Heap(d) # We change this if we want another kind of heap than a binary one. The d in this d-ary heap is the d in log_d while len(unvisited) > 0: # Runs a (worst case) total of |V| times, as we may need to visit every vertex # Debug stuff. Breakpoints are for brainiacs #if curr == e: # print "Found ending!", curr.dist #print "Iteratirng on", curr.n #print "Unvisited:", unvisited #print #print "Visited:", visited #print #print # This will run |E| times for ed in curr.edges: # Runs at most |V| - 1 times, if the graph is well connected (worst-case scenarion if EVERY vertex is well connected) if not visited[ed.dest]: # We only consider the unvisited vertices. if (curr.dist + ed.weight < G[ed.dest].dist): # We compare the tentative distance # print "Replacing tentative distances...", G[ed.dest].dist, "->", curr.dist + ed.weight, "for", G[ed.dest].n G[ed.dest].dist = curr.dist + ed.weight # Update it G[ed.dest].prev = ed.src adjacent.insert(G[ed.dest].dist, G[ed.dest]) # Insert it into the heap for future use. Takes log |V| time. # Greatest cost of entire for-loop: |E| log |V|, regardless of the amount of times the overlying while-loop is executed if not visited[curr.n]: visited[curr.n] = True #else: # print "Found", curr.n, "in visited set." try: unvisited.remove(curr) except: pass if adjacent.isEmpty(): return e.dist curr = get_min_unvisited(G, adjacent, visited) if (curr == None): # Now we have vertices that cannot be reached from our starting position.. break # Greatest cost of entire while-loop: |V| log |V| #print path = [] # Get the optimal path to the end point. This takes a magnitude of |V| time. if e.dist < float("inf"): path = get_prev(G, s.n, e.n) return (e.dist, path) # Every thing will take about O(|V| log_d |V| + |E| log_d |V| + 2|V|) in worst-case def get_min_unvisited(G, heap, visited): try: (key, value) = heap.getMin() except: return None if not heap.isEmpty(): heap.deleteMin() if visited[value.n]: return get_min_unvisited(G, heap, visited) return value # G is the graph # start_num is the _position_ of the starting node # end_num is the _position_ of the goal node def get_prev(G, start_num, end_num): # Recursively determine the path from the end to the start. if end_num == start_num: return [G[end_num].n] else: return get_prev(G, start_num, G[end_num].prev) + [G[end_num].n] # We do it in this order because python can't do tail recursion AFAWK # Links the Vertex v1 with v2. This will link them at both ends, since we want an undirected graph. def link(v1, v2, w): v1.edges.append(Edge(v1.n, v2.n, w)) v2.edges.append(Edge(v2.n, v1.n, w)) class Vertex: # Container for our vertex data def __init__(self, edges): global h # Global variable that keeps track of the IDs we should give the verticies self.n = h h += 1 self.edges = edges def addEdge(self, edge): # We keep a list of edges, an _adjacency list_ as our data structure. self.edges.append(edge) def __repr__(self): edge_desc = "" for e in self.edges: edge_desc += str(e) + "; " return str(self.n) + " has edges:: " + edge_desc + "$" class Edge: def __init__(self, src, dest, weight): self.weight = weight self.src = src self.dest = dest def __repr__(self): return "from: " + str(self.src) + ", to: " + str(self.dest) + ", weight: " + str(self.weight) # This generates a graph with n*n vertices and 2n(n-1) edges # Runs in a magnitude of 2n^2 time. Should be used sparingly. def generate_grid_graph(m, n): v = [] global h # We want to start indexing at 0 oh = h nsq = n * m rint_max = 20 # The maxmimum weight we want on our edges h = 0 for j in range(0, m): # Sloppy implementation, we create everying before we create the connections. for i in range(0, n): # Generate the vertices v.append(Vertex([])) for j in range(0, n): for i in range(0, m): next_vertical = (j+1)*m+i next_horisontal = j*m+1+i current = j*m+i if (next_vertical < nsq): link(v[current], v[next_vertical], random.randint(1,rint_max)) if (next_horisontal < nsq and next_horisontal < m*(j+1)): # We don't want the edges to wrap link(v[current], v[next_horisontal], random.randint(1,rint_max)) h = oh # We restore the global variable. return v # vertices = [] # for i in range(0,15): # vertices.append(Vertex([])) # v = vertices # link(v[0], v[1], 12) # link(v[0], v[2], 60) # link(v[0], v[3], 13) # link(v[1], v[2], 20) # link(v[1], v[7], 24) # link(v[2], v[4], 13) # link(v[3], v[8], 12) # link(v[3], v[9], 13) # link(v[4], v[5], 8) # link(v[4], v[11], 24) # link(v[5], v[6], 2) # link(v[6], v[10], 3) # link(v[8], v[9], 1) # link(v[9], v[11], 32) # link(v[10], v[11], 30) # link(v[11], v[12], 10) # link(v[11], v[13], 5) # link(v[12], v[13], 4) # link(v[12], v[14], 7) # link(v[13], v[14], 80) # print djikstra(v, v[0], v[14]) ## Test bench for variations of n sizes = range(2, 48) f = open("lab3_n.csv", "w") f.write("n;m;vertices;edges;time\n") for i in sizes: avg = 0 for j in range (0,3): v = generate_grid_graph(i, i) v.append(Vertex([])) startt = time.time() (result, path) = djikstra(v, v[0], v[i*i-1]) endt = time.time() avg += (endt-startt) avg /= 3 print "It takes", avg, "for n =", i print result print path f.write("%s;%s;%s;%s;%s\n" % (str(i), str(i), str(i*i), str(i*(i-1) + i*(i-1)), str(avg))) f.close() f = open("lab3_d.csv", "w") f.write("d;time\n") v = generate_grid_graph(8, 8) for i in range(2, 100): d = i startt = time.time() (result, path) = djikstra(v, v[0], v[63]) print result print path endt = time.time() print "It takes", endt-startt, "for d =", i f.write("%s;%s\n" % (str(d), str(endt-startt))) f.close()
from telegram import InlineKeyboardButton from core.models import UserPreference from intent import Intent, IntentType from chatgpt_model import model_names, get_next_model def ask_button(): return InlineKeyboardButton( text=f'Задать вопрос', switch_inline_query_current_chat='', ) def eco_mode_button(preference: UserPreference): return InlineKeyboardButton( text=f'🌱 Eco mode: {"On" if preference.eco_mode else "Off"}', callback_data=Intent( type=IntentType.SwitchEcoMode, enable=not preference.eco_mode ).encode() ) def model_button(preference: UserPreference): return InlineKeyboardButton( text=f'🤖 Model: {model_names[preference.model_name]}', callback_data=Intent( type=IntentType.SwitchModel, model_name=get_next_model(preference.model_name) ).encode() )
import ast import sys import difflib from textwrap import indent import numpy as np import numpydoc.docscrape def w(orig): ll = [] for l in orig: if l[0] in "+-": # ll.append(l.replace(' ', '⎵')) ll.append(l.replace(" ", "·")) else: ll.append(l) lll = [] for l in ll: if l.endswith("\n"): lll.append(l[:-1]) else: lll.append(l[:]) return lll class DocstringFormatter: @classmethod def format_Signature(self, s): return s @classmethod def format_Summary(self, s): if len(s) == 1 and not s[0].strip(): return "" return "\n".join(s) + "\n" @classmethod def format_Extended_Summary(self, es): return "\n".join(es) + "\n" @classmethod def _format_ps(cls, name, ps): res = cls._format_ps_pref(name, ps, compact=True) if res is not None: return res return cls._format_ps_pref(name, ps, compact=False) @classmethod def _format_ps_pref(cls, name, ps, *, compact): out = name + "\n" out += "-" * len(name) + "\n" for i, p in enumerate(ps): if (not compact) and i: out += "\n" if p.type: out += f"""{p.name} : {p.type}\n""" else: out += f"""{p.name}\n""" if p.desc: if any([l.strip() == "" for l in p.desc]) and compact: return None out += indent("\n".join(p.desc), " ") out += "\n" return out @classmethod def format_Parameters(cls, ps): return cls._format_ps("Parameters", ps) @classmethod def format_Other_Parameters(cls, ps): return cls._format_ps("Other Parameters", ps) @classmethod def format_See_Also(cls, sas): out = "See Also\n" out += "--------\n" for a, b in sas: if b: desc = b[0] else: desc = None if len(b) > 1: rest_desc = b[1:] else: rest_desc = [] _first = True for ref, type_ in a: if not _first: out += ", " if type_ is not None: out += f":{type_}:`{ref}`" else: out += f"{ref}" _first = False if desc: if len(a) > 1: out += f"\n {desc}" else: out += f" : {desc}" for rd in rest_desc: out += "\n " + rd out += "\n" return out @classmethod def format_References(cls, lines): out = "References\n" out += "----------\n" out += "\n".join(lines) out += "\n" return out @classmethod def format_Notes(cls, lines): out = "Notes\n" out += "-----\n" out += "\n".join(lines) out += "\n" return out @classmethod def format_Examples(cls, lines): out = "Examples\n" out += "--------\n" out += "\n".join(lines) out += "\n" return out @classmethod def format_Warns(cls, ps): return cls.format_RRY("Warns", ps) @classmethod def format_Raises(cls, ps): return cls.format_RRY("Raises", ps) @classmethod def format_Yields(cls, ps): return cls.format_RRY("Yields", ps) @classmethod def format_Returns(cls, ps): return cls.format_RRY("Returns", ps) @classmethod def format_RRY(cls, name, ps): out = name + "\n" out += "-" * len(name) + "\n" if name == "Returns": if len(ps) > 1: # do heuristic to check we actually have a description list and not a paragraph pass for i, p in enumerate(ps): #if i: # out += "\n" if p.name: out += f"""{p.name} : {p.type}\n""" else: out += f"""{p.type}\n""" if p.desc: out += indent("\n".join(p.desc), " ") out += "\n" return out def test(docstr, fname, *, indempotenty_check): fmt = compute_new_doc(docstr, fname) dold = docstr.splitlines() dnew = fmt.splitlines() diffs = list(difflib.unified_diff(dold, dnew, n=100, fromfile=fname, tofile=fname),) if diffs: from pygments import highlight from pygments.lexers import DiffLexer from pygments.formatters import TerminalFormatter code = "\n".join(w(diffs)) hldiff = highlight(code, DiffLexer(), TerminalFormatter()) print(indent(hldiff, " | ", predicate=lambda x: True)) def compute_new_doc(docstr, fname, *, indempotenty_check): original_docstr = docstr if len(docstr.splitlines()) <= 1: return "" shortdoc = False short_with_space = False if not docstr.startswith("\n "): docstr = "\n " + docstr shortdoc = True if original_docstr[0] == " ": short_with_space = True long_end = True long_with_space = True if original_docstr.splitlines()[-1].strip(): long_end = False if original_docstr.splitlines()[-2].strip(): long_with_space = False doc = numpydoc.docscrape.NumpyDocString(docstr) fmt = "" start = True # ordered_section is a local patch to that records the docstring order. for s in getattr(doc, "ordered_sections", doc.sections): if doc[s]: f = getattr(DocstringFormatter, "format_" + s.replace(" ", "_")) if not start: fmt += "\n" start = False fmt += f(doc[s]) fmt = indent(fmt, " ") + " " if "----" in fmt: if long_with_space: fmt = fmt.rstrip(" ") + "\n " else: fmt = fmt.rstrip(" ") + " " if shortdoc: fmt = fmt.lstrip() if short_with_space: fmt = " " + fmt else: fmt = "\n" + fmt if not long_end: fmt = fmt.rstrip() if indempotenty_check: ff = fmt if not ff.startswith("\n "): ff = "\n " + ff d2 = numpydoc.docscrape.NumpyDocString(ff) if not d2._parsed_data == doc._parsed_data: raise ValueError( "Numpydoc parsing seem to differ after reformatting, this may be a reformatting bug. Rerun with --unsafe", fname, d2._parsed_data, doc._parsed_data, ) assert fmt return fmt def main(): import argparse parser = argparse.ArgumentParser(description="reformat the docstrigns of some file") parser.add_argument("files", metavar="files", type=str, nargs="+", help="TODO") parser.add_argument("--context", metavar="context", type=int, default=3) parser.add_argument("--unsafe", action="store_true") parser.add_argument( "--write", dest="write", action="store_true", help="print the diff" ) args = parser.parse_args() to_format = [] from pathlib import Path for f in args.files: p = Path(f) if p.is_dir(): for sf in p.glob("**/*.py"): to_format.append(sf) else: to_format.append(p) for file in to_format: # print(file) with open(file, "r") as f: data = f.read() tree = ast.parse(data) new = data funcs = [t for t in tree.body if isinstance(t, ast.FunctionDef)] for i, func in enumerate(funcs[:]): # print(i, "==", func.name, "==") try: e0 = func.body[0] if not isinstance(e0, ast.Expr): continue # e0.value is _likely_ a Constant node. docstring = e0.value.s except AttributeError: continue if not isinstance(docstring, str): continue start, nindent, stop = ( func.body[0].lineno, func.body[0].col_offset, func.body[0].end_lineno, ) if not docstring in data: print(f"skip {file}: {func.name}, can't do replacement yet") new_doc = compute_new_doc( docstring, file, indempotenty_check=(not args.unsafe) ) # test(docstring, file) if new_doc: if ('"""' in new_doc) or ("'''" in new_doc): print( "SKIPPING", file, func.name, "triple quote not handled", new_doc ) else: if docstring not in new: print("ESCAPE issue:", docstring) new = new.replace(docstring, new_doc) # test(docstring, file) if new != data: dold = data.splitlines() dnew = new.splitlines() diffs = list( difflib.unified_diff( dold, dnew, n=args.context, fromfile=str(file), tofile=str(file) ), ) from pygments import highlight from pygments.lexers import DiffLexer from pygments.formatters import TerminalFormatter if not args.write: code = "\n".join(diffs) hldiff = highlight(code, DiffLexer(), TerminalFormatter()) print(hldiff) else: with open(file, "w") as f: f.write(new)
# On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned # with the x, y, and z axes. # # Each value v = grid[i][j] represents a tower of v cubes placed on top # of grid cell (i, j). # # Now we view the projection of these cubes onto the xy, yz, and zx planes. # # A projection is like a shadow, that maps our 3 dimensional figure # to a 2 dimensional plane. # # Here, we are viewing the "shadow" when looking at the cubes from # the top, the front, and the side. # # Return the total area of all three projections. class Solution: def projectionArea(self, grid): tot = len(grid[0]) ** 2 tot -= sum([elem for elem in grid], []).count(0) for elem in grid: tot += max(elem) for elem in zip(*grid): tot += max(elem) return tot if __name__ == "__main__": testinput = [[1, 2], [3, 4]] print(Solution.projectionArea(Solution, testinput))
def main(): i = 0 for i in range(0,101,2): print(i) for i in range(0,101,2): print(100-i) main()
# coding:utf-8 # -------------------------------------------------------- # Pytorch multi-GPU Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import pprint import pdb import time import _init_paths import torch from torch.autograd import Variable import torch.nn as nn from model.utils.config import cfg, cfg_from_file, cfg_from_list from model.utils.net_utils import ( adjust_learning_rate, save_checkpoint, get_dataloader, setup_seed, ) from model.ema.optim_weight_ema import WeightEMA from model.utils.parser_func import parse_args, set_dataset_args from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms from model.rpn.bbox_transform import bbox_transform_inv from prettytimer import PrettyTimer def get_cfg(): args = parse_args() print("Called with args:") print(args) args = set_dataset_args(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print("Using config:") pprint.pprint(cfg) # np.random.seed(cfg.RNG_SEED) setup_seed(cfg.RNG_SEED) return args if __name__ == "__main__": args = get_cfg() output_dir = f"{args.save_dir}/{args.net}/{args.dataset}" if not os.path.exists(output_dir): os.makedirs(output_dir) if args.dataset_t == "water": args.aug = False if args.dataset_t == "foggy_cityscape": # initilize the network here. from model.umt_faster_rcnn_truncate.umt_vgg16 import vgg16 from model.umt_faster_rcnn_truncate.umt_resnet import resnet else: from model.umt_faster_rcnn.umt_vgg16 import vgg16 from model.umt_faster_rcnn.umt_resnet import resnet student_save_name = os.path.join( output_dir, "conf_{}_conf_gamma_{}_source_like_{}_aug_{}_target_like_{}_pe_{}_pl_{}_thresh_{}" "_lambda_{}_student_target_{}".format( args.conf, args.conf_gamma, args.source_like, args.aug, args.target_like, args.pretrained_epoch, args.pl, args.threshold, args.lam, args.dataset_t, ), ) print("Model will be saved to: ") print(student_save_name) # torch.backends.cudnn.benchmark = True if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") # train set # -- Note: Use validation set and disable the flipped to enable faster loading. cfg.TRAIN.USE_FLIPPED = True cfg.USE_GPU_NMS = args.cuda # source train set s_imdb, s_train_size, s_dataloader = get_dataloader(args.imdb_name, args) # source-like/fake-source train set data loader if args.source_like: s_fake_imdb, s_fake_train_size, s_fake_dataloader = get_dataloader( args.imdb_name_fake_source, args, sequential=True, augment=args.aug ) else: s_fake_imdb, s_fake_train_size, s_fake_dataloader = get_dataloader( args.imdb_name_target, args, sequential=True, augment=args.aug ) # target train set t_imdb, t_train_size, t_dataloader = get_dataloader( args.imdb_name_target, args, sequential=True, augment=args.aug ) # target-like/fake-target train set t_fake_imdb, t_fake_train_size, t_fake_dataloader = get_dataloader( args.imdb_name_fake_target, args ) print("{:d} source roidb entries".format(s_train_size)) print("{:d} source like roidb entries".format(s_fake_train_size)) print("{:d} target roidb entries".format(t_train_size)) print("{:d} target like roidb entries".format(t_fake_train_size)) # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data) im_info = Variable(im_info) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True imdb = s_imdb if args.net == "vgg16": student_fasterRCNN = vgg16( imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, conf=args.conf, ) teacher_fasterRCNN = vgg16( imdb.classes, pretrained=True, class_agnostic=args.class_agnostic, conf=args.conf, ) elif args.net == "res101": student_fasterRCNN = resnet( imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic, conf=args.conf, ) teacher_fasterRCNN = resnet( imdb.classes, 101, pretrained=True, class_agnostic=args.class_agnostic, conf=args.conf, ) elif args.net == "res50": student_fasterRCNN = resnet( imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic ) teacher_fasterRCNN = resnet( imdb.classes, 50, pretrained=True, class_agnostic=args.class_agnostic ) else: print("network is not defined") pdb.set_trace() student_fasterRCNN.create_architecture() teacher_fasterRCNN.create_architecture() lr = cfg.TRAIN.LEARNING_RATE lr = args.lr student_detection_params = [] params = [] for key, value in dict(student_fasterRCNN.named_parameters()).items(): if value.requires_grad: if "bias" in key: params += [ { "params": [value], "lr": lr * (cfg.TRAIN.DOUBLE_BIAS + 1), "weight_decay": cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0, } ] else: params += [ { "params": [value], "lr": lr, "weight_decay": cfg.TRAIN.WEIGHT_DECAY, } ] student_detection_params += [value] teacher_detection_params = [] for key, value in dict(teacher_fasterRCNN.named_parameters()).items(): if value.requires_grad: teacher_detection_params += [value] value.requires_grad = False if args.optimizer == "adam": lr = lr * 0.1 student_optimizer = torch.optim.Adam(params) elif args.optimizer == "sgd": student_optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM) teacher_optimizer = WeightEMA( teacher_detection_params, student_detection_params, alpha=args.teacher_alpha ) if args.cuda: student_fasterRCNN.cuda() teacher_fasterRCNN.cuda() if args.resume: student_checkpoint = torch.load(args.student_load_name) args.session = student_checkpoint["session"] args.start_epoch = student_checkpoint["epoch"] student_fasterRCNN.load_state_dict(student_checkpoint["model"]) student_optimizer.load_state_dict(student_checkpoint["optimizer"]) lr = student_optimizer.param_groups[0]["lr"] if "pooling_mode" in student_checkpoint.keys(): cfg.POOLING_MODE = student_checkpoint["pooling_mode"] print("loaded checkpoint %s" % (args.student_load_name)) teacher_checkpoint = torch.load(args.teacher_load_name) teacher_fasterRCNN.load_state_dict(teacher_checkpoint["model"]) if "pooling_mode" in teacher_checkpoint.keys(): cfg.POOLING_MODE = teacher_checkpoint["pooling_mode"] print("loaded checkpoint %s" % (args.teacher_load_name)) if args.mGPUs: student_fasterRCNN = nn.DataParallel(student_fasterRCNN) teacher_fasterRCNN = nn.DataParallel(teacher_fasterRCNN) iters_per_epoch = int(10000 / args.batch_size) if args.use_tfboard: from tensorboardX import SummaryWriter logger = SummaryWriter("logs") count_iter = 0 conf_gamma = args.conf_gamma pretrained_epoch = args.pretrained_epoch timer = PrettyTimer() for epoch in range(args.start_epoch, args.max_epochs + 1): # setting to train mode student_fasterRCNN.train() teacher_fasterRCNN.train() loss_temp = 0 start = time.time() epoch_start = time.time() if epoch % (args.lr_decay_step + 1) == 0: adjust_learning_rate(student_optimizer, args.lr_decay_gamma) lr *= args.lr_decay_gamma data_iter_s = iter(s_dataloader) data_iter_t = iter(t_dataloader) data_iter_s_fake = iter(s_fake_dataloader) data_iter_t_fake = iter(t_fake_dataloader) for step in range(1, iters_per_epoch + 1): timer.start("iter") try: data_s = next(data_iter_s) except: data_iter_s = iter(s_dataloader) data_s = next(data_iter_s) try: data_s_fake = next(data_iter_s_fake) except: data_iter_s_fake = iter(s_fake_dataloader) data_s_fake = next(data_iter_s_fake) try: data_t = next(data_iter_t) except: data_iter_t = iter(t_dataloader) data_t = next(data_iter_t) assert ( data_s_fake[0].size() == data_t[0].size() ), "The size should be same between source fake and target" assert ( data_s_fake[1] == data_t[1] ).all(), "The image info should be same between source fake and target" try: data_t_fake = next(data_iter_t_fake) except: data_iter_t_fake = iter(t_fake_dataloader) data_t_fake = next(data_iter_t_fake) # eta = 1.0 count_iter += 1 # put source data into variable im_data.data.resize_(data_s[0].size()).copy_(data_s[0]) im_info.data.resize_(data_s[1].size()).copy_(data_s[1]) gt_boxes.data.resize_(data_s[2].size()).copy_(data_s[2]) num_boxes.data.resize_(data_s[3].size()).copy_(data_s[3]) student_fasterRCNN.zero_grad() ( rois, cls_prob, bbox_pred, rpn_loss_cls, rpn_loss_box, RCNN_loss_cls, RCNN_loss_bbox, rois_label, out_d_pixel, out_d, confidence_loss, _, ) = student_fasterRCNN(im_data, im_info, gt_boxes, num_boxes, hints=True) loss = ( rpn_loss_cls.mean() + rpn_loss_box.mean() + RCNN_loss_cls.mean() + RCNN_loss_bbox.mean() ) if args.conf: conf_loss = confidence_loss.mean() if args.target_like: # put fake target data into variable im_data.data.resize_(data_t_fake[0].size()).copy_(data_t_fake[0]) im_info.data.resize_(data_t_fake[1].size()).copy_(data_t_fake[1]) # gt is empty gt_boxes.data.resize_(data_t_fake[2].size()).copy_(data_t_fake[2]) num_boxes.data.resize_(data_t_fake[3].size()).copy_(data_t_fake[3]) ( rois, cls_prob, bbox_pred, rpn_loss_cls_t_fake, rpn_loss_box_t_fake, RCNN_loss_cls_t_fake, RCNN_loss_bbox_t_fake, rois_label_t_fake, out_d_pixel, out_d, _, _, ) = student_fasterRCNN( im_data, im_info, gt_boxes, num_boxes, hints=False ) # -------------------------------- loss += ( rpn_loss_cls_t_fake.mean() + rpn_loss_box_t_fake.mean() + RCNN_loss_cls_t_fake.mean() + RCNN_loss_bbox_t_fake.mean() ) if epoch > pretrained_epoch and args.pl: teacher_fasterRCNN.eval() im_data.data.resize_(data_s_fake[0].size()).copy_(data_s_fake[0]) im_info.data.resize_(data_s_fake[1].size()).copy_(data_s_fake[1]) # gt is emqpty gt_boxes.data.resize_(1, 1, 5).zero_() num_boxes.data.resize_(1).zero_() ( rois, cls_prob, bbox_pred, rpn_loss_cls_, rpn_loss_box_, RCNN_loss_cls_, RCNN_loss_bbox_, rois_label_, d_pred_, _, _, confidence_s_fake, ) = teacher_fasterRCNN(im_data, im_info, gt_boxes, num_boxes, test=True) scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: box_deltas = ( box_deltas.view(-1, 4) * torch.FloatTensor( cfg.TRAIN.BBOX_NORMALIZE_STDS ).cuda() + torch.FloatTensor( cfg.TRAIN.BBOX_NORMALIZE_MEANS ).cuda() ) box_deltas = box_deltas.view(1, -1, 4) else: box_deltas = ( box_deltas.view(-1, 4) * torch.FloatTensor( cfg.TRAIN.BBOX_NORMALIZE_STDS ).cuda() + torch.FloatTensor( cfg.TRAIN.BBOX_NORMALIZE_MEANS ).cuda() ) box_deltas = box_deltas.view(1, -1, 4 * len(imdb.classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) scores = scores.squeeze() if args.conf: scores = torch.sqrt( scores * confidence_s_fake ) # using confidence score to adjust scores pred_boxes = pred_boxes.squeeze() gt_boxes_target = [] pre_thresh = 0.0 thresh = args.threshold empty_array = np.transpose(np.array([[], [], [], [], []]), (1, 0)) for j in range(1, len(imdb.classes)): inds = torch.nonzero(scores[:, j] > pre_thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4 : (j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] # all_boxes[j][i] = cls_dets.cpu().numpy() cls_dets_numpy = cls_dets.cpu().numpy() for i in range(np.minimum(10, cls_dets_numpy.shape[0])): bbox = tuple( int(np.round(x)) for x in cls_dets_numpy[i, :4] ) score = cls_dets_numpy[i, -1] if score > thresh: gt_boxes_target.append(list(bbox[0:4]) + [j]) gt_boxes_padding = torch.FloatTensor(cfg.MAX_NUM_GT_BOXES, 5).zero_() if len(gt_boxes_target) != 0: gt_boxes_numpy = torch.FloatTensor(gt_boxes_target) num_boxes_cpu = torch.LongTensor( [min(gt_boxes_numpy.size(0), cfg.MAX_NUM_GT_BOXES)] ) gt_boxes_padding[:num_boxes_cpu, :] = gt_boxes_numpy[:num_boxes_cpu] else: num_boxes_cpu = torch.LongTensor([0]) # teacher_fasterRCNN.train() # put source-like data into variable im_data.data.resize_(data_t[0].size()).copy_(data_t[0]) im_info.data.resize_(data_t[1].size()).copy_(data_t[1]) gt_boxes_padding = torch.unsqueeze(gt_boxes_padding, 0) gt_boxes.data.resize_(gt_boxes_padding.size()).copy_(gt_boxes_padding) num_boxes.data.resize_(num_boxes_cpu.size()).copy_(num_boxes_cpu) ( rois, cls_prob, bbox_pred, rpn_loss_cls_s_fake, rpn_loss_box_s_fake, RCNN_loss_cls_s_fake, RCNN_loss_bbox_s_fake, rois_label_s_fake, out_d_pixel, out_d, _, _, ) = student_fasterRCNN(im_data, im_info, gt_boxes, num_boxes) loss += args.lam * ( rpn_loss_cls_s_fake.mean() + rpn_loss_box_s_fake.mean() + RCNN_loss_cls_s_fake.mean() + RCNN_loss_bbox_s_fake.mean() ) if args.conf: loss += conf_gamma * conf_loss loss_temp += loss.item() student_optimizer.zero_grad() loss.backward() student_optimizer.step() teacher_fasterRCNN.zero_grad() teacher_optimizer.step() timer.end("iter") estimate_time = timer.eta( "iter", count_iter, args.max_epochs * iters_per_epoch ) if step % args.disp_interval == 0: end = time.time() if step > 0: loss_temp /= args.disp_interval if args.mGPUs: loss_rpn_cls = rpn_loss_cls.mean().item() loss_rpn_box = rpn_loss_box.mean().item() loss_rcnn_cls = RCNN_loss_cls.mean().item() loss_rcnn_box = RCNN_loss_bbox.mean().item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt if args.pl and epoch > pretrained_epoch: loss_rpn_cls_s_fake = rpn_loss_cls_s_fake.mean().item() loss_rpn_box_s_fake = rpn_loss_box_s_fake.mean().item() loss_rcnn_cls_s_fake = RCNN_loss_cls_s_fake.mean().item() loss_rcnn_box_s_fake = RCNN_loss_bbox_s_fake.mean().item() fg_cnt_s_fake = torch.sum(rois_label_s_fake.data.ne(0)) bg_cnt_s_fake = rois_label_s_fake.data.numel() - fg_cnt_s_fake if args.target_like: loss_rpn_cls_t_fake = rpn_loss_cls_t_fake.mean().item() loss_rpn_box_t_fake = rpn_loss_box_t_fake.mean().item() loss_rcnn_cls_t_fake = RCNN_loss_cls_t_fake.mean().item() loss_rcnn_box_t_fake = RCNN_loss_bbox_t_fake.mean().item() fg_cnt_t_fake = torch.sum(rois_label_t_fake.data.ne(0)) bg_cnt_t_fake = rois_label_t_fake.data.numel() - fg_cnt_t_fake # dloss_s_fake = dloss_s_fake.mean().item() # dloss_t_fake = dloss_t_fake.mean().item() # dloss_s_p_fake = dloss_s_p_fake.mean().item() # dloss_t_p_fake = dloss_t_p_fake.mean().item() else: loss_rpn_cls = rpn_loss_cls.item() loss_rpn_box = rpn_loss_box.item() loss_rcnn_cls = RCNN_loss_cls.item() loss_rcnn_box = RCNN_loss_bbox.item() fg_cnt = torch.sum(rois_label.data.ne(0)) bg_cnt = rois_label.data.numel() - fg_cnt if args.conf: loss_conf = conf_loss.item() if args.pl and epoch > pretrained_epoch: loss_rpn_cls_s_fake = rpn_loss_cls_s_fake.item() loss_rpn_box_s_fake = rpn_loss_box_s_fake.item() loss_rcnn_cls_s_fake = RCNN_loss_cls_s_fake.item() loss_rcnn_box_s_fake = RCNN_loss_bbox_s_fake.item() fg_cnt_s_fake = torch.sum(rois_label_s_fake.data.ne(0)) bg_cnt_s_fake = rois_label_s_fake.data.numel() - fg_cnt if args.target_like: loss_rpn_cls_t_fake = rpn_loss_cls_t_fake.item() loss_rpn_box_t_fake = rpn_loss_box_t_fake.item() loss_rcnn_cls_t_fake = RCNN_loss_cls_t_fake.item() loss_rcnn_box_t_fake = RCNN_loss_bbox_t_fake.item() fg_cnt_t_fake = torch.sum(rois_label_t_fake.data.ne(0)) bg_cnt_t_fake = rois_label_t_fake.data.numel() - fg_cnt_t_fake print( "[session %d][epoch %2d][iter %4d/%4d] lr: %.2e, loss: %.4f, eta: %s" % ( args.session, epoch, step, iters_per_epoch, lr, loss_temp, estimate_time, ) ) print( "\t\t\tfg/bg=(%d/%d), time cost: %f" % (fg_cnt, bg_cnt, end - start) ) print( "\t\t\trpn_cls: %.4f, rpn_box: %.4f, rcnn_cls: %.4f, rcnn_box %.4f" % (loss_rpn_cls, loss_rpn_box, loss_rcnn_cls, loss_rcnn_box) ) if args.pl and epoch > pretrained_epoch: print("\t\t\tfg/bg=(%d/%d)" % (fg_cnt_s_fake, bg_cnt_s_fake)) print( "\t\t\trpn_cls_s_fake: %.4f, rpn_box_s_fake: %.4f, rcnn_cls_s_fake: %.4f, rcnn_box_s_fake %.4f" % ( loss_rpn_cls_s_fake, loss_rpn_box_s_fake, loss_rcnn_cls_s_fake, loss_rcnn_box_s_fake, ) ) if args.target_like: print("\t\t\tfg/bg=(%d/%d)" % (fg_cnt_t_fake, bg_cnt_t_fake)) print( "\t\t\trpn_cls_t_fake: %.4f, rpn_box_t_fake: %.4f, rcnn_cls_t_fake: %.4f, rcnn_box_t_fake %.4f" % ( loss_rpn_cls_t_fake, loss_rpn_box_t_fake, loss_rcnn_cls_t_fake, loss_rcnn_box_t_fake, ) ) if args.conf is True: print(f"\t\t\tconf loss: {loss_conf:.4}") if args.use_tfboard: info = { "loss": loss_temp, "loss_rpn_cls": loss_rpn_cls, "loss_rpn_box": loss_rpn_box, "loss_rcnn_cls": loss_rcnn_cls, "loss_rcnn_box": loss_rcnn_box, "loss_rpn_cls_s_fake": loss_rpn_cls_s_fake, "loss_rpn_box_s_fake": loss_rpn_box_s_fake, "loss_rcnn_cls_s_fake": loss_rcnn_cls_s_fake, "loss_rcnn_box_s_fake": loss_rcnn_box_s_fake, "loss_rpn_cls_t_fake": loss_rpn_cls_t_fake if args.target_like is True else 0, "loss_rpn_box_t_fake": loss_rpn_box_t_fake if args.target_like is True else 0, "loss_rcnn_cls_t_fake": loss_rcnn_cls_t_fake if args.target_like is True else 0, "loss_rcnn_box_t_fake": loss_rcnn_box_t_fake if args.target_like is True else 0, "loss_conf": loss_conf if args.conf is True else 0, "conf_gamma": conf_gamma, } logger.add_scalars( "logs_s_{}/losses".format(args.session), info, (epoch - 1) * iters_per_epoch + step, ) loss_temp = 0 start = time.time() student_save_name = os.path.join( output_dir, "conf_{}_conf_gamma_{}_source_like_{}_aug_{}_target_like_{}_pe_{}_pl_{}_" "thresh_{}_lambda_{}_lam2_{}_student_target_{}_session_{}_epoch_{}_step_{}.pth".format( args.conf, args.conf_gamma, args.source_like, args.aug, args.target_like, args.pretrained_epoch, args.pl, args.threshold, args.lam, args.lam2, args.dataset_t, args.session, epoch, step, ), ) save_checkpoint( { "session": args.session, "epoch": epoch + 1, "model": student_fasterRCNN.mumt_train.pyodule.state_dict() if args.mGPUs else student_fasterRCNN.state_dict(), "optimizer": student_optimizer.state_dict(), "pooling_mode": cfg.POOLING_MODE, "class_agnostic": args.class_agnostic, }, student_save_name, ) print("save student model: {}".format(student_save_name)) teacher_save_name = os.path.join( output_dir, "conf_{}_conf_gamma_{}_source_like_{}_aug_{}_target_like_{}_pe_{}_pl_{}_" "thresh_{}_lambda_{}_lam2_{}_teacher_target_{}_session_{}_epoch_{}_step_{}.pth".format( args.conf, args.conf_gamma, args.source_like, args.aug, args.target_like, args.pretrained_epoch, args.pl, args.threshold, args.lam, args.lam2, args.dataset_t, args.session, epoch, step, ), ) save_checkpoint( { "session": args.session, "epoch": epoch + 1, "model": teacher_fasterRCNN.mumt_train.pyodule.state_dict() if args.mGPUs else teacher_fasterRCNN.state_dict(), "pooling_mode": cfg.POOLING_MODE, "class_agnostic": args.class_agnostic, }, teacher_save_name, ) print("save teacher model: {}".format(teacher_save_name)) epoch_end = time.time() print("epoch cost time: {} min".format((epoch_end - epoch_start) / 60.0)) # cmd = ( # f"python test_net_global_local.py --dataset {args.dataset_t} --net {args.net}" # f" --load_name {student_save_name}" # ) # print("cmd: ", cmd) # cmd = [i.strip() for i in cmd.split(" ") if len(i.strip()) > 0] # try: # proc = subprocess.Popen(cmd) # proc.wait() # except (KeyboardInterrupt, SystemExit): # pass # cmd = ( # f"python test_net_global_local.py --dataset {args.dataset_t} --net {args.net}" # f" --load_name {teacher_save_name}" # ) # print("cmd: ", cmd) # cmd = [i.strip() for i in cmd.split(" ") if len(i.strip()) > 0] # try: # proc = subprocess.Popen(cmd) # proc.wait() # except (KeyboardInterrupt, SystemExit): # pass if args.use_tfboard: logger.close()
from operator import add, mul as multiply, div as divide,\ mod, pow as exponent, sub as subt # add = lambda a, b: a + b # multiply = lambda a, b: a * b # divide = lambda a, b: a / b # mod = lambda a, b: a % b # exponent = lambda a, b: a ** b # subt = lambda a, b: a - b
from __future__ import print_function import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import json # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/documents', "https://www.googleapis.com/auth/drive"] # The ID of a sample document. DOCUMENT_ID = '1qOQmwivV1PaSI7wqx3zH_sRiUx4oHGuLO2gugoAvIfQ' def main(): """Shows basic usage of the Docs API. Prints the title of a sample document. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('docs', 'v1', credentials=creds) vols = [ # 1, # 2 # 3 # 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, # 22, 23, 24, 25, 26, 27, 28, 29, 30, # 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, # 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 ] results = {} for vol in vols: print(vol) title = str(vol).zfill(2) body = { 'title': title } doc = service.documents() \ .create(body=body).execute() print('Created document with title: {0}'.format( doc.get('title'))) results[str(vol).zfill(2)] = doc.get("documentId") print(results) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- """ Created on Thu Jul 4 16:01:17 2019 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt my_bid = 215 my_bid_cnt = 3 op_bid_start = 180 op_bid_end = 220 op_bid_cnt = 1 bid_step = 0.1 my_offer = 215 def calc_base(mb,mbc,opbs,opbe,opbc,bid_step): x = np.arange(opbs,opbe,bid_step) y = (x*opbc +mb*mbc)/(mbc+opbc) y = y*0.6 + 88 return x,y def calc_score(my_offer,base): temp = my_offer - base for i in range(len(temp)): if temp[i]<0: temp[i] *= -0.8 return temp #def get_base(bids): # return np.dot(bid.T[0],bid.T[1])/np.sum(bid.T[1]) x,y = calc_base(my_bid,my_bid_cnt,op_bid_start,op_bid_end,op_bid_cnt,bid_step) z = calc_score(my_offer,y) fig = plt.figure() ax = plt.subplot(211) ax.plot(x,z,label='diff') ax.legend() ax.set_title("d") bx = plt.subplot(212) bx.plot(x,y,label='base') bx.legend() #print(calc_base(my_bid,my_bid_cnt,op_bid_start,op_bid_end,op_bid_cnt,bid_step))
from flask import Flask, request, Response from rdflib import Graph, URIRef app = Flask(__name__) import pickle import nif_system import json #fullText = URIRef("http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#isString") #entityMention = URIRef("http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#anchorOf") mimetype='application/x-turtle' def normalizeWeights(fw): total=sum(fw.values()) for k in fw: fw[k]/=total return fw month='200712' timePickle=pickle.load(open(month + '_agg.p', 'rb')) @app.route("/", methods = ['POST']) def run(): global num num+=1 g=Graph() inputRDF=request.stream.read() #w.write(str(inputRDF) + '\n') g.parse(data=inputRDF, format="n3") #### DEFAULTS #### memory=1 # By default, cross-document knowledge is ON iterations=2 # By default, rereading is ON (2 iterations) factorWeights={'wc':0.525,'wss': 0.325, 'wa': 0.05, 'wr':0.05, 'wt': 0.05} limits={'l1':0.375, 'l2': 0.54} lcoref=True order=True tp=True N=10 #### end DEFAULTS #### #### PARAMETERS #### args=request.args if args.get('crossdoc'): # Check if the cross-document bool has been supplied memory=int(args.get('crossdoc')) if args.get('iter'): # Check if iterations number has been supplied iterations=int(args.get('iter')) if args.get('lcoref') and int(args.get('lcoref'))==0: lcoref=False factorWeights['wr']=0.0 if args.get('order') and int(args.get('order'))==0: order=False if args.get('tp') and int(args.get('tp'))==0: tp=False factorWeights['wt']=0.0 if args.get('month'): month=args.get('month') for k in factorWeights.keys(): # Check if any weight is explicitly modified if args.get(k): factorWeights[k]=float(args.get(k)) factorWeights=normalizeWeights(factorWeights) for limit in ['l1', 'l2']: if args.get(limit): limits[limit]=args.get(limit) if args.get('N'): N=args.get('N') #### end PARAMETERS #### print("Request %d came! %d iterations, Memory: %r, Local coreference: %r, Order: %r, Time popularity: %r, scoring weights: %s, limits: %s, N: %d" % (num, iterations, memory>0, lcoref, order, tp, json.dumps(factorWeights), json.dumps(limits), N)) #print("Normalized weights: " + factorWeights) global timePickle if not tp: timePickle={} global lastN if memory==0: lastN=[] g,lastN=nif_system.run(g, factorWeights, timePickle, iterations, lcoref, order, lastN, limits, N) if args.get('debug'): g.serialize(destination='res' + str(num) + '.rdf', format='turtle') #w=open('res' + str(num) + '.rdf', 'w') #w.write(outputRDF) outputRDF=g.serialize(format='turtle') return Response(outputRDF, mimetype=mimetype) if __name__ == "__main__": global num num=-1 global lastN lastN=[] app.run()
class FunctionalError(Exception): """Base class for all 'normal' errors of the API""" pass # --- class ExistenceError(FunctionalError): pass class KeyDoesNotExist(ExistenceError): pass class KeyAlreadyExists(ExistenceError): pass class KeystoreDoesNotExist(ExistenceError): pass class KeystoreAlreadyExists(ExistenceError): pass class KeystoreMetadataDoesNotExist(KeystoreDoesNotExist): pass # No KeystoreMetadataAlreadyExists needed for now # --- class AuthenticationError(FunctionalError): pass # E.g. the "secret" provided with an API request doesn't match that stored class AuthorizationError(FunctionalError): pass # E.g. no authorization has been pre-obtained before a trustee.decrypt_with_private_key() class OperationNotSupported(FunctionalError): pass # E.g. listing keypairs from a big SQL database # --- class CryptographyError(FunctionalError): pass class EncryptionError(CryptographyError): pass class DecryptionError(CryptographyError): pass class DecryptionIntegrityError(DecryptionError): pass # E.g. MAC tags check failed class SignatureCreationError(CryptographyError): pass class SignatureVerificationError(CryptographyError): pass class KeyLoadingError(CryptographyError): pass # Used e.g. when decrypting a private key with a passphrase fails # --- class ValidationError(FunctionalError): pass # Base for all errors related to corrupted data and invalid config tree class SchemaValidationError(ValidationError): pass # When data doesn't respect json format, or an additional python-schema, or some additional security constraints
from django.conf import settings MERCHANT_ID = getattr(settings, 'DJANGO_W1_MERCHANT_ID', '') SIGN_METHOD = getattr(settings, 'DJANGO_W1_SIGN_METHOD', None) SECRET_KEY = getattr(settings, 'DJANGO_W1_SECRET_KEY', '') SUCCESS_URL = getattr(settings, 'DJANGO_W1_SUCCESS_URL', '') FAIL_URL = getattr(settings, 'DJANGO_W1_FAIL_URL', '') CURRENCY_DEFAULT = getattr(settings, 'DJANGO_W1_CURRENCY_DEFAULT', '643') FORM_ACTION_URL = getattr( settings, 'DJANGO_W1_FORM_ACTION_URL', 'https://wl.walletone.com/checkout/checkout/Index')
""" CCT 建模优化代码 二维曲线段 作者:赵润晓 日期:2021年4月27日 """ import multiprocessing # since v0.1.1 多线程计算 import time # since v0.1.1 统计计算时长 from typing import Callable, Dict, Generic, Iterable, List, NoReturn, Optional, Tuple, TypeVar, Union import matplotlib.pyplot as plt import math import random # since v0.1.1 随机数 import sys import os # since v0.1.1 查看CPU核心数 import numpy from scipy.integrate import solve_ivp # since v0.1.1 ODE45 import warnings # since v0.1.1 提醒方法过时 from packages.point import * from packages.constants import * from packages.base_utils import BaseUtils from packages.local_coordinate_system import LocalCoordinateSystem class Line2: """ 二维 xy 平面的一条有方向的连续曲线段,可以是直线、圆弧 本类包含 3 个抽象方法,需要实现: get_length 获得曲线长度 point_at 从曲线起点出发,s 位置处的点 direct_at 从曲线起点出发,s 位置处曲线方向 说明:这个类主要用于构建 “理想轨道”,理想轨道的用处很多: 1. 获取理想轨道上的理想粒子; 2. 研究理想轨道上的磁场分布 """ def get_length(self) -> float: """ 获得曲线的长度 Returns 曲线的长度 ------- """ raise NotImplementedError def point_at(self, s: float) -> P2: """ 获得曲线 s 位置处的点 (x,y) 即从曲线起点出发,运动 s 长度后的位置 Parameters ---------- s 长度量,曲线上 s 位置 Returns 曲线 s 位置处的点 (x,y) ------- """ raise NotImplementedError def direct_at(self, s: float) -> P2: """ 获得 s 位置处,曲线的方向 Parameters ---------- s 长度量,曲线上 s 位置 Returns s 位置处,曲线的方向 refactor v0.1.3 添加粗略实现 ------- """ delta = 1e-7 p1 = self.point_at(s) p2 = self.point_at(s+delta) return (p2-p1).normalize() def right_hand_side_point(self, s: float, d: float) -> P2: """ 位于 s 处的点,它右手边 d 处的点 1 5 10 15 -----------------@------> |2 |4 * 如上图,一条直线,s=15,d=4 ,即点 @ 右手边 4 距离处的点 * 说明:这个方法,主要用于四极场、六极场的计算,因为需要涉及轨道横向位置的磁场 Parameters ---------- s 长度量,曲线上 s 位置 d 长度量,d 距离远处 Returns 位于 s 处的点,它右手边 d 处的点 ------- """ ps = self.point_at(s) # 方向 ds = self.direct_at(s) return ps + ds.copy().rotate(-math.pi / 2).change_length(d) def left_hand_side_point(self, s: float, d: float) -> P2: """ 位于 s 处的点,它左手边 d 处的点 说明见 right_hand_side_point 方法 Parameters ---------- s 长度量,曲线上 s 位置 d 长度量,d 距离远处 Returns 位于 s 处的点,它左手边 d 处的点 ------- """ return self.right_hand_side_point(s, -d) # ------------------------------端点性质-------------------- # def point_at_start(self) -> P2: """ 获得曲线 line 起点位置 """ return self.point_at(0.0) def point_at_end(self) -> P2: """ 获得曲线 line 终点位置 """ return self.point_at(self.get_length()) def point_at_middle(self) -> P2: """ 获得曲线 line 中点位置 """ return self.point_at(self.get_length()/2) def direct_at_start(self) -> P2: """ 获得曲线 line 起点方向 """ return self.direct_at(0.0) def direct_at_end(self) -> P2: """ 获得曲线 line 终点方向 """ return self.direct_at(self.get_length()) def direct_at_middle(self) -> P2: """ 获得曲线 line 中点方向 """ return self.direct_at(self.get_length()/2) # ------------------------------平移-------------------- # def __add__(self, v2: P2) -> "Line2": """ Line2 的平移, v2 表示移动的方向和距离 Parameters ---------- v2 二维向量 Returns 平移后的 Line2 ------- """ class MovedLine2(Line2): def __init__(self, hold): self.hold = hold def get_length(self) -> float: return self.hold.get_length() def point_at(self, s: float) -> P2: return self.hold.point_at(s) + v2 def direct_at(self, s: float) -> P2: return self.hold.direct_at(s) return MovedLine2(self) # ------------------------------ 离散 ------------------------# def disperse2d(self, step: float = 1.0 * MM) -> List[P2]: """ 二维离散轨迹点 Parameters ---------- step 步长 Returns 二维离散轨迹点 ------- """ number: int = int(math.ceil(self.get_length() / step) ) + 1 # 这里要加 1,调整于 2021年4月28日 return [ self.point_at(s) for s in BaseUtils.linspace(0, self.get_length(), number) ] def disperse2d_with_distance( self, step: float = 1.0 * MM ) -> List[ValueWithDistance[P2]]: """ 同方法 disperse2d 每个离散点带有距离,返回值是 ValueWithDistance[P2] 的数组 """ number: int = int(math.ceil(self.get_length() / step) ) + 1 # 这里要加 1,调整于 2021年4月28日 return [ ValueWithDistance(self.point_at(s), s) for s in BaseUtils.linspace(0, self.get_length(), number) ] def disperse3d( self, p2_t0_p3: Callable[[P2], P3] = lambda p2: P3(p2.x, p2.y, 0.0), step: float = 1.0 * MM, ) -> List[P3]: """ 三维离散轨迹点,其中第三维 z == 0.0 Parameters ---------- step 步长 p2_t0_p3:二维点 P2 到三维点 P3 转换函数,默认 z=0 Returns 三维离散轨迹点 ------- """ return [p.to_p3(p2_t0_p3) for p in self.disperse2d(step=step)] def disperse3d_with_distance( self, p2_t0_p3: Callable[[P2], P3] = lambda p2: P3(p2.x, p2.y, 0.0), step: float = 1.0 * MM, ) -> List[ValueWithDistance[P3]]: """ 同 disperse3d 每个离散点带有距离,返回值是 ValueWithDistance[P3] 的数组 """ return [ ValueWithDistance(vp2.value.to_p3(p2_t0_p3), vp2.distance) for vp2 in self.disperse2d_with_distance(step=step) ] def __str__(self) -> str: return f"Line2[起点{self.point_at_start()},长度{self.get_length()}]" class StraightLine2(Line2): """ 二维有向直线段,包含三个参数:长度、方向、起点 """ def __init__(self, length: float, direct: P2, start_point: P2): self.length = float(length) self.direct = direct.normalize() self.start_point = start_point def get_length(self) -> float: """ 二维有向直线段的长度 """ return self.length def point_at(self, s: float) -> P2: """ 二维有向直线段 s 位置点 """ return self.start_point + self.direct.copy().change_length(s) def direct_at(self, s: float) -> P2: """ 二维有向直线段 s 位置方向 """ return self.direct def __str__(self) -> str: return f"直线段[起点{self.start_point},方向{self.direct},长度{self.length}]" def __repr__(self) -> str: return self.__str__() def position_of(self, p: P2) -> int: """ 求点 p 相对于直线段的方位 返回值: 1 在右侧 -1 在左侧 0 在直线段所在直线上 因为直线段 self 是有方向的,所以可以确定左侧还是右侧 这个函数用于确定 trajectory 当前是左偏还是右偏 / 逆时针偏转还是顺时针偏转 # --------------&----> $ 如上图,对于点 # ,在直线左侧,返回 -1 对于点 & 在直线上,返回 0 对于点 $,在直线右侧,返回 1 """ p0 = self.start_point # 直线段起点 d = self.direct # 直线方向 p0_t0_p: P2 = p - p0 # 点 p0 到 p k: float = d * p0_t0_p # 投影 project: P2 = k * d # 投影点 vertical_line: P2 = p0_t0_p - project # 点 p 的垂线方向 # 垂线长度 0,说明点 p 在直线上 if vertical_line == P2.zeros(): return 0 # 归一化 vertical_line = vertical_line.normalize() right_hand: P2 = d.rotate( BaseUtils.angle_to_radian(-90)).normalize() # 右手侧 if vertical_line == right_hand: return 1 else: return -1 def straight_line_equation(self) -> Tuple[float, float, float]: """ 返回直线的一般式方程 A B C Ax + By + C = 0 注意结果不唯一,不能用于比较 具体计算方法如下 from https://www.zybang.com/question/7699174d2637a60b3db85a4bc2e82c95.html 当x1=x2时,直线方程为x-x1=0 当y1=y2时,直线方程为y-y1=0 当x1≠x2,y1≠y2时, 直线的斜率k=(y2-y1)/(x2-x1) 故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1) 即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1) 即为(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0 即为(y2-y1)x-(x2-x1)y-x1y2+x2y1=0 A = Y2 - Y1 B = X1 - X2 C = X2*Y1 - X1*Y2 since v0.1.3 """ if BaseUtils.equal(self.direct.length(), 0, err=1e-10): raise ValueError( f"straight_line_equation 直线方向矢量 direct 长度为 0,无法计算一般式方程") x1 = self.start_point.x y1 = self.start_point.y x2 = (self.direct+self.start_point).x y2 = (self.direct+self.start_point).y if BaseUtils.equal(x1, x2, err=1e-10): return 1.0, 0.0, -x1 if BaseUtils.equal(y1, y2, err=1e-10): return 0.0, 1.0, -y1 return (y2-y1), (x1-x2), (x2*y1-x1*y2) @staticmethod def intersecting_point(pa: P2, va: P2, pb: P2, vb: P2) -> Tuple[P2, float, float]: """ 求两条直线 a 和 b 的交点 pa 直线 a 上的一点 va 直线 a 方向 pb 直线 b 上的一点 vb 直线 b 方向 返回值为交点 cp,交点在直线 a 和 b 上的坐标 ka kb 即 cp = pa + va * ka = pb + vb * kb since v0.1.3 """ # 方向矢量不能为 0 if BaseUtils.equal(va.length(), 0.0, err=1e-10): raise ValueError( f"intersecting_point:方向矢量 va 长度为零。pa={pa},pb={pb},va={va},vb={vb}") if BaseUtils.equal(vb.length(), 0.0, err=1e-10): raise ValueError( f"intersecting_point:方向矢量 vb 长度为零。pa={pa},pb={pb},va={va},vb={vb}") # 判断是否平行 if va.normalize() == vb.normalize() or (va.normalize()+vb.normalize()) == P2.origin(): print( f"intersecting_point:两条直线平行,计算结果可能无意义。pa={pa},pb={pb},va={va},vb={vb}") # pa 和 pb 就是交点。不短路,也走流程 # if pa==pb: # return pa,0.0,0.0 # 计算交点 # 为了防止除数为 0 ,只能将直线转为一般式 line_a = StraightLine2(length=1.0, direct=va, start_point=pa) line_b = StraightLine2(length=1.0, direct=vb, start_point=pb) A1, B1, C1 = line_a.straight_line_equation() A2, B2, C2 = line_b.straight_line_equation() cpy = (A1*C2-A2*C1)/(A2*B1-A1*B2) cpx = -(B1*cpy+C1)/A1 if A1 != 0 else -(B2*cpy+C2)/A2 cp = P2(cpx, cpy) ka = (cp.x-pa.x)/va.x if va.x != 0 else (cp.y-pa.y)/va.y kb = (cp.x-pb.x)/vb.x if vb.x != 0 else (cp.y-pb.y)/vb.y return cp, ka, kb @staticmethod def is_on_right(view_point: P2, view_direct: P2, viewed_point: P2) -> int: """ 查看点 viewed_point 是不是在右边 观察点为 view_point 观测方向为 view_direct 返回值 1 在右侧 0 在正前方或者正后方 -1 在左侧 """ right_direct = view_direct.copy().rotate(BaseUtils.angle_to_radian(-90)) relative_position = viewed_point-view_point k = right_direct*relative_position if k > 0: return 1 elif k < 0: return -1 else: return 0 @staticmethod def calculate_k_b(p1: P2, p2: P2) -> Tuple[float]: """ 求过两点的直线方程 y = kx + d k 和 d 的值 """ k = (p2.y-p1.y)/(p2.x-p1.x) b = p2.y - k * p2.x return (k, b) @staticmethod def create_by(start_point:P2,end_point:P2)->'StraightLine2': """ 两点创造直线 """ return StraightLine2( length=(end_point-start_point).length(), direct=(end_point-start_point), start_point=start_point ) class ArcLine2(Line2): """ 二维有向圆弧段 借助极坐标的思想来描述圆弧 基础属性: 圆弧的半径 radius、圆弧的圆心 center 起点描述:极坐标 phi 值 弧长:len = radius * totalPhi 起点start_point、圆心center、半径radius、旋转方向clockwise、角度totalPhi 五个自由度 起点弧度值 starting_phi、起点处方向、半径radius、旋转方向clockwise、角度totalPhi 五个自由度 如图: *1 表示起点方向,@ 是圆心,上箭头 ↑ 是起点处方向,旋转方向是顺时针,*5 是终点,因此角度大约是 80 deg *5 *4 *3 *2 *1 ↑ @ """ def __init__( self, starting_phi: float, center: P2, radius: float, total_phi: float, clockwise: bool, ): self.starting_phi = starting_phi self.center = center self.radius = radius self.total_phi = total_phi self.clockwise = clockwise self.length = radius * total_phi def get_length(self) -> float: """ 二维有向圆弧段的长度 """ return self.length def point_at(self, s: float) -> P2: """ 二维有向圆弧段的 s 位置点 """ phi = s / self.radius current_phi = ( self.starting_phi - phi if self.clockwise else self.starting_phi + phi ) uc = ArcLine2.unit_circle(current_phi) return uc.change_length(self.radius) + self.center def direct_at(self, s: float) -> P2: """ 二维有向圆弧段的 s 位置方向 """ phi = s / self.radius current_phi = ( self.starting_phi - phi if self.clockwise else self.starting_phi + phi ) uc = ArcLine2.unit_circle(current_phi) return uc.rotate(-math.pi / 2 if self.clockwise else math.pi / 2) @staticmethod def create( start_point: P2, start_direct: P2, radius: float, clockwise: bool, total_deg: float, ) -> "ArcLine2": """ 利用起点、起点方向、半径、偏转角度创建二维有向圆弧段 """ center: P2 = start_point + start_direct.copy().rotate( -math.pi / 2 if clockwise else math.pi / 2 ).change_length(radius) starting_phi = (start_point - center).angle_to_x_axis() total_phi = BaseUtils.angle_to_radian(total_deg) return ArcLine2(starting_phi, center, radius, total_phi, clockwise) @staticmethod def unit_circle(phi: float) -> P2: """ 单位圆(极坐标) 返回:极坐标(r=1.0,phi=phi)的点的直角坐标(x,y) Parameters ---------- phi 极坐标phi Returns 单位圆上的一点 ------- """ x = math.cos(phi) y = math.sin(phi) return P2(x, y) def __str__(self) -> str: clock_wise_str = "顺时针" if self.clockwise else "逆时针" return ( f"弧线段[起点{self.point_at_start()}," + f"方向{self.direct_at_start()},{clock_wise_str},半径{self.radius},角度{self.total_phi}]" ) def __repr__(self) -> str: return self.__str__() @staticmethod def as_arc_line2(anything) -> "ArcLine2": """ 仿佛是类型转换 实际啥也没做 但是 IDE 就能根据返回值做代码提示了 since v0.1.3 """ return anything
# -*- coding: utf-8 -*- """dfVFS helpers.""" from dfvfs.helpers import command_line as dfvfs_command_line from dfvfs.helpers import volume_scanner as dfvfs_volume_scanner from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.path import factory as path_spec_factory from dfvfs.resolver import resolver as dfvfs_resolver from dtformats import file_system class DFVFSFileSystemHelper( file_system.FileSystemHelper, dfvfs_volume_scanner.VolumeScanner): """dfVFS file system helper.""" def __init__(self, mediator): """dfVFS file system helper. Args: mediator (dfvfs.VolumeScannerMediator): mediator. """ super(DFVFSFileSystemHelper, self).__init__() self._file_system = None self._parent_path_spec = None self._mediator = mediator def BasenamePath(self, path): """Determines the basename of the path. Args: path (str): path. Returns: str: basename of the path. """ return self._file_system.BasenamePath(path) def CheckFileExistsByPath(self, path): """Checks if a specific file exists. Args: path (str): path of the file. Returns: bool: True if the file exists, False otherwise. """ path_spec = path_spec_factory.Factory.NewPathSpec( self._file_system.type_indicator, location=path, parent=self._parent_path_spec) return self._file_system.FileEntryExistsByPathSpec(path_spec) def DirnamePath(self, path): """Determines the directory name of the path. Args: path (str): path. Returns: str: directory name of the path or None. """ return self._file_system.DirnamePath(path) def GetFileSizeByPath(self, path): """Retrieves the size of a specific file. Args: path (str): path of the file. Returns: int: size of the file in bytes or None if not available. """ path_spec = path_spec_factory.Factory.NewPathSpec( self._file_system.type_indicator, location=path, parent=self._parent_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) if not file_entry: return None return file_entry.size def JoinPath(self, path_segments): """Joins the path segments into a path. Args: path_segments (list[str]): path segments. Returns: str: joined path segments prefixed with the path separator. """ return self._file_system.JoinPath(path_segments) def ListDirectory(self, path): """Lists the entries in a directory. Args: path (str): path of the directory. Yields: str: name of a directory entry. """ path_spec = path_spec_factory.Factory.NewPathSpec( self._file_system.type_indicator, location=path, parent=self._parent_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) if file_entry: for sub_file_entry in file_entry.sub_file_entries: yield sub_file_entry.name def OpenFileByPath(self, path): """Opens a specific file. Args: path (str): path of the file. Returns: file: file-like object of the file. """ path_spec = path_spec_factory.Factory.NewPathSpec( self._file_system.type_indicator, location=path, parent=self._parent_path_spec) return self._file_system.GetFileObjectByPathSpec(path_spec) def OpenFileSystem(self, path_spec): """Opens a file system. Args: path_spec (dfvfs.PathSpec): file system path specification. """ self._file_system = dfvfs_resolver.Resolver.OpenFileSystem(path_spec) self._parent_path_spec = path_spec.parent def SplitPath(self, path): """Splits the path into path segments. Args: path (str): path. Returns: list[str]: path segments without the root path segment, which is an empty string. """ return self._file_system.SplitPath(path) def SetDFVFSBackEnd(back_end): """Sets the dfVFS back-end. Args: back_end (str): dfVFS back-end. """ if back_end == 'APM': dfvfs_definitions.PREFERRED_APM_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_APM) elif back_end == 'EXT': dfvfs_definitions.PREFERRED_EXT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_EXT) elif back_end == 'FAT': dfvfs_definitions.PREFERRED_FAT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_FAT) elif back_end == 'GPT': dfvfs_definitions.PREFERRED_GPT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_GPT) elif back_end == 'HFS': dfvfs_definitions.PREFERRED_HFS_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_HFS) elif back_end == 'NTFS': dfvfs_definitions.PREFERRED_NTFS_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_NTFS) elif back_end == 'TSK': dfvfs_definitions.PREFERRED_APM_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK) dfvfs_definitions.PREFERRED_EXT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK) dfvfs_definitions.PREFERRED_FAT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK) dfvfs_definitions.PREFERRED_GPT_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK_PARTITION) dfvfs_definitions.PREFERRED_HFS_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK) dfvfs_definitions.PREFERRED_NTFS_BACK_END = ( dfvfs_definitions.TYPE_INDICATOR_TSK) def AddDFVFSCLIArguments(argument_parser): """Adds dfVFS command line arguments. Args: argument_parser (argparse.ArgumentParser): argument parser. """ argument_parser.add_argument( '--back_end', '--back-end', dest='back_end', action='store', metavar='NTFS', default=None, help='preferred dfVFS back-end.') argument_parser.add_argument( '--image', dest='image', action='store', type=str, default=None, help='path of the storage media image.') argument_parser.add_argument( '--partitions', '--partition', dest='partitions', action='store', type=str, default=None, help=( 'Define partitions to be processed. A range of partitions can be ' 'defined as: "3..5". Multiple partitions can be defined as: "1,3,5" ' '(a list of comma separated values). Ranges and lists can also be ' 'combined as: "1,3..5". The first partition is 1. All partitions ' 'can be specified with: "all".')) argument_parser.add_argument( '--snapshots', '--snapshot', dest='snapshots', action='store', type=str, default=None, help=( 'Define snapshots to be processed. A range of snapshots can be ' 'defined as: "3..5". Multiple snapshots can be defined as: "1,3,5" ' '(a list of comma separated values). Ranges and lists can also be ' 'combined as: "1,3..5". The first snapshot is 1. All snapshots can ' 'be specified with: "all".')) argument_parser.add_argument( '--volumes', '--volume', dest='volumes', action='store', type=str, default=None, help=( 'Define volumes to be processed. A range of volumes can be defined ' 'as: "3..5". Multiple volumes can be defined as: "1,3,5" (a list ' 'of comma separated values). Ranges and lists can also be combined ' 'as: "1,3..5". The first volume is 1. All volumes can be specified ' 'with: "all".')) # TODO: add image path def ParseDFVFSCLIArguments(options): """Parses dfVFS command line arguments. Args: options (argparse.Namespace): command line arguments. Returns: DFVFSFileSystemHelper: dfVFS file system helper or None if no file system could be found. """ SetDFVFSBackEnd(options.back_end) mediator = dfvfs_command_line.CLIVolumeScannerMediator() volume_scanner_options = dfvfs_volume_scanner.VolumeScannerOptions() volume_scanner_options.partitions = mediator.ParseVolumeIdentifiersString( options.partitions) if options.snapshots == 'none': volume_scanner_options.snapshots = ['none'] else: volume_scanner_options.snapshots = mediator.ParseVolumeIdentifiersString( options.snapshots) volume_scanner_options.volumes = mediator.ParseVolumeIdentifiersString( options.volumes) file_system_helper = DFVFSFileSystemHelper(mediator) base_path_specs = file_system_helper.GetBasePathSpecs( options.image, options=volume_scanner_options) if len(base_path_specs) != 1: return None file_system_helper.OpenFileSystem(base_path_specs[0]) return file_system_helper
def int_list(list): return [i if isinstance(i, int) else 0 for i in list] print(int_list(["a",1,"b",2,"c",3]))
from math import pi import numpy as np def Critical_Stress(height, width, t, sigma_y = 240*10**6, E = 69*10**9, v = 0.33, n = 0.6, alpha = 0.8): def sigma_cc_over_sigma_y(b, C = 4, t = t, sigma_y = sigma_y, E = E, v = v, n = n, alpha = alpha): sigma_cc_over_sigma_y = alpha*((C*(pi**2)*E*t**2)/(sigma_y*12*(1-v**2)*b**2))**(1-n) return sigma_cc_over_sigma_y area = height*width-(height-2*t)*(width-2*t) area_no_corners = area-(t**2)*4 side_lengths = np.array([height-2*t, width-2*t]) side_sigma_cc_over_sigma_y = sigma_cc_over_sigma_y(side_lengths) for i in range(len(side_sigma_cc_over_sigma_y)): if side_sigma_cc_over_sigma_y>=1: side_sigma_cc_over_sigma_y[i]=1 side_sigma_cc = side_sigma_cc_over_sigma_y*sigma_y sigma_cc = (2*t*side_lengths[0]*side_sigma_cc[0]+2*t*side_lengths[1]*side_sigma_cc[1])/area_no_corners return sigma_cc def Euler_Stress(height, width, t, L, E = 69*10**9, C = 0.25): area = height*width-(height-2*t)*(width-2*t) I = (height**3*t)/6+(width**3*t)/6+(width-2*t)*t*((height/2)-t/2)**2 P = C*(pi**2*E*I)/L sigma = P/area return sigma
def odd_one(arr): for i,x in enumerate(arr): if x%2!=0: return i return -1 ''' Create a method that takes an array/list as an input, and outputs the index at which the sole odd number is located. This method should work with arrays with negative numbers. If there are no odd numbers in the array, then the method should output -1. Examples: odd_one([2,4,6,7,10]) # => 3 odd_one([2,16,98,10,13,78]) # => 4 odd_one([4,-8,98,-12,-7,90,100]) # => 4 odd_one([2,4,6,8]) # => -1 '''
ft = open("/Volumes/PUBLIC/Everyone/corpus/rakuten-2016-/matome/201002-04.tsv","w") count = 0 for i in rang(2,5): f = open("/Volumes/PUBLIC/Everyone/corpus/rakuten-2016-/review/ichiba04_review20100"+str(i)+"_20140221.tsv") for line in f: ft.write(line) ft.close()
import logging from model.sileg.designation.designation import Designation from model.sileg.place.place import Place from model.sileg.position.position import Position from model.users.users import User class SilegModel: @classmethod def getEconoPageDataUser(cls, con, userId): designationIds = Designation.findByUserId(con, [userId]) designations = Designation.findById(con, designationIds) designationsActive = [d for d in designations if d.out is None and d.description == 'original' and Place.findById(con, [d.placeId])[0].type == 'Catedra' ] data = {} for designation in designationsActive: position = Position.findById(con, [designation.positionId])[0] place = Place.findById(con, [designation.placeId])[0] designation.place = place if position.description not in data: data[position.description] = {"position":position, "designations":[]} data[position.description]["designations"].append(designation) return data @classmethod def getEconoPageDataPlace(cls, con, placeId): designationIds = Designation.findByPlaceId(con, [placeId]) designations = Designation.findById(con, designationIds) designationsActive = [d for d in designations if d.out is None and d.description == 'original' and Place.findById(con, [d.placeId])[0].type == 'Catedra' ] data = {} for designation in designationsActive: position = Position.findById(con, [designation.positionId])[0] user = User.findById(con, [designation.userId])[0] designation.user = user if position.description not in data: data[position.description] = {"position":position, "designations":[]} data[position.description]["designations"].append(designation) return data @classmethod def getUsers(cls, con): designationIds = Designation.findAll(con) designations = Designation.findById(con, designationIds) designationsActive = [d for d in designations if d.out is None and d.description == 'original' and Place.findById(con, [d.placeId])[0].type == 'Catedra' ] userIds = [d.userId for d in designationsActive] return User.findById(con, userIds) @classmethod def getCathedras(cls, con): designationIds = Designation.findAll(con) designations = Designation.findById(con, designationIds) designationsActive = [d for d in designations if d.out is None and d.description == 'original' and Place.findById(con, [d.placeId])[0].type == 'Catedra' ] placesIds = [d.placeId for d in designationsActive] return Place.findById(con, placesIds) @classmethod def findPlacesByIds(cls, con, ids): return Place.findById(con, ids) @classmethod def findPositionsByIds(cls, con, ids): return Position.findById(con, ids) @classmethod def findDesignationsByIds(cls, con, ids): designations = Designation.findById(con, ids) for i in range(len(designations)): position = Position.findById(con, [designations[i].positionId])[0] designations[i].position = position user = User.findById(con, [designations[i].userId])[0] designations[i].user = user place = Place.findById(con, [designations[i].placeId])[0] designations[i].place = place return designations @classmethod def findUsersByIds(cls, con, ids): return User.findById(con, ids) @classmethod def findPositionsAll(cls, con): positionIds = Position.findAll(con) positions = Position.findById(con, positionIds) return positions @classmethod def findPlacesAll(cls, con): placesIds = Place.findAll(con) places = Place.findById(con, placesIds) return places @classmethod def findDesignationsBySearch(cls, con, search): if search is None: return designations = Designation.findBySearch(con, search) for i in range(len(designations)): position = Position.findById(con, [designations[i].positionId])[0] designations[i].position = position user = User.findById(con, [designations[i].userId])[0] designations[i].user = user place = Place.findById(con, [designations[i].placeId])[0] designations[i].place = place return designations @classmethod def persistDesignation(cls, con, designation): designation.persist(con);
from fabric.api import env as _env TARGET_LIVE = _env.get("live", None) VIRTUALENV_ROOT = "~/virtualenv" PROJECT_NAME = "pikapika" if TARGET_LIVE else "pikapika-saber" REMOTE_PYTHON_EXEC = "python2.7" MAIN_PACKAGE = "pikapika" print ("Target: " + PROJECT_NAME)
# Generated by Django 2.2.3 on 2019-07-10 09:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('DBStorage', '0011_auto_20190710_0902'), ] operations = [ migrations.RemoveField( model_name='giftanswers', name='giftID', ), migrations.AddField( model_name='giftanswers', name='id', field=models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), preserve_default=False, ), migrations.AlterField( model_name='giftanswers', name='giftArou', field=models.FloatField(blank=True), ), migrations.AlterField( model_name='giftanswers', name='giftFree', field=models.CharField(max_length=100), ), migrations.AlterField( model_name='giftanswers', name='giftVael', field=models.FloatField(blank=True), ), migrations.AlterField( model_name='giftanswers', name='giftWord', field=models.CharField(max_length=100), ), migrations.AlterField( model_name='giftanswers', name='modID', field=models.CharField(max_length=100), ), migrations.AlterField( model_name='giftanswers', name='parID', field=models.CharField(max_length=100), ), ]
class Solution: # @param A : tuple of integers # @return an integer def maxSubArray(self, A): curr_max = A[0] max_so_far = A[0] for i in range(len(A)): curr_max = max(curr_max + A[i],A[i]); max_so_far = max(max_so_far,curr_max); return max_so_far
import pygame import time tank1_image = 'global image1' tank2_image = 'global image2' bullet_image = 'global bullet' class Player(): def __init__(self, x, y, tank_image_file, place, dir_lurd, hp): self.x = x self.y = y self.tank_velocity = 10 self.bullet_velocity = 20 self.dir_lurd = dir_lurd self.bullet_image_file = 'bullet.png' self.bulletX = 1000 self.bulletY = 1000 self.tank_image_file = tank_image_file self.place = place self.bullet_lurd = [0,0,0,0] self.bullet_state = "ready" self.angle = 0 self.width = 500 self.height = 500 self.bullet_length = 0 self.opponents_hp = hp def get_place(self): return self.place def minus_hp(self): self.opponents_hp = self.opponents_hp - 1 def end_game(self, win, victory, end_font): pygame.font.init() if victory: text = end_font.render('YOU WIN!', True, (255, 255, 255)) else: text = end_font.render('YOU LOSE!', True, (255, 255, 255)) win.blit(text, (110, 200)) pygame.display.update() time.sleep(4) def get_tank_image_file(self): return self.tank_image_file def draw(self, win): global tank1_image, tank2_image if self.place == 'top': tank_image = tank1_image else: tank_image = tank2_image win.blit(tank_image, (self.x, self.y)) def rotate_and_draw(self, win): global tank1_image, tank2_image if self.place == 'top': tank1_image = pygame.transform.rotate(tank1_image, self.angle) win.blit(tank1_image, (self.x, self.y)) else: tank2_image = pygame.transform.rotate(tank2_image, self.angle) win.blit(tank2_image, (self.x, self.y)) self.angle = 0 def draw_bullet(self, win): global bullet_image if self.bullet_lurd == [1, 0, 0, 0]: bull_rot_im = pygame.transform.rotate(bullet_image, 90) win.blit(bull_rot_im, (self.bulletX, self.bulletY + 5)) if self.bullet_lurd == [0, 1, 0, 0]: bull_rot_im = bullet_image win.blit(bull_rot_im, (self.bulletX + 5, self.bulletY)) if self.bullet_lurd == [0, 0, 1, 0]: bull_rot_im = pygame.transform.rotate(bullet_image, -90) win.blit(bull_rot_im, (self.bulletX + 45, self.bulletY + 5)) if self.bullet_lurd == [0, 0, 0, 1]: bull_rot_im = pygame.transform.rotate(bullet_image, 180) win.blit(bull_rot_im, (self.bulletX + 6, self.bulletY + 50)) def fire_bullet(self, bulletX, bulletY, lurd, win, x_aim, y_aim, lurd_aim): global bullet_image self.bulletX = bulletX self.bulletY = bulletY self.bullet_lurd = lurd self.bullet_state = "fire" self.bullet_length += self.bullet_velocity if (lurd == [0,1,0,0] or lurd == [0,0,0,1]) and (lurd_aim == [0,1,0,0] or lurd_aim == [0,0,0,1]) and\ (x_aim-17<self.bulletX<x_aim+17) and (y_aim-55<self.bulletY<y_aim+65): self.bullet_state = 'ready' return 'hit' if (lurd == [1,0,0,0] or lurd == [0,0,1,0]) and (lurd_aim == [0,1,0,0] or lurd_aim == [0,0,0,1]) and\ (x_aim-50<self.bulletX<x_aim+20) and (y_aim-5<self.bulletY<y_aim+50): self.bullet_state = 'ready' return 'hit' if (lurd == [0,1,0,0] or lurd == [0,0,0,1]) and (lurd_aim == [1,0,0,0] or lurd_aim == [0,0,1,0]) and\ (x_aim -13<self.bulletX<x_aim+45) and (y_aim-65<self.bulletY<y_aim+30): self.bullet_state = 'ready' return 'hit' if (lurd == [1,0,0,0] or lurd == [0,0,1,0]) and (lurd_aim == [1,0,0,0] or lurd_aim == [0,0,1,0]) and\ (x_aim-65<self.bulletX<x_aim+65) and (y_aim-17<self.bulletY<y_aim+17): self.bullet_state = 'ready' return 'hit' if self.bullet_lurd == [1, 0, 0, 0]: bull_rot_im = pygame.transform.rotate(bullet_image, 90) win.blit(bull_rot_im, (self.bulletX-20, self.bulletY+5)) self.bulletX -= self.bullet_velocity if self.bullet_lurd == [0, 1, 0, 0]: bull_rot_im = bullet_image win.blit(bull_rot_im, (self.bulletX+5, self.bulletY-20)) self.bulletY -= self.bullet_velocity if self.bullet_lurd == [0, 0, 1, 0]: bull_rot_im = pygame.transform.rotate(bullet_image, -90) win.blit(bull_rot_im, (self.bulletX+65, self.bulletY+5)) self.bulletX += self.bullet_velocity if self.bullet_lurd == [0, 0, 0, 1]: bull_rot_im = pygame.transform.rotate(bullet_image, 180) win.blit(bull_rot_im, (self.bulletX+6, self.bulletY+70)) self.bulletY += self.bullet_velocity if self.bullet_length >= 420: self.bullet_state = "ready" return 'not_hit' def rotate(self, old_lurd, new_lurd, win): global tank1_image, tank2_image dif = old_lurd.index(1) - new_lurd.index(1) self.angle = 90 * dif if self.place == 'top': tank1_image = pygame.transform.rotate(tank1_image, self.angle) win.blit(tank1_image, (self.x, self.y)) else: tank2_image = pygame.transform.rotate(tank2_image, self.angle) win.blit(tank2_image, (self.x, self.y)) pygame.display.flip() def move(self, win, second_x, second_y, second_lurd): self.angle = 0 keys = pygame.key.get_pressed() if (keys[pygame.K_LEFT] and (keys[pygame.K_RIGHT] or keys[pygame.K_UP] or keys[pygame.K_DOWN]))\ or (keys[pygame.K_UP] and keys[pygame.K_DOWN]) or (keys[pygame.K_RIGHT] and (keys[pygame.K_DOWN] or keys[pygame.K_UP])): return if keys[pygame.K_SPACE]: if self.bullet_state == "ready": self.bullet_length = 0 # self.fire_bullet(self.x, self.y, self.dir_lurd, win) self.bulletX = self.x self.bulletY = self.y self.bullet_lurd = self.dir_lurd self.bullet_state = "fire" if keys[pygame.K_LEFT]: new_lurd = [1,0,0,0] self.rotate(self.dir_lurd,new_lurd, win) self.dir_lurd = new_lurd if self.x <= 0: self.x = 0 else: new_x = self.x - self.tank_velocity if second_lurd == [0,1,0,0]: if ((second_x -5 < new_x < second_x + 14) and (second_y - 25 < self.y < second_y + 45)): return if second_lurd == [0,0,0,1]: if ((second_x - 5 < new_x < second_x + 14) and (second_y - 30 < self.y < second_y + 50)): return if second_lurd == [0,0,1,0]: if ((second_x +20 < new_x < second_x + 35) and (second_y - 25 < self.y < second_y + 32)): return if second_lurd == [1,0,0,0]: if ((second_x +35 < new_x < second_x + 50) and (second_y - 15 < self.y < second_y + 50)): return self.x = new_x return if keys[pygame.K_RIGHT]: new_lurd = [0, 0, 1, 0] self.rotate(self.dir_lurd, new_lurd, win) self.dir_lurd = new_lurd if self.x >= 430: self.x = 430 else: new_x = self.x + self.tank_velocity if second_lurd == [0,1,0,0]: if ((second_x - 52 < new_x < second_x-32) and (second_y - 20 < self.y < second_y + 70)): return if second_lurd == [0,0,0,1]: if ((second_x - 55 < new_x < second_x-35) and (second_y - 30 < self.y < second_y + 50)): return if second_lurd == [0,0,1,0]: if ((second_x - 55 < new_x < second_x-40) and (second_y - 30 < self.y < second_y + 24)): return if second_lurd == [1,0,0,0]: if ((second_x - 25 < new_x < second_x-10) and (second_y - 30 < self.y < second_y + 30)): return self.x = new_x return if keys[pygame.K_UP]: new_lurd = [0, 1, 0, 0] self.rotate(self.dir_lurd, new_lurd, win) self.dir_lurd = new_lurd if self.y <= 0: self.y = 0 else: new_y = self.y - self.tank_velocity if second_lurd == [0,1,0,0]: if ((second_x - 30 < self.x < second_x + 30) and (second_y + 30 < new_y < second_y + 50)): return if second_lurd == [0,0,0,1]: if ((second_x - 30 < self.x < second_x + 30) and (second_y + 10 < new_y < second_y + 30)): return if second_lurd == [0,0,1,0]: if ((second_x - 30 < self.x < second_x + 50) and (second_y - 10 < new_y < second_y + 5)): return if second_lurd == [1,0,0,0]: if ((second_x - 20 < self.x < second_x + 70) and (second_y - 10 < new_y < second_y + 5)): return self.y = new_y return if keys[pygame.K_DOWN]: new_lurd = [0, 0, 0, 1] self.rotate(self.dir_lurd, new_lurd, win) self.dir_lurd = new_lurd if self.y >= 430: self.y = 430 else: new_y = self.y + self.tank_velocity if second_lurd == [0,1,0,0]: if ((second_x - 30 < self.x < second_x + 30) and (second_y - 35 < new_y < second_y -15)): return if second_lurd == [0,0,0,1]: if ((second_x - 30 < self.x < second_x + 30) and (second_y - 45 < new_y < second_y-30 )): return if second_lurd == [0,0,1,0]: if ((second_x - 30 < self.x < second_x + 55) and (second_y - 45 < new_y < second_y-30 )): return if second_lurd == [1,0,0,0]: if ((second_x - 15 < self.x < second_x + 70) and (second_y - 45 < new_y < second_y-30 )): return self.y = new_y return
def read_from_file(file_name:str) -> str: with open(file_name, 'r') as file: return file.read()
counts = dict() names = ['jane', 'tom', 'jhon', 'tom'] for name in names: counts[name] = counts.get(name, 0) + 1 print(counts)
""" Processes Finngen's manifest to extract all studies and their metadata in the OTG format. """ # coding: utf-8 import argparse from collections import OrderedDict import logging import numpy as np import pandas as pd def main(input_path: str, output_path: str) -> None: logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) # Read manifest manifest = ( pd.read_json(input_path, orient='records') .filter(items=['phenocode', 'phenosring', 'category', 'num_cases', 'num_controls']) # When phenostring is not provided, phenotype extracted from the phenocode .assign(phenostring=lambda df: df.apply( lambda row: row['phenostring'] if row['phenostring'] and row['phenostring'] != '' else row['phenocode'], axis=1) ) # Renaming columns to accomodate OTG schema: .rename(columns={ 'phenocode': 'study_id', 'phenostring': 'trait', 'category': 'trait_category', 'num_cases': 'n_cases', 'num_controls': 'n_controls', }) ) logging.info(f"{input_path} has been loaded. Formatting...") # Format table: manifest['study_id'] = 'FINNGEN_R6_' + manifest['study_id'] manifest['n_total'] = manifest['n_cases'] + manifest['n_controls'] manifest['pmid'] = '' manifest['pub_date'] = '2022-01-24' manifest['pub_author'] = 'FINNGEN_R6' manifest['ancestry_initial'] = 'European=' + manifest['n_total'].astype(str) manifest['n_replication'] = 0 manifest['ancestry_replication'] = '' manifest['pub_journal'] = '' manifest['pub_title'] = '' manifest['trait_efos'] = np.nan cols = OrderedDict( [ ('study_id', 'study_id'), ('pmid', 'pmid'), ('pub_date', 'pub_date'), ('pub_journal', 'pub_journal'), ('pub_title', 'pub_title'), ('pub_author', 'pub_author'), ('trait', 'trait_reported'), ('trait_efos', 'trait_efos'), ('ancestry_initial', 'ancestry_initial'), ('ancestry_replication', 'ancestry_replication'), ('n_total', 'n_initial'), ('n_cases', 'n_cases'), ('n_replication', 'n_replication'), ] ) manifest = manifest.loc[:, list(cols.keys())].rename(columns=cols) manifest.to_json(output_path, orient='records', lines=True) logging.info(f"{len(manifest)} studies have been saved in {output_path}. Exiting.") def parse_args(): """ Load command line args. """ parser = argparse.ArgumentParser() parser.add_argument('--input', metavar="<str>", type=str, required=True) parser.add_argument('--output', metavar="<str>", help=("Output"), type=str, required=True) args = parser.parse_args() return args if __name__ == '__main__': # Parse args args = parse_args() main(input_path=args.input, output_path=args.output)
import torch import numpy as np from torch.utils.data import Dataset from torch.utils.data import DataLoader from sklearn.model_selection import train_test_split # 读取原始数据,并划分训练集和测试集 raw_data = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32) X = raw_data[:, :-1] y = raw_data[:, [-1]] Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3) Xtest = torch.from_numpy(Xtest) Ytest = torch.from_numpy(Ytest) # 将训练数据集进行批量处理 # prepare dataset class DiabetesDataset(Dataset): def __init__(self, data, label): self.len = data.shape[0] # shape(多少行,多少列) self.x_data = torch.from_numpy(data) self.y_data = torch.from_numpy(label) def __getitem__(self, index): return self.x_data[index], self.y_data[index] def __len__(self): return self.len train_dataset = DiabetesDataset(Xtrain, Ytrain) train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0) # num_workers 多线程 # design model using class class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear1 = torch.nn.Linear(8, 6) self.linear2 = torch.nn.Linear(6, 4) self.linear3 = torch.nn.Linear(4, 2) self.linear4 = torch.nn.Linear(2, 1) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.sigmoid(self.linear1(x)) x = self.sigmoid(self.linear2(x)) x = self.sigmoid(self.linear3(x)) x = self.sigmoid(self.linear4(x)) return x model = Model() # construct loss and optimizer criterion = torch.nn.BCELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # training cycle forward, backward, update def train(epoch): train_loss = 0.0 count = 0 for i, data in enumerate(train_loader, 0): inputs, labels = data y_pred = model(inputs) loss = criterion(y_pred, labels) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() count = i if epoch % 2000 == 1999: print("train loss:", train_loss / count, end=',') def test(): with torch.no_grad(): y_pred = model(Xtest) y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0])) acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0) print("test acc:", acc) if __name__ == '__main__': for epoch in range(50000): train(epoch) if epoch % 2000 == 1999: test()
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('injury_data.tsv', sep='\t') df['2020/21 proj'] = df['2020/21'] * 3 COLS = ["2016/17", "2017/18", "2018/19", "2019/20", "2020/21"] PRIOR_YEARS = ["2016/17", "2017/18", "2018/19", "2019/20"] # Injuries this year res = df[['Country', 'Club', '2020/21']].loc[(df['Type'] == 'Injuries')].sort_values(by='2020/21') fig = res.set_index('Club')['2020/21'].plot(kind='bar', figsize=(12,8), ylabel='Injuries 2020/21').get_figure() fig.savefig('injuries_2020_21.pdf', bbox_inches='tight', pad_inches=2) # Injuries vs time def vs_time_plot(df, inj_type, clubs=None, countries=None): clubs = clubs if clubs else [] countries = countries if countries else [] if clubs: fltr = df['Club'].isin(clubs) elif countries: fltr = df['Country'].isin(countries) else: fltr = ~df.index.isna() res = df[ ['Club', "2016/17", "2017/18", "2018/19", "2019/20", "2020/21"] ].loc[ (df['Type'] == inj_type) & fltr ].set_index('Club') res.T.plot(figsize=(12,8), ylabel=f'{inj_type} vs Time') fig = vs_time_plot(df, 'Injuries', clubs=['FC Bayern', 'Juventus FC', 'Real Madrid']).get_figure() fig.savefig('injuries_vs_time_clubs.pdf', bbox_inches='tight', pad_inches=2) fig = vs_time_plot(df, 'Repeat', countries=['England']).get_figure() fig.savefig('england_repeat_injuries_vs_time.pdf', bbox_inches='tight', pad_inches=2) # Most and Least of def who_has_the_most_of(df, inj_type, year=None): if year: res = df[['Club', year]].loc[(df['Type'] == inj_type)] return res.iloc[res[year].argmax()] else: res = df[ ['Club'] + COLS ].loc[(df['Type'] == inj_type)] rr = pd.concat([res.set_index('Club').idxmax(), res.set_index('Club').max()], axis=1) return rr[0].loc[rr[1].idxmax()], rr[1].max(), rr[1].idxmax() def who_has_the_least_of(df, inj_type, year=None): if year: res = df[['Club', year]].loc[(df['Type'] == inj_type)] return res.iloc[res[year].argmin()] else: res = df[ ['Club'] + COLS ].loc[(df['Type'] == inj_type)] rr = pd.concat([res.set_index('Club').idxmax(), res.set_index('Club').min()], axis=1) return rr[0].loc[rr[1].idxmin()], rr[1].min(), rr[1].idxmin() print(who_has_the_most_of(df, 'Concurrent', year='2019/20')) print(who_has_the_most_of(df, 'Concurrent', year=None)) print(who_has_the_least_of(df, 'Injuries', year='2019/20')) def compare_countries(df, inj_type): res = df.loc[(df['Type'] == inj_type)].groupby('Country')[COLS + ['2020/21 proj']].mean() res.plot(kind='bar', ylabel=f'Average {inj_type}', figsize=(12,8)) fig = compare_countries(df, 'Injuries').get_figure() fig.savefig('country_comparison.pdf', bbox_inches='tight', pad_inches=2)
import logging , requests , lxml.html , os from urllib.parse import urljoin import pickle def save_cookies(session,filename): with open(filename, 'wb') as f: pickle.dump(session.cookies, f) def load_cookies(session,filename): with open(filename,'rb') as f: session.cookies.update(pickle.load(f)) def login(username, password,session=requests.Session()): home_url='https://www.linkedin.com/' if os.path.exists(filename): logging.info("[*] Login step 0 - Loading Cookies...") load_cookies(session,filename) res = session.get(home_url, headers={'User-Agent': 'Mozilla/5.0'}) if not '>Sign in</' in res.text : logging.info('[*] Login success') return True logging.info("[*] Login step 1 - Getting CSRF token...") resp = session.get(urljoin(home_url,'/login/'),headers={'user-agent': 'Mozilla/5.0'}) body = resp.text # Looking for CSRF Token html = lxml.html.fromstring(body) csrf = html.xpath("//input[@name='loginCsrfParam']/@value").pop() sIdString = html.xpath("//input[@name='sIdString']/@value").pop() parentPageKey = html.xpath("//input[@name='parentPageKey']/@value").pop() pageInstance = html.xpath("//input[@name='pageInstance']/@value").pop() loginCsrfParam = html.xpath("//input[@name='loginCsrfParam']/@value").pop() fp_data = html.xpath("//input[@name='fp_data']/@value").pop() d = html.xpath("//input[@name='_d']/@value").pop() controlId = html.xpath("//input[@name='controlId']/@value").pop() logging.debug(f"[*] CSRF: {csrf}") data = { "session_key": username, "session_password": password, "csrfToken": csrf, 'ac': 0, 'sIdString': sIdString, 'parentPageKey':parentPageKey, 'pageInstance': pageInstance, 'trk': '', 'authUUID': '', 'session_redirect': '', 'loginCsrfParam': loginCsrfParam, 'fp_data': fp_data, '_d': d, 'controlId': controlId } logging.info("[*] Login step 1 - Done") logging.info("[*] Login step 2 - Logging In...") URL = urljoin('https://www.linkedin.com', 'checkpoint/lg/login-submit') session.post(URL, data=data,headers={'user-agent': 'Mozilla/5.0'}) if not session.cookies._cookies['.www.linkedin.com']['/'].get('li_at',''): logging.info("[!] Could not login. Please check your credentials") return False logging.info("[*] Login step 2 - Done") logging.info("[*] Login step 3 - Saving Cookies...") save_cookies(session,filename) return True filename = 'cookie_linkedin.txt' logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s') logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING)
class YearResult: def __init__(self): self.modules = [] def total_credits(self): total_credits = 0 for m in self.modules: total_credits += m.credits return total_credits def get_result(self): total_credits = self.total_credits() total_result = 0 for m in self.modules: total_result += m.grade() * ((m.credits / total_credits) / m.module_completion()) return total_result def needed_grades(self, t): completed = self.completion() remaining = 1 - completed return (t - (self.get_result() * completed)) / remaining # t = curr * completion + need * remaining # need = t - curr * completion # --------------------- # remaining def completion(self): completion = 0 for m in self.modules: completion += m.module_completion() * m.credits return completion / self.total_credits() def enter_marks(self): for m in self.modules: response = m.enter_mark() if str(response).lower() == "q": return "q" print("Grades added.") def display_results(self): print(f"Generating results...\n") for m in self.modules: print(m) print(f"Your overall weighted grade so far is: {round(self.get_result(),2)} ({self.completion()*100}% of year complete)\n") def __str__(self): return " ".join(self.modules) class Module: def __init__(self, name, credits): self.name = name self.credits = credits self.assignments = [] def grade(self): total = 0 for a in self.assignments: total += a.weight * a.mark # print(f"Grade is: {total}") return total def module_completion(self): return sum([a.weight for a in self.assignments]) def add_assignment(self, title, weight, mark): self.assignments.append(Assignment(title, weight, mark)) def enter_mark(self): for a in self.assignments: user_input = input(f"Enter the mark you got for {a.title} in {self.name}: \n") if str(user_input).lower() == "q": return "q" else: a.mark = int(user_input) # return 1 def __str__(self): a_list = "" print(self.name) for a in self.assignments: a_list += " " + str(a) + "\n" return a_list class Assignment: def __init__(self, title, weight, mark): self.title = title self.weight = weight self.mark = mark def __str__(self): return f"{self.title}: {self.mark} / 100 ({round(self.weight*100)}% of module)" DT265C = YearResult() OOP = Module("OOP", 10) DT265C.modules.append(OOP) OOP.add_assignment("Exam1", 0.2, 0) OOP.add_assignment("Exam2", 0.2, 0) OOP.add_assignment("CA1", 0.3, 0) AOSN = Module("Architecture, Operating Systems, and Networks", 5) DT265C.modules.append(AOSN) AOSN.add_assignment("CA1", 0.25, 0) AOSN.add_assignment("CA2", 0.25, 0) SA = Module("Systems Analysis", 5) DT265C.modules.append(SA) SA.add_assignment("CA1", 0.25, 0) Web = Module("Web & UI", 5) DT265C.modules.append(Web) Web.add_assignment("Final result", 1, 0) IS = Module("Information Systems", 5) DT265C.modules.append(IS) IS.add_assignment("Final result", 1, 0) user_input = "" while str(user_input).lower() != "q": print("Press 1 to enter/edit results \nPress 2 to view marks\nPress 3 to calculate needed grades\n~ Press Q to quit") user_input = input("") if str(user_input).lower() == "q": break elif user_input == "1": user_input = DT265C.enter_marks() if str(user_input).lower() == "q": break elif user_input == "2": DT265C.display_results() elif user_input == "3": target = input("What overall grade do you want to achieve? \n") needed = round(DT265C.needed_grades(int(target)), 2) grade = round(DT265C.get_result(),2) completion = DT265C.completion()*100 print(f"\nYour grade so far is: {grade} / 100 with {completion}% complete...\n") if needed > 100: print(f"You need {needed} / 100 to get this amount unfortunately.") else: print(f"Target grade: {target}\n\nNeeded marks: {needed} / 100 averaged across remaining assignments ({100-completion}% of course left)\n") print("Exiting...")
# coding:utf-8 import os, sys # import pandas as pd from glob import glob from os import path wildchar_dict = {'mapl8': ['/L*B[4-6].TIF', '/L*BQA.TIF', '/L*MTL.txt'], 'mapl57': ['/L*B[3-5].TIF', '/L*BQA.TIF', '/L*MTL.txt'], 'raw': ['']} def parse_url(url, craft='LANDSAT'): if craft == 'LANDSAT': basedir,product_id=path.split(url) basedir,orbit_row=path.split(basedir) basedir,orbit_path=path.split(basedir) return orbit_path,orbit_row if craft == 'SENTINEL2': basedir, product_id = path.split(url) basedir, t2 = path.split(basedir) basedir, t1 = path.split(basedir) basedir, zone = path.split(basedir) return zone, t1, t2 def downloadone(file, downloaddir=None, craft='LANDSAT', mode=''): urls = open(file).readlines() if not path.exists(downloaddir): os.makedirs(downloaddir) for i in range(len(urls)): url = urls.pop() # os.system('set http_proxy=127.0.0.1:1080') # print 'gsutil cp -r {0} {1}'.format(url.strip('\n')+'/',dstdir) if craft=='LANDSAT': orbit_path, orbit_row = parse_url(url) scenedir = path.join(downloaddir, orbit_path, orbit_row) if craft=='SENTINEL2': zone, t1, t2 = parse_url(url, craft) scenedir = path.join(downloaddir, zone, t1, t2) if not path.exists(scenedir): os.makedirs(scenedir) for wildchar in wildchar_dict[mode]: while (os.system('gsutil -m cp -r -n {0} {1}'.format(url.strip('\n') + wildchar, scenedir)) != 0): pass open(file, 'w').writelines(urls) if __name__ == '__main__': tododown = sys.argv[1] downloaddir = sys.argv[2] craft = sys.argv[3] if len(sys.argv)>4: wildchar = sys.argv[4] else: wildchar = '' if wildchar is None: wildchar = '' if os.path.isdir(tododown): filelist = glob(os.path.join(tododown, r'*.txt')) for file in filelist: downloadone(file, downloaddir, craft, wildchar) # urls = open(file).readlines() # if not path.exists(downloaddir): # os.makedirs(downloaddir) # for i in range(len(urls)): # url = urls.pop() # # os.system('set http_proxy=127.0.0.1:1080') # # print 'gsutil cp -r {0} {1}'.format(url.strip('\n')+'/',dstdir) # orbit_path,orbit_row=parse_url(url) # scenedir=path.join(downloaddir,orbit_path,orbit_row) # if not path.exists(scenedir): # os.makedirs(scenedir) # while (os.system('gsutil -m cp -r -n {0} {1}'.format(url.strip('\n') + '/', scenedir)) != 0): # pass # open(file, 'w').writelines(urls) else: downloadone(tododown, downloaddir, craft, wildchar) # urls = open(tododown).readlines() # if not os.path.exists(downloaddir): # os.makedirs(downloaddir) # for i in range(len(urls)): # # os.system('set http_proxy=127.0.0.1:1080') # # print 'gsutil cp -r {0} {1}'.format(url.strip('\n')+'/',dstdir) # url=urls.pop() # orbit_path, orbit_row = parse_url(url) # scenedir = path.join(downloaddir, orbit_path, orbit_row) # if not path.exists(scenedir): # os.makedirs(scenedir) # while(os.system('gsutil -m cp -r -n {0} {1}'.format(url.strip('\n') + '/', scenedir))!=0): # pass # open(tododown,'w').writelines(urls)
import random element_1=[] element_2=[] player_1=0 player_2=0 for i in range(5): element_1=random.randint(1,6) element_2=random.randint(1,6) player_1+=element_1 player_2+=element_2 print ("player 1 =", element_1) print ("player 2 =", element_2) print("player 1 has", player_1, "points while player 2 has", player_2, "points" ) if player_1 > player_2: print("The winner of the competiton is player 1 with", player_1 , "points") elif player_1 < player_2: print("The winner of the competiton is player 2 with", player_2 , "points") else: print("There is no winner between player 1 and player 2")
from math import sqrt, exp, floor, pi import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../lab1') import distributions as dst def kernel_function(x: float): return exp(-x*x/2)/sqrt(2*pi) def kernel_approximation(xs: np.ndarray, sel: np.ndarray, k): n = len(sel) s = sqrt((sel*sel).sum()/n - (sel.sum()/n)**2) h = 1.06*s*(n**(-0.2))*k res = np.zeros_like(xs) for i in range(len(xs)): for v in sel: res[i] += kernel_function((xs[i] - v)/h) res[i] /= n*h return res ds = dst.get_distributions() ns = [20, 60, 100] ks = [0.5, 1, 2] for d in ds: fig, ax = plt.subplots(len(ks), len(ns)) rng = (-4, 4) if not d.discrete() else (6, 14) for i in range(len(ns)): sel = np.array(dst.selection(d, ns[i])) x = np.linspace(*rng, 100) y1 = list(map(d.f, x)) for j in range(len(ks)): y2 = kernel_approximation(x, sel, ks[j]) ax1 = ax[i, j] ax1.plot(x, y1, label='теор') ax1.plot(x, y2, label='оценка') ax1.legend() ax1.set_xlabel('x' if i == len(ns) - 1 else '') ax1.set_ylabel(f'$f(x), n = {ns[i]}$') if i == 0: ax1.set_title((d.name if j == 1 else '') + f"\n\n$h = h_n * {ks[j]}$") plt.show() for d in ds: fig, ax = plt.subplots(1, len(ns)) rng = (-4, 4) if not d.discrete() else (6, 14) for i in range(len(ns)): data = [d.x() for j in range(ns[i])] x = np.linspace(min(data), max(data), 200) yF = [d.F(k) for k in x] plt.subplot(1, 3, i+1) plt.title(d.name + ", n = " + str(ns[i])) plt.xlabel('x') plt.ylabel('Функция распределения') plt.plot(x, yF, label='ожидаемое') plt.hist(data, density=True, label='полученное', bins=floor(len(data)),histtype='step',cumulative=True) plt.legend() plt.show()
from src.character.player import Player from src.character.class_.standart import Warrior, Wizard from .notification import ShowPlayerStats from . import BaseScene, Quit class Menu(BaseScene): def exit(self, game): pass def execute(self, game): text = [ 'Привет. Это моя игра в консоли.', '1. Старт', '2. Загрузка', '2. Выход', ] valid_answers = { 1: ['1', 'start', 'new'], 2: ['2', 'load'], 3: ['3', 'exit', 'quit'] } question = self.interface.create_readable_text(valid_answers) self.interface.print(text, delay=0.2) answer = self.interface.ask(question, valid_answers) if answer == 1: game.scene = PlayerClassChoice() elif answer == 2: game.load() elif answer == 3: game.scene = Quit() class PlayerClassChoice(BaseScene): def execute(self, game): text = [ 'Выбор класса:', '1. Warrior', '2. Mage', ] self.interface.print(text, delay=0.2) valid_answers = { 1: ['1', 'warrior'], 2: ['2', 'mage', 'wizard'], } question = self.interface.create_readable_text(valid_answers) answer = self.interface.ask(question, valid_answers) if answer == 1: game.player = Player(Warrior()) elif answer == 2: game.player = Player(Wizard()) game.scene = ShowPlayerStats()
import os import tempfile ################################################################################################# # # # Wrapper Function # # # ################################################################################################# from . import register_corpus_metric TER_PATH = '/private/home/jgu/software/tercom.7.25.jar' @register_corpus_metric('TER') def get_ter_score(targets, decodes): return corpus_ter([" ".join(t) for t in targets], [" ".join(o) for o in decodes]) ################################################################################################# def corpus_ter(ref, hyp): if not os.path.exists(TER_PATH): raise FileNotFoundError( "Please download meteor-1.5.jar and set the TER_PATH") fr, pathr = tempfile.mkstemp() fh, pathh = tempfile.mkstemp() try: with os.fdopen(fr, 'w') as tmp: tmp.write( '\n'.join([r + ' ({})'.format(i) for i, r in enumerate(ref)]) + '\n') with os.fdopen(fh, 'w') as tmp: tmp.write( '\n'.join([h + ' ({})'.format(i) for i, h in enumerate(hyp)]) + '\n') R = os.popen('java -jar {ter_path} -r {ref_file} -h {hyp_file}'.format( ter_path=TER_PATH, hyp_file=pathh, ref_file=pathr)).read() R = [l for l in R.split('\n') if 'Total TER' in l] R = float(R[0].split()[2]) finally: os.remove(pathr) os.remove(pathh)
import pygame import sys from pygame.locals import * import time from lib.apple import Apple from lib.player import Player WINDOW_WIDTH = 1280 WINDOW_HEIGHT = 736 white = (255, 255, 255) black = (0, 0, 0) blue = (0, 0, 128) class App: def main(self): pygame.init() self.DISPLAYSURF = pygame.display.set_mode( (WINDOW_WIDTH, WINDOW_HEIGHT)) pygame.display.set_caption('Hello World!') self.playerImg = pygame.image.load('./pics/player.png') self.appleImg = pygame.image.load('./pics/apple.png') self.player = Player() self.apple = Apple() self.score = 0 self.clock = pygame.time.Clock() # Text self.font = pygame.font.Font('freesansbold.ttf', 16) self.text = self.font.render( 'Score: ' + str(self.score), True, white, black) self.textRect = self.text.get_rect() self.textRect.x = 1200 self.textRect.y = 700 while True: # Event Handler for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: self.player.moveLeft() if event.key == pygame.K_UP: self.player.moveUp() if event.key == pygame.K_DOWN: self.player.moveDown() if event.key == pygame.K_RIGHT: self.player.moveRight() if event.key == pygame.K_ESCAPE: self.die() if event.type == QUIT: self.die() self.player.update() self.checkCollision() self.draw() pygame.display.update() time.sleep(50.0 / 1000.0) def draw(self): # The screen will be covered in black self.DISPLAYSURF.fill((0, 0, 0)) # Draw our player self.player.draw(self.DISPLAYSURF) # Draw our apple self.apple.draw(self.DISPLAYSURF) # Draw our text self.DISPLAYSURF.blit(self.text, self.textRect) # Death to the game :> def die(self): pygame.quit() sys.exit() # TODO: Add logic def gameOver(self): self.die() def checkCollision(self): if self.player.isCollidingWithApple(self.apple.getRect()): self.score += 1 self.text = self.font.render( 'Score: ' + str(self.score), True, white, black) self.apple.respawn() if self.player.isCollidingWithMyself(): self.gameOver() if __name__ == "__main__": theApp = App() theApp.main()
#!/usr/bin/python import sys import boto.ec2 instance_id = sys.argv[1] print(instance_id + 'will be terminated') conn = boto.ec2.connect_to_region("us-east-2", aws_access_key_id="", aws_secret_access_key="" ) conn.terminate_instances(instance_ids=[instance_id])
import multiprocessing import time import contextlib import requests import selenium.webdriver as webdriver import apl from constants import driver_path, hapag_url, backup_msc_url import cosco from database import get_containers_by_steamship, update_container_eta, update_container_tracing import hpl import msc import msc_selenium import one_line options = webdriver.ChromeOptions() options.add_argument('headless') driver = webdriver.Chrome(executable_path=driver_path, chrome_options=options) session = requests.Session() def get_backup_msc_tracing(driver): msc = msc_selenium.MSC(driver) events_dict = msc.get_all_events_dict(backup_msc_url, container) tracing_results = msc.get_formatted_tracing_results(events_dict) vessel_eta = events_dict['vessel_eta'] update_container_eta(container, vessel_eta) update_container_tracing(container, tracing_results, 'ssl') ''' APL TRACKING ''' apl = apl.APL(session) tracing_results_list = [] apl_containers_list = get_containers_by_steamship()['APLU'] + get_containers_by_steamship()['CMDU'] pool = multiprocessing.Pool(processes=len(apl_containers_list)) with pool as p: tracing_results = p.map(apl.get_tracing_results_dict, apl_containers_list) for result in tracing_results: tracing_results_list.append(result) for result in tracing_results_list: formatted_tracing_results = apl.format_tracing_results(result) update_container_eta(result['container'], result['vessel_eta']) update_container_tracing(result['container'], formatted_tracing_results, 'ssl') ''' MSC TRACKING ''' msc = msc.MSC(session) msc_containers_list = get_containers_by_steamship()['MEDU'] for container in msc_containers_list: try: html = msc.get_tracing_results_html(container) update_container_tracing(container, msc.get_all_events(html), 'ssl') update_container_eta(container, msc.get_vessel_eta(html)) except AttributeError: with contextlib.closing(driver) as driver: get_backup_msc_tracing(driver) ''' HAPAG TRACKING ''' with contextlib.closing(driver) as driver: hpl = hpl.HPL(driver) hpl_containers_list = get_containers_by_steamship()['HLCU'] for container in hpl_containers_list: events_dict = hpl.get_all_events_dict(hapag_url, container) tracing_results = hpl.get_formatted_tracing_results(events_dict) vessel_eta = hpl.get_vessel_eta(events_dict['scheduled_events']) update_container_tracing(container, tracing_results, 'ssl') update_container_eta(container, vessel_eta) ''' COSCO TRACKING ''' timestamp = int(time.time()) cosco_containers_list = get_containers_by_steamship()['COSU'] cosco = cosco.COSCO(containers_list=cosco_containers_list, session=session, timestamp=timestamp) cosco_containers_list = get_containers_by_steamship()['COSU'] most_recent_events_list = cosco.get_most_recent_event_list() for event in most_recent_events_list: container_number = event['container_number'] vessel_eta = cosco.get_vessel_eta(container_number) update_container_eta(container_number, vessel_eta) update_container_tracing(container_number, cosco.format_most_recent_event(event), 'ssl') ''' ONE LINE TRACKING ''' one = one_line.ONE(session) one_containers_list = get_containers_by_steamship()['ONEY'] for container in one_containers_list: events_dict = one.get_events_dict(container) tracing_results = one.get_formatted_events(events_dict) vessel_eta = one.get_vessel_eta(container) update_container_eta(container, vessel_eta) update_container_tracing(container, tracing_results, 'ssl')
import unittest from neo.rawio.plexonrawio import PlexonRawIO from neo.test.rawiotest.common_rawio_test import BaseTestRawIO class TestPlexonRawIO(BaseTestRawIO, unittest.TestCase, ): rawioclass = PlexonRawIO files_to_download = [ 'File_plexon_1.plx', 'File_plexon_2.plx', 'File_plexon_3.plx', ] entities_to_test = files_to_download if __name__ == "__main__": unittest.main()
import sys from collections import OrderedDict from lib.intcode import Machine from time import sleep import subprocess if len(sys.argv) == 1 or sys.argv[1] == '-v': print('Input filename:') f=str(sys.stdin.readline()).strip() else: f = sys.argv[1] verbose = sys.argv[-1] == '-v' for l in open(f): mreset = [int(x) for x in l.strip().split(',')] class Droid: WALL = 0 OK = 1 OXYGEN = 2 UNEXPLORED = 3 MOV_NORTH = 1 MOV_SOUTH = 2 MOV_WEST = 3 MOV_EAST = 4 def __init__(self, m): self.__m = m self.__cpu = Machine(self.__m[:]) self.__history = [] self.__bounds = (0, 0, 0, 0) self.__pos = (0, 0) self.__tank_pos = None self.__move_count = 0 self.__map = OrderedDict({(0, 0): Droid.OK}) self.__tiles = { 0: '⬜', 1: '.', 2: '⭐' } if verbose: self.__cpu.toggle_verbose() def map(self, display = True): self.reset() cpu = self.__cpu history = self.__history p = self.__pos = (0, 0) nswe = set(range(1,5)) move = self.MOV_NORTH tries = {p: {self.reverse(self.MOV_NORTH)}} while True: ''' here, we will use (D)epth (F)irst (S)earch algo to traverse the entire map. we will also capture tank's position and steps when it is found. the goal here is to traverse every single path (even after the tank is found) by going all the way to end of each path and backtracking till we find a new one. Loop: ------------------------------------------------------------------ - each position is a new node/vertex - each vertex potentially has 4 directions to try except for where it is coming from. [ example: if we took a step NORTH, then SOUTH is excluded from future potential tries. ] - once a direction is tried, we add to the list of tries for the current position/node/vertex (x, y). - if the node's tries are exhausted N, W, E ... then backtrack 1 step - hmmm... we've been here before innit? oui ! mon Dieu ! - in the node we backtracked to, check if we have any untried directions left. - if [ not ]: backtrack again. if [ yes ]: pop a move from remaining tries and go on your merry way. REPEAT ''' if p not in tries: tries[p] = {self.reverse(move)} if len(tries[p]) < 4: backtrack = False move = nswe.difference(tries[p]).pop() tries[p].add(move) else: backtrack = True if not history: ''' no where to backtrack to. this will happen when we've explored every other path and are forced to backtrack all the back to the beginning. END PROGRAM ''' break move = self.reverse(history.pop()) cpu.run(move) o = cpu.output() if o in {self.OK, self.OXYGEN}: p = self.xy(move, p) self.__pos = p self.__bounds = self.update_bounds() if not backtrack: history.append(move) self.__map[p] = o if o == self.OXYGEN: ''' + capture oxygen tank [position: x, y] and [steps] it took to get to it. + there is only 1 path but if there were more than 1, to get the shortest path, we'd simply replace with the lowest count each time we hit the oxygen tank. ''' self.__move_count = len(self.__history) if self.__move_count == 0 else min(self.__move_count, len(self.__history)) self.__tank_pos = p if display: self.display() return self.__tank_pos, self.__move_count, self.__map def reverse(self, direction = None): if direction == None: direction = self.__history[-1] return { self.MOV_NORTH : self.MOV_SOUTH, self.MOV_SOUTH : self.MOV_NORTH, self.MOV_WEST : self.MOV_EAST, self.MOV_EAST : self.MOV_WEST }[direction] def xy(self, move, from_xy: tuple = None): x, y = from_xy if from_xy else self.__pos dnswe = { self.MOV_NORTH: (0, -1), self.MOV_SOUTH: (0, 1), self.MOV_WEST: (-1, 0), self.MOV_EAST: (1, 0) } return tuple(a + b for a, b in zip((x, y), dnswe[move])) def update_bounds(self): mxy, xy = list(self.__bounds), self.__pos return tuple([min(p1, p2) for p1, p2 in zip(mxy[:2], xy)] + [max(p1, p2) for p1, p2 in zip(mxy[2:], xy)]) def display(self): minx, miny, maxx, maxy = self.__bounds maxx, maxy = abs(minx) + maxx, abs(miny) + maxy px, py = self.__pos subprocess.call("clear") dash = 'Steps: {}, Max (x): {}, Max (y): {}'.format(len(self.__history), maxx, maxy) print(dash) print('.'*(maxx+1)) grid = [[' ']*(maxx+1) for _ in range(maxy+1)] for (x, y), v in self.__map.items(): x += abs(minx) y += abs(miny) if x < 0 or x > maxx or y < 0 or y > maxy: break try: grid[y][x] = self.__tiles[v] except: print('DEBUG', x, y, maxx, maxy) exit() break prev = grid[py+abs(miny)][px+abs(minx)] rx, ry = px+abs(minx), py+abs(miny) if prev != self.__tiles[self.OXYGEN]: grid[ry][rx] = '🛸' else: grid[ry][rx-1] = '🛸' for l in grid: print(''.join(l)) print('\n') print('.'*(maxx+1)) print(dash) # sleep(0.1) def reset(self): if not self.__map: return self.__pos = (0, 0) self.__move_count = 0 self.__tank_pos = None self.__map = OrderedDict() self.__cpu = Machine(self.__m[:]) if verbose: self.__cpu.toggle_verbose() return self ''' Solution 1 ''' r = Droid(mreset[:]) tank_pos, steps, rmap = r.map(True) print('Solution 1:', steps) ''' Solution 2 ''' def neighbours(m: dict, pos: tuple, l: callable = lambda p, v: True): ''' N (x, y), S (x, y), W (x, y), E (x, y) ''' (x, y), dxy = pos, [(0, -1), (0, 1), (-1, 0), (1, 0)] n = [(x + dx, y + dy) for dx, dy in dxy] return [nn for nn in n if nn in m and l(nn, m.get(nn)) ] def spread(m, p, t = 0): if m.get(p, Droid.WALL) == Droid.WALL: return t - 1 m[p] = Droid.WALL n = neighbours(m, p) return max([ spread(m, nn, t + 1) for nn in n ]) print('Solution 2:', spread(rmap, tank_pos))
import nltk from sklearn.model_selection import train_test_split nltk.download('punkt') nltk.download('wordnet') from nltk.stem import WordNetLemmatizer import json import pickle import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Dropout,LSTM from keras.optimizers import SGD import random import warnings warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) import matplotlib.pyplot as plt words=[] classes = [] documents = [] ignore_words = ['?', '!'] intents = json.loads(open('intents.json').read()) for intent in intents['intents']: for pattern in intent['patterns']: #Tokenize each word w = nltk.word_tokenize(pattern) words.extend(w) #Add documents in the corpus documents.append((w, intent['tag'])) #Add to our classes list if intent['tag'] not in classes: classes.append(intent['tag']) lemmatizer = WordNetLemmatizer() #Lemmaztize and lower each word and remove duplicates words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words] words = sorted(list(set(words))) #Sort classes classes = sorted(list(set(classes))) pickle.dump(words,open('words.pkl','wb')) pickle.dump(classes,open('classes.pkl','wb')) #Create training data training = [] #Create an empty array for our output output_empty = [0] * len(classes) #Training set, bag of words for each sentence for doc in documents: #Initialize our bag of words bag = [] #List of tokenized words for the pattern pattern_words = doc[0] #Lemmatize each word - create base word, in attempt to represent related words pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words] #Create our bag of words array with 1, if word match found in current pattern for w in words: bag.append(1) if w in pattern_words else bag.append(0) #Output is a '0' for each tag and '1' for each pattern output_row = list(output_empty) output_row[classes.index(doc[1])] = 1 training.append([bag, output_row]) #Shuffle our features and turn into np.array random.shuffle(training) training = np.array(training) #Create train lists. X - patterns, Y - intents train_x = list(training[:,0]) train_y = list(training[:,1]) x_train, x_test, y_train, y_test = train_test_split(train_x,train_y,test_size=0.1,random_state=5) print("Training data created") print(np.array(x_train).shape,np.array(y_train).shape,np.array(x_test).shape,np.array(y_test).shape) #Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons #Equal to number of intents to predict output intent with softmax model = Sequential() model.add(Dense(80, input_shape=(len(train_x[0]),), activation='relu')) model.add(Dropout(0.5)) model.add(Dense(40, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(len(train_y[0]), activation='softmax')) #Compile model with Stochastic gradient descent with Nesterov the best possible results sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) #Fitting and saving the model hist = model.fit(x_train, y_train, epochs=200, batch_size=5, verbose=1,validation_data = (x_test, y_test)) model.save('model.h5', hist) print("Model created") test_results = model.evaluate(x_test,y_test, verbose=False) print(f'Test results - Loss: {test_results[0]} - Accuracy: {100*test_results[1]}%') plt.subplot(1,2,1) plt.plot(hist.history['loss'],label="Loss",c='g') plt.plot(hist.history['val_loss'],label="Validation Loss",c='c') plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend(loc='upper left') plt.subplot(1,2,2) plt.plot(hist.history['accuracy'],label="Accuracy",c='r') plt.plot(hist.history['val_accuracy'],label="Validation Accuracy",c='b') plt.xlabel("Epochs") plt.ylabel("Accuracy") plt.legend(loc='upper left') plt.show()
"""Module with functions for management of installed APK lists.""" import glob import re import subprocess import apkutils # needed for AndroidManifest.xml dump import utils # needed for sudo # Creates a APK/path dictionary to avoid the sluggish "pm path" def create_pkgdict(): """Creates a dict for fast path lookup from /data/system/packages.xml; returns dict.""" (out, err) = utils.sudo("cat /data/system/packages.xml") if err: return False xml_dump = [i for i in out.decode("utf-8").split("\n") if "<package name=" in i] pkgdict = {} for i in xml_dump: pkgname = re.findall("<package name=\"(.*?)\"", i)[0] pkgpath = re.findall("codePath=\"(.*?)\"", i)[0] # Normalizes each entry if not pkgpath.endswith(".apk"): try: pkgpath = glob.glob(pkgpath + "/*.apk")[0] except: continue pkgdict[pkgname] = pkgpath return pkgdict def list_installed_pkgs(args): """Lists the members of a given category of packages; returns list.""" prefix = "pm list packages" if args.user: suffix = "-3" elif args.system: suffix = "-s" elif args.disabled: suffix = "-d" else: suffix = "" pkgs = [i[8:] for i in subprocess.Popen("{0} {1}".format(prefix, suffix), stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True).communicate()[0].decode("utf-8").split("\n") if i] return pkgs def list_installed_pkgs_nougat(args): """Uses Nougat's cmd command to query the package service (faster); returns list.""" prefix = "cmd package list packages" if args.user: suffix = "-3" elif args.system: suffix = "-s" elif args.disabled: suffix = "-d" else: suffix = "" pkgs = [i[8:] for i in utils.sudo("{0} {1}".format(prefix, suffix))[0].decode("utf-8").split("\n") if i] return pkgs def check_substratum(nougat): """Checks if the Substratum engine is installed; returns bool.""" if nougat: user_pkgs = [i[8:] for i in utils.sudo("cmd package list packages -3")[0].decode("utf-8").split("\n") if i] else: user_pkgs = [i[8:] for i in subprocess.Popen("pm list packages -3", stdout = subprocess.PIPE, shell = True).communicate()[0].decode("utf-8").split("\n") if i] substratum_installed = True if "projekt.substratum" in user_pkgs else False return substratum_installed def exclude_overlays(aapt, pkgdict, pkgs): """Excludes Substratum overlays from the packages to extract; returns nothing.""" for i in pkgs: pkgpath = pkgdict.get(i) out = apkutils.get_pkgxml(aapt, pkgpath)[0].decode("utf-8") if "Substratum_Parent" in out: pkgs.remove(i) def exclude_arcus_variants(pkgs): """Excludes Arcus theme variants from the packages to extract; returns nothing.""" for i in pkgs: if "pixkart.arcus.user" in i: pkgs.remove(i) def check_already_extracted(pkgpath, md5sums): """Checks if an APK has already been extracted; returns bool, str.""" pkgsum = utils.compute_md5sum(pkgpath) already_extracted = True if pkgsum in md5sums else False return already_extracted, pkgsum
from sklearn.externals import joblib question = raw_input(":> Ingresa la pregunta: ") clf = joblib.load('clf.pkl') vectorizer = joblib.load('vectorizer.pkl') selector = joblib.load('selector.pkl') question = vectorizer.transform([question]) question = selector.transform(question).toarray() print clf.predict(question)
from collections import defaultdict import numpy as np def solution1(input): m = defaultdict(lambda: defaultdict(int)) for i, ol, ot, w, h in input: for x in range(ol, ol+w): for y in range(ot, ot+h): m[x][y] += 1 c = 0 for x in m: for y in m: if m[x][y] > 1: c += 1 return c def solution2(input): m = np.zeros((1000, 1000), dtype=int) for _, ol, ot, w, h in input: m[ol:ol+w,ot:ot+h] += 1 return len(m[m > 1]) def parse_input(input): for i in input.split('\n'): id, _, offset, size = i.split() o_l, o_t = offset[:-1].split(',') w, h = size.split('x') id = id[1:] yield id, int(o_l), int(o_t), int(w), int(h) if __name__ == '__main__': #with open('input.txt') as fh: # print(solution1(list(parse_input(fh.read().strip())))) with open('input.txt') as fh: print(solution2(list(parse_input(fh.read().strip()))))
#B zub=int(input()) x2,y3=map(int,input().split()) if(zub<y3 and zub>x2): print("yes") else: print("no")
from arcgis_terrain import meters2lat_lon from arcgis_terrain import lat_lon2meters import csv import numpy as np import matplotlib.pyplot as plt # params = [37.67752, -79.33887, 'punchbowl'] # # params = [38.29288, -78.65848, 'brownmountain'] # # params = [38.44706, -78.46993, 'devilsditch'] # # params = [37.99092, -78.52798, 'biscuitrun'] # # params = [37.82520, -79.081910, 'priest'] # # params = [34.12751, -116.93247, 'sanbernardino'] # # with open("C:\\Users\\Larkin\\ags_grabber\\track_temp.csv") as f: # reader = csv.reader(f, delimiter=',') # data = [] # for row in reader: # if any(x.strip() for x in row): # data.append(row) # track = np.array(data).astype(np.float) # # ap_meters = lat_lon2meters(params[0], params[1]) extent = 20e3 scale_factor = 3/20 # factor to get 6.66667m mapping from 1m mapping (1/6.6667) # # xy = lat_lon2meters(track[:,1], track[:,0]) # # x_pts = (np.array(xy[0]) - (ap_meters[0] - (extent/2)))*scale_factor # reduces number of interpolants # y_pts = (np.array(xy[1]) - (ap_meters[1] - (extent/2)))*scale_factor # # np.savetxt(params[2] + '_track_meters.csv',np.array([x_pts, y_pts]),delimiter=",", fmt='%f') # plt.plot(x_pts, y_pts) # plt.show() points = [[37.67752, -79.33887, 'punchbowl'], [38.29288, -78.65848, 'brownmountain'], [38.44706, -78.46993, 'devilsditch'], [37.99092, -78.52798, 'biscuitrun'], [37.82520, -79.081910, 'priest'], [34.12751, -116.93247, 'sanbernardino']] for pt in points: pt_meters = lat_lon2meters(pt[0], pt[1]) print(pt[2]) print(meters2lat_lon(pt_meters[0] - extent/2, pt_meters[1] - extent/2)) print(meters2lat_lon(pt_meters[0] + extent/2, pt_meters[1] - extent/2)) print(meters2lat_lon(pt_meters[0] + extent/2, pt_meters[1] + extent/2)) print(meters2lat_lon(pt_meters[0] - extent/2, pt_meters[1] + extent/2)) print("-----------------")
""" Contains business logic tasks for this order of the task factory. Each task should be wrapped inside a task closure that accepts a **kargs parameter used for task initialization. """ def make_task_dict(): """ Returns a task dictionary containing all tasks in this module. """ task_dict = {} task_dict["split_list"] = split_list_closure return task_dict def get_task(task_name, init_args): """ Accesses the task dictionary, returning the task corresponding to a given key, wrapped in a closure containing the task and its arguments. """ tasks = make_task_dict() return tasks[task_name](init_args) def split_list_closure(init_args): """ A closure around the split_string function which is an endpoint in the task factory. """ list_to_split = init_args["list_key"] key_to_add = init_args["key_name"] async def split_list(list_map): """ Splits a string into a list and returns it. """ return_list = [] for list_item in list_map[list_to_split]: return_dict = {} return_dict[key_to_add] = list_item for dict_key in list_map: if dict_key != list_to_split: return_dict[dict_key] = list_map[dict_key] return_list.append(return_dict) return return_list return split_list
#!/usr/bin/python3 import time import re from datetime import datetime gpio='/gpio/pin26/edge' def setup_gpio(gpio): with open(gpio, "w") as f: f.write("rising") #1Hz – 0.98 LPM val=0 last_val=0 last_time='' total_litres=0 sleep=10 Interrupts='/proc/interrupts' # 41: 299 gpio-mxc 14 Edge gpiolib pattern = re.compile(r"^\s*41:\s*(\d+).*$"); setup_gpio(gpio) while True: now = datetime.now() with open(Interrupts) as interrupts: lines = interrupts.readlines() #print ("lines %d" % len(lines)) for line in lines: match = pattern.search(line) if match: val = int(match[1]) #print('irqs %d' % val); if last_val == 0: print("Initialise last_val date %s %d" % (now, val)); last_val = val last_time = now continue if val != last_val: edges = val - last_val diff_time = now - last_time hertz = (edges / diff_time.total_seconds()) lpm = hertz / 0.98 litres = lpm * diff_time.total_seconds() / 60 total_litres = total_litres + litres #print('val %d edges %d seconds %d hertz %f' % (val, edges, diff_time.total_seconds(), hertz)) print('total_litres %.1f liters %.1f lpm %.1f hertz %.1f edges %d' % (total_litres, litres, lpm, hertz, edges)) last_val = val last_time = now continue time.sleep(10); done
class sport(): activity = 'physical' games = 'competitive' def __init__(self, name, numberOfPlayers, ballShape): self.name = name self.numberOfPlayers = numberOfPlayers self.ballShape = ballShape def printAll(self): print('name: %s\nnumber of players: %d\nball shape: %s' % (self.name, self.numberOfPlayers, self.ballShape)) def __str__(self): return 'activity: %s\ngames: %s' % (self.activity, self.games) footy = sport('footy', 12, 'spherical') rugby = sport('rugby', 20, 'oblong') print('footy: ') footy.printAll() print('\nrugby: ') rugby.printAll() cricket = sport('cricket', 12, 'round') print('\ncricket: ') print(cricket) cricket.printAll()
from base.models import Group from rest_framework.permissions import BasePermission, IsAuthenticated class GroupAdminPermission(BasePermission): """ Checks that the request user is a group admin """ def has_permission(self, request, view): group = Group.objects.get(id=view.kwargs.get('group_id')) if group.checkUserPermission(request.user, 'admin') == False and request.user.is_staff == False: return False return True class GroupPermission(BasePermission): """ Checks that the request user is a group admin """ def has_permission(self, request, view): group = Group.objects.get(id=view.kwargs.get('group_id')) if group.checkUserPermission(request.user, 'admin') == False \ and group.checkUserPermission(request.user, 'edit') == False \ and request.user.is_staff == False: return False return True
import math import itertools from collections import defaultdict import pprint # part 1 stuff with open("input1.txt","r") as f: data = f.readlines() points = [] for y in range(len(data)): for x in range(len(data[0])-1): if data[y][x] == '#': points.append([x,y]) maxSighted = 0 keyPoint = [0,0,-1] for i in range(len(points)): point = points[i] visible = [] for j in range(len(points)): if i==j: continue newPoint = points[j] angle = math.atan2(point[1]-newPoint[1],point[0]-newPoint[0])+math.pi angle = math.degrees(angle) if angle not in visible: visible.append(angle) if len(visible)>maxSighted: maxSighted=len(visible) keyPoint=[point[0], point[1], i] print("Base at {}, with sight of {} asteroids".format(keyPoint, maxSighted)) # part 2 roids = defaultdict(list) # We have to reorganise the data to consider distances too def getDistToPoint(px, py, px2, py2): return math.sqrt((px-px2)**2 + (py-py2)**2) for j in range(len(points)): if keyPoint[2]==j: continue newPoint = points[j] angle = math.atan2(keyPoint[1]-newPoint[1],keyPoint[0]-newPoint[0])+(math.pi*3/2) angle = math.degrees(angle) if angle>= 360: angle-=360 roids[angle].append([newPoint, getDistToPoint(keyPoint[0], keyPoint[1], newPoint[0], newPoint[1])]) def generateKeysToIterateThrough(roids): keys = [] for key in roids.keys(): keys.append(key) keys.sort() return keys destroyCount = 0 while destroyCount<202: keys = generateKeysToIterateThrough(roids) for key in keys: asteroidSelection = roids[key] minIndex = 0 minDist = 99999 for asteroid in asteroidSelection: if minDist > asteroid[1]: minIndex = asteroidSelection.index(asteroid) minDist = asteroid[1] destroyCount+=1 if destroyCount == 200: print(roids[key][minIndex][0][0]*100+roids[key][minIndex][0][1]) del roids[key][minIndex]
x1,y11,z11=map(int,input().split()) d13=(x1*y11)//z11 print(d13)
import random #NOTES FROM DO NOW: #1. Work with integers #2. Random number generator #3. A way to give commands(controls) #FEATURES TO ADD: #1. How to keep the program running until i quit #2. Use numberOfRolls variable to show multiple die rolls #3. Add roll totaling features (sum/highest/lowest) #4. More human interface myRolls= [] def diceEngine(): #a while loop will run forever until it's deliberately exited while True: dieType = input("How many sides should the die have? ") numberOfRolls = input("How many times do you want to roll? ") print("*Roll die*") #use a loop to iterate through the number of rolls for x in range(0, int(numberOfRolls)): myRolls.append(random.randint(1, int(dieType))) print("Here are your rolls: ()".format(myRolls)) print("Your roll total was: ()".format(sum(myRolls))) print("Your highest roll was: ()".format(max(myRolls))) print("Your lowest roll was: ()".format(min(myRolls))) #add a way to exit the loop rollAgain = input("Would you like to roll again? y / n? ") if rollAgain == "n": break #add a way to clear the list for the next roll clearList = input("Do you want me to clear your list of rolls? y / n ") if clearList == "y": I like how the arrows show the direction of the trend and how you have the descriptions. Maybe try to make the description more concise myRolls.clear() if __name__== "__main__": diceEngine()
import asyncio import json import wave import websockets import app from playground.noise_reduction.denoiser import Denoiser class VoskAudioRecognizer(app.AudioRecognizer): def __init__(self, host): self.host = host def parse_recognizer_result(self, recognizer_result): return app.RecognizedWord( word=app.Word(recognizer_result['word']), begin_timestamp=recognizer_result['start'], end_timestamp=recognizer_result['end'], probability=recognizer_result['conf'], ) def recognize_wav(self, audio): recognizer_results = asyncio.get_event_loop().run_until_complete( self.send_audio_to_recognizer(audio.name) ) recognized_words = list(map(self.parse_recognizer_result, recognizer_results)) return app.RecognizedAudio(recognized_words) def recognize(self, audio): temp_wav_file = app.convert_from_mp3_to_wav(audio) Denoiser.process_wav_to_wav(temp_wav_file, temp_wav_file, noise_length=3) return self.recognize_wav(temp_wav_file)
import unittest from pyfiles.model import characterClass EXPECTED_VALUES = ['Fighter', 'Spellcaster', 'Rogue'] class TestCharacterClass(unittest.TestCase): def test_get_values(self): values = characterClass.CharacterClass.get_values() self.assertEqual(values, EXPECTED_VALUES) def test_get_json_options(self): json_options = characterClass.CharacterClass.get_json_options() self.assertEqual(json_options, {'options':EXPECTED_VALUES})
from django.contrib import admin from .models import Aparcamiento, AparcaSeleccionado, Comentario, Css admin.site.register(Aparcamiento) admin.site.register(AparcaSeleccionado) admin.site.register(Comentario) admin.site.register(Css)
import numpy as np import pandas as pd from pathlib import Path from sklearn.model_selection import train_test_split import lightgbm as lgb # Global constants MAX_LAG = 57 def downcast(df, verbose=False): """ Downcast the data to reduce memory usage. Adapted from: https://www.kaggle.com/ragnar123/very-fst-model Args: df = [pd.DataFrame] pandas dataframe verbose = [boolean] if True, print memory reduction Returns [pd.DataFrame]: Downcasted data. """ numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print(f'Mem. usage decreased to {end_mem:5.2f} Mb ({(start_mem - end_mem) / start_mem:.1%} reduction)') return df def obj_as_cat_int(df, ignore=[]): """ Convert object columns to categorical integers. Args: df = [pd.DataFrame] pandas dataframe ignore = [list] list of columns to ignore in conversion Returns [pd.DataFrame]: Data where object columns are encoded as categorical integers. """ obj_cols = df.select_dtypes(include='object').columns for col in obj_cols: if col not in ignore: df[col] = df[col].astype('category') df[col] = df[col].cat.codes.astype("int16") df[col] -= df[col].min() return df def optimize_df(calendar, prices, sales, days=None, val_days=0, verbose=False): """ Optimize dataframe. Args: calendar = [pd.DataFrame] dates of product sales prices = [pd.DataFrame] price of the products sold per store and date sales = [pd.DataFrame] historical daily unit sales data per product and store days = [int] number of days to keep val_days = [int] number of validation days verbose = [boolean] if True, print memory reduction Returns [[pd.DataFrame] * 3] Optimized dataframes. """ assert days > 56, f"Minimum days is {MAX_LAG}." assert val_days >= 0, "Invalid number of validation days." calendar['date'] = pd.to_datetime(calendar['date'], format='%Y-%m-%d') if val_days: sales = sales.drop(sales.columns[-val_days:], axis=1) if days: sales = sales.drop(sales.columns[6:-days], axis=1) calendar = downcast( obj_as_cat_int(calendar, ignore=['d']), verbose ) prices = downcast( obj_as_cat_int(prices), verbose ) sales = downcast( obj_as_cat_int(sales, ignore=['id']), verbose ) return calendar, prices, sales def melt_and_merge(calendar, prices, sales, submission=False): """ Convert sales from wide to long format, and merge sales with calendar and prices to create one dataframe. Args: calendar = [pd.DataFrame] dates of product sales prices = [pd.DataFrame] price of the products sold per store and date sales = [pd.DataFrame] historical daily unit sales data per product and store submission = [boolean] if True, add day columns required for submission Returns [pd.DataFrame]: Merged long format dataframe. """ id_cols = ['id', 'item_id', 'dept_id','store_id', 'cat_id', 'state_id'] if submission: last_day = int(sales.columns[-1].replace('d_', '')) sales.drop(sales.columns[6:-MAX_LAG], axis=1, inplace=True) for day in range(last_day + 1, last_day + 28 + 1): sales[f'd_{day}'] = np.nan df = pd.melt(sales, id_vars=id_cols, var_name='d', value_name='sales') df = df.merge(calendar, on='d', copy = False) df = df.merge(prices, on=['store_id', 'item_id', 'wm_yr_wk'], copy=False) return df def features(df, submission=False): """ Create lag and rolling mean features. Adapted from: https://www.kaggle.com/kneroma/m5-first-public-notebook-under-0-50 Args: df = [pd.DataFrame] long format dataframe submission = [boolean] if True, do not drop NaN rows Returns [pd.DataFrame]: Dataframe with created features. """ lags = [7, 28] lag_cols = [f"lag_{lag}" for lag in lags] for lag, lag_col in zip(lags, lag_cols): df[lag_col] = df[["id", "sales"]].groupby("id")["sales"].shift(lag) windows = [7, 28] for window in windows : for lag, lag_col in zip(lags, lag_cols): lag_by_id = df[["id", lag_col]].groupby("id")[lag_col] df[f"rmean_{lag}_{window}"] = lag_by_id.transform(lambda x: x.rolling(window).mean()) date_features = { "wday": "weekday", "week": "weekofyear", "month": "month", "quarter": "quarter", "year": "year", "mday": "day" } for name, attribute in date_features.items(): if name in df.columns: df[name] = df[name].astype("int16") else: df[name] = getattr(df["date"].dt, attribute).astype("int16") if not submission: df.dropna(inplace=True) return df def training_data(df): """ Split data into features and labels for training. Args: df = [pd.DataFrame] pandas dataframe Returns [[pd.DataFrame] * 2]: X = training features y = training labels """ drop_cols = ["id", "date", "sales", "d", "wm_yr_wk", "weekday"] keep_cols = df.columns[~df.columns.isin(drop_cols)] X = df[keep_cols] y = df["sales"] return X, y def lgb_dataset(calendar, prices, sales): """ Make LightGBM training and validation datasets from preprocessed dataframes. NOTE: preprocessed means that categorical features have been converted to integers. Args: calendar = [pd.DataFrame] dates of product sales prices = [pd.DataFrame] price of the products sold per store and date sales = [pd.DataFrame] historical daily unit sales data per product and store Returns [[lgb.Dataset] * 2]: train_set = LightGBM training dataset val_set = LightGBM validation dataset """ df = melt_and_merge(calendar, prices, sales) df = features(df) X, y = training_data(df) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=0) cat_features = ['item_id', 'dept_id', 'store_id', 'cat_id', 'state_id'] + \ ['event_name_1', 'event_name_2', 'event_type_1', 'event_type_2'] train_set = lgb.Dataset(X_train, label=y_train, categorical_feature=cat_features) val_set = lgb.Dataset(X_test, label=y_test, categorical_feature=cat_features) return train_set, val_set def data_frames(path): """ Load the data from storage into pd.DataFrame objects. Args: path = [str] path to folder with competition data Returns [[pd.DataFrame] * 3]: calendar = [pd.DataFrame] dates of product sales prices = [pd.DataFrame] price of the products sold per store and date sales = [pd.DataFrame] historical daily unit sales data per product and store """ path = Path(path) calendar = pd.read_csv(path / 'calendar.csv') prices = pd.read_csv(path / 'sell_prices.csv') sales = pd.read_csv(path / 'sales_train_validation.csv') return calendar, prices, sales if __name__ == "__main__": pass
#!/usr/bin/env python #-*-coding:utf-8-*- from flask import Flask, render_template from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy #引用数据库,需要安装MySQL-python import os from flask_script import Manager from flask import session, redirect,url_for # 引入重定向和用户会话 from flask import flash #Flash消息 # 引入表单模块 from flask_wtf import Form from wtforms import StringField, SubmitField # 引入文本和提交按钮 from wtforms.validators import Required # 引入校验 # from wtforms import PasswordField # 引入密码输入框 from flask_moment import Moment # 本地化时间 from datetime import datetime # 引入时间模块 app = Flask(__name__) manager = Manager(app) moment = Moment(app) bootstrap = Bootstrap(app) db = SQLAlchemy(app) # 自定义对象 class Role(db.Model): __tablename__ = 'roles' id = db.Column(db.Integer, primary_key = True) name = db.Column(db.String(64), unique = True) users = db.relationship('User', backref = 'role',lazy = 'dynamic') # backref 参数向 User 模型中添加一个 role 属性,从而定义反向关系 def __repr__(self): return '<Role %r >' % self.name class User(db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key = True) username = db.Column(db.String(64), unique = True, index = True ) role_id = db.Column(db.Integer, db.ForeignKey('roles.id')) # 设置外键 def __repr__(self): return '<User %r >' % self.username
import zipfile import wget import glob import os import torch import argparse import pandas as pd from tqdm import tqdm from utils import overwrite_base, Logger from configs.config import GlobalConfig import mmcv from mmcv import Config from mmdet.apis import set_random_seed from mmdet.datasets import build_dataset, build_dataloader from mmdet.models import build_detector from mmdet.apis import train_detector from mmdet.apis import init_detector, inference_detector, show_result_pyplot def detector_train(cfg): model = build_detector(cfg.model) datasets = [build_dataset(cfg.data.train)] train_detector(model, datasets, cfg, distributed=False, validate=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='vinbigdata') parser.add_argument('--image-size', type=int, default=1024, help='image size for training') parser.add_argument('--num-epochs', type=int, required=True, help='number of training epoch') parser.add_argument('--fold-num', type=int, required=True, help='fold number for training') args = parser.parse_args() os.chdir('mmdetection') #Overwrite config = GlobalConfig config.num_epochs = args.num_epochs config.image_size = args.image_size config.fold_num = args.fold_num if not os.path.exists(config.log_path): os.makedirs(config.log_path) #Init logger logger = Logger(config) logger.write('Using GPU {} \n'.format(torch.cuda.get_device_name(0))) #Read base config file logger.write("Reading config from: {}".format(config.config_file)) base_cfg = Config.fromfile(config.config_file) #Download pretrained model config.model_path = os.path.join(config.pretrain_store_path, config.pretrain_url.split('/')[-1]) if not os.path.exists(config.pretrain_store_path): os.makedirs(config.pretrain_store_path) logger.write("Downloading pretrained weights: {}\n".format(config.pretrain_url)) wget.download(config.pretrain_url, config.model_path) else: logger.write("Pretrained model already in cache \n") # Edit configuration settings final_config = overwrite_base(base_cfg, config, is_train=True) with open(os.path.join(config.config_path, config.model_name+'.py'), 'w') as f: f.write(final_config.pretty_text) #Train logger.write(f'Begin training Fold {config.fold_num}... \n') detector_train(final_config) logger.write(f'Finished training Fold {config.fold_num}! \n') logger.close()
''' Main.py Starting File ''' import os import numpy as np import tensorflow as tf from model import Model from plot import Plot from game import Game #import matplotlib.pyplot as plt class Main: def __init__(self): self.feature_length = 6 self.label_length = 4 self.cost_plot = Plot([], 'Step', 'Cost') self.accuracy_plot = Plot([], 'Step', 'Accuracy') self.checkpoint = 'data/checkpoints/turn_based_ai.ckpt' self.X = tf.placeholder(tf.float32, [None, self.feature_length]) self.Y = tf.placeholder(tf.float32, [None, self.label_length]) self.model = Model(self.X, self.Y) self.global_step = 0 self.training_data_x = np.empty((0, self.feature_length)) self.training_data_y = np.empty((0, self.label_length)) self.test_training_data_x = np.empty((0, self.feature_length)) self.test_training_data_y = np.empty((0, self.label_length)) #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # def add_training_data(self, features, labels): # self.training_data_x = np.concatenate((self.training_data_x, features), axis=0) # self.training_data_y = np.concatenate((self.training_data_y, labels), axis=0) def add_training_data(self, features, labels, add_to_test_data): self.training_data_x = np.concatenate((self.training_data_x, features), axis=0) self.training_data_y = np.concatenate((self.training_data_y, labels), axis=0) if add_to_test_data: self.test_training_data_x = np.concatenate((self.test_training_data_x, features), axis=0) self.test_training_data_y = np.concatenate((self.test_training_data_y, labels), axis=0) def get_data_for_prediction(self, user, opponent): #data = np.array([1, 0.4, 1, 1, 0.4, 1])#Default starting data (not great) #if user != None: data = np.array([user.attack / user.max_attack, user.defence / user.max_defence, user.health / user.max_health, opponent.attack / opponent.max_attack, opponent.defence / opponent.max_defence, opponent.health / opponent.max_health ]) return np.reshape(data, (-1, self.feature_length)) def start(self, restore): train = True #players_turn = True player_goes_first = True saver = tf.train.Saver() with tf.Session() as sess: if restore: saver.restore(sess, self.checkpoint) else: sess.run(tf.global_variables_initializer()) while train: game = Game(player_goes_first, self.feature_length, self.label_length) # if player_goes_first: # players_turn = True # else: # players_turn = False player_goes_first = not player_goes_first # game_over = False # user = None # opponent = None while not game.game_over: predicted_action = 0 if game.players_turn is False: #Predict opponent's action data = self.get_data_for_prediction(game.user, game.opponent) #print('opponents\'s view: {}'.format(data)) predicted_actions = sess.run(self.model.prediction, { self.X: data })[0] #predicted_actions = sess.run(tf.nn.sigmoid(predicted_actions)) predicted_action = np.argmax(predicted_actions) + 1 #Play Game did_player_win = game.run(predicted_action) #game_over, players_turn, user, opponent, training_data = game.run(predicted_action) # if game.game_over and training_data == None: # train = False # elif game_over: # #record winning data # self.add_training_data(training_data.feature, training_data.label) if game.game_over and did_player_win == None: train = False elif game.game_over: #record winning data if did_player_win: self.add_training_data(game.player_training_data.feature, game.player_training_data.label, False) else: self.add_training_data(game.opponent_training_data.feature, game.opponent_training_data.label, False) #Train if train: for _ in range(50): training_data_size = np.size(self.training_data_x, 0) random_range = np.arange(training_data_size) np.random.shuffle(random_range) for i in range(training_data_size): random_index = random_range[i] _, loss = sess.run(self.model.optimize, { self.X: np.reshape(self.training_data_x[random_index], (-1, self.feature_length)), self.Y: np.reshape(self.training_data_y[random_index],(-1, 4))}) #_, loss = sess.run(model.optimize, { X: self.training_data_x, Y: self.training_data_y }) self.global_step += 1 current_accuracy = sess.run(self.model.error, { self.X: self.training_data_x, self.Y: self.training_data_y }) self.cost_plot.data.append(loss) self.accuracy_plot.data.append(current_accuracy) print('Saving...') saver.save(sess, self.checkpoint) print('Epoch {} - Loss {} - Accuracy {}'.format(self.global_step, loss, current_accuracy)) #weights = sess.run(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='layer_1/weights:0'))[0] #Move out into class # plt.close('all') # plt.figure() # plt.imshow(weights, cmap='Greys_r', interpolation='none') # plt.xlabel('Nodes') # plt.ylabel('Inputs') # plt.show() # plt.close() self.cost_plot.save_sub_plot(self.accuracy_plot, "data/charts/{} and {}.png".format(self.cost_plot.y_label, self.accuracy_plot.y_label)) #using tensorboard #E: #tensorboard --logdir=Logs #http://localhost:6006/ Main().start(False)
# 自然数Nをコマンドライン引数などの手段で受け取り,入力のうち先頭のN行だけを表示せよ. # 確認にはheadコマンドを用いよ. # head -n 5 hightemp.txt # !usr/bin/env python # -*- coding;utf-8 -*- import sys N = int(sys.argv[1]) assert len(sys.argv) is 2, "usage: python nock_14.py [N]" with open('hightemp.txt') as f: print(''.join(f.readlines()[:N]),end="") # count=0 # for line in f.readlines() : # if count is N: # break # else: # print(line,end="") # count+=1
from datetime import datetime from tkinter import * win = Tk() win.geometry("600x100") win.title("What time??") win.option_add("*Font","맑은고딕 8") def what_time(): dnow = datetime.now() btn.config(text=dnow) btn = Button(win) btn.config(text="현재 시각") btn.config(width=30) btn.config(command=what_time) btn.pack() win = mainloop()
# Generated by Django 3.0.1 on 2019-12-24 17:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('paroll', '0005_auto_20191225_0104'), ] operations = [ migrations.AddField( model_name='account', name='address', field=models.CharField(default=0, max_length=200000), preserve_default=False, ), migrations.AlterField( model_name='account', name='bank_account', field=models.CharField(max_length=200), ), migrations.AlterField( model_name='paycheck', name='deduction', field=models.CharField(max_length=200000), ), migrations.AlterField( model_name='paycheck', name='salary', field=models.CharField(max_length=2000000), ), ]
#!/usr/bin/env python import array import math import sys import time numb = array.array('l',[0]*1000000) numbsize = 0 echostep=10 #tcount = 0 targ = {} chash = {} def DeDupes(): global numbsize dupes=0 uniqid=0 for i in range(1,numbsize): if numb[i] == numb[uniqid]: dupes+=1 else: uniqid+=1 numb[uniqid] = numb[i] numbsize = uniqid + 1 return dupes def rearrange2Dir(lo,hi): i = lo+1 j = hi while (1): while (numb[i]<numb[lo])and(i<hi): i+=1 while (numb[j]>numb[lo])and(j>lo): j-=1 if i>=j: break numb[i],numb[j] = numb[j],numb[i] i+=1 j-=1 numb[lo],numb[j] = numb[j],numb[lo] return j def QuickSort2Dir(lo,hi): pivot = rearrange2Dir(lo,hi) if (pivot-lo>1): # left part of numb is bigger than 1 QuickSort2Dir(lo,pivot-1) if (hi-pivot>1): QuickSort2Dir(pivot+1,hi) def Load(FileName): global numbsize print "loading from",FileName,"...", inFile = open (FileName, 'r', 0) numbsize=0 for line in inFile: numb[numbsize]=long(line) numbsize+=1 print "loaded",numbsize,'numbers' def Rank(lo,hi,v): # return max id | numb[id] <= v if lo >= hi: return lo med = lo+int(math.ceil((hi-lo)/2.)) if v > numb[med]: return Rank(med,hi,v) elif v < numb[med]: return Rank(lo,med-1,v) else: # v == nubm[med] return med def CalcTargNaive(): # global tcount print 'Naive method' print 'sorting...', QuickSort2Dir( 0, numbsize-1 ) print 'done ', print DeDupes(), 'dupes deleted' split=time.time() for i in range(numbsize-1): if (i)%int(math.ceil(numbsize/1./echostep)) == 0: print str(i*100/numbsize)+'%' for j in range(i+1,numbsize): sum = numb[i]+numb[j] if abs(sum) <= 10000: targ[sum]=1 # tcount+=1 print 'len(targ.keys()) =',len(targ.keys()), ' time elapsed:',time.time()-split,'sec' def CalcTargBSearch(): # global tcount print 'Binary Search method' print 'sorting...', QuickSort2Dir( 0, numbsize-1 ) print 'done ', print DeDupes(), 'dupes deleted' split=time.time() for i in range(numbsize-1): j = Rank(i+1,numbsize-1,-10000-numb[i]) if numb[j] < -10000-numb[i]: j+=1 k = Rank(j-1,numbsize-1,10000-numb[i]) for l in range(j,k+1): sum = numb[i] + numb[l] if abs(sum) <= 10000: targ[sum]=1 # tcount += 1 else: exit('ERROR abs(sum) of ['+str(i)+'] and ['+str(l)+'] is bigger than 10000') print 'len(targ.keys()) =',len(targ.keys()), ' time elapsed:',time.time()-split,'sec' def fill_chash(): for i in range(numbsize): key = numb[i]/10000 if key in chash: if numb[i] not in chash[key]: chash[key].append(numb[i]) else: chash[key]=[numb[i]] def count_dupes_in_chash(): c=0 for key in chash: for i in range(len(chash[key])-1): for j in range(i+1,len(chash[key])): if chash[key][i] == chash[key][j]: print chash[key] c+=1 return c def CalcTarg_chash(): print 'chash method' fill_chash() split=time.time() for xkey in chash: for x in chash[xkey]: ykeylist = [-xkey-2, -xkey-1, -xkey, -xkey+1] for ykey in ykeylist: if ykey in chash: for y in chash[ykey]: sum = x+y if sum<=10000 and x<>y: targ[sum]=1 print 'len(targ.keys()) =',len(targ.keys()), ' time elapsed:',time.time()-split,'sec' if len(sys.argv)==2: FileName = sys.argv[1] else: FileName = 'algo1_programming_prob_2sum.txt' Load( FileName ) CalcTarg_chash() CalcTargBSearch() #CalcTargNaive() #print 'tcount =',tcount,
import sys import requests from requests.api import head from bs4 import BeautifulSoup import pandas as pd import xlsxwriter from datetime import datetime companies = [] base_url = "https://www.finanzen.net/bilanz_guv/" user_agent = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36"} writer = pd.ExcelWriter("Bilanzen_" + str(datetime.date(datetime.now())) + ".xlsx",engine='xlsxwriter', options={'strings_to_numbers': True}) workbook=writer.book def get_args(): if (len(sys.argv)) == 1: print("Usage: guvscraper.py company1 company2 company1337") sys.exit() else: for arg in range(1, len(sys.argv)): companies.append(str(sys.argv[arg])) def get_guv(companies): for company in companies: URL = base_url + company + "" print("\n" + URL) page = requests.get(URL, headers=user_agent) soup = BeautifulSoup(page.content, "html.parser") name = "" try: name = soup.find("h2", {"class":"font-resize"} ).get_text() boxTableList = soup.findAll('div', attrs={"class" : "box table-quotes"}) headlineList = soup.findAll('h2', attrs={"class" : "box-headline"}) except AttributeError as err: print("Share could not be retrieved! Wrong name?") continue #Export to HTML #with open(company + ".html", "w", encoding='utf-8') as file: # file.write(str(boxTableList)) print(name+"\n") #print(boxTableList) dflist = pd.read_html(str(boxTableList), decimal=',', thousands='.') print("Writing to .xlsx.....") write_to_xlsx(dflist, company, headlineList, name) writer.save() def write_to_xlsx(dataframelist, company, headlines, name): headlinerow = 3 row = 3 spacing = 3 #Setup excel file and formatting worksheet_name = company + " Bilanzen" print(worksheet_name) worksheet=workbook.add_worksheet(worksheet_name) writer.sheets[worksheet_name] = worksheet bold = workbook.add_format({'bold': True}) #write company headline worksheet.write(1, 0, name, bold) for x in range(len(dataframelist)): #write GUV data dataframelist[x] = dataframelist[x].drop(dataframelist[x].columns[0], 1) dataframelist[x].to_excel(writer,sheet_name=worksheet_name,startrow=row , startcol=0, index = False ) row += (len(dataframelist[x]) + spacing) #write headlines worksheet.write(headlinerow, 0, str(headlines[x].get_text()), bold) headlinerow += (len(dataframelist[x]) + spacing) #Set A column size to 60px worksheet.set_column(0, 0, 60) get_args() get_guv(companies) print("\nDone!")
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Base Class for Protocols from .protocol import Protocol # Utility Classes for Protocols from .header import Header from .frame import Frame from .link import * from .internet import * from .transport import * from .application import * # Ptotocol Chain from .utilities import ProtoChain # Info Classes from .utilities import Info from .header import VersionInfo
# coding=utf-8 """ preInit.py Desc: Maintainer: wangfm CreateDate: 2016/12/7 """ import ConfigParser import argparse import os import sys try: from statusdocke import checkRunner from configTest import TestRunner from logger import logger except ImportError: sys.path.append(os.getenv('PY_DEV_HOME')) from webTest_pro.common.statusdocke import checkRunner from webTest_pro.configTest import TestRunner from webTest_pro.common.logger import logger def _getcfgpath(initconf): """ Function: _getcfgpath() Desc: Args:    -   Return: None   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ home_path = os.getenv("PY_DEV_HOME") if initconf == 'dev': cfg_path = home_path + '\webTest_pro\cfg\init_dev.conf' elif initconf == 'debug': cfg_path = home_path + '\webTest_pro\cfg\init_debug.conf' elif initconf == 'test': cfg_path = home_path + '\webTest_pro\cfg\init_test.conf' elif initconf == 'wf': cfg_path = home_path + '\webTest_pro\cfg\init_wf.conf' else: cfg_path = home_path + '\webTest_pro\cfg\init_default.conf' return cfg_path def setcfghost(platformhost, mediahost, initconf, active_code): """ Function: setcfghost() Desc: Args:    -   Return: None   Usage:   Maintainer: wangfm   CreateDate: 2016/12/6 """ cfg_path = _getcfgpath(initconf) cf = ConfigParser.ConfigParser() cf.read(cfg_path) original_platform_add = cf.get('basedata', 'addr') original_media_add = cf.get('streaming_media', 'serverIps') original_active_code = cf.get('basedata', 'active_code') logger.info("###################configure info###################") if platformhost is not None: cf.set('basedata', 'addr', platformhost) cf.set('db_conf', 'host', platformhost) cf.set('db_conf', 'hostadd', platformhost) logger.info("original platform add:{0} modfied to {1}".format(original_platform_add, platformhost)) else: logger.info("waring: platform host address not configured.") if mediahost is not None: cf.set('streaming_media', 'serverIps', mediahost) logger.info("original media add:{0} modfied to {1}".format(original_media_add, mediahost)) else: logger.warning("waring: media host address not configured.") if active_code is not None: cf.set('basedata', 'active_code', active_code) logger.info("original media add:{0} modfied to {1}".format(original_active_code, mediahost)) else: logger.warning("waring: active_code not configured.") cf.write(open(cfg_path, "w")) logger.info("Configuration success: {}".format(cfg_path.split('\\')[-1])) def parseargs(): """ Function: parse_args() Desc: CLI Args:    -   Return: args   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ description = 'example: python Runner.py -f dev x.x.x.x x.x.x.x -r case' parser = argparse.ArgumentParser(description=description) helph = 'The host IP address of the platform.' parser.add_argument('host', help=helph) helpm = 'The host IP address of the media service.' parser.add_argument('media', help=helpm, nargs='?') helpa = 'The active code of the platform.' parser.add_argument('-a', '--active', help=helpa) parser.add_argument('-r', '--runner', help='foo help', choices=['case', 'check']) parser.add_argument('-f', '--file', help='foo help', choices=['dev', 'test', 'default', 'debug', 'wf']) _args = parser.parse_args() return _args def preinit(): """ Function: preinit() Desc: 输入ip地址,修改配置文件,并返回平台ip Args:    -   Return: platfrom ip address   Usage:   Maintainer: wangfm   CreateDate: 2016/12/7 """ _args = parseargs() host = _args.host media = _args.media init_conf = _args.file runner = _args.runner active_code = _args.active if runner is None: # config conf file setcfghost(host, media, init_conf, active_code) else: if runner == 'check': # check docker status setcfghost(host, media, init_conf, active_code) checkRunner(host) else: # run testcase setcfghost(host, media, init_conf, active_code) if checkRunner(host) is True: logger.info("...") _runner = TestRunner(init_conf) _runner.run() else: logger.info("Service error") if __name__ == '__main__': preinit()
#The upper() String Method fruit = 'Apple' print(fruit.upper())
import numpy as np from bokeh.plotting import figure, show, output_file, vplot from bokeh.io import output_notebook N = 100 x = np.linspace(0, 4*np.pi, N) y = np.sin(x) #output_file("legend.html", title="legend.py example") TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select" p2 = figure(title="Another Legend Example", tools=TOOLS) p2.circle(x, y, legend="sin(x)") p2.line(x, y, legend="sin(x)") p2.line(x, 2*y, legend="2*sin(x)", line_dash=[4, 4], line_color="orange", line_width=2) p2.square(x, 3*y, legend="3*sin(x)", fill_color=None, line_color="green") p2.line(x, 3*y, legend="3*sin(x)", line_color="green") output_notebook() show(p2)# open a browser
from flask import request, redirect, url_for from flask_restful import Resource, marshal_with from ..fields import Fields from app.models.models import Sale, Product, SaleGroup, User, db from app.forms import CreateSaleForm from .sale_group import SaleGroupListAPI sale_fields = Fields().sale_fields() class SaleListAPI(Resource): @marshal_with(sale_fields) def get(self): sales = Sale.query.all() return sales @marshal_with(sale_fields) def post(self): return {} class SaleAPI(Resource): @marshal_with(sale_fields) def get(self, id): sale = Sale.query.get(id) return sale @marshal_with(sale_fields) def delete(self, id): sale = Sale.query.get(id) db.session.delete(sale) db.session.commit() sales = Sale.query.all() return sales @marshal_with(sale_fields) def put(self, id): return {} class SaleCheckoutAPI(Resource): # @marshal_with(sale_fields) def post(self): data = request.json amount = data.get("amount") paid = data.get("paid") sales = data.get("cart") sale_models = [] for product_id, sale in sales.items(): product = Product.query.filter_by(id=product_id).first() create_sale_form = CreateSaleForm(data={"quantity":sale.get("quantity")}, meta={'csrf': False}) if create_sale_form.validate_on_submit(): data = create_sale_form.data quantity = data.get("quantity") sale = Sale(quantity=quantity, buying_price=product.buying_price, selling_price=product.selling_price, product_id=product_id) sale_models.append(sale) product.quantity -= quantity current_user = User.query.filter_by(token=request.args.get("token")).first() sale_group = SaleGroup(amount=amount, paid=paid, user_id=current_user.id) sale_group.sales = sale_models db.session.add_all(sale_models) db.session.add(sale_group) db.session.commit() db.session.close() return SaleGroupListAPI.get(SaleGroupListAPI)
from django.conf.urls import url from . import views urlpatterns = [ url(r'^createGenesisNode/', views.createGenesisNode), url(r'^createChildNode/', views.createChildNode), url(r'^editNode/', views.ediNode), url(r'^findLongestChain/', views.findLongestChain), ] ''' API ENDPOINTS 1. localhost:8000/createGenesisNode 2. localhost:8000/createChildNode 3. localhost:8000/editNode 4. localhost:8000/findLongestChain '''
#2019.07.20-KimSeokMin #필요 라이브러리 : selenium, bs4(beautifulsoup) import time from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from bs4 import BeautifulSoup as BS from multiprocessing.pool import Pool, ThreadPool from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By #from selenium.common.exceptions import TimeoutException import threading import re import csv casenum = 1 def getCaseNum(html): global casenum bs = BS(html, "lxml") csnum = bs.find_all("a",{"class":"layer_pop_open"}) arr = [] for i in csnum: cs = i.get('id') cs = cs.replace("py_","") arr += [[casenum,int(cs)]] print(casenum, cs) casenum+=1 return arr def getCase(case): f = open("case.csv", mode = "a", encoding = 'utf-8', newline = '') wr = csv.writer(f) driver = get_driver() link = url2+str(case[1]) driver.get(link) WebDriverWait(driver,5).until(EC.presence_of_element_located((By.CLASS_NAME, 'page'))) time.sleep(2.5) html = driver.page_source bs = BS(html, 'lxml') prescripts = bs.find("div",{"class":"page"}) if prescripts == None: return else: scripts = prescripts.find_all("p") result = '' for script in scripts: strong_elements = script.find_all("strong") for strong in strong_elements: strong.extract() for script in scripts: result += script.get_text() wr.writerow([case[0], case[1], result]) print(case[0]) f.close() threadLocal = threading.local() def get_driver(): driver = getattr(threadLocal, 'driver', None) if driver is None: options = webdriver.ChromeOptions() prefs = {'profile.default_content_setting_values': {'cookies': 2, 'images': 2, 'javascript': 2, 'plugins': 2, 'popups': 2, 'geolocation': 2, 'notifications': 2, 'auto_select_certificate': 2, 'fullscreen': 2, 'mouselock': 2, 'mixed_script': 2, 'media_stream': 2, 'media_stream_mic': 2, 'media_stream_camera': 2, 'protocol_handlers': 2, 'ppapi_broker': 2, 'automatic_downloads': 2, 'midi_sysex': 2, 'push_messaging': 2, 'ssl_cert_decisions': 2, 'metro_switch_to_desktop': 2, 'protected_media_identifier': 2, 'app_banner': 2, 'site_engagement': 2, 'durable_storage': 2}} options.add_argument('headless') options.add_experimental_option('prefs', prefs) options.add_argument("start-maximized") options.add_argument("disable-infobars") options.add_argument("--disable-extensions") options.add_argument('window-size=1920x1080') options.add_argument("disable-gpu") options.add_argument("user-agent=Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36") driver = webdriver.Chrome(path, chrome_options=options) setattr(threadLocal, 'driver', driver) return driver path = "D:\chromedriver\chromedriver" url = "https://glaw.scourt.go.kr/wsjo/panre/sjo050.do" url2 = "https://glaw.scourt.go.kr/wsjo/panre/sjo100.do?contId=" checknum = 1 def CaseNum(): global checknum #1.대법원 사이트 접속 case = list() driver = get_driver() driver.get(url) time.sleep(2) search_box = driver.find_element_by_name("srchw") search_box.send_keys("손해배상") driver.find_element_by_xpath('//*[@id="search"]/div[2]/fieldset/a[1]').click() driver.find_element_by_xpath('//*[@id="search"]/div[2]/fieldset/div/p/a').click() #2. 판례 번호 크롤링 for i in range(10): if i==0: html = driver.page_source case += getCaseNum(html) time.sleep(0.3) driver.find_element_by_xpath('//*[@id="tabwrap"]/div/div/div[1]/div[3]/div/fieldset/p/a[1]').click() checknum +=1 elif(i>=1 and i<=9): html = driver.page_source case += getCaseNum(html) time.sleep(0.3) driver.find_element_by_xpath('//*[@id="tabwrap"]/div/div/div[1]/div[3]/div/fieldset/p/a[2]').click() checknum +=1 elif(i>=10 and i<622): html = driver.page_source case += getCaseNum(html) time.sleep(0.5) button = WebDriverWait(driver,5).until(EC.presence_of_element_located((By.XPATH,'//*[@id="tabwrap"]/div/div/div[1]/div[3]/div/fieldset/p/a[3]'))) button.click() checknum += 1 if i==622: html = driver.page_source case += getCaseNum(html) time.sleep(0.3) driver.find_element_by_xpath('//*[@id="tabwrap"]/div/div/div[1]/div[3]/div/fieldset/p/a[3]').click() html = driver.page_source case += getCaseNum(html) time.sleep(0.3) f = open("casenum.csv", mode="w", encoding = 'utf-8', newline = '') wr = csv.writer(f) for cs in case: wr.writerow([cs[0], cs[1]]) f.close() #1.먼저 casenum.csv 생성 CaseNum()#이건 처음 한번만 하고 지우기 print(checknum) f = open('casenum.csv', mode='r', encoding='utf-8') rd = csv.reader(f) arr = list(rd)#casenum 리스트 f.close() case = arr[:1000] #arr[0] 부터 arr[999]까지 자르기 알아서 원하는 개수만큼 잘라써라 #2. case.csv 생성 *중요 : 처음 실행시에 mode = 'w'이고, 다음부턴 mode = 'a' f2 = open("case.csv", mode = "w", encoding = 'utf-8', newline = '') wr2 = csv.writer(f2) wr2.writerow(['caseindex','casenum', 'script']) f2.close() ThreadPool(6).map(getCase, case) driver.quit()
# Criando/escrevendo arquivos no python file = open('aula57/abcd.txt', 'w+') file.write('Linha 1\n') file.write('\t Linha 2\n') file.write('\t\t Linha 3\n') file.seek(0, 0) print('Lendo... ') print(file.read()) # print(f'----------------------') file.seek(0, 0) print(file.readline(), end='') print(file.readline(), end='') # print(f'----------------------') file.seek(0, 0) print(file.readlines()) # print(f'----------------------') file.seek(0, 0) for linha in file.readlines(): print(linha, end='Hahahahaha') # file.close()
def main(): iList = [None] with open('test.txt') as f: firstLine = f.readline().split(' ') kSize, n = int(firstLine[0]), int(firstLine[1]) for line in f: tempList = line.split(' ') iList.append((int(tempList[0]), int(tempList[1]))) print(knapsack(n, kSize, iList)) def knapsack(n, kSize, iList): """ knapsack(n, kSize, iList): Function to find max value of knapsack, with space O(m), where m = max weight allowed Use for huge inputs, where reconstructing final set doesn't matter """ solutions = [[None for i in range(kSize + 1)] for i in range(2)] for x in range(kSize + 1): solutions[0][x] = 0 for i in range(1, n + 1): value, weight = iList[i] for x in range(kSize + 1): if weight > x: solutions[1][x] = solutions[0][x] else: solutions[1][x] = max(solutions[0][x], solutions[0][x - weight] + value) solutions[0] = solutions[1].copy() return solutions[1][kSize] main()
#!/usr/bin/env python from comet_ml import Experiment import argparse import os import sys from datetime import datetime import warnings warnings.simplefilter("ignore") import keras import tensorflow as tf from keras_retinanet import models from keras_retinanet.utils.keras_version import check_keras_version #Custom Generators and callbacks #Path hack sys.path.insert(0, os.path.abspath('..')) from DeepForest.onthefly_generator import OnTheFlyGenerator from DeepForest.evaluation import neonRecall from DeepForest.evalmAP import evaluate from DeepForest import preprocess from DeepForest.utils.generators import create_NEON_generator def get_session(): """ Construct a modified tf session. """ config = tf.ConfigProto() config.gpu_options.allow_growth = True return tf.Session(config=config) def parse_args(args): """ Parse the arguments. """ parser = argparse.ArgumentParser(description='Evaluation script for a RetinaNet network.') parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int) parser.add_argument('--model', help='Path to RetinaNet model.') parser.add_argument('--convert-model', help='Convert the model to an inference model (ie. the input is a training model).', action='store_true') parser.add_argument('--backbone', help='The backbone of the model.', default='resnet50') parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).') parser.add_argument('--score-threshold', help='Threshold on score to filter detections with (defaults to 0.05).', default=0.05, type=float) parser.add_argument('--iou-threshold', help='IoU Threshold to count for a positive detection (defaults to 0.5).', default=0.5, type=float) parser.add_argument('--max-detections', help='Max Detections per image (defaults to 100).', default=200, type=int) parser.add_argument('--suppression-threshold', help='Permitted overlap among predictions', default=0.2, type=float) parser.add_argument('--save-path', help='Path for saving images with detections (doesn\'t work for COCO).') parser.add_argument('--image-min-side', help='Rescale the image so the smallest side is min_side.', type=int, default=400) parser.add_argument('--image-max-side', help='Rescale the image if the largest side is larger than max_side.', type=int, default=1333) return parser.parse_args(args) def main(DeepForest_config, args=None, experiment=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # make sure keras is the minimum required version check_keras_version() # optionally choose specific GPU if args.gpu: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu keras.backend.tensorflow_backend.set_session(get_session()) #Add seperate dir #save time for logging dirname=datetime.now().strftime("%Y%m%d_%H%M%S") # make save path if it doesn't exist if args.save_path is not None and not os.path.exists(args.save_path + dirname): os.makedirs(args.save_path + dirname) #Evaluation metrics site=DeepForest_config["evaluation_site"] #create the NEON mAP generator NEON_generator = create_NEON_generator(args.batch_size, DeepForest_config) # load the model print('Loading model, this may take a second...') model = models.load_model(args.model, backbone_name=args.backbone, convert=args.convert_model, nms_threshold=DeepForest_config["nms_threshold"]) #print(model.summary()) #NEON plot mAP average_precisions = evaluate( NEON_generator, model, iou_threshold=args.iou_threshold, score_threshold=args.score_threshold, max_detections=args.max_detections, save_path=args.save_path + dirname, experiment=experiment ) return average_precisions if __name__ == '__main__': import sys, os sys.path.insert(0, os.path.abspath('..')) #Model list trained_models = {"SJER":"/orange/ewhite/b.weinstein/retinanet/20190715_133239/resnet50_30.h5", "TEAK":"/orange/ewhite/b.weinstein/retinanet/20190713_230957/resnet50_40.h5", "NIWO":"/orange/ewhite/b.weinstein/retinanet/20190712_055958/resnet50_40.h5", "MLBS":"/orange/ewhite/b.weinstein/retinanet/20190712_035528/resnet50_40.h5", "All":"/orange/ewhite/b.weinstein/retinanet/20190715_123358/resnet50_40.h5"} import pandas as pd import numpy as np from DeepForest.config import load_config DeepForest_config = load_config("..") results = [] for training_site in trained_models: #Sites are passed as list object. sites = [["TEAK"],["SJER"],["NIWO"],["MLBS"]] for eval_site in sites: model = trained_models[training_site] #pass an args object instead of using command line args = [ "--batch-size", str(DeepForest_config['batch_size']), '--score-threshold', str(DeepForest_config['score_threshold']), '--suppression-threshold','0.15', '--save-path', '../snapshots/images/', '--model', model, '--convert-model' ] #Run eval DeepForest_config["training_site"] = training_site DeepForest_config["evaluation_site"] = eval_site #Comet experiment = Experiment(api_key="ypQZhYfs3nSyKzOfz13iuJpj2", project_name='deeplidar', log_code=False) experiment.log_parameter("mode","cross_site") experiment.log_parameters(DeepForest_config) average_precisions = main(DeepForest_config, args, experiment=experiment) # print evaluation ## print evaluation present_classes = 0 precision = 0 for label, (average_precision, num_annotations) in average_precisions.items(): if num_annotations > 0: present_classes += 1 precision += average_precision NEON_map = round(precision / present_classes,3) results.append({"Training Site":training_site, "Evaluation Site": eval_site, "mAP": NEON_map}) results = pd.DataFrame(results) #model name model_name = os.path.splitext(os.path.basename(model))[0] print(results) results.to_csv("cross_site.csv")
import sys import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import mpl_toolkits.mplot3d.art3d as art3d from matplotlib.patches import Rectangle import seaborn as sns from astropy.table import Table from dust_blorentz_ode import streamline try: thB_degrees = float(sys.argv[1]) LFAC = float(sys.argv[2]) MACH_ALFVEN = float(sys.argv[3]) YPLANE = float(sys.argv[4]) except: sys.exit(f"Usage: {sys.argv[0]} FIELD_ANGLE LORENTZ_FORCE MACH_ALFVEN YPLANE") suffix = f"b{int(thB_degrees):02d}-L{int(100*LFAC):04d}-Ma{int(10*MACH_ALFVEN):04d}-Y{int(100*YPLANE):+04d}" figfile = sys.argv[0].replace('.py', f'-{suffix}.jpg') sns.set_style('white') sns.set_color_codes() fig, ax = plt.subplots(subplot_kw=dict(projection='3d'), figsize=(6, 3.3)) ny0, nz0 = 31, 1 y0grid = 0.000 + np.linspace(-2.0, 2.0, 1.5*ny0) z0grid = [0.0] xmin, xmax = [-7, 3] zmin, zmax = [-2, 2] ymin, ymax = [-4, 4] # show the z=0 plane p = Rectangle((xmin, zmin), xmax - xmin, zmax - zmin, edgecolor='none', facecolor='g', alpha=0.15) ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=YPLANE, zdir="y") cthB = np.cos(np.radians(thB_degrees)) sthB = np.sin(np.radians(thB_degrees)) for xx in np.linspace(-15, 15, 31): yy1, yy2 = -15, 15 x1 = -xx*sthB + yy1*cthB x2 = -xx*sthB + yy2*cthB y1 = xx*cthB + yy1*sthB y2 = xx*cthB + yy2*sthB x = np.linspace(x1, x2, 200) y = np.linspace(y1, y2, 200) m = (x >= xmin) & (y >= ymin) & (x <= xmax) & (y <= ymax) x[~m] = np.nan ax.plot(x, y, zs=zmin, zdir='z', lw=2, alpha=0.5, color='c') #nt = 3001 nt = 3001 tstop = 60 X0 = 10 # Time index corresponding to stellar passage, approx it0 = int(nt*X0/tstop) zcolors = ['k'] # Random velocity of grains - assume at Alfven speed, at high pitch angle to field v_turb_0 = 1.0/MACH_ALFVEN mu_p_max = 0.1 # Find all the trajectories trajectories = [] for y0 in y0grid: # Pitch angle to field c_p = np.random.uniform(0.0, mu_p_max) s_p = np.sqrt(1.0 - c_p**2) # Azimuth around field phi_B = np.random.uniform(0.0, 2*np.pi) spB, cpB = np.sin(phi_B), np.cos(phi_B) # Magnitude and sign v_turb = np.random.normal(loc=0.0, scale=v_turb_0) # Components in frame of B-field vBx = v_turb*c_p vBy = v_turb*s_p*cpB vBz = v_turb*s_p*spB # Now transform to flow frame cthB, sthB = np.cos(np.radians(thB_degrees)), np.sin(np.radians(thB_degrees)) u0 = vBx*cthB - vBy*sthB - 1.0 v0 = vBx*sthB + vBy*cthB w0 = vBz s = streamline(X0=X0, Y0=YPLANE, Z0=y0, U0=u0, V0=v0, W0=w0, thB=np.radians(thB_degrees), tstop=tstop, n=nt, LFAC=LFAC) if ymin <= s['y'][it0] <= ymax: trajectories.append(s) # Sort according to z coordinate near the star trajectories.sort(key=lambda s: s['z'][it0], reverse=False) ycolors = sns.color_palette('magma_r', n_colors=len(trajectories)) star_done = False for iy0, s in enumerate(trajectories): x, y, z = s['x'], s['y'], s['z'] # implement clipping by hand m = (x >= xmin) & (x <= xmax) m = m & (y >= ymin) & (y <= ymax) m = m & (z >= zmin) & (z <= zmax) x[~m] = np.nan # Draw the star before we get to the first positive z value if s['z'][it0] > 0.0 and not star_done: ax.plot([0, 0], [0, 0], [zmin, zmax], '--', color='k', lw=0.3) ax.plot([xmin, xmax], [0, 0], [0, 0], '--', color='k', lw=0.3) ax.plot([0, 0], [ymin, ymax], [0, 0], '--', color='k', lw=0.3) star = ax.plot([0], [0], [0], 'o', color='r') star_done = True ax.plot(x, y, z, '-', color='w', lw=1.0) ax.plot(x, y, z, '-', color=ycolors[iy0], lw=0.7) ax.auto_scale_xyz([xmin, xmax], [ymin, ymax], [zmin, zmax]) ax.set( xlabel='$x/R_{0}$', ylabel='$y/R_{0}$', zlabel='$z/R_{0}$', xticks=range(xmin, xmax+1), yticks=range(ymin, ymax+1), zticks=[-2, -1, 0, 1, 2], xlim=[xmin, xmax], ylim=[ymin, ymax], zlim=[zmin, zmax], ) ax.azim = +15 ax.elev = 30 text = "$" + r" \quad\quad ".join([ fr"\theta_B = {thB_degrees:.0f}^\circ", fr"F_B / F_\mathrm{{rad}} = {LFAC:.1f}", fr"\mathcal{{M}}_A = {MACH_ALFVEN:.1f}", fr"y_0 = {YPLANE:.4f}"]) + "$" fig.text(0.1, 0.9, text) fig.tight_layout(rect=[0, 0, 1.05, 1.0]) fig.savefig(figfile, dpi=600) print(figfile, end='')
# This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. from myStock_handler.stock_day_handler import regist_day, get_stock_day import datetime from myAI.stock_litm import LSTM_model from myAI.stock_DNN01 import DNN01_model # from myAI.stock_DNN02 import DNN02_model # from myAI.stock_DNN03 import DNN03_model from myAI.stock_DNN02_multidatum import DNN02_multi_model from myAI.stock_DNN04 import DNN04_model from my_util.util import loadHist, saveHist, saveModel import numpy as np # Press the green button in the gutter to run the script. if __name__ == '__main__': modName="DNN02" num=6502 interval = 5 date_begin=datetime.date(2018, 1, 1) date_end=datetime.date(2020, 12, 30) path="/Users/ryo/Documents/StockData/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+".csv" path_minute="/Users/ryo/Documents/StockData_min"+ str(interval) +"/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+".csv" path_hist = "/Users/ryo/Work/python_work/myAI_data/"+ modName+ "_" + datetime.datetime.now().strftime("%Y-%m-%d")+".json" path_model = "/Users/ryo/Work/python_work/myAI_data/"+ modName+ "_" + datetime.datetime.now().strftime("%Y-%m-%d") path_predict="" # is_success, data = get_stock_day(num, date_begin, date_end) is_success = True jj=100 ## day date data = np.loadtxt(path, delimiter=",", dtype="int64, U20, float, float, float, float,int64") ##Loading statistics data path_ma200="/Users/ryo/Documents/StockData/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+"_ma200.csv" path_ma75="/Users/ryo/Documents/StockData/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+"_ma75.csv" path_ma50="/Users/ryo/Documents/StockData/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+"_ma50.csv" path_ma25="/Users/ryo/Documents/StockData/"+str(num)+"_"+str(date_begin)+"to"+str(date_end)+"_ma25.csv" data_ma200 = np.loadtxt(path_ma200, delimiter=",", dtype="int64, U20, float, float, float, float,int64, U20") data_ma75 = np.loadtxt(path_ma75, delimiter=",", dtype="int64, U20, float, float, float, float,int64, U20") data_ma50 = np.loadtxt(path_ma50, delimiter=",", dtype="int64, U20, float, float, float, float,int64, U20") data_ma25 = np.loadtxt(path_ma25, delimiter=",", dtype="int64, U20, float, float, float, float,int64, U20") ## minute date # data_minute = np.loadtxt(path_minute, delimiter=",", dtype="int64, U30, float, float, float, float, int64, int64") # data = np.loadtxt(path, delimiter=",", dtype=["int64", "str", "float", "float", "float", "float", "int64"]) print('File loading is ' + str(is_success)) if is_success: print('Date range is ' + str(data[1][0]) + " to " + str(data[1][-1])) print('Data size is ' + str(len(data[:][0]))) # data_np=np.zeros([len(data_minute),len(data_minute[0])-3]) data_np=np.zeros([len(data),len(data[0])-2]) data_np_ma200=np.zeros([len(data_ma200),len(data_ma200[0])-2]) data_np_ma75=np.zeros([len(data_ma75),len(data_ma75[0])-2]) data_np_ma50=np.zeros([len(data_ma50),len(data_ma50[0])-2]) data_np_ma25=np.zeros([len(data_ma25),len(data_ma25[0])-2]) # print('Date range is ' + str(data_minute[1][0]) + " to " + str(data_minute[1][-1])) # print('Data size is ' + str(len(data_minute[:][0]))) # # data_np=np.zeros([len(data_minute),len(data_minute[0])-3]) for i in range(len(data)): for j in range(len(data[1])-2): data_np[i,j] = data[i][j+2] data_np_ma200[i,j] = data_ma200[i][j+2] data_np_ma75[i,j] = data_ma75[i][j+2] data_np_ma50[i,j] = data_ma50[i][j+2] data_np_ma25[i,j] = data_ma25[i][j+2] print(data_np[:int(len(data_np)/2),0]) # model = LSTM_model() # model = DNN01_model() # model = DNN02_model() # model = DNN03_model() model = DNN04_model() # model = DNN02_multi_model() boo, history = model.train_model(data_np[:-150]) saveHist(path_hist, model.history) saveModel(path_model, model.model) success_ai, predicted = model.predict(data_np[-150:], path_predict) print("predicted", predicted) # See PyCharm help at https://www.jetbrains.com/help/pycharm/
import pandas as pd import unittest import os import pyterrier as pt from .base import BaseTestCase class TestFeaturesBatchRetrieve(BaseTestCase): def test_fbr_ltr(self): JIR = pt.autoclass('org.terrier.querying.IndexRef') indexref = JIR.of(self.here + "/fixtures/index/data.properties") retr = pt.FeaturesBatchRetrieve(indexref, ["WMODEL:PL2"]) topics = pt.Utils.parse_trec_topics_file(self.here + "/fixtures/vaswani_npl/query-text.trec").head(3) qrels = pt.Utils.parse_qrels(self.here + "/fixtures/vaswani_npl/qrels") res = retr.transform(topics) res = res.merge(qrels, on=['qid', 'docno'], how='left').fillna(0) from sklearn.ensemble import RandomForestClassifier import numpy as np print(res.dtypes) RandomForestClassifier(n_estimators=10).fit(np.stack(res["features"]), res["label"]) def test_fbr(self): JIR = pt.autoclass('org.terrier.querying.IndexRef') indexref = JIR.of(self.here + "/fixtures/index/data.properties") retr = pt.FeaturesBatchRetrieve(indexref, ["WMODEL:PL2"]) input = pd.DataFrame([["1", "Stability"]], columns=['qid', 'query']) result = retr.transform(input) self.assertTrue("qid" in result.columns) self.assertTrue("docno" in result.columns) self.assertTrue("score" in result.columns) self.assertTrue("features" in result.columns) self.assertTrue(len(result) > 0) self.assertEqual(result.iloc[0]["features"].size, 1) retrBasic = pt.BatchRetrieve(indexref) if "matching" in retrBasic.controls: self.assertNotEqual(retrBasic.controls["matching"], "FatFeaturedScoringMatching,org.terrier.matching.daat.FatFull") if __name__ == "__main__": unittest.main()
__version__ = "0.9.94.dev3"